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Universidad de Concepción, Concepción, Chile

Ricardo Ruiz-Baier

School of Mathematics, Monash University

9 Rainforest Walk, Clayton, Victoria 3800, Australia
and

Universidad Adventista de Chile, Casilla 7-D Chillán, Chile

and
Laboratory of Mathematical Modelling, Institute of Personalized Medicine

Sechenov University, Moscow, Russian Federation

(Communicated by Christian Rohde)

Abstract. In this paper we propose a new mixed-primal formulation for heat-
driven flows with temperature-dependent viscosity modeled by the stationary

Boussinesq equations. We analyze the well-posedness of the governing equa-
tions in this mathematical structure, for which we employ the Banach fixed-

point theorem and the generalized theory of saddle-point problems. The mo-
tivation is to overcome a drawback in a recent work by the authors where,

in the mixed formulation for the momentum equation, the reciprocal of the

viscosity is a pre-factor to a tensor product of velocities; making the analy-
sis quite restrictive, as one needs a given continuous injection that holds only

in 2D. We show in this work that by adding both the pseudo-stress and the
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strain rate tensors as new unknowns in the problem, we get more flexibility in
the analysis, covering also the 3D case. The rest of the formulation is based on

eliminating the pressure, incorporating augmented Galerkin-type terms in the

mixed form of the momentum equation, and defining the normal heat flux as a
suitable Lagrange multiplier in a primal formulation for the energy equation.

Additionally, the symmetry of the stress is imposed in an ultra-weak sense, and

consequently the vorticity tensor is no longer required as part of the unknowns.
A finite element method that follows the same setting is then proposed, where

we remark that both pressure and vorticity can be recovered from the principal

unknowns via postprocessing formulae. The solvability of the discrete problem
is analyzed by means of the Brouwer fixed-point theorem, and we derive error

estimates in suitable norms. Numerical examples illustrate the performance of

the new schem and its use in the simulation of mantle convection, and they
also confirm the theoretical rates of convergence.

1. Introduction. The description of a variety of natural phenomena and engineer-
ing problems deal with incompressible quasi-Newtonian flows with viscous heating
and buoyancy terms (often referred to as natural convection of fluids). Mantle
convection with very large viscosities, waves and currents near shorelines, heat
transfer in nanoparticle fluids, creeping thermal plumes, stratified oceanic flows,
chemical reactors, and many other examples can be invoked in the context of ap-
plicative problems, partial differential equations, and in the construction of nu-
merical schemes [17, 18, 22, 26, 30, 32, 33, 40]. In particular, finite element methods
approximating the solution of these equations have been developed by the mathe-
matical community in the last two decades. For instance, the model with constant
coefficients has been addressed via primal approaches in [11, 13, 19, 23], whereas
mixed-type schemes have been employed in [20,24,25], and in particular two differ-
ent formulations based on a dual-mixed approach for the momentum equation, and
a primal and mixed-primal one for the energy equation, are proposed in [21].

Here we advocate to the study of well-posedness and stability of a weak formula-
tion (as well as the construction of mixed finite element schemes) for the Boussinesq
equations with thermally-dependent viscosity. In this regard, we remark that not
many finite element methods that provide analysis for the case of non-constant vis-
cosity are available in the literature (we may basically refer to [2,3,5,34,36,39,41–43],
and some of the references therein). For instance, the authors in [36] (see [35] for
the continuous analysis) propose an optimally convergent, primal finite element
method for the steady-state problem applied to the flow in channels. In turn, [39]
(and a stabilized version of their method, which is suggested in [42]) deal with the
unsteady problem, where backward Euler discretization is used in time, and con-
forming finite elements in space. On the other hand, a conforming finite element
method for the problem with temperature-dependent viscosity and thermal con-
ductivity is developed in [34]. In this work, Stokes-stable elements for the velocity
and pressure, as well as Lagrange elements for the temperature, and discontinuous
piecewise polynomials for the normal heat flux through the boundary, are used to
define the associated discrete scheme. Similar hypotheses to those in [34] are also
required in primal formulations that may be computationally less expensive than a
mixed method, but do not approximate directly other variables of physical interest.
The user of a primal scheme would usually appeal to numerical differentiation, with
the consequent loss of accuracy.

Furthermore, just a couple of the above mentioned references consider dual-mixed
approaches. In particular, in the recent contribution [5] the authors construct an
augmented mixed-primal finite element method for the steady Boussinesq problem
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without dissipation, restricting the analysis to two-dimensional bounded domains
with polygonal boundary. More precisely, in the present case one seeks a velocity
field u, a pressure field p and a temperature field ϕ such that

−div (µ(ϕ)e(u)) + (∇u)u +∇p− ϕg = 0 in Ω, (1.1a)

div u = 0 in Ω, (1.1b)

−div (K∇ϕ) + u · ∇ϕ = 0 in Ω, (1.1c)

u = uD and ϕ = ϕD on Γ, (1.1d)

where Ω ⊂ Rn, n ∈ {2, 3}, is a domain with boundary Γ := ∂Ω, div is the usual di-
vergence operator div acting along the rows of a given tensor, e(u) denotes the strain
rate tensor (symmetric part of the velocity gradient tensor ∇u), −g ∈ L∞(Ω) :=
[L∞(Ω)]n is a body force per unit mass (e.g., gravity), K ∈ L∞(Ω) := [L∞(Ω)]n×n is
a uniformly positive definite tensor describing thermal conductivity and µ : R→ R+

is a temperature-dependent viscosity, which is assumed bounded and Lipschitz con-
tinuous, that is, there exist constants µ2 ≥ µ1 > 0 and Lµ > 0 such that

µ1 ≤ µ(s) ≤ µ2 ∀ s ∈ R, and |µ(s)− µ(t)| ≤ Lµ|s− t| ∀ s, t ∈ R. (1.2)

The viscosity can be either of Reynolds, Arrhenius, or Sutherland’s type, see e.g.
[32, 33, 35]. Note that a viscosity dissipation term σ : ∇u and the power of heat
production should also be present in the thermal energy equation. However these
contributions are assumed much smaller than heat conduction effects (see e.g. [17]).
In the Boussinesq approximation it is also assumed that density fluctuations are
linearly related to temperature, and so the last term on the momentum balance is
the buoyancy contribution that contains a rescaling implying that, at least for the
analysis of the problem, the adimensional number Ra/(Pr Re2) is of the order of the
gravity magnitude. In addition, and for sake of notational simplicity of the analysis,
here we also take a zero reference temperature and assume that other constants can
be absorbed by the model adimensionalization.

With respect to the boundary conditions for (1.1), we assume that uD ∈ H1/2(Γ) :
= [H1/2(Γ)]n, ϕD ∈ H1/2(Γ), and that uD verifies the compatibility condition∫

Γ

uD · ν = 0 , (1.3)

where ν denotes the unit outward normal on Γ. The construction of the mixed-
primal formulation in [5] begins with the introduction of the stress and vorticity
tensors, respectively, defined as

σ := µ(ϕ)e(u)− u⊗ u− pI and γ :=
1

2

{
∇u−

(
∇u
)t} ∈ L2

skew(Ω), (1.4)

where ⊗ stands for the tensor product operator, I is the identity matrix in Rn×n,
the symbol t denotes matrix transpose, and

L2
skew(Ω) :=

{
η ∈ L2(Ω) : η + ηt = 0

}
. (1.5)

Note that if we had Neumann boundary conditions in the fluid, then σν would
be prescribed on Γ. Therefore, after eliminating the pressure p, problem (1.1) is
rewritten as: Find (σ,u,γ, ϕ) such that

∇u− γ − 1

µ(ϕ)
(u⊗ u)d =

1

µ(ϕ)
σd in Ω, (1.6a)

−divσ − ϕg = 0 in Ω, (1.6b)



218 J. A. ALMONACID, G. N. GATICA, R. OYARZÚA AND R. RUIZ-BAIER

−div (K∇ϕ) + u · ∇ϕ = 0 in Ω, (1.6c)

u = uD and ϕ = ϕD on Γ, (1.6d)∫
Ω

tr(σ + u⊗ u) = 0 , (1.6e)

where tr denotes the matrix trace, τ d := τ − 1
n tr(τ ) I is the deviatoric tensor of a

given τ ∈ L2(Ω), and (1.6e) constitutes a uniqueness condition for the pressure. At
this point we remark that, because of the division by µ(ϕ) in (1.6a), integration by
parts (after multiplication by a test function) is now possible. However, it can be
seen that this leads to the usage of a continuous injection from H1(Ω) into L8(Ω),
as required by the following estimate:∫

Ω

∣∣∣ϕ (u⊗w)d : τ
∣∣∣ ≤ ‖ϕ ‖L4(Ω)‖u ‖L8(Ω)‖w ‖L8(Ω)‖ τ ‖0,Ω

≤ C(Ω) ‖ϕ ‖1,Ω‖u ‖1,Ω‖w ‖1,Ω‖ τ ‖1,Ω ,

with C(Ω) > 0 and valid for any ϕ ∈ H1(Ω); u,w ∈ H1(Ω); τ ∈ L2(Ω), and more
important, for Ω ⊂ Rd, d ∈ {1, 2}, according to the Sobolev embedding theorem (cf.,
e.g., [37, Theorem 1.3.5]). This estimate is used in several ways throughout [5], at
both continuous and discrete levels (see, [5, Lemmas 3.8, 4.5 and 5.3]), and its main
purpose is to help in the proof of Lipschitz continuity of the fixed-point operator T
(respectively its discrete version Th) that consequently provides well-posedness of
the continuous formulation (respectively the Galerkin scheme).

One of the purposes of this work is to derive a new augmented method for (1.1)
that remains valid also for the 3D case. To this end, one can look at e.g. [15] where
the strain rate tensor e(u) is considered as a new unknown, in addition to either the
stress (or pseudostress) and vorticity tensors. This provides more flexibility in the
scheme, as it is no longer necessary (nor much convenient) to divide in (1.6a) by the
viscosity to set the gradient free. Instead, the decomposition of the velocity gradient
into its symmetric and skew-symmetric parts provides an equation to be integrated
by parts. However, proceeding a bit differently than in those works, here we do not
impose the symmetry of the stress by testing against the whole space of the skew
symmetric tensors, but only against a proper subspace of it, thus yielding what we
call an ultra-weak imposition of such constraint. As a consequence, we do not require
the vorticity as a further unknown (also interpreted as an associated Lagrange
multiplier), and hence the resulting mixed scheme has fewer degrees of freedom
without affecting the accuracy of the approximate solutions. Moreover, the pressure
and the vorticity are easily recovered by postprocessing formulae that provide the
same rates of convergence of the main unknowns. In terms of the analysis, we can
suitably modify the approach from [5], thus giving rise to an augmented mixed-
primal finite element method using discontinuous piecewise polynomial functions of
degree ≤ k to approximate the strain rate and normal heat flux, Raviart-Thomas
elements of order k for the stress, and Lagrange elements of order k + 1 for the
velocity and temperature. We stress that the already described extension to the
3D case, the new way of imposing the symmetry of the stress with the consequent
decrease in the number of unknowns, and the availability of the aforementioned
postprocessing formulae, constitute the main contributions of the present work. Let
us also clarify that rather than proposing a cheap method for any reformulation or
simplification of the governing equations, our underlying motivation is to rigorously
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derive properties of numerical schemes that preserve the mixed structure of the
PDE system.

