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Abstract. This paper is devoted to the numerical analysis of an augmented finite element approxima-
tion of the axisymmetric Brinkman equations. Stabilization of the variational formulation is achieved
by adding suitable Galerkin least-squares terms, allowing us to transform the original problem into a
formulation better suited for performing its stability analysis. The sought quantities (here velocity, vor-
ticity, and pressure) are approximated by Raviart−Thomas elements of arbitrary order k ≥ 0, piecewise
continuous polynomials of degree k + 1, and piecewise polynomials of degree k, respectively. The well-
posedness of the resulting continuous and discrete variational problems is rigorously derived by virtue of
the classical Babuška–Brezzi theory. We further establish a priori error estimates in the natural norms,
and we provide a few numerical tests illustrating the behavior of the proposed augmented scheme and
confirming our theoretical findings regarding optimal convergence of the approximate solutions.
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1. Introduction

Cylindrical symmetry of both the data and the domain very often allows transforming an initially three-
dimensional flow problem into a two-dimensional one, typically implying a substantial reduction in computa-
tional complexity. Apart from the advantages of considering an intrinsically axisymmetric problem in its natu-
ral configuration, such a reduction is particularly appealing in case of mixed approximations where additional
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unknowns are introduced in order to accurately recover other fields of physical interest. The attached difficulty
usually resides in the analysis and derivation of proper schemes to discretize axisymmetric formulations, due
to the presence of singularities associated to weighted functional spaces and their respective finite dimensional
counterparts, which can eventually translate into numerical singularity near the rotation axis (considered as
(r = 0, z)), since a factor of 1/r appears in all volume integrals.

The main purpose here is to propose and analyze an augmented mixed finite element method for the accurate
discretization of the axisymmetric Brinkman problem in its vorticity-velocity-pressure formulation. This system
stands as a prototype model for the study of Stokes and Darcy flow regimes (see e.g. [43]), and it can also be
employed to study semi-discretizations of transient Stokes equations. The vorticity (which is a scalar field in
the axisymmetric case) is a sought quantity of key importance in e.g. subsurface flow, blood flow, and other
applications where the patterns of rotational flow are of interest [42, 44], and it can be directly obtained from
the present formulation, without resorting to numerical postprocessing (typically prone to accuracy loss unless
high order methods are employed). Moreover, for external flows vorticity boundary data are more natural
than e.g. pressure conditions, and velocity-vorticity formulations are more advantageous in problems defined
in non-inertial frames of reference [46]. Also, in many regimes the vorticity gives much clearer insight about
flow instabilities and it is typically concentrated in a specific region of the domain, where enough accuracy is
mandatory. Augmentation of the variational formulation with penalized residual-based terms, usually allows
to recast the saddle point problem as a strongly elliptic system, and it also provides a way of bypassing the
so-called kernel property, or to yield inf-sup stable continuous and discrete formulations (see for instance, [27]).
Our choice for the discretization of the governing equations consists in Raviart−Thomas elements of order k for
the velocity field, piecewise continuous polynomials of degree k+1 for the vorticity, and piecewise discontinuous
polynomials of degree k for the pressure field, for k ≥ 0.

1.1. Related work and specifics of this contribution

There exist several references dealing with the mathematical and numerical analysis of axisymmetric prob-
lems. For instance, the strategy of reducing the spatial dimension in finite element methods was applied to
the axisymmetric Laplace problem in the early work [41]. Later on, numerous studies have been dedicated to
different axisymmetric formulations of the Stokes equations employing finite differences [32, 39], and spectral,
Mortar, Taylor−Hood, and stabilized finite elements (see [7, 10, 13, 14, 17, 22, 37, 38, 45]). Raviart−Thomas and
Brezzi−Douglas−Marini mixed approximations for axisymmetric Darcy, and Stokes–Darcy flows were analyzed
in [25,26] using a generalization of the so-called Stenberg criterion. Recent contributions focusing on the design
of numerical methods for axisymmetric formulations of coupled flow and transport problems can be found in
e.g. [3, 20, 21, 33]. On the other hand, time-dependent and static Maxwell equations in axisymmetric singular
domains were studied in [8, 9] by introducing a method based on a splitting of the space of solutions into a
regular subspace and a singular one. In [36], a method was introduced to solve a time-harmonic Maxwell equa-
tion in axisymmetric domains using a Fourier decomposition. Such a technique was also employed in [41] for
the axisymmetric Laplace equation. The development of multigrid schemes and rigorous estimates in weighted
spaces was carried out in [24] for related problems. More recently, transient axisymmetric formulations with
more general Ohm’s laws including velocity terms and being relevant in some industrial applications have been
studied in [15, 16].

Up to our knowledge, the numerical analysis of finite element approximations of the generalized Stokes (or
Brinkman) problem for the axisymmetric case has not been carried out yet. Nevertheless, in the Cartesian
setting, there exist several methods including fully mixed, augmented, and stabilized formulations [11, 12, 29],
also incorporating robust estimates with respect to viscosity [34, 40], whereas only a few recent contributions
include formulations in terms of velocity, vorticity and pressure [5, 6, 48].

In this regard, we stress that the present study represents an extension to the vorticity-based Stokes prob-
lem analyzed in [4] in the sense that here we include the zeroth-order velocity component and introduce an
axisymmetric formulation. On the other hand, the vorticity-based formulations for Brinkman equations ana-
lyzed in [5,6,48] are restricted to Cartesian two-dimensional domains, and therefore many practical applications
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remain out of reach. An axisymmetric flow model was derived from a three-dimensional scenario in [1,2], where
the proposed numerical method was based on spectral finite elements. Here we have chosen a different discretiza-
tion that retains optimal accuracy in complex domains and in the presence of coefficients with high gradients,
and which requires reasonable regularity assumptions for the exact solutions and the data.

