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Abstract

We propose and analyze a fully-mixed finite element method to numerically approximate the flow patterns of a viscous fluid
within a highly permeable medium (an array of low concentration fixed particles), described by Brinkman equations, and its
interaction with non-viscous flow within classical porous media governed by Darcy’s law. The system is formulated in terms of
velocity and pressure in the porous medium, together with vorticity, velocity and pressure of the viscous fluid. In addition, and
for sake of the analysis, the tangential component of the vorticity is supposed to vanish on the whole boundary of the Brinkman
domain, whereas null normal components of both velocities are assumed on the respective boundaries, except on the interface where
suitable transmission conditions are considered. In this way, the derivation of the corresponding mixed variational formulation
leads to a Lagrange multiplier enforcing the pressure continuity across the interface, whereas mass balance results from essential
boundary conditions on each domain. As a consequence, a typical saddle-point operator equation is obtained, and hence the
classical Babuska—Brezzi theory is applied to establish the well-posedness of the continuous and discrete schemes. In particular, we
remark that the continuous and discrete inf—sup conditions of the main bilinear form are proved by using suitably chosen injective
operators to get lower bounds of the corresponding suprema, which constitutes a previously known technique, recently denominated
T -coercivity. In turn, and consistently with the above, the stability of the Galerkin scheme requires that the curl of the finite
element subspace approximating the vorticity be contained in the space where the discrete velocity of the fluid lives, which yields
Raviart-Thomas and Nédélec finite element subspaces as feasible choices. Then we show that the aforementioned constraint can
be avoided by augmenting the mixed formulation with a residual arising from the Brinkman momentum equation. Finally, several
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numerical examples illustrating the satisfactory performance of the methods and confirming the theoretical rates of convergence are

reported.
© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is motivated by the numerical approximation of flow patterns in an heterogeneous media composed by
a porous medium, where Darcy equations govern the flow behavior of a non-viscous incompressible fluid, and a much
more permeable domain, where the laminar flow exhibits viscous effects and can be described by the linear Brinkman
model. The two domains are separated by an essentially fixed interface, across which the flow passes from viscous
to a non-viscous regime. According to the discussion in [1], we can assume that the Brinkman domain consists of
an array of low concentration fixed particles, whereas the Darcy domain is a classical porous medium constituted
by connected porous matrices. Such a scenario is often encountered in e.g. the modeling of surface and subsurface
flow in porous media, petroleum reservoirs, or perfusion of physiological fluids into soft tissues, focusing typically on
filtration or other similar processes of interest. We are also interested in accurately recovering the additional vorticity
field (vectorial for three-dimensional flows and perpendicular to the plane of the flow and therefore considered scalar
in 2D), which yields better information on circulation effects of the free fluid, sometimes observed near interfaces.

At the interface of the two domains, and depending on the specific form of the problem at hand, one typically
requires preservation of physical quantities such as normal velocities, normal stresses, and so on. An abundant body
of literature is devoted to different ways of treating the interface conditions, from both mathematical and numerical
perspectives. These basically include sequential sub-structuring methods, where decoupled subproblems are solved
on each subdomain, followed by an updating of the interface field values, then using these values as boundary data to
solve a local problem on the other subdomain, and iterating in some adequate manner (see e.g. [2-5]); and monolithic,
fully coupled approaches where all sought fields are computed at once, for instance by a single operator acting on
the two media or with the aid of Lagrange multipliers specifically designed to impose continuity of fields to be
conserved across the interface (see for instance [6-9]). Our method follows the latter strategy. Up to our knowledge,
the coupling of Brinkman and Darcy flows has been only addressed in terms of the primal unknowns of velocity
and pressure [10,8,4]. Vorticity-based formulations for the Stokes—Darcy coupling were introduced in [11] and later
studied in [12,13]. Differences with respect to these contributions include a slightly different formulation (we do not
assume that the fluid boundary coincides with the interface between both domains, which is used in [11,12]); the
analysis itself differs in that here we set pressure continuity across the interface using a Lagrange multiplier, and the
normal stress conditions are weakly imposed. In addition, the proposed treatment does not require higher regularity
of the fluid pressure as in e.g. [12]. At the discrete level, that work involves a family of nonconforming discretizations
consisting in Nédélec elements for vorticity, piecewise constant elements for velocity, and Crouzeix—Raviart elements
for the pressure. In contrast, here we use a finite element family where the curl of the subspace approximating the
vorticity must be contained in the space where the discrete velocity of the fluid lives, and hence Raviart—-Thomas
and Nédélec finite elements for velocities and vorticity, respectively, become feasible choices. In turn, the pressures
and the Lagrange multiplier are approximated, respectively, by discontinuous and continuous piecewise polynomials.
Finally, our numerical tests also include the 3D case.

A general advantage of formulations involving vorticity is that this additional field can be accessed directly, without
postprocessing; and it is straightforward to include non-inertial effects by modifying initial and boundary data [14,
15]. For instance, for external flows it is known that boundary conditions may be better suited for vorticity than for
pressure. Moreover, in many flow regimes the vorticity is concentrated in a specific region of the domain, which
suggests the use of vorticity as guide to mesh refinement.

The contents of the paper are organized as follows. In the remainder of the present section we recall basic
terminology and some properties of functional spaces, and introduce further standard notations. In Section 2 we
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describe the coupled problem of interest and derive a first version of its mixed variational formulation. The solvability
analysis of the latter is carried out in Section 3. We first identify the non-trivial solutions of the associated
homogeneous problem, and then reformulate the original continuous formulation in order to be able to guarantee
unique solvability of it. The classical BabuSka—Brezzi is then applied in such a way that the continuous inf—sup
conditions of the main bilinear form are established by employing a known approach that has been recently referred
as T-coercivity. Then, in Section 4 we introduce the associated Galerkin scheme and adapt the arguments from the
continuous case to prove that, under suitable assumptions on the finite element subspaces involved, it is well-posed.
Next, in Section 5 we modify the mixed formulation by incorporating a residual arising from the Brinkman momentum
equation, and show that the resulting augmented scheme, yielding a strongly elliptic main bilinear form, does not
require the aforementioned constraint. Finally, several numerical examples illustrating the good performance of the
mixed finite element methods and confirming the theoretical rates of convergence are provided in Section 6.

We end this section by specifying some notations to be employed throughout the paper. In particular, we utilize
standard simplified terminology for Sobolev spaces and norms. For instance, if © € R3 is a domain, S € R3 is a
Lipschitz surface, and r € R, we define

H (O) = [H (O] and H'(S) = [H (S)].

However, when r = 0 we usually write L>(O) and L?(S) instead of H°(®) and H°(S), respectively. The
corresponding norms are denoted by | - ||, (for H"(O) and H"(O)) and || - ||, s (for H"(S) and H"(S)). In general,
given any Hilbert space H, we use H to denote H>. In turn, in the realm of mixed methods (see [ 16]) one usually needs
the Hilbert spaces

H(div; 0) == {v e L*(0): divv e L*(0)},  H(eurl; 0) == {r e L*(0) : ecurly € L*(O)},
normed, respectively, with
2 R RV ) , 12
Wlhav-o = {13 0+ 1dvsB o} . lamo = {IME o + leurtviF o}

where, for any vector field v := (vq, v, v3)* € L2(0),

3 dav3 — 0317
divy .= Z o;v; and curly =V xv = | d3v; — 0d1v3
i=1 d1v2 — 02V

In addition, we also recall the orthogonal decomposition

LX(0) = L3(0) & Py(0), (1.1)

where Py(O) is the space of constant functions on O, and
2 _ 1. 2 . _
L2(0) = Py(O)* = |q cL2(0) : /Oq - o]. (12)
Equivalently, each ¢ € L?(©) can be uniquely decomposed as g = g + ¢, with

1 1
=q — — € L2(0) and c:=—/ e R. (1.3)
=970 Jo? =0 0] Jo?

Certainly, L%(O) is endowed with the usual norm of L2(©), and it is easy to see that there holds

lg15.0 = llgoll§.o + 101 ¢*. (1.4)

Finally, in what follows 0 stands for a generic null vector (including the null functional and operator), and we use C
and ¢, with or without subscripts, bars, tildes or hats, to denote generic constants independent of the discretization
parameters, which may take different values in different occurrences.
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Fig. 2.1. Sketch of the domains occupied by the incompressible viscous fluid and by the porous medium ({2g and {2p, respectively), interface X,
and corresponding boundaries.

2. The coupled problem and its mixed formulation

We first let 23 and 2p be bounded and simply connected polyhedral Lipschitz domains in R3 such that
o Naflp = X # @and 23 N p = @, and set 2 = N5 U 2p with boundary I' = 92 split into I and
Ip (see the sketch in Fig. 2.1). Note that the interface X' between (25 and (2p does not necessarily coincide with d{2g
(as it was assumed in e.g. [12,13]). Then, given source terms fp € L2(2p) and fy € L2({2B), we are interested in the
Brinkman—Darcy coupled problem, which is formulated in what follows in terms of the fluid velocity ug, the fluid
pressure pg, the fluid vorticity wg, the Darcy velocity up, and the Darcy pressure pp. More precisely, the sets of
equations in the Brinkman and Darcy domains {25 and (Jp, are given, respectively, by

aug +veurlwg + Vpsg = f

wp —curlug = 0 in {2g, 2.1
divug = 0
and
pup +Vpp = fpo| .
div up = 0 } in fp. (22)

where v > 0 is the kinematic viscosity of the fluid, © > 0 depends on this viscosity and on the permeability of
the porous medium, which is assumed to be homogeneous, and ¢ > 0 is a parameter related to the relaxation
time (typically proportional to the inverse of the timestep after a Rothe type time discretization), to v, and to the
permeability in the Brinkman domain. In turn, the corresponding transmission conditions become

up-n=ug-n and pp=pp onJt, 2.3)
where n stands for the outward normal at {25 and {2p, whereas the boundary conditions reduce to
wgxn=0 ondfg=2XYUIg, ug-n=0 onlg, and up-n=0 onIp. 2.4)

Evidently, this choice of boundary data (especially those applied on the vorticity) is driven mainly by easiness of the
subsequent analysis, but we stress that other conditions could be incorporated without compromising the main ideas
in this work.