The rest of this work is organized as follows. In Section 2 we rewrite the Boussi-
nesq problem (1.1) considering the strain rate and stress tensors as new variables,
to then derive an augmented mixed-primal formulation whose well-posedness is
proved by means of a fixed-point approach. Similarly, in Section 3 we provide the
corresponding Galerkin scheme and its associated well-posedness, to then, in Sec-
tion 4, proceed to derive a priori error estimates and state the respective rates of
convergence, including those for the postprocessed approximations of pressure and
vorticity, when a particular choice of finite element subspaces is made. Finally,
to complement our theoretical results, we present in Section 5 a set of numerical
examples that serve to confirm the properties of the proposed schemes.

2. The continuous formulation. In order to avoid the division by µ(ϕ) in (1.6a),
we have a look at recent work [15], where the authors develop a augmented mixed
finite element method for the Navier-Stokes equations with nonlinear viscosity. This
approach relies on the definition of the strain rate tensor as a new unknown

t := e(u) ∈ L2
tr(Ω), (2.1)

where

L2
tr(Ω) =

{
s ∈ L2(Ω) : s = st and tr(s) = 0

}
.

In addition, for each v ∈ H1(Ω) we let η(v) be the skew-symmetric part of the
velocity gradient tensor ∇v, that is

η(v) :=
1

2

{
∇v −

(
∇v
)t}

, (2.2)

which certainly lies in L2
skew(Ω) (cf. (1.5)). In this way, bearing in mind (2.1), and

noting from (1.4) and (2.2) that γ = η(u), the system (1.6) can be rewritten as:
Find (t,σ,u, ϕ) such that

t + η(u) = ∇u in Ω, (2.3a)

µ(ϕ)t− (u⊗ u)d = σd in Ω, (2.3b)

−divσ − ϕg = 0 in Ω, (2.3c)

−div (K∇ϕ) + u · ∇ϕ = 0 in Ω, (2.3d)

u = uD on Γ, (2.3e)

ϕ = ϕD on Γ, (2.3f)∫
Ω

tr(σ + u⊗ u) = 0. (2.3g)

Before continuing in the following section with the derivation of the mixed-
primal formulation of (2.3), we find it important to remark at this point that it
is also possible to account the case of a nonlinear thermal conductivity K in the
forthcoming analysis. In particular, within the context of coupled flow-transport
and sedimentation-consolidation models, in which the equation for the concentra-
tion ϕ reads as the present one for the energy, we may refer to [8, eq. (2.1)]
and [9, eq. (2.1)], where diffusion coefficients depending on ∇ϕ and ϕ, respec-
tively, were considered for the corresponding analyses. More recently, a slight
modification of the present model (1.1), in which K was allowed to depend on
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the temperature ϕ, namely in the form κ(ϕ), with κ : R −→ R+, was intro-
duced and analyzed in [4] by using a fully-mixed variational formulation. In this
case, the pseudoheat vector p := κ(ϕ)∇ϕ − ϕu and the temperature gradient
are introduced as auxiliary unknowns, so that the energy equation is rewritten
as ζ = ∇ϕ , p := κ(ϕ)ζ−ϕu , and div(p) = 0 in Ω. Further details on the
analysis of such fully-mixed approach are available in [4].

2.1. An augmented mixed-primal formulation. Multiplying (2.3a) by a test
function τ ∈ H(div; Ω), integrating by parts and using the Dirichlet condition
(2.3e), we obtain∫

Ω

t : τ d +

∫
Ω

η(u) : τ +

∫
Ω

u · div τ = 〈 τν,uD 〉Γ ∀ τ ∈ H(div; Ω).

Then, we multiply (2.3b) and (2.3c) by appropriate test functions, imposing at the
same time the symmetry of the stress tensor σ in the form∫

Ω

σ : η(v) = 0 ∀v ∈ H1(Ω) , (2.4)

thus obtaining∫
Ω

µ(ϕ)t : s−
∫

Ω

(u⊗ u)d : s−
∫

Ω

σd : s = 0 ∀ s ∈ L2
tr(Ω), (2.5)

and

−
∫

Ω

v · divσ −
∫

Ω

σ : η(v) =

∫
Ω

ϕg · v ∀ v ∈ H1(Ω) .

We highlight that (2.4) constitutes what we call an ultra-weak imposition of the

symmetry of σ since
{
η(v) : v ∈ H1(Ω)

}
is a proper subspace of L2

skew(Ω). This

idea has also been applied in [7].
The weak form of the energy conservation equation is recalled next from [5]:∫

Ω

K∇ϕ · ∇ψ + 〈λ, ψ 〉Γ = −
∫

Ω

ψu · ∇ϕ ∀ ψ ∈ H1(Ω), (2.6)

〈 ξ, ϕ 〉Γ = 〈 ξ, ϕD 〉Γ ∀ ξ ∈ H−1/2(Γ) , (2.7)

where λ := K∇ϕ · ν ∈ H−1/2(Γ) is a Lagrange multiplier taking care of the non-
homogeneous Dirichlet boundary condition. Notice that, due to the second term
in (2.5) and the right hand side of (2.6), the velocity u must live in H1(Ω), since
appealing to the continuous injection of H1(Ω) into L4(Ω), there exist positive
constants c1(Ω) and c2(Ω) such that∣∣∣∣∫

Ω

(u⊗w)d : s

∣∣∣∣ ≤ c1(Ω)‖u ‖1,Ω‖w ‖1,Ω‖ s ‖0,Ω ∀ u,w ∈ H1(Ω), ∀ s ∈ L2(Ω),

(2.8)
and∣∣∣∣∫

Ω

ψu · ∇ϕ
∣∣∣∣ ≤ c2(Ω)‖u ‖1,Ω‖ψ ‖1,Ω|ϕ|1,Ω ∀ u ∈ H1(Ω) ∀ ϕ,ψ ∈ H1(Ω). (2.9)

Also, obeying to the orthogonal decomposition

H(div; Ω) = H0(div; Ω)⊕RI,
where

H0(div; Ω) :=

{
ζ ∈ H(div; Ω) :

∫
Ω

tr(ζ) = 0

}
,
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we can consider σ and τ in H0(div; Ω) (see [5, Lemma 3.1] for a detailed justification
of this change). Having in mind these considerations, at a first glance, the weak
formulation reads: Find (t,σ,u, ϕ, λ) ∈ L2

tr(Ω) × H0(div; Ω) ×H1(Ω) ×H1(Ω) ×
H−1/2(Γ) such that∫

Ω

µ(ϕ)t : s−
∫

Ω

(u⊗ u)d : s−
∫

Ω

σd : s = 0 ∀ s ∈ L2
tr(Ω),∫

Ω

t : τ d +

∫
Ω

η(u) : τ +

∫
Ω

u · div τ = 〈 τν,uD 〉Γ ∀ τ ∈ H0(div; Ω),

−
∫

Ω

v · divσ −
∫

Ω

σ : η(v) =

∫
Ω

ϕg · v ∀ v ∈ H1(Ω) , (2.10)∫
Ω

K∇ϕ · ∇ψ + 〈λ, ψ 〉Γ = −
∫

Ω

ψu · ∇ϕ ∀ ψ ∈ H1(Ω),

〈 ξ, ϕ 〉Γ = 〈 ξ, ϕD 〉Γ ∀ ξ ∈ H−1/2(Γ).

To achieve a conforming scheme, and to properly analyze (2.10), we augment this
variational formulation using Galerkin terms arising from (2.3), but tested differ-
ently from (2.10), namely:

κ1

∫
Ω

{
σd + (u⊗ u)d − µ(ϕ)t

}
: τ d = 0 ∀ τ ∈ H0(div; Ω),

κ2

∫
Ω

{
divσ + ϕg

}
· div τ = 0 ∀ τ ∈ H0(div; Ω),

κ3

∫
Ω

{
e(u)− t

}
: e(v) = 0 ∀ v ∈ H1(Ω),

κ4

∫
Γ

u · v = κ4

∫
Γ

uD · v ∀ v ∈ H1(Ω),

where κj , j ∈ {1, . . . , 4} are stabilization (or augmentation) constants to be specified

later on. In this way, denoting by H := L2
tr(Ω)×H0(div; Ω)×H1(Ω), ~t := (t,σ,u)

and ~s := (s, τ ,v), we arrive at the following augmented mixed-primal formulation:
Find (~t, (ϕ, λ)) ∈ H ×H1(Ω)×H−1/2(Γ) such that

Aϕ(~t,~s) + Bu(~t,~s) = Fϕ(~s) + FD(~s) ∀ ~s ∈ H,
a(ϕ,ψ) + b(ψ, λ) = Fu,ϕ(ψ) ∀ ψ ∈ H1(Ω), (2.11)

b(ϕ, ξ) = G(ξ) ∀ ξ ∈ H−1/2(Γ),

where, given an arbitrary (w, φ) ∈ H1(Ω) ×H1(Ω), the forms Aφ, Bw, a, b, and
the functionals FD, Fφ, Fw,φ and G are defined as

Aφ(~t,~s) :=

∫
Ω

µ(φ)t :
{

s− κ1τ
d
}

+

∫
Ω

t :
{
τ d − κ3e(v)

}
−
∫

Ω

σd :
{

s− κ1τ
d
}

+

∫
Ω

u · div τ −
∫

Ω

v · divσ +

∫
Ω

η(u) : τ −
∫

Ω

σ : η(v)

+ κ2

∫
Ω

divσ · div τ + κ3

∫
Ω

e(u) : e(v) + κ4

∫
Γ

u · v,
(2.12)

Bw(~t,~s) :=

∫
Ω

(u⊗w)d :
{
κ1τ

d − s
}
, (2.13)
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for all ~t,~s ∈ H;

a(ϕ,ψ) :=

∫
Ω

K∇ϕ · ∇ψ, (2.14)

for all ϕ,ψ ∈ H1(Ω);

b(ψ, ξ) := 〈 ξ, ψ 〉Γ, (2.15)

for all (ψ, ξ) ∈ H1(Ω)×H−1/2(Γ);

FD(~s) := 〈 τν,uD 〉Γ + κ4

∫
Γ

uD · v, (2.16)

Fφ(~s) :=

∫
Ω

φg ·
{

v − κ2div τ
}
, (2.17)

for all ~s ∈ H;

Fw,φ(ψ) = −
∫

Ω

ψw · ∇φ, (2.18)

for all ψ ∈ H1(Ω); and

G(ξ) = 〈 ξ, ϕD 〉Γ, (2.19)

for all ξ ∈ H−1/2(Γ).

