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We introduce a new variational formulation for the

Brinkman-Darcy equations formulated in terms of the scaled

Brinkman vorticity and the global pressure. The velocities

in each subdomain are fully decoupled through the momen-

tum equations, and can be later recovered from the principal

unknowns. A new finite element method is also proposed,

consisting in equal-order Nédélec and piecewise continuous

elements, for vorticity and pressure, respectively. The error

analysis for the scheme is carried out in the natural norms,

with bounds independent of the fluid viscosity. An adequate

modification of the formulation and analysis permits us to

specify the presentation to the case of axisymmetric config-

urations. We provide a set of numerical examples illustrating

the robustness, accuracy, and efficiency of the proposed

discretization.
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1 INTRODUCTION

In this paper we develop the mathematical and numerical analysis for a set of partial differential

equations modeling the flow of an incompressible fluid within two porous domains separated by

a clearly defined interface. One medium consists of a permeable material composed by an array

of low-concentration fixed particles, where viscous effects of the flow are described by Brinkman

equations (written in terms of vorticity, velocity and pressure). The second subdomain is a classical

porous medium constituted by connected porous matrices where Darcy’s law (expressed in terms of
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the filtration velocity and pressure) governs the nonviscous displacement of the fluid. Situations of this

kind might be encountered in several applicative problems in geophysics or hydrogeology, including

for instance, hydrocarbon migration, or the study of groundwater flows passing through soils char-

acterized by intrinsic properties with high disparity (such as fractures). Conditions at the interface

would naturally include continuity of normal velocities and additional terms accounting for normal and

tangential stress preservation, whose specific form will depend on the features of the problem at hand.

If the permeability of the viscous domain goes to infinity, one readily recovers the classical Stokes

flow, and the literature is populated with numerous formulations and methods to solve the Stokes-Darcy

and Navier-Stokes–Darcy equations (e.g., [1–12] and the references therein). In contrast, dedicated

Brinkman-Darcy models have been studied in Braack and Schieweck, Ervin and coworkers, Lesinigo

and coworkers [13–15] (using velocity-pressure formulations), whereas the setting described above

(including also the Brinkman vorticity) has been proposed only quite recently [16] (along with a

fully mixed finite element method solving for vorticity-velocity-pressure on the viscous domain and

velocity-pressure on the nonviscous domain and its a posteriori error analysis developed in Alvarez

and coworkers [17]).

Using fairly common boundary conditions (no-slip velocities on the boundary of the Brinkman

domain, plus slip velocity conditions on the boundary of the Darcy domain), and exploiting regularity

assumptions together with the specific form of the momentum equations on the Darcy and Brinkman

domains, we are here able to decouple the velocities from the rest of the set of governing equations,

in such a way that the final problem is solved only using the vorticity of the Brinkman domain and

the global pressure. In fact, a similar splitting (but regarding only the Brinkman equations) has been

introduced in Anaya and coworkers [18] (see also related strategies in Gatica and coworkers [19, 20]).

The numerical method is characterized by Nédélec and piecewise continuous finite elements of

degree k≥ 1 for the Brinkman vorticity and for the global pressure, respectively, which entails a quite

low computational cost (when compared with the methods from, for example, Alvarez and coworkers,

Braack and Schiewick, and Ervin and coworkers [13, 14, 16]). Its optimal convergence to the corre-

sponding weak solution is established using classical arguments and the approximation properties of

the specific finite element spaces, and the obtained error bounds turn out to be fully independent of the

fluid viscosity (vanishing in the Darcy limit and being relatively large in the Stokes limit). In addition,

if the fluid flow and the domain at hand are considered invariant to rotations in the meridional direction,

we can rewrite the problem in cylindrical coordinates, reducing the (initially three-dimensional) for-

mulation into its axially symmetric form. Although the functional framework will necessarily undergo

natural modifications, the overall structure of the analysis will remain essentially the same as in the

Cartesian case.

The remainder of this paper has been organized in the following manner. The governing equations

and the continuous variational formulation stated in terms of Brinkman vorticity and global pressure

are presented in Section 2. Their approximation via finite elements together with the well-posedness

and error analysis of the constructed schemes will be provided in Section 3. Section 4 remarks how the

steps in each proof are modified in the case of axisymmetric formulations, and a few numerical tests

(illustrating the convergence of our method in diverse settings) are reported in Section 5.