We now aim to derive the mixed variational formulation of (2.1)—(2.4). We begin by testing the first equation in
(2.1) with functions in the space

Hg (div: 25) == [vB € H(div: ) : vg-n=0on FB].

To this end, we need to recall that the fact that vg - n = 0 on I'g guarantees that vg - n| 5; belongs to H~Y2(X%) for each
v € Hp(div; 25) (see the beginning of Section 3 for further details on this issue). In this way, integrating by parts
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and using the respective boundary conditions, we find that

oz/ ug -vg + v/ vg - curlwg — / ppdivvg + (vg -n, A}y = fs-ve Vvs € Hp(div; 28), (2.5)
QB QB QB “QB

where, thanks to the second transmission condition in (2.3), we have introduced the auxiliary unknown

A= pply = psly € H/2(D),

and (-,-)sx; denotes the duality pairing of H™!/ 2(¥) and H/2(X) with respect to the L%(X)-inner product.
Furthermore, it will become clear below that A can also be seen as the Lagrange multiplier enforcing the continuity of
pressure across the interface Y. Next, we define

Hy(curl; 2B) := [zB € H(curl; 8) : zg xn=0o0n SQB},

so that testing the second equation in (2.1) with functions in this space, and integrating by parts, we obtain

/ @B - ZB —/ ug -curlzg =0 Vzg € Hp(curl; (2). (2.6)
(0% 28

In turn, the third equation in (2.1) is initially tested as

/ gedivug =0 Vgg € L*(2). .7
{28
On the other hand, in order to deal with the equations in the Darcy domain, we now set

Hp (div: 2p) == {vD € H(div: 2p) : vp-n =0on FD},

and test the first equation of (2.2) with functions in this space. Thus, integrating by parts, using the corresponding
boundary conditions, noting that the normal r on X points inward {2p, and recalling that A := pp| 5, we get

" / up - vp —/ ppdivvp — (vp-n,A) 5 2/ Jo-vp Vvp € Hp(div; {p). (2.8)
.QD QD QD

In addition, similarly as for the incompressibility condition in {2, the second equation in (2.2) is initially tested as

f gpdivip =0 Vgp € L2(p). (2.9)
p

We end the present derivation with the weak imposition of the essential transmission condition given by the first
equation in (2.3), that is

(ug-n—up-n&x=0 VE e H/2D). (2.10)

Consequently, reordering (2.5)—(2.10) in a suitable way, namely placing each set of equations {(2.5), (2.6),
(2.8)} and {(2.7), (2.9), (2.10)} into a single equation each, we arrive at the mixed formulation of (2.1)—(2.4): Find
u = (up, wg, up) € Hand p := (pg, pp, A) € Q such that

a@, ) +b@, p) = F¢) Vv := (vg,zs,vp) € H,

b(@.§) = G@ V= (gs.qp.5) € Q. 2.11)

where
H := Hp (div; 28) x Hy(curl; 25) x Hp(div; 2p), Q :=L%(2) x L2(2p) x H'2(),
a:HxH— Randb: H x Q — R are the bilinear forms defined by

a,v) :=oz/ uB~vB+vf wB~zB+v/ vg - curl wp
(o 28 28

—v/ uB~curlzB+,u/ up-vp Y @,v) e HxH, (2.12)
.QB QD
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b, q) ::—/ quiva—/ gpdivvp + (vg-n—vp-n,&) 5 Y@, ¢)eHxQ, (2.13)
2 p
and F € H and G € Q' are the functionals defined by

F(?)::/ fs-ve + fo-vo VveH, and G=0. (2.14)
2 2p

3. Solvability analysis of the mixed formulation

In this section we analyze the solvability of (2.11). For this purpose, we first recall some definitions and technical
results concerning Sobolev spaces on I, I's, and X. We begin by mentioning that, given € H™/2(3(2p), its
restriction to I'p, say 0|, is defined as

1/2
1> 2V = (1, Epo(p)agy ¥ p € Hyp (I,

where Ep o : H'/2(I'p) — L?(32p) is the extension by zero in ¥ := dp\'p, and

HY) (I'p) = {p e H2(Ip) : Epolp) € H‘/Z(aQD)},

which is endowed with the natural norm [|o|l1,2,00, 1, = 1 ED,0(0) 12,82, It is quite clear, then, that 5|, belongs
to Hyy/>(I'y), the dual of Hy)*(I'p), and that 5 = 0 on I'p (equivalently 5|, = 0) if and only if

2
(1, Ep,o(0)agy =0 ¥ p € Hy) (I'd).

Hereafter, (-, ), (resp. (-, -)3s,) stands for the duality pairing of the spaces Haol/ 2(FD) and H(l)(/)z(FD) (resp.
H~12(32p) and H'/2(3 2p)) with respect to the L%(IDp) (resp. L2(32p)) inner product. Furthermore, it is not difficult
to show (see, e.g. [9, Section 2]) that there holds the decomposition

H'2(30p) = Ep(H'2(2)) @ Ep,o(Hyy (I')),

where Ep : H'/2(X) — HY2(32p) is the bounded linear extension defined by Ep(£) := z¢ly, V& € HY/2(D),
with z¢ € H!(f2p) being the unique weak solution of the boundary value problem with mixed boundary conditions:

Azg =0 in {p, zg=£§& onl, Vzg-n=0 onlp.

In this way, given ¢ € HY2(32p), there exist unique &, € HY2(X) and Py € Hé(/)z(FD) such that

¢ = Ep(§y) + ED,0(pyp), 3.1
and hence
(77’ (P>8!2D = (775 ED(SW)>8.QD + (77’ ED,O(IO(p)>3.QD7 (32)

which can be rewritten as
<T’s 90)8!2.3 = <T’Z‘s &0)2 + (77])7 p(ﬂ)FD’

where n,, € H~Y2(¥) and N, € H(;O]/ 2(FD) are defined accordingly. In addition, it is clear from (3.1) and the
definitions of Ep and Ep o that actually &, = ¢|y for each ¢ € HY 2(8 {2p). In particular, when n = 0 on I, the
foregoing equations yield (1, ¢)s o, = (1, Ep(Ep))ony, = (05,8p)x = (0, ¢lx) 5, and hence n can be identified
with a functional n,, € H~'/2(X). In other words, one simply says that n|y = n, € H~'/2(%). Note that an
interesting application of this result arises when we consider vp € Hp(div; {2p) and define n :=vp-n € HV 2(8 2p).
In fact, since vp - n = 0 on I'p, we readily deduce that vp - n|x € H~1/2(X%). Moreover, the analogue conclusion
obtained by exchanging {2p, I'p, and Hp(div; {2p) by (25, I's, and Hp(div; {2), respectively, is precisely what we
used in Section 2 for the derivation of (2.5).
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We are now in position to provide the following preliminary result, which establishes a continuous inf—sup
condition on Hp (div; £2p) x (L3(£2p) x H'/2(X)).

Lemma 3.1. There exists Bp > 0 such that

f_QD gpdivvp + (vp-n,§)»

Sp(ap. &) = sup > o { lgpllo,ap + €11 2,7} (3.3)

vpeHp (div; 2p) ||VD ”div;.Q[)

VD#O
forall (qp, &) € L3(£2p) x HY/2(D).
Proof. It proceeds almost verbatim as the 2D version provided in [17, Lemma 3.3]. However, for sake of
completeness, most details are given in what follows. The first part of the proof reduces to show that the operator
div : Hp(div; {2p) — L%(QD) is surjective, for which, given gp € L(%(QD), it suffices to define the pre-image
¥p := Vz € Hp(div; 2p), where z € H! (12p) is the unique weak solution of the Neumann boundary value problem

Az =¢qp in {p, Vz-n=0 ondflp, / z=0. (3.4)
2p
Indeed, it is clear that div’p = Az = ¢p in {2p, and the continuous dependence result for (3 4) establishes that
Follo, 2y = Izl1,25 < lzl1,25 < cllgpllo, 2, Whence we readily deduce that [Fplliv; 2, < C lgpllo, - In this
way, since

f-QD gp divvp ‘fﬁp gD divVD‘

Sp(gp, &) > sup — 2y = —= — &l2, 2,
vpeHp (div; 2p) VD lldiv; 2p VD Nl div; 2p
vp#0
the foregoing identity and estimates imply the existence of C > 0 such that
Sp(gp, &) = Cligpllo,op — lIEll12, 5- (3.9

In turn, the main ingredient of the second part has to do with the construction of a proper extension of an arbitrary
¢ € H1/2(X) to a functional n € H~/2(32p). More precisely, given & € HY2(X), we consider ¢ € H™1/2(X) and,
following the previous analysis and notations, we simply define n € H™1/2(82p) as

