
February 5, 2016 13:47 WSPC/103-M3AS 1650020

Mathematical Models and Methods in Applied Sciences
Vol. 26, No. 5 (2016) 867–900
c⃝ World Scientific Publishing Company
DOI: 10.1142/S0218202516500202

A mixed-primal finite element approximation
of a sedimentation–consolidation system

Mario Alvarez∗
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This paper is devoted to the mathematical and numerical analysis of a strongly cou-
pled flow and transport system typically encountered in continuum-based models of
sedimentation–consolidation processes. The model focuses on the steady-state regime
of a solid–liquid suspension immersed in a viscous fluid within a permeable medium,
and the governing equations consist in the Brinkman problem with variable viscosity,
written in terms of Cauchy pseudo-stresses and bulk velocity of the mixture; coupled
with a nonlinear advection — nonlinear diffusion equation describing the transport of
the solids volume fraction. The variational formulation is based on an augmented mixed
approach for the Brinkman problem and the usual primal weak form for the transport
equation. Solvability of the coupled formulation is established by combining fixed point
arguments, certain regularity assumptions, and some classical results concerning vari-
ational problems and Sobolev spaces. In turn, the resulting augmented mixed-primal
Galerkin scheme employs Raviart–Thomas approximations of order k for the stress and
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piecewise continuous polynomials of order k+1 for velocity and volume fraction, and its
solvability is deduced by applying a fixed-point strategy as well. Then, suitable Strang-
type inequalities are utilized to rigorously derive optimal error estimates in the natural
norms. Finally, a few numerical tests illustrate the accuracy of the augmented mixed-
primal finite element method, and the properties of the model.

Keywords: Brinkman equations; nonlinear transport problem; augmented mixed-primal
formulation; fixed point theory; sedimentation–consolidation process; finite element
methods; a priori error analysis.
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1. Introduction

The interaction of solid–liquid suspensions is often encountered in a wide variety of
natural and engineering applications, including fluidized beds, clot formation within
the blood, solid–liquid separation and purification in wastewater treatment, macro-
scopic biofilm characterization, and many others. In sedimentation–consolidation
processes, suspended solid particles settle down due to gravity acceleration and can
be subsequently removed from the fluid. Here we are interested in a continuum-
based framework where the viscous fluid is incompressible and the flow patterns
are laminar so the mass and momentum balances are governed by the Brinkman
equations with variable viscosity, and the mass balance of the solid phase (here
allowed to sediment into the fluid phase) is described by a nonlinear advection–
diffusion equation. A number of difficulties are associated to the understanding and
prediction of the behavior of such a problem, including highly nonlinear (and typi-
cally degenerate) advection and diffusion terms, strong interaction of velocity and
solids volume fraction via the Cauchy stress tensor and the forcing term, nonlinear
structure of the overall coupled flow and transport problem, saddle-point structure
of the flow problem, non-homogeneous and mixed boundary conditions, and so on.
These complications are usually reflected, not only in the solvability analysis of
the governing equations, but also in the construction of appropriate schemes for
their numerical approximation, and in the derivation of stability results and error
bounds.

The solvability of the sedimentation–consolidation problem has been previously
discussed in Ref. 8 for the case of large fluid viscosity, using the technique of
parabolic regularization. Moreover, a modified formulation based on Stokes flow
has been recently studied in Ref. 2, where the solution of the transport equa-
tion required an explicit dependence of the effective diffusivity on the gradient of
the concentration. With a similar restriction (the viscosity depending on the con-
centration and on the velocity gradient), the existence of solutions to a model of
chemically reacting non-Newtonian fluid has been established in Ref. 6. In con-
trast, here these hypotheses have been modified, enlarging the applicability of the
present results, in particular to classical models of sedimentation of suspensions.
More specifically, we assume both the viscosity and the diffusivity to depend only on
the scalar value of the concentration. Nevertheless, we still remain in the framework
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of non-degeneracy of the diffusion term. On the other hand, it is worth mentioning
that models of sedimentation–consolidation share some structural similarities with
Boussinesq- and Oldroyd-type models, for which several mixed formulations have
been proposed.13,14,16–18,26 In particular, the mixed finite element method for the
Boussinesq problem developed in Ref. 17 is based on the introduction of the gradi-
ent of velocity as an auxiliary unknown, and the utilization of refined meshes near
the singular corners and suitable finite element subspaces. In turn, the approach
from Ref. 13 first introduces the same nonlinear pseudostress tensor linking the
pseudostress and the convective term that has been employed before in Ref. 10 for
the Navier–Stokes problem, and then augment the resulting mixed formulation of
the stationary Boussinesq problem with Galerkin type terms arising from the con-
stitutive and equilibrium equations, and the Dirichlet boundary condition. In this
way, the Banach and Brouwer fixed point theorems, together with the Lax–Milgram
lemma and the Babuška–Brezzi theory are applied to conclude the well-posedness
of the continuous and discrete formulations. Nevertheless, up to our knowledge,
mixed formulations specifically tailored for the study of sedimentation processes
are not yet available from the literature.

According to the above bibliographic discussion, our present purpose is to
examine mixed finite element approximations of the model problem, where also
the Cauchy stress enters in the formulation as an additional unknown. Given the
arrangement of the equations and the implicit smoothness requirements of the fluid
velocity and its discrete approximation, we realize as in Ref. 2 that applying an
augmentation strategy to the Brinkman problem simplifies the treatment of both
the continuous and Galerkin schemes. More precisely, we propose an augmented
variational formulation where stresses are sought in H(div; Ω), the velocity is in
H1(Ω), and the solids volume fraction has H1(Ω) regularity. Consequently, the
rows of the Cauchy stress tensor will be approximated with Raviart–Thomas ele-
ments of order k, whereas the velocity and solids concentration will be discretized
with continuous piecewise polynomials of degree ≤k + 1. The solvability analysis
of the continuous formulation is based on a strategy combining classical fixed-
point arguments, suitable regularity assumptions on the decoupled problems, the
Lax–Milgram lemma, and the Sobolev embedding and Rellich–Kondrachov com-
pactness theorems. In addition, and provided that the data are sufficiently small,
we also establish uniqueness of weak solution. On the other hand, well-posedness
of the discrete problem relies on the Brouwer fixed point theorem and analogous
arguments to those employed in the continuous analysis. Finally, applying a suit-
able Strang-type lemma valid for linear problems to the fluid flow equations, and
explicitly deriving our own Strang-type estimate for the transport equations, we
are also able to derive the corresponding Céa estimate, and to provide optimal a
priori error bounds for the Galerkin solution.

The rest of the paper is organized as follows. Section 2 compiles some preliminary
notation and outlines the boundary value problem of interest, which is rewritten
by eliminating the pressure unknown from the system. In Sec. 3, we introduce the
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corresponding variational formulation following an augmented mixed approach for
the Brinkman equations, coupled with a primal method for the transport problem.
The associated Galerkin scheme is introduced in Sec. 4, followed by the development
of its solvability analysis. In Sec. 5, we proceed with the study of accuracy of the
augmented formulation, establishing optimal error bounds; and we close in Sec. 6
with some numerical examples illustrating the good performance of the mixed-
primal method and confirming the predicted rates of convergence.

2. The Model Problem

2.1. Preliminaries

Let Ω ⊆ Rn, n = 2, 3 denote a bounded domain with polyhedral boundary Γ =
Γ̄D ∪ Γ̄N, with ΓD ∩ΓN = ∅, and denote by ν the outward unit normal vector on Γ.
We recall the standard notation for Lebesgue spaces Lp(Ω) and Sobolev spaces
Hs(Ω) endowed with the norm ∥·∥s,Ω and seminorm | · |s,Ω. In particular, H1/2(Γ)
stands for the space of traces of functions of H1(Ω) and H−1/2(Γ) denotes its dual.
By M and M we will denote the corresponding vectorial and tensorial counterparts
of the generic scalar functional space M, and ∥·∥, with no subscripts, will stand
for the natural norm of either an element or an operator in any product functional
space. In turn, for any vector field v = (vi)i=1,n we set the gradient and divergence
operators as

∇v :=
(
∂vi

∂xj

)

i,j=1,n

and div v :=
n∑

j=1

∂vj

∂xj
.

In addition, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div τ
be the divergence operator div acting along the rows of τ , and define the transpose,
the trace, the tensor inner product, and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr(τ ) :=
n∑

i=1

τii,

τ : ζ :=
n∑

i,j=1

τijζij and τ d := τ − 1
n

tr(τ )I.

Furthermore, we recall that

H(div; Ω) := {τ ∈ L2(Ω) :div τ ∈ L2(Ω)},

equipped with the usual norm

∥τ∥2
div;Ω := ∥τ∥2

0,Ω + ∥div τ∥2
0,Ω

is a standard Hilbert space in the realm of mixed problems. Finally, in what follows
I stands for the identity tensor in R := Rn×n, and | · | denotes the Euclidean norm
in R := Rn.
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2.2. The sedimentation–––consolidation system

We consider the steady state of the sedimentation–consolidation process consisting
on the transport and suspension of a solid phase into an immiscible fluid contained
in a vessel Ω. The flow patterns are influenced by gravity and by the local fluctua-
tions of the solids volume fraction. The process is governed by the following system
of partial differential equations:

σ = µ(φ)∇u − pI, K−1u − divσ = fφ, div u = 0,

σ̃ = ϑ(φ)∇φ − φu − fbk(φ)k, βφ− div σ̃ = g.
(2.1)

The sought quantities are the Cauchy fluid pseudo-stress σ, the average velocity
of the mixture u, the fluid pressure p and the volumetric fraction of the solids
(in short, concentration) φ. In this model we also assume that the vessel initially
contains an array of fixed-concentration particles (see the discussion in Ref. 3). In
this context, the parameter β is a positive constant representing the porosity of the
medium, and the permeability tensor K ∈ C(Ω̄) := [C(Ω̄)]n×n and its inverse are
symmetric and uniformly positive definite, which means that there exists αK > 0
such that

vtK−1(x)v ≥ αK |v|2, ∀v ∈ Rn, ∀x ∈ Ω. (2.2)

Here k is a constant vector pointing in the direction of gravity, and we assume
that the kinematic effective viscosity, µ; the one-directional Kynch batch flux
density function describing hindered settling, fbk; and the diffusion or sediment
compressibility, ϑ; are nonlinear scalar functions of the concentration φ. In partic-
ular, we can take

µ(φ) := µ∞

(
1 − φ

φm

)−γµ

, fbk(φ) := f∞

[
1 + φ

(
1 − φ

φm

)γf
]
,

ϑ(φ) := ϑ∞

[
φ+

(
1 − φ

φm

)−γϑ
]
,

where µ∞,φm, f∞, γµ, γf , γϑ,ϑ∞ are positive model parameters. Notice that fbk

and ϑ are regularized versions of the Kynch flux and compressibility functions
typically employed in sedimentation models (see e.g. Refs. 7–9). Nevertheless, the
subsequent analysis allows for arbitrary concentration-dependent functions, as long
as the following properties are satisfied: there exist positive constants µ1, µ2, γ1,
γ2, ϑ1 and ϑ2, such that

