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This paper is devoted to the mathematical and numerical analysis of a model describing the interfacial
flow-transport interaction in a porous-fluidic domain. The medium consists of a highly permeable
material, where the flow of an incompressible viscous fluid is governed by Brinkman equations (written in
terms of vorticity, velocity and pressure), and a porous medium where Darcy’s law describes fluid motion
using filtration velocity and pressure. Gravity and the local fluctuations of a scalar field (representing
for instance, the solids volume fraction or the concentration of a contaminant) are the main drivers of
the fluid patterns on the whole domain, and the Brinkman-Darcy equations are coupled to a nonlinear
transport equation accounting for mass balance of the scalar concentration. We introduce a mixed-
primal variational formulation of the problem and establish existence and uniqueness of solution using
fixed-point arguments and small-data assumptions. A family of Galerkin discretizations that produce
divergence-free discrete velocities is also presented and analysed using similar tools to those employed in
the continuous problem. Convergence of the resulting mixed-primal finite element method is proven, and
some numerical examples confirming the theoretical error bounds and illustrating the performance of the
proposed discrete scheme are reported.

Keywords: nonlinear transport; Brinkman–Darcy coupling; vorticity-based formulation; fixed-point
theory; mixed finite elements; error analysis.

1. Introduction

The aim of this paper is to put together an extension of the results from Alvarez et al. (2015, 2016a)
and Alvarez et al. (2016b) dealing with augmented and fully mixed finite element approximations
of coupled flow and transport problems, and coupled Brinkman and Darcy flow, respectively. The
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382 M. ALVAREZ ET AL.

coupled system describes the interaction of flow and transport phenomena in two different domains
separated by an interface. Such a formalism arises naturally and has been systematically used, in
hydrology and biological applications, including for instance subsurface flow, hydraulic fractures, CO2
sequestration, perfusion of soft living tissues, etc. In obtaining approximate solutions for the problem
under consideration one faces marked difficulties. These are related to the coupling of mechanisms that
act simultaneously, such as active transport and reaction of the solute and nonlinearities in the diffusion
process and in the source term, as well as the heterogeneities, the transmission conditions and the need of
preserving physical properties. Even if many numerical solutions are already available (see, e.g., Khaled
& Vafai, 2003; Ehrhardt et al., 2009; Joodi et al., 2010; Jena et al., 2013 and the references therein) up
to the authors’ knowledge the only contributions addressing mathematical and numerical properties of
somewhat similar couplings are the recent works of Çeşmelioğlu & Rivière (2012), where existence
and stability bounds of weak solutions are established also for the nonlinear Navier–Stokes–Darcy flow
coupled with transport; Vassilev & Yotov (2009), where a mixed finite element scheme approximates the
Stokes–Darcy system and a local discontinuous Galerkin method is employed to discretize the transport
equation; Rui & Zhang (2017) that analyses stabilized velocity–pressure–concentration formulations for
a model where viscosity depends on the solute concentration; and the very recent works of Ervin et al.
(2019) and Zhang et al. (2019) focusing on discrete analysis of splitting of time stepping between the
conforming discretizations on the two subdomains.

The main difference of these works with respect to our contribution is that we propose a formulation
of the problem written in terms of Brinkman vorticity and the transmission conditions we employ are
slightly different. In addition, we introduce a mixed-primal finite element method for the Brinkman–
Darcy-transport coupling that produces divergence-free discrete velocities. Another clear motivation
for using a vorticity-based formulation in the Brinkman domain is that the method is pressure-robust;
it computes the vorticity vector directly and avoiding derivative-based postprocessing (this field is of
utmost importance in determining properties for a variety of regimes of incompressible fluids, e.g., in
subsurface flow or blood flow, or other applications where the patterns of rotational flow are of interest,
Speziale, 1987; Pontrelli, 2001; Riaz et al., 2006) and is of relatively low computational cost when
compared to other mixed formulations using for instance vorticity tensors. These features are essentially
inherited from other schemes such as the methods for Stokes or Brinkman equations advanced in Anaya
et al. (2013, 2016) and Vassilevski & Villa (2014).

Following our previous work (Alvarez et al., 2016b) the coupling of subdomains is based on a
vorticity-based fully mixed formulation for the Brinkman–Darcy problem, whereas a primal formulation
for the transport problem is adapted from Alvarez et al. (2016a). The solvability of such a coupling will
be based on extending the fixed-point strategy introduced in Alvarez et al. (2015) and Alvarez et al.
(2016a) to the present context. In particular, we realize that the primal formulation for the transport
problem requires further regularity for the global velocity, initially living in H(div, Ω). In turn, and
in contrast with Alvarez et al. (2015) and Alvarez et al. (2016a), we cannot exploit augmentation
techniques to recover H1(Ω) velocities. Instead, a different smoothness assumption is introduced at
the level of the continuous analysis of the transport problem and subsequently in the solvability of
the Brinkman–Darcy-transport coupling. More precisely, the derivation of existence of weak solutions
relies on a strategy combining classical fixed-point arguments, suitable regularity assumptions on the
decoupled problems, the Lax–Milgram lemma, preliminary results from Alvarez et al. (2016b) and the
Sobolev embedding and Rellich–Kondrachov compactness theorems. In addition, sufficiently small data
allow us to establish uniqueness of weak solution. On the other hand, the well posedness of the discrete
problem is based on the Brouwer fixed-point theorem and analogous arguments to those employed in
the continuous analysis. Finally, similar arguments as those utilized in Alvarez et al. (2016a,b) allow
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A MIXED-PRIMAL FINITE ELEMENT METHOD 383

us to derive the corresponding Céa estimates for both the Brinkman–Darcy and transport problems, and
these lead to natural a priori error bounds for the Galerkin scheme.

Outline. This paper has been structured as follows. The remainder of this section presents some
notation and preliminary definitions of spaces needed thereafter. The model problem along with
boundary data are stated in Section 2. The weak formulation of the problem and its well-posedness
analysis in the framework of the Schauder fixed-point theorem are collected in Section 3. The associated
Galerkin scheme is then proposed in Section 4 and its solvability is established by the Brouwer fixed-
point theorem. Next, we derive in Section 5 some a priori error estimates and conclude in Section 6
with a few numerical examples in 2D and 3D, illustrating the good performance of the mixed-primal
finite element method and confirming the expected error decay.

Preliminaries. Standard notation will be adopted for Lebesgue and Sobolev spaces. In addition, by
M and M we will denote the corresponding vectorial and tensorial counterparts of the generic scalar
functional space M, and ‖ · ‖, with no subscripts, will stand for the natural norm of either an element or
an operator in any product functional space. For instance, if Θ ⊆ Rn, n = 2, 3 is a domain, Λ ⊆ Rn is a
Lipschitz surface and r ∈ R; we define Hr(Θ) := [Hr(Θ)]n and Hr(Λ) := [Hr(Λ)]n. We also recall
the definition of the following Hilbert spaces:

H(div; Θ) := {
v ∈ L2(Θ) : div v ∈ L2(Θ)

}
, H(curl; Θ) := {

v ∈ L2(Θ) : curl v ∈ L2(Θ)
}
,

normed, respectively, with

‖v‖div;Θ :=
{
‖v‖2

0,Θ + ‖ div v‖2
0,Θ

}1/2
, ‖v‖curl;Θ :=

{
‖v‖2

0,Θ + ‖curl v‖2
0,Θ

}1/2
,

where, for any vector field v := (v1, . . . , vd)
t ∈ L2(Θ),

div v :=
n∑

i=1

∂ivi, curl v := ∇ × v =
⎛⎝∂2v3 − ∂3v2

∂3v1 − ∂1v3
∂1v2 − ∂2v1

⎞⎠ if n = 3, and curl v = ∂1v2 − ∂2v1 if n = 2.

In addition, we also recall the orthogonal decomposition

L2(Θ) = L2
0(Θ) ⊕ P0(Θ),

where P0(Θ) is the space of constant functions on Θ and

L2
0(Θ) = P0(Θ)⊥ :=

{
q ∈ L2(Θ) :

∫
Θ

q = 0
}

.

Equivalently, each q ∈ L2(Θ) can be uniquely decomposed as q = q0 + c, with

q0 := q − 1

|Θ|
∫

Θ

q ∈ L2
0(Θ) and c := 1

|Θ|
∫

Θ

q ∈ R,
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384 M. ALVAREZ ET AL.

where L2
0(Θ) is endowed with the usual norm of L2(Θ) and it is easy to see that there holds

‖q‖2
0,Θ = ‖q0‖2

0,Θ + |Θ| c2.

By 0 we will denote the generic null vector (including the null functional and operator), and we will
denote by C and c, with or without subscripts, bars, tildes or hats, generic constants independent of the
discretization parameters.

2. Governing equations

Let Ω ⊂ Rn, n = 2, 3, denote a heterogeneous porous domain composed of two regions: ΩB, where the
viscous flow patterns characterized by velocity uB, vorticity ωB and pressure pB can be governed by the
linear Brinkman equations; and ΩD, where the flow of the immiscible fluid obeys to Darcy’s law written
in terms of velocity uD and pressure pD in the porous domain. These subdomains are separated by an
interface Σ , through which exchange of fluid velocities and pressures occurs. We also consider that a
given scalar field φ (representing, for instance, the concentration of a chemical component, the fluid
density, the temperature or the volume fraction or saturation of a solid phase) is advected and diffused
on the whole Ω according to the mass conservation principle (or energy conservation if the scalar field
stands for, e.g., temperature). The model problem can be summarized as follows:

(Brinkman)
μK−1

B uB + μ curl ωB + ∇pB = φfB
ωB − curl uB = 0

div uB = 0

⎫⎬⎭ in ΩB, (2.1)

coupled with

(Darcy)
μK−1

D uD + ∇pD = φfD
div uD = 0

}
in ΩD, (2.2)

and

(Transport) βφ − div(ϑ(φ)∇φ − φu − fbk(φ)g) = 0 in Ω , (2.3)

where μ > 0 is the constant viscosity of the fluid in the entire domain Ω , and the parameter β is the
porosity of the medium (assumed constant inside each subdomain, but possibly discontinuous across Σ).
Notice that u in (2.3) refers to the global velocity field defined in both ΩB and ΩD that is u := 1ΩB

uB+
1ΩD

uD, where 1Ω

is the characteristic function, 
 ∈ {B, D}. In addition, KB and KD are symmetric,

bounded and uniformly positive definite tensors KB,KD, which means that there exist α
KB

> 0 and
α
KD

> 0 such that

vtK−1
B (x)v ≥ α

KB
|v|2 ∀ v ∈ Rn, ∀ x ∈ ΩB,

and

vtK−1
D (x)v ≥ α

KD
|v|2 ∀ v ∈ Rn, ∀ x ∈ ΩD.