()’], (ﬂ)MZD = (d)v‘i:(p)E = <¢’ (ﬂ|2>2 V§0 € Hl/z(a'QD)v

which yields |9l —1/2,802p < ll@¢ll-1/2, 5. It follows straightforwardly from (3.1) and (3.2) that

(1, Ep.o(p))agy =0 ¥ p e Hyl(Ip) and (0, Ep())sgp = (¢, &)x VE € HY2(D),

which says, equivalently, that n = O on I'p and n = ¢ on Y. Next, we let z,, € H'(£2p) be the unique weak solution
of the boundary value problem

1

Az, = |(2|

(n, Dy, infp, Vzy-m=n ondlp, / 7y =0,

define wp = Vz, in {Jp, and observe that divwp = ITEI (n, o, € Po(f2p) (which yields wp € H(div; {2p)),
wp -n = nondflp, and [wpllav;op, < Clinll—1200, < Cl¢ll—1/2 5. It follows that wp € Hp(div; £2p) and

hence

oy a0 divwn + wpm. 05| i 6, o g9l

Sp(gp, &) > = > ,
Wbl div; 2p Wbl div: 2p léll-1/2,5

which, being valid for any ¢ € H~1/2(2), implies that Sp(gp, &) > ¢ [|€]l1/2, - This inequality and (3.5) yield (3.3),
thus completing the proof. [

The following result is basically a “mirror reflection” through X of the previous lemma.
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Lemma 3.2. There exists fg > 0 such that

S, qsdivvg — (vg -, &) 5

Sp(qp.§) = sup > { lasllo.0, + 1122 (3.6)

vg eHp (div; 25) VB lldiv; 25
vp#0
forall (gg, &) € L(128) x H/2(D).

Proof. It proceeds exactly as the proof of Lemma 3.1 by replacing {’p, Ip, and Hp(div; 2p) by 25, I's, and
Hpg (div; {2), respectively. [

Lemmas 3.1 and 3.2 imply the following continuous inf—sup condition for b.

Lemma 3.3. There exists § > 0 such that

- b, 9)
$G) = sup == =  {lgm ollo.oy + lap.ollo.cy + 1€ = cnliyo5 + 116 = epli (3.7)
veH
520

forall § .= (gB, qp,&) € Q,1 where, according t(l) (1.1), g8 = qB,0 + cB and gp = gp.o + cp, with g € L%(QB),
gp.0 € L§(!2p), and c = 7 Jos 98: 0 = 157 [, ap € R

Proof. Given ¢ := (¢, gD, £) € Q, with g and gp decomposed as indicated above, we integrate by parts in {25 and
{2p, respectively, to deduce that

/Q LIBdiVVB_<VB'n»§>2=/;2 gB,0divvg — (v -n,& —cp)x Vvp € Hp(div; {2p),
B B

and

/ gpdivep + (vp -1, &) 5 =/ gp,0divvp + (vp-n,& —cp)y Vvp € Hp(div; £p).
.QD 'QD

Hence, bearing in mind the definitions of the bilinear form b (cf. (2.13)) and the operators Sp and S (cf. (3.3), (3.6)),
and employing the foregoing equations, we easily find that

S(g) = Sp(gp,0. &€ —cp) and S(q) > Se(gp,0.§ — cB).

Consequently, these inequalities, along with straightforward applications of Lemmas 3.1 and 3.2, imply (3.7) and
complete the proof. [J

Having proved a first property for b, we now observe that the bilinear form a satisfies a positiveness condition.
More precisely, it follows directly from its definition (cf. (2.12)) that

- - 2 2 2 -
a,v) = alvsllg g, + vzl o, + 1 lIvDllg o, YV :=(8.zB,vD) € H. (3.8)

A first result concerning the solvability of our mixed formulation (2.11) is established next.

Theorem 3.1. Let (i, p) = ((uB, @B, Up), (PB, PD, k)) € H x Q be a solution of the homogeneous problem
associated to (2.11), that is with F = G = 0. Then u = 0 and there exists ¢ € R such that p = (c, c, c).

Proof. We first notice from the second equation of (2.11) with ¢ = p that b(z, p) = 0, and hence, taking ¥ = # in
the first equation of (2.11) and using the identity (3.8), we arrive at
0=a(@,u) =« lus|§ g +vIeBl§ o, + 1 lupl o

from which it follows that # = 0. In this way, the first equation of (2.11) becomes now b(v, p) = 0 for all v € Q,
which, according to the continuous inf-sup condition for b given by Lemma 3.3, yields pgo = 0, pp,o = 0, and
A= @fgﬁpB = @‘[QDPD =: ceR,sothat pg = ppo+c=cand pp = ppo+c=c. O
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As a straightforward consequence of Theorem 3.1 we conclude that whenever (2.11) has solution, it is not unique.
Therefore, in order to overcome this drawback, we need to remove the constant ¢ € R from the solutions of the
associated homogeneous system, for which from now on we propose to look for the unknown p in the space

Qo == L3(28) x L?(2p) x HY/?(%). (3.9

Alternatively, one could also consider Qg := L2(25) x L(Z)(QD) x H/2(X2) or Qg := L2(28) x L2(2p) x Hé/z(E),

where H)*(2) == [§ e HY/2() . (1,&)5 =0}
Throughout the rest of the paper we stay with (3.9) and consider, instead of (2.11), the following mixed formulation:
Find # := (ug, wp, up) € Hand p := (pg, pp, ) € Qp such that

a@@, ) +b@, p) = F¥) Vv := (v, zp,vp) € H,
b, 4) = G(g) Y4 := (g qp.£) € Qo.

Note that the second equation of (2.11), which is tested against ¢ € Q, is equivalent to the present second equation
of (3.10), which is tested against g € Q. In fact, one implication is obvious because of the inclusion Qyp < Q.
Conversely, assume that the second equation of (3.10) holds. Then, given ¢ € R, we integrate by parts and, noting that
0, gp — ¢, & —¢) € Qo == L%(28) x L2({2p) x H'/2(X), we find that

b(, (c, gp, £)) =b, (0,gp — ¢, & —¢)) =0,

which yields b(#, (g8, gp, £)) = 0 = G(q) for all ¢ := (gB, gD, &) € Q, thus confirming that the second equation of
(2.11) holds.

We now aim to establish the well-posedness of (3.10) by applying the classical BabuSka—Brezzi theory. We begin
with the inf—sup condition for b on H x Qy.

(3.10)

Lemma 3.4. There exists E > 0 such that

> o

) bG.3) o~ - 3
$@) = sup~—L > Blldlla ¥ d € Qo. 3.11)
s Pl
v£0

Proof. Given g = (gB, gp, ) € Qo := L%(QB) x L2(2p) x H'/2(X), we obtain from Lemma 3.3 that

; bG,§)
$@) = sup === = {lasllo.oy + lapolo.op + 181722 + 1§ — epllyo. ), (3.12)
V20
where, according to (1.1), gp = gp,0 + ¢p, with gpo € L§(£2p) and cp = If;_ol fQD gp € R.In turn, a simple

application of the triangle inequality shows that
[Xllepl = lleplhyz,s < W8lh2,2 + 11§ —cpllij2, 5,

which, combined with (3.12) and the fact that ||qD||(2) o = ||61D,0||(2) ot [{2p] c% (cf. (1.4)), imply (3.11) and finish
the proof. O ’ ’

Next, we address the coerciveness of a on the kernel V of b. Indeed, we first deduce from the definitions of b (cf.
(2.13)) and Qq (cf. (3.9)) that

V=Vgp NVyg, (3.13)
with

Ve p = {9 = (vB,zB,vp) € H: divvg € Py(f2g) and divvp = 0 in {p }, (3.14)
and

Vy = {9 = (vg,zB,vp) € H: vg-m=vp -non E}. (3.15)
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Lemma 3.5. There exists ¢ > 0 such that

a,w) _ - . .
sup —— >olvla Vvey,
sev WllH
W40

and

a,w) _ . . .
sup —= >olwllp YweV.
sev  IVIH
70

Proof. We begin by recalling from [18, Lemma 3.2] that there exists gg > 0 such that
lvello,2s = 0o llvellaiv,2s Y ve € H(div; £28) such that divvg € Py({2p).

