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Abstract. In this paper we introduce a new formulation for the stationary poroelasticity equa-
tions written using the rotation vector and the total fluid-solid pressure as additional unknowns, and
we also write an extension to the elasticity-poroelasticity problem. The transmission conditions are
imposed naturally in the weak formulation, and the analysis of the effective governing equations is
conducted by an application of Fredholm's alternative. We also propose a monolithically coupled
mixed finite element method for the numerical solution of the problem. Its convergence proper-
ties are rigorously derived and subsequently confirmed by a set of computational tests that include
applications to subsurface flow in reservoirs as well as to dentistry-oriented problems.
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1. Introduction. The disparity of material properties across geometric inter-
faces is encountered in a wide variety of transmission problems arising in diverse
scientific and engineering applications. This phenomenon is more clearly observed
when the materials sharing the interface have intrinsically different features, such as
an elastic medium in contact with a fluid or a poroelastic material in contact with
an elastic one. For the latter, one specific example is the study of mechanical prop-
erties of the interaction between an oil reservoir and the surrounding nonpay rock.
As mentioned in [23], the pore pressure variations and fluid content trapped in the
cap rock are commonly not affected by outer injection or extraction of fluids in the
reservoir. This fact motivates the use of partitioned models where one considers in the
reservoir the classical Biot equations for poroelasticity, while the equations of linear
elasticity suffice to describe the overall behavior of the cap rock (see also [45]). In
this case, a careful setup of interface conditions is required. We refer the reader to
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[43, 37] for a detailed discussion on the physical and mathematical implications of
these transmission terms.

Some other applications of elastic-poroelastic coupled systems include the reser-
voir modeling mentioned above, the classical problem of soil-structure interaction
(which can include soil-retaining walls and shallow foundations [34] or the earth's
crustal deformation [39]), the simulation of periodontal ligament-tooth contact as
done in [18], the development of noise reduction for aircraft design using acoustic-
elastic wave propagation [28, 42], and the study of low-friction cartilage tissue in
vertebrates [14].

The mathematical properties of these types of models have been addressed in [23].
There, the authors develop a solvability theory for the semidiscrete elastic and poro-
elastic subproblems, making use of a Galerkin method combined with compactness
arguments permitting the passage to the limit.

In contrast, the specific version of the model we analyze here uses a modifica-
tion of the recent displacement-rotation-pressure formulation of elasticity equations
proposed in [4], together with a new formulation for the equations of poromechanics
written in terms of displacement, fluid pressure, rotation, and total pressure. Our
model assumes that the elastic domain is completely clamped on its exterior bound-
ary, whereas on the interface between the poroelastic and elastic media we impose
continuity of displacement, zero fluid flux, and a transmission condition related to the
continuity of total traction forces written in terms of tangential rotations and pressure.
The mathematical structure of the set of equations and interface conditions reveals
that the system is written as a monolithic coupling, where the interface continuity
conditions stated above are incorporated naturally through the weak formulation,
without the need of additional Lagrange multipliers. In particular, the regularity of
the displacement and the scaling of the momentum equations in both domains allow
us to consider a global displacement. The well-posedness of the continuous problem is
studied by grouping the unknowns with compatible regularity and realizing that the
resulting problem is a mixed variational formulation resembling the system introduced
in [38] that describes the Biot equations in their displacement-pressure-total pressure
formulation and which is analyzed using Fredholm's alternative. Our analysis also
discusses the limit case when the specific storage coefficient in the poroelastic domain
goes to zero, and we observe that the continuous dependence on data is robust with
respect to the Lam\'e constants of the solids in both regions of the domain.

A similar framework is established for the discrete problem, here defined for
Galerkin schemes with arbitrary order. For example, we can employ piecewise qua-
dratic and continuous approximations for displacements in the whole domain and for
fluid pressure in the poroelastic medium, whereas piecewise linear and discontinuous
approximations are employed for all remaining unknowns (rotations in both domains,
total pressure in the poroelastic domain, and solid pressure in the elastic domain).
For this particular scheme our error estimates predict an overall second-order accu-
racy, and the involved bounds are also robust with respect to the Lam\'e constants of
the solids. Let us emphasize that the literature related to numerical methods for the
coupling of elasticity and poroelasticity is still quite restricted. We are only aware of
the conforming Galerkin scheme presented in [23], where a domain decomposition on
the interface between the two subdomains is done by means of discontinuous Galerkin
jumps and mortar terms; the stability of a mixed variant for that formulation, recently
analyzed in [25]; the primal method combined with stochastic parameter estimation
advanced in [45]; and the loosely coupled segregated approaches developed for a fluid-
poromechanics interaction problem studied in [10].
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Let us stress that the advantages of using rotations are shared with a wide class
of previous formulations for general elastic materials. They relate to the direct ap-
proximation of the rotation vector but without the need for constraining its rotation
to coincide with that of the medium. Also, they can be of special applicability for
nonpolar media and the modeling of helicoidal motion (see, e.g., [6, 35, 36, 31] and the
references therein). However, in our case the main motivation comes from the PDE
and numerical analysis aspects of the resulting formulations, since they resemble the
vorticity-based equations for incompressible flow in classical and contemporary works
including, e.g., [26, 40, 24, 15, 41, 13, 1, 17, 8, 16, 3, 5]. The theoretical analyses of
these two very different families of models have remarkable connections.

The contents of this paper will be presented in the following manner. Section 2
defines the model problem in strong form, specifying the boundary and interface
conditions. It also includes the derivation of an appropriate weak formulation, and
the statement of preliminary properties of the involved bilinear forms. The existence
and uniqueness of weak solutions is then studied in section 3. This analysis is mainly
based on Fredholm's alternative and saddle-point theorems, where we also establish
continuous dependence on data, with bounds that turn out to be robust with respect to
the elasticity parameters intrinsic to each subdomain. A suitable Galerkin method,
together with finite element spaces, will be defined in section 4. This section also
incorporates the analysis of well-posedness of the discrete problem, the proof of a
quasi-optimality result, and the derivation of a priori error bounds. We close in
section 5 with a few computational examples that serve to confirm the accuracy of
the mixed finite element method and to illustrate the suitability of the model and of
the family of schemes in some applicative problems.

2. Set of governing equations.

2.1. Model problem and boundary-transmission conditions. Let us con-
sider a bounded Lipschitz domain \Omega \subset \BbbR d, d \in \{ 2, 3\} , in conjunction with a partition
into nonoverlapping and connected subdomains \Omega E, \Omega P representing zones of nonpay
rock (where we will set the equations of linear elasticity) and a reservoir (where we
aim at solving the poroelasticity equations), respectively. We also assume that the

reservoir is completely immersed in the overall domain, that is, \Omega P \subset \Omega , such that
the interface between the two subdomains, denoted as \Sigma = \partial \Omega P\cap \partial \Omega E, coincides with
the boundary of the pay zone, as portrayed in Figure 2.1. Note that on the interface,
we consider that the normal unit vector \bfitn is pointing from \Omega P to \Omega E.

In the reservoir, we consider the steady form of the balance laws for the poro-
elasticity equations (see, for instance, [7], and see [38, 32, 33] for the stationary case),
i.e., find the displacement \bfitu P and the pore pressure of the fluid pP such that

 - \mu P\Delta \bfitu P  - (\lambda P + \mu P)\nabla div(\bfitu P) + \alpha \nabla pP = \widetilde \bfitf P
in \Omega P,(2.1)

c0p
P + \alpha div(\bfitu P) - 1

\xi 
div

\bigl[ 
\kappa (\nabla pP  - \rho \bfitg )

\bigr] 
= sP in \Omega P,(2.2)

where sP is a smooth fluid source term; \kappa is the permeability of the porous matrix
constituting the reservoir (here assumed isotropic and satisfying 0 < \kappa 1 \leq \kappa (\bfitx ) \leq 
\kappa 2 < \infty for all \bfitx \in \Omega P); \lambda P, \mu P are the Lam\'e constants of the solid \Omega P (dilation
and shear moduli of elasticity, respectively); c0 > 0 is the constrained specific storage
coefficient; \alpha > 0 is the Biot--Willis parameter, \bfitg is the gravity acceleration, and
\xi > 0, \rho > 0 are the viscosity and density of the pore fluid, respectively. Next, for the
poroelasticity problem, we propose a new four-field variational formulation. In fact,
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Fig. 2.1. Sketch of the multidomain configuration.

we begin by introducing the additional unknowns

\phi P := \alpha (\lambda P + \mu P) - 1pP  - (1 + \eta P) div(\bfitu P) and \bfitomega P :=
\sqrt{} 
\eta P curl\bfitu P,(2.3)

where the first one can be regarded as a rescaled total pressure or volumetric stress,
and the second one corresponds to the rescaled rotations, with the auxiliary scaling

parameter \eta P := \mu P

\lambda P+\mu P . In this way, the identities in (2.3) in combination with (2.1)--

(2.2) give rise to the following four-field formulation for the poroelasticity problem:
find the displacement \bfitu P, the poroelastic rotation vector \bfitomega P, the pore fluid pressure
pP, and the rescaled total poroelastic pressure \phi P such that\sqrt{} 

\eta P curl\bfitomega P+\nabla \phi P=\bfitf P in\Omega P,(2.4)

\bfitomega P  - 
\sqrt{} 
\eta P curl\bfitu P = 0 in \Omega P,(2.5)

(1 + \eta P) - 1\phi P + div(\bfitu P) - \alpha (1 + \eta P) - 1(\lambda P + \mu P) - 1pP = 0 in \Omega P,(2.6) \bigl[ 
c0 + \alpha 2(\mu P + \lambda P) - 1(1 + \eta P) - 1

\bigr] 
pP  - \alpha (1 + \eta P) - 1\phi P(2.7)

 - 1

\xi 
div

\bigl[ 
\kappa (\nabla pP  - \rho \bfitg )

\bigr] 
= sP in \Omega P,

where the right-hand side has been rescaled as \bfitf P := 1
\lambda P+\mu P

\widetilde \bfitf P
.

