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In this paper we develop the a posteriori error analysis of an augmented mixed-primal finite 
element method for the 2D and 3D versions of a stationary flow and transport coupled 
system, typically encountered in sedimentation–consolidation processes. The governing 
equations consist in the Brinkman problem with concentration-dependent viscosity, 
written in terms of Cauchy pseudo-stresses and bulk velocity of the mixture; coupled 
with a nonlinear advection – nonlinear diffusion equation describing the transport of the 
solids volume fraction. We derive two efficient and reliable residual-based a posteriori error 
estimators for a finite element scheme using Raviart–Thomas spaces of order k for the 
stress approximation, and continuous piecewise polynomials of degree ≤ k + 1 for both 
velocity and concentration. For the first estimator we make use of suitable ellipticity and 
inf–sup conditions together with a Helmholtz decomposition and the local approximation 
properties of the Clément interpolant and Raviart–Thomas operator to show its reliability, 
whereas the efficiency follows from inverse inequalities and localisation arguments based 
on triangle-bubble and edge-bubble functions. Next, we analyse an alternative error 
estimator, whose reliability can be proved without resorting to Helmholtz decompositions. 
Finally, we provide some numerical results confirming the reliability and efficiency of the 
estimators and illustrating the good performance of the associated adaptive algorithm for 
the augmented mixed-primal finite element method.

© 2018 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The phenomenon of gravitational sedimentation of relatively small particles within viscous fluids is of considerable im-
portance in a number of diverse applications related for instance to wastewater treatment, mineral processing, volcanology, 
or hemodynamics. In this process the suspended mixture is separated into the solid particles going to the bottom of the 
vessel and the viscous fluid remaining on the top. Using the formalism of mixtures, one can assume that both fluid and 
solid phases are superimposed continua, and regarding the problem from a macroscopic viewpoint, the governing equa-
tions involving momentum and mass conservation of the phases can be conveniently recast in the form of one momentum 
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and one mass equation for the mixture, together with a mass conservation equation for the solids concentration (see e.g. 
[10,13,35]). As the flow regime under consideration is viscous, laminar, and in the presence of a background porosity in the 
vessel, the PDE system under consideration consists of Brinkman equations with variable viscosity coupled with a nonlinear 
advection – nonlinear diffusion equation describing the transport of the volumetric fraction of the solids.

We have recently analysed in [2], the solvability of a strongly coupled flow and transport system encountered in such 
continuum-based models for sedimentation–consolidation processes. There we have considered the steady-state regime of 
the process and we have proposed an augmented variational formulation where the main unknowns given by the Cauchy 
pseudo-stress and bulk velocity of the mixture, and the solids volume fraction, which are sought in H(div; !), H1(!), and 
H1(!), respectively. Fixed point arguments, certain regularity assumptions, and some classical results concerning variational 
problems and Sobolev spaces are combined to establish the solvability of the continuous and discrete coupled formulations. 
Consequently, the rows of the Cauchy stress tensor were approximated with Raviart–Thomas elements of order k, whereas 
the velocity and solids concentration were discretised with continuous piecewise polynomials of degree ≤ k + 1. Suitable 
Strang-type estimates are employed to derive optimal a priori error estimates for the solution of the Galerkin scheme.

The purpose of this work is to provide reliable and efficient residual-based a posteriori error estimators for the steady 
sedimentation–consolidation system studied in [2]. Estimators of this kind are frequently employed to guide adaptive mesh 
refinement in order to guarantee an adequate convergence behaviour of the Galerkin approximations, even under the even-
tual presence of singularities. The global estimator η depends on local estimators ηT defined on each element T of a given 
mesh Th . Then, η is said to be efficient (resp. reliable) if there exists a constant Ceff > 0 (resp. Crel > 0), independent of 
meshsizes, such that

Ceff η + h.o.t. ≤ ∥error∥ ≤ Crel η + h.o.t. ,

where h.o.t. is a generic expression denoting one or several terms of higher order. Up to the authors knowledge, a number 
of a posteriori error estimators specifically targeted for non-viscous flow equations (e.g., Darcy) coupled with transport prob-
lems, are available in the recent literature [9,20,31,38,42]. However, only [11,32] and [3] are devoted to the a posteriori error 
analysis for coupled viscous flow-transport problems. In particular, we derive in [3], two efficient and reliable residual-based 
a posteriori error estimators for an augmented mixed-primal finite element approximation of a stationary viscous flow and 
transport problem, which serves as a prototype model for sedimentation–consolidation processes and other phenomena 
where the transport of species concentration within a viscous fluid is of interest.

In this paper, as well as in [3,4], we make use of ellipticity and inf–sup conditions together with a Helmholtz decom-
position, local approximation properties of the Clément interpolant and Raviart–Thomas operator, and known estimates 
from [8], [22], [26], [28] and [29], to prove the reliability of a residual-based estimator. Then, inverse inequalities, the lo-
calisation technique based on triangle-bubble and edge-bubble functions imply the efficiency of the estimator. Alternatively, 
we deduce a second reliable and efficient residual-based a posteriori error estimator, where the Helmholtz decomposition 
is not employed in the corresponding proof of reliability. The rest of this paper is organised as follows. In Section 2, we 
first recall from [2] the model problem and a corresponding augmented mixed-primal formulation as well as the associated 
Galerkin scheme. In Section 3, we derive a reliable and efficient residual-based a posteriori error estimator for our Galerkin 
scheme. A second estimator is introduced and analysed in Section 4. Next, the analysis and results from Section 3 and 4
are extended to the three-dimensional case in Section 5. Finally, in Section 6, our theoretical results are illustrated via some 
numerical examples, highlighting also the good performance of the scheme and properties of the proposed error indicators.

2. The sedimentation–consolidation system

Let us denote by ! ⊆ Rn , n = 2, 3 a given bounded domain with polyhedral boundary # = #̄D ∪ #̄N, with #D ∩ #N = ∅
and |#D|, |#N| > 0, and denote by ν the outward unit normal vector on #. Standard notation will be adopted for Lebesgue 
spaces Lp(!) and Sobolev spaces Hs(!) with norm ∥·∥s,! and seminorm | · |s,! . In particular, H1/2(#) is the space of traces 
of functions of H1(!) and H−1/2(#) denotes its dual. By M, M we will denote the corresponding vectorial and tensorial 
counterparts of the generic scalar functional space M. We recall that the space

H(div;!) := {τ ∈ L2(!) : divτ ∈ L2(!)} ,

equipped with the usual norm

∥τ∥2
div;! := ∥τ∥2

0,! + ∥divτ∥2
0,!

is a Hilbert space. As usual, I stands for the identity tensor in Rn×n , and | · | denotes both the Euclidean norm in Rn and the 
Frobenius norm in Rn×n .

2.1. The governing equations

The following model describes the steady state of the sedimentation–consolidation process consisting on the transport 
and suspension of a solid phase into an immiscible fluid contained in a vessel ! (cf. [2]). The flow patterns are influenced by 
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gravity and by the local fluctuations of the solids volume fraction (see also [15,14]). After elimination of the fluid pressure 
(cf. [2]), namely

p := −1
n

tr(σ ) ,

the process is governed by the following system of partial differential equations:

1
µ(φ)

σ d = ∇u , K −1u − divσ = f φ , div u = 0 in ! ,

σ̃ = ϑ(φ)∇φ − φu − fbk(φ)k , β φ − div σ̃ = g in ! ,

(2.1)

along with the following boundary conditions:

u = uD on #D , σν = 0 on #N ,

φ = 0 on #D , and σ̃ · ν = 0 on #N ,
(2.2)

where (·)d denotes the deviatoric operator. The sought quantities are the Cauchy fluid pseudo-stress σ , the average velocity 
of the mixture u, and the volumetric fraction of the solids (in short, concentration) φ. In this context, the parameter β is 
a positive constant representing the porosity of the medium, and the permeability tensor K ∈ C(!̄) := [C(!̄)]n×n and its 
inverse are symmetric and uniformly positive definite, which means that there exists αK > 0 such that

vtK −1(x)v ≥ αK |v|2 ∀ v ∈ Rn, ∀ x ∈ !.

Here, we assume that the kinematic effective viscosity, µ; the one-directional Kynch batch flux density function describing 
hindered settling, fbk; and the diffusion or sediment compressibility, ϑ ; are nonlinear scalar functions of the concentra-
tion φ. In turn, k is a vector pointing in the direction of gravity and f ∈ L∞(!), uD ∈ H1/2(#D), g ∈ L2(!) are given 
functions. For sake of the subsequent analysis, the Dirichlet datum for the concentration will be assumed homogeneous 
φD = 0; ϑ is assumed of class C1; and we suppose that there exist positive constants µ1, µ2, γ1, γ2, ϑ1, ϑ2, Lµ , Lϑ , and 
L f , such that for each s, t ∈ R there holds

µ1 ≤ µ(s) ≤ µ2 , γ1 ≤ fbk(s) ≤ γ2, ϑ1 ≤ ϑ(s) ≤ ϑ2, (2.3)

|µ(s) − µ(t)| ≤ Lµ |s − t| , |ϑ(s) − ϑ(t)| ≤ Lϑ |s − t| , and | fbk(s) − fbk(t)| ≤ L f |s − t| . (2.4)

We end this section by highlighting, as in [2] and [5], that the main advantage of using a mixed formulation in the fluid 
equations has to do with the eventual need of approximating other variables of physical interest, such as some components 
of the fluid stress tensor, the gradient of velocity, and the vorticity. Indeed, it is clear from (2.1) that ∇u and the vorticity 
γ (u) := 1

2

(
∇u − (∇u)t)

)
, can both be computed explicitly in terms of σ and φ, as 

1
µ(φ)

σ d and 
1

2µ(φ)

(
σ d − (σ d)t

)
, 

respectively, where the superscript t stands from now for the transpose of a matrix. In this way, and as we stress below 
in Section 2.3, these further unknowns are approximated directly, without resorting to any numerical differentiation of 
the discrete velocity field, thus avoiding the significative loss in accuracy caused by this procedure. Other mixed-primal 
formulations for Brinkman-transport systems using vorticity as additional unknown in the flow equations can be found in 
e.g. [7,33].

2.2. The augmented mixed-primal formulation

The homogeneous Neumann and Dirichlet boundary conditions for σ on #N and φ on #D (second and third relations of 
(2.2), respectively) suggest the introduction of the following functional spaces

HN(div;!) :=
{
τ ∈ H(div;!) : τν = 0 on #N

}
,

H1
#D

(!) :=
{
ψ ∈ H1(!) : ψ = 0 on #D

}
.

Consequently, an augmented mixed-primal formulation for our original coupled problem (2.1) reads as follows: Find 
(σ , u, φ) ∈ HN (div; !) × H1(!) × H1

#D
(!) such that

Bφ((σ , u), (τ , v)) = Fφ(τ , v) ∀(τ , v) ∈ HN(div;!) × H1(!) ,

Au(φ,ψ) = Gφ(ψ) ∀ψ ∈ H1
#D

(!) ,
(2.5)
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where

Bφ((σ , u), (τ , v)) :=
∫

!

1
µ(φ)

σ d : τ d +
∫

!

u · divτ −
∫

!

v · divσ +
∫

!

K −1u · v (2.6)

+ κ1

∫

!

(
∇u − 1

µ(φ)
σ d

)
: ∇v − κ2

∫

!

K −1u · divτ + κ2

∫

!

divσ · divτ ,

Fφ(τ , v) := ⟨τν, uD⟩#D +
∫

!

f φ · v − κ2

∫

!

f φ · divτ ,

Au(φ,ψ) :=
∫

!