Hence, thanks to the foregoing inequality and (3.8), we find that

o~ 2 2 2 >
aG.%) = 01 {813y, q, + 12813 0, + D13y gy | V7 = 08.28.7) € Vi,

71

(3.16)

(3.17)

(3.18)

(3.19)

with 9] = min{ag(z), v, u} > 0. Next, given a particular ¥ := (vg, zg, vp) € V, we certainly have zg € Hy(curl; 2g),
and thus, due to a well-known result (see, e.g. [19, Chapter I, Section 2.3, Remark 2.5]), there holds curlzg €

Hy(div; {28), where
Hy(div; 28) = {vB € H(div; 28) : vg -n =0 on E)QB}.
In this way, denoting
To(¥) := (curlzg, z8, 0),
which clearly belongs to V, we find, according to the definition of a (cf. (2.12)), that

- - 2 2
a, Ty(v)) = (¢ — v) / vg - curlzg + v |leurlzpllg o + v lIzBllG o
1059

which, applying Cauchy—Schwarz’s inequality and simple algebraic manipulations, yields

_ 2
aG, ToG)) = — 2=

2 v 2 2
lvellg . + = lleurlzsllg . +vzBllg .-
,JlB 2 »94B 59 4B

(3.20)

Therefore, introducing now T'(¥) := c¥ + ¢o Tp(¥), with suitable chosen positive constants ¢ and ¢y (depending on

01, a, and v), and utilizing (3.19) and (3.20), we obtain that
T eV, ITG)n < C¥la, and a@ T(H) > 02 ¥l
with C and g, positive constants depending on 91, «, and v as well. Then, we can write
a(v,w) - a@, T¥))

sov Wl — 1ITG)
W0

which, due to the foregoing estimates, gives (3.16). On the other hand, introducing the operator T : H — Has
T(¥) := (—vB,zB, —vD) V¥ := (vB,z8,vp) € H, we realize that |[T¥)|lg = [|V|g, a®, w) = a(T (W), T (%))
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Vv, weH, T(F) eV VyeV,andT:V — Visan isomorphism. It follows easily that

aG.w) _ a@ ). TE) _ aT®).%
sup = Su = Su

sev IPIlH 5ev ITO)n v IvIl|
20 740 20

)

which, thanks to (3.16), yields (3.17) and completes the proof. [

As a consequence of the previous analysis we can state the following main result.

Theorem 3.2. Assume that fp € L2(02p) and fg € L2(£2g). Then there exists a unique
@, p) = ((uB, B, Up), (pB, PD, A)) € H x Qq solution of the modified mixed formulation (3.10). Moreover,
there exists C > O such that

Il + 15lle < € {Wolo.0p + Wsllo. - (3.21)

Proof. Thanks to Lemmas 3.4 and 3.5, the proof is a straightforward application of the continuous Babuska—Brezzi
theory. In particular, it is clear from the definition of F (cf. (2.14)) that ||F|lg is bounded by the right hand side of
3.21). O

We end this section by remarking that the way of proving the inf-sup conditions for the bilinear form a (cf.
Lemma 3.5), namely using suitable operators 7 and T to get a lower bound of the suprema involved, corresponds
basically to what has been recently denominated in the literature as T-coercivity (see, e.g. [20,21]). Nevertheless,
the same idea, without any particular name of it, had been employed previously at least in the context of fluid—solid
interaction problems (see, e.g. [22,23], and [24]).

4. The mixed finite element method

In this section we introduce and analyze a mixed finite element scheme for (3.10). More precisely, we first define
the associated Galerkin scheme and establish suitable assumptions on the finite element subspaces ensuring that it
becomes well posed. Then, we provide specific examples satisfying the required hypotheses. In what follows, given
an integer k > 0 and a subset S of R, we denote by P4 (S) the space of polynomials in S of total degree <k. In
addition, according to the notation introduced in Section 1, we let Pi(S) = [P« (S 2.

4.1. Preliminaries and main results

We begin by selecting a set of arbitrary discrete spaces, namely
H} € Hp(div; 28),  Hp, € Ho(curl; 25),  H} < Hp(div; 2p),
QF < L’(28),  QF € L), and Q; < H'A(D).

In addition, in order to deal with the mean value condition for the Brinkman pressure pg, and also to handle the
assumptions guaranteeing the discrete inf—sup condition for b, we need to define

4.1

Qpo=Q; NL§(2) and Qpy:=Qp N Li(2p). 4.2)
Hence, setting the global spaces

H), = HP x Hg’h xHP and Qg = QE,O x QP x QhEa “4.3)
the Galerkin scheme for (3.10) becomes: Find u}, = (uE, w}f, uE) € Hj, and p;, == (p,]?, P/?’ An) € Qo such that

ain, vp) +bEr, pr) = FOn) V¥ = 00,25, v)) € Hy,

o v o @.4)
by, ) = G(gn) Y qn = (g, q; ) € Qo,n-
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We now aim to derive general hypotheses on the finite element subspaces introduced in (4.1) ensuring, by means
of the discrete Babuska—Brezzi theory, that the Galerkin scheme (4.4) becomes well-posed. Our approach consists of
adapting to the present discrete case the arguments employed in Section 3 for the analysis of the continuous problem,
mainly those from the proofs of Lemmas 3.4 and 3.5. We begin by observing that in order to have meaningful spaces
QE,O and Q}i o (cf. (4.2)), we need to be able to eliminate constants polynomials from QE and QE . This request is
certainly satisfied if we assume that:

(H.0) Po({%5) € Q) and Py(fp) S Q7.
which, in turn, yields the analogue orthogonal decompositions suggested by (1.1), that is
B _ B D_ AD
Q, = Qh,o @ Po(f28) and Q, = Qh,o ® Po({p). 4.5)

Next, according to the same arguments utilized in the proof of Lemma 3.4, which actually are determined by those
employed in the proofs of Lemmas 3.1-3.3, we realize that in order to show the discrete inf—sup condition for b on
H), x Qo,», we need to assume the following hypothesis:

(H.1) there holds Py(X) C QhE and there exist EB, ED > 0, independent of h, such that

B 4:v 1B B
B, B . fQB Qh dlvvh - (vh 'nsSh)E
SB(qP, &) = sup L
vBenB vy, ldiv; 25
v,?;ﬁO

for all (¢, &) € QP x Qj. and

> o { 0¥ l0.05 + 61125} (4.6)

Jop @i vy + P -n &)y
SPaP. &) = sup ~ > Ao { 19P lo.00 + 841112, 47

VEEHE ”VE ”diV; QD

th #0

forall (qp), &) € Q) x Q.
On the other hand, we now look at the discrete kernel of b, which is defined by

Vi i= i = OFL 2D € Byt bG G =0 Yai = g aP. &) € Qual. (4:8)
Actually, in order to have a more explicit definition of Vj,, similarly as obtained for the continuous kernel V (cf.

(3.13)), we now introduce the following assumption

(H.2)divHE € QP and divHP < QP,
which, together with (4.3) and (4.5), implies

Vi =Vip, N VA, (4.9)
with

Vi p = {9 = 0F. 28 0P) € Hy: divof € Po() and divy = 0in 2p |, (4.10)
and

Vi = {ih =B B el 0B n— P n ) =0VE, QP } @.11)

Since VB p € VBp (cf. (3.14)), it is clear that inequality (3.19) is also valid in VB p and hence in the discrete
kernel Vj,. Consequently, in order to show the discrete coerciveness of a on Vj, by adaptmg the procedure utilized in
the proof of Lemma 3.5, it just remains to assume the following hypothesis

(H.3) curlHE, < HP.

Having established hypotheses (H.0), (H.1), (H.2), and (H.3), we now reconfirm that they suffice to show that our
Galerkin scheme (4.4) is well-posed and convergent. We begin with the discrete inf-sup condition for b.
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Lemma 4.1. There exists B > 0, independent of h, such that

- b4, Gn)
Sn(qn) = sup —=——
SO ln
V70

> Bllgnllo ¥ dn € Qo (4.12)

Proof. Given gj, = (q}?, q,ll), &) € Qo.p, we let q,ll)o € Q?O and ¢cp € R such that q}l) = q,l?o + ¢p. Then, reasoning

as in the proof of Lemma 3.3, which in this case reduces to integrate by parts in {2p only (since q}? is already in QE’O),
we find, using the notations from (H.1), that

Sn(Gn) > Sp(gp &) and  Su(Gn) > Sp(q) 0. & — D).

In this way, since thanks to the first assumption in (H.1) we have that &, — cp belongs to QhZ, the foregoing inequalities
and a straightforward application of the discrete inf—sup conditions (4.6) and (4.7), imply

- I~  ~
S1Gn) = 5 (B + Po) {19P lo.u + gl 2.5 + aPollo.co + 16n = eplliy2.5 .
The proof is concluded by employing the triangle inequality, exactly as we did for Lemma 3.4. [

The discrete inf—sup condition for a on Vj, is proved next. Since V, is finite dimensional, it suffices to show one of
the discrete analogues of the inequalities provided in Lemma 3.5.

Lemma 4.2. There exists ¢ > 0, independent of h, such that

aln, wp) _ - .
—=———>0Vhlla VYvp € V. (4.13)
wjeV), ”wh”H
wp#0

Proof. Given v), := (v]}?, zf, vE) € Vy,, we know from (3.19) that

=l ~ B2 B2 D2
aGh, 1) 2 81 { IV 13,0, + 12815, gy + 19D s -

In addition, thanks to the result in [19, Chapter I, Section 2.3, Remark 2.5] and our assumption (H.3), we find that
curle € Hy(div; 28) N HB, and hence Ty(;) = (curlzf,zf, 0) clearly belongs to Vj (cf. (4.9)). The rest
of the proof proceeds as in Lemma 3.5. Moreover, it is easy to realize that the constants ¢ and cp defining now
T (V) == cvy + co To(¥,) can be taken exactly as those chosen in the proof of that lemma, so that the resulting
constant @ of the present result coincides with ¢ in (3.16) and (3.17). O

The following main result is a direct consequence of the previous analysis.