2 THE MODEL PROBLEM

Let ΩB and ΩD be open, bounded subsets of Rd (with d ∈ {2, 3}) having Lipschitz–continuous bound-

aries, such that 𝜕ΩB ∩ 𝜕ΩD =Σ≠ ∅ and ΩB ∩ ΩD =∅. These domains will represent the regions where

viscous and nonviscous flow will be governed by Brinkman and Darcy equations, respectively. The
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FIGURE 1 Sketch of a full three dimensional domain partitioned into the Darcy and Brinkman subdomains (left), the case of

an axially symmetric domain (center), and its restriction to the meridional plane defined by the symmetry axis Γs (right)

[Color figure can be viewed at wileyonlinelibrary.com]

overall porous medium is Ω ≔ ΩB ∪ ΩD with boundary Γ= 𝜕Ω. Figure 1 gives a schematic represen-

tation of the geometry in different scenarios (where the middle and right panels will be relevant in the

discussion of Section 4).

Using standard notation, the system of interest can be written as the following boundary value

problem. Given smooth data fB ∈ L2(ΩB)d, fD ∈ L2(ΩD)d and gD ∈ L2(ΩD), find the velocity, scaled

vorticity, and pressure in the Brinkman domain (uB, 𝝎B, and pB, respectively) together with the

filtration velocity and pressure in the Darcy domain (uD and pD), such that

𝜅−1
D uD + 𝛻pD = fD in ΩD, (2.1)

𝜅−1
B uB +

√
𝜈 curl 𝝎B + 𝛻pB = fB in ΩB, (2.2)

𝝎B −
√
𝜈 curl uB = 0 in ΩB, (2.3)

𝑑iv uB = 0 in ΩD, (2.4)

𝑑iv uD = gD in ΩD, (2.5)

(uD|ΩD
− uB|ΩB

) ⋅ n = 0 on Σ, (2.6)

pD − pB = 0 on Σ, (2.7)

𝝎B × n = 0 on Σ, (2.8)

uD ⋅ n = 0 on 𝜕ΩD⧵Σ, (2.9)

uB = 0 on 𝜕ΩB⧵Σ, (2.10)

where 𝜈 > 0 is the viscosity of the fluid, 𝜅D and 𝜅B are bounded, symmetric, and positive definite

tensors describing the permeability properties of the Darcy and Brinkman regions, respectively. Here

Equations (2.1) and (2.2) state the momentum conservation in each subdomain in the absence of

inertial effects, Equation (2.3) defines the constitutive relation for the additional unknown of scaled

Brinkman vorticity, mass conservation is accounted for in Equations (2.4) and (2.5), and the motion of

the incompressible fluid is constrained by slip conditions on 𝜕ΩD⧵Σ, and no-slip conditions on 𝜕ΩB⧵Σ
(cf. Equations (2.9) and (2.10)). Note that if d = 2 then 𝝎B is the scalar vorticity, and the operator curl
coincides with the two-dimensional rotated gradient.

The system is closed after providing suitable coupling conditions at the interface Σ. These con-

ditions definitely depend on the configuration of the physical phenomenon and the formulation of

http://wileyonlinelibrary.com
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the boundary value problem, but a common assumption is the continuity of normal velocities across

the interface (2.6), as well as the balance of normal forces. The conservation of tangential stresses

across the interface requires a much more delicate study, and we simply consider continuity of the

pressure (2.7). Then, according to the simplified Beavers-Joseph-Saffman condition from the study of

Lesinigo and coworkers [15], (Equation (2.5)), for Equation (2.7) to hold, one infers that the tangen-

tial Brinkman vorticity must vanish, as we impose in Equation (2.8). We do refer to the motivating

discussion in Mikelic and Jäger [21] (see also [2, 22] and the references therein), and only mention

that similar transmission conditions (as the ones assumed here) have been also employed in other stud-

ies [2, 3, 16, 23, 24] to produce numerical results coherent with the relevant physical scenario under

consideration.