2.2. The fixed-point argument. A crucial tool in [5] to prove the well-posedness
of the continuous and discrete formulations is a technique that decouples the prob-
lem into the mixed formulation of the momentum equation and the primal formu-
lation of the energy equation, which further enables us to rewrite the formulation
as a fixed-point problem. Hence, we denote H := H1(Ω) ×H1(Ω) and consider in
what follows the operator S : H→ H defined by

S(w, φ) = (S1(w, φ),S2(w, φ),S3(w, φ)) := ~t,

where ~t is the solution of the problem: Find ~t ∈ H such that

Aφ(~t,~s) + Bw(~t,~s) = Fφ(~s) + FD(~s) ∀ ~s ∈ H. (2.20)

In addition, let S̃ : H→ H1(Ω) be the operator defined by

S̃(w, φ) := ϕ,

where ϕ is the first component of a solution to: Find (ϕ, λ) ∈ H1(Ω) ×H−1/2(Γ)
such that

a(ϕ,ψ) + b(ψ, λ) = Fw,φ(ψ) ∀ ψ ∈ H1(Ω),

b(ϕ, ξ) = G(ξ) ∀ ξ ∈ H−1/2(Γ) .
(2.21)

In this way, by introducing the operator T : H→ H as

T(w, φ) =
(
S3(w, φ), S̃(S3(w, φ), φ)

)
∀ (w, φ) ∈ H, (2.22)

we realize that (2.11) can be rewritten as the fixed-point problem: Find (u, ϕ) ∈ H
such that

T(u, ϕ) = (u, ϕ). (2.23)

As in [5], the objective is to use the Banach fixed-point theorem to prove existence
and uniqueness of (2.23). We recall that the key difference in the present work
with respect to [5] is in the problem that defines the operator S, and therefore,

those results associated to the operator S̃ and the primal formulation of the energy
equation will be considered here as well, but we only cite them.
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2.3. Well-posedness of the uncoupled problems. In what follows, we consider
the norms∥∥~s∥∥ :=

{
‖ s ‖20,Ω + ‖ τ ‖2div;Ω + ‖v ‖21,Ω

}1/2

∀ ~s ∈ H,

‖ (ψ, ξ) ‖ :=
{
‖ψ ‖21,Ω + ‖ ξ ‖2−1/2,Γ

}1/2

∀ (ψ, ξ) ∈ H1(Ω)×H−1/2(Γ).

We first recall some results that will be used for ellipticity purposes.

Lemma 2.1. There exists c3(Ω) > 0 such that

c3(Ω) ‖ τ0 ‖20,Ω ≤
∥∥ τ d

∥∥2

0,Ω
+ ‖div τ ‖20,Ω ∀ τ = τ0 + cI ∈ H(div; Ω).

Proof. See [14, Proposition 3.1], [28, Lemma 2.3].

Lemma 2.2. There exists ϑ0(Ω) > 0 such that

ϑ0(Ω) ‖v ‖21,Ω ≤ ‖ e(v) ‖20,Ω + ‖v ‖20,Γ ∀ v ∈ H1(Ω).

Proof. See [27, Lemma 3.1].

The following results establish sufficient conditions for the operators S and S̃
being well-defined, equivalently, (2.20) and (2.21) being well-posed.

Lemma 2.3. Assume that for δ1 ∈
(

0, 2
µ2

)
and δ2 ∈ (0, 2) we choose

κ1 ∈
(

0,
2µ1δ1
µ2

)
, κ2, κ4 ∈ (0,∞), and κ3 ∈

(
0, 2δ2

(
µ1 −

κ1µ2

2δ1

))
.

Then, there exists r0 > 0 such that for each r ∈ (0, r0), the problem (2.20) has
a unique solution ~t := S(w, φ) ∈ H for each (w, φ) ∈ H such that ‖w ‖1,Ω ≤ r.

Moreover, there exists a constant CS > 0, independent of (w, φ) and r, such that
there holds

‖S(w, φ) ‖ =
∥∥~t ∥∥ ≤ CS

{
‖g ‖∞,Ω‖φ ‖0,Ω + ‖uD ‖1/2,Γ

}
. (2.24)

Proof. Given (w, φ) ∈ H, we notice from (2.12) that Aφ is bilinear. Then, by using
the upper bound of the viscosity function, the Cauchy-Schwarz inequality and the
trace theorem with constant c0(Ω), we see that for any ~t,~s ∈ H,

|Aφ(~t,~s)| ≤ µ2(1 + κ2
1)1/2 ‖ t ‖0,Ω

∥∥~s ∥∥+ (1 + κ2
3)1/2 ‖ t ‖0,Ω

∥∥~s∥∥
+ (1 + κ2

1)1/2
∥∥σd

∥∥
0,Ω

∥∥~s ∥∥+ ‖u ‖0,Ω‖div τ ‖0,Ω + ‖η(u) ‖0,Ω‖ τ ‖0,Ω
+ ‖divσ ‖0,Ω‖v ‖0,Ω + ‖σ ‖0,Ω‖η(v) ‖0,Ω + κ2‖divσ ‖0,Ω‖div τ ‖0,Ω
+ κ3‖u ‖1,Ω‖v ‖1,Ω + κ4c0(Ω)2‖u ‖1,Ω‖v ‖1,Ω ,

and therefore, there exists a constant CA > 0 depending only on µ2, c0(Ω) and the
stabilization parameters κj , such that

|Aφ(~t,~s)| ≤ CA

∥∥~t ∥∥∥∥~s∥∥ ∀ ~t,~s ∈ H. (2.25)

On the other hand, using (2.13) and (2.8), we obtain that for any ~t := (t,σ,u), ~s :=
(s, τ ,v) ∈ H there holds

|Bw(~t,~s)| =

∣∣∣∣∫
Ω

(u⊗w)d :
{
κ1τ

d − s
}∣∣∣∣ ≤ c1(Ω)(1 + κ2

1)1/2‖u ‖1,Ω‖w ‖1,Ω
∥∥~s ∥∥ ,
(2.26)
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which together with (2.25) implies the existence of a positive constant denoted by
‖A + B ‖, independent of (w, φ) such that

|(Aφ + Bw)(~t,~s)| ≤ ‖A + B ‖
∥∥~t ∥∥∥∥~s ∥∥. (2.27)

To prove that Aφ+Bw is elliptic, we first prove that Aφ is elliptic. Indeed, for any
~s ∈ H we have

Aφ(~s,~s) =

∫
Ω

µ(φ)s : s− κ1

∫
Ω

µ(φ)s : τ d − κ3

∫
Ω

s : e(v)

+κ1

∥∥ τ d
∥∥2

0,Ω
+ κ2‖div τ ‖20,Ω + κ3‖ e(v) ‖20,Ω + κ4‖v ‖20,Γ ,

and then, using the bounds for the viscosity and the Cauchy-Schwarz and Young
inequalities, we obtain for any δ1, δ2 > 0 and any ~s ∈ H that

Aφ(~s,~s) ≥ µ1‖ s ‖20,Ω −
κ1µ2

2δ1
‖ s ‖20,Ω −

κ1µ2δ1
2

∥∥ τ d
∥∥2

0,Ω
− κ3

2δ2
‖ s ‖20,Ω

−κ3δ2
2
‖ e(v) ‖20,Ω + κ1

∥∥ τ d
∥∥2

0,Ω
+ κ2‖div τ ‖20,Ω + κ3‖ e(v) ‖20,Ω + κ4‖v ‖20,Γ

≥
(
µ1 −

κ1µ2

2δ1
− κ3

2δ2

)
‖ s ‖20,Ω + κ1

(
1− µ2δ1

2

)∥∥ τ d
∥∥2

0,Ω

+κ2‖div τ ‖20,Ω + κ3

(
1− δ2

2

)
‖ e(v) ‖20,Ω + κ4‖v ‖20,Γ .

Then, defining the following constants:

α1 := µ1 −
κ1µ2

2δ1
− κ3

2δ2
, α2 := min

{
κ1

(
1− µ2δ1

2

)
,
κ2

2

}
,

α3 := min

{
κ3

(
1− δ2

2

)
, κ4

}
, α4 := min

{
α2c3(Ω),

κ2

2

}
, α5 := α3ϑ0(Ω) ,

and using Lemmas 2.1 and 2.2, it is possible to find a constant α(Ω) := min{α1, α4,
α5}, independent of (w, φ), such that

Aφ(~s,~s) ≥ α(Ω)
∥∥~s ∥∥2 ∀ ~s ∈ H.

Combining the foregoing inequality with (2.26), we get that, for any ~s ∈ H, there
holds

(Aφ + Bw)(~s,~s) ≥
(
α(Ω)− c1(Ω)(1 + κ2

1)1/2‖w ‖1,Ω
)∥∥~s∥∥2

.

Therefore, we easily see that

(Aφ + Bw)(~s,~s) ≥ α(Ω)

2

∥∥~s∥∥2 ∀ ~s ∈ H, (2.28)

provided that

α(Ω)

2
≥ c1(Ω)(1 + κ2

1)1/2‖w ‖1,Ω,

that is,

‖w ‖1,Ω ≤
α(Ω)

2c1(Ω)(1 + κ2
1)1/2

=: r0, (2.29)

thus proving ellipticity for Aφ + Bw under the requirement (2.29). Finally, the
linearity of the functionals FD and Fφ is clear, and from (2.16), (2.17), using the
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Cauchy-Schwarz inequality, the trace estimates in H(div; Ω) and H1(Ω), with con-
stants 1 and c0(Ω), and the continuous injection from H1/2(Γ) into L2(Γ) with
constant C1/2 we have

|FD(~s)| ≤
(

1 + κ4c0(Ω)C1/2

)
‖uD ‖1/2,Γ

∥∥~s ∥∥,
|Fφ(~s)| ≤ (1 + κ2

2)1/2‖g ‖∞,Ω‖φ ‖0,Ω
∥∥~s ∥∥, (2.30)

for all~s ∈ H. Thus, there exists a constantMS := max
{

(1+κ2
2)1/2, 1+κ4c0(Ω)C1/2

}
such that

‖Fφ + FD ‖ ≤MS

{
‖g ‖∞,Ω‖φ ‖0,Ω + ‖uD ‖1/2,Γ

}
,

and by the Lax-Milgram theorem (see, e.g. [28, Theorem 1.1]), there exists a unique
~t ∈ H solution of (2.20), and (2.24) is satisfied with CS := 2MS

α(Ω) , a constant clearly

independent of (w, φ). In addition, the fact that α(Ω) and MS are both independent
of r guarantees that CS does not depend on r either.

We stress here that, while the viscosity µ could be assumed to be a monotone
decreasing function of the temperature φ, this fact by itself would not help to
simplify the solvability analysis of (2.20) (which defines the operator S), since φ
does not form part of the corresponding unknowns, but it actually constitutes a
datum for that problem. Indeed, all what one needs from µ for the proof of Lemma
2.3 are its upper and lower bounds. A similar remark is valid for the Lipschitz-
continuity of S (cf. Lemma 2.6 below) in which the homonimous property of the
viscosity plays a key role. As it will become clear later on, the smallness assumptions
on the data for the well-posedness of our problem arises from the main properties
of the resulting fixed point operator, and particularly from those inherited from S,
so that the eventual monotonicity of µ does not help to remove those conditions
either.

Lemma 2.4. For each (w, φ) ∈ H there exists a unique pair (ϕ, λ) ∈ H1(Ω) ×
H−1/2(Γ) solution of the problem (2.21). Moreover, there exists CS̃ > 0, indepen-
dent of (ϕ, λ) and r, such that∥∥∥ S̃(w, φ)

∥∥∥ ≤ ‖ (ϕ, λ) ‖ ≤ CS̃

{
‖w ‖1,Ω|φ |1,Ω + ‖ϕD ‖1/2,Γ

}
. (2.31)

Proof. The results comes from a direct application of the Babuška-Brezzi theory
(see [5, Lemma 3.6] or more precisely [20, Lemma 3.4]). In particular, the right-
hand side of (2.31) is obtained after bounding the functionals Fw,φ (cf. (2.18)) and
G (cf. (2.19)), respectively, whose resulting bounds are independent of r (cf. [20, eq.
(3.39)] for Fw,φ). In this way, since the constants yielding the inf-sup condition
of b and the ellipticity of a in the kernel of b, are both independent of r, the
corresponding continuous dependence result for (2.21) confirms that CS̃ does not
depend on r either.