Theorem 4.1. Assume that fp € LZ(QD) and fg € Lz(QB). In addition, suppose that (H.0), (H.1), (H.2),
and (H.3) hold. Then there exists a unique (iy,, p) = ((uE, wf, ulh)), (p,]f, p}?, kh)) € Hy, x Qo solution of the
Galerkin scheme (4.4). Moreover, there exist C1, Cy > 0, independent of h, such that

linll + 15alle < €1 {blo.op + Wllo.0q ) (4.14)

and

IGi. 5) = Gin, i) lixq < Ca {dist(@i, Hy) + dist(5, Qo) |- (4.15)

Proof. Thanks to Lemmas 4.1 and 4.2, the proof results as a straightforward application of the discrete
Babuska—Brezzi theory. [
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4.2. Specific finite element subspaces

We now specify concrete examples of finite element subspaces satisfying the hypotheses introduced in the previous
section. For this purpose, we now let 7, be a regular family of triangulations of {25 U {2p by tetrahedra K of diameter

hg with mesh size h := max{hg : K € 73}, such that 7, ({2,) = [K eT,: K C !_Z,.} is a triangulation of 2,

for each x € {B, D}. Then, we denote by 7, (X)) the triangulation on X induced by 7}, (either from {2 or {2p). Also,
for reasons that will become clear below, we introduce an independent triangulation 7; (%) of X' by triangles T of
diameter h5, and define h = max{hf : T e ’Tﬁ(E)}.

4.2.1. Definition of subspaces
We first introduce the finite element subspaces
H; = v} € H.@iv: 2): vjlk € RTo(K) VK € Tu(2)},
Qi = {an € 1220 aulk € ROV K € T2,
Q.o = Q} NLF(12),
where x € {B, D}, and for any K € 7;,({2,)
RTo(K) = Po(K) & Po(K)x
is the local Raviart-Thomas space of lowest order. In addition, we set
HE, = {zf € Ho(eurl; 25) : 2B|x € ND{(K) YK € T,,(QB)},
where for any K € 75,({2B)
ND; (K) == Po(K) @ Po(K) x x
is the local edge space of Nédélec, that is
ND; (K) = {w K —> C3 wx)=a+bxxVx e K,a, b e (C3}.
Finally for the interface 2’ we consider the finite element subspace
QY = {Aﬁ e D) : Az e PUDVT € 7;;(2)}.

It is easy to check that these subspaces satisfy the hypotheses (H.0), (H.2) and (H.3).
On the other hand, for purposes of the analysis, we also need to define

(2) = {yn € LAD): wulr € RV T € T(D)).

4.2.2. Approximation properties

In what follows « is a mute symbol taken in {B, D}. We let I} : H!(2,) — Hj, be the usual Raviart-Thomas
interpolation operator, that is, given a sufficiently smooth vector field v : £, — R3, we define I (v) as the only
element of Hj, such that

/Hh*(v)-n:/v-n VF €&, (4.16)
F F

where £ is the set of faces of the triangulation 7}, ({2,). We now recall some properties of II;* and its local counterparts
IIg foreach K € 7;,(f2,) (see, e.g [25]):

(@) II; is well defined in H° (£2,) N H(div; £2,) forany § € (0, 1).
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(b) There holds div IT*(v) = P#(divv), where P} : L>(£2,) — Q is the orthogonal projector. Equivalentl
h h h h 4 proj q y

/;thdivl]h*(v)z/;2 gndiv(y) Yaqn€Qj.

(c) For each face F of K there holds IIg(v) - np = Pp(v - ng), where ny is the unit outward normal on F and
Pr : LZ(F ) — Py(F) is the orthogonal projector.
(d) Given § € (0, 1) andv € H%(£2,) N H(div; £2,), there holds

Iv = T )llo.x < Ch fls.x + ldivo)lox | VK € Ti(2). *.17)

Next, for any € > 0 we introduce the Sobolev space
He(curl; 2p) == {v e H*({%3) : curly € H* (%)},

and endow it with its Hilbertian norm

5 5 1/2
1 curt: ) = {1712, + lleurl o) g, |

Then for each face F of 7,({2g) we let tr be a unit tangential vector on F. It follows from [26, Lemma 4.7] that
if € > 1/2 the interpolation operator 11, : H¢(curl; {25) — Hg ;, associated with the face finite element, which is
characterized by

/ I, (v) - tp =/v-tp Y faces F of 7,({2),
F F

is well defined and uniformly bounded. In addition, the following property of 11, holds.

Lemma 4.3. There exists C > 0, independent of h, such that
IV — Iy ) leurt; 2 < ChE VIl e curl: 25) (4.18)
for allv € H (curl; 2) and for all € € (1/2, 1].
Proof. See, [27, Proposition 5.6]. O
The approximation properties of the finite element subspaces involved are then established as follows (see, e.g [16,
28]):
(AP,;‘ *) there exists C > 0, independent of A, such that for each § € (0, 1] and for each v € H?(£2,), with
div (v) € H%(£2,), there holds
Iv = I @l 0. < Ch*{IVls., + Idiv0)ls.0,}  + € (B.DD.
(AP}{7 *) there exists C > 0, independent of &, such that for each § € (0, 1] and for each g € H‘S(Q*), there holds
lg = Pr(@llo.a. < Chliglls.o, (* € {B,D)).

(AP;;’ B) there exists C > 0, independent of &, such that for each § € (1/2, 1] and for each zg € H® (curl; 2p),
there holds

Iz — IIn (ZB)”curl;QB = Cha ||ZB||H5(curl;QB)~
(AP}%) there exists C > 0, independent of ﬁ, such that for each § € (0, 1] and for each & € HY/2+3( %), there holds

1§ = Pi@® 2. < CR Il /245, 5,
where P; : H!/2(2) —» Qg is the orthogonal projector.

(AP,Y) there exists C > 0, independent of A, such that for each 6 € (0, 1] and for each ¢ € H-1/245(5), there
holds

—1/2
lo =Py 2@ 12,5 < ChS lgll-1/245. 51
where 73;1/2 cH712(2) — &,(2) is the orthogonal projector.
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4.2.3. Stable discrete liftings

In this section, as usual we let x be a mute symbol taken in {B, D}, and provide sufficient conditions for the
existence of a stable discrete lifting £y, : é,(X) — Hj. To this end, we proceed as in [25, Theorem 4.1], and assume
first that 75, ({2,) is quasi-uniform in a neighborhood of X'. This means that there exists a neighborhood of X, say {25,
and a constant ¢ > 0, independent of &, such that, denoting

hfz ={K € T,(f%) : KN N5 # @}, 4.19)
there holds

max hg <c¢ min hg.
* *
Kel)s Kel) s

Now, because of the regularity of 7,(f2,), the quasi-uniformity assumption around X implies that the partition
T4 (X)) inherited from 7 (£2,) is quasi-uniform as well, which implies that @, (X)) satisfies the inverse inequality (see,
[25, Lemma 4.6])

Ynll-1/246.5 < Chgslllﬂhllfl/z,z Yy € Op(X), Y8 e€[0,1/2], (4.20)
where hy; := max{hr : T € T,(2)}.

Lemma 4.4. There exist a linear operator Ly, : &,(X) — Hj, and a constant C; > 0, independent of h, such that
for each yry, € @,(X) there hold

Ly(n) -n=p on X, 1L (i) llaiv, 2, < Colnll-1y2,2,  and  div Ly (Yn) € Po(£2).

Proof. Let v, € &,(X), and let z € H' (£2,) be the unique solution of the boundary value problem

1

A7 = —
[£2:]

. _|vYn onX _
(Yn, 1)y in £2, Vz-n—{o on I, _Q*Z_O.

The corresponding continuous dependence result says that ||z][{, o, < c1 [|[¥nll-1/2, 5. In turn, the elliptic regularity
result (cf. [29]) establishes that there exists § > 0 such that

lzll14s,02, < c2 I¥nll-1/24s,5-
In addition, notice that
1

div(Vz) = Az =
|42,

(Yn, 1)y € R in f2.

It follows that Vz € H‘S(Q,,) N H(div; {2,), and hence we can define
Ly (n) = 1I;(V2).
Next, from properties (b) and (c) of the Raviart-Thomas interpolation operator, we find that

1
142

div Ly, (Yp) = div I} (Vz) = Pp(div Vz) = P} (Az) = — (Y. 1) in 2, 4.21)

and

Lyn(n) -n=1II;(Vz) -n =Py 2(Vz-n) =Py x(n) =y onlx, (4.22)

where P, x; : L2(%) = ¢,(2) is the orthogonal projector. It remains to show that £, is uniformly bounded. To this
end, we first observe that

1 2
1Lh WG o, = ILaWDIE o, + | 5= W D | < ILa@WIG o, + 3 1Vnl® ) o 5- (4.23)
» ’ |02, ] 0,92 : /2

s 9%
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Now, we divide {2, into two regions

), = U[K € Th(2): K ¢ Th*g} C 2\ 25, 0l =02\, = U[K € 722]’

*5

where we recall that 7"y, := {K eTp(2): KNy # @}. Then, since (2,\ {2y is strictly contained in (2,, the
interior elliptic regularity result [30, Theorem 4.16] implies that z|,\ o, € H?(2,\25;) and
lzll2, 0005 < call¥nll=1y2,5-
It follows that
I£hWmllo.2, = 1L WINg q1, + 1L (¥Rl 02,
I (VDo o1, + IIU;,*(VZ)IIO,%
esIVally g + 12l o2+ IV2 = I (VO)llg 2,

IN ]

A

< eslizlly g, + Izl g2, + 1Vz = I (VD) llg 2,

IA

cscallYnll<12,5 + e l¥nll-12,2 + IVz — Uh*(VZ)Ilo’Qgh. (4.24)
On the other hand, applying estimate (4.17) and inverse inequality (4.20), we obtain that

IVe = (VDG o = > V2= IV«
b Kel) s

1 2
s 3 i¢{vee+ | g v, )
Ke/z;:z * ’

IA

IA

28 2 2
e max W12, g + IV )
KeT) s K 148,920, 12,2

IA

26 2 2
c7 max h {”Z” + ¥l }
KeTry K 148,02, 1/2,%

IA

26 2 2
cs max WE VA2 sz + 10012 1 5]
KEIZ;:E ) ’
28 ) 3,—28 2 2
< ey max {52 102, 5 + 1012 )
KeT K\ /2.2 12,2

< co ¥l p, 5 (4.25)

where the factthat hxy < chy, VK € Th* b has been used in the last inequality. In this way, from (4.23)—(4.25) we
conclude that

ILh Wi llaiv, 2, < CellVnll-1/2,2 YV ¥n € Op(2),

which, together with the identities (4.21) and (4.22), complete the proof. []

We remark at this point that the quasi-uniformity assumption of 7 (f2,) around X, which is needed here for the
stable discrete lifting provided by Lemma 4.4, has been removed recently in [31, Theorem 2.1] for the case of locally
refined meshes, when the lifting is from the whole boundary of the given domain. However, it is not clear from the
analysis in [31] whether that result is also valid for a discrete lifting from part of the boundary (as it is required in the
present case).