In turn, the tensors KB and KD characterize the absolute permeability of the Brinkman and Darcy
domains, respectively; the function ϑ is a nonlinear diffusivity, and fbk is a nonlinear flux acting on
the direction of the gravity acceleration g, aligned with the negative xn−axis. The specific forms of
these variable coefficients will be made precise later. In addition, we assume that fB ∈ L∞(ΩB) and
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Fig. 1. Sketch of the domains occupied by the incompressible fluid and by the porous medium (ΩB and ΩD, respectively),
interface Σ and corresponding boundaries.

fD ∈ L∞(ΩD). We stress that the local fluctuations of φ drive the flow patterns only through the external
load in the momentum equations. In this sense, the coupling mechanisms considered here are somehow
weaker than those studied in Alvarez et al. (2015, 2016a) for transport flow in a single domain (where
also viscosity was depending on φ).

We assume that Ω has a Lipschitz continuous boundary split into two disjoint sub-boundaries with
positive measure, according to two criteria: first, ∂Ω = ΓB∪ΓD, where ΓB = ∂ΩB\Σ and ΓD = ∂ΩD\Σ
denote pure Brinkman and Darcy borders, respectively; and secondly ∂Ω = Γ0 ∪ ΓN, where Γ0, ΓN
denote the parts of the boundary where homogeneous Dirichlet or Neumann (zero flux) conditions are
enforced for φ, respectively (see a rough diagram of domains and boundaries in Fig. 1). The considered
boundary and transmission conditions are

uD · n = uB · n and pD = pB on Σ ,
ωB × n = 0 on ∂ΩB = Σ ∪ ΓB, uB · n = 0 on ΓB and uD · n = 0 on ΓD,

φ = 0 on Γ0 and (ϑ(φ)∇φ − φu − fbk(φ)g) · n = 0 on ΓN,
(2.4)

where n denotes the outward normal at ΩB and ΩD. Note that interface conditions are not required in
the transport equation, as the continuity of φ and of the corresponding fluxes is incorporated naturally
in the formulation.

For the sake of our analysis, the variable coefficients need to satisfy the following requirements:
there exist positive constants ϑ1, ϑ2, γ1, γ2, Lϑ and Lfbk

, such that

ϑ1 ≤ ϑ(s) ≤ ϑ2 and γ1 ≤ fbk(s) ≤ γ2 ∀ s ∈ R, (2.5)

|ϑ(s) − ϑ(t)| ≤ Lϑ |s − t| ∀ s, t ∈ R (2.6)

and

|fbk(s) − fbk(t)| ≤ Lfbk
|s − t| ∀ s, t ∈ R. (2.7)
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386 M. ALVAREZ ET AL.

In view of deriving a weak form of (2.1)–(2.3) and according to the boundary data (2.4) we introduce
the following functional spaces:

HB(div; ΩB) :=
{

vB ∈ H(div; ΩB) : vB · n = 0 on ΓB

}
,

H0(curl; ΩB) :=
{

zB ∈ H(curl; ΩB) : zB × n = 0 on ∂ΩB

}
,

HD(div; ΩD) :=
{

vD ∈ H(div; ΩD) : vD · n = 0 on ΓD

}
and

H1
Γ0

(Ω) := {ψ ∈ H1(Ω) : ψ |Γ0
= 0},

for which, thanks to the generalized Poincaré inequality, there exists cp > 0, depending only on Ω and
Γ0, such that

‖ψ‖1,Ω ≤ cp |ψ |1,Ω , ∀ψ ∈ H1
Γ0

(Ω). (2.8)

3. Weak formulation and its solvability analysis

In this section we proceed similarly as in Alvarez et al. (2015) and Alvarez et al. (2016a), to derive
a suitable variational formulation of (2.1)–(2.4) and analyse its solvability by means of a fixed-point
strategy.

3.1 Continuous mixed-primal formulation

The continuity of pressure across the interface allows us to define its trace

λ := pD|Σ = pB|Σ ∈ H1/2(Σ). (3.1)

Then, after testing the Brinkman momentum equation in (2.1) against vB ∈ HB(div; ΩB) and integrating
by parts, we get

μ

∫
ΩB

K
−1
B uB·vB+ μ

∫
ΩB

vB·curl ωB−
∫

ΩB

pB div vB+〈vB·n, λ〉Σ =
∫

ΩB

φfB·vB ∀ vB ∈ HB(div; ΩB).

Next, testing the constitutive equation in (2.1) against zB ∈ H0(curl; ΩB) and integrating by parts, we
obtain ∫

ΩB

ωB · zB −
∫

ΩB

uB · curl zB = 0 ∀ zB ∈ H0(curl; ΩB).

In turn, the incompressibility constraint in (2.1) in weak form reads∫
ΩB

qB div uB = 0 ∀ qB ∈ L2(ΩB).
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On the other hand, testing the first equation of (2.2) with functions in HD(div; ΩD), integrating by parts,
using the boundary conditions and employing (3.1), we get

μ

∫
ΩD

K
−1
D uD · vD −

∫
ΩD

pD div vD − 〈vD · n, λ〉Σ =
∫

ΩD

φfD · vD ∀ vD ∈ HD(div; ΩD).

In addition, the second equation in (2.2) is tested as∫
ΩD

qD div vD = 0 ∀ qD ∈ L2(ΩD).

Finally, the continuity of normal velocities across Σ (cf . first equation in (2.4)) is imposed weakly as
follows

〈uB · n − uD · n, ξ 〉Σ = 0 ∀ ξ ∈ H1/2(Σ).

Therefore, given φ ∈ H1
Γ0

(Ω), we arrive at the following mixed formulation for the Brinkman–Darcy
coupling: find �u := (uB, ωB, uD) ∈ H and �p := (pB, pD, λ) ∈ Q, such that

A (�u, �v) + B (�v, �p) = F φ(�v) ∀ �v := (vB, zB, vD) ∈ H,

B (�u, �q) = 0 ∀ �q := (qB, qD, λ) ∈ Q,
(3.2)

where the product spaces are

H := HB(div; ΩB) × H0(curl; ΩB) × HD(div; ΩD), Q := L2(ΩB) × L2(ΩD) × H1/2(Σ),

the bilinear forms A : H × H → R and B : H × Q → R are defined by

A (�u, �v) := μ

∫
ΩB

K
−1
B uB · vB + μ

∫
ΩB

ωB · zB + μ

∫
ΩB

vB · curl ωB

− μ

∫
ΩB

uB · curl zB + μ

∫
ΩD

K
−1
D uD · vD,

B (�v, �q) := −
∫

ΩB

qB div vB −
∫

ΩD

qD div vD + 〈vB · n − vD · n, ξ 〉Σ ,

for all �v ∈ H, �q ∈ Q, and F ∈ H′ is the functional defined by

F ψ(�v) :=
∫

ΩB

ψfB · vB +
∫

ΩD

ψfD · vD ∀ �v ∈ H. (3.3)

Next, we observe that the solution for (3.2) is not unique. Indeed, it suffices to consider �p := (c, c, c),
with c ∈ R to see that (0, �p) is also solution to the homogeneous system (see Alvarez et al., 2016b,
Theorem 3.1). In order to amend this, the formulation can be modified as follows. Find (�u, �p) ∈ H×Q0,
such that

A (�u, �v) + B (�v, �p) = F φ(�v) ∀ �v ∈ H,

B (�u, �q) = 0 ∀ �q ∈ Q0,
(3.4)

where Q0 := L2
0(ΩB) × L2(ΩD) × H1/2(Σ) .
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On the other hand, given u in a suitable space (to be made precise in Lemma 3.2, below), testing
with functions in H1

Γ0
(Ω), integrating by parts and using the boundary data, we deduce the following

primal formulation for the transport problem: find φ ∈ H1
Γ0

(Ω) such that

C u(φ, ψ) =
∫

Ω

fbk(φ) g · ∇ψ ∀ψ ∈ H1
Γ0

(Ω), (3.5)

where the form C u is defined by

C u(φ, ψ) :=
∫

Ω

ϑ(φ)∇φ · ∇ψ −
∫

Ω

φ u · ∇ψ +
∫

Ω

β φ ψ ∀φ, ψ ∈ H1
Γ0

(Ω). (3.6)

The mixed-primal formulation of our original coupled problem (2.1)–(2.3) and (2.4), reduces then
to (3.4) and (3.5), that is: find (�u, �p, φ) ∈ H × Q0 × H1

Γ0
(Ω) such that

A (�u, �v) + B (�v, �p) = F φ(�v) ∀ �v ∈ H,

B (�u, �q) = 0 ∀ �q ∈ Q0,

C u(φ, ψ) = ∫
Ω

fbk(φ) g · ∇ψ ∀ψ ∈ H1
Γ0

(Ω).

(3.7)

The well posedness of (3.7) will be addressed in Sections 3.3 and 3.4. We anticipate now that the
analysis of (3.5) (in particular, the estimation of the second term defining C u) requires further regularity
of the global velocity.

3.2 Fixed-point strategy

We describe a fixed-point framework for (3.7). We commence by introducing the operator Sflow :
H1

Γ0
(Ω) −→ H(div; Ω) defined as

Sflow(φ) := u :=
{

uB in ΩB

uD in ΩD

∀φ ∈ H1
Γ0

(Ω)

that gives the flow velocity, where the Brinkman and Darcy velocities uB and uD are part of the unique
solution, to be confirmed below, of the interfacial flow problem (3.4) for the given concentration φ.

In turn, we also introduce the operator Sadv : H1
Γ0

(Ω) × H(div; Ω) −→ H1
Γ0

(Ω) defined as

Sadv(φ, u) := φ̃ ∀ (φ, u) ∈ H1
Γ0

(Ω) × H(div; Ω),

where, given (φ, u) ∈ H1
Γ0

(Ω) × H(div; Ω), φ̃ is the unique solution (to be confirmed below) of
the linear advection problem arising from (3.5) after performing the following actions: replacing the
nonlinear expression ϑ(φ)∇φ appearing in the first term of C u (cf. (3.6)) by the linear one ϑ(φ)∇φ̃;
incorporating u into the second term defining C u (cf. (3.6)), thus making it bilinear; and realizing
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that the expression on the right-hand side of (3.5) becomes a linear functional of ψ . In this way, the
aforementioned linear problem reduces to find φ̃ ∈ H1

Γ0
(Ω) such that

C φ,u(φ̃, ψ̃) = H φ(ψ̃) ∀ ψ̃ ∈ H1
Γ0

(Ω), (3.8)

where, as previously described, the new bilinear form C φ,u and linear functional H φ adopt the
definitions

C φ,u(φ̃, ψ̃) :=
∫

Ω

ϑ(φ)∇φ̃ · ∇ψ̃ −
∫

Ω

φ̃ u · ∇ψ̃ +
∫

Ω

β φ̃ ψ̃ ∀ φ̃, ψ̃ ∈ H1
Γ0

(Ω) (3.9)

and

H φ(ψ̃) :=
∫

Ω

fbk(φ) g · ∇ψ̃ ∀ ψ̃ ∈ H1
Γ0

(Ω). (3.10)

Here, we stress in advance that Sadv will be well defined, not in the whole space H1
Γ0

(Ω) × H(div; Ω),
but only in a subspace of it (see Lemma 3.2 below).