Our analysis of existence and uniqueness of solution to the continuous axisymmetric problem is carried out by
introducing an augmented formulation that arises from including penalized least-squares terms to the original
variational formulation. We point out that this step is not necessary in the continuous case, but (as we will
address in full detail) the presence of the term 1/r in the volume integrals requires some sort of stabilizing
terms in the discrete formulation that would further allow us to relax constraints related to e.g. discrete inf-sup
conditions. Thus, we opt for augmenting both continuous and discrete problems so that the same arguments
can be applied for their solvability analysis. The tools employed to establish the convergence of our scheme
consist in a Céa estimate combined with properties of the global Raviart−Thomas and Lagrange interpolation
operators.

1.2. Outline

We have structured the contents of this paper as follows. The remainder of this Section introduces the classical
Brinkman problem in Cartesian coordinates, along with its reduction to the axisymmetric case. We also present
a mixed formulation for this problem, and summarize some preliminary results needed for its analysis. Section 2,
is devoted to the statement of a least-squares-based augmented formulation to the axisymmetric generalized
Stokes problem, and we perform the solvability analysis employing standard arguments from the Babuška−Brezzi
theory. The mixed finite element formulation is presented in Section 3, where we also rigorously derive the
stability analysis and optimal error estimates. We continue with a few illustrative numerical examples collected
in Section 4, which confirm the robustness and expected convergence properties of the proposed stabilized
method, and we finally summarize the main aspects of this contribution in Section 5.

1.3. Linear Brinkman equations in Cartesian coordinates

The linear Brinkman equations governing the motion of an incompressible fluid can be written as the following
boundary value problem:

σ̆ŭ − νΔŭ + ∇p̆ = f̆ in Ω̆, (1.1a)

div ŭ = 0 in Ω̆, (1.1b)

ŭ · n̆ = 0 on ∂Ω̆, (1.1c)

curl ŭ ∧ n̆ = 0 on ∂Ω̆, (1.1d)

where Ω̆ ⊂ R
3 is a given spatial domain. In this formulation, the sought quantities are the local volume-average

velocity ŭ and the pressure field p̆. The positive model coefficients are the inverse permeability field σ̆ ∈ L∞(Ω̆),
with 0 < σ̆min ≤ σ̆(x, y, z) ≤ σ̆max a.e. in Ω̆, and the fluid viscosity ν > 0. For constant permeability, the above
system is also known as the generalized Stokes equations, and it allows in particular, to study spatial properties
of the solutions to the time-dependent Stokes problem. In fact, the transient Stokes equations read

∂tŭ − 1
Re

Δŭ + ∇p̆ = f̆ in Ω̆,

div ŭ = 0 in Ω̆, (1.2)

which, after applying a backward Euler time discretization of the acceleration term, yield to the following system

1
Δt

ŭn+1 − 1
Re

Δŭn+1 + ∇p̆n+1 = f̆
n+1

+
1

Δt
ŭn in Ω̆,

div ŭn+1 = 0 in Ω̆. (1.3)

That is, the solution of (1.2) requires to solve (1.3) at each time step.
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Figure 1. Sketch of a full three dimensional domain Ω̆ with boundary Γ̆ and the axisymmetric
meridional domain Ω with boundary Γ (left and right, respectively). Here Γs stands for the
symmetry axis.

When the forcing term and the inverse permeability are axisymmetric, they can be replaced by f and σ,
respectively, with 0 < σmin ≤ σ(r, z) ≤ σmax a.e. in Ω, and system (1.1a)−(1.1d) can be recast as two uncoupled
problems in the so-called meridional domain Ω (see Fig. 1): a problem involving only the unknown uθ, and a
problem with unknowns ur, uz and p. Here, we focus on the second case.

1.4. Preliminaries and axisymmetric formulation

In this section, we define appropriate weighted Sobolev spaces that will be used in the sequel and establish
some of their properties; the corresponding proofs can be found in [13, 31, 41] (see also [24, 30, 35] for further
general results on weighted Sobolev spaces, and some applications, respectively).

For an integer � ≥ 0 and a real 1 ≤ q ≤ ∞, Lq(Ω) is the set of measurable functions ϕ such that
(
∫

Ω ϕq dx )1/q < ∞ and W �,q(Ω) denotes the usual Sobolev space of functions whose derivatives up to order �
are in Lq(Ω). Unless otherwise specified, we denote vector variables and spaces in bold.

In general, we will denote with ·̆ a quantity associated to the three-dimensional domain Ω̆, whereas vector
fields associated to the axisymmetric restriction will be denoted by v = (vr, vz). Let us also recall that the
axisymmetric counterparts of the usual differential operators acting on vectors and scalars read

diva v := ∂zvz +
1
r
∂r(rvr) = ∂rvr + r−1vr + ∂zvz, rotv := ∂rvz − ∂zvr,

∇ϕ := (∂rϕ, ∂zϕ)T , curla ϕ := (∂zϕ,−r−1∂r(rϕ))T .

After introducing the (scaled) vorticity field ω =
√

ν rotu, we notice that system (1.1a)−(1.1d) is equivalent to

σu +
√

ν curla ω + ∇p = f in Ω, (1.4a)

ω −
√

ν rotu = 0 in Ω, (1.4b)

diva u = 0 in Ω, (1.4c)

u · n = 0 on Γ , (1.4d)

ω = 0 on Γ . (1.4e)
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At times, we will need appropriate weighted Sobolev spaces which we introduce in what follows, along with
some of their main properties; the corresponding proofs and further general results about weighted Sobolev
spaces can be found in e.g. [13, 35, 41]. To alleviate the notation, we will denote the partial derivatives by ∂r

and ∂z.
Let Lp

α(Ω) denote the weighted Lebesgue space of all measurable functions ϕ defined in Ω for which

‖ϕ‖p
Lp

α(Ω) :=
∫

Ω

|ϕ|p rα drdz < ∞.

The subspace L2
1,0(Ω) of L2

1(Ω) contains functions q with zero weighted integral:∫
Ω

qr drdz = 0.