From the previous two lemmas, it is clear that T is well-defined for any pair
(w, φ) ∈W, where

W :=
{

(w, φ) ∈ H : ‖ (w, φ) ‖ ≤ r
}
, (2.32)

which is nothing but the closed ball in H with center (0, 0) and radius r ∈ (0, r0),
with r0 defined in (2.29). We also notice that a particular choice of stabilization
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parameters is necessary. We begin by selecting the middle points of the ranges for
δ1, δ2, κ1 and κ3, that is,

δ1 =
1

µ2
, δ2 = 1, κ1 =

µ1δ1
µ2

=
µ1

µ2
2

, κ3 = δ2

(
µ1 −

κ1µ2

2δ1

)
=
µ1

2
,

to then pick κ2 and κ4 so that α2 and α3 can attain the largest value possible, that
is

κ2 = 2κ1

(
1− µ2δ1

2

)
=
µ1

µ2
2

, and κ4 = κ3

(
1− δ2

2

)
=
µ1

4
.

We stress here that the foregoing feasible choices of κj , j ∈ {1, 2, 3, 4}, are explicitly
computable since they do not depend on the usually unknown constants c3(Ω) and
ϑ0(Ω) from Lemmas 2.1 and 2.2, respectively, but only on the known constants µ1

and µ2 bounding the viscosity (cf. (1.2)).

2.4. Further-regularity assumption. Although the problem that defines S (i.e.
(2.20)) is well-posed, a small further-regularity assumption is needed in order to
continue with the analysis. Inspired by [8], we assume that uD ∈ H1/2+ε(Γ) for
some ε ∈ (0, 1) when n = 2, or ε ∈

[
1
2 , 1
)

when n = 3, and that for each (z, ψ) ∈ H

with ‖ z ‖1,Ω ≤ r, r > 0 given, there hold (q, ζ,v) := S(z, ψ) ∈ L2
tr(Ω) ∩ Hε(Ω) ×

H0(div; Ω) ∩Hε(Ω)×H1+ε(Ω) and

‖q ‖ε,Ω + ‖ ζ ‖ε,Ω + ‖v ‖1+ε,Ω ≤ C̃S(r)
{
‖g ‖∞,Ω‖ψ ‖0,Ω + ‖uD ‖1/2+ε,Γ

}
, (2.33)

with C̃S(r) > 0 independent of z but depending on the upper bound r of its H1-
norm.

2.5. Solvability analysis of the fixed-point equation. Throughout the rest
of the paper we assume that the regularity hypotheses of the previous section are
valid. We now proceed to directly fulfill the hypotheses of the Banach fixed-point
theorem. The following result shows that T can map the ball W into itself.

Lemma 2.5. Consider the closed ball W defined in (2.32) with r ∈ (0, r0) and r0

as given in (2.29). Suppose the data satisfy

c(r)
{
‖g ‖∞,Ω + ‖uD ‖1/2,Γ

}
+ CS̃‖ϕD ‖1/2,Γ ≤ r,

where
c(r) :=

(
1 + CS̃r

)
CS max{1, r},

and CS, CS̃ are given in Lemmas 2.3 and 2.4, respectively. Then, there holds
T(W) ⊆W.

Proof. It follows as a consequence of the continuous dependence results (2.24) and
(2.31), much in an identical way as in [5, Lemma 3.7].

Next, we prove some results that will help us to arrive at the Lipschitz continuity
of T.

Lemma 2.6. Let r ∈ (0, r0) with r0 as given in (2.29). Then, there exists a positive

constant ĈS, independent of r, such that

‖S(w1, φ1)− S(w2, φ2) ‖ ≤ ĈS

{
‖S1(w1, φ1) ‖ε,Ω‖φ1 − φ2 ‖Ln/ε(Ω)

+ ‖S3(w1, φ1) ‖1,Ω‖w1 −w2 ‖1,Ω + ‖g ‖∞,Ω‖φ1 − φ2 ‖0,Ω
}
, (2.34)

for all (w1, φ1), (w2, φ2) ∈ H such that ‖w1 ‖1,Ω, ‖w2 ‖1,Ω ≤ r.
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Proof. Let (w1, φ1), (w2, φ2) ∈ H as indicated and let ~tj := (tj ,σj ,uj) = S(wj , φj)
∈ H, j ∈ {1, 2} be the corresponding solutions of (2.20). Then, adding and sub-
tracting the equality

Aφ1
(~t1,~s) + Bw1

(~t1,~s) = Fφ1
(~s) + FD(~s) ∀~s ∈ H ,

we find that

(Aφ2 +Bw2)(~t1−~t2,~s) = Aφ2(~t1,~s)−Aφ1(~t1,~s)+Bw2−w1(~t1,~s)+Fφ1−φ2(~s) ∀~s ∈ H .

Thus, using the ellipticity of Aφ2 + Bw2 (cf. (2.28)) and the foregoing expression,
we obtain

α(Ω)

2

∥∥~t1 −~t2

∥∥ ≤ (Aφ2
+ Bw2

)(~t1 −~t2,~t1 −~t2)

=

∫
Ω

{
µ(φ2)− µ(φ1)

}
t1 :

{
(t1 − t2)− κ1(σ1 − σ2)d

}
+

∫
Ω

{
u1 ⊗ (w2 −w1)

}d

:
{
κ1(σ1 − σ2)d − (t1 − t2)

}
+

∫
Ω

(φ1 − φ2)g ·
{

(u1 − u2)− κ2div (σ1 − σ2)
}
.

(2.35)

First, we bound the last two terms in the same way as Lemma 2.3 (that is, using
(2.26) and (2.30)):∣∣∣∣ ∫

Ω

{
u1 ⊗ (w2 −w1)

}d

:
{
κ1(σ1 − σ2)d − (t1 − t2)

}∣∣∣∣
≤ c1(Ω)(1 + κ2

1)1/2 ‖u1 ‖1,Ω‖w1 −w2 ‖1,Ω
∥∥~t1 −~t2

∥∥ , (2.36)

and ∣∣∣∣ ∫
Ω

(φ1 − φ2)g ·
{

(u1 − u2)− κ2div (σ1 − σ2)
}∣∣∣∣

≤ (1 + κ2
2)1/2 ‖g ‖∞,Ω ‖φ1 − φ2 ‖0,Ω

∥∥~t1 −~t2

∥∥ , (2.37)

Next, for the first term, we use the Lipschitz continuity of µ and the Cauchy-Schwarz
and Hölder inequalities to show in a similar way to [5, Eq. (3.56)] that∣∣∣∣ ∫

Ω

{
µ(φ2)− µ(φ1)

}
t1 :

{
(t1 − t2)− κ1(σ1 − σ2)d

}∣∣∣∣
≤ Lµ‖ (φ2 − φ1)t1 ‖0,Ω

∥∥ (t1 − t2)− κ1(σ1 − σ2)d
∥∥

0,Ω

≤ Lµ(1 + κ2
1)1/2‖φ2 − φ1 ‖L2q(Ω)‖ t1 ‖L2p(Ω)

∥∥~t1 −~t2

∥∥ ,
(2.38)

with p, q ∈ [1,+∞) such that 1
p + 1

q = 1. We then take into consideration the

further-regularity assumed in Section 2.4, and recall from the Sobolev embedding
theorem that Hε(Ω) is continuously embedded into L2p(Ω), with

2p =


2

1− ε
if n = 2,

6

3− 2ε
if n = 3,

(cf. [1, Theorem 4.12], [37, Theorem 1.3.4]) meaning that there exists Cε > 0 such
that

‖ t ‖L2p(Ω) ≤ Cε‖ t ‖ε,Ω ∀ t ∈ Hε(Ω).
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In this way,

2q =
2p

p− 1
=


2

ε
if n = 2,

3

ε
if n = 3

=
n

ε
,

and (2.38) now yields∣∣∣∣ ∫
Ω

{
µ(φ2)− µ(φ1)

}
t1 :

{
(t1 − t2)− κ1(σ1 − σ2)d

}∣∣∣∣
≤ Lµ(1 + κ2

1)1/2Cε‖ t1 ‖ε,Ω‖φ1 − φ2 ‖Ln/ε(Ω)

∥∥~t1 −~t2

∥∥ . (2.39)

Therefore, putting (2.36), (2.37) and (2.39) together into (2.35), we obtain∥∥~t1 −~t2

∥∥ ≤ ĈS

{
‖ t1 ‖ε,Ω‖φ1 − φ2 ‖Ln/ε(Ω) + ‖u1 ‖1,Ω‖w1 −w2 ‖1,Ω

+ ‖g ‖∞,Ω‖φ1 − φ2 ‖0,Ω
}
,

with

ĈS :=
2

α(Ω)
max

{
Lµ(1 + κ2

1)1/2Cε, c1(Ω)(1 + κ2
1)1/2, (1 + κ2

2)1/2
}
,

and since t1 = S1(w1, φ1) and u1 = S3(w1, φ1), the last inequality is exactly the
estimate (2.34). We end the proof by noting that the foregoing expression defining

ĈS confirms that this constant is independent of r.

We emphasize once again that, differently from [5], the present approach allows
to handle both the 2D and 3D cases for the Boussinesq model with temperature-
dependent viscosity. Indeed, notice how the foregoing Lemma shows the main
difference with respect to [5]: the tensor-product term in (2.36) is no longer multi-
plied by an H1-term, thus avoiding the use of the injection H1(Ω) ↪→ L8(Ω) (not
ensured for Ω ⊆ R3) when splitting them as in [5, Eq. (3.54)], yielding a more
robust formulation for the two and three-dimensional cases. On the other hand, the

analogous result for S̃ remains intact.

Lemma 2.7. There exists a positive constant ĈS̃, independent of r, such that∥∥∥ S̃(w1, φ1)− S̃(w2, φ2)
∥∥∥ ≤ ĈS̃

{
‖w1‖1,Ω |φ1 − φ2|1,Ω + ‖w1 −w2‖1,Ω |φ2|1,Ω

}
,

(2.40)
for all (w1, φ1), (w2, φ2) ∈ H.

Proof. We refer to [20, Lemma 3.7] for full details. We just remark here that the

resulting constant ĈS̃ depends on the ellipticity constant of a in the kernel of b,
and on the constant c(Ω) arising from the boundedness estimates of the functionals
Fw1,φ1−φ2

and Fw1−w2,φ2
, namely (cf. [20, eq. (3.39)]):

‖Fw,φ‖ ≤ c(Ω) ‖w‖1,Ω |φ|1,Ω ∀ (w, φ) ∈ H ,

from which it is clear that ĈS̃ does not depend on r.

As a consequence of the previous Lemmas, T is a Lipschitz continuous operator,
as shown next.

Lemma 2.8. Let r ∈ (0, r0), with r0 given as in (2.29). Then, there exists a
constant CT > 0 depending on r, such that

‖T(w1, φ1)−T(w2, φ2) ‖ ≤ CT

{
‖g ‖∞,Ω + ‖uD ‖1/2+ε,Γ

}
‖ (w1, φ1)− (w2, φ2) ‖,
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for all (w1, φ1), (w2, φ2) ∈W.