Finally, we define the operator T : H1
Γ0

(Ω) −→ H1
Γ0

(Ω) as

T(φ) := Sadv(φ, Sflow(φ)) ∀φ ∈ H1
Γ0

(Ω) (3.11)

and realize that solving (3.7) is equivalent to finding φ ∈ H1
Γ0

(Ω) such that

T(φ) = φ. (3.12)

Indeed, φ ∈ H1
Γ0

(Ω) is solution of (3.12) if and only if φ = Sadv(φ, Sflow(φ)), which means that, once

u = Sflow(φ) is obtained as part of the solution of (3.4) with the given φ and then employed jointly with
φ to solve (3.8), the resulting solution of the latter is the same initial φ. Equivalently, this says that

C φ,u(φ, ψ̃) = H φ(ψ̃) ∀ ψ̃ ∈ H1
Γ0

(Ω),

which, bearing in mind the definitions of C u (cf. (3.6)) and C φ,u (cf. (3.9)) and redenoting ψ̃ as simply
ψ , can be rewritten as

C u(φ, ψ) =
∫

Ω

fbk(φ) g · ∇ψ ∀ψ ∈ H1
Γ0

(Ω),

which confirms that φ is the solution of (3.5). Hence, (�u, �p, φ) ∈ H × Q0 × H1
Γ0

(Ω), with (�u, �p) solving
(3.4) for the given φ, is solution of the original coupled problem (3.7).

3.3 Well posedness of the uncoupled problem

In this section we show that the uncoupled problems (3.4) and (3.8) are in fact well posed. We begin
the solvability analysis with the following result, whose proof is a direct consequence of Alvarez
et al. (2016b, Theorem 3.2). Let us remark that similar vorticity-based formulations for Brinkman–
Darcy equations can be analysed using a different approach, as done recently in Anaya et al. (2019).
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Lemma 3.1 For each φ ∈ H1
Γ0

(Ω) problem (3.4) has a unique solution (�u, �p) ∈ H × Q0. Moreover,
there exists CSflow > 0, independent of φ, such that

‖Sflow(φ)‖div,Ω ≤ ‖(�u, �p)‖H×Q0
≤ CSflow ‖φ‖0,Ω

{
‖fB‖∞,ΩB

+ ‖fD‖∞,ΩD

}
, ∀φ ∈ H1

Γ0
(Ω).

(3.13)

For the purpose of the next result, which provides the solvability of the uncoupled problem (3.8),
we require that the global velocity u belong to H(div; Ω) ∩ Hδ(Ω) for some δ ∈ (0, 1) (when n = 2)
or δ ∈ (1/2, 1) (when n = 3). In turn, according to the aforementioned range for δ, we recall that the
Sobolev embedding theorem (cf . Quarteroni & Valli, 1994, Theorem 1.3.4; Adams & Fournier, 2003,
Theorem 4.12) establishes the continuous injection iδ : Hδ(Ω) −→ Lδ∗

(Ω) with boundedness constant
C∗

δ , where

δ∗ :=
{

2
1−δ

if n = 2,
6

3−2δ
if n = 3,

(3.14)

and it also guarantees that the injection i : H1(Ω) → Ln/δ(Ω) is compact, and hence continuous, with
constant Cδ . In addition, we set r0 := ϑ1

2cpCδC∗
δ
, where ϑ1 and cp are the constants given in (2.5) and

(2.8), respectively.

Lemma 3.2 Let φ ∈ H1
Γ0

(Ω), and u ∈ H(div; Ω) ∩ Hδ(Ω) for some δ ∈ (0, 1) (when n = 2) or
δ ∈ (1/2, 1) (when n = 3), such that ‖u‖δ,Ω < r0. Then, the problem (3.8) has a unique solution
Sadv(φ, u) := φ̃ ∈ H1

Γ0
(Ω). Moreover, there exists CSadv > 0, independent of (φ, u), such that

‖Sadv(φ, u)‖1,Ω ≤ CSadv γ2|Ω|1/2|g|. (3.15)

Proof. We first notice that C φ,u (cf . (3.9)) is clearly a bilinear form. In turn, employing the upper
bound of ϑ (cf . (2.5)), Cauchy–Schwarz’s inequality and Hölder’s inequality, it readily follows from
(3.9) that

|C φ,u(φ̃, ψ̃)| ≤ ϑ2 |φ̃|1,Ω |ψ̃ |1,Ω + ‖φ̃‖L2q(Ω) ‖u‖L2p(Ω) |ψ̃ |1,Ω + β ‖φ̃‖0,Ω ‖ψ̃‖0,Ω , (3.16)

where p, q ∈ [1, +∞) are such that 1/p + 1/q = 1. Next, choosing p such that 2p = δ∗ (cf . (3.14)), it
readily follows that

2q := 2p

p − 1
= n

δ
. (3.17)

The range of δ implies that we can apply the continuous injections iδ : Hδ(Ω) −→ Lδ∗
(Ω) and

i : H1(Ω) → Ln/δ(Ω) in combination with the bound for ‖u‖δ,Ω to deduce from (3.16) the existence of
a positive constant ‖C ‖ (depending on ϑ1, ϑ2, β, ‖iδ‖, ‖i‖ and cp) such that

|C φ,u(φ̃, ψ̃)| ≤ ‖C ‖ ‖φ̃‖1,Ω ‖ψ̃‖1,Ω ∀ φ̃, ψ̃ ∈ H1
Γ0

(Ω).

This proves that C φ,u is bounded independently of φ and u. On the other hand, applying the same
argument used for the derivation of second term on the right-hand side of (3.16) and using (3.14), (3.17)
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and (2.8), we find that for each φ̃ ∈ H1
ΓD

(Ω) there holds

C φ,u(φ̃, φ̃) =
∫

Ω

ϑ(φ) |∇φ̃|2 −
∫

Ω

φ̃u · ∇φ̃ + β ‖φ̃‖2
0,Ω

≥ ϑ1 |φ̃|21,Ω − C∗
δ ‖φ̃‖Ln/δ(Ω) ‖u‖δ,Ω |φ̃|1,Ω + β ‖φ̃‖2

0,Ω

≥ (ϑ1 − cpCδC∗
δ ‖u‖δ,Ω) |φ̃|21,Ω

≥ ϑ1

2
|φ̃|21,Ω ≥ ϑ1

2c2
p

‖φ̃‖2
1,Ω , (3.18)

which proves that C φ,u is H1
Γ0

(Ω)-elliptic with constant α̃ := ϑ1
2 c2

p
, also independently of both φ and u.

Next, applying Cauchy–Schwarz inequality and the upper bound for fbk given in (2.5), we easily deduce
that

|H φ(ψ̃)| ≤ γ2 |Ω|1/2 |g| ‖ψ̃‖1,Ω ∀ ψ̃ ∈ H1
ΓD

(Ω),

which says that H φ ∈ H1
Γ0

(Ω)′ and ‖H φ‖ ≤ γ2 |Ω|1/2 |g|. Consequently, a direct application of the

Lax–Milgram lemma implies the existence of a unique solution φ̃ := Sadv(φ, u) ∈ H1
Γ0

(Ω) of (3.8),

and the corresponding continuous dependence result becomes (3.15) with CSadv = 1
α̃

= 2c2
p

ϑ1
. �

Remark 3.3 The bound for ‖u‖δ,Ω used in Lemma 3.2 could also have been taken as

‖u‖δ,Ω < ε
ϑ1

cpCδC∗
δ

,

with any ε ∈ (0, 1), however choosing simply ε = 1
2 yields a joint maximization of the ellipticity

constant of C φ,u. In addition, dropping the term β ‖φ̃‖2
0,Ω in (3.18) we have assumed that β is small and

then utilized the Poincaré inequality (2.8). When β is instead large, say β ≥ ϑ1, then the aforementioned
expression is maintained throughout the derivation of (3.18), implying that the Poincaré inequality (2.8)
is not required.

We end this section by introducing adequate regularity hypotheses on Sflow, which will be employed
to guarantee that the operator T is well defined. In addition, we also assume sufficient regularity of Sadv

in order to establish its Lipschitz continuity and also that of T. In fact, for the remainder of this paper
we follow Alvarez et al. (2016a, Eq. (3.23) and Eq. (3.24)) and consider the following two hypotheses.

Regularity Hypothesis 3.4 For fB ∈ L∞(ΩB), fD ∈ L∞(ΩD) and for each φ ∈ H1
Γ0

(Ω) with

‖φ‖1,Ω ≤ r, r > 0 given, there holds Sflow(φ) ∈ H(div; Ω) ∩ Hδ(Ω), for some δ ∈ (0, 1) (when n = 2)
or δ ∈ (1/2, 1) (when n = 3), with

‖Sflow(φ)‖δ,Ω ≤ ĈSflow(r) ‖φ‖0,Ω

{
‖fB‖∞,ΩB

+ ‖fD‖∞,ΩD

}
, (3.19)

where ĈSflow(r) is a positive constant independent of φ, but depending on the upper bound r of its norm.

Regularity Hypothesis 3.5 For each (ϕ, w) ∈ H1
Γ0

(Ω)×(H(div; Ω)∩Hδ(Ω)), with δ ∈ (0, 1) (when
n = 2) or δ ∈ (1/2, 1) (when n = 3), and ‖ϕ‖1,Ω + ‖w‖div,Ω + ‖w‖δ ≤ r, r > 0 given, there holds
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392 M. ALVAREZ ET AL.

Sadv(ϕ, w) ∈ H1+δ
Γ0

(Ω), with

‖Sadv(ϕ, w)‖1+δ,Ω ≤ ĈSadv(r) C(Ω) |g|, (3.20)

where C(Ω) is a positive constant depending only on the domain Ω and ĈSadv(r) is a positive constant
independent of (ϕ, w), but depending on the upper bound r of its norm.

Hypothesis 3.4 will be needed in the proof of Lemma 3.6. More precisely, it is required to invoke
Lemma 3.2, which is in turn crucial to prove that T is well defined. Subsequently, the estimate
(3.19) is employed in Lemma 3.8 to bound an expression of the form ‖Sflow(φ − ϕ)‖L2p(Ω) in terms
of ‖Sflow(φ − ϕ)‖δ,Ω , and hence depending on the right-hand side of (3.19). In turn, the further
regularity from Hypothesis 3.5 is used in the proof of Lemma 3.7 to bound an expression of the
form ‖∇Sadv(ϕ, w)‖

L2p(Ω) in terms of ‖Sadv(ϕ, w)‖1+δ,Ω , which in the proof of Theorem 3.10, can be
bounded by the data appearing in the right-hand side of (3.20).