ϑ(φ)∇φ · ∇ψ −
∫

!

φ u · ∇ψ +
∫

!

β φψ ∀φ, ψ ∈ H1
#D

(!) , (2.7)

Gφ(ψ) :=
∫

!

fbk(φ)k · ∇ψ +
∫

!

gψ ∀ψ ∈ H1
#D

(!) ,

and κ1, κ2 are positive parameters satisfying κ1 ∈
(

0, 2δµ1
µ2

)
and κ2 ∈

(
0, 2̃δαK

n∥K −1∥∞

)
, with δ ∈ (0, 2µ1) and ̃δ ∈

(
0, 2

n∥K −1∥∞

)
. 

Further details yielding the weak formulation (2.5), along with its fixed-point based solvability analysis can be found in [2, 
Section 3]. Nevertheless, some remarks concerning (2.5), and particularly regarding the resulting bilinear forms Bφ (cf. (2.6)) 
and Au (cf. (2.7)), are worth of being given in what follows.

First of all, we observe that, due to the use of a mixed formulation in the Brinkman problem, the Dirichlet boundary 
condition for the velocity of the fluid becomes a natural one since it appears automatically when integrating by parts the 
right hand side of the corresponding constitutive law (first equation in (2.1)). As a consequence, there is no need of imposing 
it weakly as would have been the case if a primal (instead of a dual-mixed) formulation were used, or when the dual-mixed 
approach is kept, but a Neumann boundary condition (normal component of σ ) is prescribed instead of the Dirichlet one. 
Similar comments hold for the transport equation. In fact, since a primal formulation is employed there, the homogeneous 
Dirichlet boundary condition for the concentration is simply incorporated into the definition of the space H1

#D
(!) where 

this unknown lives. However, if it were non-homogeneous and the primal approach is kept, it would become essential, 
and hence a weak imposition of it would be necessary. Alternatively, one may switch to a dual-mixed formulation for the 
transport equation as well since in this case a non-homogeneous Dirichlet boundary condition becomes natural.

On the other hand, it is also important to emphasise here the relevance of the augmentation procedure for our analysis. 
In this regard, we first recall from [2, Section 3.1] that in order to estimate the second term defining Au (cf. (2.7)), which 
is used to derive the solvability of the transport equation (second row of (2.5)), we need that u lies in H1(!). Indeed, 
this requirement arises naturally after applying the Cauchy–Schwarz inequality and the compact imbedding of H1(!) into 
L4(!) to that term. Hence, the incorporation of the identities given by the first two equations of (2.1), but tested differently, 
namely

κ1

∫

!

(
∇u − 1

µ(φ)
σ d

)
: ∇v = 0 ∀v ∈ H1(!) , (2.8)

and

κ2

⎛

⎝
∫

!

K −1u · divτ −
∫

!

divσ · divτ

⎞

⎠ = κ2

∫

!

f φ · divτ ∀τ ∈ HN(div;!) , (2.9)

is crucial for concluding the ellipticity of the bilinear form Bφ (cf. [2, proof of Lemma 3.3]) precisely with respect to the 
H(div; !) ×H1(!) norm, thus guaranteeing Galerkin stability and the associated a priori error estimates in the same product 
norm. Alternatively, a discontinuous Galerkin type scheme could also be employed, which anyway is matter of a separate 
work, but we advance that in this case stability with respect to the L2!) × L2(!) norm only would be obtained.

Furthermore, we remark that a by-side cost of the ellipticity for Bφ is the lack of symmetry of this bilinear form, which, 
asides of a couple of different signs on the right-hand side of (2.6), is mainly caused by the second and first term on the 
left-hand sides of (2.8) and (2.9), respectively. In other words, either we have symmetry or ellipticity for Bφ but not both, 
and we opted for the latter because of the consequent flexibility in choosing the finite element subspaces, fact that is further 
explained below at the end of Section 2.3.

Finally, we notice that while no additional stabilisation is imposed on the transport equation, our analysis is certainly 
restricted to the assumptions on the diffusion coefficient ϑ , namely the upper and lower bounds given in (2.3) and the 
Lipschitz-continuity hypothesis stated in (2.4). If we faced a case of very small ϑ , which would also be matter of a separate 
work, then probably suitable stabilising terms would need to be added to the corresponding formulation.
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2.3. The augmented mixed-primal finite element method

We denote by Th a regular partition of ! into triangles T (resp. tetrahedra T in R3) of diameter hT , and meshsize 
h := max

{
hT : T ∈ Th

}
. In addition, given an integer k ≥ 0, Pk(T ) denotes the space of polynomial functions on T of 

degree ≤ k, and we define the corresponding local Raviart–Thomas space of order k as RTk(T ) := Pk(T ) ⊕ Pk(T ) x, where, 
according to the notations described in Section 1, Pk(T ) = [Pk(T )]n , and x ∈ Rn . Then, the Galerkin scheme associated to 
(2.5), corresponds to: Find (σ h, uh, φh) ∈ Hσ

h × Hu
h × Hφ

h such that

Bφh ((σ h, uh), (τ h, vh)) = Fφh (τ h, vh) ∀(τ h, vh) ∈ Hσ
h × Hu

h ,

Auh (φh,ψh) =
∫

!

fbk(φh)k · ∇ψh +
∫

!

gψh ∀ψh ∈ Hφ
h , (2.10)

where the involved finite element spaces are defined as

Hσ
h :=

{
τ h ∈ HN(div;!) : ct τ h|T ∈ RTk(T ) ∀ c ∈ Rn , ∀ T ∈ Th

}
,

Hu
h :=

{
vh ∈ C(!) : vh|T ∈ Pk+1(T ) ∀ T ∈ Th

}
,

Hφ
h :=

{
ψh ∈ C(!) ∩ H1

#D
(!) : ψh|T ∈ Pk+1(T ) ∀ T ∈ Th

}
.

(2.11)

The solvability analysis and a priori error estimates for (2.10) have been derived in [2, Section 5]. In turn, as already 
announced in Section 2.1, we stress here that numerical approximations ph , (∇u)h , and γ (u)h of the pressure, the gradient 
of velocity, and the vorticity, respectively, are easily obtained through the following postprocessed formulae depending only 
on σ h and φh:

ph := −1
n

tr(σ h) , (∇u)h := 1
µ(φh)

σ d
h , and γ (u)h := 1

2µ(φh)

(
σ d

h − (σ d
h )t

)
.

Moreover, it is easy to prove that in this case there exist positive constants C1, C2, and C3, depending on n, µ1, and Lµ , 
such that, under the reasonable assumption that σ ∈ L4(!), the following a priori error estimates hold

∥p − ph∥0,! ≤ C1 ∥σ − σ h∥0,! ,

∥∇u −
(
∇u

)
h∥0,! ≤ C2

{
∥σ − σ h∥0,! + ∥φ − φh∥1,! ∥σ∥L4(!)

}
,

and

∥γ (u) − γ (u)h∥0,! ≤ C3

{
∥σ − σ h∥0,! + ∥φ − φh∥1,! ∥σ∥L4(!)

}
,

thus showing that the rates of convergence attained by σ h and φh imply those of the aforedescribed approximations for the 
additional unknowns.

At this point we also notice that another important consequence of the augmentation is given by the fact – guaranteed 
by the ellipticity of Bφ – that, not only the ones defined in (2.11), but any pair of finite element subspaces Hσ

h and Hu
h of 

HN (div; !) and H1(!), respectively, will yield the stability of (2.10). Otherwise, if instead of ellipticity the bilinear form Bφ

is chosen to be symmetric, then most likely it will be able to satisfy just continuous and discrete global inf–sup conditions, 
and hence not all the possible finite element subspaces but only some specific ones will be eligible for guaranteeing a stable 
Galerkin scheme.

3. A residual-based a posteriori error estimator

In this section we introduce a reliable and efficient residual-based a posteriori error estimator for the Galerkin scheme 
(2.10). In particular, as well as in [3], a Helmholtz decomposition will be employed in the corresponding proof of reliability. 
Even if this analysis will be restricted to the two-dimensional case using the discrete spaces from Section 2.3, an extension 
to the 3D case will be addressed in detail in Section 5, below.

Given a suitably chosen r > 0 (see [2] for details), we define the balls

W := {φ ∈ H1
#D

(!) : ∥φ∥1,! ≤ r} and Wh := {φh ∈ Hφ
h : ∥φh∥1,! ≤ r} , (3.1)

and throughout the rest of the paper we let (σ , u, φ) ∈ HN (div; !) × H1(!) × H1
#D

(!) with φ ∈ W and (σ h, uh, φh) ∈
Hσ

h × Hu
h × Hφ

h with φh ∈ Wh be the solutions of the continuous and discrete formulations (2.5) and (2.10), respectively. In 
addition, we set
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H := HN(div,!) × H1(!) , ∥(τ , v)∥H := ∥τ∥div;! + ∥v∥1,! ∀ (τ , v) ∈ H ,

and recall from [2, Theorems 3.13 and 4.7] that the following a priori estimates hold

∥(σ , u)∥H ≤ C S

{
∥uD∥1/2,#D + ∥φ∥1,! ∥ f ∥∞,!

}
,

∥(σ h, uh)∥H ≤ C S

{
∥uD∥1/2,#D + ∥φh∥1,! ∥ f ∥∞,!

}
,

where C S is a positive constant independent of φ and φh .

3.1. The local error indicator

Given T ∈ Th , we let Eh(T ) be the set of its edges, and let Eh be the set of all edges of the triangulation Th . Then we write 
Eh = Eh(!) ∪ Eh(#D) ∪ Eh(#N), where Eh(!) := {e ∈ Eh : e ⊆ !}, Eh(#D) := {e ∈ Eh : e ⊆ #D} and Eh(#N) := {e ∈ Eh : e ⊆ #N}. 
Also, for each edge e ∈ Eh we fix a unit normal vector νe := (ν1, ν2)

t , and let se := (−ν2, ν1)
t be the corresponding fixed 

unit tangential vector along e. Then, given e ∈ Eh(!) and v ∈ L2(!) such that v|T ∈ C(T ) on each T ∈ Th , we let ❏ v · νe ❑
be the corresponding jump across e, that is, ❏ v · νe ❑ := (v|T − v|T ′)|e · νe , where T and T ′ are the triangles of Th having 
e as a common edge. Similarly, given a tensor field τ ∈ L2(!) such that τ |T ∈ C(T ) on each T ∈ Th , we let ❏τ se ❑ be the 
corresponding jump across e, that is, ❏τ se ❑ := (τ |T − τ |T ′ )|e se . If no confusion arises, we will simple write s and ν instead 
se and νe , respectively.

Moreover, given scalar, vector, and tensor valued fields v , ϕ := (ϕ1, ϕ2) and τ := (τi j), respectively, we denote

curl(v) :=
(

∂v
∂x2

− ∂v
∂x1

)

, curl(ϕ) :=
(

curl(ϕ1)
t

curl(ϕ2)
t

)

, and curl(τ ) :=
(

∂τ12
∂x1

− ∂τ11
∂x2

∂τ22
∂x1

− ∂τ21
∂x2

)

.

