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Stability of a second-order method for phase change in porous media flow
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We analyse the stability of a second-order finite element scheme for the primal formulation of a Brinkman-Boussinesq model
where the solidification process influences the drag and the viscosity. The problem is written in terms of velocity, temperature,
and pressure, and we produce numerical approximations to the flow observed in heated cavities and near ice sheets.
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1 Introduction and governing equations

Many applicative problems deal with the problem of thermal convection, where a dynamic change of phase between solid and
liquid is present. Examples are encountered in the melting and solidification of metals, or in ocean and atmospheric phenom-
ena. Phase change has been considered as part of Boussinesq-based models using either an enthalpy-porosity approach, like
in the recent contributions [7, 9] where a discontinuity in the drag exerts a large force in the solid phase, or by incorporating
jumps in the viscosity, as in [3]. Here we employ a slightly different viscosity-based model that combines the two approaches.
This new model, thoroughly discussed in [2], is based on assuming that the solid contains many small particles, just like in
porosity-based descriptions of flow in porous media. The jump in the coefficients is here regularised into a smooth transition
from one phase to another. model considers the presence of microscopic particles in the solid, which resembles porosity-based
models. We choose a transition from fluid to solid having a large gradient, which creates additional numerical challenges.

Apart from proposing a conforming Galerkin method for the space discretisation of the governing equations (momentum,
mass, energy, and enthalpy), our contribution focuses also on deriving stability bounds for the discrete solutions. This result
generalises other studies, so far focused on the natural or thermal convection of fluids without phase change, see for instance
[1, 4–6, 8]. In particular, this note summarises the recent results reported in [2] and presents three new numerical tests.

Let Ω ⊂ R2, be a porous domain saturated with an incompressible viscous fluid with kinematic viscosity ν, thermal
expansion coefficient α, and dimensionless specific heat C. The problem of interest consists in solving the conservation of
momentum, mass, energy, and enthalpy, written in terms of velocity u, pressure p, and temperature θ:

∂tu + u · ∇u− 1

Re
div

[
2µ(θ)ε(u)

]
+∇p+ η(θ)u = f(θ)k, divu = 0,

∂tθ + u · ∇θ − C−1Pr−1div (κ∇θ) + ∂ts+ u · ∇s = 0,
(1.1)

defined in Ω× (0, tf ], where ε(u) = 1
2 (∇u+∇uT ) is the strain rate, s is the enthalpy (with the property |∇s(ψ)| ≤ s2|∇ψ|

∀ψ ∈ R), k is the unit vector that points opposite to gravity, κ is the thermal conductivity (uniformly bounded and positive
definite with constants κ1 and κ0, respectively), η, µ are the temperature-dependent permeability of the porous material and
viscosity of the fluid, respectively: η(θ) := ηs

2 [tanh(Mη(θf − θ)) + 1], µ(θ) := µl +
(µs−µl)

2 [tanh(Mµ(θf − θ)) + 1], where
ηs corresponds to the relative size of the imposed force and Mη,Mµ denote both the size of the mushy region; and Re, Pr
are the Reynolds and Prandtl numbers, respectively. No-slip velocity is imposed over ∂Ω, and we assume that the boundary
admits a splitting between ΓθD and ΓθN , where temperature and normal heat fluxes are prescribed, respectively. The system is
initially at rest and isothermal, and so we set u(0) = 0, p(0) = 0 and θ(0) = θ0 with θ0 constant.

2 Stability of the fully discrete Galerkin scheme

Let {Th}h>0 be a shape-regular family of partitions of the region Ω̄, with meshsize h. Finite-dimensional spaces for the
approximation of u, p, θ are Vh := {vh ∈ H1(Ω) : vh|K ∈ [Pk+1(K)]2 ∀K ∈ Th, and vh = 0 on ∂Ω}, Qh := {qh ∈
L2(Ω) : qh|K ∈ Pk(K) ∀K ∈ Th, and

∫
Ω
qh = 0}, Zh := {ψh ∈ H1(Ω) : ψh|K ∈ Pk+1(K) ∀K ∈ Th, and ψh =

0 on ΓθD}, for k ≥ 1, satisfying a discrete inf-sup condition [2, 5]. For the time discretisation we use a BDF2 method with a
uniform timestep ∆t. Starting from u0

h, θ
0
h,u

1
h, θ

1
h, solve for n = 1, . . . the nonlinear system

∗ Corresponding author. E-mail: bgomez@ci2ma.udec.cl.