3.4 Solvability of the fixed-point equation

The well posedness of the uncoupled problems (3.4) and (3.8) confirms that the operators Sflow, Sadv

and T are well defined. In order to address the solvability of the fixed-point equation (3.12), we verify
the hypotheses of the Schauder fixed-point theorem (see, e.g., Ciarlet, 2013, Theorem 9.12-1(b)).

We first define the following set, for any r > 0

Wr := {
φ ∈ H1

Γ0
(Ω) : ‖φ‖1,Ω ≤ r

}
, (3.21)

and we have the following result.

Lemma 3.6 Given r > 0 and (3.21) assume that

‖fB‖∞,ΩB
+ ‖fD‖∞,ΩD

<
r0

rĈSflow(r)
and CSadv γ2 |Ω|1/2 |g| ≤ r, (3.22)

where r0 is the constant specified right before Lemma 3.2. Then T(Wr) ⊆ Wr.

Proof. Let us consider a given φ ∈ Wr. We then combine the arguments from Lemma 3.1, the estimate
(3.19), the first condition in (3.22) and Lemma 3.2 to conclude that Sadv(φ, Sflow(φ)) := T(φ) is well
defined. Next, according to the definition of the operator T (cf . (3.11)) and the continuous dependence
estimate (3.15) it readily follows that

‖T(φ)‖1,Ω = ‖Sadv(φ, Sflow(φ))‖1,Ω ≤ CSadv γ2 |Ω|1/2 |g|,

which, due to the second inequality in (3.22), proves that T(φ) ∈ Wr, thus finishing the proof. �
Our next goal is to establish the continuity and compactness of T, which is addressed in the following

two lemmas.

Lemma 3.7 There exists a positive constant C̃ > 0, depending on Lfbk
, Lϑ , C∗

δ and α̃ (cf . (2.7), (2.6) and

Lemma 3.2), and the boundedness constant C∗
δ of the injection iδ : Hδ(Ω) → Lδ∗

(Ω), such that for all
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(φ, u), (ϕ, w) ∈ H1
Γ0

(Ω)×(H(div; Ω)∩Hδ(Ω)), with ‖u‖δ,Ω , ‖w‖δ,Ω < r0 (cf . Lemma 3.2), there holds

‖Sadv(φ, u) − Sadv(ϕ, w)‖1,Ω ≤ C̃
{
|g| ‖φ − ϕ‖0,Ω + ‖Sadv(ϕ, w)‖Ln/δ(Ω)‖u − w‖δ,Ω

+ ‖Sadv(ϕ, w)‖1+δ,Ω‖φ − ϕ‖Ln/δ(Ω)

}
. (3.23)

Proof. Given (φ, u), (ϕ, w) as stated we let φ̃ := Sadv(φ, u) and ϕ̃ := Sadv(ϕ, w) that is (cf . (3.8))

C φ,u(φ̃, ψ̃) = H φ(ψ̃) and C ϕ,w(ϕ̃, ψ̃) = H ϕ(ψ̃) ∀ ψ̃ ∈ H1
Γ0

(Ω).

According to the ellipticity of C φ,u with constant α̃ we can subtract and add H ϕ(φ̃−ϕ̃)=C ϕ,w(ϕ̃, φ̃−ϕ̃)

to the previous expression, leading to

α̃ ‖φ̃ − ϕ̃‖2
1,Ω ≤ C φ,u(φ̃, φ̃ − ϕ̃) − C φ,u(ϕ̃, φ̃ − ϕ̃)

= H φ(φ̃ − ϕ̃) − H ϕ(φ̃ − ϕ̃) + C ϕ,w(ϕ̃, φ̃ − ϕ̃) − C φ,u(ϕ̃, φ̃ − ϕ̃)

=
∫

Ω

(
fbk(φ) − fbk(ϕ)

)
g · ∇(φ̃ − ϕ̃) +

∫
Ω

ϕ̃ (u − w) · ∇(φ̃ − ϕ̃)

+
∫

Ω

(
ϑ(ϕ) − ϑ(φ)

)
∇ϕ̃ · ∇(φ̃ − ϕ̃), (3.24)

where for the last equality we have employed definitions (3.9) and (3.10). Then we can apply Cauchy–
Schwarz’s inequality, Hölder’s inequality, Hypothesis 3.5, the Lipschitzcontinuity (2.6) and (2.7), which
allows us to treat the last two terms in (3.24), much as in (3.18). Eventually, these steps imply the
estimate

α̃ ‖φ̃ − ϕ̃‖2
1,Ω ≤

{
Lfbk

|g| ‖φ − ϕ‖0,Ω + C∗
δ ‖ϕ̃‖Ln/δ(Ω) ‖u − w‖δ,Ω

}
|φ̃ − ϕ̃|1,Ω

+ Lϑ C∗
δ ‖φ − ϕ‖Ln/δ(Ω) ‖∇ϕ̃‖δ,Ω |φ̃ − ϕ̃|1,Ω , (3.25)

and combining inequalities (3.24) and (3.25) readily gives (3.23), thus finishing the proof. �
The following result is a straightforward consequence of Lemma 3.7.

Lemma 3.8 Given r > 0 and the definition of Wr from (3.21) let us assume the condition (3.22). Then,
for all φ, ϕ ∈ H1

Γ0
(Ω), there holds

‖T(φ) − T(ϕ)‖1,Ω ≤
{

C̃ |g| + r C̃ ĈSflow(r)(‖fB‖∞,ΩB
+ ‖fD‖∞,ΩD

) ‖T(ϕ)‖Ln/δ(Ω)

}
‖φ − ϕ‖0,Ω

+C̃ ‖T(ϕ)‖1+δ,Ω‖φ − ϕ‖Ln/δ(Ω),
(3.26)

where C̃ and ĈSflow(r) are the constants given in Lemma 3.7 and estimate (3.19), respectively.

Proof. It suffices to recall from Section 3.2 that T(φ) = Sadv(φ, Sflow(φ)) ∀φ ∈ H1
Γ0

(Ω) and then

directly apply Lemmas 3.6, 3.7, the linearity of Sflow and the estimate (3.19). �
The announced properties of T are proved now.
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Lemma 3.9 The map T : Wr → Wr is continuous and T(Wr) is compact.

Proof. It follows almost verbatim as in Alvarez et al. (2015, Lemma 3.12). Essentially, the proof is
a consequence of the Rellich–Kondrachov compactness theorem (Adams & Fournier, 2003, Theorem
6.3), the specified range of the constant δ involved in Hypotheses 3.4 and 3.5, and the well-known fact
that every bounded sequence in a Hilbert space has a weakly convergent subsequence. �

Finally, the main result of this section is stated as follows.

Theorem 3.10 Assume that the hypotheses of the Lemmas 3.6– 3.9 are met. Then, the mixed-primal
problem (3.7) has at least one solution (�u, �p, φ) ∈ H × Q0 × H1

Γ0
(Ω) with φ ∈ Wr, satisfying the

continuous dependences

‖(�u, �p)‖H×Q0
≤ r CSflow

{
‖fB‖∞,ΩB

+ ‖fD‖∞,ΩD

}
, (3.27)

‖φ‖1,Ω ≤ CSadv γ2|Ω|1/2|g|, (3.28)

where CSflow and CSadv are the constants specified in Lemmas 3.1 and 3.2, respectively. Moreover, if the
data fB, fD and g are sufficiently small so that

C̃(1 + ĈSadv(r) CδC(Ω)) |g| + r2 C̃ Cδ ĈSflow(r)
(
‖fB‖∞,ΩB

+ ‖fD‖∞,ΩD

)
< 1, (3.29)

where C̃, ĈSflow(r), ĈSadv(r) and C(Ω) are the constants from Lemma 3.7, and estimates (3.19) and
(3.20), respectively, and Cδ is the boundedness constant of the continuous injection of H1(Ω) into
Ln/δ(Ω), then the solution φ is unique in Wr.

Proof. According to the equivalence between (3.7) and the fixed-point equation (3.12), and thanks
to Lemmas 3.6 and 3.9, the existence of solution is a direct consequence of the Schauder fixed-point
theorem (Ciarlet, 2013, Theorem 9.12-1(b)). In turn, the estimates (3.27) and (3.28) follow from (3.13)
and (3.15), respectively. Finally, given another solution ϕ ∈ Wr of (3.12), the estimates (3.26), together
with the bounds

‖T(ϕ)‖1,Ω = ‖ϕ‖1,Ω ≤ r, ‖ϕ‖1+δ,Ω ≤ ĈSadv(r) C(Ω) |g| (cf. (3.20)),

and

‖ϕ‖Ln/δ(Ω) ≤ Cδ ‖ϕ‖1,Ω ∀ϕ ∈ H1(Ω),

confirm (3.29) as a sufficient condition for uniqueness. �
Alternatively to the fixed-point analysis developed in this section, one could appeal to Banach’s

fixed-point theory starting from the same setting, that is, exactly the same fixed-point equation of
Section 3.2. It is also possible to define a different Picard problem, where the global velocity is the fixed-
point or a completely different structure by appealing to monolithic approaches that do not separate flow
from transport equations. Another option is to perform a linearization such that also the linear parts of the
global flux of the nonlinear advection equation are now part of the bilinear form. That is, moving terms
from (3.10) to (3.9). These (or many other possible) choices can be explored case by case, especially in
terms of the structure of the solvability analysis, but also regarding the suitability in light of the specific
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application. For instance, the strength of the coupling mechanisms can vary substantially from one flow
regime to another. The strategy we have adopted here is adequate at least for the regime of laminar flow
and transport dominated by nonlinear diffusion.

4. Galerkin scheme

Let T h be a regular family of triangulations of Ω̄B ∪ Ω̄D by tetrahedra K of diameter hK with meshsize

h := max{hK : K ∈ T h}, such that T h(Ω
) :=
{

K ∈ T h : K ⊆ Ω̄


}
is a triangulation of Ω
 for

each 
 ∈ {
B, D

}
. We further denote by T h(Σ) the triangulation on Σ induced by T h (either from ΩB

or ΩD). Also, we introduce an independent partition T h̃(Σ) of Σ by triangles T̃ of diameter hT̃ and
define h̃ := max

{
hT̃ : T̃ ∈ T h̃(Σ)

}
.