Then we let σ̃ h := ϑ(φh)∇φh − φhuh − fbk(φh)k and define for each T ∈ Th a local error indicator as follows

θ2
T :=∥ f φh − (K −1uh − divσ h)∥2

0,T +
∥∥∥∥∇uh − 1

µ(φh)
σ d

h

∥∥∥∥
2

0,T
+ h2

T ∥g − (βφh − div σ̃ h)∥2
0,T

+ h2
T

∥∥∥∥curl
{

1
µ(φh)

σ d
h

}∥∥∥∥
2

0,T
+

∑

e∈Eh(T )∩Eh(!)

he

∥∥∥∥

#
1

µ(φh)
σ d

h s
④∥∥∥∥

2

0,e

+
∑

e∈Eh(T )∩Eh(!)

he ∥❏σ̃ h · νe ❑∥2
0,e +

∑

e∈Eh(T )∩Eh(#N)

he ∥σ̃ h · ν∥2
0,e

+
∑

e∈Eh(T )∩Eh(#D)

∥uD − uh∥2
0,e +

∑

e∈Eh(T )∩Eh(#D)

he

∥∥∥∥
duD

ds
− 1

µ(φh)
σ d

h s
∥∥∥∥

2

0,e
. (3.2)

We remark that the last term defining θ2
T requires that 

duD

ds

∣∣∣
e
∈ L2(e) for each e ∈ Eh(#D). This is fixed by assuming from 

now on that uD ∈ H1
0(#D). In turn, it is not difficult to see that each term defining θ2

T has a residual character, and hence, 
proceeding as usual, a global residual error estimator can be defined as

θ :=

⎧
⎨

⎩
∑

T ∈Th

θ2
T

⎫
⎬

⎭

1/2

. (3.3)

3.2. Reliability

Throughout the rest of the paper we assume that #N is contained in the boundary of a convex extension of !, that is, 
there exists a convex domain B such that ! ⊆ B and #N ⊆ ∂ B (see, e.g. [25, Theorem 3.2 and Figure 3.1]). Furthermore, 
according to the regularity estimate given in [2, eq. (3.24)], we also suppose from now on that g ∈ Hδ(!) for some δ ∈ (0, 1). 
Then the main result of this section is stated as follows.

Theorem 3.1. Assume that ! is a connected domain and that uD , #N , and g are as stated above. In addition, assume that the data k, 
g, ϑ , uD , and f are sufficiently small so that there holds

C4 |k| + C5 ∥g∥δ,! + C6 ϑ2 + C7 ∥uD∥1/2+δ,#D + C8 ∥ f ∥∞,! <
1
2
, (3.4)
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where the involved constants are made precise in (3.12), below. Then, there exists a constant Crel > 0, which depends only on the 
model parameters, on ∥uD∥1/2+δ,#D , ∥ f ∥∞,! , and possibly other constants, but all independent of h, such that

∥φ − φh∥1,! + ∥(σ , u) − (σ h, uh)∥H ≤ Crel θ . (3.5)

A couple of preliminary estimates aiming to prove (3.5) are given in the following two subsections.

3.2.1. A preliminary estimate for the stress and velocity error
In order to simplify the subsequent writing, we introduce in advance the following constants

C0 := 1
α(!)

, C1 := 2 C0 Cδ C̃δ Ĉ S(r)
Lµ(1 + κ2

1 )1/2

µ2
1

, C2 := C0 (1 + κ2
2 )1/2 + r C1, (3.6)

where Ĉ S(r) and Cδ , C̃δ are defined in [2, eq. (3.23) ] and [2, Lemma 3.6 and Theorem 3.10], respectively.

Lemma 3.2. Let θ2
0 :=

∑

T ∈Th

θ2
0,T , where for each T ∈ Th we set

θ2
0,T := ∥ f φh − (K −1uh − divσ h)∥2

0,T +
∥∥∥∥∇uh − 1

µ(φh)
σ d

h

∥∥∥∥
2

0,T
. (3.7)

Then there exists C̄ > 0, depending on C0 , κ1 , such that

∥(σ , u) − (σ h, uh)∥H ≤ C̄
{
θ0 + ∥Eh∥HN (div,!)′

}
+

{
C1 ∥uD∥1/2+δ,#D + C2 ∥ f ∥∞,!

}
∥φ − φh∥1,! , (3.8)

where C1 and C2 are given by (3.6), and the functional Eh ∈ HN (div, !)′ is defined by

Eh(ζ ) := ⟨ζ ν, uD⟩#D −
∫

!

1
µ(φh)

σ d
h : ζ −

∫

!

uh · divζ

− κ2

∫

!

( f φh − (K −1uh − divσ h)) · divζ ∀ ζ ∈ HN(div,!) .

(3.9)

In addition, there holds

Eh(ζ h) = 0 ∀ ζ h ∈ Hσ
h . (3.10)

Proof. Even though the present bilinear form Bφ (cf. (2.6)) and the corresponding one from [3, eq. (2.9)] differ in a couple 
of linear terms, the present proof is almost verbatim as [3, Lemma 3.2], particularly concerning the application of the 
H-ellipticity (see [2, Lemma 3.3]) of Bφ to the error (σ , u) −(σ h, uh), and the estimates for |Bφh ( · , (ζ , w)) − Bφ( · , (ζ , w))|
and |Fφ(ζ , w) − Fφh (ζ , w)|, and hence further details are omitted. ✷

Observe, according to (3.10), that for each ζ ∈ HN (div, !) we can write

Eh(ζ ) = Eh(ζ − ζ h) ∀ ζ h ∈ Hσ
h ,

and hence the upper bound of ∥Eh∥HN (div,!)′ to be derived below (see Section 3.2.3) will employ the foregoing expression 
with a suitable choice of ζ h ∈ Hσ

h .
We end this section with an alternative expression for the functional Eh , which will be used later on in Section 3.2.4

to obtain a partial estimate for ∥Eh∥HN (div,!)′ , and then in Section 4 to derive a second a posteriori error estimator. In fact, 

integrating by parts the expression 
∫

!

uh · divζ , and using the homogeneous Neumann boundary condition on #N, we find 

that Eh can be rewritten as

Eh(ζ ) := ⟨ζ ν, uD − uh⟩#D +
∫

!

(
∇uh − 1

µ(φh)
σ d

h

)
: ζ

− κ2

∫

!

( f φh − (K −1uh − divσ h)) · divζ ∀ ζ ∈ HN(div,!) .

(3.11)
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3.2.2. A preliminary estimate for the concentration error
In contrast with [3, Section 3.2.2], in Lemma 3.3 below we establish an estimate for ∥φ −φh∥1,! , whose proof, employing 

the ellipticity of the bilinear form Aφ,u [2, eq. (3.13)], is provided later on in the Appendix. The reason for using the 
aforementioned ellipticity is due to fact that the Gâteaux derivative of the nonlinear operator induced by the form Au
(cf. (2.7)) is not elliptic as it was in [3], and hence we can not apply [3, Lemma 3.4] to derive the corresponding preliminary 
bound. In light of the above, we now set the following constants

C̃ := 1
α̃

, C3 := Lϑ Cδ C̃δ Ĉ S̃(r), C4 := C̃ (L f + C3 γ2|!|1/2 ), C5 := C̃ C3,

C6 := 2 C̃, C7 := r c(!) C̃ C1, C8 := r c(!) C̃ C2, C9 := r c(!) C̄ ,

(3.12)

where Ĉ S̃(r), Cδ , C̃δ and C̄ are the constants provided by [2, eq. (3.24)], [2, Lemma 3.7, Theorem 3.10], and Lemma 3.2, 
respectively.

Lemma 3.3. Assume that the data k, g, ϑ , uD , and f are sufficiently small so that there holds

C4 |k| + C5 ∥g∥δ,! + C6 ϑ2 + C7 ∥uD∥1/2+δ,#D + C8 ∥ f ∥∞,! <
1
2
. (3.13)

Then, there exists ̂C > 0, depending on ̃C and C9 (cf. (3.12)), such that

∥φ − φh∥1,! ≤ Ĉ
{
θ0 + ∥Eh∥HN (div,!)′ + ∥Ẽh∥H1

#D
(!)′

}
, (3.14)

where θ0 and Eh are given in the statement of Lemma 3.2 and (3.9), respectively, and ̃Eh ∈ H1
#D

(!)′ is defined for each ψ ∈ H1
#D

(!)

by

Ẽh(ψ) :=
∫

!

(g − β φh)ψ −
∫

!

{
ϑ(φh)∇φh − φh uh − fbk(φh)k

}
· ∇ψ . (3.15)

In addition, there holds

Ẽh(ψh) = 0 ∀ψh ∈ Hφ
h . (3.16)

We observe here that the upper bound in the assumption (3.13) could have been taken as any constant in (0, 1). We 
have chosen 1

2 for simplicity and also in order to minimise the resulting constant Ĉ in (3.14). Furthermore, it is important 
to remark, according to (3.16), that for each ψ ∈ H1

#D
(!) there holds Ẽh(ψ) = Ẽh(ψ − ψh) ∀ ψh ∈ Hφ

h , and therefore 
∥Ẽh∥H1

#D
(!)′ will be estimated below (see Subsection 3.2.3) by employing the foregoing expression with a suitable choice of 

ψh ∈ Hφ
h .

3.2.3. A preliminary estimate for the total error
We now combine the inequalities provided by Lemmas 3.2 and 3.3 to derive a first estimate for the total error ∥φ −

φh∥1,! + ∥(σ , u) − (σ h, uh)∥H . To this end, we now introduce the constants

C(uD, f ) := Ĉ
{

C1 ∥uD∥1/2+ε,#D + C2 ∥ f ∥∞,! + 1
}

and c(uD, f ) := C̄ + C(uD, f ) ,

where C̄ and Ĉ are provided by Lemmas 3.2 and 3.3, respectively, and C1 and C2 are given by (3.6).

Theorem 3.4. Assume that

C4 |k| + C5 ∥g∥δ,! + C6 ϑ2 + C7 ∥uD∥1/2+δ,#D + C8 ∥ f ∥∞,! <
1
2
.

Then there holds

∥φ − φh∥1,! + ∥(σ , u) − (σ h, uh)∥H ≤ C(uD, f )∥Ẽh∥H1
#D

(!)′ + c(uD, f )
{
θ0 + ∥Eh∥HN (div,!)′

}
. (3.17)

Proof. The estimate (3.17) is obtained by replacing the upper bound for ∥φ − φh∥1,! , given by (3.14), into the second term 
on the right-hand side of (3.8), and then adding the result to the right-hand side of (3.14). ✷

Having established the upper bound (3.17), and in order to obtain an explicit estimate for the total error, we turn to the 
derivation of suitable upper bounds for ∥Ẽh∥H1

#D
(!)′ and ∥Eh∥HN (div,!)′ .
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3.2.4. Upper bounds for ∥Ẽh∥H1
#D

(!)′ and ∥Eh∥HN (div,!)′

We begin by recalling the Clément interpolation operator Ih : H1(!) → Xh (cf. [19]), where

Xh := {vh ∈ C(!) : vh|T ∈ P1(T ) ∀T ∈ Th},
and which satisfies the following local approximation properties of Ih (for a proof, see [19]).

Lemma 3.5. There exist constants c1, c2 > 0, independent of h, such that for all v ∈ H1(!) there hold

∥v − Ih(v)∥0,T ≤ c1hT ∥v∥1,2(T ) ∀ T ∈ Th,

and

∥v − Ih(v)∥0,e ≤ c2h1/2
e ∥v∥1,2(e) ∀ e ∈ Eh,

where 2(T ) and 2(e) are the union of all elements intersecting with T and e, respectively.

We now recall the definition of the concentration flux

σ̃ h := ϑ(φh)∇φh − φhuh − fbk(φh)k . (3.18)

Then, the following lemma provides an upper bound for ∥Ẽh∥H1
#D

(!)′ .