The weighted Sobolev space Hk
r (Ω) consists of all functions in L2

1(Ω) whose derivatives up to order k are also
in L2

1(Ω). This space is provided with norms and semi-norms defined in the standard way; in particular,

|ϕ|2H1
1(Ω) :=

∫
Ω

(
|∂rϕ|2 + |∂zϕ|2

)
r drdz ,

and H̃1
1(Ω) := H1

1(Ω) ∩ L2
−1(Ω) endowed with the following ν-dependent norm

‖ϕ‖H̃1
1(Ω) :=

(
‖ϕ‖2

L2
1(Ω) + ν |ϕ|2H1

1(Ω) + ν ‖ϕ‖2
L2
−1(Ω)

)1/2

,

is a Hilbert space. We will also require the following weighted scalar and vectorial functional spaces:

H1
1,�(Ω) :=

{
ϕ ∈ H1

1(Ω); ϕ = 0 on Γ
}

, H̃1
1,�(Ω) :=

{
ϕ ∈ H̃1

1(Ω); ϕ = 0 on Γ
}

,

H(diva, Ω) :=
{
v ∈ L2

1(Ω)2; diva v ∈ L2
1(Ω)

}
, H0(diva, Ω) :=

{
v ∈ L2

1(Ω)2; diva v = 0 in Ω
}

,

H�(diva, Ω) := {v ∈ H(diva, Ω); v · n = 0 on Γ} , H(curla, Ω) :=
{
ϕ ∈ L2

1(Ω); curla ϕ ∈ L2
1(Ω)2

}
,

H(rot, Ω) :=
{
v ∈ L2

1(Ω)2; rotv ∈ L2
1(Ω)

}
.

The spaces H(diva, Ω) and H(curla, Ω) are endowed respectively by the norms:

‖v‖H(diva,Ω) :=
(
‖v‖2

L2
1(Ω)2 + ‖ diva v‖2

L2
1(Ω)

)1/2

, ‖ϕ‖H(curla,Ω) :=
(
‖ϕ‖2

L2
1(Ω) + ν‖ curla ϕ‖2

L2
1(Ω)2

)1/2

.

In addition, notice that the norms ‖ · ‖H(curla,Ω) and ‖·‖H̃1
1(Ω) are equivalent, and for any ϕ ∈ H̃1

1(Ω) they verify
the following relations:

√
ν‖ curla ϕ‖L2

1(Ω)2 ≤
√

2 ‖ϕ‖H̃1
1(Ω) , (1.5)

‖ϕ‖H̃1
1(Ω) ≤ ‖ϕ‖H(curla,Ω) ≤

√
2 ‖ϕ‖H̃1

1(Ω) . (1.6)

We now collect some useful results to be employed in the sequel (see [2]).

Lemma 1.1. Let H
1/2
1 (Γ ) be the trace space of functions in H1

1(Ω). The normal trace operator on Γ is defined
by v �→ v · n|Γ , and it is continuous from H(diva, Ω) into the dual space of H

1/2
1 (Γ ).

Lemma 1.2. For any v ∈ H(diva, Ω) and q ∈ H1
1(Ω), the following Green formula holds∫

Ω

diva vqr drdz +
∫

Ω

v · ∇qr drdz =
∫

Γ

v · nq ds .
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Lemma 1.3. For any v ∈ H(rot, Ω) and ϕ ∈ H̃1
1(Ω), we have the following Green formula∫

Ω

v · curla ϕr drdz −
∫

Ω

ϕ rotvr drdz =
∫

Γ

v · tϕ ds.

Let us now test system (1.4a)−(1.4e) against functions v ∈ H�(diva, Ω), ϕ ∈ H̃1
1,�(Ω) and q ∈ L2

1,0(Ω):∫
Ω

σu · vr drdz +
√

ν

∫
Ω

curla ω · vr drdz +
∫

Ω

∇p · vr drdz =
∫

Ω

f · vr drdz ,∫
Ω

ωϕr drdz −
√

ν

∫
Ω

rotuϕr drdz = 0,∫
Ω

diva uqr drdz = 0.

Combining Lemmas 1.2 and 1.3 with a direct application of the boundary conditions yields∫
Ω

σu · vr drdz +
√

ν

∫
Ω

curla ω · vr drdz −
∫

Ω

diva vpr drdz =
∫

Ω

f · vr drdz,∫
Ω

ωϕr drdz −
√

ν

∫
Ω

u · curla ϕr drdz = 0,∫
Ω

diva uqr drdz = 0.

This variational problem can be rewritten as follows: Find (u, ω, p) ∈ H�(diva, Ω) × H̃1
1,�(Ω) × L2

1,0(Ω) such
that

a(u, v)+b(v, ω)+c(v, p) = F (v) ∀v ∈ H�(diva, Ω),

b(u, ϕ)−d(ω, ϕ) = 0 ∀ϕ ∈ H̃1
1,�(Ω), (1.7)

c(u, q) = 0 ∀q ∈ L2
1,0(Ω),

where the involved bilinear forms and linear functionals are defined as follows

a(u, v) :=
∫

Ω

σu · vr drdz , b(v, ω) :=
√

ν

∫
Ω

curla ω · vr drdz ,

c(v, p) := −
∫

Ω

diva vpr drdz , d(ω, ϕ) :=
∫

Ω

ωϕr drdz , F (v) :=
∫

Ω

f · vr drdz.

2. A stabilized mixed formulation for the axisymmetric Brinkman problem

In this section, we introduce and analyze a mixed variational formulation of the problem. As we will address
in full detail, an augmented dual-mixed variational formulation will permit us to analyze the problem directly
under the classical Babuška−Brezzi theory [19, 27].

2.1. Problem statement and preliminary results

Our goal here is to introduce an augmented dual-mixed variational formulation of system (1.4a)−(1.4e), where
our strategy is to enrich the mixed variational formulation (1.7) with a residual term arising from equations (1.4a)
and (1.4c).