Proof. The result comes from the definition of T (cf. (2.22)) and the estimates
obtained in the previous two lemmas (cf. (2.34) and (2.40)) in an identical way
to [20, Lemma 3.8] (see also [5, Lemma 3.10]). We omit further details.

In summary, from Lemmas 2.3 and 2.4, T : W → W is well-defined and does
map the ball into itself (thanks to Lemma 2.5). Then, Lemma 2.8 shows that
the operator T is Lipschitz continuous with a data-depending constant given by

CT

{
‖g ‖∞,Ω + ‖uD ‖1/2+ε,Γ

}
. When this Lipschitz constant is less than 1, the

existence and uniqueness of a fixed point follows thanks to the Banach fixed-point
theorem. In this regard, we stress that the dependence of CT on a given r does not
affect the imposition of the aforementioned restriction since it is clearly achieved
by sufficiently small data. By what has been explained in Section 2.2, this fact is
equivalent to the well-posedness of the augmented mixed-primal formulation (2.11),
and the result is stated as follows.

Theorem 2.9. Assume that for δ1 ∈
(

0, 2
µ2

)
and δ2 ∈ (0, 2) we choose

κ1 ∈
(

0,
2µ1δ1
µ2

)
, κ2, κ4 ∈ (0,∞), and κ3 ∈

(
0, 2δ2

(
µ1 −

κ1µ2

2δ1

))
,

and consider the ball W (cf. (2.32)) with radius r ∈ (0, r0) and r0 as in (2.29). In
addition, assume that the data satisfy

c(r)
{
‖g ‖∞,Ω + ‖uD ‖1/2,Γ

}
+ CS̃‖ϕD ‖1/2,Γ ≤ r,

with c(r) as in Lemma 2.5, and

CT

{
‖g ‖∞,Ω + ‖uD ‖1/2+ε,Γ

}
< 1 .

Then, the problem (2.11) has a unique solution (~t, (ϕ, λ)) ∈ H×H1(Ω)×H−1/2(Γ),
with (u, ϕ) ∈W. Moreover, there hold∥∥~t ∥∥ ≤ CS

{
r‖g ‖∞,Ω + ‖uD ‖1/2,Γ

}
, (2.41)

and

‖ (ϕ, λ) ‖ ≤ CS̃

{
r‖u ‖1,Ω + ‖ϕD ‖1/2,Γ

}
, (2.42)

with CS and CS̃ as in Lemmas 2.3 and 2.4, respectively.

3. The Galerkin scheme. In this section we derive a Galerkin method for the
augmented mixed-primal formulation (2.11). Let us consider Th, a regular triangu-
lation of Ω̄ by triangles T (when n = 2) or tetrahedra T (when n = 3) of diameter
hT and define the meshsize h := max{hT : T ∈ Th}. Then, consider arbitrary finite-
dimensional subspaces Ht

h ⊂ L2
tr(Ω), Hσ

h ⊂ H0(div; Ω), Hu
h ⊂ H1(Ω), Hϕ

h ⊂ H1(Ω),

Hλ
h ⊂ H−1/2(Γ) and denote by Hh := Ht

h × Hσ
h × Hu

h , ~th := (th,σh,uh) and
~sh := (sh, τh,vh). Hence, according to (2.11), the Galerkin scheme reads: Find
(~th, (ϕh, λh)) ∈ Hh ×Hϕ

h ×Hλ
h such that

Aϕh(~th,~sh) + Buh(~th,~sh) = Fϕh(~sh) + FD(~sh) ∀ ~sh ∈ Hh,
a(ϕh, ψh) + b(ψh, λh) = Fuh,ϕh(ψh) ∀ ψh ∈ Hϕ

h , (3.1)

b(ϕh, ξh) = G(ξh) ∀ ξh ∈ Hλ
h ,
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where the forms Aϕh , Buh , a and b; and the functionals Fϕh , FD, Fuh,ϕh are defined
by (2.12)-(2.19). Since the proof of well-posedness follows the steps of the previous
section, and moreover, analogously to [5, Section 4], we only state the requirements
to be imposed over the finite-dimensional subspaces and the main result, which is
analogous to [5, Theorem 4.8].

3.1. Well-posedness of the Galerkin scheme. It can be seen that no restric-
tions have to be added to Ht

h, Hσ
h and Hu

h other than being finite-dimensional
subspaces of the described spaces. However, for ellipticity purposes of a in the
discrete kernel of the operator induced by b (according the the Babuška-Brezzi
theory), the following two inf-sup conditions must be met:

(H.1): There exists a constant α̂ > 0, independent of h such that

sup
ψh∈Vh
ψh 6=0

a(ψh, φh)

‖ψh ‖1,Ω
≥ α̂‖φh ‖1,Ω ∀ φh ∈ Vh, (3.2)

where

Vh :=
{
ψh ∈ Hϕ

h : b(ψh, ξh) = 0 ∀ ξh ∈ Hλ
h

}
,

(H.2): There exists a constant β̂ > 0, independent of h such that

sup
ψh∈Hϕh
ψh 6=0

b(ψh, ξh)

‖ψh ‖1,Ω
≥ β̂‖ ξh ‖−1/2,Γ ∀ ξh ∈ Hλ

h . (3.3)

Then, denoting by Wh the closed ball in Hh := Hu
h × H

ϕ
h of radius r and center

(0, 0), that is

Wh :=
{

(wh, φh) ∈ Hh : ‖ (wh, φh) ‖ ≤ r
}
,

the main result of this section reads as follows.

Theorem 3.1. Assume that for δ1 ∈
(

0, 2
µ2

)
and δ2 ∈ (0, 2) we choose

κ1 ∈
(

0,
2µ1δ1
µ2

)
, κ2, κ4 ∈ (0,∞), and κ3 ∈

(
0, 2δ2

(
µ1 −

κ1µ2

2δ1

))
,

and consider the ball Wh with radius r ∈ (0, r0), r0 as in (2.29). Then, there exist

positive constants CS, C̃S̃ and c̃(r) such that, if the data satisfy

c̃(r)
{
‖g ‖∞,Ω + ‖uD ‖1/2,Γ

}
+ C̃S̃‖ϕD ‖1/2,Γ ≤ r,

then the problem (3.1) has at least one solution (~th, (ϕh, λh)) ∈ Hh×Hϕ
h ×Hλ

h with
(uh, ϕh) ∈Wh. Moreover, there hold∥∥~th ∥∥ ≤ CS

{
r‖g ‖∞,Ω + ‖uD ‖1/2,Γ

}
, (3.4)

and

‖ (ϕh, λh) ‖ ≤ C̃S̃

{
r‖uh ‖1,Ω + ‖ϕD ‖1/2,Γ

}
.

Proof. We only mention that (3.1) is transformed into a fixed-point problem that is
analyzed by means of the Brouwer fixed-point theorem in the convex and compact
set Wh (see [5, Theorem 4.8]).
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3.2. Specific choice of finite element subspaces. Given a set S ⊂ R := Rn

and an integer k ≥ 0, we define Pk(S) as the space of polynomial functions on S
of degree ≤ k, and for each T ∈ Th, we define the local Raviart-Thomas spaces of
order k as

RTk(T ) := Pk(T ) + Pk(T )x,

where x is a generic vector in R. Hence, the strain rate, stress, velocity and temper-
ature variables can be approximated using the following finite element subspaces:

Ht
h :=

{
sh ∈ L2

tr(Ω) : sh
∣∣
T
∈ Pk(T ) ∀ T ∈ Th

}
, (3.5)

Hσ
h :=

{
τh ∈ H0(div; Ω) : ctτh

∣∣
T
∈ RTk(T ), ∀ c ∈ R, ∀ T ∈ Th

}
, (3.6)

Hu
h :=

{
vh ∈ C(Ω̄) : vh

∣∣
T
∈ Pk+1(T ), ∀ T ∈ Th

}
, (3.7)

Hϕ
h :=

{
ψh ∈ C(Ω̄) : ψh

∣∣
T
∈ Pk+1(T ), ∀ T ∈ Th

}
, (3.8)

whereas for the normal component of the heat flux, we let {Γ̃1, Γ̃2, . . . , Γ̃m} be an
independent triangulation of Γ (made of straight segments in R2 or triangles in

R3), and define h̃ := maxj∈{1,...,m} |Γ̃j |. Then, with the same integer k ≥ 0 used
in definitions (3.5)-(3.8), we approximate λ by piecewise polynomials of degree ≤ k
over this new mesh, that is

Hλ
h̃

:=
{
ξh̃ ∈ L

2(Γ) : ξh̃
∣∣
Γ̃j
∈ Pk(Γ̃j) ∀ j ∈ {1, . . . ,m}

}
. (3.9)

It can be seen that Hϕ
h and Hλ

h̃
satisfy the conditions (3.2) and (3.3) as long as

h ≤ C0h̃ for some C0 > 0 (cf. [5, Section 4.3]). Other problems and corresponding
references where some of or all the above finite element subspaces have been em-
ployed include, among others, coupled flow-transport [8,9], natural convection with
phase-change [7], Navier-Stokes [15,16], and Stokes-Darcy (see, e.g. [29], where the

above restriction between the mesh sizes h and h̃ was discussed).
In turn, the approximation properties of the subspaces defined in (3.5) - (3.8)

and (3.9) are (cf. [14, 28])

(APt
h): There exists C > 0, independent of h, such that for each s ∈ (0, k + 1],

and for each t ∈ Hs(Ω) ∩ L2
tr(Ω), there holds

dist
(
t,Ht

h

)
≤ Chs‖ t ‖s,Ω,

(APσ
h ): There exists C > 0, independent of h, such that for each s ∈ (0, k + 1],

and for each σ ∈ Hs(Ω) ∩H0(div; Ω) with divσ ∈ Hs(Ω), there holds

dist (σ,Hσ
h ) ≤ Chs

{
‖σ ‖s,Ω + ‖divσ ‖s,Ω

}
,

(APu
h): there exists C > 0, independent of h, such that for each s ∈ (0, k + 1],

and for each u ∈ Hs+1(Ω), there holds

dist (u,Hu
h) ≤ Chs‖u ‖s+1,Ω,

(APϕ
h): there exists C > 0, independent of h, such that for each s ∈ (0, k + 1],

and for each ϕ ∈ Hs+1(Ω), there holds

dist (ϕ,Hϕ
h ) ≤ Chs‖ϕ ‖s+1,Ω,

(APλ
h̃
): there exists C > 0, independent of h̃, such that for each s ∈ (0, k + 1],

and for each λ ∈ H−1/2+s(Γ), there holds

dist
(
λ,Hλ

h̃

)
≤ Ch̃s‖λ ‖−1/2+s,Γ.
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4. A priori error analysis. Let (~t, (ϕ, λ)) ∈ H×H1(Ω)×H−1/2(Γ) with (u, ϕ) ∈
W be the solution of (2.11), and (~th, (ϕh, λh)) ∈ Hh×Hϕ

h ×Hλ
h with (uh, ϕh) ∈Wh

be a solution of the discrete problem (3.1), that is,

(Aϕ + Bu)(~t,~s) = (Fϕ + FD)(~s) ∀ ~s ∈ H; (4.1a)

(Aϕh + Buh)(~th,~sh) = (Fϕh + FD)(~sh) ∀ ~sh ∈ Hh, (4.1b)

and

a(ϕ,ψ) + b(ψ, λ) = Fu,ϕ(ψ) ∀ ψ ∈ H1(Ω), (4.2a)

b(ϕ, ξ) = G(ξ) ∀ ξ ∈ H−1/2(Γ); (4.2b)

a(ϕh, ψh) + b(ψh, λh) = Fuh,ϕh(ψh) ∀ ψh ∈ Hϕ
h , (4.2c)

b(ϕh, ξh) = G(ξh) ∀ ξh ∈ Hλ
h . (4.2d)

In what follows, we denote as usual

dist
(
~t,Hh

)
:= inf

~sh∈Hh

∥∥~t−~sh ∥∥,
and

dist
(
(ϕ, λ), Hϕ

h ×H
λ
h

)
:= inf

(ψh,ξh)∈Hϕh×H
λ
h

‖ (ϕ, λ)− (ψh, ξh) ‖.