Lemma 3.6. Let η̃2 :=
∑

T ∈Th

η̃2
T , where for each T ∈ Th we set

η̃2
T := h2

T ∥g − (βφh − div σ̃ h)∥2
0,T +

∑

e∈Eh(T )∩Eh(!)

he ∥❏σ̃ h · νe ❑∥2
0,e +

∑

e∈Eh(T )∩Eh(#N)

he ∥σ̃ h · ν∥2
0,e .

Then there exists c > 0, independent of h, such that

∥Ẽh∥H1
#D

(!)′ ≤ c η̃ .

Proof. It corresponds to a slight modification in the proof of [3, Lemma 3.8]. ✷

Our next goal is to provide an upper bound for ∥Eh∥HN (div,!)′ (cf. (3.9)), which, being less straightforward than 
Lemma 3.6, requires several preliminary results. To this end, we start by introducing the space

H1
#N

(!) :=
{
ϕ ∈ H1(!) : ϕ = 0 on #N

}
,

and establishing a suitable Helmholtz decomposition of our space HN (div, !).

Lemma 3.7. Assume that ! is a connected domain and that #N is contained in the boundary of a convex extension of !. Then, for each 
ζ ∈ HN (div, !), there exist τ ∈ H1(!) and χ ∈ H1

#N
(!) such that

ζ = τ + curl(χ) in ! , (3.19)

and

∥τ∥1,! + ∥χ∥1,! ≤ C ∥ζ∥div,! , (3.20)

with a positive constant C independent of ζ .

Proof. See [3, Lemma 3.9]. ✷

We continue our analysis by introducing the following finite element subspace of H#N (!)

Xh,N :=
{
ϕh ∈ C(!) : ϕh|T ∈ P1(T ) ∀ T ∈ Th, ϕh = 0 on #N

}
,

and considering, analogously as before, the Clément interpolation operator Ih,N : H#N (!) → Xh,N . In addition, we let 
3h : H1(!) → Hσ

h be the Raviart–Thomas interpolation operator (see [12], [34]), which, according to its characterisation 
properties (see e.g. [24, Section 3.4.1]), verifies
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div(3h(τ̄ )) = Ph(divτ̄ ) ∀ τ̄ ∈ H1(!), (3.21)

where Ph : L2(!) → Qh is the L2(!)-orthogonal projector and

Qh :=
{

v ∈ L2(!) : v|T ∈ Pk(T ) ∀ T ∈ Th
}
.

Further approximation properties of 3h are summarised as follows (see [24, Lemmas 3.16 and 3.18]).

Lemma 3.8. There exist c3, c4 > 0, independent of h, such that for all τ̄ ∈ H1(!) there holds

∥τ̄ − 3h(τ̄ )∥0,T ≤ c3 hT ∥τ̄∥1,T ∀ T ∈ Th ,

and

∥(τ̄ − 3h(τ̄ ))ν∥0,e ≤ c4 h1/2
e ∥τ̄∥1,Te ∀ e ∈ Eh(!) ∪ Eh(#D) ,

where Te is a triangle of Th containing the edge e on its boundary.

Next, given ζ ∈ HN (div, !) and its Helmholtz decomposition (3.19), we define χh := Ih,N(χ), and set

ζ h := 3h(τ ) + curl(χh) ∈ Hσ
h (3.22)

as its associated discrete Helmholtz decomposition. Then, from (3.19) and (3.22), it follows that

ζ − ζ h = τ − 3h(τ ) + curl(χ − χh) .

Therefore, according to (3.9) and (3.10), we deduce that

Eh(ζ ) = Eh(ζ − ζ h) = Eh(τ − 3h(τ )) + Eh(curl(χ − χh)) . (3.23)

Notice from (3.23) that, in order to estimate ∥Eh∥HN (div,!)′ , it only remains to bound |Eh(τ −3h(τ ))| and |Eh(curl(χ −χh))|
in terms of a multiple of ∥ζ∥div,! , which is done in the rest of the present Section 3.2.4. To this end, we now recall from [21]
the following integration by parts formula on the boundary.

Lemma 3.9. There holds

⟨curlχ ν,φ⟩ = −⟨dφ

ds
,χ ⟩ ∀χ ,φ ∈ H1(!). (3.24)

Proof. It follows from suitable applications of the Green formulae provided in [30, Chapter I, eq. (2.17) and Theo-
rem 2.11]. ✷

Lemma 3.10. Let θ2
1 :=

∑

T ∈Th

θ2
1,T , where for each T ∈ Th we set

θ2
1,T := h2

T

∥∥∥∥curl
{

1
µ(φh)

σ d
h

}∥∥∥∥
2

0,T
+

∑

e∈Eh(T )∩Eh(!)

he

∥∥∥∥

#
1

µ(φh)
σ d

h s
④∥∥∥∥

2

0,e

+
∑

e∈Eh(T )∩Eh(#D)

he

∥∥∥∥
duD

ds
− 1

µ(φh)
σ d

h s
∥∥∥∥

2

0,e
.

Then there exists c > 0, independent of h, such that

|Eh(curl(χ − χh)| ≤ c θ1 ∥ζ∥div,! . (3.25)

Proof. See [3, Lemma 3.11]. ✷

Lemma 3.11. Let θ2
2 :=

∑

T ∈Th

θ2
2,T , where for each T ∈ Th we set

θ2
2,T := h2

T

∥∥∥∥∇uh − 1
µ(φh)

σ d
h

∥∥∥∥
2

0,T
+ ∥ f φh − (K −1uh − divσ h)∥2

0,T +
∑

e∈Eh(T )∩Eh(#D)

he ∥uD − uh∥2
0,e .

Then there exists c > 0, independent of h, such that

|Eh(τ − 3h(τ ))| ≤ c θ2 ∥ζ∥div,! . (3.26)
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Proof. Using the alternative definition of the functional Eh (cf. (3.11)), applying the identity (3.21), and denoting by I a 
generic identity operator, we find that

Eh(τ − 3h(τ )) = ⟨(τ − 3h(τ ))ν, uD − uh⟩#D +
∫

!

(
∇uh − 1

µ(φh)
σ d

h

)
: (τ − 3h(τ ))

− κ2

∫

!

( f φh − (K −1uh − divσ h)) · (I − Ph)(divτ ).

(3.27)

Next, the first two terms on the right-hand side of (3.27) are simply bounded by applying the Cauchy–Schwarz in L2(#D)

and L2(!), and then employing the approximation properties of 3h provided by Lemma 3.8. In turn, for the corresponding 
third term, it suffices to see, thanks to the Cauchy–Schwarz inequality and the stability estimate (3.20), that

∣∣∣∣∣∣

∫

!

( f φh − (K −1uh − divσ h)) · (I − Ph)(divτ ))

∣∣∣∣∣∣

≤ ∥ f φh − (K −1uh − divσ h)∥0,! ∥divτ∥0,! ≤ ∥ f φh − (K −1uh − divσ h)∥0,! ∥ζ∥div,! ,

which ends the proof. ✷

By virtue of Lemmas 3.10 and 3.11 we deduce the following upper bound for ∥Eh∥HN (div,!)′ .

Lemma 3.12. There exists c > 0, independent of h, such that

∥Eh∥HN (div,!)′ ≤ c
{
θ1 + θ2

}
.

Proof. It follows straightforwardly from (3.23) and the upper bounds (3.25) and (3.26). ✷

At this point we remark that the terms h2
T ∥∇uh − 1

µ(φh)σ
d
h ∥2

0,T and he∥uD − uh∥2
0,e , which appear in the definition 

of θ2
2,T (cf. Lemma 3.11), are dominated by ∥∇uh − 1

µ(φh)σ
d
h ∥2

0,T and ∥uD − uh∥2
0,e , respectively, which form part of θ2

0,T
(cf. (3.7)). Therefore, the reliability estimate (3.5) (cf. Theorem 3.1) is a direct consequence of Theorem 3.4, the definition of 
θ0 (cf. Lemma 3.2), and Lemmas 3.6, 3.10, 3.11, and 3.12.

We close this section by mentioning that the assumption (3.4) on the data ϑ , k, g , uD , and f , which, as shown through-
out the foregoing analysis, is a key estimate to derive (3.5), is, unfortunately, unverifiable in practice. In fact, while the data 
are certainly known in advance, the constants C4, C5, C6, C7, C8 involved in that condition (cf. (3.12)), which in turn are 
expressed in terms of the previous constants C1 and C2 (cf. (3.6)), depend all on boundedness and regularity constants 
of operators, as well as on parameters, some of which are not explicitly calculable, and hence it is not possible to check 
whether (3.4) is indeed satisfied or not. This is, however, a quite common fact arising in the analysis of many nonlinear 
problems, and only in very particular cases (usually related to simple geometries of the domain) it could eventually be 
circumvented.

3.3. Efficiency

The main result of this section is stated as follows.

Theorem 3.13. Assume that ∇φ ∈ L4(!). Then, there exists a constant Ceff > 0, which depends only on parameters, ∥K −1∥∞ , |k|, 
∥uD∥1/2,#D , ∥ f ∥∞,! , ∥∇φ∥L4(!) and other constants, all them independent of h, such that

Ceff θ ≤ ∥φ − φh∥1,! + ∥u − uh∥1,! + ∥div(σ − σ h)∥0,! +
∥∥∥∥

1
µ(φ)

σ d − 1
µ(φh)

σ d
h

∥∥∥∥
0,!

+ h.o.t. (3.28)

where h.o.t. stands for one or several terms of higher order. Moreover, under the assumption that σ ∈ L4(!), there exists a constant 
Ceff > 0, which depends only on parameters, ∥K −1∥∞ , |k|, ∥uD∥1/2,#D , ∥ f ∥∞,! , ∥σ∥L4(!) , ∥∇φ∥L4(!) and other constants, all them 
independent of h, such that

Ceff θ ≤ ∥φ − φh∥1,! + ∥(σ , u) − (σ h, uh)∥H + h.o.t. (3.29)

In the subsequent analysis we assume for simplicity, but without loss of generality, that the nonlinear functions µ, 
ϑ , and fbk are such that 

1
µ(φh)

, ϑ(φh), fbk(φh), and hence σ̃ h as well, are all piecewise polynomials. In addition, we 
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assume that the data uD and g are piecewise polynomials. Otherwise, and if µ−1, ϑ , fbk, uD, and g are sufficiently smooth, 
higher order terms given by the errors arising from suitable polynomial approximations of these expressions and functions 
would appear in (3.28) and (3.29) (cf. Theorem 3.13), which explains the eventual h.o.t. in these expressions. In this regard, 
and similarly as observed in [3], we remark that (3.28) constitutes a quasi-efficiency estimate for the global residual error 
estimator θ (cf. (3.3)). Indeed, the fact that the expression appearing on the right-hand side of (3.28) is not exactly the error, 
but part of it plus the nonlinear term given by ∥ 1

µ(φ)σ
d − 1

µ(φh)σ
d
h ∥0,! , explains the quasi-efficiency concept employed here. 

Nevertheless, we show at the end of this section that, under the assumption that σ ∈ L4(!), the latter can be bounded by 
∥σ − σ h∥0,! + ∥φ − φh∥1,! , thus yielding the efficiency estimate given by (3.29).

In order to prove (3.28) and (3.29), in the rest of this section we derive suitable upper bounds for the ten terms defining 
the local error indicator θ2

T (cf. (3.2)). We begin by observing, thanks to the fact that f φ = K −1u − divσ in !, that there 
holds

∥ f φh − (K −1uh − divσ h)∥2
0,T ≤ 2∥ f ∥2

∞,! ∥φ − φh∥2
0,T

+4∥K −1∥2
∞ ∥u − uh∥2

0,T + 4∥div(σ − σ h)∥2
0,T .