In \Omega E the governing equations correspond to the system of linear elasticity written
in terms of displacement \bfitu E, elastic pressure pE, and elastic rotation vector \bfitomega E :=\sqrt{} 
\eta E curl\bfitu E associated with the nonpay zone:\sqrt{} 

\eta E curl\bfitomega E +\nabla pE = \bfitf E in \Omega E,(2.8)

\bfitomega E  - 
\sqrt{} 
\eta E curl\bfitu E = 0 in \Omega E,(2.9)

div\bfitu E + pE = 0 in \Omega E,(2.10)

where \eta E := \mu E

2\mu E+\lambda E > 0 is a scaling parameter depending on the Lam\'e constants

of the elastic nonpay rock \Omega E, and \bfitf E corresponds to the rescaled function \bfitf E :=
1

2\mu E+\lambda E
\widetilde \bfitf E

.

Remark 2.1. An important consideration here is that such a scaling is different
from that used in [4]. As we will see in section 2.2, this choice makes convenient the
balancing of bilinear forms corresponding to similar terms at the moment of casting
the governing equations in weak form, especially regarding the contributions on the
interface.
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Regarding boundary conditions, we assume here that on the external boundary
of the nonpay rock the displacements are zero,

(2.11) \bfitu E = 0 on \Gamma ,

and the system is closed by setting suitable transmission conditions on the interface
between the reservoir and the nonpay zone,
(2.12)

\bfitu P = \bfitu E,
\sqrt{} 
\eta P \bfitomega P\times \bfitn +\phi P\bfitn =

\sqrt{} 
\eta E \bfitomega E\times \bfitn +pE \bfitn ,

\kappa 

\xi 
(\nabla pP - \rho \bfitg )\cdot \bfitn = 0, on \Sigma ,

which represent continuity of the medium, a generalized relation for the matching of
total normal stresses, and no-flux of fluid at the interface, respectively. The second
condition in (2.12) can be linked to the generalized Navier condition used in fluids

[\bfitepsilon (\bfitu P)\bfitn ]\tau + \Lambda \bfitu P = 0,

where the subscript \tau denotes the vectorial tangential trace of any vector, defined by
\bfitv \tau := \bfitv  - (\bfitv \cdot \bfitn )\bfitn , and \Lambda is a type (1,1) tensor defined on \Sigma [22]. In the simple case
when \Lambda = \delta I (with \delta a positive or negative friction coefficient), one retrieves a Navier-
type friction transmission condition. If \Lambda is instead the Weingarten shape operator
on the interface, this results in a continuity condition for the tangential rotations and
the normal total pressure. Similar ideas can be found in, e.g., [22, 2, 12, 29, 11, 43,
19] for Navier--Stokes/Darcy and Brinkman--Darcy couplings, vascular Stokes--Darcy
models, Lagrangian--Eulerian fluid-elastic transmission, time-harmonic elastic waves,
and interface poromechanics, respectively. The last transmission condition imposes no
leakage between the bodies as they are compressed, which implies mass conservation
[14]. The balancing of scales in these interface conditions is a consequence of the
rescaling highlighted in Remark 2.1.

2.2. Weak formulation. In order to derive a weak formulation for the system
(2.4)--(2.12), we start by multiplying each equation of the poroelasticity problem by
suitable test functions, integrating by parts whenever adequate (see (2.15)--(2.16)),
and applying the second and third transmission conditions given in (2.12) to obtain

 - 
\sqrt{} 
\eta P

\int 
\Omega P

curl\bfitv P \cdot \bfitomega P+

\int 
\Omega P

\phi Pdiv(\bfitv P) - \langle 
\sqrt{} 
\eta E \bfitomega E\times \bfitn + pE\bfitn ,\bfitv P\rangle \Sigma =  - 

\int 
\Omega P

\bfitf P \cdot \bfitv P,

(2.13)

\int 
\Omega P

\bfitomega P \cdot \bfittheta P  - 
\sqrt{} 
\eta P

\int 
\Omega P

\bfittheta P \cdot curl\bfitu P = 0,

(1 + \eta P) - 1

\int 
\Omega P

\phi P\psi P +

\int 
\Omega P

\psi P div(\bfitu P) - \alpha (1 + \eta P) - 1(\lambda P + \mu P) - 1

\int 
\Omega P

pP\psi P = 0,

 - 
\bigl[ 
c0 + \alpha 2(\mu P + \lambda P) - 1(1 + \eta P) - 1

\bigr] \int 
\Omega P

pPqP

+ \alpha (1 + \eta P) - 1

\int 
\Omega P

\phi PqP  - \xi  - 1

\int 
\Omega P

\kappa \nabla pP \cdot \nabla qP

=  - \rho \xi  - 1

\int 
\Omega P

\kappa \bfitg \cdot \nabla qP  - 
\int 
\Omega P

sPqP

for each (\bfitv P,\bfittheta P, \psi P, qP) \in H1(\Omega P)\times L2(\Omega P)\times L2(\Omega P)\times H1(\Omega P). In turn, for (2.8)--
(2.10) we proceed as in the mixed displacement-rotation-pressure formulation for
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linear elasticity introduced in [4], and we obtain

 - 
\sqrt{} 
\eta E

\int 
\Omega E

\bfitomega E \cdot curl\bfitv E+

\int 
\Omega E

pE div(\bfitv E)+\langle 
\sqrt{} 
\eta E \bfitomega E\times \bfitn + pE\bfitn ,\bfitv E\rangle \Sigma =  - 

\int 
\Omega E

\bfitf E \cdot \bfitv E,\int 
\Omega E

\bfitomega E \cdot \bfittheta E  - 
\sqrt{} 
\eta E

\int 
\Omega E

\bfittheta E \cdot curl\bfitu E = 0,(2.14) \int 
\Omega E

qEdiv(\bfitu E) +

\int 
\Omega E

pEqE = 0

for each (\bfitv E,\bfittheta E, qE) \in H1
\Gamma (\Omega 

E)\times L2(\Omega E)\times L2(\Omega E), where

H1
\Gamma (\Omega 

E) := \{ \bfitv E \in H1(\Omega E) : \bfitv E = 0 on \Gamma \} .

Recall that, according to [24, Theorem 2.11], for a generic domain \Omega , the relevant
integration by parts formula corresponds to

(2.15)

\int 
\Omega 

curl\bfitomega \cdot \bfitv =

\int 
\Omega 

\bfitomega \cdot curl\bfitv + \langle \bfitomega \times \bfitn ,\bfitv \rangle \partial \Omega 

if \Omega \subseteq \BbbR 3, or to

(2.16)

\int 
\Omega 

curl\omega \cdot \bfitv =

\int 
\Omega 

\omega rot\bfitv  - \langle \bfitv \cdot \bfitt , \omega \rangle \partial \Omega 

in 2D, where \bfitt is the tangent vector.
The first transmission condition in (2.12), together with the regularity of the

solid displacements on each subdomain (to be specified below), implies that we can
consider a single displacement field \bfitu and test function \bfitv . That is the reason why
the duality pairings between H - 1/2(\Sigma ) and H1/2(\Sigma ) (represented by \langle \cdot , \cdot \rangle \Sigma ) disappear
when we add the first row in (2.14) to the first row in (2.13). Furthermore, from now
on we regard the poroelastic and elastic rotation vectors \bfitomega P and \bfitomega E, respectively, the
rescaled total poroelastic pressure \phi P, and the pressure pE in the elastic domain as
a single auxiliary unknown, namely \vec{}\bfitomega := (\bfitomega P, \phi P,\bfitomega E, pE) (defined in an appropriate
product functional space) such that we can establish the well-posedness of the mixed
variational formulation of interest using Fredholm's alternative theory for compact
operators. Under this assumption, we arrive at the following: find (\vec{}\bfitomega ,\bfitu , pP) \in H \times 
V \times QP such that

a(\vec{}\bfitomega , \vec{}\bfittheta ) + b1(\vec{}\bfittheta ,\bfitu ) - b2(\vec{}\bfittheta , p
P) = 0 \forall \vec{}\bfittheta \in H,(2.17)

b1(\vec{}\bfitomega ,\bfitv ) = F (\bfitv ) \forall \bfitv \in V,(2.18)

b3(\vec{}\bfitomega , q
P) - c(pP, qP) = G(qP) \forall qP \in QP,(2.19)

where the vector \vec{}\bfittheta := (\bfittheta P, \psi P,\bfittheta E, qE), and the boundary and interface conditions
suggest defining the involved functional spaces as

H := L2(\Omega P)\times L2(\Omega P)\times L2(\Omega E)\times L2(\Omega E), V := H1
0(\Omega ), QP := H1(\Omega P),

and the bilinear forms a : H \times H \rightarrow \BbbR , b1 : H \times V \rightarrow \BbbR , b2 : H \times QP \rightarrow \BbbR ,
b3 : H\times QP \rightarrow \BbbR , c : QP \times QP \rightarrow \BbbR , and linear functionals F : V \rightarrow \BbbR , G : QP \rightarrow \BbbR 
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are specified in the following way:

a(\vec{}\bfitomega , \vec{}\bfittheta ) :=

\int 
\Omega P

\bfitomega P \cdot \bfittheta P +
1

1 + \eta P

\int 
\Omega P

\phi P\psi P +

\int 
\Omega E

\bfitomega E \cdot \bfittheta E +

\int 
\Omega E

pEqE,

b1(\vec{}\bfittheta ,\bfitv ) := - 
\sqrt{} 
\eta P

\int 
\Omega P

\bfittheta P \cdot curl\bfitv +

\int 
\Omega P

\psi P div \bfitv  - 
\sqrt{} 
\eta E

\int 
\Omega E

\bfittheta E \cdot curl\bfitv +

\int 
\Omega E

qE div \bfitv ,

b2(\vec{}\bfittheta , p
P) :=

\alpha 

(1 + \eta P)(\lambda P + \mu P)

\int 
\Omega P

pP\psi P, b3(\vec{}\bfitomega , q
P) :=

\alpha 

(1 + \eta P)

\int 
\Omega P

qP\phi P,

c(pP, qP) :=

\biggl[ 
c0 +

\alpha 2

(\mu P + \lambda P)(1 + \eta P)

\biggr] \int 
\Omega P

pPqP +
1

\xi 

\int 
\Omega P

\kappa \nabla pP \cdot \nabla qP,

F (\bfitv ) :=  - 
\int 
\Omega P

\bfitf P \cdot \bfitv  - 
\int 
\Omega E

\bfitf E \cdot \bfitv , G(qP) :=  - \rho 
\xi 

\int 
\Omega P

\kappa \bfitg \cdot \nabla qP  - 
\int 
\Omega P

sPqP.