First, the error estimate related to the variables of the momentum equation is
obtained by means of the Strang Lemma, applied to the pair (4.1). We recall the
Lemma, and its consequent result next.

Lemma 4.1 (Strang). Let V be a Hilbert space, F ∈ V ′, and A : V × V → R be
a bounded and V -elliptic bilinear form. In addition, let {Vh}h>0 be a sequence of
finite-dimensional subspaces of V , and for each h > 0, consider a bounded bilinear
form Ah : Vh×Vh → R and a functional Fh ∈ V ′h. Assume that the family {Ah}h>0

is uniformly elliptic in Vh, that is, there exists a constant α̃ > 0, independent of h,
such that

Ah(vh, vh) ≥ α̃‖ vh ‖2V ∀ vh ∈ Vh, ∀ h > 0.

In turn, let u ∈ V and uh ∈ Vh such that

A(u, v) = F (v) ∀ v ∈ V and Ah(uh, vh) = F (vh) ∀ vh ∈ Vh.
Then, for each h > 0, there holds

‖u− uh ‖V ≤ CST

 sup
wh∈Vh
wh 6=0

|F (wh)− Fh(wh)|
‖wh ‖V

+ inf
vh∈Vh
vh 6=0

‖u− vh ‖V + sup
wh∈Vh
wh 6=0

|A(vh, wh)−Ah(vh, wh)

‖wh ‖V


 ,

where CST := α̃−1 max{1, ‖A ‖}.

Proof. See [38, Theorem 11.1].

Lemma 4.2. Let CST := 2
α(Ω) max{1, ‖Aϕ + Bu ‖}, where α(Ω)

2 is the ellipticity

constant of Aϕ + Bu (cf. (2.28)). Then, there holds∥∥~t−~th ∥∥
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≤ CST

{(
1 + 2‖Aϕ + Bu ‖

)
dist

(
~t,Hh

)
+ c1(Ω)(1 + κ2

1)1/2‖u ‖1,Ω‖u− uh ‖1,Ω

+
{
LµCεC̃ε(1+κ2

1)1/2‖ t ‖ε,Ω+(1+κ2
2)1/2‖g ‖∞,Ω

}
‖ϕ− ϕh ‖1,Ω

}
.

(4.3)

Proof. From Lemma 2.3, we see that Aϕ+Bu and Aϕh +Buh are bilinear, bounded
(both with constant ‖Aϕ + Bu ‖, w.l.o.g. since it is independent of (u, ϕ)) and

uniformly elliptic (both with constant α(Ω)
2 ). Also, Fϕ + FD and Fϕh + FD are

linear bounded functionals in H and Hh, respectively. Hence, a straightforward
application of Lemma 4.1 to the pair (4.1) yields

∥∥~t−~th ∥∥ ≤ CST
 sup
~sh∈Hh
~sh 6=~0

|Fϕ(~sh)− Fϕh(~sh)|∥∥~sh ∥∥ + inf
~qh∈Hh
~qh 6=~0

∥∥~t− ~qh ∥∥

+ sup
~sh∈Hh
~sh 6=~0

|(Aϕ + Bu)(~qh,~sh)− (Aϕh + Buh)(~qh,~sh)|∥∥~sh ∥∥

 ,

(4.4)

where CST := 2
α(Ω) max

{
1, ‖Aϕ + Bu ‖

}
. First, we notice that

|Fϕ(~sh)− Fϕh(~sh)| = |Fϕ−ϕh(~sh)| ≤ (1 + κ2
2)1/2‖g ‖∞,Ω‖ϕ− ϕh ‖1,Ω

∥∥~sh ∥∥ ∀ ~sh ∈ Hh.
(4.5)

Then, in order to estimate the last supremum in (4.4), we add and subtract suitable
terms to write

(Aϕ + Bu)(~qh,~sh)− (Aϕh + Buh)(~qh,~sh)

= (Aϕ + Bu)(~qh −~t,~sh) + (Aϕ −Aϕh)(~t,~sh)

+ (Bu −Buh)(~t,~sh)− (Aϕh + Buh)(~qh −~t,~sh) ,

and so, using the boundedness of the bilinear forms Aϕ + Bu and Aϕh + Buh

(cf. (2.27)), the estimate (2.8), the continuous embedding H1(Ω) ↪→ Ln/ε(Ω) with

constant C̃ε and the further-regularity assumption in a similar way to (2.39), we
obtain

|(Aϕ + Bu)(~qh,~sh)− (Aϕh + Buh)(~qh,~sh)| ≤ 2‖Aϕ + Bu ‖
∥∥~qh −~t ∥∥∥∥~sh ∥∥

+

∣∣∣∣ ∫
Ω

[
µ(ϕ)− µ(ϕh)

]
t :
{

sh − κ1τ
d
h

}∣∣∣∣+

∣∣∣∣ ∫
Ω

[
u⊗ (u− uh)

]d
:
{
κ1τ

d
h − sh

}∣∣∣∣
≤
{

2‖Aϕ + Bu ‖
∥∥~t− ~qh ∥∥+ LµCεC̃ε(1 + κ2

1)1/2‖ t ‖ε,Ω‖ϕ− ϕh ‖1,Ω

+ c1(Ω)(1 + κ2
1)1/2‖u ‖1,Ω‖u− uh ‖1,Ω

}∥∥~sh ∥∥.
This inequality, together with (4.5), back into (4.4), results in (4.3), therefore con-
cluding the proof.
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Next, we recall from [20, Lemma 5.4] (see also [5, Lemma 5.4]) the error estimate
of the variables in the energy equation.

Lemma 4.3. There exists a positive constant ĈST , depending only on ‖a ‖, ‖b ‖,
α̂ and β̂ (cf. (3.2), (3.3)), such that

‖ (ϕ, λ)− (ϕh, λh) ‖

≤ ĈST
{
c2(Ω)

(
|ϕ |1,Ω‖u− uh ‖1,Ω + ‖uh ‖1,Ω|ϕ− ϕh |1,Ω

)
+ dist

(
(ϕ, λ), Hϕ

h ×H
λ
h

)}
.

Proof. It suffices to apply the generalized Strang-type estimate for saddle point
problems provided in [20, Lemma 5.2] (see also [5, Lemma 5.2]), which constitutes
a particular case of [38, Theorem 11.12], to the context given by (4.2).

Hence, adding the estimates obtained in the previous two lemmas, we have a
preliminary estimate for the total error:∥∥ (~t, (ϕ, λ))− (~th, (ϕh, λh))

∥∥ ≤ CST (1 + 2‖Aϕ + Bu ‖) dist
(
~t,Hh

)
+ ĈST dist

(
(ϕ, λ), (Hϕ

h ×H
λ
h )
)

+
{
C1‖u ‖1,Ω + C2|ϕ |1,Ω

}
‖u− uh ‖1,Ω

+
{
C3‖ t ‖ε,Ω + C4‖g ‖∞,Ω + C2‖uh ‖1,Ω

}
‖ϕ− ϕh ‖1,Ω, (4.6)

where
C1 := CST c1(Ω)(1 + κ2

1)1/2, C2 := ĈST c2(Ω),

C3 := CSTLµCεC̃ε(1 + κ2
1)1/2, C4 = CST (1 + κ2

2)1/2.

Then, bounding the terms ‖u ‖1,Ω, |ϕ |1,Ω and ‖uh ‖1,Ω using the continuous depen-

dence results (2.41), (2.42) and (3.4), and the further-regularity assumption (2.33)
to bound ‖ t ‖ε,Ω, (4.6) becomes∥∥ (~t, (ϕ, λ))− (~th, (ϕh, λh))

∥∥ ≤ CST (1 + 2‖Aϕ + Bu ‖) dist
(
~t,Hh

)
+ ĈSTdist

(
(ϕ, λ), (Hϕ

h ×H
λ
h )
)

+

{
(C1 + C2CS̃r + C2)CS

(
r‖g ‖∞,Ω + ‖uD ‖1/2,Γ

)
+ C4‖g ‖∞,Ω

+ C3C̃S(r)
(
r‖g ‖∞,Ω + ‖uD ‖1/2+ε,Γ

)
+ C2CS̃‖ϕD ‖1/2,Γ

}
×
∥∥ (~t, (ϕ, λ))− (~th, (ϕh, λh))

∥∥. (4.7)

Therefore, using the continuous injection H1/2+ε(Γ) ↪→ H1/2(Γ) with constant Ĉi
and denoting by

C5 := C2CS̃, C6 := (C1 + C5r + C2)CS, C7 := C6r + C3C̃S(r)r + C4,

C8 := C6Ĉi + C3C̃S(r), C0 := max{C5, C7, C8},

we see from (4.7) that∥∥ (~t, (ϕ, λ))− (~th, (ϕh, λh))
∥∥

≤ CST (1 + 2‖Aϕ + Bu ‖) dist
(
~t,Hh

)
+ ĈST dist

(
(ϕ, λ), (Hϕ

h ×H
λ
h )
)

+ C0

(
‖g ‖∞,Ω + ‖uD ‖1/2+ε,Γ + ‖ϕD ‖1/2,Γ

)∥∥ (~t, (ϕ, λ))− (~th, (ϕh, λh))
∥∥, (4.8)

which leads us the main result of this section.
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Theorem 4.4. Assume that

C0

(
‖g ‖∞,Ω + ‖uD ‖1/2+ε,Γ + ‖ϕD ‖1/2,Γ

)
<

1

2
. (4.9)

Then, there exists C > 0 depending only on parameters, data and other constants,
all of them independent of h, such that∥∥ (~t, (ϕ, λ))− (~th, (ϕh, λh))

∥∥ ≤ C dist
(
(~t, (ϕ, λ)),Hh ×Hϕ

h ×H
λ
h

)
. (4.10)

Proof. The assumption (4.9) allows us to subtract the total error term in the right-

hand side of (4.8), thus verifying the Céa’s estimate with C = 2 max
{
CST (1 +

2‖Aϕ + Bu ‖), ĈST
}

.

Finally, we state the rates of convergence of the Galerkin scheme (3.1) when the
finite element subspaces (3.5)-(3.9) are used.

Theorem 4.5. In addition to the hypotheses of Theorems 2.9, 3.1 and 4.4, as-
sume that there exists s > 0 such that t ∈ Hs(Ω), σ ∈ Hs(Ω), divσ ∈ Hs(Ω),

u ∈ Hs+1(Ω), ϕ ∈ Hs+1(Ω) and λ ∈ H−1/2+s(Γ). Then, there exists Ĉ > 0,

independent of h and h̃ such that for all h ≤ C0h̃ there holds∥∥ (~t, (ϕ, λ))− (~th, (ϕh, λh))
∥∥ ≤ Ĉh̃min{s,k+1}‖λ ‖−1/2+s,Γ

+ Ĉhmin{s,k+1}
{
‖ t ‖s,Ω + ‖σ ‖s,Ω + ‖divσ ‖s,Ω + ‖u ‖s+1,Ω + ‖ϕ ‖s+1,Ω

}
.