More precisely, we add to the variational problem (1.7) the following Galerkin least-squares terms:

κ1

√
ν

∫
Ω

(σu +
√

ν curla ω + ∇p − f) · curla ϕr drdz = 0 ∀ϕ ∈ H̃1
1,�(Ω), (2.1)
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κ2

∫
Ω

diva u diva vr drdz = 0 ∀v ∈ H�(diva, Ω), (2.2)

where κ1 and κ2 are positive parameters to be specified later. From Lemma 1.3, the fact that rot(∇p) = 0, and
the boundary condition given in (1.4e), we may rewrite (2.1) equivalently as follows:

κ1

√
ν

∫
Ω

σu · curla ϕr drdz + κ1ν

∫
Ω

curla ω · curla ϕr drdz = κ1

√
ν

∫
Ω

f · curla ϕr drdz ,

for all ϕ ∈ H̃1
1,�(Ω). In this way, and in addition to (1.7), we propose the following augmented variational

formulation:
Find ((u, ω), p) ∈ (H�(diva, Ω) × H̃1

1,�(Ω)) × L2
1,0(Ω) such that

A((u, ω), (v, ϕ)) + B((v, ϕ), p) = G(v, ϕ) ∀(v, ϕ) ∈ H�(diva, Ω) × H̃1
1,�(Ω),

B((u, ω), q) = 0 ∀q ∈ L2
1,0(Ω), (2.3)

where the bilinear forms and the linear functional are defined by

A((u, ω), (v, ϕ)) :=
∫

Ω

σu · vr drdz +
√

ν

∫
Ω

curla ω · vr drdz −
√

ν

∫
Ω

curla ϕ · ur drdz (2.4)

+
∫

Ω

ωϕr drdz + κ1

√
ν

∫
Ω

σu · curla ϕr drdz

+ κ1ν

∫
Ω

curla ω · curla ϕr drdz + κ2

∫
Ω

diva udiva vr drdz ,

B((v, ϕ), q) := −
∫

Ω

q diva vr drdz , (2.5)

and

G(v, ϕ) := κ1

√
ν

∫
Ω

f · curla ϕr drdz +
∫

Ω

f · vr drdz ,

for all (u, ω), (v, ϕ) ∈ H�(diva, Ω) × H̃1
1,�(Ω), and q ∈ L2

1,0(Ω).

2.2. Unique solvability of the stabilized formulation

Next, we will prove that our stabilized variational formulation (2.3) satisfies the hypotheses of the
Babuška−Brezzi theory, which yields the unique solvability and continuous dependence on the data of this
variational formulation.

First, we observe that the bilinear forms A and B, and the linear functional G are bounded by a constant
independent of ν. More precisely, there exist C1, C2, C3 > 0 such that

|A((u, ω), (v, ϕ))| ≤C1‖(u, ω)‖H(diva,Ω)×H̃1
1(Ω)‖(v, ϕ)‖H(diva,Ω)×H̃1

1(Ω),

|B((v, ϕ), q)| ≤C2‖(v, ϕ)‖H(diva,Ω)×H̃1
1(Ω)‖q‖L2

1(Ω),

|G(v, ϕ)| ≤C3‖(v, ϕ)‖H(diva,Ω)×H̃1
1(Ω).

The following lemma shows that the bilinear form A is elliptic over the whole space H�(diva, Ω) × H̃1
1,�(Ω),

provided that the stabilization parameters κ1 and κ2 are chosen adequately.

Lemma 2.1. Suppose that κ1 ∈ (0, 2
σmin

) and κ2 > 0. Therefore, there exists α > 0 independent of ν, such that

A((v, ϕ), (v, ϕ)) ≥ α‖(v, ϕ)‖2
H(diva,Ω)×H̃1

1(Ω)
∀(v, ϕ) ∈ H�(diva, Ω) × H̃1

1,�(Ω).
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Proof. Given (v, ϕ) ∈ H�(diva, Ω) × H̃1
1,�(Ω), a combination of (2.4) with Cauchy–Schwarz inequality readily

gives

A((v, ϕ), (v, ϕ)) ≥ σmin‖v‖2
L2

1(Ω)2 + ‖ϕ‖2
L2

1(Ω) + κ1

√
νσmin

∫
Ω

v · curla ϕr drdz

+ κ1ν‖ curla ϕ‖2
L2

1(Ω)2 + κ2‖ diva v‖2
L2

1(Ω),

≥ σmin‖v‖2
L2

1(Ω)2 + ‖ϕ‖2
L2

1(Ω) − κ1

√
νσmin‖v‖L2

1(Ω)2‖ curla ϕ‖L2
1(Ω)2

+ κ1ν‖ curla ϕ‖2
L2

1(Ω)2 + κ2‖ diva v‖2
L2

1(Ω),

≥ σmin‖v‖2
L2

1(Ω)2 + ‖ϕ‖2
L2

1(Ω) −
σmin

2
‖v‖2

L2
1(Ω)2 −

κ2
1νσmin

2
‖ curla ϕ‖2

L2
1(Ω)2

+ κ1ν‖ curla ϕ‖2
L2

1(Ω)2 + κ2‖ diva v‖2
L2

1(Ω),

=
σmin

2
‖v‖2

L2
1(Ω)2 + κ2‖ diva v‖2

L2
1(Ω) + ‖ϕ‖2

L2
1(Ω)

+ κ1

(
1 − κ1σmin

2

)
ν‖ curla ϕ‖2

L2
1(Ω)2 ,

≥ min{σmin

2
, κ2}‖v‖2

H(diva,Ω) + min{1, κ1

(
1 − κ1σmin

2

)
}‖ϕ‖2

H(curla,Ω),

≥α‖(v, ϕ)‖2
H(diva,Ω)×H̃1

1(Ω)
,

where we have also employed (1.6). We observe that the constant α in the above estimate is depending on
κ1, κ2, σ, but not on the viscosity ν. The proof is then complete. �

The following result establishes the corresponding inf-sup condition for the bilinear form B (see (2.5)). Its
proof is a direct consequence of the three-dimensional corresponding inf-sup condition (see [18], Lem. IX.1). For
more details we refer to e.g. ([2], Lem. 2.6).

Lemma 2.2. There exists β > 0 independent of κ1, κ2, σ and ν, such that the following holds

sup
(v,ϕ)∈H�(diva,Ω)×H̃1

1,�(Ω)

(v,ϕ) �=0

|B((v, ϕ), q)|
‖(v, ϕ)‖H(diva,Ω)×H̃1

1(Ω)

≥ β‖q‖L2
1(Ω) ∀q ∈ L2

1,0(Ω).