µ1 ≤ µ(s) ≤ µ2, ϑ1 ≤ ϑ(s) ≤ ϑ2 and γ1 ≤ fbk(s) ≤ γ2 ∀ s ∈ R. (2.3)

Note that (2.3) guarantees, in particular, that the corresponding Nemytsky oper-
ators, say U for µ, defined by U(φ)(x) := µ(φ(x)) ∀φ ∈ L2(Ω), ∀x ∈ Ω a.e., and
analogously for ϑ, fbk, µ−1, ϑ−1, and f−1

bk , are all well defined and continuous from
L2(Ω) into L2(Ω).
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The driving force of the mixture also depends on the local fluctuations of the
concentration, so the right-hand side of the second equation in (2.1) is linear with
respect to φ, and f ∈ L∞(Ω) and g ∈ L2(Ω) are given functions. Finally, given
uD ∈ H1/2(ΓD), the following mixed boundary conditions complement (2.1):

u = uD on ΓD, σν = 0 on ΓN,

φ = 0 on ΓD and σ̃ · ν = 0 on ΓN,

where we remark that the homogeneous datum for σ represents a pseudo-traction
boundary condition, since we are employing ∇u instead of the symmetrized gradient
e(u) := 1

2 (∇u + ∇ut) in the definition of the stress.
On the other hand, it is easy to see that the first and third equations in (2.1)

are equivalent to

σ = µ(φ)∇u − pI and p +
1
n

tr(σ) = 0 in Ω,

which permits us to eliminate the pressure p from the first equation. Consequently,
we arrive at the following coupled system:

1
µ(φ)

σd = ∇u in Ω, K−1u − divσ = fφ in Ω,

σ̃ = ϑ(φ)∇φ − φu − fbk(φ)k in Ω, βφ− div σ̃ = g in Ω,

u = uD on ΓD, σν = 0 on ΓN,

φ = 0 on ΓD and σ̃ · ν = 0 on ΓN.

(2.4)

We stress that the incompressibility constraint is implicitly present in the consti-
tutive equation (2.4)1 relating σ and u. Systems like (2.1) are well established and
have been extensively validated to describe sediment-flow patterns in permeable
media (see Refs. 24, 25 and the references therein). Furthermore, if we wanted to
deal with a traction boundary condition on ΓN, then (2.1)1 and (2.4)1 would be
replaced simply by σ = µ(φ)e(u) − pI and 1

µ(φ)σ
d = ∇u − γ, respectively, where

γ := 1
2 (∇u − ∇ut) is the additional unknown given by the vorticity. In this case,

however, the rest of the corresponding analysis would be very close to the one to
be developed in what follows.

3. The Variational Formulation

In this section, we proceed similarly as in Ref. 2 to derive a suitable variational
formulation of (2.4) and analyze its corresponding solvability by using a fixed-point
strategy.

3.1. An augmented mixed-primal approach

Notice that the homogeneous boundary condition for σ on ΓN (cf. (2.4)3) suggests
the introduction of the functional space

HN (div; Ω) := {τ ∈ H(div; Ω) : τν = 0 on ΓN}.
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Multiplying the first equation of (2.4) by τ ∈ HN (div; Ω), integrating by parts,
and using the Dirichlet boundary condition for u (cf. third row of (2.4)), we obtain

∫

Ω

1
µ(φ)

σd : τd +
∫

Ω
u · div τ = ⟨τν, uD⟩ΓD , ∀ τ ∈ HN(div; Ω),

where ⟨·, ·⟩ΓD is the duality pairing between H−1/2(ΓD) and H1/2(ΓD). Moreover,
the momentum balance is then rewritten as

−
∫

Ω
K−1u · v +

∫

Ω
v · div σ = −

∫

Ω
fφ · v, ∀v ∈ L2(Ω).

On the other hand, the Dirichlet boundary condition for φ (cf. fourth row
of (2.4)) motivates the introduction of the space

H1
ΓD

(Ω) := {ψ ∈ H1(Ω) :ψ = 0 on ΓD},

for which, thanks to the generalized Poincaré inequality, there exists cp > 0, depend-
ing only on Ω and ΓD, such that

∥ψ∥1,Ω ≤ cp|ψ|1,Ω, ∀ψ ∈ H1
ΓD

(Ω). (3.1)

Therefore, given φ ∈ H1
ΓD

(Ω), we arrive at the following mixed formulation for the
Brinkman flow: find (σ, u) ∈ HN (div; Ω) × L2(Ω) such that

aφ(σ, τ ) + b(τ , u) = ⟨τν, uD⟩ΓD , ∀ τ ∈ HN (div; Ω),

b(σ, v) − c(u, v) = −
∫

Ω
fφ · v, ∀v ∈ L2(Ω),

(3.2)

where aφ : HN(div; Ω) × HN (div; Ω) → R, b : HN(div; Ω) × L2(Ω) → R and
c :L2(Ω) × L2(Ω) → R are bounded bilinear forms defined as

aφ(ζ, τ ) :=
∫

Ω

1
µ(φ)

ζd : τ d, b(τ , v) :=
∫

Ω
v · div τ , c(u, v) :=

∫

Ω
K−1u · v

(3.3)

for ζ, τ ∈ HN (div; Ω) and u, v ∈ L2(Ω).
In turn, given u ∈ L2(Ω), and using the homogeneous Neumann boundary

condition for σ̃ (cf. fourth row of (2.4)), we deduce that the primal formulation for
the concentration equation becomes: find φ ∈ H1

ΓD
(Ω) such that

Au(φ,ψ) =
∫

Ω
fbk(φ)k ·∇ψ +

∫

Ω
gψ, ∀ψ ∈ H1

ΓD
(Ω), (3.4)

where

Au(φ,ψ) :=
∫

Ω
ϑ(φ)∇φ ·∇ψ −

∫

Ω
φu ·∇ψ +

∫

Ω
βφψ, ∀φ,ψ ∈ H1

ΓD
(Ω). (3.5)

We remark at this point that the well-posedness of (3.2) is a straightforward
consequence of the assumption on µ given in (2.3) and the well known Babuška–
Brezzi theory (see, e.g. Theorem 2.1 in Ref. 22 and Proposition 4.3.1 in Ref. 4 for
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details). However, in order to deal with the analysis of (3.4)–(3.5), and particularly
to estimate the second term defining Au, we would require u ∈ H1(Ω). In fact,
we know from the Rellich–Kondrachov compactness theorem (cf. Theorem 6.3 in
Ref. 2, Theorem 1.3.5 in Ref. 28), that the injection ic : H1(Ω) → L4(Ω) is compact,
and hence continuous, which, after applying Hölder’s inequality, yields the existence
of a positive constant c(Ω) = ∥ic∥2, depending only on Ω, such that

∣∣∣∣
∫

Ω
φv ·∇ψ

∣∣∣∣ ≤ c(Ω)∥φ∥1,Ω∥v∥1,Ω|ψ|1,Ω, ∀φ,ψ ∈ H1(Ω), ∀v ∈ H1(Ω). (3.6)

Furthermore, we now observe, as we did in Ref. 2, that while the exact solution
of (3.2) actually satisfies ∇u = 1

µ(φ)σ
d in D′(Ω), which implies that u does belong

to H1(Ω), the foregoing distributional identity does not necessarily extend to the
discrete setting of (3.2), and hence the aforementioned difficulty would appear again
when trying to analyze the Galerkin scheme associated to (3.4). In order to overcome
this inconvenience, we proceed similarly as in Sec. 3.1 of Ref. 2 (see also Sec. 3 in
Ref. 19) and incorporate into (3.2) the following residual Galerkin-type terms:

κ1

∫

Ω

(
∇u − 1

µ(φ)
σd

)
:∇v = 0, ∀v ∈ H1(Ω),

−κ2

∫

Ω
K−1u · div τ + κ2

∫

Ω
divσ · div τ

= −κ2

∫

Ω
fφ · div τ , ∀ τ ∈ HN (div; Ω),

(3.7)

where (κ1,κ2) is a vector of positive parameters to be specified later. In this way,
instead of (3.2), we consider from now on the following augmented mixed formula-
tion: find (σ, u) ∈ HN (div; Ω) × H1(Ω) such that

Bφ((σ, u), (τ , v)) = Fφ(τ , v), ∀ (τ , v) ∈ HN (div; Ω) × H1(Ω), (3.8)

where

Bφ((σ, u), (τ , v))

:= aφ(σ, τ ) + b(τ , u) − b(σ, v) + c(u, v) + κ1

∫

Ω

(
∇u − 1

µ(φ)
σd

)
: ∇v

− κ2

∫

Ω
K−1u · div τ + κ2

∫

Ω
divσ · div τ , (3.9)

and

Fφ(τ , v) := ⟨τν, uD⟩ΓD +
∫

Ω
fφ · v − κ2

∫

Ω
fφ · div τ . (3.10)

We remark in advance that the well-posedness of (3.8) is proved below in Sec. 3.3.
To this respect, it is important to highlight that, differently from Ref. 2, here we
do not need to add any stabilization term on the Dirichlet boundary, as we did
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in Eq. (3.6) of Ref. 2, since the required H1(Ω)-norm is obtained thanks to the
first equation in (3.7) and the presence now of the positive definite bilinear form c
(cf. (3.3)) in the definition of Bφ. Furthermore, since the unique solution of (3.2) is
obviously a solution of (3.8) as well, we will conclude that both continuous problems
share the same unique solution.

Summarizing the foregoing discussion, we find that the augmented mixed-primal
formulation of the initial coupled problem (2.4) reduces to (3.8) and (3.4), that is:
find (σ, u,φ) ∈ HN (div; Ω) × H1(Ω) × H1

ΓD
(Ω) such that

Bφ((σ, u), (τ , v)) = Fφ(τ , v), ∀ (τ , v) ∈ HN(div; Ω) × H1(Ω),

Au(φ,ψ) =
∫

Ω
fbk(φ)k ·∇ψ +

∫

Ω
gψ, ∀ψ ∈ H1

ΓD
(Ω).