Proof. It follows from Céa’s estimate (4.10) and the approximation properties

(APt
h), (APσ

h ), (APu
h), (APϕ

h), and (APλ
h̃
) described in Section 3.2.

5. Numerical results. We now present three numerical examples showing the per-
formance of the augmented mixed-primal method (3.1) with the subspaces specified
in Section 3.2. The computational implementation uses the finite element library
FEniCS (cf. [6]), in particular the module multiphenics1 that allows a straight-
forward description of the Lagrange multiplier and a block structure manipulation
of the linearized systems arising at each Picard step. The solution of these linear
systems is done employing the unsymmetric multi-frontal direct solver MUMPS
(cf. [10]).

The implemented iterative method mimics the fixed-point strategy from Section
2.2: it begins with an initial state at rest (u, ϕ) = (0, 0) and it stops whenever the
relative error between two consecutive iterations of the solution vector measured in
the `2-norm (the sum of squared entries of a vector) is sufficiently small, i.e.,∥∥ coeff m+1 − coeff m

∥∥
`2∥∥ coeff m+1

∥∥
`2

< tol,

where tol = 10−6 is a specified tolerance. We also recall that the pressure is
post-processed as

ph := − 1

n
tr(σh + uh ⊗ uh) ,

1http://mathlab.sissa.it/multiphenics

http://mathlab.sissa.it/multiphenics
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which, as explained in [5, Section 5.2], converges to the exact pressure p at the same
rate as the other variables (cf. Theorem 4.5). Similarly, as suggested by the second
expression in (1.4), the vorticity can be postprocessed as

γh :=
1

2

{
∇uh −

(
∇uh

)t}
,

which easily yields

‖γ − γh‖0,Ω ≤ |u− uh|1,Ω ≤ ‖u− uh‖1,Ω ,
thus proving that it also converges at the same rate provided by Theorem 4.5. In
this way, we define the error per variable

e(t) := ‖ t− th ‖0,Ω, e(σ) := ‖σ − σh ‖div;Ω, e(u) := ‖u− uh ‖1,Ω,
e(p) := ‖ p− ph ‖0,Ω, e(γ) := ‖γ − γh ‖0,Ω, e(ϕ) := ‖ϕ− ϕh ‖1,Ω,

e(λ) :=
∥∥λ− λh̃ ∥∥0,Γ

,

as well as their corresponding rates of convergence

r(t) :=
log(e(t)/e′(t))

log(h/h′)
, r(σ) :=

log(e(σ)/e′(σ))

log(h/h′)
, r(u) :=

log(e(u)/e′(u))

log(h/h′)
,

r(p) :=
log(e(p)/e′(p))

log(h/h′)
, r(γ) :=

log(e(γ)/e′(γ))

log(h/h′)
, r(ϕ) :=

log(e(ϕ)/e′(ϕ))

log(h/h′)
,

r(λ) :=
log(e(λ)/e′(λ)),

log(h̃/h̃′)
,

where h and h′ (respectively h̃ and h̃′) denote two consecutive mesh sizes with errors
e and e′.

5.1. Example 1. We first consider Ω := (−1, 1)2, viscosity, thermal conductivity
and body force given by µ(ϕ) = exp(−0.25ϕ), K = I, g = (0, 1)t, and boundary
conditions such that the exact solution to (1.1) is

u =

(
sin(πx) cos(πy)
− cos(πx) sin(πy)

)
, t = e(u), γ = ∇u− e(u), p = x4 − y4,

σ = µ(ϕ)e(u)− u⊗ u− pI, ϕ = −0.6944 y4 + 1.6944 y2, λ = −K∇ϕ · ν.

Non-homogeneous terms will then appear in the right-hand sides of the momen-
tum and energy equations. Nevertheless, well-posedness is still ensured, since the
smoothness of the exact solution makes these terms immediately belong to L2(Ω),
thus requiring only a minor modification in the functionals of the variational for-
mulation. Concerning the stabilization parameters, these are taken as pointed out
in Section 2.3, where the viscosity bounds are estimated as µ1 = 0.5, µ2 = 1.25,
thus resulting in κ1 = κ2 = 0.32, κ3 = 0.25 and κ4 = 0.125. We also remark that
the trace condition on the stress is enforced through penalization, here and also in
the upcoming examples.

In Figure 5.1 we show part of the obtained numerical solution with 214,788 DOF
and a first order approximation, whereas in Table 5.1 we show the convergence
history given the specified data and the finite element spaces from Section 3.2 with
successive quasi-uniform mesh refinements. In both cases, it can be seen that the
rates of convergence are the expected ones according to Theorem 4.5, that is, O(h)
for the first case, and O(h2) for the second one. We also observe that around eight
iterations are needed to reach convergence of the Picard algorithm.



MIXED FEM FOR n-DIMENSIONAL BOUSSINESQ EQUATIONS 237

Figure 5.1. Numerical results for Example 1. From top-left to
right-bottom: XX, XY and YY components of the pseudostress,
XX component of the strain rate, velocity components and vec-
tor fields, postprocessed pressure, postprocessed vorticity magni-
tude, and temperature. Snapshots obtained from a simulation with
214,788 DOF and a first order approximation.

5.2. Example 2. We next consider Ω := (0, 1)2; viscosity, thermal conductivity
and body force as in Example 1, and boundary conditions and source terms such
that the exact solution is

u1(x, y) =

[
1− cos

(
2π(er1x − 1)

er1 − 1

)]
sin

(
2π(er2y − 1)

er2 − 1

)
r2

2π

er2y

er2 − 1
,

u2(x, y) = −
[
1− cos

(
2π(er2y − 1)

er2 − 1

)]
sin

(
2π(er1x − 1)

er1 − 1

)
r1

2π

er1x

er1 − 1
,

p(x, y) = r1r2 sin

(
2π(er1x − 1)

er1 − 1

)
sin

(
2π(er2y − 1)

er2 − 1

)
er1x+r2y

(er1 − 1)(er2 − 1)
,
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Finite Element: P0 - RT0 - P1 - P1 - P0

DOF h e(t) e(σ) e(u) e(p) e(γ) e(ϕ) e(λ)

84 1.4140 5.2972 12.870 9.6113 1.4554 2.8012 0.8379 1.5082

268 0.7071 2.4345 7.0572 4.6912 1.0387 2.2743 0.8278 0.8069

948 0.3536 1.2700 3.8456 2.4815 0.5934 1.2154 0.3977 0.4969

3,556 0.1768 0.6461 1.9470 1.2414 0.3021 0.6162 0.2310 0.2353

13,764 0.0884 0.3248 0.9766 0.6182 0.1502 0.3084 0.0948 0.0703

54,148 0.0442 0.1626 0.4887 0.3086 0.0749 0.1542 0.0465 0.0199

214,788 0.0221 0.0814 0.2444 0.1542 0.0375 0.0771 0.0232 0.0091

IT h̃ r(t) r(σ) r(u) r(p) r(γ) r(ϕ) r(λ)

11 0.5000 – – – – – – –

7 0.2500 1.122 0.8665 1.0352 0.4854 0.3012 0.0176 0.8069

9 0.1250 0.9385 0.8762 0.9189 0.8072 0.9037 1.0583 1.0917

8 0.0625 0.9751 0.9814 0.9989 0.9739 0.9798 0.7834 1.1912

9 0.0312 0.9924 0.9957 1.0061 1.0080 0.9988 1.2842 1.2129

8 0.0156 0.9978 0.9989 1.0020 1.0031 0.9998 1.0271 1.2816

8 0.0078 0.9994 0.9997 1.0010 1.0010 1.0000 1.0020 1.1434

Finite Element: P1 - RT1 - P2 - P2 - P1

DOF h e(t) e(σ) e(u) e(p) e(γ) e(ϕ) e(λ)

236 1.4140 1.8442 3.3631 3.4822 0.9773 2.4131 0.7265 2.1308

820 0.7071 0.4471 1.0930 0.9907 0.2911 0.6832 0.1611 0.3965

3,044 0.3536 0.1252 0.2853 0.2855 0.0805 0.1857 0.0399 0.0833

11,716 0.1768 0.0328 0.0732 0.0747 0.0209 0.05792 0.0078 0.0213

45,956 0.0884 0.0083 0.0185 0.0189 0.0053 0.01905 0.0019 0.0056

182,020 0.0442 0.0021 0.0046 0.0047 0.0013 0.0054 0.0005 0.0011

724,448 0.0221 0.0006 0.0012 0.0012 0.0004 0.0013 0.0001 0.0002

IT h̃ r(t) r(σ) r(u) r(p) r(γ) r(ϕ) r(λ)

6 0.5000 – – – – – – –

7 0.2500 2.0445 1.6220 1.8130 1.7471 1.6275 2.1722 2.2383

8 0.1250 1.8378 1.9377 1.7953 1.8544 1.9316 2.0114 2.2469

8 0.0625 1.9284 1.9619 1.9332 1.9440 1.9827 2.3410 1.9744

8 0.0312 1.9771 1.9871 1.9845 1.9821 1.9957 2.0073 2.0656

8 0.0156 1.9898 1.9955 1.9926 1.9932 1.9989 1.9987 2.1131

8 0.0078 1.9956 1.9970 1.9931 1.9995 1.9997 2.0031 2.2573

Table 5.1. Convergence history for Example 1, with a quasi-
uniform mesh refinement and approximations of first and second
order.

where r1 and r2 are positive parameters, and

u =

(
u1(x, y)
u2(x, y)

)
, t = e(u), γ = ∇u− e(u), σ = µ(ϕ)e(u)− u⊗ u− pI

ϕ = u1(x, y) + u2(x, y), λ = −K∇ϕ · ν.

It is expected to find a counter-clockwise rotating vortex with center (x̂, ŷ), where

x̂ =
1

r1
log

(
er1 + 1

2

)
, ŷ =

1

r2
log

(
er2 + 1

2

)
.

In particular, taking r1 = r2 = 4.5, the center of the vortex is expected to appear at
the top-right corner of the cavity (that is, (x̂, ŷ) = (0.829, 0.829)). Then, considering
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Figure 5.2. Numerical results for Example 2. From top-left to
right-bottom: XX, XY and YY components of the pseudostress,
XX component of the strain rate, velocity components and vec-
tor fields, postprocessed pressure, postprocessed vorticity magni-
tude, and temperature. Snapshots obtained from a simulation with
724,448 DOF using a second-order approximation.

the stabilization parameters as in Section 2.3, estimating the viscosity bounds in
µ1 = 0.74, µ2 = 1.35, we obtain the values κ1 = κ2 = 0.406, κ3 = 0.37 and
κ4 = 0.185.