For the forthcoming analysis, we will consider the following \eta P- and \eta E-dependent
norms (see, for instance, [24, Remark 2.7]) for the displacements on the solid and
elastic domains \Omega P and \Omega E, respectively:

\| \bfitv \| 2\bfV P :=\eta P\| curl\bfitv \| 20,\Omega P+\| div \bfitv \| 20,\Omega P and \| \bfitv \| 2\bfV E :=\eta E\| curl\bfitv \| 20,\Omega E+\| div \bfitv \| 20,\Omega E ,

which in turn give rise to the following \eta P- and \eta E-dependent norm on the space V:

\| \bfitv \| 2\bfV := \| \bfitv \| 2\bfV P + \| \bfitv \| 2\bfV E .

Moreover, H will be endowed with the norm

\| \vec{}\bfittheta \| 2\bfH := \| \bfittheta P\| 20,\Omega P + \| \psi P\| 20,\Omega P + \| \bfittheta E\| 20,\Omega E + \| qE\| 20,\Omega E .

Remark 2.2. We observe that the natural regularity for variable \bfitu (and test func-
tion \bfitv ) in system (2.17)--(2.19) is H0(curl,\Omega )\cap H0(div,\Omega ). However, according to [24,
Lemma 2.5], an algebraic and topological equivalence between this space and V holds
if the domain \Omega is a polyhedral bounded domain with Lipschitz boundary \partial \Omega (see
also [24, Remark 2.7]). This permits us, in this particular case, to consider standard
finite element subspaces, such as piecewise and continuous polynomials to discretize
V. This is the approach we follow in (4.1).

3. Well-posedness analysis. Before addressing the well-posedness of the con-
tinuous formulation, we indicate that the bilinear forms and the linear functionals
appearing in the variational problem of interest are all bounded by constants inde-
pendent of \eta P and \eta E (see, for instance, [4]). We also recall the positivity of the
bilinear forms a(\cdot , \cdot ), and c(\cdot , \cdot ),

a(\vec{}\bfittheta , \vec{}\bfittheta ) \geq 1

(1 + \eta P)
\| \vec{}\bfittheta \| 2\bfH \forall \vec{}\bfittheta \in H,

c(qP, qP) \geq 
\biggl[ 
c0 +

\alpha 2

(\mu P + \lambda P)(1 + \eta P)

\biggr] 
\| qP\| 0,\Omega P +

\kappa 1
\xi 
| qP| 1,\Omega P \forall qP \in QP,

as well as the continuous inf-sup condition satisfied by b1(\cdot , \cdot ), stated in the following
result.

Lemma 3.1. There exists \beta > 0, independent of \eta P and \eta E, such that

sup
\vec{}\bfittheta \in \bfH \setminus \bfzero 

b1(\vec{}\bfittheta ,\bfitv )

\| \vec{}\bfittheta \| \bfH 
\geq \beta \| \bfitv \| \bfV \forall \bfitv \in V.(3.1)
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Proof. Proceeding as in [4, Lemma 2.2], let us consider an arbitrary \bfitv \in V and
define

\vec{}\bfittheta \beta := ( - 
\sqrt{} 
\eta P curl\bfitv | \Omega P ,div(\bfitv )| \Omega P , - 

\sqrt{} 
\eta E curl\bfitv | \Omega E ,div(\bfitv )| \Omega E) \in H.

In this way, noting that
\| \vec{}\bfittheta \beta \| \bfH \leq \| \bfitv \| \bfV ,

and using the definition of b1(\cdot , \cdot ), we readily obtain

sup
\vec{}\bfittheta \in \bfH \setminus \bfzero 

b1(\vec{}\bfittheta ,\bfitv )

\| \vec{}\bfittheta \| \bfH 
\geq b1(\vec{}\bfittheta \beta ,\bfitv )

\| \vec{}\bfittheta \beta \| \bfH 
\geq \beta \| \bfitv \| \bfV \forall \bfitv \in H,

where we highlight that the constant \beta is strictly positive and independent of the
auxiliary scaling parameters \eta P and \eta E.

3.1. Stability. In this section we establish the stability of the problem by com-
bining the boundedness, positivity, and inf-sup conditions from section 2. We begin
with the following result.

Lemma 3.2. Let (\vec{}\bfitomega ,\bfitu , pP) \in H \times V \times QP be a solution of the system (2.17)--
(2.19); then there exists a constant C > 0, independent of \eta P and \eta E, such that

\| \vec{}\bfitomega \| \bfH +\| \bfitu \| \bfV +\| pP\| 1,\Omega P \leq C
\bigl\{ 
(\mu P+\lambda P)(\| \bfitf E\| 0,\Omega E+\| \bfitf P\| 0,\Omega P)+\| \bfitg \| 0,\Omega P+\| sP\| 0,\Omega P

\bigr\} 
.

(3.2)

Proof. We start by considering \vec{}\bfittheta = \vec{}\bfitomega in (2.17) and \bfitv = \bfitu in (2.18). Thus,
combining both equations and applying the ellipticity of the bilinear form a(\cdot , \cdot ), we
obtain

1

1 + \eta P
\| \vec{}\bfitomega \| 2\bfH \leq a(\vec{}\bfitomega , \vec{}\bfitomega ) \leq \alpha 

(1 + \eta P)(\mu P + \lambda P)
\| \vec{}\bfitomega \| \bfH \| pP\| 0,\Omega P

+ (\| \bfitf P\| 0,\Omega P + \| \bfitf E\| 0,\Omega E)\| \bfitu \| 0,\Omega 

which, by using the classical Young's inequality, can be rewritten as

1

2(1 + \eta P)
\| \vec{}\bfitomega \| 2\bfH \leq \alpha 2

2(1 + \eta P)(\mu P + \lambda P)2
\| pP\| 20,\Omega P + (\| \bfitf P\| 0,\Omega P + \| \bfitf E\| 0,\Omega E)\| \bfitu \| 0,\Omega 

(3.3)

or, equivalently,

(\mu P + \lambda P)

2(1 + \eta P)
\| \vec{}\bfitomega \| 2\bfH \leq \alpha 2

2(1 + \eta P)(\mu P + \lambda P)
\| pP\| 20,\Omega P(3.4)

+ (\mu P + \lambda P)(\| \bfitf P\| 0,\Omega P + \| \bfitf E\| 0,\Omega E)\| \bfitu \| 0,\Omega .

Furthermore, choosing qP = pP in (2.19) and applying the positivity of c(\cdot , \cdot ), we get\biggl[ 
c0 +

\alpha 2

(\mu P + \lambda P)(1 + \eta P)

\biggr] 
\| pP\| 20,\Omega P +

\kappa 1
\xi 
| pP| 21,\Omega P

\leq \alpha 

1 + \eta P
\| \vec{}\bfitomega \| \bfH \| pP\| 0,\Omega P + (\rho \xi  - 1\kappa 2\| \bfitg \| 0,\Omega P + \| sP\| 0,\Omega P)\| pP\| 1,\Omega P ,

(3.5)
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such that applying Young's inequality with constant \delta := \mu P+\lambda P

\alpha to the first term on
the right-hand side of (3.5) and then using (3.4) gives\biggl[ 

c0 +
\alpha 2

(\mu P + \lambda P)(1 + \eta P)

\biggr] 
\| pP\| 20,\Omega P +

\kappa 1
\xi 
| pP| 21,\Omega P \leq \alpha 2

(\mu P + \lambda P)(1 + \eta P)
\| pP\| 20,\Omega P

+ (\mu P + \lambda P)(\| \bfitf P\| 0,\Omega P + \| \bfitf E\| 0,\Omega E)\| \bfitu \| 0,\Omega 
+ (\rho \xi  - 1\kappa 2\| \bfitg \| 0,\Omega P + \| sP\| 0,\Omega P)\| pP\| 1,\Omega P

or, equivalently,

c1\| pP\| 21,\Omega P \leq (\mu P + \lambda P)(\| \bfitf P\| 0,\Omega P + \| \bfitf E\| 0,\Omega E)\| \bfitu \| 0,\Omega 
+ (\rho \xi  - 1\kappa 2\| \bfitg \| 0,\Omega P + \| sP\| 0,\Omega P)\| pP\| 1,\Omega P ,

(3.6)

where c1 := min\{ c0, \kappa 1\xi  - 1\} . On the other hand, by combining (3.3) and (3.5), we
obtain

1

1 + \eta P
\| \vec{}\bfitomega \| 2\bfH \leq \alpha 

1 + \eta P
\| \vec{}\bfitomega \| \bfH \| pP\| 0,\Omega P

+ 2(\| \bfitf P\| 0,\Omega P + \| \bfitf E\| 0,\Omega E)\| \bfitu \| 0,\Omega + (\rho \xi  - 1\kappa 2\| \bfitg \| 0,\Omega P + \| sP\| 0,\Omega P)\| pP\| 1,\Omega P ,

which, applying Young's inequality, leads to

1

2(1 + \eta P)
\| \vec{}\bfitomega \| 2\bfH \leq \alpha 2

2(1 + \eta P)
\| pP\| 20,\Omega P

+ 2(\| \bfitf P\| 0,\Omega P + \| \bfitf E\| 0,\Omega E)\| \bfitu \| 0,\Omega + (\rho \xi  - 1\kappa 2\| \bfitg \| 0,\Omega P + \| sP\| 0,\Omega P)\| pP\| 1,\Omega P .

(3.7)

Now, from the inf-sup condition (3.1) with \bfitv = \bfitu and using (2.17), we get

(3.8) \beta \| \bfitu \| \bfV \leq \alpha 

(\mu P + \lambda P)(1 + \eta P)
\| pP\| 0,\Omega P + \| \vec{}\bfitomega \| \bfH .

Finally, substituting (3.8) back into (3.6) and (3.7), and then applying Young's in-
equality whenever adequate, we obtain the desired result.