We are now in a position to state the main result of this section which yields the solvability of the continuous
formulation (2.3).

Theorem 2.3. There exists a unique solution ((u, ω), p) ∈ (H�(diva, Ω)× H̃1
1,�(Ω))×L2

1,0(Ω) to problem (2.3)
and there exists a positive constant C > 0, independent of ν, such that the following continuous dependence
result holds:

‖((u, ω), p)‖(H(diva,Ω)×H̃1
1(Ω))×L2

1(Ω) ≤ C‖f‖L2
1(Ω)2 .

Proof. By virtue of Lemmas 2.1 and 2.2, the proof follows from a straightforward application of ([19],
Thm. II.1.1). �

3. Mixed finite element approximation

In this section, we construct a finite element scheme associated to (2.3), define explicit finite element subspaces
yielding the unique solvability of the discrete scheme, derive the a priori error estimates, and provide the rate
of convergence of the method.
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3.1. Statement of the stabilized discrete scheme

Let {Th}h>0 be a regular family of triangulations of Ω by triangles T with mesh size h. For S ⊂ Ω̄, we denote
by Pk(S) and P̃k(S), k ∈ N∪{0}, the set of polynomials of degree ≤ k, and the set of homogeneous polynomials
of degree k on S, respectively. We begin by introducing some notation and basic definitions presented in [25].
First, we recall the definition of the two-dimensional Raviart−Thomas spaces, next we focus on the axisymmetric
case. Let Eh be the set of all edges of the triangulation Th, and given T ∈ Th, let E(T ) be the set of its edges,
and we define the space

Rk(∂T ) := {φ ∈ L2(∂T ) : φ|e ∈ Pk(e), e ∈ E(T )}.
For Ω ⊂ R

2, T ∈ Th, let us denote by RTk(T ) the Raviart−Thomas space, which is defined by

RTk(T ) := Pk(T )2 +
[
r
z

]
P̃k(T ),

where, for v ∈ RTk(T ), nT the unit outer normal on ∂T , the degrees of freedom are given by∫
E(T )

v · nT φ ∀φ ∈ Rk(∂T ),

for k ≥ 0, and ∫
T

v · φ ∀φ ∈ Pk−1(T )2,

for k ≥ 1. Regarding the axisymmetric case, we define Ea(T ) as the set of edges in the triangulation Th contained
in T , but which do not lie along the symmetry axis Γs. Additionally, we introduce the set

Ea(Th) := ∪T∈Th
Ea(T ),

and define

RTa
k(T ) := {v ∈ RTk(T ) : v · n|Γs = 0}

=
{[

vr

vz

]
∈ RTk(T ) : vr|Γs = 0

}
,

where the degrees of freedom (for k ≥ 0) are given by∫
E(T )

v · nT φr drdz ∀φ ∈ Rk(∂T ),

and for k ≥ 1, by ∫
T

v · φr drdz ∀φ ∈ Pk−1(T )2.

Let us now make precise the choice of finite element subspaces, for any k ≥ 0:

Hh := {vh ∈ H�(diva, Ω) : vh|T ∈ RTa
k(T ) ∀T ∈ Th} , (3.1)

Zh :=
{
ϕh ∈ H̃1

1,�(Ω) : ϕh|T ∈ Pk+1(T ) ∀T ∈ Th

}
, (3.2)

Qh :=
{
qh ∈ L2

1,0(Ω) : qh|T ∈ Pk(T ) ∀T ∈ Th

}
. (3.3)

Then, the Galerkin scheme associated with the continuous variational formulation (2.3) reads as follows:
Find ((uh, ωh), ph) ∈ (Hh × Zh) × Qh such that

A((uh, ωh), (vh, ϕh)) + B((vh, ϕh), ph) = G(vh, ϕh) ∀(vh, ϕh) ∈ Hh × Zh,

B((uh, ωh), qh) = 0 ∀qh ∈ Qh. (3.4)
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Remark 3.1. Notice that the well-posedness of the continuous variational formulation (1.7) can be readily
established using, for instance, the recent results from [28] related to a generalization of the Babuška−Brezzi
theory (see also our Thm. 2.3). However, the discrete problem (3.4) does not lie in such a framework since the
axisymmetric divergence of any vh ∈ Hh does not belong to Qh.

3.2. Solvability and stability analysis of the discrete formulation

In view of Remark 3.1, we now devote ourselves to provide discrete counterparts of Lemmas 2.1 and 2.2,
which will eventually conclude the solvability and stability of problem (3.4). With this aim, we first state the
following result, which is a direct consequence of Lemma 2.1.

Lemma 3.2. Assuming that κ1 ∈ (0, 2
σmin

) and κ2 > 0, then there exists α > 0 independent of ν and h, such
that

A((vh, ϕh), (vh, ϕh)) ≥ α‖(vh, ϕh)‖2
H(diva,Ω)×H̃1

1(Ω)
∀(vh, ϕh) ∈ Hh × Zh.

Remark 3.3. We recall that the constant α appearing in Lemma 3.2, depends on κ1, κ2 and σ, but it is
independent of the viscosity. Notice also that the optimal value for the first augmentation parameter is the
middle point of the relevant interval suggested by the stability analysis of Lemmas 2.1 and 3.2, i.e., κ1 = 1/σmin

(see e.g. [5], Sect. 3).

We continue with the following discrete analogue to Lemma 2.2.

Lemma 3.4. There exists β̃ > 0 independent of κ1, κ2, σ, ν and h, such that

sup
(vh,ϕh)∈Hh×Zh

(vh,ϕh) �=0

|B((vh, ϕh), qh)|
‖(vh, ϕh)‖H(diva,Ω)×H̃1

1(Ω)

≥ β̃‖qh‖L2
1(Ω) ∀qh ∈ Qh.

Proof. Let k ≥ 0 and qh ∈ Qh. From Theorem 3.4 and Corollary 3.6 in [25], we know that there exist vh ∈ Hh

and β̃ > 0 such that, ∫
Ω qh diva vhr drdz

‖vh‖H(diva,Ω)
≥ β̃‖qh‖L2

1(Ω).