In Table 5.2 we show the corresponding convergence history. As expected, when
using the finite-element subspaces of Section 3.2 with k = 0 and k = 1, the rates of
convergence are near the optimal linear and quadratic orders, respectively. Part of
the solution is shown in Figure 5.2, where a second-order approximation has been
used with 724,448 DOF. The second-order method is more convenient than the
first-order scheme, in terms of CPU time used to reach the same precision. Notice
that a relatively high refinement was required to capture the small features of the
solution (e.g. pressure and pseudostress).
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Finite Element: P0 - RT0 - P1 - P1 - P0

DOF h e(t) e(σ) e(u) e(p) e(γ) e(ϕ) e(λ)

84 0.7071 4.1107 59.150 4.6740 2.1232 3.3978 8.4722 31.684

268 0.3536 2.9724 48.185 4.8101 1.3070 2.8141 6.1465 17.922

948 0.1768 1.8371 39.145 4.9700 1.0967 2.8205 17.313 53.771

3,556 0.0884 1.5104 26.112 2.6239 0.6233 1.6445 2.6532 5.7624

13,764 0.0442 0.7732 14.525 1.283 0.3384 0.8152 1.2225 2.4021

54,148 0.0221 0.3889 7.4319 0.6359 0.1707 0.4079 0.5772 1.0130

214,788 0.0110 0.1948 3.7392 0.3178 0.0848 0.2041 0.2942 0.5675

IT h̃ r(t) r(σ) r(u) r(p) r(γ) r(ϕ) r(λ)

7 0.5000 – – – – – – –

9 0.2500 0.4959 0.5161 0.4126 0.5271 0.2714 0.5463 0.8221

7 0.1250 0.8588 0.7512 0.7433 0.7982 0.5283 0.7894 0.8585

7 0.0625 0.9184 0.9209 0.9214 0.8147 0.7781 1.0706 1.0223

6 0.0312 0.9652 0.9438 1.0327 0.8928 1.0121 1.1193 1.2162

6 0.0156 0.9912 0.9682 1.0122 0.9854 0.9989 1.0820 1.2245

6 0.0078 0.9941 0.9778 1.0041 0.9985 0.9991 1.0357 1.1123

Finite Element: P1 - RT1 - P2 - P2 - P1

DOF h e(t) e(σ) e(u) e(p) e(γ) e(ϕ) e(λ)

236 0.7071 3.1423 39.183 4.5951 2.1095 2.8495 7.5735 17.122

820 0.3536 1.8331 25.442 2.9427 1.5544 1.8810 3.3130 6.5814

3,044 0.1768 0.6816 10.937 1.3226 0.4762 0.8158 2.4591 3.7876

11,716 0.0884 0.2082 3.7916 0.3655 0.1364 0.1943 0.3188 0.5948

45,956 0.0442 0.0531 1.0029 0.0996 0.0322 0.0505 0.0689 0.0355

182,020 0.0221 0.0136 0.2582 0.0258 0.0082 0.0131 0.0177 0.0052

724,484 0.0110 0.0034 0.0651 0.0065 0.0021 0.0033 0.0045 0.0011

IT h̃ r(t) r(σ) r(u) r(p) r(γ) r(ϕ) r(λ)

7 0.5000 – – – – – – –

7 0.2500 0.7249 0.4977 0.5891 0.4418 0.5991 1.1924 1.6379

6 0.1250 1.4279 1.2188 1.1543 1.7063 1.2054 0.4302 1.4443

6 0.0625 1.7114 1.5283 1.8547 1.8037 2.0781 2.9407 2.1704

6 0.0312 1.9693 1.9193 1.8755 2.0841 1.9458 2.2135 2.2071

6 0.0156 1.9614 1.9565 1.9479 1.9752 1.9473 1.9564 2.1078

6 0.0078 1.9798 1.9884 1.9810 1.9869 1.9776 1.9752 2.1907

Table 5.2. Convergence history for Example 2, with a quasi-
uniform mesh refinement and approximations of first and second
order.

5.3. Example 3. The implementation of the numerical scheme and the accuracy
for the three-dimensional case are assessed with this next computational test. The
domain is the unit cube Ω = (0, 1)3 and we consider the following closed-form
solutions to the governing equations (1.1)

u =

 sin(πx) cos(πy) cos(πz)
−2 cos(πx) sin(πy) cos(πz)

cos(πx) cos(πy) sin(πz)

 , t = e(u), γ = ∇u− e(u),

p = sin(πx) sin(πy) sin(πz),

σ = µ(ϕ)e(u)− u⊗ u− pI, ϕ = 1− sin(πx) cos(πy) sin(πz), λ = −K∇ϕ · ν,
with K = I, µ(ϕ) = exp(−0.25ϕ), and g = (0, 0, 1)t. The manufactured velocity
is divergence free, it satisfies the compatibility condition (1.3) and it is used as
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Finite Element: P0 - RT0 - P1 - P1 - P0

DOF h e(t) e(σ) e(u) e(p) e(γ) e(ϕ) e(λ)

900 0.7071 2.1535 6.0574 4.7925 0.6109 1.3478 1.9131 0.0137

2,848 0.4714 1.1357 4.0980 2.9703 0.3282 1.0283 1.3774 0.0065

12,564 0.2828 0.7437 2.5440 1.8929 0.2057 0.7164 0.7827 0.0027

71,068 0.1571 0.3899 1.4422 1.1277 0.1254 0.4506 0.4332 0.0011

451,690 0.0882 0.1972 0.7612 0.6351 0.0694 0.2348 0.2179 0.0006

IT h̃ r(t) r(σ) r(u) r(p) r(γ) r(ϕ) r(λ)

7 0.7071 – – – – – – –

7 0.4714 1.0245 0.9075 0.9573 1.0982 0.8846 0.8338 1.6382

8 0.2828 0.8937 0.9558 0.9879 0.9818 0.8974 1.1057 1.6072

8 0.1571 0.9152 0.9831 0.9893 0.9874 0.9509 1.0043 1.6075

8 0.0882 0.9372 0.9852 1.0505 0.9756 0.9534 0.9891 1.6258

Finite Element: P1 - RT1 - P2 - P2 - P1

DOF h e(t) e(σ) e(u) e(p) e(γ) e(ϕ) e(λ)

3,693 0.7071 0.7084 2.5493 2.8720 0.2803 0.7668 1.0241 0.0092

11,741 0.4714 0.2268 0.8202 0.9132 0.0846 0.1949 0.3093 0.0023

51,825 0.2828 0.0603 0.2192 0.2609 0.0217 0.0625 0.0794 0.0005

286,905 0.1571 0.0169 0.0516 0.0689 0.0575 0.0164 0.0197 0.0001

1,879,712 0.0882 0.0052 0.0135 0.0186 0.0167 0.0043 0.0051 1.84e-5

IT h̃ r(t) r(σ) r(u) r(p) r(γ) r(ϕ) r(λ)

6 0.7071 – – – – – – –

7 0.4714 1.8586 1.8163 1.8545 1.8611 1.7819 1.9314 2.5877

7 0.2828 1.9004 1.8805 1.8949 1.9072 1.9384 1.8458 2.6167

8 0.1571 1.9153 1.9572 1.8973 1.9526 1.9742 1.9628 2.5709

8 0.0882 1.9457 1.9694 1.9407 1.9644 1.9866 1.9764 2.6851

Table 5.3. Convergence history for Example 3, with a quasi-
uniform mesh refinement and approximations of first and second
order.

Dirichlet datum on Γ. The exact temperature is uniformly bounded and it is also
exploited as Dirichlet datum. In this configuration the viscosity bounds can be set
as µ1 = 0.5, µ2 = 1 and the augmentation constants take the values κ1 = κ2 = 0.5,
κ3 = 0.25, and κ4 = 0.125. The error history, associated with the schemes of or-
der one and two, are performed using six steps of uniform mesh refinement applied
to an initial structured tetrahedral mesh. On each level we compute approximate
solutions, as well as errors and convergence rates defined as above. The boundary
partition is considered conforming with the interior mesh, for sake of convenience
and simplicity of the 3D mesh generation. Our findings are collected in Table 5.3,
where errors and Picard iteration count are tabulated by number of degrees of
freedom and meshsize. As in the 2D case, optimal error decay is observed for all
individual errors (including the post-processed variables), and we also note that
the errors e(σ), e(u) are dominant. One can also see that (perhaps assisted by the
conformity between the interior and boundary meshes) the error associated with
the boundary heat flux has a convergence systematically better than the optimal
predicted by Theorem 4.5. Finally, we portray in Figure 5.3 a sample of the approx-
imate solutions generated by the lowest-order mixed method on a relatively coarse
mesh.

5.4. Example 4. To close this section we conduct a benchmark test of a differen-
tially heated, two-dimensional cavity of width 2 and height 1 (dimensionless units).
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Figure 5.3. Example 3. Approximate solutions (from left to right
and from up to down): magnitude of strain rate, pseudostress,
velocity magnitude and arrows, postprocessed vorticity magnitude,
postprocessed pressure, and temperature. Snapshots obtained from
a simulation with a lowest-order approximation and 451,690 DOF.

The nonlinear viscosity used here is also explicitly dependent on depth, as in the
models used in the context of mantle convection [12,40],

µ(ϕ) = 2 exp(−9.7044ϕ+ 4.1588(1− y)),

and the boundary treatment proceeds as follows. For the thermal energy conser-
vation, the boundary is split into ΓD (top and bottom edges of the box) and ΓN
(vertical walls) where temperature and heat flux are prescribed, respectively. The
boundary temperature on ΓD is set to 0 on the top and 1 on the bottom edges,
and it suffices with adequately defining ϕD in the formulation. On ΓN we sim-
ply set zero thermal flux (the vertical walls are considered insulated). For the
Navier-Stokes equations, and following [40], we impose free slip conditions defined
as u · ν = σν ·m = 0, where m denotes the tangential vector. These conditions
imply that the Galerkin term for boundary velocity of Section 2 is now modified as

κ4

∫
Γ

(u · ν) (v · ν) = 0 ∀v ∈ H1(Ω),

and we also require the additional condition

κ5

∫
Γ

(σν ·m) (τν ·m) = 0 ∀τ ∈ H(div; Ω),

where κ5 > 0 can be taken, e.g., equal to κ4. The coupled Boussinesq equations can
be scaled so that the thermal conductivity is inverse to the adimensional Rayleigh
number Ra=104, and the buoyancy term is simply ϕg with g = (0, 1)t. In order to
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Figure 5.4. Example 4. Approximate velocity line integral con-
tours and temperature profiles for the differentially heated cavity
at times t = 4, t = 8, t = 12, computed with the lowest-order
scheme and a backward Euler time stepping.

produce convection regimes we require extending the formulation to the transient
case, adding to the thermal energy equation the term ∂tϕ and to the momentum
equation the acceleration ∂tu (which for mantle convection could eventually be
dropped as it scales with the inverse of a very large Prandtl number). These time
derivatives are approximated with the backward Euler scheme, using a constant
timestep of ∆t = 0.1 and running the coupled Boussinesq equations until the final
time t = 12. The initial velocity is zero and the initial temperature is ϕ(0) =
1− y2 + 0.01 cos(4πx) sin(πy). We employ a relatively coarse structured mesh with
32K triangles (but graded to be refined in the y−direction near the bottom and top
boundaries), which results in a mixed-primal method (for the lowest-order case)
having 208,986 DOF. For this test we observe that an average of five fixed-point
iterations are required to reach the fixed tolerance of 10−7. The Rayleigh number
used here was sufficiently large to generate thermal blob-shaped forms (see the
plumes in the temperature plot of Figure 5.4). The obtained convection modes are
consistent with the flow patterns observed in [40] (see also [31, 33]). They indicate
that the velocity is driven by the temperature difference.
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