(3.30)

On the other hand, using that ∇u = 1
µ(φ)σ

d in !, u = uD on #D, and proceeding as in [3, Section 3.3], we deduce that

∥∥∥∥∇uh − 1
µ(φh)

σ d
h

∥∥∥∥
2

0,T
≤ 2∥∇u − ∇uh∥2

0,T + 2
∥∥∥∥

1
µ(φ)

σ d − 1
µ(φh)

σ d
h

∥∥∥∥
2

0,T
(3.31)

and
∑

e∈Eh(#D)

∥uD − uh∥2
0,e ≤ c2

0 ∥u − uh∥2
1,! , (3.32)

where c0 is the norm of the trace operator in H1(!).
The efficiency estimates for the remaining six terms given in (3.3), are provided next. To this end, we proceed as in [17]

and [18] (see also [23]), and apply the localisation technique (see [41]) based on triangle-bubble and edge-bubble functions, 
together with extension operators, and inverse inequalities. In what follows, given e ∈ Eh(!), ωe denotes the union of the 
two triangles in Th having e as an edge, whereas for each e in Eh(#D) ∪ Eh(#N) we let Te be the triangle of Th having e as 
an edge.

In turn, the following lemma, whose proof make use of the estimates for the bubble functions and the inverse inequality, 
will be required for the terms involving the curl operator and the tangential jumps across the edges of Th .

Lemma 3.14. Let ρh ∈ L2(!) be a piecewise polynomial of degree k ≥ 0 on each T ∈ Th. In addition, let ρ ∈ L2(!) be such that 
curl(ρ) = 0 on each T ∈ Th. Then, there exist c, ̃c > 0, independent of h, such that

∥curl(ρh)∥0,T ≤ c h−1
T ∥ρ − ρh∥0,T ∀ T ∈ Th

and

∥❏ρhse ❑∥0,e ≤ c̃ h−1/2
e ∥ρ − ρh∥0,ωe ∀ e ∈ Eh(!) .

Proof. For the first estimate we refer to [17, Lemma 4.3], whereas the second one follows from a slight modification of the 
proof of [17, Lemma 4.4]. Further details are omitted. ✷

We now provide upper bounds for three other terms defining θ2
T .

Lemma 3.15. There exist constants ̃c1, ̃c2, ̃c3 > 0, independent of h such that

h2
T

∥∥∥∥curl
{

1
µ(φh)σ

d
h

}∥∥∥∥
2

0,T
≤ c̃1

∥∥∥∥
1

µ(φ)σ
d − 1

µ(φh)σ
d
h

∥∥∥∥
2

0,T
∀ T ∈ Th,

he

∥∥∥∥

#
1

µ(φh)σ
d
h s

④∥∥∥∥
2

0,e
≤ c̃2

∥∥∥∥
1

µ(φ)σ
d − 1

µ(φh)σ
d
h

∥∥∥∥
2

0,ωe

∀ e ∈ Eh(!) ,

he

∥∥∥∥
duD
ds − 1

µ(φh)σ
d
h s

∥∥∥∥
2

0,e
≤ c̃3

∥∥∥∥
1

µ(φ)σ
d − 1

µ(φh)σ
d
h

∥∥∥∥
2

0,Te

∀ e ∈ Eh(#D).

Proof. For the first two estimates it suffices to apply Lemma 3.14 to ρh := 1
µ(φh)σ

d
h and ρ := 1

µ(φ)σ
d = ∇u, whereas for 

the third one we proceed similarly as in the proof of [28, Lemma 4.15], by replacing g, #, and 1
µσ d

h in [28] by uD, #D, and 
1

µ(φh)σ
d
h , respectively. ✷
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We now aim to provide upper bounds for the three terms completing the definition of the local error indicator θ2
T

(cf. (3.2)). This requires, however, the preliminary result given by the following a priori estimate for the error ∥σ̃ − σ̃ h∥2
0,T .

Lemma 3.16. There exists C > 0, depending on ϑ2 , L f (cf. (2.3), (2.4)), and |k|, such that

∥σ̃ − σ̃ h∥2
0,T ≤ C

{
∥φ − φh∥2

1,T + ∥u(φ − φh)∥2
0,T + ∥φh(u − uh)∥2

0,T + ∥(ϑ(φ) − ϑ(φh))∇φ∥2
0,T

}
. (3.33)

Proof. Employing the definitions of σ̃ (cf. (2.1)) and σ̃ h (cf. (3.18)), applying the triangle inequality, and using the Lipschitz 
continuity assumption on fbk (cf. (2.4)), but restricted to each T ∈ Th instead of !, we obtain that

∥σ̃ − σ̃ h∥2
0,T ≤ 2

{
∥ϑ(φ)∇φ − ϑ(φh)∇φh∥2

0,T + 2 L2
f |k|2 ∥φ − φh∥2

0,T

+ 4∥u(φ − φh)∥2
0,T + 4∥φh(u − uh)∥2

0,T

}
.

(3.34)

In turn, applying Cauchy–Schwarz’s inequality and the upper bound for ϑ (cf. (3.13)), we deduce that

∥ϑ(φ)∇φ − ϑ(φh)∇φh∥2
0,T ≤ 2∥(ϑ(φ) − ϑ(φh))∇φ∥2

0,T + 2ϑ2
2 ∥∇φ − ∇φh∥2

0,T . (3.35)

In this way, (3.34) and (3.35) imply (3.33), which finalises the proof. ✷

We consider important to remark here that, due to the dependence on φ (instead of |∇φ| as in [3]) of the diffusivity ϑ , 
the first term of our nonlinear operator Au is not necessarily Lipschitz-continuous (as it was the case for the corresponding 
nonlinear operator in [3, eq. (2.11)]) and hence, in contrast with [3, Lemma 3.19], now the term ∥(ϑ(φ) − ϑ(φh))∇φ∥2

0,T
appears in the estimate (3.33) of Lemma 3.16. The treatment of such additional term will be postponed to Lemma 3.18.

We now establish the aforementioned efficiency estimates.

Lemma 3.17. There exist ̃c4, ̃c5, ̃c6 > 0, which depend only on ϑ2 , L f , β (cf. (2.3), (2.4), (2.1)), |k|, and other constants, all them 
independent of h, such that

h2
T ∥g − (βφh − div σ̃ h)∥2

0,T ≤ c̃4

{
∥φ − φh∥2

1,T + ∥u(φ − φh)∥2
0,T

+∥φh(u − uh)∥2
0,T + ∥(ϑ(φ) − ϑ(φh))∇φ∥2

0,T + h2
T ∥φ − φh∥2

0,T

}
∀ T ∈ Th ,

(3.36)

he ∥❏σ̃ h · νe ❑∥2
0,e ≤ c̃5

∑

T ⊆ωe

{
∥φ − φh∥2

1,T + ∥u(φ − φh)∥2
0,T + ∥φh(u − uh)∥2

0,T

+∥(ϑ(φ) − ϑ(φh))∇φ∥2
0,T + h2

T ∥φ − φh∥2
0,T

}
∀ e ∈ Eh(!) ,

(3.37)

and

he ∥σ̃ h · ν∥2
0,e ≤ c̃6

{
∥φ − φh∥2

1,Te
+ ∥u(φ − φh)∥2

0,Te
+ ∥φh(u − uh)∥2

0,Te

+∥(ϑ(φ) − ϑ(φh))∇φ∥2
0,Te

+ h2
Te

∥φ − φh∥2
0,Te

}
∀ e ∈ Eh(#N) .

(3.38)

Proof. The estimate (3.36) follows from an adaptation of the proof of [3, Lemma 3.22] by using the properties of the bubble 
functions, the integration by parts procedure, the Cauchy–Schwarz inequality, and the inverse estimate. We omit further 
details. In turn, (3.37) and (3.38) were established in [3, Lemmas 3.21 and 3.22]. ✷

In order to complete the proof of global efficiency given by (3.28), it only remains to estimate properly the three terms: 
∥u(φ − φh)∥2

0,T , ∥φh(u − uh)∥2
0,T and ∥(ϑ(φ) − ϑ(φh))∇φ∥2

0,T , appearing in the upper bounds provided by the last four 
lemmas, which is indeed the purpose of the following lemma, and whose proof is provided in the Appendix.

Lemma 3.18. There exist positive constants ̃c7, ̃c8 , independent of h, such that
∑

T ∈Th

∥u (φ − φh)∥2
0,T ≤ c̃7 ∥φ − φh∥2

1,! and
∑

T ∈Th

∥φh(u − uh)∥2
0,T ≤ c̃8 ∥u − uh∥2

1,!, (3.39)
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where ̃c7 depends on ∥uD∥1/2,#D , ∥ f ∥∞,! and r (cf. (3.1)), and ̃c8 depends on r. In addition, assuming ∇φ ∈ L4(!), there exists a 
positive constant ̃c9 , independent of h, such that

∑

T ∈Th

∥(ϑ(φ) − ϑ(φh))∇φ∥2
0,T ≤ c̃9 ∥φ − φh∥2

1,! , (3.40)

where ̃c9 depends on Lϑ (cf. (2.4)) and ∥∇φ∥L4(!) .

By virtue of the estimates (3.30), (3.31), (3.32), Lemmas 3.15, and 3.17, and the final estimates given by (3.39) and (3.40), 
we deduce (3.28). Finally, assuming now that σ ∈ L4(!) and proceeding as at the end of the proof of [3, Theorem 3.13], we 
find that

∥∥∥∥
1

µ(φ)
σ d − 1

µ(φh)
σ d

h

∥∥∥∥
0,!

≤ C
{
∥σ − σ h∥0,! + ∥φ − φh∥1,!

}
, (3.41)

where C is a positive constant, independent of h, that depends only on µ1 (cf. (2.3)), Lµ (cf. (2.4)) and ∥σ∥L4(!) . In this 
way, combining (3.41) and (3.28), we arrive at (3.29), which completes the proof of Theorem 3.13.

4. A second residual-based a posteriori error estimator

In this section we describe another a posteriori error estimator for our augmented mixed-primal finite element scheme 
(2.10), with the same discrete spaces introduced in the Section 2.3. In turn, the reliability of our new estimator can be 
proved without resorting to Helmholtz decompositions. More precisely, this second estimator arises simply employing the 
alternative definition of the functional Eh (cf. (3.11)) and bounding ∥Eh∥HN (div,!)′ in the preliminary estimate for the total 
error given by (3.17) (cf. Theorem 3.4). Then, with the same notations and discrete spaces introduced in Sections 2 and 3, 
we now set for each T ∈ Th the local error indicator

θ̃2
T := ∥ f φh − (K −1uh − divσ h)∥2

0,T +
∥∥∥∥∇uh − 1

µ(φh)
σ d

h

∥∥∥∥
2

0,T
+ h2

T ∥g − (βφh − div σ̃ h)∥2
0,T

+
∑

e∈Eh(T )∩Eh(!)

he ∥❏σ̃ h · νe ❑∥2
0,e +

∑

e∈Eh(T )∩Eh(#N)

he ∥σ̃ h · ν∥2
0,e +

∑

e∈Eh(T )∩Eh(#D)

∥uD − uh∥2
0,e ,

(4.1)

and define the following global residual error estimator

θ̃
2 :=

∑

T ∈Th

θ̃2
T + ∥uD − uh∥2

1/2,#D
. (4.2)

Then, it is not difficult to establish quasi-local reliability and efficiency for the estimator θ̃ . The name quasi-local refers 
here to the fact that the last term defining ̃θ can not be decomposed into local quantities associated to each triangle T ∈ Th , 
unless it is either conveniently bounded or previously modified, as we explain in what follows. In fact, in order to use the 
indicator ̃θ (cf. (4.2)) in an adaptive algorithm that solves (2.10), we need to estimate the expression ∥uD −uh∥2

1/2,#D
through 

local terms. To this end, as well as in [3], we now employ an interpolation argument and replace the aforementioned 
expression by a suitable upper bound, which yields a reliable and fully local a posteriori error estimate.