Remark 3.1. The expression (\mu P + \lambda P)(\| \bfitf E\| 0,\Omega E + \| \bfitf P\| 0,\Omega P) in (3.2) must be
understood as a term independent of \lambda P since, from the definitions introduced in
section 2 for \bfitf P and \bfitf E, together with Remark 2.1, and assuming that (\mu P + \lambda P) \sim 
(\mu E+\lambda E), we deduce that (\mu P+\lambda P)(\| \bfitf P\| 0,\Omega P +\| \bfitf E\| 0,\Omega E) \sim (\| \widetilde \bfitf P

\| 0,\Omega P +\| \widetilde \bfitf E
\| 0,\Omega E).

Remark 3.2. In the case when c0 \rightarrow 0 in (2.2), the problem for the fluid pressure
pP defined in (2.1)--(2.2) is not well-posed in H1(\Omega P). However, uniqueness is restored
by asking the solution to live in H1(\Omega P) \cap L2

0(\Omega 
P), where L2

0(\Omega 
P) := \{ q \in L2(\Omega P) :\int 

\Omega P q = 0\} . As this new space is a closed subspace of H1(\Omega P), where the norm and
seminorm are equivalent, the stability analysis of (2.17)--(2.19) follows exactly as in
Lemma 3.2, with the constant c1 in (3.6) now defined as c1 := cp\kappa 1\xi 

 - 1, with cp
representing the Poincar\'e constant.

3.2. Solvability of the continuous problem. We now address the unique
solvability of (2.17)--(2.19), applying Fredholm's alternative theory for compact op-
erators. Let us recast the system (2.17)--(2.19) as the following equivalent operator
problem: find \vec{}\bfitu := (\vec{}\bfitomega ,\bfitu , pP) \in X := H\times V \times QP such that

(\scrS + \scrT )\vec{}\bfitu = \scrF ,(3.9)
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where the linear operators \scrS : X \rightarrow X \star , \scrT : X \rightarrow X \star , and \scrF \in X \star are defined as

\langle \scrS (\vec{}\bfitu ), \vec{}\bfitv \rangle : = a(\vec{}\bfitomega , \vec{}\bfittheta ) + b1(\vec{}\bfittheta ,\bfitu ) - b1(\vec{}\bfitomega ,\bfitv ) + c(pP, qP),

\langle \scrT (\vec{}\bfitu ), \vec{}\bfitv \rangle : =  - b2(\vec{}\bfittheta , pP) - b3(\vec{}\bfitomega , q
P),

\langle \scrF , \vec{}\bfitv \rangle : =  - F (\bfitv ) - G(qP)

for all \vec{}\bfitu := (\vec{}\bfitomega ,\bfitu , pP), \vec{}\bfitv := (\vec{}\bfittheta ,\bfitv , qP) \in X, where we recall that \langle \cdot , \cdot \rangle stands for the
duality pairing between the space X and its dual X \star .

The three upcoming lemmas establish the invertibility of \scrS , the compactness of
\scrT , and the injectivity of \scrS +\scrT , such that Fredholm's theory implies the well-posedness
of the operator problem (3.9) and, equivalently, of (2.17)--(2.19).

Lemma 3.3. The operator \scrS : X \rightarrow X \star is invertible.

Proof. First, for a given functional \scrF := (\scrF \bfH ,\scrF \bfV ,\scrF QP), observe that establishing
the invertibility of \scrS is equivalent to proving the unique solvability of the operator
problem

\scrS (\vec{}\bfitu ) = \scrF .(3.10)

Furthermore, proving unique solvability of (3.10) is in turn equivalent to proving the
unique solvability of the two following uncoupled problems: find (\vec{}\bfitomega ,\bfitu ) \in H\times V such
that

a(\vec{}\bfitomega , \vec{}\bfittheta ) + b1(\vec{}\bfittheta ,\bfitu ) = F\bfH (\vec{}\bfittheta ) \forall \vec{}\bfittheta \in H,

b1(\vec{}\bfitomega ,\bfitv ) = F\bfV (\bfitv ) \forall \bfitv \in V,
(3.11)

and find pP \in QP such that

c(pP, qP) = FQP(qP) \forall qP \in QP,(3.12)

where F\bfH , F\bfV , and FQP are the functionals induced by \scrF \bfH , \scrF \bfV , and \scrF QP , respectively.
Observe that the unique solvability of the latter problem (3.12) follows by virtue

of the well-known Lax--Milgram lemma. In turn, according to the continuity of a(\cdot , \cdot ),
and b1(\cdot , \cdot ), the ellipticity of a(\cdot , \cdot ) and the inf-sup condition of b1(\cdot , \cdot ), the well-
posedness of (3.11) follows from a straightforward application of the Babu\v ska--Brezzi
theory (see, e.g., [20, Theorem 2.3]), completing the proof.

Lemma 3.4. The operator \scrT : X \rightarrow X \star is compact.

Proof. We begin by defining the operator \BbbB : L2(\Omega P) \rightarrow QP as

\langle \BbbB (\psi P), qP\rangle 0,\Omega P := \alpha (1 + \eta P) - 1

\int 
\Omega P

qP\psi P \forall qP \in QP, \forall \psi P \in L2(\Omega P),

where \langle \cdot , \cdot \rangle 0,\Omega P denotes the L2(\Omega P)-inner product. This operator is compact since it
consists of the composition of a compact injection and a continuous map (see [38,
Lemma 2.2] for further details). Thus, denoting by \BbbB  \star the adjoint of \BbbB , we infer that
the operator

\scrT (\vec{}\bfitu ) = ((0, - (\mu P + \lambda P) - 1\BbbB (\phi P),0, 0),0, - \BbbB  \star (pP))

is also compact.
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Lemma 3.5. The operator (\scrS + \scrT ) : X \rightarrow X \star is injective.

Proof. By definition of the linear operator (\scrS + \scrT ) : X \rightarrow X \star , observe that it is
sufficient to show that the only solution to the homogeneous problem

a(\vec{}\bfitomega , \vec{}\bfittheta ) + b1(\vec{}\bfittheta ,\bfitu ) - b2(\vec{}\bfittheta , p
P) = 0 \forall \vec{}\bfittheta \in H,

b1(\vec{}\bfitomega ,\bfitv ) = 0 \forall \bfitv \in V,

b3(\vec{}\bfitomega , q
P) - c(pP, qP) = 0 \forall qP \in QP

is the null-vector in the product space X. Thus, from (3.6), (3.7), and the fact that
F = G = 0, we deduce that \vec{}\bfitomega = 0 and p = 0. Then, with this in mind, we apply
(3.8) and obtain \bfitu = 0, which finishes the proof.

By virtue of Lemmas 3.2--3.5 and the abstract Fredholm alternative theorem,
one straightforwardly derives the main result of this section, stated in the following
theorem.

Theorem 3.1. There exists a unique solution (\vec{}\bfitomega ,\bfitu , pP) \in H \times V \times QP to the
coupled problem (2.17)--(2.19). Furthermore, there exists a positive constant C > 0,
independent of \eta P and \eta E, such that

\| \vec{}\bfitomega \| \bfH + \| \bfitu \| \bfV + \| pP\| 1,\Omega P

\leq C
\bigl\{ 
(\mu P + \lambda P)(\| \bfitf E\| 0,\Omega E + \| \bfitf P\| 0,\Omega P) + \| \bfitg \| 0,\Omega P + \| sP\| 0,\Omega P

\bigr\} 
.

4. Finite element discretization.

4.1. Discrete spaces and Galerkin formulation. Let \{ \scrT h\} h>0 be a shape-
regular family of partitions of the closed domain \=\Omega , conformed by tetrahedra (or
triangles in 2D) T of diameter hT , with mesh size h := max\{ hT : T \in \scrT h\} . Given an
integer k \geq 0 and a subset S of \BbbR d, d = 2, 3, by \BbbP k(S) we will denote the space of
polynomial functions defined locally in S and being of total degree up to k.

We specify the finite-dimensional subspaces of the functional spaces for global dis-
placement, fluid poroelastic pressure, poroelastic rotations, total poroelastic pressure,
elastic rotations, and solid pressure as follows:

Vh := \{ \bfitv h \in C(\Omega ) \cap V : \bfitv h| T \in \BbbP k+1(T )
d \forall T \in \scrT h\} ,

QP
h := \{ qPh \in C(\Omega P) : qPh | T \in \BbbP k+1(T ) \forall T \in \scrT h\} ,

WP
h := \{ \bfittheta P

h \in L2(\Omega P) : \bfittheta P
h | T \in \BbbP k(T )

d \forall T \in \scrT h\} ,(4.1)

ZP
h := \{ \psi P

h \in L2(\Omega P) : \psi P
h | T \in \BbbP k(T ) \forall T \in \scrT h\} ,

WE
h := \{ \bfittheta E

h \in L2(\Omega E) : \bfittheta E
h | T \in \BbbP k(T )

d \forall T \in \scrT h\} ,
QE

h := \{ qEh \in L2(\Omega E) : qEh | T \in \BbbP k(T ), \forall T \in \scrT h\} .

In this way, denoting by \vec{}\bfitomega h := (\bfitomega P
h , \phi 

P
h ,\bfitomega 

E
h , p

E
h ) \in WP

h \times ZP
h \times WE

h \times QE
h := Hh, the

proposed Galerkin finite element scheme approximating (2.17)--(2.19) reads as follows:
find (\vec{}\bfitomega h,\bfitu h, p

P
h ) \in Hh \times Vh \times QP

h such that

a(\vec{}\bfitomega h, \vec{}\bfittheta h) + b1(\vec{}\bfittheta h,\bfitu h) - b2(\vec{}\bfittheta h, p
P
h ) = 0 \forall \vec{}\bfittheta h \in Hh,(4.2)

b1(\vec{}\bfitomega h,\bfitv h) = F (\bfitv h) \forall \bfitv h \in Vh,(4.3)

b3(\vec{}\bfitomega h, q
P
h ) - c(pPh , q

P
h ) = G(qPh ) \forall qPh \in QP

h ,(4.4)

where \vec{}\bfittheta h := (\bfittheta P
h , \psi 

P
h ,\bfittheta 

E
h , q

E
h ).
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4.2. Solvability and stability of the discrete problem. It is evident that
all bilinear forms and functionals introduced in section 2 preserve the relevant sta-
bility properties on the corresponding discrete spaces. Furthermore, it is clear that
the bilinear forms a(\cdot , \cdot ), and c(\cdot , \cdot ) also maintain the coercivity on the discrete spaces
Hh and QP

h , respectively. Moreover, we notice in advance that the continuous inf-sup
condition (3.1) is also inherited at the discrete level for the particular choice of ele-

ments outlined in (4.1), and therefore, there exists a positive constant \widehat \beta independent
of h such that the following holds:

sup
\vec{}\bfittheta h\in \bfH h\setminus \bfzero 

b1(\vec{}\bfittheta h,\bfitv h)

\| \vec{}\bfittheta h\| \bfH 
\geq \widehat \beta \| \bfitv h\| \bfV \forall \bfitv h \in Vh,(4.5)

where we once again mention that \widehat \beta is independent of the auxiliary scaling parameters
\eta P and \eta E.