We now assume that the family of independent triangulations 7} (X)) is also quasi-uniform, which implies that Qﬁz

satisfies the inverse inequality, that is there exists a constant C > 0, independent of ﬁ, such that for each § € [0, 1)
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there holds (cf. [22, Lemma 7.4])

1& 12482 < Ch7°lElhnn YEEQT. (4.26)

Then, we have the following result.

Lemma 4.5. There exist Co, S > 0, independent of hs; and h, such that forallhy, < Co h there holds
(Yn, &) 5

Yped(5) ||1//h||—1/2,2
Yn#0

> Blgi s VE € Q). (4.27)

Proof. We proceed similarly as in [25, Lemma 4.11]. In fact, given §; € QﬁZ\{O}, we let z € H'(£2,) be the unique
solution of the boundary value problem with mixed boundary conditions:

—Az4+z=0 1in £2,, z=§&; onlk, Vz-n=0 onl,.
Notice that the corresponding continuous dependence result gives

lzlli, 2, < Cili§;lh2, 2, (4.28)
and thanks to the trace theorem and a simple integration by parts procedure, we also have that

C2 1813 5.5 < 1213, = (V2. 8) 5. (4.29)
On the other hand, since Q;]E c HY(X), we obtain that 7 € H”‘S(Q*) for some § > 0 (see [29]), and there holds

IVz-nrll_121552 < Csllzllits,0, < Call&;ll1/246,5- (4.30)

We now let ¢ := P, Y 2(Vz -n) € $,(X). Then, applying the approximation property (AP;I/I ), the regularity estimate

(4.30), and the inverse inequality (4.26), we deduce that

A

hx\S
V2 n = yill-1p.0 < Csh5 V2 nl_1p1s.5 < Cohlg; I 2es.z < Cr (7) &G 1/2.5-
Next, using that || Vzllgiv., = lIzll1,0,, it follows that

=y
IWill—12,82 =1P, "“(Vz-m)l-1)2,5 < IVz-nl_i25 < IVzllav,0, = lzll1,0,

which together with the estimate (4.28), imply

Iy l-1/2.2 < Cs 11§ 1l1/2, 5-
Now, using (4.29) and the foregoing estimates, we find that
Wn. &) x = (Vo n &) — (Va-n— ¥, . &)y
> o - a('%)a}ns,;n%/z,g
> {2 - 2(52) Nigihns il
Consequently, we can write
Wn Sp)o (V. &) s - {Q B Q(h_z

5
> > = ;0125
meay 1Wnll-12, 2 = IWyll-1y2.2 Cs Cg h)} Al

1///1;£0

~ 1/8
from which, taking i y; < Coh with Cyp := (%) , we conclude the proof. [
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4.2.4. Verification of the discrete inf-sup conditions

We are now in a position to prove the discrete inf—sup conditions required by hypotheses (H.1). To this end, we
assume from now on that 7, ({2p) and 7,,({2g) are quasi-uniform in a neighborhood {25; of X, and that 7;(X) is
quasi-uniform.

Lemma 4.6. There exist Cy, 5]) > 0, independent of h, hy; and ﬁ, such that for all h5; < Cy ﬁ, there holds

Jap @y divvy + v - n. &) 5
SP(gp, &) = sup —2 -

D
thEHl[l) ”vh ”diV;QD

thyéO
ﬁmmuﬁlﬁ)ngonf

Proof. We begin by observing that

> Bo { 19 lo.05 + 131112, (431)

Dd' D

b b f-QD g, divv,

PP &) = sup TR e
V’E)EHE ”vh ”diV;QD
v}l);é()

Then according to the resglts in [16, Chapter IV] (see also [25, Section 4.2]), we know that there exists Cp > 0,
independent of 4, i 5; and A, such that

D q:\, D
fQth divv;

D
DLt vy lldiv: 2p
h h
v}?;&(}

D D _ D
> Cpllgy llo,2o Yqin € Qqps

and hence
SE(ar &) = CpllaPllo.a, — 1 h2s ¥ (@h. &) € Qo x Q- (4.32)

On the other hand, we know from Lemma 4.4, that there exist a linear operator Ly, : @ (X) — HE and a constant
C, > 0, independent of &, such that for each ¥, € @5 (X)) there hold

Lyp(p) -n =1y onlk, ILh () llaiv, 25 < Cl¥nl-1/2,2,  and  div Ly (¥n) € Po(£2p).
In this way, we deduce that
Jay aP div Lu(n) + (La(yn) -n. &)z
1 Lrn ) |l div: 2
from which, using that div £, (y,) € Py({2p) and that q}? € Qi]z), o» it follows that

{Lh(Yn) - n, &) 5| . L {¥n, §j) 1
1L Wmllaiv.2p  — Crll¥nll-12.5

SP(qp. &) > Vo € (X)),

SP(ap. &) = Vo € (X)),

and hence

1 (Yn, &) »

Cr ypeapm Wnll-12,5
¥ #0

Sp gy &) = Vi €QY. (4.33)

Therefore, (4.33) and a straightforward application of Lemma 4.5 imply the existence of Cp > 0, independent of #,
h x> and h, such that for all 5, < Cgh there holds

SE(ar. &) = Colg s Y& €Qr. (4.34)

Finally, it easy to see that estimates (4.32) and (4.34) imply the discrete inf—sup condition (4.31), thus finishing the
proof. [
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Lemma 4.7. There exist Co, BB > 0, independent of h, hx; and ﬁ, such that for all hy; < Cy h there holds

B i\, B B
5 B . fQth divv, — (v) -n,&)x
Sp (qp, » §;) == sup B
vEeHE ”vh ”diV;.QB
vB0

forall (g3, ;) € Qg x Q7.

> B { laflo.an + 1850125} (4.35)

Proof. It proceeds exactly as the proof of Lemma 4.6 by replacing (p, Ip, QRO and HE by (2, I's, QE}O and HE,
respectively. [

The following theorem provides the rate of convergence of our Galerkin scheme (4.4).

Theorem 4.2. Let Hy, = HE X Hg‘ n X HE and Qo p = QE’O X th) X Q;}E be the subspaces specified above, and

let (@, p) = ((up, @B, up), (pp, pp, 1)) € H x Qo and (in, pp) = (i}, @}, up), (pj}, pp. 4;)) € Hy x Qo
be the unique solutions of the continuous and discrete problems (3.10) and (4.4), respectively. Assume that u, €
H(£2,), divu, € H(12), p. € H () where « € {B,D}, wg € H’(curl; 2) and ) € H'/*"(X), for some
8 € (1/2,1]. Then, there exists C > 0 and C>0 independent of h and h such that

@, p) — @n, pn)lln < Ch5{||uB||8,QB + Ildiv B) s, 25 + ll@BlIHs curt; 25) + luDlls, 25

+ iy @)lls.p + 17811505 + 1Dl | + CR Al 11725

Proof. It follows from the Céa estimate (4.15) and the approximation properties (AP;:*), (AP,f "), (AP;:' B) and
(AP}H. DO

We end this section by remarking that the analysis from Section 4.2 can be extended without difficulties, to
Raviart-Thomas and Nédélec spaces of higher order.