Let us now consider finite dimensional subspaces of the test and trial spaces appearing in Section 3:

HB
h ⊆ HB(div; ΩB), HB

0,h ⊆ H0(curl; ΩB), HD
h ⊆ HD(div; ΩD), Xh ⊂ H(div; Ω),

QB
h ⊆ L2(ΩB), QD

h ⊆ L2(ΩD), QΣ
h ⊆ H1/2(Σ), Hφ

h ⊆ H1
Γ0

(Ω).
(4.1)

Hence, setting the global spaces

Hh := HB
h × HB

0,h × HD
h and Q0,h := QB

h,0 × QD
h × QΣ

h ,

the Galerkin scheme for (3.7) becomes the following: find (�uh, �ph, φh) ∈ Hh × Q0,h × Hφ
h such that

A (�uh, �vh) + B (�vh, �ph) = F φh
(�vh) ∀ �vh ∈ Hh,

B (�uh, �qh) = 0 ∀ �qh ∈ Q0,h,

C uh
(φh, ψh) = H φh

(ψh) ∀ψh ∈ Hφ
h .

(4.2)

In order to guarantee the well posedness of the Galerkin scheme (4.2), the subspaces introduced in (4.1)
can be chosen as follows (see Alvarez et al., 2016b, Section 4.1)

H

h :=

{
v


h ∈ H
(div; Ω
) : v

h|K ∈ RT0(K) ∀ K ∈ T h(Ω
)

}
,

Q

h :=

{
qh ∈ L2(Ω
) : qh|K ∈ P0(K) ∀ K ∈ T h(Ω
)

}
,

Q

h,0 := Q


h ∩ L2
0(Ω
),

Hφ
h :=

{
ψh ∈ C(Ω) ∩ H1

Γ0
(Ω) : ψh|K ∈ P1(K) ∀ K ∈ T h

}
,

with 
 ∈ {B, D}, and where for any K ∈ T h(Ω
), we denote

RT0(K) := P0(K) ⊕ P0(K) x,
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as the local Raviart–Thomas space of lowest order. In addition, we set

HB
0,h :=

{
zB

h ∈ H0(curl; ΩB) : zB
h |K ∈ ND1(K) ∀ K ∈ T h(ΩB)

}
,

where for any K ∈ T h(ΩB), the local edge space of Nédélec type is

ND1(K) := P0(K) ⊕ P0(K) × x =
{

w : K → C
3 : w(x) = a + b × x ∀ x ∈ K, a, b ∈ C

3
}

.

In turn, we set Xh := 1ΩB
HB

h + 1ΩD
HD

h , whereas for the interfacial pressure, we consider the finite
element space

QΣ

h̃
:=

{
λh̃ ∈ C 0(Σ) : λh̃|T̃ ∈ P1(T̃) ∀ T̃ ∈ T h̃(Σ)

}
.

4.1 Discrete fixed-point strategy

A first important remark is that the hypotheses of additional regularity that we employed to prove
Lemmas 3.2 and 3.7 are neither needed nor applicable in the discrete case. In consequence, it is not
possible to reuse the same fixed-point strategy from Section 3.2. Instead, we require that the operator
associated with the discrete version of problem (3.4) is uniformly bounded. For simplicity of the
presentation the fixed-point scheme and its analysis will be restricted to the 2D case. Given r > 0
we proceed to define

Zr
h :=

{
uh ∈ Xh : ||uh||
 ≤ r

}
, (4.3)

where || · ||
 := ‖ · ‖div,Ω + ‖ · ‖Ls(Ω), with s > 2. We anticipate that the stipulated range for s will
allow us to invoke certain Sobolev embeddings in the subsequent analysis, more precisely, in the proof
of Lemma 4.2 and Theorem 4.9, below.

We now set Yh := Hφ
h × Zr

h and introduce the operator Sadv
h : Yh → Hφ

h defined by

Sadv
h (φh, uh) := ϕh ∀ (φh, uh) ∈ Yh,

where ϕh is the unique solution (to be established below) of the linear problem: find ϕh ∈ Hφ
h such that

C φh,uh
(ϕh, ψh) = H φh

(ψh) ∀ψh ∈ Hφ
h , (4.4)

for given (φh, uh), where

C φh,uh
(ϕh, ψh) :=

∫
Ω

ϑ(φh)∇ϕh · ∇ψh −
∫

Ω

ϕh uh · ∇ψh +
∫

Ω

β ϕh ψh ∀ϕh, ψh ∈ Hφ
h ,

and

H φh
(ψh) :=

∫
Ω

fbk(φh) g · ∇ψh ∀ψh ∈ Hφ
h .

In turn, we define the operator Sflow
h : Hφ

h → Xh as

Sflow
h (ϕh) := wh ∀ϕh ∈ Hφ

h , (4.5)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/41/1/381/5771306 by M
onash U

niversity user on 23 January 2021
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where wh|ΩB
= wB

h and wh|ΩD
= wD

h are the first and third components of �wh ∈ Hh, which in turn is
the first component of the unique solution (to be confirmed below) of the discrete problem associated
with (3.4): find (�wh, �rh) ∈ Hh × Q0,h, such that

A (�wh, �vh) + B (�vh, �rh) = F ϕh
(�vh) ∀ �vh ∈ Hh,

B (�wh, �qh) = 0 ∀ �qh ∈ Q0,h,
(4.6)

with ϕh given. Therefore, by introducing the operator Th : Yh → Hφ
h × Xh as

Th(φh, uh) := (Sadv
h (φh, uh), Sflow

h (Sadv
h (φh, uh))) ∀ (φh, uh) ∈ Yh, (4.7)

we see that solving (4.2) is equivalent to finding a fixed point of Th that is the following: find (φh, uh) ∈
Yh such that

Th(φh, uh) = (φh, uh). (4.8)

Certainly, all the above makes sense if we guarantee that the discrete problems (4.4) and (4.6) are well
posed. This is precisely the purpose of the next section.

4.2 Well posedness of the uncoupled problem

In this section, we establish the well posedness of both (4.6) and (4.4), thus confirming that Sflow
h , Sadv

h
and hence Th are well defined.

Lemma 4.1 For each φh ∈ Hφ
h the problem (4.6) has a unique solution (�uh, �ph) ∈ Hh ×Q0,h. Moreover,

there exists a positive constant C2, independent of h, such that

‖Sflow
h (φh)‖div,Ω ≤ ‖(�uh, �ph)‖H×Q0

≤ C2 ‖φh‖0,Ω

{
‖fB‖∞,ΩB

+ ‖fD‖∞,ΩD

}
∀φh ∈ Hφ

h . (4.9)

Proof. It follows directly from Alvarez et al. (2016b, Theorem 4.1). �
Lemma 4.2 Assume that r ∈

(
0, ϑ1

2Cscp

)
, where Cs is the boundedness constant of the injection is :

H1(Ω) → L
2s

s−2 (Ω), with s > 2. Then, for each (φh, uh) ∈ Yh, we see that problem (4.4) has a unique

solution Sadv
h (φh, uh) := ϕh ∈ Hφ

h . Moreover, by denoting C1 := 1
α̃

, with α̃ as in the proof of Lemma
3.2, there holds

‖Sadv
h (φh, uh)‖1,Ω ≤ C1 γ2|Ω|1/2 |g|, ∀ (φh, uh) ∈ Yh. (4.10)

Proof. It proceeds as in the proof of Lemma 3.2. Indeed, employing the same arguments used to derive
(3.16), we deduce that

|C φh,uh
(φ̃h, ψ̃h)| ≤ ϑ2 |φ̃h|1,Ω |ψ̃h|1,Ω +‖φ̃h‖L2̃q(Ω) ‖uh‖L2̃p(Ω) |ψ̃h|1,Ω +β ‖φ̃h‖0,Ω ‖ψ̃h‖0,Ω , (4.11)

where p̃, q̃ ∈ [1, +∞) are such that 1/̃p + 1/̃q = 1. Thus, choosing p̃ such that 2̃p = s, with s > 2, it
readily follows that

2̃q := 2s

s − 2
> 1. (4.12)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/41/1/381/5771306 by M
onash U

niversity user on 23 January 2021



398 M. ALVAREZ ET AL.

We can then use (4.3) and the continuity of the injection is : H1(Ω) → L
2s

s−2 (Ω) with constant Cs
(since for 2D this injection is compact), to deduce the existence of a positive constant ‖C ‖ depending
on ϑ2, β, r and Cs, such that

|C φh,uh
(φ̃h, ψ̃h)| ≤ ‖C ‖ ‖φ̃h‖1,Ω ‖ψ̃h‖1,Ω ∀ φ̃h, ψ̃h ∈ H1

Γ0
(Ω), (4.13)

which proves that C φh,uh
is bounded independently of φh and uh. On the other hand, we can apply the

same argument to handle the trilinear term on the right-hand side of (4.11) in the derivation of (4.13).
Moreover, employing estimates (2.5) and (2.8), we find that for each φ̃h ∈ H1

Γ0
(Ω), there holds

C φh,uh
(φ̃h, φ̃h) ≥ ϑ1|φ̃h|21,Ω − ‖φ̃h‖L2s/s−2(Ω)‖uh‖Ls(Ω)|φ̃h|1,Ω + β‖φ̃h‖2

0,Ω

≥ (ϑ1 − Cs cpr)|φ̃h|21,Ω ≥ ϑ1

2
|φ̃h|21,Ω ≥ ϑ1

2c2
p
‖φ̃h‖2

1,Ω ,

which proves that C φh,uh
is elliptic on Hφ

h × Hφ
h , with the same constant α̃ from Lemma 3.2. In

addition, the fact that ‖H φ‖ is bounded independently of φ (cf. Proof of Lemma 3.2) confirms the same
upper bound for ‖H φh

‖
(Hφ

h )′ . The rest of the proof is a straightforward application of Lax–Milgram’s

lemma. �
Remark 4.3 The manipulation of the term β‖φ̃h‖2

0,Ω (in the derivation of the ellipticity of C φh,uh
) is

done analogously as described at the end of the proof of Lemma 3.2.

We end this section with a hypothesis of uniform boundedness on the operator Sflow
h , which will be

required to guarantee that the operator Th is well defined and continuous within a certain ball.

Hypothesis 4.4 There exists s > 2 such that the operator Sflow
h : (Hφ

h , ‖ · ‖1,Ω) → (Xh, ‖ · ‖s,Ω) (cf .
(4.5)) is uniformly bounded, that is

‖Sflow
h (φh)‖Ls(Ω) ≤ C̃s ‖φh‖1,Ω ∀ φh ∈ Hφ

h , (4.14)

where C̃s is a positive constant independent of h.
Estimate (4.14) will be needed in the proof of Lemma 4.5, below. More specifically, it is required

to bound an expression of the form ‖Sflow
h (Sadv

h ( · ))‖Ls(Ω) in terms of ‖Sadv
h ( · )‖1,Ω , which in

turn is bounded by data (cf . (4.10)). The hypothesis will also be required to handle the expression
‖Sflow

h (Sadv
h (φh)) − Sflow

h (Sadv
h (ϕh))‖Ls(Ω) when deriving the Lipschitz continuity of Th. Even if a

rigorous proof for (4.14) can be quite difficult to obtain in Section 6, we will provide numerical evidence
that such C̃s exists and that it is independent of h.