Next, utilizing the stability properties outlined above, we are ready to establish
the well-posedness of the proposed Galerkin scheme (4.2)--(4.4).

Theorem 4.1. There exists a unique solution (\vec{}\bfitomega h,\bfitu h, p
P
h ) \in Hh \times Vh \times QP

h to
the discrete coupled problem (4.2)--(4.4). Furthermore, there exists a positive constant
CStab > 0, independent of h, \eta P, and \eta E, such that

\| \vec{}\bfitomega h\| \bfH + \| \bfitu h\| \bfV + \| pPh\| 1,\Omega P

\leq CStab

\bigl\{ 
(\mu P + \lambda P)(\| \bfitf E\| 0,\Omega E + \| \bfitf P\| 0,\Omega P) + \| \bfitg \| 0,\Omega P + \| sP\| 0,\Omega P

\bigr\} 
.

Proof. First, for the stability analysis, we proceed exactly as in the proof of
Lemma 3.2. Thus, it is a laborious but straightforward exercise to verify that

c1\| pPh\| 21,\Omega P \leq (\mu P + \lambda P)(\| \bfitf P\| 0,\Omega P + \| \bfitf E\| 0,\Omega E)\| \bfitu h\| 0,\Omega 
+ (\rho \xi  - 1\kappa 2\| \bfitg \| 0,\Omega P + \| sP\| 0,\Omega P)\| pPh\| 1,\Omega P ,

1

2(1 + \eta P)
\| \vec{}\bfitomega h\| 2\bfH \leq \alpha 2

2(1 + \eta P)
\| pPh\| 20,\Omega P + 2(\| \bfitf P\| 0,\Omega P + \| \bfitf E\| 0,\Omega E)\| \bfitu h\| 0,\Omega 

+ (\rho \xi  - 1\kappa 2\| \bfitg \| 0,\Omega P + \| sP\| 0,\Omega P)\| pPh\| 1,\Omega P ,

\beta \| \bfitu h\| \bfV \leq \alpha 

(\mu P + \lambda P)(1 + \eta P)
\| pPh\| + \| \vec{}\bfitomega h\| \bfH ,

which imply that there exists CStab > 0, independent of h, \eta P, and \eta E, such that

\| \vec{}\bfitomega h\| \bfH + \| \bfitu h\| \bfV + \| pPh\| 1,\Omega P(4.6)

\leq CStab

\bigl\{ 
(\mu P + \lambda P)(\| \bfitf E\| 0,\Omega E + \| \bfitf P\| 0,\Omega P) + \| \bfitg \| 0,\Omega P + \| sP\| 0,\Omega P

\bigr\} 
.

For the solvability analysis of the discrete scheme, it suffices to prove that the solution
of the homogeneous problem is the trivial solution (since we are restricting to the
finite-dimensional case). For this purpose, we let (\vec{}\bfitomega h,\bfitu h, p

P
h ) \in Hh\times Vh\times QP

h be the

solution to the discrete coupled problem (4.2)--(4.4), where it is assumed that \bfitf E = 0,
\bfitf P = 0, \bfitg = 0, and sP = 0. Thus, proceeding as in the proof of Lemma 3.5, the
result follows straightforwardly by (4.6).

4.3. A priori error bounds. We are now in a position to derive the optimal
a priori estimates for the Galerkin scheme (4.2)--(4.4). For this purpose, we first
establish a C\'ea estimate, formulated in the following theorem.
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Theorem 4.2. Let (\vec{}\bfitomega ,\bfitu , pP) and (\vec{}\bfitomega h,\bfitu h, p
P
h ) be the unique solutions of the

continuous and discrete coupled problems (2.17)--(2.19) and (4.2)--(4.4), respectively.
Then, there exists a strictly positive constant CC\'ea > 0, independent of h, \eta P, and
\eta E, such that

\| \vec{}\bfitomega  - \vec{}\bfitomega h\| \bfH + \| \bfitu  - \bfitu h\| \bfV + \| pP  - pPh\| 1,\Omega P(4.7)

\leq CC\'ea

\bigl( 
dist(\vec{}\bfitomega ,Hh) + dist(\bfitu ,Vh) + dist(pP,QP

h )
\bigr) 
.

Proof. First, we start by introducing the discrete space

Kh := \{ \vec{}\bfittheta h \in Hh : b1(\vec{}\bfittheta h,\bfitv h) = F (\bfitv h) \forall \bfitv h \in Vh\} ,

and observing, according to (4.3), that \vec{}\bfitomega h \in Kh and that (\vec{}\bfitomega h  - \vec{}\bfitchi \vec{}\bfitomega ,h) \in Kerh(b1) :=

\{ \vec{}\bfittheta h \in Hh : b1(\vec{}\bfittheta h,\bfitv h) = 0 for all \bfitv h \in Vh\} for all \vec{}\bfitchi \vec{}\bfitomega ,h \in Kh. Moreover, following
the arguments employed in [38, Theorem 3.2], we establish the corresponding Galerkin
orthogonality property:

a(\vec{}\bfitomega  - \vec{}\bfitomega h, \vec{}\bfittheta h) + b1(\vec{}\bfittheta h,\bfitu  - \bfitu h) - b2(\vec{}\bfittheta h, p
P  - pPh ) = 0 \forall \vec{}\bfittheta h \in Hh,(4.8)

b1(\vec{}\bfitomega  - \vec{}\bfitomega h,\bfitv h) = 0 \forall \bfitv h \in Vh,(4.9)

b3(\vec{}\bfitomega  - \vec{}\bfitomega h, q
P
h ) - c(pP  - pPh , q

P
h ) = 0 \forall qPh \in QP

h .(4.10)

Thus, considering arbitrary \bfitchi \bfitu ,h \in Vh and \chi pP,h \in QP
h , we can deduce from (4.8)

with \vec{}\bfittheta h = (\vec{}\bfitchi \vec{}\bfitomega ,h  - \vec{}\bfitomega h) \in Kerh(b1) that

a((\vec{}\bfitchi \vec{}\bfitomega ,h  - \vec{}\bfitomega h), (\vec{}\bfitchi \vec{}\bfitomega ,h  - \vec{}\bfitomega h))

=  - a((\vec{}\bfitomega  - \vec{}\bfitchi \vec{}\bfitomega ,h), (\vec{}\bfitchi \vec{}\bfitomega ,h  - \vec{}\bfitomega h)) - b1((\vec{}\bfitchi \vec{}\bfitomega ,h  - \vec{}\bfitomega h), (\bfitu  - \bfitchi \bfitu ,h))

 - b1((\vec{}\bfitchi \vec{}\bfitomega ,h  - \vec{}\bfitomega h), (\bfitchi \bfitu ,h  - \bfitu h)) + b2((\vec{}\bfitchi \vec{}\bfitomega ,h  - \vec{}\bfitomega h), (p
P  - \chi pP,h))

+ b2((\vec{}\bfitchi \vec{}\bfitomega ,h  - \vec{}\bfitomega h), (\chi pP,h  - pPh )),

which, together with the ellipticity of a(\cdot , \cdot ) and the continuity of a(\cdot , \cdot ), b1(\cdot , \cdot ), and
b2(\cdot , \cdot ), implies

\| \vec{}\bfitchi \vec{}\bfitomega ,h  - \vec{}\bfitomega h\| \bfH 
(1 + \eta P)

\leq C1\{ \| \vec{}\bfitomega  - \vec{}\bfitchi \vec{}\bfitomega ,h\| \bfH + \| \bfitu  - \bfitchi \bfitu ,h\| \bfV +\| pP  - \chi pP,h\| 1,\Omega P\} (4.11)

+
\alpha \| \chi pP,h  - pPh\| 0,\Omega P

(\mu P + \lambda P)(1 + \eta P)
,

with C1 > 0 independent of h, \eta P, and \eta E.
In turn, from (4.10) with qPh = \chi pP,h  - pPh , we have

c((\chi pP,h  - pPh ), (\chi pP,h  - pPh )) =  - c((pP  - \chi pP,h), (\chi pP,h  - pPh ))

 - b3((\vec{}\bfitchi \vec{}\bfitomega ,h  - \vec{}\bfitomega h), (\chi pP,h  - pPh ))

 - b3((\vec{}\bfitomega  - \vec{}\bfitchi \vec{}\bfitomega ,h), (\chi pP,h  - pPh )).

In this way, applying the ellipticity of c(\cdot , \cdot ) and the continuity of c(\cdot , \cdot ) and b3(\cdot , \cdot ),
we obtain \biggl[ 

c0 +
\alpha 2

(\mu P + \lambda P)(1 + \eta P)

\biggr] 
\| \chi pP,h  - pPh\| 20,\Omega P +

\kappa 1
\xi 
| \chi pP,h  - pPh | 21,\Omega P

\leq C2

\bigl\{ 
\| \vec{}\bfitomega  - \vec{}\bfitchi \vec{}\bfitomega ,h\| \bfH + \| (pP  - \chi pP,h)\| 1,\Omega P

\bigr\} 
\| \chi pP,h  - pPh\| 1,\Omega P

+
\alpha 

(1 + \eta P)
\| \vec{}\bfitchi \vec{}\bfitomega ,h  - \vec{}\bfitomega h\| \bfH \| \chi pP,h  - pPh\| 0,\Omega P ,
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which, together with (4.11), implies

\| \chi pP,h  - pPh\| 1,\Omega P \leq C3

c1

\bigl\{ 
\| \vec{}\bfitomega  - \vec{}\bfitchi \vec{}\bfitomega ,h\| \bfH + \| \bfitu  - \bfitchi \bfitu ,h\| \bfV + \| pP  - \chi pP,h\| 1,\Omega P

\bigr\} 
,(4.12)

with C3 > 0 independent of h, \eta P, and \eta E.
It is also important to notice that inequalities (4.11) and (4.12) imply that

\| pP  - pPh\| 1,\Omega P \leq 
\biggl( 
1 +

C3

c1

\biggr) 
\| pP  - \chi pP,h\| 1,\Omega P +

C3

c1

\bigl\{ 
\| \vec{}\bfitomega  - \vec{}\bfitchi \vec{}\bfitomega ,h\| \bfH + \| \bfitu  - \bfitchi \bfitu ,h\| \bfV 

\bigr\} 
,

\| \vec{}\bfitomega  - \vec{}\bfitomega h\| \bfH \leq 
\biggl( 
1 + C1 +

\alpha C3

c1(\mu P + \lambda P)

\biggr) 
\cdot 
\bigl\{ 
\| \vec{}\bfitomega  - \vec{}\bfitchi \vec{}\bfitomega ,h\| \bfH + \| \bfitu  - \bfitchi \bfitu ,h\| \bfV + \| pP  - \chi pP,h\| 1,\Omega P

\bigr\} 
.