Copyright line will be provided by the publisher



2 PAMM header will be provided by the publisher

3

2∆t
(un+1

h ,vh) + c1(un+1
h ;un+1

h ,vh) +
1

2
(divun+1

h un+1
h ,vh) + a

θn+1
h

1 (un+1
h ,vh)

+ (η(θn+1
h )un+1

h ,vh) + b(vh, p
n+1
h )− (f(θn+1

h )k,vh) =
1

∆t
(2unh −

1

2
un−1
h ,vh) ∀vh ∈ Vh,

b(un+1
h , qh) = 0 ∀qh ∈ Qh,

3

2∆t
(θn+1
h + sn+1

h , ψh) + c3(un+1
h ; θn+1

h + sn+1
h , ψh) +

1

2
(divun+1

h (θn+1
h + sn+1

h ), ψh)

+ a3(θn+1
h , ψh) =

1

∆t
(2[θnh + snh]− 1

2
[θn−1
h + sn−1

h ], ψh) ∀ψh ∈ Zh,

(2.1)

where a1(·, ·) is the bilinear form associated to the viscous term, b(·, ·) is the usual divergence bilinear form, a3(·, ·) is the
temperature diffusion form, and ci(·; ·, ·) are the convective bilinear forms.

Theorem 2.1 Let (un+1
h , θn+1

h ) ∈ Vh × Zh be a solution of (2.1) and assume that κ0 > 2s2κ1. Then,
‖un+1

h ‖20,Ω + ‖2un+1
h − unh‖20,Ω + ‖θn+1

h + sn+1
h ‖20,Ω + ‖2(θn+1

h + sn+1
h )− (θnh + snh)‖20,Ω

+

n∑
m=1

(
‖δumh ‖20,Ω + ‖δ(θmh + smh )‖20,Ω

)
+

n∑
m=1

(
∆t ‖um+1

h ‖21,Ω + ∆t |θm+1
h |21,Ω

)
(2.2)

≤ C1

(
‖θ1
h + s1

h‖20,Ω + ‖2(θ1
h + s1

h)− (θ0
h + s0

h)‖20,Ω + ‖u1
h‖20,Ω + ‖2u1

h − u0
h‖20,Ω

)
,

where C1 is a constant independent on h and ∆t, and δumh , δ(θ
m
h + smh ), are denoted according to [2, eq. (4.6)].

P r o o f. Taking ψh = 4(θn+1
h + sn+1

h ) and vh = 4un+1
h in the third and first equation of (2.1), respectively, and then,

applying the algebraic relation given in [2, eq. (4.6)] and Young’s inequality, we deduce that

‖un+1
h ‖20,Ω + ‖2un+1

h − unh‖20,Ω + ‖θn+1
h + sn+1

h ‖20,Ω + ‖2(θn+1
h + sn+1

h )− (θnh + snh)‖20,Ω + ‖δunh‖20,Ω

+ ‖δ(θnh + snh)‖20,Ω + c1 min

{
8µ1

Re
, 2η1

}
∆t ‖un+1

h ‖21,Ω +
4(κ0 − 2s2κ1)

CPr
∆t |θn+1

h |21,Ω

≤ C2

(
‖unh‖20,Ω + ‖2unh − un−1

h ‖20,Ω + ‖θnh + snh‖20,Ω + ‖2(θnh + snh)− (θn−1
h + sn−1

h )‖20,Ω
)
.

(2.3)

Finally, by summing over n the estimate (2.3), we obtain (2.2). Further details can be found in [2].

3 Three numerical examples

Assuming different coefficients in the enthalpy-viscosity or porosity models, we generate three scenarios. First, a single fluid
in a lid driven cavity flow with many solid particles. Secondly, an advection-dominated flow of two fluids of different density
and viscosity. The salt distribution drives in turn the flow through the buoyancy term. Lastly, the melting of a circular ice sheet
surrounding Antarctica, where the buoyancy acts radially, directing the main flow towards the coastline.

Fig. 1 Approximate pressure in a
thermally driven cavity with randomly
distributed small obstacles (left). Salt
distribution for the Rayleigh-Taylor
instability problem (centre), where
two approximately immiscible fluids
of different densities are in a con-
tainer. Velocity line integral contours
of the melting of ice sheets in Antarc-
tica (right) after an elapsed time.
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