4.3 Solvability of the fixed-point equation

We now aim to show the solvability of (4.2) by analysing the equivalent fixed-point equation (4.8).
To this end, we proceed to verify the hypotheses of the Brouwer fixed-point theorem (Ciarlet, 2013,
Theorem 9.9-2).

We start by defining the following set:

Wh := {(φh, uh) ∈ Hφ
h × Xh : |||(φh, uh)||| ≤ r}, (4.15)
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where r was previously fixed in (4.3) and

|||(φh, uh)||| := ‖φh‖1,Ω + ‖uh‖
 = ‖φh‖1,Ω + ‖uh‖div,Ω + ‖uh‖Ls(Ω).

Lemma 4.5 Let Wh be as in (4.15) and assume that the data g, fB and fD are sufficiently small so that

(C̃s + C1)γ2|Ω|1/2|g| + C1 C2 γ2|Ω|1/2|g|
{
‖fB‖∞,ΩB

+ ‖fD‖∞,ΩD

}
≤ r. (4.16)

Then Th(Wh) ⊆ Wh.

Proof. Given (φh, uh) ∈ Wh we get from (4.7) and the estimates (4.14), (4.9) and (4.10) that

|||Th(φh, uh)||| = |||(Sadv
h (φh, uh), Sflow

h (Sadv
h (φh, uh)))|||

= ‖Sadv
h (φh, uh)‖1,Ω + ‖Sflow

h (Sadv
h (φh, uh))‖div,Ω + ‖Sflow

h (Sadv
h (φh, uh))‖Ls(Ω)

≤ (C̃s + C1)γ2|Ω|1/2|g| + C1 C2 γ2|Ω|1/2|g| {‖fB‖∞,ΩB
+ ‖fD‖∞,ΩD

},

and hence, employing the condition (4.16), we conclude that Th(φh, uh) ∈ Wh. �
The continuity of Th will be proved in the following two lemmas, where we derive Lipschitz-type

estimates for Sflow
h and Sadv

h .

Lemma 4.6 Let C2 be the constant given in Lemma 4.1. Then, there holds

‖Sflow
h (φh)−Sflow

h (ϕh)‖div,Ω ≤ C2 ‖φh −ϕh‖0,Ω

{
‖fB‖∞,ΩB

+‖fD‖∞,ΩD

}
∀φh, ϕh ∈ Hφ

h . (4.17)

Proof. Given φh, ϕh ∈ Hφ
h we let �uh := (uB

h , ωB
h , uD

h ) ∈ Hh, �ph := (pB
h , pD

h , λh) ∈ Q0,h and �wh =
(wB

h , xB
h , wD

h ) ∈ Hh, �rh := (rB
h , rD

h , χh) ∈ Q0,h be the solution of (4.6) so that uh = uB
h +uD

h =: Sflow
h (φh)

and wh = wB
h +wD

h =: Sflow
h (ϕh). Then, employing the linearity of the forms A and B we deduce from

(4.6) that

A (�uh − �wh, �vh) + B (�vh, �ph − �rh) = F φh−ϕh
(�vh) ∀ �vh := (vB

h , zB
h , vD

h ) ∈ H,

B (�uh − �wh, �qh) = 0 ∀ �qh := (qB
h , qD

h , ξh) ∈ Q0,h.

Moreover, since Sflow
h (φh − ϕh) = Sflow

h (φh) − Sflow
h (ϕh) the bound (4.17) follows directly from

estimate (4.9). �
Lemma 4.7 Let Lfbk

, Lϑ and α̃ be the constants given in (2.7), (2.6) and Lemma 3.2, respectively. Then,

‖Sadv
h (φh, uh)−Sadv

h (ϕh, wh)‖1,Ω ≤ 1

α̃

{
Lfbk

|g|‖φh−ϕh‖0,Ω + Lϑ ‖∇Sadv
h (φh, uh)‖L4(Ω) ‖φh − ϕh‖L4(Ω)

+‖Sadv
h (φh, uh)‖L2̃q(Ω)‖uh − wh‖L2̃p(Ω)

}
,

(4.18)
∀ (φh, uh), (ϕh, wh) ∈ Hφ

h × Zr
h, and where p̃, q̃ ∈ [1, +∞) are such that 1/̃p + 1/̃q = 1.
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Proof. Given (φh, uh), (ϕh, wh) as stated we let φ̃h := Sadv
h (φh, uh) and ϕ̃h := Sadv

h (ϕh, wh), that is

C φh,uh
(φ̃h, ψ̃h) = H φh

(ψ̃h) and C ϕh,wh
(ϕ̃h, ψ̃h) = H ϕh

(ψ̃h) ∀ ψ̃h ∈ Hφ
h .

Next we proceed analogously as in the proof of Lemma 3.7. We apply Cauchy–Schwarz’s inequality,
the Lipschitz continuity estimates (2.6) and (2.7), and Hölder’s inequality to the second term on the
right-hand side for the discrete version of (3.24). For the last term we use an L4 − L4 − L2 argument.
This gives

α̃ ‖φ̃h − ϕ̃h‖2
1,Ω ≤

{
Lfbk

|g| ‖φh − ϕh‖0,Ω + ‖ϕ̃h‖L2̃q(Ω) ‖uh − wh‖L2̃p(Ω)

}
|φ̃h − ϕ̃h|1,Ω

+ Lϑ ‖φh − ϕh‖L4(Ω) ‖∇ϕ̃h‖L4(Ω) |φ̃h − ϕ̃h|1,Ω .

Then, since the elements of Hφ
h are piecewise polynomials it follows that ‖∇ϕ̃h‖L4(Ω) < +∞, and hence

the foregoing equation yields (4.18). �
We now can establish a Lipschitz continuity-type estimate for Th.

Lemma 4.8 Given r > 0 and Wh as in (4.15) assume the condition (4.16). Then, there exist constants
C3, C4, C5 > 0, depending only upon Lfbk

, Lϑ , α̃, C2, C̃s (cf . (2.7), (2.6), Lemma 3.2, Lemma 4.6 and
(4.14)) and the data, such that, for all (φh, uh), (ϕh, wh) ∈ Wh, there holds

|||Th(φh, uh) − Th(ϕh, wh)||| ≤ C3 ‖φh − ϕh‖0,Ω + C4 ‖∇Sadv
h (φh, uh)‖L4(Ω)‖φh − ϕh‖L4(Ω)

+C5 ‖Sadv
h (φh, uh)‖L2̃q(Ω)‖uh − wh‖L2̃p(Ω),

where p̃, q̃ ∈ [1, +∞) are such that 1/̃p + 1/̃q = 1.

Proof. It suffices to recall from Section 4.1 that

Th(ψh, vh) := (Sadv
h (ψh, vh), Sflow

h (Sadv
h (ψh, vh))) ∀ (ψh, vh) ∈ Yh,

and then apply estimate (4.14) and Lemmas 4.6 and 4.7. �
Consequently, from the foregoing Lemma, choosing 2̃p and 2̃q as in the proof of Lemma 4.2 that is

2̃p = s and hence 2̃q := 2s
s−2 > 1, and employing the continuous injection i : H1(Ω) → L4(Ω), the

continuity of Th is derived. Thanks to Brouwer’s fixed-point theorem (Ciarlet, 2013, Theorem 9.9-2)
and Lemmas 4.5 and 4.8, we establish the main result of this section.

Theorem 4.9 Under the assumptions of Lemma 4.5 the Galerkin scheme (4.2) has at least one solution
(�uh, �ph, φh) ∈ Hh × Q0,h × Hφ

h with (φh, uh) ∈ Wh. Moreover,

‖φh‖1,Ω ≤ C1γ2|Ω|1/2|g|,
‖(�uh, �ph)‖H×Q0

≤ C1C2 γ2|Ω|1/2|g|
{
‖fB‖∞,ΩB

+ ‖fD‖∞,ΩD

}
,

where C1, C2 and γ2 are the constants provided by Lemmas 4.1 and 4.2, as well as (2.5), respectively.
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Remark 4.10 The extension to 3D case of our discrete fixed-point analysis is based on a new range for
the parameter s in (4.3), Lemma 4.2 and Hypothesis 4.14. More precisely, one needs now to take s > 3 in

(4.3) to guarantee the compactness (and hence the continuity) of the injection is : H1(Ω) → L
3s

s−3 (Ω).
This is crucial in the proof of Lemma 4.2.

5. A priori error estimate

Given (�u, �p, φ) ∈ H×Q0 ×H1
Γ0

(Ω) with φ ∈ W and (�uh, �ph, φh) ∈ Hh ×Q0,h ×Hφ
h with (φh, uh) ∈ Wh

we aim to derive suitable a priori error estimates. To this end, we first observe from (3.7) and (4.2) that
the above problems can be rewritten as follows:

(BD)

{
A (�u, �v) + B (�v, �p) = F φ(�v) ∀ �v ∈ H,

B (�u, �q) = 0 ∀ �q ∈ Q0,

(BDh)

{
A (�uh, �vh) + B (�vh, �ph) = F φh

(�vh) ∀ �vh ∈ Hh,

B (�uh, �qh) = 0 ∀ �qh ∈ Q0,h,

and

(T) C u(φ, ψ) = H φ(ψ) ∀ψ ∈ H1
Γ0

(Ω),

(Th) C uh
(φh, ψh) = H φh

(ψh) ∀ψh ∈ Hφ
h .

Lemma 5.1 There exists CB,D > 0, independent of h, such that

‖(�u, �p) − (�uh, �ph)‖H×Q0

≤ CB,D

{
dist(�u, Hh) + dist(�p, Q0,h) + ‖φ − φh‖1,Ω

(
‖fB‖∞,ΩB

+ ‖fD‖∞,ΩD

)}
. (5.1)

Proof. We derive a Strang-type error estimate for (BD) and (BDh). For this we proceed similarly as in
Gatica et al. (2016, Section 4) and deduce the existence of a positive constant CB,D, independent of h,
such that

‖(�u, �p) − (�uh, �ph)‖H×Q0
≤ CB,D

{
dist(�u, Hh) + dist(�p, Q0,h) + ‖F φ − F φh

‖H′
h

}
. (5.2)

Next, according to the definition of F φ and F φh
(cf . (3.3)), and applying Cauchy–Schwarz’s

inequality, we easily deduce that

‖F φ − F φh
‖H′

h
≤ ‖φ − φh‖0,Ω

(
‖fB‖∞,ΩB

+ ‖fD‖∞,ΩD

)
. (5.3)

The proof is completed after replacing (5.3) into (5.2). �
We now derive a Céa estimate for the term ‖φ − φh‖1,Ω , focusing in the 2D case. For notational

convenience we define the following constants, all independent of the data g, fB and fD,

K1 := CSadv

{
Lfbk

+Lϑ Cδ C∗
δ ĈSadv(r) γ2 |Ω|1/2

}
, K2 := CSadv (rCs+β+ϑ2)+1 and K3 = CSadv .
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Here ĈSadv(r) and CSadv are given in (3.20) and (3.15), and Cs, Cδ , C∗
δ are the boundedness constants of

the continuous injections

is : H1(Ω) −→ L
2s

s−2 (Ω), i : H1(Ω) −→ L2/δ(Ω), iδ : Hδ(Ω) −→ Lδ∗
(Ω), (5.4)

respectively, where s > 2, δ ∈ (0, 1) and δ∗ := 2/(1 − δ). In addition, in order to handle a term in the
derivation of the Céa estimate for ‖φ − φh‖1,Ω , we will further assume that φ ∈ L∞(Ω).