(3.11)

3.2. Fixed point strategy

We begin by noticing that the alternative formulation (3.8) will certainly require
continuous and discrete solutions with second components living in H1(Ω). Now,
given φ ∈ H1

ΓD
(Ω) and the corresponding solution (σ, u) ∈ HN (div; Ω) × H1(Ω)

of (3.8), we can set, instead of (3.4), the modified primal formulation: find φ̃ ∈
H1

ΓD
(Ω) such that

Aφ,u(φ̃, ψ̃) = Gφ(ψ̃), ∀ ψ̃ ∈ H1
ΓD

(Ω), (3.12)

where

Aφ,u(φ̃, ψ̃) :=
∫

Ω
ϑ(φ)∇φ̃ ·∇ψ̃ −

∫

Ω
φ̃u ·∇ψ̃ +

∫

Ω
βφ̃ψ̃, ∀ φ̃, ψ̃ ∈ H1

ΓD
(Ω),

(3.13)

and

Gφ(ψ̃) :=
∫

Ω
fbk(φ)k ·∇ψ̃ +

∫

Ω
gψ̃, ∀ ψ̃ ∈ H1

ΓD
(Ω). (3.14)

The well-posedness of (3.12) will also be addressed in Sec. 3.3.
In turn, the description of problems (3.8) and (3.12) naturally suggests a fixed

point strategy to analyze (3.11). Indeed, let S : H1
ΓD

(Ω) → HN(div; Ω)×H1(Ω) be
the operator defined by

S(φ) = (S1(φ),S2(φ)) := (σ, u) ∈ HN (div; Ω) × H1(Ω), ∀φ ∈ H1
ΓD

(Ω),

where (σ, u) is the unique solution of (3.8) with the given φ. In turn, let S̃ :
H1

ΓD
(Ω) × H1(Ω) → H1

ΓD
(Ω) be the operator defined by

S̃(φ, u) := φ̃, ∀ (φ, u) ∈ H1
ΓD

(Ω) × H1(Ω),

where φ̃ is the unique solution of (3.12) with the given (φ, u). Then, we define the
operator T : H1

ΓD
(Ω) → H1

ΓD
(Ω) by

T(φ) := S̃(φ,S2(φ)), ∀φ ∈ H1
ΓD

(Ω),
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and realize that solving (3.11) is equivalent to seeking a fixed point of T, that is:
find φ ∈ H1

ΓD
(Ω) such that

T(φ) = φ. (3.15)

We find it important to remark here that, due to the dependence on φ (instead
of |∇φ| as in Ref. 2) of the diffusivity ϑ, our nonlinear operator Au (cf. (3.5)) does
not become strongly monotone (as it was the case for the corresponding nonlinear
operator in Eq. (3.4) and Lemma 3.5 in Ref. 2), and hence we realize that for easing
the present analysis we need to stay with the linear problem (3.12) instead of the
nonlinear one suggested by (3.4) and (3.5).

3.3. Well-posedness of the uncoupled problems

In this section, we show that the uncoupled problems (3.8) and (3.12) are in fact
well-posed. We begin by recalling (see, e.g. Ref. 5) that H(div; Ω) = H0(div; Ω)⊕RI,
where

H0(div; Ω) :=
{

ζ ∈ H(div; Ω) :
∫

Ω
tr(ζ) = 0

}
.

More precisely, for each ζ ∈ H(div; Ω) there exist unique ζ0 := ζ −
{ 1

n|Ω|
∫
Ω tr(ζ)}I ∈ H0(div; Ω) and d := 1

n|Ω|
∫
Ω tr(ζ) ∈ R, such that ζ = ζ0 + dI.

As for the analysis in Ref. 2, the following two lemmas concerning the above
decomposition will be instrumental in showing the well-posedness of (3.8) for a
given φ.

Lemma 3.1. (Proposition 3.1 in Ref. 5) There exists c1 = c1(Ω) > 0 such that

c1∥τ 0∥2
0,Ω ≤ ∥τd∥2

0,Ω + ∥div τ∥2
0,Ω , ∀ τ = τ 0 + cI ∈ H(div; Ω),

with τ 0 ∈ H0(div; Ω) and c ∈ R.

Lemma 3.2. (Lemma 2.2 in Ref. 20) There exists c2 = c2(Ω, ΓN) > 0 such that

c2∥τ∥2
div;Ω ≤ ∥τ 0∥2

div;Ω ∀ τ = τ 0 + cI ∈ HN (div; Ω),

with τ 0 ∈ H0(div; Ω) and c ∈ R.

We now begin the solvability analysis of the uncoupled problems with the fol-
lowing result.

Lemma 3.3. Assume that κ1 ∈ (0, 2δµ1
µ2

) and κ2 ∈ (0, 2eδαK

n∥K−1∥∞
), with δ ∈ (0, 2µ1)

and δ̃ ∈ (0, 2
n∥K−1∥∞

). Then, for each φ ∈ H1
ΓD

(Ω), problem (3.8) has a unique
solution S(φ) := (σ, u) ∈ H := HN (div; Ω)×H1(Ω). Moreover, there exists CS > 0,
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independent of φ, such that

∥S(φ)∥H = ∥(σ, u)∥H ≤ CS{∥uD∥1/2,ΓD + ∥φ∥0,Ω∥f∥∞,Ω}, ∀φ ∈ H1
ΓD

(Ω).

(3.16)

Proof. We first observe from (3.9) that, given φ ∈ H1
ΓD

(Ω), Bφ is clearly a bilin-
ear form. Next, applying Cauchy–Schwarz inequality and the lower bound for µ
(cf. (2.3)), we find from (3.9) that there exists a positive constant ∥B∥, depending
on µ1, κ1, κ2, n and ∥K−1∥∞, such that

|Bφ((σ, u), (τ , v))| ≤ ∥B∥∥(σ, u)∥H∥(τ , v)∥H , ∀ (σ, u), (τ , v) ∈ H, (3.17)

which confirms the boundedness of Bφ independently of φ ∈ H1
ΓD

(Ω). Next, we
show that Bφ is H-elliptic. In fact, given (τ , v) ∈ H , we have again from (3.9) that

Bφ((τ , v), (τ , v)) =
∫

Ω

1
µ(φ)

|τ d|2 + κ1|v|21,Ω − κ1

∫

Ω

1
µ(φ)

τ d :∇v

+ κ2∥div τ∥2
0,Ω +

∫

Ω
K−1v · v − κ2

∫

Ω
K−1v · div τ ,

which, using the lower and upper bounds for µ (cf. (2.3)), the Cauchy–Schwarz and
Young inequalities, and the estimate (2.2), yields for any δ, δ̃ > 0,

Bφ((τ , v), (τ , v)) ≥
(

1
µ2

− κ1

2δµ1

)
∥τ d∥2

0,Ω + κ2

(
1 − nδ̃

2
∥K−1∥∞

)
∥div τ∥2

0,Ω

+ κ1

(
1 − δ

2µ1

)
|v|21,Ω +

(
αK − nκ2

2δ̃
∥K−1∥∞

)
∥v∥2

0,Ω.

(3.18)

Then, assuming the indicated hypotheses on δ,κ1, δ̃ and κ2, we can introduce
the positive constants:

α0(Ω) := min

{(
1
µ2

− κ1

2δµ1

)
,
κ2

2

(
1 − nδ̃

2
∥K−1∥∞

)}
,

α1(Ω) := c2 min

{
c1α0(Ω),

κ2

2

(
1 − nδ̃

2
∥K−1∥∞

)}
,

α2(Ω) := min
{
κ1

(
1 − δ

2µ1

)
,

(
αK − nκ2

2δ̃
∥K−1∥∞

)}
,

which, according to Lemmas 3.1 and 3.2, and defining α(Ω) := min{α1(Ω),α2(Ω)},
implies from (3.18) that

Bφ((τ , v), (τ , v)) ≥ α(Ω)∥(τ , v)∥2, ∀ (τ , v) ∈ H, (3.19)

thus confirming the H-ellipticity of Bφ independently of φ ∈ H1
ΓD

(Ω) as well. Next,
given φ ∈ H1

ΓD
(Ω), it is easy to see from (3.10) that there exists a positive constant
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∥F∥, depending only on κ2, such that

∥Fφ∥ ≤ ∥F∥{∥uD∥1/2,ΓD + ∥φ∥0,Ω∥f∥∞,Ω}. (3.20)

Finally, a straightforward application of the Lax–Milgram lemma (see, e.g. Theorem
1.1 in Ref. 21), proves that, for each φ ∈ H1

ΓD
(Ω), problem (3.8) has a unique

solution S(φ) := (σ, u) ∈ H . Moreover, the corresponding continuous dependence
result together with the estimates (3.19) and (3.20) yield (3.16) with CS := ∥F∥

α(Ω) ,
which completes the proof.

We now establish the unique solvability of the linear problem (3.12).

Lemma 3.4. Let φ ∈ H1
ΓD

(Ω) and u ∈ H1(Ω) such that ∥u∥1,Ω < ϑ1
2cpc(Ω) (cf.

(2.3), (3.1), (3.6)). Then, there exists a unique φ̃ := S̃(φ, u) ∈ H1
ΓD

(Ω) solution
of (3.12). Moreover, there exists CeS > 0, independent of (φ, u), such that

∥S̃(φ, u)∥1,Ω = ∥φ̃∥1,Ω ≤ CeS{γ2|Ω|1/2|k| + ∥g∥0,Ω}. (3.21)

Proof. First notice that Aφ,u (cf. (3.13)) is clearly a bilinear form. In turn, accord-
ing to (2.3) and (3.6), it readily follows from (3.13) that there exists a positive
constant ∥A∥, depending on ϑ2, c(Ω), and the bound for ∥u∥1,Ω assumed here, that

|Aφ,u(φ̃, ψ̃)| ≤ ∥A∥∥φ̃∥1,Ω∥ψ̃∥1,Ω ∀ φ̃, ψ̃ ∈ H1
ΓD

(Ω),

which proves that Aφ,u is bounded independently of φ and u. Next, applying the
estimate (3.6) and the inequality (3.1), we find that for each φ̃ ∈ H1

ΓD
(Ω) there

holds

Aφ,u(φ̃, φ̃) =
∫

Ω
ϑ(φ)|∇φ̃|2 −

∫

Ω
φ̃u ·∇φ̃+ β∥φ̃∥2

0,Ω

≥ (ϑ1 − cpc(Ω)∥u∥1,Ω)|φ̃|21,Ω ≥ ϑ1

2
|φ̃|21,Ω ≥ ϑ1

2c2
p
∥φ̃∥2

1,Ω, (3.22)

which proves that Aφ,u is H1
ΓD

(Ω)-elliptic with constant α̃ := ϑ1
2c2

p
, independently of

φ and u as well. On the other hand, applying Cauchy–Schwarz inequality and the
upper bound for fbk given in (2.3), we easily deduce that

|Gφ(ψ̃)| ≤ {γ2|Ω|1/2|k| + ∥g∥0,Ω}∥ψ̃∥1,Ω, ∀ ψ̃ ∈ H1
ΓD

(Ω),

which says that Gφ ∈ H1
ΓD

(Ω)′ and ∥Gφ∥ ≤ {γ2|Ω|1/2|k|+∥g∥0,Ω}. Consequently, a
direct application of the Lax–Milgram lemma implies the existence of a unique solu-

tion φ̃ = S̃(φ, u) ∈ H1
ΓD

(Ω) of (3.12), and the corresponding continuous dependence

result becomes (3.21) with CeS = 1
eα = 2c2

p

ϑ1
.