Theorem 4.1. Assume that the data k, g, ϑ , uD , and f are sufficiently small so that there holds

C4 |k| + C5 ∥g∥δ,! + C6 ϑ2 + C7 ∥uD∥1/2+δ,#D + C8 ∥ f ∥∞,! <
1
2
,

where C4 , C5 , C6 , C7 and C8 are the constants given in (3.12). In turn, let ̂θ2 :=
∑

T ∈Th

θ̂2
T , where for each T ∈ Th we set

θ̂2
T := ∥ f φh − (K −1uh − divσ h)∥2

0,T +
∥∥∥∥∇uh − 1

µ(φh)
σ d

h

∥∥∥∥
2

0,T
+ h2

T ∥g − (βφh − div σ̃ h)∥2
0,T

+
∑

e∈Eh(T )∩Eh(!)

he ∥❏σ̃ h · νe ❑∥2
0,e +

∑

e∈Eh(T )∩Eh(#N)

he ∥σ̃ h · ν∥2
0,e +

∑

e∈Eh(T )∩Eh(#D)

∥uD − uh∥2
1,e .

Then, there exists a constant Ĉrel > 0, which depends only on parameters, ∥uD∥1/2+δ,#D , ∥ f ∥∞,! and other constants, all them 
independent of h, such that

∥φ − φh∥2
1,! + ∥(σ , u) − (σ h, uh)∥2

H ≤ Ĉrel θ̂
2
.
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Proof. The proof reduces to bound the term ∥uD − uh∥1/2,#D . To this end, it suffices to apply the fact that H1/2(#D) is the 
interpolation space with index 1/2 between H1(#D) and L2(#D), and proceed as in [3, Theorem 4.3]. ✷

5. Residual-based a posteriori error estimators: the 3D case

In this section we extend the results from Sections 3 and 4 to the three-dimensional version of (2.10). Analogously, as 
in Section 3, given a tetrahedron T ∈ Th , we let Eh(T ) be the set of its faces, and let Eh be the set of all faces of the 
triangulation Th . Then, we write Eh = Eh(!) ∪ Eh(#), where Eh(!) := {e ∈ Eh : e ⊆ !} and Eh(#) := {e ∈ Eh : e ⊆ #}. Also, for 
each face e ∈ Eh we fix a unit normal νe to e, so that given τ ∈ L2(!) such that τ |T ∈ C(T ) on each T ∈ Th , and given 
e ∈ Eh(!), we let ❏τ ×νe ❑ be the corresponding jump of the tangential traces across e, that is ❏τ ×νe ❑ := (τ |T −τ |T ′)|e ×νe , 
where T and T ′ are the elements of Th having e as a common face. In what follows, when no confusion arises, we simple 
write ν instead of νe .

Now, we recall that the curl of a 3D vector v := (v1, v2, v3) is the 3D vector

curl(v) = ∇ × v :=
(

∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)

,

and that, given a tensor function τ := (τi j)3×3, the operator curl denotes curl acting along each row of τ , and τ × ν is a 
tensor whose rows are the tangential components of each row of τ , that is,

curl(τ ) :=

⎛

⎜⎝
curl(τ11,τ12,τ13)

curl(τ21,τ22,τ23)

curl(τ31,τ32,τ33)

⎞

⎟⎠ , and τ × ν :=

⎛

⎜⎝
(τ11,τ12,τ13) × ν

(τ21,τ22,τ23) × ν

(τ31,τ32,τ33) × ν

⎞

⎟⎠ .

We now set for each T ∈ Th the local a posteriori error indicator θ2
T as follows

θ2
T :=∥ f φh − (K −1uh − divσ h)∥2

0,T +
∥∥∥∥∇uh − 1

µ(φh)
σ d

h

∥∥∥∥
2

0,T
+ h2

T ∥g − (βφh − div σ̃ h)∥2
0,T

+ h2
T

∥∥∥∥curl
{

1
µ(φh)

σ d
h

}∥∥∥∥
2

0,T
+

∑

e∈Eh(T )∩Eh(!)

he

∥∥∥∥

#
1

µ(φh)
σ d

h × ν

④∥∥∥∥
2

0,e

+
∑

e∈Eh(T )∩Eh(!)

he ∥❏σ̃ h · νe ❑∥2
0,e +

∑

e∈Eh(T )∩Eh(#N)

he ∥σ̃ h · ν∥2
0,e

+
∑

e∈Eh(T )∩Eh(#D)

∥uD − uh∥2
0,e +

∑

e∈Eh(T )∩Eh(#D)

he

∥∥∥∥∇uD × ν − 1
µ(φh)

σ d
h × ν

∥∥∥∥
2

0,e
, (5.1)

whereas θ̃2
T stays exactly as in (4.1). In this way, the corresponding global a posteriori error estimators are defined as (3.3)

and (4.2), that is

θ 2 :=
∑

T ∈Th

θ2
T and θ̃

2 :=
∑

T ∈Th

θ̃2
T + ∥uD − uh∥2

1/2,#D
.

We now establish the analogue of Theorem 3.1.

Theorem 5.1 (Reliability of θ ). Assume that ! is a connected domain and that #N is the boundary of a convex extension of !. In 
addition, assume that the data k, g, ϑ , uD , and f are sufficiently small so that there holds

C4 |k| + C5 ∥g∥δ,! + C6 ϑ2 + C7 ∥uD∥1/2+δ,#D + C8 ∥ f ∥∞,! <
1
2
,

where C4 , C5 , C6 , C7 and C8 are the constants given below in (3.12). Then, there exists a constant Crel > 0, which depends only on 
parameters, ∥uD∥1/2+δ,#D , ∥ f ∥∞,! , and other constants, all them independent of h, such that

∥φ − φh∥1,! + ∥(σ , u) − (σ h, uh)∥H ≤ Crel θ .

The proof of Theorem 5.1 follows from a very similar analysis to the Section 3.2, except in a few points to be described 
throughout the following discussion. Indeed, we first need to use a 3D version of the stable Helmholtz decomposition, 
provided by Lemma 3.7, which was established recently in [25, Theorem 3.2]. We remark that the proof of [25, Theorem 3.2]
makes use of several estimates available in [6] and combines similar arguments to those from the proofs of [25, Theorem 3.1]
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and [3, Lemma 3.9]. Then, the associated discrete Helmholtz decomposition and the functional Eh are set and rewritten 
exactly as in (3.22) and (3.23), respectively. Secondly, in order to derive the upper bound to ∥Eh∥HN (div,!)′ , we need to 
employ the 3D analogue of the integration by parts formula on the boundary given by (3.24) (cf. Lemma 3.9). In fact, by 
employing the identities from [30, Chapter I, eq. (2.17) and Theorem 2.11], we find that in the 3D case, there holds

⟨curlχ ν,φ⟩ = −⟨∇φ × ν,χ ⟩ ∀χ ∈ H1(!), ∀φ ∈ H1(!). (5.2)

On the other hand, the integration by parts formula on each tetrahedron T ∈ Th , which is employed in the proof of the 3D 
analogue of Lemma 3.10 (see also [3, Lemma 3.11]), becomes (cf. [30, Chapter I, Theorem 2.11])

∫

T

curlτ : χ −
∫

T

τ : curlχ = ⟨τ × ν,χ ⟩∂T ∀τ ∈ H(curl;!), ∀χ ∈ H1(!), (5.3)

where ⟨·, ·⟩∂T is the duality pairing between H−1/2(T ) and H1/2(T ), and, as usual, H(curl; !) corresponds to the space 
of tensors in L2(!) whose curl belongs to L2(!). Notice that the identities (5.2) and (5.3) explain the appearing of the 
expressions 

1
µ(φh)

σ d
h × ν and ∇uD × ν − 1

µ(φh)
σ d

h × ν in the 3D definition of θ (cf. (5.1)). Then, we have the following 

result.

Theorem 5.2 (Reliability of ̃θ ). Assume that the data k, g, ϑ , uD , and f are sufficiently small so that there holds

C4 |k| + C5 ∥g∥δ,! + C6 ϑ2 + C7 ∥uD∥1/2+δ,#D + C8 ∥ f ∥∞,! <
1
2
,

where C4 , C5 , C6 , C7 and C8 are the constants given in (3.12). Then, there exists a constant C̃rel > 0, which depends only on 
∥uD∥1/2+δ,#D , ∥ f ∥∞,! and other constants, all them independent of h, such that

∥φ − φh∥2
1,! + ∥(σ , u) − (σ h, uh)∥2

H ≤ C̃rel θ̃
2
.

We end this section by remarking that the efficiency of the estimators θ and θ̃ follows as in Sections 3.3 and 4. In par-
ticular, we remark that the 3D version of estimates provided in Lemmas 3.14 and 3.15 can be derived from [27, Lemmas 4.9, 
4.10, 4.11 and 4.13].

6. Numerical tests

This section serves to illustrate the properties of the estimators introduced in Sections 3–5. Fixed point iterations were 
used for the linearisation of the coupled mixed-primal scheme, and a residual tolerance of 1e–7 was prescribed for the 
termination of the Picard algorithm. All linear solves are performed with the unsymmetric multifrontal direct solver MUMPS. 
In addition, all tests in this Section use a classical adaptive mesh refinement procedure based on the equi-distribution of the 
error indicators, where the diameter of each element in the new adapted mesh (contained in a generic element K on the 
initial coarse mesh) is proportional to the diameter of the initial element times the ratio η̄h

ηK
, where η̄h is the mean value 

of a given indicator η over the initial mesh (cf. [40]).

6.1. Example 1: accuracy assessment

Our first example focuses on the case where, under uniform mesh refinement, the convergence rates are affected by the 
singularities of the exact solutions. A non-convex domain ! := (0, 1)2\[0, 12 ]2 is considered, and its boundary ∂! is split 
into #N := [1, 0] × {0} and #D := ∂!\#N. We construct a sequence of nested unstructured triangulations, where measured 
errors and experimental convergence rates will be computed as usual

e(σ ) = ∥σ − σ h∥div,!, e(φ) = ∥φ − φh∥1,!, e(u) = ∥u − uh∥1,!, r(·) = −2 log(e(·)/ê(·))[log(N/N̂)]−1,

with e and ê denoting errors produced on two consecutive meshes representing N and N̂ degrees of freedom, respectively. 
In addition, the total error, the modified error suggested by (3.28), and the effectivity and quasi-effectivity indexes associated 
to a given global estimator η are defined, respectively, as

e=
{
[e(σ )]2 + [e(u)]2 + [e(φ)]2}1/2

, eff(η) = e

η
,

m=
{
[e(u)]2 + [e(φ)]2 + ∥divσ − divσ h∥2

0,! +
∥∥∥∥

σ d

µ(φ)
− σ d

h

µ(φh)

∥∥∥∥
2

0,!