5. An augmented mixed formulation

In this section we propose an augmented variational formulation of problem (3.10). Indeed, though many finite
element subspaces Hg » S Ho(curl; 25) and HE C Hg(div; 28) do satisfy (H.3), we would like to explore the
possibility of getting rid of that assumption. To this end, we suggest to enrich the mixed variational formulation (3.10)
with a residual arising from the Brinkman momentum equation in (2.1). More precisely, we include into the variational
problem (3.10) the following Galerkin least-squares equation in {2g:

(¢ug +veurlwg + Vpg —f3) -curlzg = 0 Vzg € Hy(curl; 2p), (5.1
{2

where « is a positive parameter to be specified later. Actually, integrating by parts, and using again that curlzg €
Hy(div; 2g) for each zg € Hy(curl; {25) (cf. [19, Chapter I, Section 2.3, Remark 2.5]), we easily find that

/ Vpp-curlzg =0 Vzp € Hy(curl; £25),
2
whence (5.1) can be recast in the form
Ko / ug -curlzg +«v / curlwg - curlzg = « fs -curlzg Vzp € Hp(curl; (2). (5.2)
28

.QB -QB

In this way, adding (5.2) to the first equation of (3.10), we obtain the following augmented variational formulation:
Find # := (ug, wp, up) € Hand p := (pg, pp, ) € Qg such that

A@,v) + B, p) = F¥) V= (vg,zs,vp) € H,

Bi.g) = G@G) Y4 = (gs.qp.£) € Qo. 53)
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where

A@,v) = oz/ uBovB—i-v/ ®B - ZB +Kl)/ curl wg - curlzp
28 {28 28

+v/ vB~curle+(Koz—v)/ uB~curlzB+Mf up-vp V@, v)eHxH, (.4
(9 {28 2

]-"(3)::/ fB~vB+/ fo-vp+« fs-curlzg Vv eH, (5.5)
(0% 2p

1051

B=Db, andGg =G =0.

In what follows we address the solvability of (5.3). We first observe that the continuous inf-sup condition for B on
H x Qg is already proved by Lemma 3.4. In turn, the continuous kernel of B is certainly given by V (cf. (3.13)—(3.15)).
Then, we have the following result establishing the ellipticity of .4 on Vg p and hence on V.

Lemma 5.1. Assume that the stabilization parameter k € (0, 28) with § € (O, za—”) Then, there exists 0 > 0,
depending on k and 8, such that

AG, %) >0l YV € Vpp. (5.6)

Proof. Given v := (v,zB,vp) € VgD, we obtain from the definition of A (cf. (5.4)) and the Cauchy—Schwarz
inequality, that

> o 2 2 2 2
AW, v) = alvelly o, + v IIzBlG o +« vilcurlzelly o + ko / vg - curlzg + 1 [vpllg o
: , % :

2 2 2 2
> a vl g, +vlzsl3 g +xvleurlzsl? o — kalvsllo,gyllcurlzs o op + 1 VD3 o -
Next, for each § > 0 we find that
Ko 2 Sk o 5
—k a |lvBllo, 2 llcurlzgllo, oy > 75 Ivellg o — - [eurlzgll§ o,

which, replaced back into the foregoing estimate, yields
K

AG.%) > a (1 - 35

da
2 2 2 2
) ”vBHO,QB +v ||ZB||()”QB + K (V — 7) ||CUI'IZB||0,QB +un ||VD||0‘QD~

Next, using (3.18) and noting that ||vD||% 0 = ”VDHSNQD’ we obtain

- K da
AG.7) > a (1 - %) 0 V13, + v 128112 o, + & (v - 7) leurlzgllf o + 1 vplGy. 0 G

Hence, since 1 — 2"—5 >0and v — 57“ > 0, we conclude that

A@,%) = olPly ¥ € Ve,
where o = min{a (1 — 2"—5) Q%, v, K (v — 37“) , u}. O
Note that, taking in particular k = § = , we obtain the optimal ellipticity constant
| 2
0= 3 mln{ozgo, 2v, kv, Z,u}.
The foregoing analysis yields the following main result.

Theorem 5.1. Assume that fp € LZ(QD), fg € LZ(QB), and that « satisfies the assumption from Lemma 5.1.
Then there exists a unique (i, p) = ((uB, ®B, Up), (pB, PD, X)) € H x Qg solution of the augmented mixed
formulation (5.3). Moreover, there exists C > 0 such that

ll + I5lle < € {Wolo.0p + Wsllo.a - (5:8)
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Proof. Thanks to Lemmas 3.4 and 5.1, the proof is a straightforward application of the continuous BabuSka—Brezzi
theory. O

We now look at the Galerkin scheme of (5.3). More precisely, employing the same generic finite elements subspaces
and related notations introduced in Section 4.1, we now consider the augmented mixed finite element scheme: Find
Uy = (uf, wg, u?) e Hy, and p;, == (pg', p}?, ) € Qo such that

A(iip, ¥p) + B, pr) = F@r) Y, = 0vp,zp,v) € Hy,
Bin, gn) = GGn) Y an =GP, qr. &) € Qon-

Then, assuming that hypotheses (H.0), (H.1), and (H.2) from Section 4 are satisfied, we certainly deduce that
B verifies the discrete inf-sup condition on Hy, x Qg (cf. Lemma 4.1), the discrete kernel of B is given again by
V, = V’é’D N VhZ (cf. (4.9)—(4.11)), and hence, since V}]é,D is contained in Vg p, the bilinear form A is elliptic in

(5.9)

Vg’D (cf. Lemma 5.1) and therefore in V;,. Consequently, a straightforward application of the discrete Babuska—Brezzi
theory allows to conclude the following result.

Theorem 5.2. Assume that fp € L(£2p) and fg € L2({2g). In addition, suppose that (H.0), (H.1), and (H.2) hold.
Then there exists a unique (y,, pp) = ((uE, wE, u?), (pg’, p,‘l), kh)) € Hy, x Qo5 solution of the augmented Galerkin
scheme (5.9). Moreover; there exist C1, Cy > 0, independent of h, such that

lislla + 1 5alle < €1 {fbllo.op + Wello.cy |- (5.10)

and

IGi, ) = (i, i) lxe = Ca {dist(@, Hy) + dist(B, Qo) |. (5.11)

We end this section by providing a specific example of finite element subspaces satisfying (H.0), (H.1), and (H.2),
but not (H.3), whence only the augmented formulation described in this section can be employed with them. In fact,
for each K € 7, ({25) we now let NID»(K) be the local Nédélec space of order 2, that is

NDy(K) := Py (K) & Py (K) x x,

where I~’1 (K) is the space of polynomials of degree =1, and introduce
HY, = {2 € Ho(eurl: %) : Ik € ND2(K) VK € Ti(@)]. (5.12)

In turn, the remaining subspaces HE, H}],)’ QE,O’ Q}],)’ and QhE are exactly as those defined in Section 4.2.1, that is
with local Raviart—-Thomas spaces of order 0 and discontinuous piecewise constant polynomials on the domains, and
with continuous piecewise polynomials of degree <1 on the interface . Then, it is not difficult to see that there exist
ZE € Hg’ , for which curlzf does not belong to HE, thus confirming that (H.3) does not hold in this case. Numerical
results illustrating optimal convergence rates of the augmented formulation with the aforementioned finite element
subspaces are reported below in Section 6.

6. Numerical results

In this section we provide three computer experiments confirming the convergence rates anticipated by Theorem 4.2
and illustrating the applicability of the method in surface—subsurface flow problems.

6.1. Accuracy of the mixed and augmented formulations on two embedded cubes

We start by evaluating the convergence of the fully-mixed and the augmented finite element methods applied to
(2.1)=(2.2) and defined on the two cubes 25 = [—rg, rg]’ and 2p = [—rp, rp]°, with rp = %, rg = %. Notice
that this particular domain configuration does not fall exactly in the theoretical framework analyzed in this paper.
However, both the continuous and discrete study could be carried out using the analogous tools as those used here. We
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Fig. 6.1. Example 1: Two-domain geometry and mesh (top left), approximated Darcy velocity streamlines (top middle), approximated Darcy
pressure isosurfaces (top right), zoom of approximated Brinkman vorticity vectors (bottom left), zoom of approximated Brinkman velocity
streamlines (bottom middle), and isosurfaces of the computed Brinkman pressure (bottom right).

employ the model parameters « = p = 1, v = 0.01, yielding the stabilization constant k = v/a = 0.01 suggested
by Lemma 5.1. The convergence of the method is assessed by computing errors between the following manufactured
smooth exact solutions

—3m sin(rx1) cos(mwxy) cos(mx3)

wg(x1, x2,x3) = | 37 cos(wxy)sin(rxy) cos(mxz) |,
0
cos(mxy) sin(wr xp) sin(r x3)
u(xy, xp, x3) = sin(rx1) cos(ir x2) sin(r x3) ,
—2sin(mwxq) sin(wxp) cos(mwx3)
p(x1, x2, x3) = sin(7wxy) sin(mw x2) sin(w x3), ug = ul g, up =ulp,,
PB = Plag. Pp = play, A=pls,

and their finite element approximations using a RTg — NID; — RTy — Py — Pg — P family (and using the fully-mixed
and augmented formulations), and also an augmented method based on the RTy — NID; — RTo — Pg — Pg — P; family,
which, in particular, does not satisfy assumption (H.3). The computations are carried out on a sequence of successively
refined tetrahedral meshes 7y,,, and 7y, of sizes hp; = rg2!~ and hp; = rp271, respectively, i = 0,1,.... We
adequately choose forcing terms f = aup + curlwg + Vpg, fo = nup + V pp, and suitable nonhomogeneous slip
velocity on 92 and nonhomogeneous Dirichlet data for the tangential vorticity on d2g, such that (2.1)—(2.2) holds.
For sake of convenience we define a conforming partition for Y, that is 7; = 7. The approximate solutions are
depicted in Fig. 6.1 and the error history, written in terms of the quantities

e(up) =|lug — usplldiv, 2> e(wB) = || wB — @B |lcurl, 25 » e(up) == |lup — upy |ldiv, 2y
e(p) = llpB — pBillo, 025 e(pp) = |lpp — popllo, 2y e(A) = lA—=2nlliy2, 5,
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Table 6.1
Example 1: Error history associated to fully mixed and augmented RTy — ND| — RTy — Pg — Py — P discretizations (top and middle rows), and
augmented RTy — NDy — RTy — Pg — Py — P FE family (bottom row) for problem (2.1)—(2.2) on a 3D domain.