At this point we remark that the restriction on ∥u∥1,Ω in Lemma 3.4 could also
have been taken as ∥u∥1,Ω < ε ϑ1

cpc(Ω) with any ε ∈ (0, 1). However, we have chosen
ε = 1

2 for simplicity and because it yields a joint maximization of the ellipticity
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constant of Aφ,u and the upper bound for ∥u∥1,Ω. In addition, when dropping
the term β∥φ̃∥2

0,Ω in (3.22) we have first assumed that β is small and then utilized the
Poincaré inequality (3.1). In turn, when β is sufficiently large, say β ≥ ϑ1, then the
aforementioned expression is kept along the whole derivation of (3.22), so that in
this case the Poincaré inequality (3.1) does not need to be applied.

We end this section by introducing suitable regularity hypotheses on the oper-
ators S and S̃, which will be employed later on. In fact, for the remainder of this
paper we follow Eq. (3.22) in Ref. 2, and suppose that uD ∈ H1/2+δ(ΓD) and
g ∈ Hδ(Ω), for some δ ∈ (0, 1) (when n = 2) or δ ∈ (1/2, 1) (when n = 3).
Then, we assume that for each φ ∈ H1

ΓD
(Ω) and (ϕ, w) ∈ H1

ΓD
(Ω) × H1(Ω), with

∥φ∥1,Ω ≤ r and ∥ϕ∥1,Ω + ∥w∥1,Ω ≤ r, r > 0 given, there holds, respectively, S(φ) ∈
HN (div; Ω) ∩ Hδ(Ω) × H1+δ(Ω) and S̃(ϕ, w) ∈ H1+δ

ΓD
(Ω), with

∥S1(φ)∥δ,Ω + ∥S2(φ)∥1+δ,Ω ≤ ĈS(r){∥uD∥1/2+δ,ΓD + ∥φ∥0,Ω∥f∥∞,Ω}, (3.23)

and

∥S̃(ϕ, w)∥1+δ,Ω ≤ ĈeS(r){γ2|Ω|1/2|k| + ∥g∥δ,Ω}, (3.24)

where ĈS(r) and ĈeS(r) are positive constants independent of φ and (ϕ, w), respec-
tively, but depending on the upper bound r of their norms. The reason of the stip-
ulated ranges for δ will be clarified in the forthcoming analysis (see below proofs
of Lemmas 3.6 and 3.7). More precisely, we remark in advance that the regularity
estimate (3.23) is needed in the proof of Lemma 3.6 to bound an expression of the
form ∥S1(φ)∥L2p(Ω) in terms of ∥S1(φ)∥δ,Ω, and hence of the data at the right-hand
side of (3.23) (further details are available in the proof of Lemma 3.9 in Ref. 2). In
turn, (3.24) is employed in the proof of Lemma 3.7 to bound an expression of the
form ∥∇S̃(ϕ, w)∥L2p(Ω) in terms of ∥S̃(ϕ, w)∥1+δ,Ω, and hence of the data at the
right-hand side of (3.24) (see (3.31) below for details).

Though the actual verification of (3.23) and (3.24) is beyond the goals of this
paper, we remark that some insights confirming the feasibility of the assumed regu-
larity for the nonlinear problem defining S were already provided in remarks below
Eq. (3.22) in Ref. 2. In turn, the assumed regularity of the linear problem defining
S̃ is quite standard in the realm of elliptic boundary value problems, and we just
refer the interested reader to Ref. 15 or Ref. 23.

3.4. Solvability of the fixed point equation

We begin by emphasizing that the well-posedness of the uncoupled problems (3.8)
and (3.12) confirms that the operators S, S̃ and T (cf. Sec. 3.2) are well defined, and
hence now we can address the solvability analysis of the fixed point Eq. (3.15). To
this end, we will verify below the hypotheses of the Schauder fixed point theorem
(see, e.g. Theorem 9.12-1(b) in Ref. 12), for which we require Lipschitz continuity
of the nonlinear functions fbk, ϑ and µ. More precisely, we assume that there exist
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positive constants Lµ, Lϑ and Lf , such that for each s, t ∈ R there hold

|µ(s) − µ(t)| ≤ Lµ|s − t|, |ϑ(s) − ϑ(t)| ≤ Lϑ|s − t| and

|fbk(s) − fbk(t)| ≤ Lf |s − t|.
(3.25)

We begin the analysis with the following straightforward consequence of Lem-
mas 3.3 and 3.4.

Lemma 3.5. Given r > 0, we let W := {φ ∈ H1
ΓD

(Ω) : ∥φ∥1,Ω ≤ r}, and assume
that

CS{∥uD∥1/2,ΓD + r∥f∥∞,Ω} <
ϑ1

2cpc(Ω)
and CeS{γ2|Ω|1/2|k| + ∥g∥0,Ω} ≤ r,

(3.26)

where CS and CeS are the constants specified in Lemmas 3.3 and 3.4, respectively.
Then T(W ) ⊆ W .

Proof. It corresponds to a slight modification of the proof of Lemma 3.8 in
Ref. 2.

Next, similarly as in Ref. 2, the continuity and compactness of T will essentially
be direct consequences of the following two lemmas providing the continuity of S
and S̃, respectively.

Lemma 3.6. There exists a positive constant C, depending on µ1,κ1,κ2, Lµ,α(Ω)
and δ (cf. (2.3), (3.7), (3.25), (3.19), (3.23)), such that

∥S(φ) − S(ϕ)∥H ≤ C{∥f∥∞,Ω∥φ− ϕ∥0,Ω + ∥S1(ϕ)∥δ,Ω∥φ− ϕ∥Ln/δ(Ω)},

∀φ,ϕ ∈ H1
ΓD

(Ω).

Proof. Even though the present bilinear form Bφ (cf. (3.9)) and the corresponding
one from Ref. 2 differ in a couple of linear terms, the present proof is almost
verbatim as Lemma 3.9 in Ref. 2, particularly concerning the utilization of the
Lipschitz-continuity of µ (cf. (3.25)), the regularity estimate (3.23), and the Sobolev
embedding theorem (cf. Theorem 4.12 in Ref. 1, Theorem 1.3.4 in Ref. 28), and
hence further details are omitted.

On the contrary to the foregoing lemma, and due to the fact already mentioned
that the diffusivity ϑ depends now on the scalar value of the concentration instead of
the magnitude of its gradient (as it is in Ref. 2), the proof of the Lipschitz-continuity
of the operator S̃, being more involved, differs substantially from the one given for
the analogue result of Lemma 3.10 in Ref. 2. In particular, as a consequence of
the aforementioned dependences, the regularity assumption (3.24), which was not
required for the proof of Lemma 3.10 in Ref. 2, will definitely be employed next.

Lemma 3.7. Let CeS be the constant provided by Lemma 3.4. Then, there exists a
positive constant C̃, depending on CeS , c(Ω), Lf , Lϑ and δ (cf. (3.6), (3.25), (3.24)),
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such that for all (φ, u), (ϕ, w) ∈ H1
ΓD

(Ω) × H1(Ω), with ∥u∥1,Ω, ∥w∥1,Ω < ϑ1
2cpc(Ω) ,

there holds

∥S̃(φ, u) − S̃(ϕ, w)∥1,Ω ≤ C̃{|k|∥φ− ϕ∥0,Ω + ∥S̃(ϕ, w)∥1,Ω∥u − w∥1,Ω

+ ∥S̃(ϕ, w)∥1+δ,Ω∥φ− ϕ∥Ln/δ(Ω)}. (3.27)

Proof. Given (φ, u), (ϕ, w) as stated, we let φ̃ := S̃(φ, u) and ϕ̃ := S̃(ϕ, w), that
is (cf. (3.12)):

Aφ,u(φ̃, ψ̃) = Gφ(ψ̃) and Aϕ,w(ϕ̃, ψ̃) = Gϕ(ψ̃), ∀ ψ̃ ∈ H1
ΓD

(Ω).

It follows, according to the ellipticity of Aφ,u with constant α̃, and then subtracting
and adding Gϕ(φ̃− ϕ̃) = Aϕ,w(ϕ̃, φ̃− ϕ̃), that

α̃∥φ̃− ϕ̃∥2
1,Ω ≤ Aφ,u(φ̃, φ̃− ϕ̃) − Aφ,u(ϕ̃, φ̃− ϕ̃)

= Gφ(φ̃− ϕ̃) − Gϕ(φ̃− ϕ̃) + Aϕ,w(ϕ̃, φ̃− ϕ̃) − Aφ,u(ϕ̃, φ̃− ϕ̃)

=
∫

Ω
(fbk(φ) − fbk(ϕ))k ·∇(φ̃ − ϕ̃) +

∫

Ω
ϕ̃(u − w) ·∇(φ̃ − ϕ̃)

+
∫

Ω
(ϑ(ϕ) − ϑ(φ))∇ϕ̃ ·∇(φ̃− ϕ̃), (3.28)

where the last equality has employed the definitions given by (3.13) and (3.14). Then
applying Cauchy–Schwarz’s inequality, the Lipschitz-continuity assumption (3.25)
on the last term in (3.28), and then Hölder’s inequality, we obtain

α̃∥φ̃− ϕ̃∥2
1,Ω ≤ {Lf |k|∥φ− ϕ∥0,Ω + c(Ω)∥ϕ̃∥1,Ω∥u − w∥1,Ω}|φ̃− ϕ̃|1,Ω

+ Lϑ∥φ− ϕ∥L2q(Ω)∥∇ϕ̃∥L2p(Ω)|φ̃− ϕ̃|1,Ω, (3.29)

where p, q ∈ [1, +∞) are such that 1/p+1/q = 1. Next, given the further regularity
δ assumed in (3.24), we recall that the Sobolev embedding theorem (cf. Theorem
4.12 in Ref. 1, Theorem 1.3.4 in Ref. 28) establishes the continuous injection iδ :
Hδ(Ω) → Lδ∗

(Ω) with boundedness constant Cδ, where

δ∗ :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
1 − δ

if n = 2,

6
3 − 2δ

if n = 3.

(3.30)

Thus, choosing p such that 2p = δ∗, we find that

∥∇ϕ̃∥L2p(Ω) = ∥∇S̃(ϕ, w)∥L2p(Ω) ≤ Cδ∥∇S̃(ϕ, w)∥δ,Ω ≤ Cδ∥S̃(ϕ, w)∥1+δ,Ω. (3.31)
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In turn, according to the above choice of p, that is p = δ∗/2, it readily follows
that

2q :=
2p

p − 1
=

⎧
⎪⎪⎨

⎪⎪⎩

2
δ

if n = 2

3
δ

if n = 3
=

n

δ
. (3.32)

In this way, inequalities (3.28), (3.29) and (3.31) together with identity (3.32) imply
(3.27), which finishes the proof.

The following result, which is the analogue of Lemma 3.11 in Ref. 2, is a straight-
forward corollary of Lemmas 3.5–3.7.