}1/2

, qeff(η) = m

η
.
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Fig. 6.1. Example 1. Approximate solutions obtained with the lowest order method, after six steps of adaptive mesh refinement following the second indi-
cator ̃θ . Concentration, velocity components, and stress secondary components, and postprocessed pressure and adapted mesh emphasising the clustering 
of points near (a1, a2). (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

An exact solution to (2.1) is given as follows

φ(x1, x2) = mx1x2(1 − x2)(x1 − 1/2)2(x2 − 1/2)2 + b,

u(x1, x2) =
(

sin(πx1) cos(πx2)
− cos(πx1) sin(πx2)

)
, σ (x1, x2) = µ(φ)u −

[
µ(φ)

∂u1

∂x1
+ (x1 − 1)2

(x2 − a1)(x2 − a2)

]
I ,

(6.1)

where K −1 = K −1I, k = (0, −1)t , µ(φ) = (1 − aφ)−2, fbk(φ) = aφ(1 − aφ)2, ϑ(φ) = φ + (1 − aφ)2, and the source terms are

f (x1, x2) = φ−1(K −1u − divσ ), g(x1, x2) = βφ − div(ϑ(φ)∇φ) + u · ∇φ + f ′
bk(φ)k · ∇φ.

Notice that the only difference with respect to (2.1) is a non-homogeneous concentration flux σ̃ · ν = s imposed on #N, 
where s is manufactured according to (6.1). Therefore, the relevant term in the a posteriori error estimators will be replaced 
by

∑

e∈Eh(T )∩Eh(#N)

he∥σ̃ h · ν − s∥2
0,e,

whose estimation from below and above follows in a straightforward way. The model parameters specifying (6.1) correspond 
to m = 20, b = 0.008, a = 0.35, K = 0.01, β = 0.35, and a1 = −0.05, a2 = 1.1. Notice that the pressure defining the isotropic 
part of the stress in (6.1) exhibits a singularity near the upper right corner of the domain, at (a1, a2) (see the bottom-right 
panel of Fig. 6.1). As a consequence, optimal convergence for the stress is no longer evidenced under uniform mesh refine-
ment (see first rows of Table 1). In turn, if an adaptive mesh refinement step (employing the residual error indicators θ
and ̃θ ) is applied, optimal convergence can be restored, as shown in the last two blocks of Table 1. Approximated solutions 
obtained after six adaptation steps are collected in Fig. 6.1, and a few adapted meshes produced using the two indicators 
are depicted in Fig. 6.2. It is observed that the agglomeration of points follows the regions of high concentration gradients 
occurring near #N, as well as the sharp pressure profile localised at (a1, a2).
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Table 1
Example 1. Convergence history, Picard iteration count, error e and quasi-error m, effectivity and quasi-effectivity indexes for the approximation of the 
coupled Brinkman-transport problem, under quasi-uniform, and adaptive refinement according to the indicators introduced in Sections 3 and 4.

D.o.f. h e(σ ) r(σ ) e(u) r(u) e(φ) r(φ) i P e m eff(θ) qeff(θ) eff(̃θ) qeff(̃θ)

Augmented RT0 − P1 − P1 scheme with quasi-uniform refinement

105 0.53 14.05 – 3.40 – 1.43 – 12 17.01 18.42 1.11 1.10 1.10 1.10
192 0.49 22.54 0.44 8.81 2.90 1.35 0.80 16 29.56 31.53 0.55 0.55 0.55 0.55
492 0.30 13.93 0.97 3.36 1.95 0.87 0.88 14 16.93 17.77 1.07 1.07 1.07 1.07

1488 0.16 7.45 1.01 0.82 2.27 0.47 0.98 12 7.45 7.44 0.92 0.92 0.92 0.92
4902 0.09 4.40 0.88 0.28 1.77 0.26 0.98 13 6.05 5.98 0.96 0.96 0.96 0.95

17800 0.04 2.14 1.05 0.12 1.25 0.14 0.88 13 4.46 4.43 0.98 0.98 0.98 0.98
67800 0.02 1.15 1.14 0.05 1.36 0.07 1.33 14 2.48 2.46 1.00 1.00 0.99 0.99

Augmented RT0 − P1 − P1 scheme with adaptive refinement according to θ

64 0.61 20.32 – 8.93 – 1.40 – 16 30.42 27.77 0.49 0.48 – –
171 0.35 13.88 0.77 3.07 2.17 1.18 0.34 16 18.82 18.09 1.24 1.23 – –
303 0.33 9.97 1.15 1.98 1.52 1.10 0.26 14 12.94 11.37 0.95 0.94 – –
499 0.30 6.84 1.51 1.27 1.78 1.09 0.03 13 8.38 7.07 1.05 1.05 – –

1014 0.21 3.90 1.58 0.78 1.35 0.85 0.69 13 6.06 5.83 1.17 1.17 – –
3763 0.10 1.65 1.31 0.26 1.66 0.37 1.26 13 4.52 4.45 1.07 1.07 – –

14690 0.05 0.78 1.09 0.11 1.27 0.17 1.07 13 2.81 2.79 1.03 1.03 – –

Augmented RT0 − P1 − P1 scheme with adaptive refinement according to θ̃

64 0.61 20.32 – 8.93 – 1.40 – 16 30.42 29.77 – – 0.49 0.47
171 0.35 13.88 0.77 3.07 2.17 1.18 0.34 16 18.82 18.09 – – 1.24 1.23
303 0.33 9.96 1.15 1.97 1.54 1.10 0.26 14 12.66 11.29 – – 0.95 0.94
535 0.28 7.11 1.18 1.41 1.18 1.08 0.04 13 8.14 8.61 – – 1.06 1.05

1145 0.21 3.79 1.65 0.60 2.24 0.80 0.79 13 6.88 6.64 – – 1.08 1.08
4270 0.10 1.69 1.22 0.24 1.35 0.38 1.11 13 4.94 4.88 – – 1.05 1.05

16790 0.05 0.82 1.04 0.10 1.25 0.18 1.10 13 2.28 2.26 – – 1.02 1.01

Fig. 6.2. Example 1. From left to right, three snapshots of successively refined meshes according to the indicators θ and ̃θ (top and bottom panels, respec-
tively).
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Fig. 6.3. Example 2. Approximate solutions at 3 (left), 6 (middle) and 12 (right) pseudo-time steps. A lowest order method and mesh adaptive refinement 
guided by (4.2) were used.

6.2. Example 2: sedimentation below downward-facing inclined walls

This test illustrates the properties of the second estimator (4.2) in a 2D setting, where we simulate the sedimentation of 
a mixture within an heterogeneous porous medium. The domain consists of an isosceles trapeze of height 3, maximal width 
2.82, and walls having an angle of inclination of 4/9π with respect to the horizontal axis. The permeability of the medium 
is constant K0, except for 20 randomly placed spots (consisting of disks with radii 2.5e–3) of much lower permeability K1. 
Viscosity, hindering sedimentation, and compaction coefficients (all concentration-dependent) are respectively specified as

µ(φ) = µ0(1 − φ/φmax)
−η1 , fbk(φ) = u∞φ(1 − φ/φmax)

η2 , ϑ(φ) = σ0α

φα
c 2ρG

φα−2 fbk + u∞, (6.2)

where the model parameters and remaining constants assume the values µ0 = 2.5e–4, σ0 = 5.5e–4, G = 9.81, α = 5, β =
0.25, η = 2, φc = 0.07, φmax = 0.95, K0 = 10, K1 = 0.01, k = (0, −1)T , f = (0, −1/2)T , u∞ = 2.5e–3, 2ρ = 1562. From 
the physical bounds of the concentration we find µ1 = µ0 and µ2 = 5µ1, yielding the following stabilisation coefficients 
κ1 = 1/5µ2

0 = 5e–5, αK = 0.1, δ̃ = 4.88e–3, κ2 = 2.38e–6.
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Fig. 6.4. Example 2. Adapted meshes at 2, 4, and 6 steps, generated following the second estimator (4.2).

Table 2
Example 2. Experimental convergence against a reference solution, number of fixed-point iterations, and quasi-effectivity indexes for the approximation of 
the sedimentation problem under inclined walls, using the a posteriori error indicator (4.2).

D.o.f. h e(σ ) r(σ ) e(u) r(u) e(φ) r(φ) i P qeff(̃θ)

Quasi-uniform refinement

69 0.532 40.12 – 10.22 – 0.91 – 10 2.59
214 0.494 31.63 0.49 8.81 0.60 0.66 0.63 11 3.15
578 0.302 22.65 0.67 5.63 0.43 0.42 0.57 14 2.21

1341 0.168 15.80 0.45 3.55 0.27 0.27 0.83 11 5.29
5027 0.095 13.45 0.28 2.23 0.24 0.21 0.37 12 1.88

12538 0.048 9.46 0.55 2.02 0.15 0.17 0.24 13 6.47

Adaptive mesh refinement according to θ̃

69 0.532 40.12 – 10.22 – 0.91 – 10 2.59
122 0.253 25.29 0.81 4.63 1.30 0.39 1.32 8 2.63
315 0.131 13.41 0.90 2.12 1.38 0.16 1.19 9 2.61

1076 0.045 8.02 0.96 0.92 1.21 0.08 0.99 10 2.60
4577 0.012 4.19 1.10 0.47 1.03 0.03 1.18 9 2.59

10903 0.002 1.07 1.12 0.09 1.53 0.01 0.92 9 2.60

A pseudo time-advancing algorithm is employed to capture the transient nature of the phenomenon (this can be achieved 
by setting g = βφk , where φk is the concentration distribution at the previous pseudo timestep). The initial guess for the 
concentration is a relatively high value φ = 0.75 on the top of the domain and a random perturbation of amplitude 0.05 
around φ = 0.15. We assume that the vessel is open on the top and closed elsewhere on ∂!, so that a clear fluid φ = φc and 
zero normal stresses σν = 0 are prescribed on top, whereas on the remainder of the boundary we set zero fluxes σ̃ · ν = 0
and no-slip conditions u = 0.

The adaptive algorithm applies mesh refinement according to the second a posteriori error indicator (4.2), and it is 
invoked at the end of each pseudo-time step. We point out that due to the roughness of the permeability for coarser 
meshes, a continuation technique is applied on the viscosity scaling µ0 (using µ̃0 = 8µ0 as initial guess, and halving it 
until reaching µ0). A set of snapshots of the numerical solution obtained after ten pseudo-time steps are displayed in 
Fig. 6.3. Apart from the main flow features expected in the pure-fluid case (acceleration of the deposition near the inclined 
walls, as discussed in [37] and simulated in [36,35]), we also observe tortuous concentration and velocity patterns produced 
by a combination of tight flow-transport coupling, the highly heterogeneous coefficients, and the random initial distribution. 
The velocity plots (second row) indicate that the flow tends to avoid the regions of low permeability, and recirculation zones 
are formed near the transition from clear to high-concentration mixture. In addition, the concentration plots (panels in the 
first row) suggest that solid particles remain attached to the low-permeability spots and reverse plumes are formed. We 
also show a sequence of refined meshes after two, four, and six steps (see Fig. 6.4), where it is seen that the a posteriori
error indicator yields more refinement near the high gradients of concentration and the aforementioned recirculation zones. 
As these irregularities spread throughout large portions of the domain, a substantial gain in computational cost with respect 
to a uniformly refined mesh is not expected.