Next, by combining the discrete inf-sup condition (4.5), (4.8), and the continuity of
a(\cdot , \cdot ), b1(\cdot , \cdot ), and b2(\cdot , \cdot ), one readily infers that there exists C4 > 0 independent of
h, \eta P, and \eta E, such that

\| \bfitchi \bfitu ,h  - \bfitu h\| \bfV \leq \widehat \beta  - 1 sup
\vec{}\bfittheta h\in \bfH h\setminus \bfzero 

| b1(\vec{}\bfittheta h, (\bfitchi \bfitu ,h  - \bfitu h))| 
\| \vec{}\bfittheta h\| \bfH 

= \widehat \beta  - 1 sup
\vec{}\bfittheta h\in \bfH h\setminus \bfzero 

| a((\vec{}\bfitomega  - \vec{}\bfitomega h), \vec{}\bfittheta h)+b1(\vec{}\bfittheta h, (\bfitu  - \bfitchi \bfitu ,h))+b2(
\vec{}\bfittheta h, (p

P  - pPh ))| 
\| \vec{}\bfittheta h\| \bfH 

\leq C4

\bigl( 
\| \vec{}\bfitomega  - \vec{}\bfitomega h\| \bfH + \| \bfitu  - \bfitchi \bfitu ,h\| \bfV + \| pP  - pPh\| 1,\Omega P

\bigr) 
.

(4.13)

Finally, recalling from [20, Theorem 2.6] that

dist(\vec{}\bfitomega ,Kh) \leq \widetilde Cdist(\vec{}\bfitomega ,Hh),

and by the fact that \vec{}\bfitchi \vec{}\bfitomega ,h,\bfitchi \bfitu ,h, and \chi pP,h are arbitrary, we see that the desired result
follows simply by using the triangle inequality and the estimates (4.11)--(4.13).

Finally, approximation properties of the spaces in (4.1) can be found in, e.g.,
[9, 20]; when these properties are combined with C\'ea's estimate (4.7), they produce
the theoretical rate of convergence of (4.2)--(4.4), summarized in what follows.

Theorem 4.3. In addition to the hypotheses of Theorems 3.1, 4.1, and 4.2, as-
sume that there exists s > 0 such that \bfitomega P \in Hs(\Omega P), \bfitu \in H1+s(\Omega ), \phi P \in Hs(\Omega P),
pP \in H1+s(\Omega P), \bfitomega E \in Hs(\Omega E), and pE \in Hs(\Omega E). Then, there exists a positive
constant CConv > 0 independent of h, \eta P, and \eta E such that with the finite element
subspaces defined by (4.1), there holds

\| \vec{}\bfitomega  - \vec{}\bfitomega h\| \bfH + \| \bfitu  - \bfitu h\| \bfV + \| pP  - pPh\| 1,\Omega P

\leq CConv h
min\{ s,k+1\} \bigl( \| \bfitomega P\| s,\Omega P + \| \bfitu \| s+1,\Omega + \| \phi P\| s,\Omega P

+ \| pP\| s+1,\Omega P + \| \bfitomega E\| s,\Omega E + \| pE\| s,\Omega E

\bigr) 
.

4.4. Suggested block structure and computational cost. To close this
section we proceed to rewrite the system (4.2)--(4.4) in a double saddle-point structure.
For this purpose, we introduce the operators and functionals \scrA P : WP

h \times ZP
h \rightarrow 

(WP
h \times ZP

h )
\prime , \scrB P

1 : WP
h \times ZP

h \rightarrow (Vh)
\prime , \scrB P

2 : QP
h \rightarrow (WP

h \times ZP
h )

\prime , \scrB P
3 : WP

h \times ZP
h \rightarrow 
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(QP
h )

\prime , \scrA E : WE
h \times QE

h \rightarrow (WE
h \times QE

h )
\prime , \scrB E

1 : WE
h \times QE

h \rightarrow (Vh)
\prime , \scrC : QP

h \rightarrow (QP
h )

\prime ,
\scrF P, \scrF E \in (Vh)

\prime , \scrG \in (QP
h )

\prime , which are specified as

[\scrA P(\bfitomega P
h , \phi 

P
h ), (\bfittheta 

P
h , \psi 

P
h )] :=

\int 
\Omega P

\bfitomega P
h \cdot \bfittheta P

h +
1

1 + \eta P

\int 
\Omega P

\phi Ph\psi 
P
h ,

[\scrA E(\bfitomega E
h , p

E
h ), (\bfittheta 

E
h , q

E
h )] :=

\int 
\Omega E

\bfitomega E
h \cdot \bfittheta E

h +

\int 
\Omega E

pEhq
E
h ,

[\scrB P
1 (\bfittheta 

P
h , \psi 

P
h ),\bfitv h] :=  - 

\sqrt{} 
\eta P

\int 
\Omega P

\bfittheta P
h \cdot curl\bfitv h +

\int 
\Omega P

\psi P
h div \bfitv h,

[\scrB E
1 (\bfittheta 

E
h , q

E
h ),\bfitv h] :=  - 

\sqrt{} 
\eta E

\int 
\Omega E

\bfittheta E
h \cdot curl\bfitv h +

\int 
\Omega E

qEh div \bfitv h,

[\scrB P
2 (\bfittheta 

P
h , \psi 

P
h ), p

P
h ] :=

\alpha 

(1 + \eta P)(\lambda P + \mu P)

\int 
\Omega P

pPh\psi 
P
h ,

[\scrB P
3 (\bfitomega 

P
h , \phi 

P
h ), q

P
h ] :=

\alpha 

(1 + \eta P)

\int 
\Omega P

qPh\phi 
P
h ,

[\scrC (pPh ), qPh ] :=
\biggl[ 
c0 +

\alpha 2

(\mu P + \lambda P)(1 + \eta P)

\biggr] \int 
\Omega P

pPhq
P
h +

1

\xi 

\int 
\Omega P

\kappa \nabla pPh \cdot \nabla qPh ,

[\scrF P, (\bfitv h)] :=  - 
\int 
\Omega P

\bfitf P \cdot \bfitv h, [\scrF E, (\bfitv h)] :=  - 
\int 
\Omega E

\bfitf E \cdot \bfitv h,

[\scrG , (qPh )] :=  - \rho 
\xi 

\int 
\Omega P

\kappa \bfitg \cdot \nabla qPh  - 
\int 
\Omega P

sqPh ,

and arrive at the following double saddle-point Galerkin scheme:

(4.14)

\left[     
\scrA P 0 (\scrB P

1 )
\prime  - \scrB P

2

0 \scrA E (\scrB E
1 )

\prime 0

\scrB P
1 \scrB E

1 0 0

\scrB P
3 0 0  - \scrC 

\right]     
\left[    

(\bfitomega P
h , \phi 

P
h )

(\bfitomega E
h , p

E
h )

\bfitu h

pPh

\right]    =

\left[    
0
0

\scrF P + \scrF E

\scrG 

\right]    ,
which is precisely the way that the implementation is carried out. From this system it
is clear that the coupling occurs only through the global displacement blocks. Notice
also that (4.14) could be analyzed using Fredholm's alternative theory in combination
with an extension of the Babu\v ska--Brezzi theory for multiple saddle-point problems
[21, 30] (see, e.g., [32]).

Regarding the computational cost of the formulation, the proposed scheme is
still competitive even if the formulation includes additional variables. Considering,
for illustrative purposes, the 2D case, and denoting by N \star 

v , N
 \star 
T , N

 \star 
l the number of

vertices, triangles, and edges associated with a triangulation for the generic subdomain
 \star \in \{ E,P\} , a simple computation of the required degrees of freedom (DoFs) in (4.14)
(and restricting to the lowest-order case) is

2NP
T + 3NP

v + 2NE
T + 2NE

v \approx 7NP
v + 6NE

v .

On the other hand, we remark that more classical methods for the coupling of elastic-
ity and poroelasticity, without including rotations and still possessing the locking-free
property, seem to be unavailable in the literature. But one could employ MINI el-
ements to approximate displacement and hydrostatic pressure in the elastic domain
while using the formulation from [38] for the Biot poroelasticity, with either Taylor--
Hood + Lagrange in the poroelastic domain

4NP
v + 2NP

l + 3NE
v + 2NE

T \approx 10NP
v + 7NE

v ,
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or

MINI elements + Lagrange in the poroelastic domain

6NP
v + 2NP

l + 3NE
v + 2NE

T \approx 8NP
v + 7NE

v ,

which are both more costly than (4.14). Furthermore, other rotation-based formula-
tions that could generate robust schemes are typically based on much more expensive
forms using rotation tensors, displacement gradients, or stress tensors in addition to
displacement and pressure.

5. Computational examples. In this section we address the numerical verifi-
cation of the convergence properties of the proposed schemes as well as the usability
of these methods in a problem of more applicative interest. The solution of all linear
systems in the form (4.14) and reported in this section has been conducted with the
Krylov method flexible GMRES, preconditioned with additive Schwarz using incom-
plete LU decomposition as local preconditioner.