Lemma 3.8. Given r > 0, we let W := {φ ∈ H1
ΓD

(Ω) : ∥φ∥1,Ω ≤ r}, and assume
(3.26) (cf. Lemma 3.5). Then, with the constants C and C̃ from Lemmas 3.6 and 3.7,
for all φ,ϕ ∈ H1

ΓD
(Ω) there holds

∥T(φ) − T(ϕ)∥1,Ω ≤ C̃{|k| + C∥T(ϕ)∥1,Ω∥f∥∞,Ω}∥φ− ϕ∥0,Ω

+ C̃{C∥T(ϕ)∥1,Ω∥S1(ϕ)∥δ,Ω + ∥T(ϕ)∥1+δ,Ω}∥φ− ϕ∥Ln/δ(Ω).

(3.33)

Proof. It suffices to recall from Sec. 3.2 that T(φ) = S̃(φ,S2(φ)) ∀φ ∈ H1
ΓD

(Ω),
and then apply Lemmas 3.5, 3.6 and 3.7.

The announced properties of T are proved now.

Lemma 3.9. Given r > 0, we let W := {φ ∈ H1
ΓD

(Ω) : ∥φ∥1,Ω ≤ r}, and assume
(3.26) (cf. Lemma 3.5). Then, T : W → W is continuous and T(W ) is compact.

Proof. It follows almost verbatim as the proof of Lemma 3.12 in Ref. 2. Indeed,
it is basically a consequence of the Rellich–Kondrachov compactness theorem (cf.
Theorem 6.3 in Ref. 2, Theorem 1.3.5 in Ref. 28), the specified range of the constant
δ involved in the further regularity assumptions given by (3.23) and (3.24), and
the well-known fact that every bounded sequence in a Hilbert space has a weakly
convergent subsequence. We omit the rest of details.

Finally, the main result of this section is given as follows, where the proof can
be obtained very much as in Theorem 3.13 in Ref. 2.

Theorem 3.10. Assume that the hypotheses of the Lemmas 3.5–3.9 are met. Then
the augmented mixed-primal problem (3.11) has at least one solution (σ, u,φ) ∈
HN (div; Ω) × H1(Ω) × H1

ΓD
(Ω) with φ ∈ W, and there holds

∥φ∥1,Ω ≤ CeS{γ2|Ω|1/2|k| + ∥g∥0,Ω}, (3.34)
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and

∥(σ, u)∥H ≤ CS{∥uD∥1/2,ΓD + r∥f∥∞,Ω}, (3.35)

where CS and CeS are the constants specified in Lemmas 3.3 and 3.4, respectively.
Moreover, if the data k, f , g and uD are sufficiently small so that, with the constants
C, C̃, ĈS(r) and ĈeS(r) from Lemmas 3.6 and 3.7, and estimates (3.23) and (3.24),
and denoting by C̃δ the boundedness constant of the continuous injection of H1(Ω)
into Ln/δ(Ω), there holds

C̃(1 + ĈeS(r)C̃δCγ2|Ω|1/2)|k| + ĈeS(r)C̃C̃δ∥g∥δ,Ω + C̃C̃δCĈS(r)∥uD∥1/2+δ,ΓD

+ rC̃C(1 + rC̃δĈS(r))∥f∥∞,Ω < 1, (3.36)

then the solution φ is unique in W .

Proof. According to the equivalence between (3.11) and the fixed point equa-
tion (3.15), and thanks to the previous Lemmas 3.5 and 3.9, the existence of solu-
tion is just a straightforward application of the Schauder fixed point theorem (cf.
Theorem 9.12-1(b) in Ref. 12). In turn, the estimates (3.34) and (3.35) follow from
(3.16) (cf. Lemma 3.3) and (3.21) (cf. Lemma 3.4). Furthermore, given another
solution ϕ ∈ W of (3.15), the estimates ∥T(ϕ)∥1,Ω = ∥ϕ∥1,Ω ≤ r,

∥S1(ϕ)∥δ,Ω ≤ ĈS(r){∥uD∥1/2+δ,ΓD + ∥ϕ∥0,Ω∥f∥∞,Ω} (cf. (3.23)),

∥ϕ̃∥1+δ,Ω ≤ ĈeS(r){γ2|Ω|1/2|k| + ∥g∥δ,Ω} (cf. (3.24)),

and

∥ψ∥Ln/δ(Ω) ≤ C̃δ∥ψ∥1,Ω, ∀ψ ∈ H1(Ω), (3.37)

confirm (3.36) as a sufficient condition for concluding, together with (3.33), that
φ = ϕ. In other words, (3.36) constitutes the condition arising from (3.33) —
once (3.37), and the a priori and regularity estimates for ∥T(ϕ)∥1,Ω, ∥S1(ϕ)∥δ,Ω and
∥T(ϕ)∥1+δ,Ω, respectively, are employed — that makes the operator T to become
a contraction, thus yielding the existence of a unique fixed point of T in W .

4. The Galerkin Scheme

Let Th be a regular triangulation of Ω by triangles K (respectively, tetrahedra K in
R3) of diameter hK , and define the mesh size h := max{hK : K ∈ Th}. In addition,
given an integer k ≥ 0, for each K ∈ Th we let Pk(K) be the space of polynomial
functions on K of degree ≤k, and define the corresponding local Raviart–Thomas
space of order k as

RTk(K) := Pk(K) ⊕ Pk(K)x,

where, according to the notations described in Sec. 1, Pk(K) = [Pk(K)]n, and
x is the generic vector in Rn. Then, we introduce the finite element subspaces
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approximating the unknowns σ, u, and φ, respectively, as the global Raviart–
Thomas space of order k, and the corresponding Lagrange spaces given by the
continuous piecewise polynomials of degree ≤k + 1, that is:

Hσ
h := {τh ∈ HN (div; Ω) : ctτh|K ∈ RTk(K)∀ c ∈ Rn, ∀K ∈ Th}, (4.1)

Hu
h := {vh ∈ C(Ω) : vh|K ∈ Pk+1(K)∀K ∈ Th}, (4.2)

Hφ
h := {ψh ∈ C(Ω) ∩ H1

ΓD
(Ω) :ψh|K ∈ Pk+1(K)∀K ∈ Th}. (4.3)

In this way, the underlying Galerkin scheme, given by the discrete counterpart
of (3.11), reads: find (σh, uh,φh) ∈ Hσ

h × Hu
h × Hφ

h such that

Bφh((σh, uh), (τh, vh)) = Fφh(τh, vh), ∀ (τh, vh) ∈ Hσ
h × Hu

h ,

Auh(φh,ψh) =
∫

Ω
fbk(φh)k ·∇ψh +

∫

Ω
gψh, ∀ψh ∈ Hφ

h.
(4.4)

Throughout the rest of this section we adopt the discrete analogue of the fixed
point strategy introduced in Sec. 3.2. Hence, we now let Sh : Hφ

h → Hσ
h × Hu

h be
the operator defined by

Sh(φh) = (S1,h(φh),S2,h(φh)) := (σh, uh), ∀φh ∈ Hφ
h,

where (σh, uh) ∈ Hσ
h × Hu

h is the unique solution of

Bφh((σh, uh), (τ h, vh)) = Fφh(τ h, vh), ∀ (τ h, vh) ∈ Hσ
h × Hu

h , (4.5)

with Bφh and Fφh being defined by (3.9) and (3.10), respectively, with φ = φh. In

addition, we let S̃h : Hφ
h × Hu

h → Hφ
h be the operator defined by

S̃h(φh, uh) := φ̃h, ∀ (φh, uh) ∈ Hφ
h × Hu

h ,

where φ̃h ∈ Hφ
h is the unique solution of

Aφh,uh(φ̃h, ψ̃h) = Gφh(ψ̃h), ∀ ψ̃h ∈ Hφ
h, (4.6)

with Aφh,uh and Gφh being defined by (3.13) and (3.14), respectively, with u = uh

and φ = φh. Finally, we define the operator Th : Hφ
h → Hφ

h by

Th(φh) := S̃h(φh,S2,h(φh)), ∀φh ∈ Hφ
h,

and realize that (4.4) can be rewritten, equivalently, as: find φh ∈ Hφ
h such that

Th(φh) = φh. (4.7)

Certainly, all the above makes sense if we guarantee that the discrete problems
(4.5) and (4.6) are well-posed. Indeed, it is easy to see that the respective proofs
are almost verbatim of the continuous analogues provided in Sec. 3.3, and hence
we simply state the corresponding results as follows.

Lemma 4.1. Assume that κ1 ∈ (0, 2δµ1
µ2

) and κ2 ∈ (0, 2eδαK

n∥K−1∥∞
), with δ ∈ (0, 2µ1)

and δ̃ ∈ (0, 2
n∥K−1∥∞

). Then, for each φh ∈ Hφ
h the problem (4.5) has a unique
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solution Sh(φh) := (σh, uh) ∈ Hσ
h ×Hu

h . Moreover, with the same constant CS > 0
from Lemma 3.3, there holds

∥Sh(φh)∥H = ∥(σh, uh)∥H ≤ CS{∥uD∥1/2,ΓD + ∥φh∥0,Ω∥f∥∞,Ω}, ∀φh ∈ Hφ
h.

Lemma 4.2. Let φh ∈ Hφ
h and uh ∈ Hu

h such that ∥uh∥1,Ω < ϑ1
2cpc(Ω) (cf. (2.3),

(3.1), (3.6)). Then, there exists a unique φ̃h := S̃h(φh, uh) ∈ Hφ
h solution of (4.6).

Moreover, with the same constant CeS > 0 from Lemma 3.4, there holds

∥S̃h(φh, uh)∥1,Ω = ∥φ̃h∥1,Ω ≤ CeS{γ2|Ω|1/2|k| + ∥g∥0,Ω}.

We now aim to show the solvability of (4.4) by analyzing the equivalent fixed
point equation (4.7). To this end, in what follows we verify the hypotheses of the
Brouwer fixed point theorem (cf. Theorem 9.9-2 in Ref. 12). We begin with the
discrete version of Lemma 3.5.

Lemma 4.3. Given r > 0, we let Wh := {φh ∈ Hφ
h : ∥φh∥1,Ω ≤ r}, and assume

(3.26) (cf. Lemma 3.5). Then Th(Wh) ⊆ Wh.

Proof. It is a straightforward consequence of Lemmas 4.1 and 4.2.

The discrete analogues of Lemmas 3.6 and 3.7 are provided next. We notice in
advance that, instead of the regularity assumptions employed in the proof of those
results, which actually are not needed nor could be applied in the present discrete
case, we simply utilize a L4 − L4 − L2 argument.

Lemma 4.4. There exist a positive constant C, depending on µ1,κ1,κ2, Lµ and
α(Ω) (cf. (2.3), (3.7), (3.25), (3.19)), such that

∥Sh(φh) − Sh(ϕh)∥H

≤ C{∥f∥∞,Ω∥φh − ϕh∥0,Ω + ∥S1,h(ϕh)∥L4(Ω)∥φh − ϕh∥L4(Ω)},

for all φh,ϕh ∈ Hφ
h.