We also conduct an experimental error analysis, restricted to the solution of the problem after two pseudo timesteps, in 
order to corroborate the appropriateness of the scheme and the features of the a posteriori error estimators. Lacking a closed 
form for the exact solution of problem (2.1), we proceed to generate a highly refined mesh and regard the solution computed 
on this grid, using an augmented RT1 − P2 − P2 scheme, as a reference solution for error computation. Table 2 reports on 
the error history under both uniform and adaptive refinement. Rates are sub-optimal for the first case (particularly for the 
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Fig. 6.5. Example 3. Sketch of the clipped domain and different boundaries in a clarifier-thickener device (top left panel), and snapshots of the approximate 
concentration, postprocessed pressure, and velocity components and streamlines computed with the proposed lowest order mixed-primal method.

velocity), whereas adaptive refinement according to the error estimator (4.2) restores optimal convergences and produces 
effectivity indexes that, even if are far from 1, do not oscillate. We also notice that for the maximum number of degrees of 
freedom, each individual error produced by the adaptive method is of about 10% of the errors generated with the method 
that uses quasi-uniform refinement, and also the Picard iteration count is slightly smaller.

6.3. Example 3: sedimentation in a clarifier-thickener unit

Next we present a numerical test that illustrates the performance of the proposed numerical scheme and the first a pos-
teriori error indicator (5.1) on a 3D computation. The example reproduces the steady-state of a sedimentation–consolidation 
process in a clarifier-thickener unit. Model parameters and domain configuration are adapted from those in [5, Example 3], 
but here the device has a radial length of 14.6 m and a total height of 7.6 m. It features a feed inlet #in consisting of 
an horizontal disk of radius 1.5 m, an underflow outlet for the discharge of sediment #out (an horizontal disk of smaller 
radius 0.5 m), and a peripheral overflow annular region #ofl (see a sketch in the top left panel of Fig. 6.5). A suspension 
is fed through #in with velocity u = uin = (0, 0, −u3,in)T and having a concentration of φ = φin. At the outlet #out we set 
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Fig. 6.6. Example 3. Zoom on the produced meshes after the first three steps of adaptive refinement using the first estimator as defined in (5.1).

u = uout = (0, 0, −u3,out)
T ; at the overflow annulus we impose zero normal pseudo-stresses; and on the remainder of ∂!

we put no slip boundary data for the velocity and zero-flux conditions for the concentration.
The concentration-dependent coefficients are defined as in (6.2), and the remaining parameters are chosen as in Exam-

ple 2, except for u3,in = 1.25e–2, u3,out = 1.25e–3, φc = 0.1, u∞ = 2.2e–3, φin = 0.08, σ0 = 5.5e–2, and β = 1e–3. Again, the 
bounds for the concentration imply that the stabilisation parameters assume the following values κ1 = 0.256, κ2 = 0.25.

The proposed primal-mixed method is used to generate the approximate solutions depicted in Fig. 6.5 (where we show 
only half of the domain, for visualisation purposes). As in [5,16], we can observe that the mixture concentrates near the 
outlet boundary #out. The velocity arrows show recirculating patterns, and a very small underflow. In contrast with Ex-
ample 2, here the Picard iterations until convergence are embedded inside the adaptive refinement loop, consisting of 
solving, estimating, marking and refining using the error equi-distribution strategy mentioned above. The plots in Fig. 6.6
show a sequence of three adapted meshes, forming a clustering of elements near the zones of high concentration gradi-
ents (connecting inflow and underflow boundaries), where also the velocity and postprocessed pressure profiles are more 
pronounced.

6.4. Scaling of the unknowns and of the estimators

For general coupled flow-transport problems, the reliability and efficiency constants may be unit-dependent. This issue 
could be remediated by defining parameters that contribute to enforce dimensional consistency among the terms that 
constitute the local error estimators, or simply by redefining problem (2.1) in its dimensionless form. For instance, let us 
define the adimensional velocity, Cauchy pseudo-stress, and differential operators as

u∗ = u/V , σ ∗ = σ /(ρL2), div = div/L, ∇∗ = ∇/L,

where L denotes the space characteristic length of the domain, V = L/T is a characteristic velocity where T is a character-
istic time, and ρ is the characteristic density. As φ is already dimensionless (volume fraction), we see that the momentum 
equation for the flow problem and the transport equation can be recast in adimensional form. Making abuse of notation 
(that is, dropping the ∗ superscript), the system reads

K̂ −1u − divσ = f̂ φ,

β̂φ − div(ϑ(φ)∇φ − φu − f̂bk(φ)k) = ĝ,

where K̂ = K/L2, f̂ = T /V f , β̂ = L2β , f̂bk(s) = L fbk(s), ĝ = L2 g are the rescaled adimensional coefficients (see for in-
stance [39]). The construction of the mixed-primal method and the analysis of the a posteriori error indicators follows then 
exactly as done in Sections 3–5.

It turns out that in Example 1, the constants involved in (6.1), the size of the domain, the model coefficients, and the 
constructed forcing and source terms, scale in such a way that they contribute to generating effectivity and quasi-effectivity 
indexes very close to one. This is no longer the case for Example 2 (see Table 2), as the scaling coefficients between the 
flow and transport terms (and subsequently their intrinsic weights into the local error indicators) differ by several orders 
of magnitude. This also implies that the adaptive refinement seen in Fig. 6.4 seems to be dictated by the velocity variations 
rather than by the stress or concentration patterns. Especially in the case of sedimentation–consolidation problems, one 
expects concentration solutions exhibiting sharp gradients while producing smooth flow profiles. We can then resort to 
a different scaling approach (which can be used together or independently of the adimensionalisation discussed above). 
Taking the second a posteriori error indicator (4.2) as an example, we can define
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Fig. 6.7. Example 4. Sample of the computed concentration displayed on a line convolution integral driven by the discrete velocity (left) and adapted meshes 
after 5 steps, generated following the scaled estimator (6.3) and using the scaling factors M̂t = M̂ f = 1 (middle left panel), M̂t = 100, M̂ f = 1 (middle right 
panel), and M̂t = 5000, M̂ f = 0.1 (right).

ξ̂2
T := M̂ f ∥ f φh − K −1uh + divσ h∥2

0,T + M̂ f ∥∇uh − [µ(φh)]−1σ d
h ∥2

0,T + M̂th2
T ∥g − βφh + div σ̃ h∥2

0,T

+ M̂t
∑

e∈Eh(T )∩Eh(!)

he∥❏σ̃ h · νe ❑∥2
0,e + M̂t

∑

e∈Eh(T )∩Eh(#N)

he∥σ̃ h · ν∥2
0,e + M̂ f

∑

e∈Eh(T )∩Eh(#D)

∥uD − uh∥2
0,e, (6.3)

and we have the liberty to modulate the scaling factors M̂t > 0, ̂M f > 0 depending on whether a more important contribu-
tion to the error is expected from the concentration transport equation, or from the flow equations. Doing so, also allows 
one to trace back the dependence of the reliability and efficiency constants and consequently of the effectivity indexes (all 
being now dimensionless) on the scaling factors. However, we stress that even if these factors have the flexibility to include 
either dimensional or adimensional units, the reliability and efficiency bounds will still depend on constants that cannot be 
easily determined.

We exemplify the latter approach by redoing Example 2, now using (6.3) with different values for the scaling factors M̂t

and M̂ f . The adaptive mesh refinement five steps is shown in Fig. 6.7, which indicates a more clear clustering of elements 
near the zones of high concentration gradients when the ratio M̂t/M̂ f is larger.

Appendix A

A.1. Proof of Lemma 3.3

We begin by recalling, from [2, Lemma 3.4], that the bilinear form

Aφ,u(ϕ,ψ) :=
∫

!

ϑ(φ)∇ϕ · ∇ψ −
∫

!

ϕ u · ∇ψ +
∫

!

β ϕ ψ ∀ϕ,ψ ∈ H1
#D

(!), (A.1)

is H1
#D

(!)-elliptic with constant α̃ := ϑ1
2 c2

p
, from which we deduce the following global inf–sup condition

α̃ ∥ϕ∥1,! ≤ sup
ψ∈H1

#D
(!)

ψ≠0

Aφ,u(ϕ,ψ)

∥ψ∥1,!
∀ϕ ∈ H1

#D
(!).

(A.2)

Next, applying (A.2) to the Galerkin error ϕ := φ − φh , we find that

α̃ ∥φ − φh∥1,! ≤ sup
ψ∈H1

#D
(!)

ψ≠0

Aφ,u(φ,ψ) − Aφ,u(φh,ψ)

∥ψ∥1,!
.

(A.3)

Now, using the fact that Aφ,u(φ, ψ) = Au(φ, ψ) = Gφ(ψ), and adding and subtracting suitable terms, it follows that

Aφ,u(φ,ψ) − Aφ,u(φh,ψ) = Gφ(ψ) − Gφh (ψ) + Gφh (ψ) − Auh (φh,ψ) + Auh (φh,ψ) − Aφ,u(φh,ψ) . (A.4)

In turn, using the definition of Auh (cf. (2.7)) and Aφ,u (cf. (A.1)), we find that

Auh (φh,ψ) − Aφ,u(φh,ψ) =
∫

!

(ϑ(φ) − ϑ(φh))∇(φ − φh) · ∇ψ

+
∫

!

φh (u − uh) · ∇ψ −
∫

!

(ϑ(φ) − ϑ(φh))∇φ · ∇ψ,

(A.5)
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from which, employing the upper bound of ϑ (cf. (2.3)), (3.1), and proceeding as in [2, eq. (5.13)–(5.14)] on the third term 
to the right-hand side of (A.5), we arrive at

|Auh (φh,ψ) − Aφ,u(φh,ψ)| ≤
{

2ϑ2 + C3

(
γ2 |!|1/2 |k| + ∥g∥δ,!

)}
∥φ − φh∥1,! |ψ |1,!

+ r c(!)∥u − uh∥1,! |ψ |1,! .
(A.6)

Thus, applying the estimate for |Gφ(ψ) − Gφh (ψ)| (see [2, eq. (5.12)]) and estimate (A.6), we obtain from (A.3) and (A.4)
that

∥φ − φh∥1,! ≤ C̃ ∥Gφh − Auh (φh, ·)∥H1
#D

(!)′

+
{

C4|k| + C5∥g∥δ,! + C6ϑ2

}
∥φ − φh∥1,! + r c(!) C̃ ∥u − uh∥1,! .

Then, bounding ∥u − uh∥1,! by the error estimate provided by (3.8) (cf. Lemma 3.2), and employing (3.13), we deduce that

∥φ − φh∥1,! ≤ 2 C̃
{
∥Gφh − Auh (φh, ·)∥H1

#D
(!)′ + C9

(
θ0 + ∥Eh∥HN (div,!)′

)}
, (A.7)

where, bearing in mind (3.15), there holds

Gφh − Auh (φh, ·) = Ẽh ,

and hence (A.7) yields (3.14). Finally, using the fact that Gφh (ψh) − Auh (φh, ψh) = 0 ∀ψh ∈ Hφ
h , we obtain (3.16) and the 

proof concludes.

A.2. Proof of Lemma 3.18

The estimates given in (3.39) were established in [3, eq. (3.71)–(3.72)]. On the other hand, using the Lipschitz continuity 
assumption on ϑ (cf. (2.4)), but restricted to each triangle T ∈ Th instead of !, employing Cauchy–Schwarz’s inequality and 
the compactness (and hence continuity) of the injection i : H1(!) → L4(!) (cf. [1, Theorem 6.3]), we deduce that

∑

T ∈Th

∥(ϑ(φ) − ϑ(φh))∇φ∥2
0,T ≤

∑

T ∈Th

L2
ϑ ∥φ − φh∥2

L4(T )
∥∇φ∥2

L4(T )

≤ L2
ϑ ∥φ − φh∥2

L4(!)
∥∇φ∥2

L4(!)
≤ c̃9 ∥φ − φh∥2

1,! ,

where ̃c9 depends only on ∥i∥, Lϑ , and ∥∇φ∥L4(!) , which gives (3.40) and finishes the proof.
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