Therefore, from this inequality we can assert that

sup
(vh,ϕh)∈Hh×Zh

(vh,ϕh) �=0

|B((vh, ϕh), qh)|
‖(vh, ϕh)‖H(diva,Ω)×H̃1

1(Ω)

≥ |B((vh, 0), qh)|
‖(vh, 0)‖H(diva,Ω)×H̃1

1(Ω)

=

∫
Ω

qh diva vhr drdz

‖vh‖H(diva,Ω)

≥ β̃‖qh‖L2
1(Ω). �

We are now in a position to state the main result of this section which yields the solvability of the discrete
formulation (3.4).

Theorem 3.5. Let k be a non-negative integer and let Hh, Zh and Qh be given by (3.1)−(3.3), respectively.
Then, there exists a unique solution ((uh, ωh), ph) ∈ (Hh ×Zh)×Qh to problem (3.4) and there exists a positive
constant C > 0 such that the following continuous dependence result holds:

‖((uh, ωh), ph)‖(H(diva,Ω)×H̃1
1(Ω))×L2

1(Ω) ≤ C‖f‖L2
1(Ω)2 .
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Moreover, there exists a constant Ĉ > 0 such that

‖u − uh‖H(diva,Ω) + ‖ω − ωh‖H̃1
1(Ω) + ‖p− ph‖L2

1(Ω)

≤ Ĉ

{
inf

vh∈Hh

‖u − vh‖H(diva,Ω) + inf
ϕh∈Zh

‖ω − ϕh‖H̃1
1(Ω) + inf

qh∈Qh

‖p − qh‖L2
1(Ω)

}
, (3.5)

where C and Ĉ are independent of ν and h, and the triplet ((u, ω), p) ∈ (H�(diva, Ω) × H̃1
1,�(Ω)) × L2

1,0(Ω) is
the unique solution to problem (2.3).

Proof. By virtue of Lemmas 3.2 and 3.4, the proof follows from a straightforward application of ([19],
Thm. II.1.1). �

3.3. Convergence analysis

According to the theorem above, it only remains to prove that u, ω and p can be conveniently approximated
by functions in Hh, Zh and Qh, respectively. With this purpose, we introduce the Raviart−Thomas global
interpolation operator Rh : H1

1(Ω)2 → Hh (see e.g. [25], Appendix). For this operator, we review some properties
to be used in the sequel. The corresponding proofs can be found in ([25], Cor. A.6):

Lemma 3.6. For all v ∈ Hk+1
1 (Ω)2, with diva v ∈ Hk+1

1 (Ω), and
( ∑

T∈Th
| diva Rhv|2

Hk+1
1 (T )

)1/2
< c̃, there

exists C > 0, independent of h, such that

‖v −Rhv‖H(diva,Ω) ≤ Chk+1

(
‖v‖Hk+1

1 (Ω)2 + ‖ diva v‖Hk+1
1 (Ω) +

( ∑
T∈Th

| diva Rhv|2
Hk+1

1 (T )

)1/2
)

.

Let Ph be the orthogonal projection from L2
1(Ω) onto the finite element subspace Qh. We have that Ph

satisfies the following error estimate (see [23]):

Lemma 3.7. There exists C > 0, independent of h, such that for all q ∈ Hk+1
1 (Ω) :

‖q − Phq‖L2
1(Ω) ≤ Chk+1‖q‖Hk+1

1 (Ω).

On the other hand, for any ϕ sufficiently smooth, we are able to employ the Lagrange interpolation operator
Πh : H̃1

1(Ω) ∩ H2
1(Ω) → Zh. Moreover, there holds the following error estimate, whose proof can be found in

([41], Lem. 6.3).

Lemma 3.8. There exists C > 0, independent of h, such that for all ϕ ∈ Hk+2
1 (Ω) :

‖ϕ − Πhϕ‖H̃1
1(Ω) ≤

{
Chk+1 ‖ϕ‖Hk+2

1 (Ω) for ν ∈ (0, 1],
Chk+1ν1/2 ‖ϕ‖Hk+2

1 (Ω) for ν > 1.

We now turn to the statement of convergence properties of the discrete problem (3.4).

Theorem 3.9. Let k ≥ 0 and let Hh, Zh and Qh be given by (3.1), (3.2), and (3.3), respectively. Let
((u, ω), p) ∈ (H�(diva, Ω)×H̃1

1,�(Ω))×L2
1,0(Ω) and ((uh, ωh), ph) ∈ (Hh×Zh)×Qh be the unique solutions to the

continuous and discrete problems (2.3) and (3.4), respectively. Assume that u ∈ Hk+1
1 (Ω)2, diva u ∈ Hk+1

1 (Ω),( ∑
T∈Th

| diva Rhu|2
Hk+1

1 (T )

)1/2
< c̃, ω ∈ Hk+2

1 (Ω), and p ∈ Hk+1
1 (Ω). Then, the following error estimate holds

true

‖u − uh‖H(diva,Ω) + ‖ω − ωh‖H̃1
1(Ω) + ‖p − ph‖L2

1(Ω)

≤ Chk+1

(
‖u‖Hk+1

1 (Ω)2 + ‖ diva u‖Hk+1
1 (Ω)+

( ∑
T∈Th

| diva Rhu|2
Hk+1

1 (T )

)1/2+γ‖ω‖Hk+2
1 (Ω) + ‖p‖Hk+1

1 (Ω)

)
,

where γ = 1 for ν ∈ (0, 1] or γ = ν1/2 for ν > 1, and where C > 0, is independent of ν and h.
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Figure 2. Approximate radial and longitudinal velocities, vorticity and pressure, obtained
with lowest order Raviart−Thomas, piecewise linear, and piecewise constant elements, respec-
tively. Errors with respect to the exact solutions given in (4.1) are presented in Table 1.

Proof. The proof follows from (3.5) and error estimates from Lemmas 3.6, 3.7 and 3.8. �

Finally, we stress that our developed framework could be easily adapted to analyze other families of finite
elements. For instance, considering BDM-based finite elements.