Proof. It proceeds exactly as in the proof of Lemma 3.6 (see Lemma 3.9 in Ref. 2),
except for the derivation of the discrete analogue of Eq. (3.29), Lemma 3.9 in
Ref. 2, where, instead of choosing the values of p and q determined by the regularity
parameter δ, it suffices to take p = q = 2, thus obtaining

|(Bϕh − Bφh)((ζh, wh), (σh, uh) − (ζh, wh))|

≤ Lµ(1 + κ2
1)1/2

µ2
1

∥ζh∥L4(Ω)∥φh − ϕh∥L4(Ω)∥(σh, uh) − (ζh, wh)∥H ,

for all φh,ϕh ∈ Hφ
h, with (σh, uh) := Sh(φh) and (ζh, wh) := Sh(ϕ). Thus, the fact

that the elements of Hσ
h are piecewise polynomials insures that ∥ζh∥L4(Ω) < +∞

for each ζh ∈ Hσ
h . Further details are omitted.
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Lemma 4.5. Let CeS be the constant provided by Lemma 3.4. Then, there exists a
positive constant C̃, depending on CeS , c(Ω), Lf and Lϑ (cf. (3.6), (3.25)), such that
for all (φh, uh), (ϕh, wh) ∈ Hφ

h × Hu
h , with ∥uh∥1,Ω, ∥wh∥1,Ω < ϑ1

2cpc(Ω) , there holds

∥S̃h(φh, uh) − S̃h(ϕh, wh)∥1,Ω

≤ C̃{|k|∥φh − ϕh∥0,Ω + ∥S̃h(ϕh, wh)∥1,Ω∥uh − wh∥1,Ω

+ ∥∇S̃h(ϕh, wh)∥L4(Ω)∥φh − ϕh∥L4(Ω)}. (4.8)

Proof. Given (φh, uh) and (ϕh, wh) as stated, we first let φ̃h := S̃h(φh, uh) and
ϕ̃h := S̃h(ϕh, wh). Next, we proceed analogously as in the proof of Lemma 3.7,
except for the derivation of the discrete analogue of the third term in (3.29), where,
employing the same argument of the previous Lemma 4.4, it suffices to take p =
q = 2, thus obtaining

α̃∥φ̃h − ϕ̃h∥2
1,Ω ≤ {Lf |k|∥φh − ϕh∥0,Ω + c(Ω)∥ϕ̃h∥1,Ω∥uh − wh∥1,Ω}|φ̃h − ϕ̃h|1,Ω

+ Lϑ∥φh − ϕh∥L4(Ω)∥∇ϕ̃h∥L4(Ω)|φ̃h − ϕ̃h|1,Ω.

Then, since the elements of Hφ
h are piecewise polynomials it follows that

∥∇ϕ̃h∥L4(Ω) < +∞, and hence the foregoing equation yields (4.8). Further details
are omitted.

Now, utilizing Lemmas 4.4 and 4.5, we can prove the discrete version of
Lemma 3.8.

Lemma 4.6. Suppose that the assumptions in Lemma 4.3 are satisfied. Then, with
the constants C and C̃ from Lemmas 4.4 and 4.5, for all φh,ϕh ∈ Hφ

h there holds

∥Th(φh) − Th(ϕh)∥1,Ω

≤ C̃{|k| + C∥Th(ϕh)∥1,Ω∥f∥∞,Ω}∥φh − ϕh∥0,Ω

+ C̃{C∥Th(ϕh)∥1,Ω∥S1,h(ϕh)∥L4(Ω) + ∥∇Th(ϕh)∥L4(Ω)}∥φh − ϕh∥L4(Ω).

(4.9)

Consequently, since the foregoing lemma and the continuous injection of H1(Ω)
into L4(Ω) confirm the continuity of Th, we conclude, thanks to the Brouwer fixed
point theorem (cf. Theorem 9.9-2 in Ref. 12) and Lemmas 4.3 and 4.6, the main
result of this section.

Theorem 4.7. Under the assumptions of Lemma 4.3, the Galerkin scheme (4.4)
has at least one solution (σh, uh,φh) ∈ Hσ

h × Hu
h × Hφ

h with φh ∈ Wh, and there
holds

∥(σh, uh)∥H ≤ CS{∥uD∥1/2,ΓD + |k|∥φh∥1,Ω},
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and

∥φh∥1,Ω ≤ CeS{γ2|Ω|1/2|k| + ∥g∥0,Ω},

where CS and CeS are the constants provided by Lemmas 3.3 and 3.4, respectively.

We end this section by remarking that the lack of suitable estimates for
∥S1,h(ϕh)∥L4(Ω) and ∥∇Th(ϕh)∥L4(Ω) stops us of trying to use (4.9) to derive a
contraction estimate for Th. This is the reason why in the foregoing Theorem 4.7
we are able only to guarantee existence, but not uniqueness, of a discrete solution.

5. A Priori Error Analysis

Given (σ, u,φ) ∈ HN(div; Ω) × H1(Ω) × H1
ΓD

(Ω) with φ ∈ W , and (σh, uh,φh) ∈
Hσ

h ×Hu
h ×Hφ

h with φh ∈ Wh, solutions of (3.11) and (4.4), respectively, we now aim
to derive a corresponding a priori error estimate. For this purpose, we first observe
from (3.11) and (4.4) that the above problems can be rewritten as two pairs of
corresponding continuous and discrete formulations, namely

Bφ((σ, u), (τ , v)) = Fφ(τ , v) ∀ (τ , v) ∈ HN(div; Ω) × H1(Ω),

Bφh((σh, uh), (τh, vh)) = Fφh(τh, vh), ∀ (τh, vh) ∈ Hσ
h × Hu

h ,
(5.1)

and

Au(φ,ψ) = Gφ(ψ) ∀ψ ∈ H1
ΓD

(Ω),

Auh(φh,ψh) = Gφh(ψh) ∀ψh ∈ Hφ
h.

(5.2)

Then, as suggested by the structure of the foregoing systems, in what follows we
apply a suitable Strang-type lemma valid for linear problems to (5.1), and then
derive our own Strang-type estimate for (5.2). The reason of the latter is that the
present form Au is not strongly monotone as it was in Ref. 2 where ϑ depended
on |∇φ| instead of just φ, and hence it does not fit the corresponding Strang-type
estimates for nonlinear problems (see, e.g. Lemma 5.1 in Ref. 2).

We begin our analysis by recalling from Ref. 11 the first Strang lemma for linear
problems.

Lemma 5.1. Let H be a Hilbert space, F ∈ H ′, and A : H×H → R a bounded and
elliptic bilinear form. In addition, let {Hn}n∈N be a sequence of finite-dimensional
subspaces of H, and for each n ∈ N consider a functional Fn ∈ H ′

n and a bounded
bilinear form An : Hn × Hn → R. Assume that the family {A} ∪ {Ah}n∈N is
uniformly bounded and uniformly elliptic with constants ΛB and ΛE , respectively.
In turn, let u ∈ H and un ∈ Hn such that

A(u, v) = F (v), ∀ v ∈ H and An(un, vn) = Fn(vn), ∀ vn ∈ Hn.
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Then for each n ∈ N there holds

∥u − un∥H ≤ CST

⎧
⎪⎨

⎪⎩
sup

wn∈Hn
wn ̸=0

|F (wn) − Fn(wn)|
∥wn∥H

+ inf
vn∈Hn
vn ̸=0

⎛

⎜⎝∥u − vn∥H + sup
wn∈Hn
wn ̸=0

|A(vn, wn) − An(vn, wn)|
∥wn∥H

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
,

with CST := Λ−1
E max{1, ΛE + ΛB}.

Proof. See Lemma 4.1.1 in Ref. 11.

We now denote as usual:

dist(φ, Hφ
h) := inf

ϕh∈Hφ
h

∥φ− ϕh∥1,Ω,

and

dist((σ, u), Hσ
h × Hu

h ) := inf
(τ h,vh)∈Hσ

h×Hu
h

∥(σ, u) − (τh, vh)∥H .

The following lemma provides a preliminary estimate for the error ∥(σ, u) −
(σh, uh)∥H .

Lemma 5.2. Let CST := α−1(Ω)max{1,α(Ω) + ∥B∥}, where ∥B∥ and α(Ω) are
the boundedness and ellipticity constants, respectively, of the bilinear forms Bφ

(cf. (3.17), (3.19)). Then there holds

∥(σ, u) − (σh, uh)∥H ≤ CST

{
(1 + 2∥B∥)dist((σ, u), Hσ

h × Hu
h )

+ (1 + κ2
2)

1/2∥f∥∞,Ω∥φ− φh∥0,Ω

+
Lµ(1 + κ2

1)1/2

µ2
1

Cδ∥σ∥δ,Ω∥φ− φh∥Ln/δ(Ω)

}
. (5.3)

Proof. By applying Lemma 5.1 to the context (5.1), we obtain

∥(σ, u) − (σh, uh)∥H

≤ CST

⎧
⎪⎨

⎪⎩
sup

(τh,vh)∈Hσ
h×Hu

h
(τ h,vh) ̸=0

|Fφ(τh, vh) − Fφh(τ h, vh)|
∥(τh, vh)∥
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+ inf
(ζh,wh)∈Hσ

h×Hu
h

(ζh,wh) ̸=0

⎛

⎜⎝∥(σ, u) − (ζh, wh)∥H

+ sup
(τh,vh)∈Hσ

h×Hu
h

(τ h,vh) ̸=0

|Bφ((ζh, wh), (τ h, vh)) − Bφh((ζh, wh), (τ h, vh))|
∥(τh, vh)∥H

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
.

(5.4)

Then, proceeding analogously as in the proof of Lemma 3.9 in Ref. 2, we easily
deduce that

sup
(τh,vh)∈Hσ

h×Hu
h

(τh,vh) ̸=0

|Fφ(τ h, vh) − Fφh(τ h, vh)|H
∥(τh, vh)∥H

≤ (1 + κ2
2)

1/2∥f∥∞,Ω∥φ− φh∥0,Ω.

(5.5)

In turn, in order to estimate the supremum in (5.4), we add and subtract suitable
terms to write

Bφ((ζh, wh), (τ h, vh)) − Bφh((ζh, wh), (τh, vh))

= Bφ((ζh, wh) − (σ, u), (τ h, vh)) + (Bφ − Bφh)((σ, u), (τ h, vh))

+ Bφh((σ, u) − (ζh, wh), (τ h, vh)),

whence, applying the boundedness (3.17) to the first and third terms on the right-
hand side of the foregoing equation, and proceeding analogously as for the derivation
of Eqs. (3.29), (3.30) in Ref. 2 with the second one, we find that

sup
(τh,vh)∈Hσ

h×Hu
h

(τh,vh) ̸=0

|Bφ((ζh, wh), (τh, vh)) − Bφh((ζh, wh), (τ h, vh))|
∥(τh, vh)∥

≤ 2∥B∥|(σ, u) − (ζh, wh)∥H +
Lµ(1 + κ2

1)1/2

µ2
1

Cδ∥σ∥δ,Ω∥φ− φh∥Ln/δ(Ω).