Test 1: Convergence verification. First, we construct a sequence of succes-
sively refined uniform partitions of the elastic domain \Omega = (0, 1)2. The poroelastic
region is \Omega P = (0.25, 0.75)2, and the geometric setup is exemplified (for a coarse mesh)
in the top-left panel of Figure 5.1. A closed-form solution for the global displacement
satisfying (2.11) is

(5.1) \bfitu (x, y) = umax

\biggl( 
x(1 - x) cos(\pi x) sin(2\pi y)
sin(\pi x) cos(\pi y)y2(1 - y)

\biggr) 
,

where we use umax = 0.1. A material interface is considered between the two regions,
and so we impose a jump in the Young modulus and Poisson ratios of the solids
EP = 100, EE = 10000, \nu P = 0.3, \nu E = 0.45. Consequently, the exact rotations
will have different scalings in each domain. The remaining closed-form solutions and
model constants are taken as follows:
(5.2)
pE =  - div\bfitu , pP(x, y) = sin(\pi x) sin(\pi y), \phi P = \alpha (\lambda P + \mu P) - 1pP  - (1 + \eta P) div\bfitu ,

\bfitg = 0, \kappa = 10 - 6, \alpha = 0.1, \xi = 10 - 2, c0 = 10 - 3.

The source terms (and, for this example, the remainders of the exact fluxes and
traction forces on the interface) are imposed using these exact solutions. In Table 5.1
we collect the computed errors on each refinement level, separating each individual
contribution to the errors in H; that is, we show

e(\bfitomega P) := \| \bfitomega P  - \bfitomega P
h\| 0,\Omega P , e(\phi P) := \| \phi P  - \phi Ph\| 0,\Omega P , e(\bfitomega E) := \| \bfitomega E  - \bfitomega E

h\| 0,\Omega E ,

e(pE) := \| pE  - pEh\| 0,\Omega E , e(\bfitu ) := \| \bfitu  - \bfitu h\| \bfV , e(pP) := \| pP  - pPh\| 1,\Omega P

as well as the corresponding decay trend, rate = log
\bigl( 
e(\cdot )/\widehat e(\cdot )\bigr) [log(h/\widehat h)] - 1, where e, \widehat e

stand for errors generated on meshes with mesh sizes h and \widehat h, respectively. For this
2D problem, the tabulated results in the upper two blocks of the table are produced
using the finite element spaces specified in (4.1) for k = 0 and k = 1, and they
demonstrate numerically the optimal convergence order anticipated by Theorem 4.3.

A similar conclusion is drawn when testing the accuracy of the 3D implementation.
In that case, we define the domain as the unit cube \Omega = (0, 1)3 and take the poroelastic
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Fig. 5.1. Test 1. Sketched mesh and domains before deformation (top left) and approximate
solutions generated with a second-order scheme and plotted on the deformed configuration: rotations
on each domain (top middle), total poroelastic pressure (top right), elastic pressure (bottom left),
global displacement magnitude (bottom middle), and poroelastic fluid pressure (bottom right).

region as the embedded inner cube \Omega P = (0.25, 0.75)3. The manufactured global
displacement and fluid poroelastic pressure solutions are the smooth functions

(5.3)
\bfitu (x, y, z) =

\left(  sin2(\pi x) sin(\pi x) sin(2\pi z)
sin(\pi x) sin2(\pi x) sin(2\pi z)

 - (sin(2\pi x) sin(\pi y) + sin(\pi x) sin(2\pi y)) sin2(\pi z)

\right)  ,

pP(x, y, z) = sin(\pi x) sin(\pi y) sin(\pi z),

which are used to construct the remaining unknowns as well as the data. All other
model constants are assumed as in the previous 2D case. The bottom two blocks
of Table 5.1 also show optimal decay rates, exhibiting behavior consistent with the
theoretical findings.

Test 2: Validation using augmented Mandel's problem. Second, we con-
duct a benchmark test for poromechanics. We solve the classical Mandel's problem,
here extended to the case of coupled elastic-poroelastic structures following the con-
figuration and parameter values from [27, 45]. The values of the constants are taken
to be

c0 = 2.5e-12Pa - 1, \alpha = 1, \xi = 10 - 3m2/s, \mu E = \mu P = 108 Pa, \nu E = \nu P = 0.2,

\kappa = 10 - 13 m2, \rho = 1Kg/m
3
, \widetilde \bfitt = (0, - 107)t Pa \cdot m.
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Table 5.1
Test 1. Error history demonstrating the convergence predicted by Theorem 4.3, here illustrated

for first- and second-order schemes and for 2D and 3D tests.

h e(\bfitomega P) rate e(\phi P) rate e(\bfitomega E) rate e(pE) rate e(\bfitu ) rate e(pP) rate

2D scheme using k = 0 and the exact solutions (5.1)--(5.2)

0.195 4.44e-3 -- 8.73e-3 -- 4.53e-3 -- 1.27e-2 -- 1.55e-2 -- 2.34e-1 --

0.175 3.03e-3 2.531 4.85e-3 2.430 4.33e-3 0.428 1.16e-3 0.831 1.32e-2 1.470 1.16e-1 1.520

0.089 1.84e-3 0.838 2.90e-3 0.754 2.17e-3 1.020 6.02e-3 0.971 6.97e-3 0.945 6.48e-2 0.853

0.047 9.75e-4 0.889 1.63e-3 0.905 1.11e-3 1.051 3.02e-3 1.091 3.56e-3 1.061 3.49e-2 0.973

0.024 5.29e-4 0.998 8.28e-4 0.988 5.62e-4 0.992 1.54e-3 0.973 1.83e-3 0.972 1.84e-2 0.985

0.012 2.31e-4 1.170 5.41e-4 0.902 2.82e-4 0.997 7.54e-4 1.016 9.22e-4 0.963 9.59e-3 0.915

0.006 1.30e-5 0.835 2.47e-4 1.130 1.39e-4 1.034 3.73e-4 1.023 4.54e-4 1.030 4.92e-3 0.968

0.003 6.56e-6 0.962 1.23e-4 1.004 6.92e-5 1.003 1.85e-4 1.015 2.25e-4 1.022 2.48e-3 0.977

2D scheme using k = 1 and the exact solutions (5.1)--(5.2)

0.195 8.51e-4 -- 1.39e-3 -- 8.36e-4 -- 1.56e-3 -- 2.24e-2 -- 1.98e-1 --

0.175 2.40e-4 2.721 3.61e-4 2.402 6.06e-4 2.972 1.10e-3 3.225 1.31e-3 2.835 3.76e-2 2.504

0.089 7.58e-5 1.750 1.22e-4 1.692 1.55e-4 2.013 2.80e-4 2.014 3.40e-4 1.987 1.06e-2 1.686

0.047 2.57e-5 1.812 4.16e-5 1.769 4.13e-5 2.086 7.63e-5 2.040 9.53e-5 2.005 3.41e-3 1.759

0.024 7.52e-6 1.880 1.15e-5 1.987 1.01e-5 2.053 1.96e-5 1.981 2.47e-5 1.963 1.03e-4 1.798

0.012 1.88e-6 1.951 3.40e-6 1.972 2.50e-6 1.971 4.85e-6 1.973 6.26e-6 1.948 2.68e-5 1.896

0.006 4.81e-7 1.964 8.57e-7 1.983 6.07e-7 2.016 1.22e-6 1.998 1.52e-6 1.975 7.76e-6 1.952

3D scheme using k = 0 and the exact solutions (5.3)

0.433 0.892 -- 0.477 -- 0.781 -- 1.042 -- 1.619 -- 8.721 --

0.289 0.629 0.860 0.407 0.639 0.404 0.631 0.561 0.940 0.842 0.847 4.480 0.889

0.296 0.422 0.963 0.299 0.896 0.278 0.881 0.270 0.962 0.425 0.915 2.246 0.953

0.185 0.338 0.975 0.237 0.950 0.192 0.967 0.136 0.938 0.228 0.926 1.104 1.029

0.098 0.393 0.986 0.174 0.995 0.095 1.012 0.078 0.992 0.119 0.994 0.545 1.017

3D scheme using k = 1 and the exact solutions (5.3)

0.433 0.447 -- 0.286 -- 0.437 -- 0.510 -- 0.832 -- 7.833 --

0.289 0.135 1.785 0.104 1.502 0.138 1.491 0.159 1.482 0.309 1.595 2.281 1.713

0.296 3.51e-3 1.864 2.66e-2 1.765 3.56e-2 1.864 4.05e-2 1.933 7.69e-2 1.873 0.607 1.805

0.185 9.11e-4 1.878 6.67e-3 1.938 1.06e-2 1.895 1.04e-2 1.968 2.06e-2 1.886 0.159 1.909

0.098 2.35e-4 1.992 1.74e-3 1.986 2.65e-3 1.983 2.66e-3 1.980 5.10e-3 1.951 4.12e-2 1.974

For this problem the goal is to observe the so-called Mandel--Creyer effect, where the
fluid pressure increases with time and then decreases over the poroelastic region. The
elastic domain \Omega E = (0, 100)\times (20, 40)m2 is located on top of the poroelastic region
\Omega P = (0, 100)\times (0, 20)m2, as shown in the schematic illustration of Figure 5.2 (left).
The boundary conditions adopted for this test differ from (2.11). On the top of the
elastic domain \Gamma top we prescribe a constant traction \widetilde \bfitt ; on the right end of the elastic
domain we set zero traction; on the left of the elastic and poroelastic domains and on
the bottom of the poroelastic domain we enforce a zero normal displacement; and on
the right of the poroelastic domain we put pP = 0, whereas we impose \kappa \nabla pP \cdot \bfitn = 0
on the left and bottom of the poroelastic domain. We do not include gravitational
effects for this test. Note that traction boundary conditions can be incorporated into
the context of rotation-based formulations by means of the additional term

(5.4) [\scrA \bfitu (\bfitu h),\bfitv h] = \langle 2\eta E\nabla \bfitu h\bfitn ,\bfitv h\rangle \Gamma top \cup \Gamma E
right

+ \langle 2 div\bfitu h\bfitn ,\bfitv h\rangle \Gamma top \cup \Gamma E
right
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Fig. 5.2. Test 2. Sample coarse mesh and domain/boundary configuration (top), and profiles
of fluid pressure and x-displacement on \Gamma bottom (bottom) at different times (t1 = 103 s, t2 = 5e3 s,
t3 = 104 s, t4 = 105 s, t5 = 5e5 s, t10 = 5e6 s) for the augmented Mandel's problem.

for the 2D case, or

(5.5) [\scrA \bfitu (\bfitu h),\bfitv h] =  - \langle 2\eta E\nabla \bfitu h\bfitn ,\bfitv h\rangle \Gamma top \cup \Gamma E
right

+ \langle 2\eta E div\bfitu h\bfitn ,\bfitv h\rangle \Gamma top \cup \Gamma E
right

in 3D, as part of the corresponding displacement block in (4.14) (see further details
in [4, sect. 3.2]), and adding the term

\langle \bfitt ,\bfitv h\rangle \Gamma top \cup \Gamma E
right

or  - \langle \bfitt ,\bfitv h\rangle \Gamma top \cup \Gamma E
right

in 2D or 3D, respectively, into \scrF E, appearing on the right-hand side of (4.14), with
\bfitt := \widetilde \bfitt /(\mu E + \lambda E). Similar terms can be derived to impose traction conditions for
the rotation-based formulation of the poroelasticity equation (2.13). Moreover, for
simplicity when imposing traction conditions, in the present example we have used in
both the elastic and poroelastic domains the same scaling \eta E = \eta P, and consequently
on the right-hand sides we have the rescaling 1/(\mu E + \lambda E) = 1/(\mu P + \lambda P). We use a
structured triangular mesh and a first-order numerical scheme (setting k = 0 in the
finite element spaces (4.1)).