Lemma 5.2 Assume that φ ∈ H1(Ω) ∩ L∞(Ω) and that the data g satisfy

K1 |g| ≤ 1

2
. (5.5)

Then, there holds

‖φ − φh‖1,Ω ≤ 2K2 dist(φ, Hφ
h ) + 2K3 ‖φ‖∞,Ω ‖u − uh‖0,Ω . (5.6)

Proof. Triangle inequality immediately gives

‖φ − φh‖1,Ω ≤ ‖φ − ϕh‖1,Ω + ‖φh − ϕh‖1,Ω ∀ϕh ∈ Hφ
h . (5.7)

Then we employ the ellipticity of the bilinear form C φh,uh
with constant α̃, and subsequently add and

subtract one term, we deduce that

α̃ ‖φh − ϕh‖2
1,Ω ≤ C φh,uh

(φh − ϕh, φh − ϕh)

≤
∣∣∣H φh

(φh − ϕh) − H φ(φh − ϕh)

∣∣∣ +
∣∣∣C φ,u(φ, φh − ϕh) − C φh,uh

(ϕh, φh − ϕh)

∣∣∣ .

(5.8)

Next, according to (3.10) and applying Cauchy–Schwarz’s inequality, we get∣∣∣H φh
(φh − ϕh) − H φ(φh − ϕh)

∣∣∣ ≤ Lfbk
|g| ‖φ − φh‖0,Ω |φh − ϕh|1,Ω . (5.9)

In turn, adding and subtracting suitable expressions and then applying Hölder’s inequality, the upper
bound of ϑ (cf . (2.5)) and its Lipschitz continuity (cf . (2.6)) and using φ ∈ L∞(Ω), we find that∣∣∣C φ,u(φ, φh − ϕh) − C φh,uh

(ϕh, φh − ϕh)

∣∣∣
≤ Lϑ ‖φ − φh‖L2q(Ω) ‖∇φ‖L2p(Ω) |φh − ϕh|1,Ω + ϑ2 |φ − ϕh|1,Ω |φh − ϕh|1,Ω

+ ‖φ‖∞,Ω ‖u − uh‖0,Ω |φh − ϕh|1,Ω + ‖φ − ϕh‖L2̃q(Ω) ‖uh‖L2̃p(Ω) |φh − ϕh|1,Ω

+ β ‖φ − ϕh‖0,Ω ‖φh − ϕh‖0,Ω ,

(5.10)

where p, q, p̃, q̃ ∈ [1, +∞) are such that 1/p + 1/q = 1 and 1/̃p + 1/̃q = 1. In this way choosing 2p and
2q as in (3.17), 2̃p and 2̃q as in (4.12), and applying the continuous embeddings i, iδ , is, estimate (3.20)
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and the fact that ‖uh‖Ls(Ω) ≤ r, it follows from (5.10) that∣∣∣C φ,u(φ, φh − ϕh) − C φh,uh
(ϕh, φh − ϕh)

∣∣∣
≤ Lϑ Cδ C∗

δ ĈSadv(r) γ2|Ω|1/2|g| ‖φ − φh‖1,Ω ‖φh − ϕh‖1,Ω

+ ϑ2 ‖φ − ϕh‖1,Ω ‖φh − ϕh‖1,Ω + r Cs ‖φ − ϕh‖1,Ω ‖φh − ϕh‖1,Ω

+ ‖φ‖∞,Ω ‖u − uh‖0,Ω ‖φh − ϕh‖1,Ω + β ‖φ − ϕh‖1,Ω ‖φh − ϕh‖1,Ω .

(5.11)

Finally, we replace (5.9) and (5.11) into (5.8). The resulting estimate is combined with (5.7), and after
recalling (from the proof of Lemma 3.2) that α̃ = C−1

Sadv and applying several algebraic manipulations,
we find that

‖φ − φh‖1,Ω ≤ K1 |g| ‖φ − φh‖1,Ω + K2 ‖φ − ϕh‖1,Ω + ‖φ‖∞,Ω ‖u − uh‖0,Ω ∀ϕh ∈ Hφ
h .

Then, we use the data constraint (5.5) and take the infimum ϕh ∈ Hφ
h , yielding (5.2). �

Remark 5.3 Extending the proof of Lemma 5.2 to the 3D case requires to modify the choice of
parameters δ and δ∗, and hence 2p and 2q, similarly as in (3.17). In turn, as discussed in Remark 4.10,
one needs to take s > 3 and then choose 2̃p and 2̃q analogously as in (4.12). This permits to invoke the

continuous injection is : H1(Ω) → L
3s

s−3 (Ω).

We now combine Lemmas 5.1 and 5.2 to derive the Céa estimate for the total error ‖(�u, �p) −
(�uh, �ph)‖H×Q0

+ ‖φ − φh‖1,Ω . Replacing the estimate for ‖φ − φh‖1,Ω given by (5.6) into the second
term on the right-hand side of (5.1), we find that

‖(�u, �p) − (�uh, �ph)‖H×Q0
≤ CB,D

{
dist(�u, Hh) + dist(�p, Q0,h)

}
+ K̃ dist(φ, Hφ

h )

+ 2CB,D‖φ‖∞,Ω

(
‖fB‖∞,ΩB

+ ‖fD‖∞,ΩD

)
‖u − uh‖0,Ω ,

where

K̃ := 2K2CB,D

(
‖fB‖∞,ΩB

+ ‖fD‖∞,ΩD

)
.

Assuming now that the data fB and fD satisfy

CB,D‖φ‖∞,Ω‖fB‖∞,ΩB
+ CB,D‖φ‖∞,Ω‖fD‖∞,ΩD

≤ 1

4
(5.12)

we can conclude that

‖(�u, �p) − (�uh, �ph)‖H×Q0
≤ 2CB,D

{
dist(�u, Hh) + dist(�p, Q0,h)

}
+ 2 K̃ dist(φ, Hφ

h ). (5.13)

Theorem 5.4 Assume that φ ∈ H1(Ω) ∩ L∞(Ω) and that the data fB, fD and g are sufficiently small
so that K1 |g| ≤ 1

2 and (5.12) hold. Then, there exists a positive constant C independent of h, such that

‖(�u, �p) − (�uh, �ph)‖H×Q0
+ ‖φ − φh‖1,Ω ≤ C

{
dist(�u, Hh) + dist(�p, Q0,h) + dist(φ, Hφ

h )
}

. (5.14)
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Proof. It follows straightforwardly from the Céa estimates (5.13) and (5.6). �
The following theorem provides the rate of convergence of our Galerkin scheme (4.2).

Theorem 5.5 Let Hh := HB
h ×HB

0,h×HD
h , Qh,0 := QB

h,0×QD
h ×QΣ

h̃
and Hφ

h , be the subspaces specified in

Section 4. In addition, let (�u, �p, φ) := ((uB, ωB, uD), (pB, pD, λ), φ) ∈ H×Q0×H1
Γ0

(Ω) and (�uh, �ph, φh)

:= ((uB
h , ωB

h , uD
h ), (pB

h , pD
h , λh̃), φh) ∈ Hh × Q0,h × Hφ

h be the solutions of the continuous and discrete
problems (3.7) and (4.2), respectively. Assume that u
 ∈ Hl(Ω
), div u
 ∈ Hl(Ω
), p
 ∈ Hl(Ω
) where

 ∈ {B, D}, ωB ∈ Hl(curl; ΩB), λ ∈ H1/2+l(Σ) and φ ∈ H1+l

Γ0
(Ω), for some l ∈ (0, 1) (when n = 2) or

l ∈ (1/2, 1) (when n = 3). Then, there exists C > 0 and C̃ > 0 independent of h and h̃ such that

‖(�u, �p) − (�uh, �ph)‖H×Q0
+ ‖φ − φh‖1,Ω

≤ Chmin{l,k+1}{‖uB‖l,ΩB
+ ‖div (uB)‖l,ΩB

+ ‖ωB‖Hl(curl;ΩB) + ‖uD‖l,ΩD

+ ‖div (uD)‖l,ΩD
+ ‖pB‖l,ΩB

+ ‖pD‖l,ΩD
+ ‖φ‖1+l,Ω

}
+ C̃h̃l‖λ‖l+1/2,Σ .

Proof. It follows directly from the Céa estimate (5.14) and the approximation properties of the finite
element spaces (see Alvarez et al., 2016b, Section 4.2.2 and Ciarlet, 1978). �

6. Numerical examples

Test 1. We begin this section with an accuracy test, where we construct smooth solutions satisfying
(2.1)–(2.3) on Ω = (0, 2) × (0, 1). The Brinkman and Darcy domains are on the left and right parts of
Ω , respectively, and are separated by the curved interface Σ defined by the parameterization

(0, 1) � t �→ (x1, x2) = (1 + 0.15[1/2 − |t − 1/2|] cos(6π t − 3π), t),

on which the normal vector is considered pointing to ΩB. The proposed exact solutions are given by

u =
(

sin(πx1) cos(πx2)− cos(πx1) sin(πx2)

)
, uB = u|ΩB

, uD = u|ΩD
, ωB = 2π sin(πx1) sin(πx2),

p = (x1 − 1/2)(x2 − 1/2), pB = p|ΩB
, pD = p|ΩD

, φ = 5

2
x2

1(2 − x1)x2(1 − x2),

from which the necessary forcing, boundary and source terms are generated. The concentration-
dependent functions are ϑ(φ) = φ + (1 − cφ)2 and fbk(φ) = cφ(1 − cφ)2, and the remaining physical
parameters assume the values c = 1/2, fB = (1, 0)2, fD = (0.1, 0)t, KB = 0.05, KD = 0.01,
β = 0.4χ |ΩB

+ 0.1χ |ΩD
, k = (0, −1)t. We recall that two different splittings of the domain boundary

∂Ω are assumed. First, the distribution of the Brinkman and Darcy boundaries follows the sketch
presented in the left panel of Fig. 2. According to (2.4), on ΓB we set slip velocities uB · n = 0 and
zero tangential vorticity (in this 2D case, it translates to fix the scalar vorticity to zero), but on Σ we
prescribe the vorticity by its exact solution. Normal Darcy velocities are fixed on ΓD: uD · n = 0.
Secondly, by construction, the concentration normal flux is zero on the left side of ΓB, which constitutes
the Neumann boundary ΓN. The remainder of ∂Ω conforms the Dirichlet boundary Γ0, where we impose
φ = 0 (see Fig. 2, right). Both domains are rendered with a small gap on the interface, for visualization
purposes.
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Fig. 2. Test 1. Domain and boundary configuration for the Brinkman–Darcy problem, where ∂Ω = ΓB ∪ ΓD (left panel), and for
the transport equation where ∂Ω = ΓN ∪ Γ0 (right). The unit normal vector on the interface points towards ΩB.