(5.6)

Finally, by replacing the inequalities (5.5) and (5.6) into (5.4), we get (5.3),
which ends the proof.

Next, we have the following result concerning ∥φ − φh∥1,Ω. To this end, and
in order to simplify the subsequent writing, we introduce the following constants,
independent of the data k, g, uD and f ,

K1 := CeS{Lf + LϑCδC̃δĈeS(r)γ2|Ω|1/2}, K2 := CeSLϑCδC̃δĈeS(r),

K3 := 1 + CeS(ϑ2 + β), K4 := 3CeSc(Ω)CS and K5 := CeSc(Ω)r,
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where Cδ is the boundedness constant of the continuous injection iδ : Hδ(Ω) →
Lδ∗

(Ω), with δ∗ given by (3.30), and C̃δ is the boundedness constant of the compact
injection i : H1

ΓD
(Ω) → Ln/δ(Ω).

Lemma 5.3. Assume that the data k and g satisfy

K1|k| + K2∥g∥δ,Ω ≤ 1
2
. (5.7)

Then, there holds

∥φ− φh∥1,Ω ≤ K̃3(uD, f) dist(φ, Hφ
h) + K̃5∥u − uh∥1,Ω, (5.8)

where

K̃3(uD, f) := 2{K3 + K4(∥uD∥1/2,ΓD + r∥f∥∞,Ω)} and K̃5 := 2K5. (5.9)

Proof. We first observe by triangle inequality that

∥φ− φh∥1,Ω ≤ ∥φ− ϕh∥1,Ω + ∥φh − ϕh∥1,Ω, ∀ϕh ∈ Hφ
h. (5.10)

Then employing the ellipticity of the bilinear form Aφh,uh with constant α̃, using
that (cf. (5.2)) Aφh,uh(φh,φh −ϕh) = Auh(φh,φh −ϕh) = Gφh(φh −ϕh), and then
adding and subtracting the expression (cf. (5.2)) Gφ(φh −ϕh) = Au(φ,φh − ϕh) =
Aφ,u(φ,φh − ϕh), we deduce that

α̃∥φh − ϕh∥2
1,Ω ≤ Aφh,uh(φh − ϕh,φh − ϕh)

≤ |Gφh(φh − ϕh) − Gφ(φh − ϕh)|

+ |Aφ,u(φ,φh − ϕh) − Aφh,uh(ϕh,φh − ϕh)|. (5.11)

Next, according to the definition of Gφ (cf. (3.14)), and applying Cauchy–Schwarz
inequality, we get

|Gφh(φh − ϕh) − Gφ(φh − ϕh)| ≤ Lf |k|∥φ− φh∥0,Ω|φh − ϕh|1,Ω. (5.12)

In turn, adding and subtracting ϑ(φh) and u within appropriate expressions of
Aφ,u(φ,φh−ϕh) and Aφh,uh(ϕh,φh−ϕh), respectively, and then applying Hölder’s
inequality, the upper bound of ϑ (cf. (2.3)), and (3.6), we find that

|Aφ,u(φ,φh − ϕh) − Aφh,uh(ϕh,φh − ϕh)|

≤ Lϑ∥φ− φh∥L2q(Ω)∥∇φ∥L2p(Ω)|φh − ϕh|1,Ω + ϑ2|φ− ϕh|1,Ω|φh − ϕh|1,Ω

+ c(Ω)∥ϕh∥1,Ω∥u − uh∥1,Ω|φh − ϕh|1,Ω

+ c(Ω)∥φ− ϕh∥1,Ω∥u∥1,Ω|φh − ϕh|1,Ω + β∥φ− ϕh∥0,Ω∥φh − ϕh∥0,Ω,

(5.13)

where p, q ∈ [1, +∞) are such that 1/p + 1/q = 1. In this way, using the Sobolev
embedding theorem (cf. Theorem 4.12 in Ref. 1, Theorem 1.3.4 in Ref. 28), the
regularity estimate (3.24), and applying the same arguments used for the derivation
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of (3.29) (cf. proof of Lemma 3.7), in particular the fact that H1(Ω) is compactly,
and hence continuously embedded in Ln/δ(Ω) with boundedness constant C̃δ, it
follows from (5.13) that

|Aφ,u(φ,φh − ϕh) − Aφh,uh(ϕh,φh − ϕh)|

≤ LϑCδC̃δĈeS(r){γ2|Ω|1/2|k| + ∥g∥δ,Ω}∥φ− φh∥1,Ω∥φh − ϕh∥1,Ω

+ϑ2∥φ− ϕh∥1,Ω∥φh − ϕh∥1,Ω + c(Ω)∥ϕh∥1,Ω∥u − uh∥1,Ω∥φh − ϕh∥1,Ω

+ c(Ω)∥φ− ϕh∥1,Ω∥u∥1,Ω∥φh − ϕh∥1,Ω + β∥φ− ϕh∥1,Ω∥φh − ϕh∥1,Ω.

(5.14)

Thus, by replacing (5.12) and (5.14) into (5.11), and then the resulting esti-
mate into (5.10), employing the constants defined previously to the statement
of the present lemma, using that both ∥u∥1,Ω and ∥uh∥1,Ω are bounded by
CS{∥uD∥1/2,ΓD + r∥f∥∞,Ω} (cf. Lemmas 3.3 and 4.1), and recalling from the proof
of Lemma 3.4 that α̃ = C−1

eS
, we find, after several algebraic manipulations, that

∥φ− φh∥1,Ω ≤ {K1|k| + K2∥g∥δ,Ω}∥φ− φh∥1,Ω

+ {K3 + K4(∥uD∥1/2,ΓD + r∥f∥∞,Ω)}∥φ− ϕh∥1,Ω

+ K5∥u − uh∥1,Ω, ∀ϕh ∈ Hφ
h,

which, according to the assumption (5.7) and the notation (5.9), and taking the
infimum on ϕh ∈ Hφ

h, yields (5.8) and completes the proof.

We now combine the inequalities provided by Lemmas 5.2 and 5.3 to derive the
Céa estimate for the total error ∥(σ, u) − (σh, uh)∥H + ∥φ − φh∥1,Ω. To this end,
we now introduce the constants

K6 := CST
Lµ(1 + κ2

1)1/2

µ2
1

CSC̃δĈS(r),

and

K7 := CST(1 + κ2
2)

1/2 +
Lµ(1 + κ2

1)1/2

µ2
1

CSC̃δĈS(r)r.

Then, employing from (3.23) that ∥σ∥δ,Ω ≤ ĈS(r){∥uD∥1/2+δ,ΓD +∥φ∥0,Ω∥f∥∞,Ω},
recalling that ∥φ∥1,Ω ≤ r, and using that C̃δ is the boundedness constant of the
continuous injection of H1(Ω) into Ln/δ(Ω), we can assert from (5.3) that

∥(σ, u) − (σh, uh)∥H ≤ CST(1 + 2∥B∥)dist((σ, u), Hσ
h × Hu

h )

+ {K6∥uD∥1/2+δ,ΓD + K7∥f∥∞,Ω}∥φ− φh∥1,Ω,

which, employing the estimate for ∥φ− φh∥1,Ω given by (5.8), implies

∥(σ, u)−(σh, uh)∥H ≤ CST(1 +2∥B∥) dist((σ, u), Hσ
h×Hu

h )+ K̃6(uD, f) dist(φ, Hφ
h)

+ K̃5{K6∥uD∥1/2+δ,ΓD + K7∥f∥∞,Ω}∥u − uh∥1,Ω,



February 5, 2016 13:47 WSPC/103-M3AS 1650020

892 M. Alvarez, G. N. Gatica & R. Ruiz-Baier

where

K̃6(uD, f) := K̃3(uD, f){K6∥uD∥1/2+δ,ΓD + K7∥f∥∞,Ω}.

In this way, assuming now that uD and f satisfy

K̃5{K6∥uD∥1/2+δ,ΓD + K7∥f∥∞,Ω} ≤ 1
2
,

we conclude from the foregoing equations that

∥(σ, u) − (σh, uh)∥H ≤ 2CST(1 + 2∥B∥) dist((σ, u), Hσ
h × Hu

h )

+ 2K̃6(uD, f) dist(φ, Hφ
h). (5.15)

Consequently, we can establish the following result providing the complete Céa
estimate.

Theorem 5.4. Assume that the data k, g, uD and f are sufficiently small so that

K1|k| + K2∥g∥δ,Ω ≤ 1
2

and K̃5{K6∥uD∥1/2+δ,ΓD + K7∥f∥∞,Ω} ≤ 1
2
.

Then, there exists a positive constant C, independent of h, but depending on data,
parameters, and other constants, such that

∥(σ, u) − (σh, uh)∥H + ∥φ− φh∥1,Ω

≤ C{dist((σ, u), Hσ
h × Hu

h ) + dist(φ, Hφ
h)}. (5.16)

Proof. It follows straightforwardly from (5.15) and (5.3).

We end this section with the corresponding rates of convergence of our Galerkin
scheme (4.4).

Theorem 5.5. In addition to the hypotheses of Theorems 3.10, 4.7 and 5.4, assume
that there exists s > 0 such that σ ∈ Hs(Ω),divσ ∈ Hs(Ω), u ∈ H1+s(Ω) and
φ ∈ H1+s(Ω). Then, there exists Ĉ > 0, independent of h, such that, with the finite
element subspaces defined by (4.1)–(4.3), there holds

∥(σ, u) − (σh, uh)∥H + ∥φ− φh∥1,Ω

≤ Ĉhmin{s,k+1}{∥σ∥s,Ω + ∥divσ∥s,Ω + ∥u∥1+s,Ω + ∥φ∥1+s,Ω}.

Proof. It follows directly from the Céa estimate (5.16) and the approximation
properties of Hσ

h , Hu
h and Hφ

h (cf. Refs. 5, 11 and 21).