Note that we also incorporate time-dependence into the mass conservation equa-
tion (2.1), in the first two terms of the left-hand side,\bigl[ 

c0 + \alpha 2(\mu P + \lambda P) - 1(1 + \eta P) - 1
\bigr] 
\partial tp

P  - \alpha (1 + \eta P) - 1\partial t\phi 
P

 - 1

\xi 
div

\bigl[ 
\kappa (\nabla pP  - \rho \bfitg )

\bigr] 
= 0 in \Omega P \times (0, tfinal],

with initial conditions given by pP(0) = 0 and \phi P(0) = 0. This turns the poroelas-
ticity equations into their quasi-steady regime, and we therefore discretize in time
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and use a backward Euler scheme, setting a fixed time step \Delta t = 1000 s and running
the simulation for 5000 steps. We record fluid pressure profiles as well as horizontal
displacements at different time instants and collect the results in the plots of Fig-
ure 5.2 (bottom panels). Even if the value of the maximal horizontal displacement
is lower than that reported in [27, 45] (which can be explained by the differences in
transmission conditions, in the problem formulation, in the polynomial degree of the
numerical schemes, and in mesh resolution), qualitatively we observe the expected
behavior in fluid pressure profiles and motion patterns.

Test 3: Poroelastic aquifer in 3D. Next, we solve a 3D problem similar
to that described in [25], where one is interested in determining deformation and
fluid pressure distribution of the pay zone (a poroelastic aquifer region occupying
\Omega P = ( - 225, 225) \times ( - 225, 225) \times ( - 30, 30)m3) surrounded by rock conforming the
nonpay zone (an elastic, nonporous structure \Omega E = ( - 450, 450) \times ( - 450, 450) \times 
( - 150, 150)m3). The scenario corresponds to coupled flow and poromechanics en-
countered in CO2 sequestration in deep subsurface reservoirs. A localized source
sP(x, y, z) = s0 exp( - (x - 225)2 - (y - 225)2) represents an injection zone of relatively
small radius reaching the top corner of the pay zone. On the top surface of the pay
rock, \Gamma top, we assume zero traction, using the technique described in (5.5). On the
remainder of \Gamma , we impose the sliding condition

\bfitu \cdot \bfitn = 0 on \Gamma \setminus \Gamma top.

Interface conditions are precisely as in (2.12), and we impose a smooth body load
on the nonpay rock \bfitf E = f0(sin(f1x) sin(f1y), cos(f1y) cos(f1z),

1
2 sin(f1z) cos(f1x))

t.
We now consider gravitational effects and take a relatively large permeability. The
remaining parameters assume the values

s0 = 1.8e-3, f0 = 10 - 3, f1 = 7.5e-3, \alpha = 0.8, \rho = 1,

EE = EP = 3.4474e+9Pa,

\nu E = 0.45, \nu P = 0.2, \xi = 10 - 3 Pa s,

\kappa = 9.869e-9m2, c0 = 6.060e-5, \bfitg = (0, 0, - 9.81)t.

The domain is discretized with a rather coarse tetrahedral mesh, and we employ a
first-order scheme. From Figure 5.3 we observe an important deformation of the rock
and the pay zone, as well as a fluid pressure propagating from the location of the
injection well towards the opposite corner of the reservoir.

Test 4: Coupling of tooth and periodontal ligament. We continue with the
simulation of distributed forces in a dentistry-oriented application. The problem setup
is adapted from that in [18], where one considers the coupling between the tooth as an
elastic structure and the surrounding periodontal ligament regarded as a poroelastic
material. In this case, however, we assume that the volume fractions in both regions
coincide and that the fluid viscosity and density of each phase remain constant. The
motivating example from [18] concentrates on determining displacement and stress
behavior of the composite material when a piezoelectric actuator applies an external
load on the center of the labial side of the crown of a two-rooted premolar in a porcine
jawbone segment (the location is illustrated with a sphere in the top-left panel of
Figure 5.4). A relatively coarse tetrahedral mesh is used for both domains, and the
boundary conditions are set in the following way. We assume that the external surface
of the periodontal ligament, \Gamma P, is in contact with the jawbone, and therefore we set
zero solid displacements and zero-flux conditions for the fluid pressure. On the visible
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Fig. 5.3. Test 3. Meshes associated with the confined reservoir \Omega P and the surrounding nonpay
rock \Omega E (top left, sketching also the location of the injection well), and samples of approximate
solutions generated with a first-order method.

part of the tooth, \Gamma E, we impose the traction \bfitt = tmax

\lambda E+2\mu E\chi | load, where \chi | load is the

indicator function on a ball of radius 10mm centered at (200, 15, 60). Again, the
interface conditions on \Sigma are set as in (2.12). The body loads in both domains are

\bfitf E = \rho E

\lambda E+2\mu E \bfitg and \bfitf P = \rho P,s+\rho P,f

\lambda P+\mu P \bfitg , and the rest of the model parameters are set as

s0 = 0, c0 = 10 - 3, tmax = 0.016, \alpha = 0.4,

\rho E = 6000, \rho P,s = 1060, \rho P,f = 1000,

EE = 2e5, EP = 2e10, \nu E = 0.3, \nu P = 0.31,

\xi = 1, \kappa = 10 - 6mm2, \bfitg = (0, 0, - 9.81)t.
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Fig. 5.4. Test 4. Meshes associated with the periodontal ligament \Omega P and a porcine premolar
specimen \Omega E (top left, sketching also the location of the applied load, 19mm away from the root),
and samples of approximate solutions generated with a second-order method.

Figure 5.4 reveals zones of concentrated solid pressure near the upper part of \Sigma , and
we notice also high gradients of fluid pressure in neighboring areas, all consistent with
the results reported in [18].

Test 5: Robustness with respect to the Poisson ratio. To finish this section
we conduct a series of computations to test the locking-free property of the method.
We simply examine the mechanical response of a composite material and compute
solutions of an appropriate adaptation of the classical Cook's membrane test, where
we study elastic response dominated by bending and shear. The extension of this
benchmark to poromechanics was recently carried out in [44], whereas a rotation-
based formulation was tested in [4]. The domain \Omega is the convex hull of the set
\{ (0, 0), (\ell , w), (\ell , \ell + s), (0, w)\} , with \ell = 48, w = 44, s = 16, and the domain is split,
with the poroelastic medium on the left and the elastic one on the right. The height of
the interface is 34.2, and the areas of \Omega P and \Omega E are 656.88 and 783.12, respectively.
The left edge of the membrane is kept clamped and on it we also set zero fluid pressure;
on the right edge of the membrane we impose the upward-pointing traction \bfitt =

1
\lambda E+2\mu E (0, 1/16)

t that produces a resulting load of magnitude 1, and on the top and
bottom edges we set a zero traction condition, together with zero-fluxes for the fluid
pore pressure. We vary the Poisson ratio on each subdomain, whereas the remaining
elastic parameters are taken as in the classical Cook's membrane benchmark, and the
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Table 5.2
Test 5. Left: displacement of Cook's membrane at the top-right point (48,60) for different

values of the Poisson ratio. Right: numerical solutions produced with k = 1 and \nu E = \nu P = 0.49999
and plotted on the deformed domain.

Displacement varying \nu E = \nu P

\nu E = \nu P \bfitu 1(48, 60) \bfitu 2(48, 60)

0.49 --13.9273 18.9667

0.499 --13.8576 18.9546

0.4999 --13.8404 18.9513

0.49999 --13.8391 18.9506

0.499999 --13.8389 18.9505

Displacement with fixed \nu P = 0.3

\nu E \bfitu 1(48, 60) \bfitu 2(48, 60)

0.49 --8.55342 11.7082

0.499 --8.33403 11.3576

0.4999 --8.31657 11.3101

0.49999 --8.31171 11.3015

0.499999 --8.31077 11.3002

material parameters for the fluid are set follows:

EE = EP = 1, \alpha = 0.1, \xi = 0.001, \kappa = 10 - 6, c0 = 0.01, s0 = 0.

We employ a mesh with 100 points per edge, representing 275,155 DoFs for the scheme
with k = 1. As usual, we compute the displacements on the top-right corner of the
membrane and collect the obtained values listed in Table 5.2. We perform two sets of
simulations, one varying \nu E = \nu P and the other keeping \nu P = 0.3 fixed and varying \nu E

approaching the value 1/2. Even if the near incompressibility of the poroelastic-elastic
regimes can induce volumetric locking, together with spurious oscillations in the fluid
pressure [38, 44], the solutions obtained in our tests clearly reveal the robustness of
the formulation, at least with respect to the maximum dilation moduli between those
on each subdomain (which in this case corresponds to that in the elastic domain).
We also plot examples of the obtained numerical solutions, showing a deformation of
the interface and distributions of the pore pressure and of all other individual field
variables.
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