h e(ug) r(ug) e(wB) r(@B) e(up) r(up) e(pB) r(pB) e(pp) r(pp) e(A) r(x)

Fully mixed scheme (4.4)

0.70711  1.02802 - 0.08636 — 0.65565 - 0.00404 - 0.64650 - 0.51608 —

0.38079  0.66329  0.63216  0.04547 0.86511 0.30143  0.96758 0.00167 0.86588 0.24919 1.54026 0.37415 0.94712
0.30610  0.45239 1.30206 0.03253 1.13929 0.21869 1.46952 0.00130 1.44871 0.12438 1.18266 0.22579 0.93668
0.18503  0.29153  0.93254  0.02240 0.79149 0.16048 0.61483  0.00073  1.21498 0.05130 1.15932 0.17396 0.95387
0.14412  0.18023  1.02275 0.01527 0.85417 0.10498 0.89264 0.00042 1.15692 0.02337 1.14603 0.10985 0.96014
0.05487  0.11716  0.95707 0.00833  0.95944 0.05076  0.99002 0.00027 0.96289 0.01207 0.98594 0.05139 0.96765
0.03564 0.07258 0.97681 0.00561 0.98670 0.03123 0.99197 0.00019 0.98441 0.00896 0.99455 0.02987 0.97732

Augmented mixed scheme (5.9)

0.70711  1.02681 - 0.08574 - 0.65549 - 0.00416 - 0.64537 - 0.51899 -

0.38079  0.62020 0.98418 0.04306 0.87429 0.26781 0.94902 0.00158 0.95434 0.24503 0.94234 0.38461 0.97729
0.30610  0.42963 0.99011 0.02763 0.91368 0.17061  0.96547 0.00109 0.93939 0.10942 0.96471 0.21733  1.07908
0.18503  0.27689  0.94556  0.01916  0.94842 0.12903 0.95084 0.00066 0.98741 0.04873 0.96933 0.16430 0.98544
0.14412  0.16540 096134 0.01344 0.96083  0.08211  0.95171  0.00039 0.98177 0.01998 0.96297 0.08127 0.97476
0.05487 0.10214 0.98608 0.00703  0.95798 0.04714 0.90989 0.00024 0.97506 0.00987 0.97250 0.04550 0.97732
0.03564 0.06071 096110 0.00416 0.98465 0.02595 1.01103 0.00016 0.98411 0.00593 1.00141 0.02831 0.97460

Augmented mixed scheme (5.9) with vorticity space as in (5.12)

0.70711  1.02643 - 0.06194 - 0.65421 - 0.00381 - 0.64501 - 0.49673 -

0.38079  0.60941 0.96599 0.02469 1.12048 0.26554 0.95410 0.00155 0.95308 0.24394 0.95725 0.34426  1.02005
0.30610  0.42550 0.98731 0.01822 1.51635 0.17022 0.92217 0.00102 0.94694 0.10922 0.96820 0.20871  0.97632
0.18503  0.23411 1.01620 0.01014 1.85309 0.12850 0.98436 0.00061 0.93551 0.04855 0.95735 0.15809 0.99401
0.14412  0.13869  0.98807 0.00607 1.92486 0.08173  0.96728 0.00039 0.93754 0.01980 0.96443 0.08067 0.95866
0.05487 0.08619 0.97615 0.00413 1.93952 0.04684 0.93863 0.00022 0.98965 0.00982 0.94538 0.04491 0.97210
0.03564  0.05175 0.99054 0.00279 1.97943 0.02433 0.98461 0.00013 190241 0.00563 1.10394 0.02635 0.96955

_ log(e(-)/2())
log(h/h)
is reported in Table 6.1, where e, ¢ denote errors on two consecutive meshes of sizes & = max{hpg, hp} and h.

We observe that all studied methods deliver optimal convergence rates for vorticity, velocity and pressure in the
corresponding norms.

6.2. Flow into a cracked porous medium

Our second example focuses on the simulation of flow in a porous medium with a smoothed V-shaped crack,
similar to the 2D simulations presented in the Stokes—Darcy examples of [12, Section 7.1] and [7, Section 6.3]. The
full domain is the box 2 = [0, 2] x [0, 0.2] x [0, 1], the Brinkman domain on the top is 0.75 < x; < 1.25 and
goes down to x3 = 0.5. Viscosity and porosity correspond to the case of water flowing in a mixture of calcarenite

and sand: v = 0.01, u = 10000, and we set « = 0.001. The external forces on both domains correspond to
gravity'jb = fz3 = (0,0,—0.98)%, and a constant flowrate up - n = (10,0,0)* - n, is imposed on the right
wall '), at x; = O (see sketch in Fig. 6.2), representing a subsurface flow in the x;-direction. Normal Darcy

velocities are set to zero everywhere else on Ip. As in [12] we impose a smooth vorticity profile on the top of
I'swp xn=(0,1/16 — (x; — 1)2, 0)* x n, which takes into account the wind on the surface, and we also assume a
compatible normal velocity on that same surface ug - n = (0,0, —x1/16 + [(x] — 1)3] /3)% - n. Everywhere else
we set zero normal fluid velocity and zero tangential vorticity. A tetrahedral mesh with conforming interface is
generated having 57426 vertices and 307 544 elements, which in total correspond to 962 639 degrees of freedom
for RTy — ND; — RTy — Pg — Pg — Py finite elements. Fig. 6.2 depicts the domain configuration along with the
approximate solutions, matching qualitatively the results from [12,7].
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Fig. 6.2. Example 2: Two-domain geometry and boundaries (top left), approximated Brinkman vorticity magnitude (top right), approximated

velocity magnitude and vectors (bottom left), and computed pressure profiles (bottom right) for the Brinkman—Darcy coupling, using a fully-mixed
scheme.
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Fig. 6.3. Example 3: From left to right: Two-domain geometry and boundaries, approximated Brinkman vorticity magnitude and vectors,
approximated velocity magnitude and vectors, and computed pressure profile for the Brinkman—Darcy coupling, using an augmented finite element
formulation.
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Fig. 6.4. Example 4: Two-domain geometry and boundaries (top left), approximated Brinkman vorticity and Darcy permeability field (top right),
approximated velocity (bottom left), and computed pressure profile (bottom right) for the Brinkman—Darcy coupling imposing Dirichlet boundary
conditions for the velocity.

6.3. Perpendicular infiltration through a porous capsule

In this test we present a model of coupled surface and subsurface flow where the top domain is the flow region
and the bottom half of the domain represents e.g. a pellet, or a capsule. On the top left octant of 9{25, denoted by
I ]i3n, we consider an inflow rate of ug - n = —0.01 and on [; B“t (see the domain sketch in Fig. 6.3) we set an outflow
of fluid at rate ug - n = 0.01. Also on Iin we impose a smooth vorticity wg x n = (0, —0.01x;x2x3,0)* x n.
On the remainder of 92 we set zero normal velocities and tangential vorticity. As in the previous example, we take
into account the gravity force acting on both domains ff, = f3 = (0,0, —0.98)*, and employ the model parameters
a = 10,v = 0.001, ©x = 10000. The mesh for {2 consists of 32768 vertices and 191452 tetrahedral elements
representing 700 835 degrees of freedom. As expected, from Fig. 6.3 we observe flow patterns entering the domain
through F]i;’, percolating through X', and leaving the domain through I'3". These results have been obtained with the
augmented mixed scheme (5.9).

6.4. Flow simulations imposing Dirichlet conditions for the velocity

Finally, we perform a test quite similar to Examples 2 and 3, but this time we impose Dirichlet conditions for the
Brinkman and Darcy velocities on the external boundaries (which implies, in particular, that no boundary datum is
required for the vorticity field), and employ an augmented formulation using a RTy — ND, — RTg — Py — Pg — Py
FE family. Now the Brinkman domain {23 = [0, 3] x [0,0.2] x [1,3/2] is on top of the Darcy domain {)p =
[0,3] x [0,0.2] x [0, 1] (as in e.g. a two-layer subsurface flow). These domains are discretized into structured
tetrahedral meshes of 63 195 and 94 847 elements, respectively. The parameter p (viscosity over permeability of
the Darcy domain) is now highly heterogeneous (see top-left panel of Fig. 6.4), and the remaining parameters take the
values@ = 1/100,v = 1, x = v/a. We also assume the presence of a slight current along with gravity in the Brinkman
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domain, i.e. fy = (1,0, —0.98)*. The boundary conditions for velocity are: ug = (100(x3 — 1)(3/2 — x3), 0, 0)* on
F];“ UIg", ug = (100(1 —x12/9), 0, 0)® on the top surface, up = (1, 0, 0)* on ]i)“, and on the sink at the lower part of
I'§*", and no-slip Darcy velocity (up = 0) on the bottom surface. No other conditions are imposed (e.g. on the front or
back sides of the domain). Notice that Dirichlet conditions are implemented via a penalization strategy. We stress that
even if this setting is not covered by our analysis, the obtained results (see the remaining panels in Fig. 6.4) suggest that
the augmented formulation proposed herein is capable to successfully handle problems involving Dirichlet velocity
data. Nevertheless, the performance of the method in conditions where vorticity develops into more involved patterns,
remains to be addressed.
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