6. Numerical Tests

Example 1. Our first example aims at testing the accuracy of our augmented
finite element formulation. As usual, experimental errors and convergence rates are
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defined as

e(σ) := ∥σ − σh∥div,Ω, e(u) := ∥u − uh∥1,Ω,

e(φ) := ∥φ− φh∥1,Ω, r(·) := log(e(·)/ê(·))[log(h/ĥ)]−1,

where e and ê stand for errors computed on two consecutive meshes of sizes h and ĥ,
respectively. In all examples we consider K = KI, with K constant. The following
exact solution to (2.1) defined on the unit disk is manufactured:

φ(x1, x2) = c − c exp(1 − x2
1 − x2

2),

u(x1, x2) =

(
sin(πx1) cos(πx2)

−cos(πx1) sin(πx2)

)
,

σ(x1, x2) = µ(φ)u − (x2
1 − x2

2)I,

where K−1 = 0.01, β = 10, k = (0,−1)t, µ(φ) = (1 − bφ)−2, fbk(φ) = bφ(1 − bφ)2,
ϑ(φ) = φ+ (1 − bφ)2, and the source terms are

f (x1, x2) = φ−1(K−1u − div σ),

g(x1, x2) = βφ− div(ϑ(φ)∇φ) + u ·∇φ+ f ′
bk(φ)k ·∇φ,

for (x1, x2) ∈ Ω. We take b = 1/2, c = 1/(1 − e) and set ΓD = ∂Ω, where φ
vanishes and the velocity is imposed accordingly to the exact solution. The mean
value of tr(σ)h over Ω is fixed via a penalization strategy. As defined above, the
concentration is bounded in Ω and so are the concentration-dependent coefficients
as well. In particular we have µ1 = 1, µ2 = 4 and as suggested by Lemma 3.3, the
stabilization constants are chosen as κ1 = δµ1

µ2
with δ = µ1, and κ2 = 0.025 for

δ̃ = 1
4|K−1| .

A Newton–Raphson algorithm with a fixed tolerance of 1e-6 has been used for
the nonlinear problem (4.4). At each iteration the linear systems resulting from
the linearization were solved by means of the multifrontal solver MUMPS. Inde-
pendently of the refinement level, we observe that an average number of five steps
was required to reach the desired tolerance. Values and plots of errors and corre-
sponding rates associated to RTk − Pk+1 − Pk+1 approximations with k = 0 and
k = 1 are summarized in Table 1 and Fig. 1. The results show optimal asymptotic
convergence rates for all fields (of order k + 1 for the pseudo-stress, the velocity
and the concentration), which agree with the accuracy predicted in Theorem 5.5.
We also remark that for both degrees of approximation, the concentration errors
are always below the velocity errors, and both are dominated by the errors in the
pseudo-stress approximation. The augmented mixed-primal approximations com-
puted on a mesh of 204847 vertices and 409692 elements are depicted in Fig. 2,
where stress, velocity, and concentration profiles are well resolved.
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Table 1. Example 1: Convergence history and Newton iteration count for the mixed-primal
RTk −Pk+1 −Pk+1 approximations of the coupled problem, k = 0, 1. Here Nh stands for the
number of degrees of freedom associated to each triangulation Th.

Nh h e(σ) r(σ) e(u) r(u) e(φ) r(φ) iter

Augmented RT0 − P1 − P1 scheme

45 1.000000 37.83630 — 5.078982 — 0.794267 — 7
150 0.752986 29.63322 0.861350 3.864984 0.962793 0.551649 1.284790 6
567 0.381608 14.53602 1.047988 1.893370 1.049950 0.261571 1.097927 6
1986 0.202981 7.685891 1.009446 0.917330 1.147899 0.142439 0.962789 5
7587 0.107277 3.855674 1.081757 0.449265 1.119414 0.071858 1.072957 5
29652 0.056293 1.929090 1.073920 0.222210 1.091739 0.036226 1.062147 5
116820 0.029796 0.967180 1.085224 0.111677 1.081444 0.018210 1.081158 5
465243 0.015539 0.480698 1.073919 0.056004 1.060163 0.009068 1.070848 5
1840545 0.008139 0.243228 1.053393 0.028080 1.067485 0.004619 1.043095 5

Augmented RT1 − P2 − P2 scheme

129 1.000000 32.06255 — 3.909169 — 0.549477 — 7
447 0.752986 16.36007 1.505829 1.686632 1.605829 0.163634 1.919349 6
2043 0.381608 6.518447 1.697863 0.374835 1.820361 0.040489 1.899365 5
6835 0.202981 2.511864 1.781622 0.097825 1.967394 0.011124 1.841454 5
26243 0.107277 0.695590 1.902700 0.026791 2.146465 0.002491 1.857032 5
104867 0.056293 0.209899 1.925679 0.006716 1.743774 0.000774 1.864551 5
412611 0.029796 0.056163 1.945132 0.001700 2.095484 0.000182 1.928363 5
1643907 0.015539 0.014448 1.960714 0.000427 2.132144 0.000039 1.987836 5
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Fig. 1. Example 1: Computed errors associated to the mixed-primal approximation versus the
number of degrees of freedom Nh for RT0 −P1 −P1 and RT1 −P2 −P2 finite elements (left and
right, respectively). Values are detailed in Table 1.

For all remaining examples we stick to the case k = 0, i.e. row-wise lowest-order
Raviart–Thomas finite element approximations for the Cauchy pseudo-stress, and
piecewise linear approximations of velocity and concentration.

Example 2. Our next example corresponds to a test of batch sedimentation in
a cylinder with a contraction (see e.g. Refs. 29 and 27). In this case the model
parameters and concentration-dependent coefficients assume the values K = 60,
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Fig. 2. Example 1: RT0 − P1 − P1 approximation of pseudo-stress components (top panels),
velocity components with vector directions (bottom left and center, respectively), and concentra-
tion profile (bottom right), solutions to (3.11). The finest mesh has 204847 vertices and 409692
triangular elements.

β = K−1, µ(φ) = µ0(1 − φ
φmax

)−η, fbk(φ) = C1C2
(1−φ0)
µ(φ) φ, ϑ(φ) = C1(C3γφ2 +

C2) and f = ∆ρGk, with C1 = (ρ1 + φmax∆ρ)(ρ1ρ2)−1, C2 = 2
9µ0

∆ρGa2, C3 =
0.68355a2, ∆ρ = ρ2 − ρ1, and γ = 0.88. Values for the remaining dimensional
constants are collected in Table 2, and the model parameters yield the following
stabilization constants µ1 = µ0, µ2 = 6.5365, κ1 = δµ1/µ2 with δ = µ1 and
κ2 = 0.025 for δ̃ = 1

4|K−1| .

Table 2. Example 2: Model constants employed in the simulation
of steady sedimentation of PMMA into glycerol/water within a
contracted cylinder.

Quantity Value

Density glycerol/water solution, ρ1 1.175 g/cm3

Density PMMA, ρ2 1.18 g/cm3

Viscosity glycerol/water solution, µ0 0.184 g/cm3

Initial volume fraction, φ0 0.192
Maximum volume fraction, φmax 0.64
Particle radius, a 0.0397 cm
Viscosity constant, η 1.82
Gravity, G 980.665 cm/s2
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Fig. 3. Example 2: Typical dimensions and boundary setting for a two-dimensional computa-
tional domain representing the batch sedimentation within a cylinder with a contraction (left),
and magnitude of the velocity field shown on the rotationally extruded domain (right).

On ∂Ω we impose zero-flux conditions for φ, that is σ̃ · ν = 0. In addition, the
following boundary conditions are imposed for the velocity (see sketch in Fig. 3):
u|Γ1 = u|Γ3 = 0, and u2|Γ2 = 0 (representing a symmetry axis). The domain is
discretized into 13131 vertices and 26260 triangles, and we represent the obtained
field quantities of interest in Fig. 4. The maximum concentration has been packed
at the bottom of the vessel, whereas throughout the rest of the domain is filled
with low-concentration material. More interesting phenomena are observed from
the velocity plots, where a main recirculation zone is observed at the center of
the domain. Moreover, a countercurrent flow is observed along the symmetry axis
(clearly identified in the horizontal velocity plot), and these flow patterns are further
highlighted in the diagonal components of the pseudo-stress.

Example 3. Finally we turn to the simulation of the steady state of flow patterns
on a box (see the domain, dimensions and boundary configuration illustrated in
Fig. 5), using a modification to the single phase model described in Ref. 30 to
reproduce the so-called Coandă effect, which corresponds to the tendency of a fluid
jet to be attracted to a nearby surface.31 In this case the nonlinear concentration-
dependent coefficients are µ(φ) = µ0(1 − φ/φmax)η, fbk(φ) = u∞φ(1 − φ/φmax)η

and ϑ(φ) = ϑ0(φ3 +1) where η = 1.82, µ0 = 0.02, ϑ0 = 0.0001, β = 0.01, K = 1000,
g = 0 and f = ∆ρGk, with ∆ρ = 0.0045 and G = 0.98.

Concentration and velocities are fixed at the inlet surface Γin (a rectangle of
width 0.5 cm and height 0.35 cm located on the top, at x1 = 0) according to φ = φin

and u = uin = (u1,in, 0, 0)t. At the outlet Γout (a rectangle with the same dimen-
sions as the inlet, but located at x1 = 6, on the bottom) we let the material exit
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Fig. 4. Example 2: Principal components of the Cauchy pseudo-stress (top rows), velocity compo-
nents uh with vector directions (bottom left and center), and computed concentration φh (bottom
right) for the test of batch sedimentation in a cylinder with a contraction.

Fig. 5. Example 3: Sketch of the computational domain Ω = [0, 6]× [0, 4]× [0,0.8], a coarse mesh,
and boundary setting, with ∂Ω = Γ ∪ Γin ∪ Γout.

the domain with a velocity u = uout = (u1,out, 0, 0)t, but the concentration is not
prescribed. On the remainder of ∂Ω we put no-slip boundary data for the velocity
and zero-flux conditions for the concentration. Other model parameters are set as
u1,in = u1,out = 0.01, φmax = 0.9, u∞ = 0.0022 and φin = 0.3.
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Fig. 6. Example 3: Approximate solutions to the so-called Coanda effect using an augmented
mixed formulation. Trace of the Cauchy pseudo-stress tensor (left), velocity vectors and streamlines
(middle), and concentration profile (right).

According to the bounds of the viscosity, the stabilization parameters were set
as µ1 = µ0, µ2 = µ0(1 − φin/φmax)−η, κ1 = δ µ1

µ2
with δ = µ1 and κ2 = 0, 055

for δ̃ = 1
6|K−1| . For this problem, seven Newton iterations were needed to achieve

a tolerance of 1e-6 for the energy norm of the incremental approximations. The
numerical results are depicted in Fig. 6 including concentration profiles, velocity
vectors and streamlines, and trace of the Cauchy pseudo-stress tensor. As in Ref. 30,
from the center plot of Fig. 6 we see a clear attachment of the fluid stream to the
side walls, whereas the material with high concentration at the inlet dissolves almost
completely at the outlet. This effect corresponds to a relatively high inlet velocity,
and since higher concentration material is injected, it penetrates the clear fluid
pushing it toward the outlet.
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en Ingenieŕıa Matemática (CI2MA), Universidad de Concepción, Chile (2014),
http://www.ci2ma.udec.cl. Math. Comput., to appear.

11. P. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, 1978).
12. P. Ciarlet, Linear and Nonlinear Functional Analysis with Applications (Society for

Industrial and Applied Mathematics, 2013).
13. E. Colmenares, G. N. Gatica and R. Oyarzúa, Analysis of an augmented mixed-
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