4. Numerical tests

In what follows, we present four numerical examples illustrating the performance of the FE method described
in Section 3, and which confirm its robustness and the previously derived theoretical error bounds.

4.1. Experimental convergence

We start by studying the accuracy of the proposed augmented formulation. This is carried out by computing
errors in different norms, between the finite element approximation on successively refined non-uniform partitions
Th of Ω and the following exact solution to (1.4a)−(1.4e):

u(r, z) =
(

r3(r − 1)z(3z − 4)
−r2(5r − 4)z2(z − 2)

)
,

ω(r, z) = −z2(z − 2)r(15r − 8) − r3(r − 1)(6z − 4), p(r, z) = r2 + z2 − 3, (4.1)

defined on the rectangular meridional domain Ω = (0, 1)× (0, 2), and satisfying u · n = 0 on Γ ∪ Γs and ω = 0
on Γs. In this case, we impose a non-homogeneous Dirichlet condition for the vorticity on Γ , and the model
and stabilization parameters are set as σ = 0.1, ν = 0.01, κ1 = 1/σ, κ2 = 0.01. The approximate solutions
computed with the augmented formulation on a mesh with 263 680 triangular elements are presented in Figure 2.
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Table 1. Experimental convergence of the augmented RTa
k − Pk+1 − Pk FE approximation

(k = 0, top rows, and k = 1 bottom rows) of the steady axisymmetric Brinkman flow with
respect to exact solutions.

d.o.f. h e(uh)H(diva,Ω) rateh e(ωh)H̃1
1(Ω) rateh e(ph)L2

1(Ω) rateh

Augmented RTa
0 − P1 − P0 finite elements

19 1.414210 0.526498 − 0.183847 − 0.622498 −
61 0.707107 0.364212 0.957705 0.086790 1.082910 0.300851 1.049021

217 0.353553 0.191531 0.927205 0.040179 1.111072 0.157299 0.935535
817 0.176777 0.096252 0.992675 0.019496 1.043225 0.079496 0.984544

3169 0.088388 0.047973 1.004653 0.009621 1.018952 0.039855 0.996102
12 481 0.044194 0.023970 1.000974 0.004774 1.010951 0.019941 0.999006
49 537 0.022097 0.012116 0.984271 0.002348 1.023517 0.009972 0.999747

197 377 0.011048 0.006213 0.963525 0.001127 1.058250 0.004986 0.999935
789 583 0.005215 0.003351 0.985378 0.000582 1.025371 0.002491 0.999758

Augmented RTa
1 − P2 − P1 (discontinuous) finite elements

53 1.414210 0.689210 − 0.152660 − 0.119338 −
185 0.707107 0.204407 1.813379 0.034605 2.141251 0.039306 1.602262
689 0.353553 0.052878 1.950742 0.008639 2.001953 0.010070 1.964559

2657 0.176777 0.013985 1.918736 0.002130 2.019899 0.002543 1.985046
10 433 0.088388 0.003552 1.977039 0.000475 2.162347 0.000637 1.997301
41 345 0.044194 0.000888 1.998771 0.000104 2.190724 0.000159 1.995295

164 609 0.022097 0.000218 2.024992 2.504e-5 2.057592 3.988e-5 2.002663
656 897 0.011048 5.464e-5 1.998801 6.099e-6 2.037631 1.097e-5 1.987941

2 624 513 0.005524 1.353e-5 1.996387 1.502e-6 2.012571 2.593e-6 1.986785

We also compute rates of convergence from one refinement level (associated to a partition of size h) to the next
one (with a mesh of size ĥ < h) as

rateh =
log(errorh/errorĥ)

log(h/ĥ)
·

These values are displayed in Table 1 for two families of finite elements RTa
k −Pk+1−Pk, with k = 0 and k = 1,

where we observe a convergence of order hk+1 for all fields in the relevant norms.

4.2. Axisymmetric Brinkman flow on a settling tank

In our next example, we simulate a common scenario in wastewater treatment processes, that is a settling
tank, where the accurate rendering of flow is of interest. The geometry depicted in Figure 3 (see also [4, 21])
represents a half cross-section of a cylindrical vessel with the following types of boundaries: inlet Γin, outlet Γout,
symmetry axis Γs, overflow Γc, and walls (the remainder of ∂Ω).

Boundary conditions assume the following configuration. On walls and symmetry axis we allow a slip velocity,
that is u · n = 0; normal velocities are imposed on the inlet, outlet and overflow as qin = 1

8 (4r2

9 − 1), qout =
0.01125, qc = 0.00125, respectively. Zero vorticity is imposed on the walls, symmetry axis, outlet and overflow,
whereas on the inlet we set win = r

9 . The external force is assumed to be zero.
An unstructured mesh of 107 882 triangles and 54420 nodes was constructed, and we employed the following

model and stabilization parameters: σ = 0.1, ν = 0.01, κ1 = 1/σ, κ2 = 0.01. Radial and vertical components of
the velocity, vorticity and pressure are approximated with RTa

0 − P1 − P0 elements. The numerical results are
displayed in Figure 4.
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Γin

Γs

Γc

Γout

r

z

Ω

Figure 3. Sketch of a half cross section of a settling tank of maximum radius 8 m, total height
of 5m, inlet disk of 1.5m of radius, overflow annulus of 0.5 m of edge, and outlet disk with a
radius of 0.5 m.

Figure 4. Approximate solutions of the Brinkman axisymmetric problem on a settling tank.
The used mesh consists of 107 882 elements.
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Figure 5. Sketch of a half cross section of an idealized artery with symmetric stenosis (left)
and a cylindrical filter with sudden contraction (right).