Fig. 3. Test 1. Convergence history for the lowest-order approximation of the coupled Brinkman–Darcy-transport problem.

As usual, to determine the convergence of the method we generate a sequence of successively refined
triangulations of Ω (and conforming partitions for ΩB, ΩD and Σ) and proceed to compute errors, and
they decay rates according to

e(uB) = ‖uB − uBh‖div,ΩB
, e(ωB) = ‖ωB − ωBh‖curl,ΩB

, e(uD) = ‖uD − uDh‖div,ΩD
,

e(pB) = ‖pB − pBh‖0,ΩB
, e(pD) = ‖pD − pDh‖0,ΩD

, e(λ) = ‖λ − λh‖0,Σ‖λ − λh‖1,Σ ,

e(φ) = ‖φ − φh‖1,Ω , r(·) = −2 log(e(·)/ê(·))[log(N/N̂)]−1,

where e and ê denote errors produced on two consecutive meshes associated with schemes with N
and N̂ degrees of freedom (D.o.f.), respectively. The results are collected in Fig. 3, where we plot the
decaying of individual errors with the meshsize, for the lowest-order scheme. All panels indicate an
O(h) convergence, as anticipated by Theorem 5.5. We point out that an average of seven Picard steps
(accounting for the coupling between the Brinkman–Darcy and transport problems) are required to reach
the stopping tolerance of 1e − 6, whereas an average of three Newton steps are sufficient to achieve
convergence of the inner linearization step (with a tolerance of 1e − 7) for the nonlinear advection–
diffusion problem. We also portray the approximate solutions obtained with the proposed method on a
fine mesh (see Fig. 4).

An important assumption in the solvability analysis was an additional regularity for the discrete
velocity, as stated in Hypothesis 4.4. Even if proving this assumption can be very difficult we can
at least provide numerical evidence of its validity for the finite element spaces we employ here. For
instance, taking the regularity index as s = 2.5 and obtaining approximate solutions in the same
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Fig. 4. Test 1. Approximate velocity components, vorticity, pressure and concentration, rendered on both Brinkman and Darcy
domains.

refinement levels as mentioned above (whose error history is depicted in Fig. 3), the values reported
in Table 1 are produced. The ratios between the Ls−norm of the discrete velocity and the H1−norm of
the concentration are tabulated in the last column and they suggest that the constant C̃s is indeed uniform.
These values correspond to the approximate solutions after convergence of the Picard algorithm. Taking
the last mesh refinement as an example we can also see in Table 2 how the constant C̃s evolves
throughout the nine fixed-point steps.

Test 2. Our second example addresses the applicability of the formulation and the associated
numerical scheme in the simulation of groundwater flow, where we have followed the setup adopted
in Test 4.1 of Ceşmelioğlu et al. (see also Alvarez et al., 2016b). The computational domain now
corresponds to the rectangle Ω = (0, 12) × (0, 6) (in square metres), where the Brinkman domain
(with a maximum height of 4 m) is on the top and the Darcy subdomain (with a maximum height of
2.25 m) on the bottom. The subdomains are separated by a step-shaped polygonal interface (see a sketch
in the top-left panel of Fig. 5, where we also depict sample triangular meshes). We consider μ = 1 Pa·s,
β = 0.7χ |ΩB

+0.07χ |ΩD
, and the permeabilities are again isotropic and assume the values KB = 1e−6
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Table 1 Test 1. Convergence history for velocity and concentration, and illustration of Hypothesis 4.4
for the lowest-order scheme. Here we have used s = 2.5

D.o.f. h e(uB) r(uB) e(uD) r(uD) e(φ) r(φ) ‖Sflow(φh)‖Ls(Ω) ‖φh‖1,Ω C̃s

111 0.723 0.562 – 0.371 – 0.823 – 0.644 1.791 0.5219
237 0.479 0.269 1.786 0.267 0.791 0.622 0.678 0.920 1.825 0.5700
664 0.285 0.160 0.997 0.155 1.045 0.407 0.819 1.022 1.890 0.5695
1920 0.170 0.082 1.308 0.086 1.149 0.264 0.837 0.903 1.894 0.5689
6625 0.099 0.043 1.160 0.044 1.117 0.161 0.975 1.082 1.907 0.5670
24907 0.048 0.022 0.931 0.022 0.950 0.083 1.011 1.080 1.911 0.5656
97907 0.023 0.011 0.956 0.011 0.962 0.022 1.041 1.079 1.911 0.5643
382115 0.014 0.006 1.066 0.006 1.161 0.012 1.008 1.078 1.911 0.5643

Table 2 Test 1. Illustration of Hypothesis 4.4. Variation of the constant C̃s for the lowest-order scheme
on the last refinement level

0.55012 0.56600 0.56450 0.56435 0.56435 0.56435 0.56435 0.56435 0.56435

m2, KD = 1e − 7 m2. Normal velocities are imposed everywhere on ∂Ω . On the top segment of ΓB and
in all ΓD these are simply zero, whereas on the left and right sides of the Brinkman domain we prescribe
the parabolic profiles

uB · n = 1

4
(y − 4)(y − 8), and uB · n = 3

16
(y − 4)(8 − y),

respectively, as well as the compatible vorticity ωB = 1
2 (y − 6) and ωB = 3

8 (y − 6), respectively.
Regarding the transport equation on the left side of the Brinkman domain (denoted by Γ0) we impose
a maximum solute concentration φ = φmax = 0.99, whereas zero total flux is considered on ΓN =
∂Ω \ Γ0. The nonlinear diffusion assumes the form ϑ(φ, u) = exp(− 1

4φ) + 0.01|u| + β, and the flux
is simply linear fbk(φ) = 0.001φ. We take k = (0, −1)t and assume that an external source modulates
the Brinkman flow (for instance due to rain, to wind or to the leakage of contaminants through the
top portion of the boundary that represents the surface) so we use fB = (0.01, 0.001)t. We employ
a second-order scheme resulting on a linear system of 1,517,352 unknowns for the Brinkman–Darcy
subproblem and 327,707 D.o.f. for the transport equation. Seven fixed-point iterations were needed to
reach the desired tolerance and only two Newton steps were required for the convergence of the inner
linearization (probably due to the fact that the nonlinear diffusion is in this case milder than that used
in Tests 1 and 3). The results are collected in Fig. 5, which shows flow patterns as well as the solute
entering the domain and starting to propagate towards the right.

Test 3. We finalize this section presenting a 3D computation that illustrates the use of our method in
the numerical simulation of filtering devices. Flow-rate conditions are taken similarly to those employed
in Ervin et al. (2009) and Anaya et al. (2015), namely a cylindrical geometry aligned with the y−axis,
with varying cross section, where the Brinkman domain is the region with largest radius (r = 4 cm and
length L = 6 cm), and the Darcy domain constitutes the two other sections of the device (of radii r = 2
cm and r = 3 cm, and lengths of L = 3 cm and L = 5.1 cm, respectively). We assume that there is an
inlet boundary belonging to ΓB and an outlet disk at the end of the cylinder, on ΓD.
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Fig. 5. Test 2. Sample mesh and domain configuration (top), and approximate velocity, vorticity magnitude, pressure and solute
concentration produced with a second-order scheme.

The flow is driven essentially by injection of fluid. A Poiseuille Brinkman velocity is prescribed at
the inlet, as well as compatible vorticity

uB · n = 2

(
1 − 1

4
(x2 + z2)

)
, and ωB × n =

(
− 2x

(
1 − 1

4
(x2 + z2)

)
, 0, −2x

(
1 − 1

4
(x2 + z2)

))t

,

whereas on the outlet boundary we impose a constant Darcy pressure pD = p0 = 0.1. On the remainder
of the domain boundary we set slip conditions for velocity (and zero tangential vorticity on the curved
Brinkman boundary). For the transport equation we impose a constant concentration on the inlet and
assume zero total flux everywhere else; therefore, the inlet (the disk of radius 4 m and centred at the
origin) is the boundary Γ0 and the remainder of the boundary is ΓN. The interface conditions correspond
to the ones stated in (2.4), and a depiction of the domain and boundary setup is presented in the first
panel of Fig. 6. The constitutive equations specifying the nonlinear diffusion ϑ and the unidirectional
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Fig. 6. Test 3. Sample (coarse) mesh and domain configuration (top), and approximate velocity, vorticity, pressure and solute
concentration produced with a first-order scheme.

flux fbk are simply taken as in Test 1 above, with c = 0.4. Other model parameters are chosen as

μ = 0.01, KB = 0.01, KD = 0.00001, β =
{

1
2 in ΩB,

10 in ΩD
, fD = (0, 1, 0)t,

fB = (exp(−xy) + x exp(−x2), cos(πy) − y exp(−y2), xyz − z exp(−z2))t, k = (0, 1, 0)t,
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where we note that the hydraulic conductivity is discontinuous across the interface. The domain has
been discretized with an unstructured tetrahedral mesh of 74,108 elements, and we have employed a
first-order scheme. The approximate solutions are shown in the remaining panels of Fig. 6.5. The first
observation from the velocity streamlines is that the nonsymmetric external force fB rapidly disrupts the
Poiseuille profile as the flow moves away from the inlet. We can also see that the Lagrange multiplier
enforces correctly the continuity of pressure across the interface, but that there exists a very large
Brinkman pressure and a large pressure drop is then seen in the Darcy domain. Also, the tangential
components of vorticity slowly decrease when approaching the the interface. As the flow patterns
stabilize due to the interfacial conditions the propagation of concentration also becomes very uniform.

For this problem the nonlinear coupling between flow and transport seems to be stronger than before,
as the convergence of the Picard algorithm occurred after nine iterations and the inner Newton iterations
for the transport problem converged after four steps.
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