4.3. Blood flow through an axisymmetric stenosed artery

Next, we present the simulation of a simplified model of arterial blood flow in the presence of a symmetric
stenotic region on the vessel wall (see e.g. [42,47]). We are only interested in the laminar regime, so (1.4a)−(1.4c)
(with a simple Newtonian model for the blood) will suffice to describe the main components of the flow. The
computational domain consists on a half cross-section of a vessel segment of length 5 cm and maximum radius
1cm (see a sketch in Fig. 5, left). The boundaries are the inlet Γin (z = 2, r ∈ [0, 1]) outlet Γout (z = −3, r ∈
[0, 1]), symmetry axis Γs (z ∈ [−3, 2], r = 0), and arterial wall (z ∈ [−3, 2], r = 1+ δ exp(−sz2)(z +3)(z +2)/6),
with δ = 0.4 and s = 0.8. Boundary data are set in the following manner: on Γin we impose a Poiseuille flow
of maximum normal velocity with norm Re= 1/ν, and a consistent vorticity w = 2r/ν. On symmetry axis
and arterial wall we set zero normal velocity and vorticity, whereas on the outlet we use u · t = 0 and p = 0.
The conditions on Γout were not covered in our analysis, but we stress that they can be also treated following
e.g. [4,5]. The flow regime is characterized by the parameters ν = 0.01, and we set σ = 0.01, κ1 = 1/σ, κ2 = 0.1.
An unstructured mesh of 43 712 elements and 21 857 nodes was built to discretize the axisymmetric domain Ω.
Figure 6 displays approximate solutions using RTa

0−P1−P0 approximations for velocity, vorticity and pressure.
The narrowing of the vessel at the stenosis yields flow resistance and a rapid pressure drop. For visualization
purposes, we also depict a rotational extrusion of 290 degrees of these solutions in Figure 8.

In order to assess the robustness of the method with respect to the fluid viscosity, we have also run the same
test taking now σ = 1 and considering decreasing values of viscosity, from ν = 100 down to ν =1e-30, the latter
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Figure 6. Augmented mixed finite element approximation of the Brinkman axisymmetric
problem on a stenosed artery (from left to right: radial velocity, vertical velocity, vorticity and
pressure). Solutions on the half cross-section discretized with 43 712 triangular elements.

Table 2. Norm of the velocity and vorticity fields over the axisymmetric domain representing
a stenosed artery, for different values of the viscosity coefficient.

ν 100 10 1 0.1 0.01 0.001 1.0e-04 1.0e-05 1.0e-10 1.0e-20 1.0e-30
‖uh‖H(diva,Ω) 113.179 100.015 98.6043 98.6043 98.4491 98.4478 98.4477 98.4477 98.4477 98.4477 98.4477
‖ωh‖H̃1

1(Ω) 1421.23 451.291 148.461 62.2763 45.4105 43.3643 43.1546 43.1336 43.1313 43.1313 43.1313

corresponding to the pure Darcy limit. The maximal normal Poiseuille velocity and vorticity profiles are fixed
to 100 and 200r, respectively. Stabilization parameters are now κ1 = 1 and κ2 = 0.1. In all computations the
solution remains stable, as evidenced from Table 2, where we display the velocity and vorticity norms for different
values of ν, and also from Figure 7, which portrays the field variables over the line r = 0.1, corresponding to
an annular section on the extruded domain. For viscosities smaller than 1e-5, the profiles practically coincide.

4.4. Flow in a contracting cylinder containing a porous obstacle

We close this section with a simulation relevant in the modeling of oil filters. We consider a cylindrical
domain with a annular porous obstacle, whose half cross-section is depicted in the right panel of Figure 5, and
assume that the permeability inside the obstacle Ωobstcl is much lower than that of the rest of the domain.
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Figure 7. Approximation of radial and vertical velocity components (top left and right, re-
spectively), vorticity and pressure fields (bottom row, left and right) computed over the midline
r = 0.1 for different values of the viscosity coefficient.

This assumption is accounted for by setting

σ = σ(r, z) =

{
σmax = 100 in Ωobstcl,

σmin = 0.001 otherwise.

As in the previous test case, we here impose the Poiseuille normal velocity inflow u · n = 2/75r(r − 3/2) and
the compatible vorticity ω = 2/75(r − 3/2) on Γin, on Γs and Γwall we set zero normal velocity and vorticity,
and on the outlet we do not constraint flow nor pressure. Other model parameters are chosen as ν = 0.01,
κ1 = 1/σmin, κ2 = 0.1, and f = 0. The axisymmetric domain was discretized with an unstructured mesh of
122 303 triangular elements and 61 021 vertices.

The approximate solutions obtained with the proposed augmented RTa
0 − P1 − P0 method are displayed

in Figure 9. As expected (see a similar study for the Cartesian case in [5]), we can observe velocity patterns
avoiding the annular porous obstacle and concentrating on the symmetry axis, and pressure profiles with high
gradients near the obstacle boundary.

5. Conclusions

In this work, we have presented a new stabilized mixed finite element method for the discretization of a
vorticity-velocity-pressure formulation of the Brinkman problem in axisymmetric coordinates. A rigorous solv-
ability analysis of both continuous and discrete problems was carried out using tools from the Babuška−Brezzi
theory, and we derived optimal convergence rates (and robust with respect to viscosity) in the natural norms
for the particular case of Raviart−Thomas approximations of order k for velocities, and piecewise polynomials
of degrees k + 1 and k approximating the scalar vorticity and pressure, respectively, for k ≥ 0. We provided
a few numerical tests confirming our theoretical findings regarding optimal convergence of the approximate
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Figure 8. Augmented mixed finite element approximation of the Brinkman axisymmetric
problem on a stenosed artery (from left to right: velocity, vorticity and pressure). Rotational
extrusion of 290 degrees to the three-dimensional domain.

Figure 9. Augmented mixed finite element approximation of the Brinkman axisymmetric
problem on an idealized oil filter. Rotational extrusion of velocity, vorticity, and pressure (left,
center, and right, respectively) to the full three-dimensional domain.
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solutions and showing that our framework can be successfully applied in a wide range of interesting applications
as wastewater treatment processes, the simulation of arterial blood flow, and the modeling of oil filters. Possi-
ble extensions of this work include the study of vorticity-based formulations of axisymmetric time-dependent
Navier–Stokes equations, the incorporation of a larger class of boundary conditions, and the use of the developed
theory in the coupling of flow equations and nonlinear transport problems.

Acknowledgements. We gratefully acknowledge the suggestions made by the referees, which have significantly improved
the presentation of this paper.
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