At this point we stress that an analogous set of governing equations has been introduced in the study

of Alvarez and coworkers [16], but prescribing both slip velocities and tangential vorticity on the whole

𝜕ΩB, and therefore making use of a different functional setting leading to a variational formulation and

a discretisation requiring additional unknowns, and carrying out an analysis in a substantially different

manner.

In order to derive a weak formulation for Equations (2.1)–(2.10) (on which the subsequent dis-

cretization will be based), we recall that for any s≥ 0, the symbol ‖⋅‖s, Ω denotes the norm of the

Sobolev space Hs(Ω) or Hs(Ω)d, adopting the usual convention H0(Ω)=L2(Ω). If d = 3 we will also

require the Hilbert space

Hs(curl; Ω) = {𝜽 ∈ Hs(Ω)3 ∶ curl 𝜽 ∈ Hs(Ω)3},

endowed with the norm ‖𝜽‖2
Hs(curl;Ω) = ‖𝜽‖2

s,Ω+‖curl 𝜽‖2
s,Ω, and we will denote H(curl;Ω)=H0(curl;

Ω). If d = 2 then we recall the characterization H0(curl;Ω)≡H1(Ω). With these considerations in mind,

let us introduce the following functional spaces

Z ≔ {𝜽 ∈ H(curl; ΩB) ∶ 𝜽 × n = 0 on Σ} and Q ≔ H1(Ω) ∩ L2
0(Ω).

We proceed to equip Q with its natural norm, and Z with a viscosity-dependent weighted norm:

‖q‖Q ≔ (‖q‖2
0,Ω + ‖𝛻q‖2

0,Ω)1∕2, ‖𝜽‖Z ≔ (‖𝜽‖2
0,ΩB

+ 𝜈‖curl 𝜽‖2
0,ΩB

)1∕2.

If d = 2, then Z= {𝜽 ∈ H1(ΩB): 𝜽= 0 on Σ}.

Testing Equation (2.3) against a generic 𝜽 ∈ Z, integrating by parts, and using the boundary

condition (2.10), we can assert that

∫ΩB

𝝎B ⋅ 𝜽 −
√
𝜈∫ΩB

uB ⋅ curl 𝜽 = 0 ∀𝜽 ∈ Z. (2.11)

Next, from Equation (2.2) we readily have

𝜅−1
B uB = fB −

√
𝜈 curl 𝝎B − 𝛻pB in ΩB, (2.12)

and after replacing Equation (2.12) in Equation (2.11), we obtain

∫ΩB

𝝎B⋅𝜽+𝜈∫ΩB

𝜅B curl 𝝎B⋅curl 𝜽+
√
𝜈∫ΩB

𝜅B𝛻pB⋅curl 𝜽 =
√
𝜈∫ΩB

𝜅BfB⋅curl 𝜽 ∀𝜽 ∈ Z. (2.13)

Similarly, testing Equations (2.1) and (2.2) against 𝛻q ∈ L2(Ω)d, integrating by parts, and using

the coupling conditions, we obtain

∫ΩD

𝜅D𝛻pD ⋅𝛻q+
√
𝜈∫ΩB

𝜅B curl 𝝎B ⋅𝛻q+∫ΩB

𝜅B𝛻pB ⋅𝛻q = ∫ΩD

𝜅DfD ⋅𝛻q+∫ΩD

gDq+∫ΩB

𝜅BfB ⋅𝛻q,

which holds for all q ∈ Q.
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We can now define a global pressure field p ∈ Q such that p|ΩB
= pB and p|ΩD

= pD, and therefore

the steps above lead to the following variational formulation of Equations (2.1)–(2.10): Find (𝝎B, p)

∈ Z × Q such that

((𝝎B, p), (𝜽, q)) =  (𝜽, q) ∀(𝜽, q) ∈ Z × Q, (2.14)

where the bilinear form  ∶ (Z×Q)×(Z×Q) → R and linear functional  : Z×Q→R are defined by

((𝝎B, p), (𝜽, q)) ≔ ∫ΩB

𝝎B ⋅ 𝜽 + ∫ΩB

𝜅B(
√
𝜈 curl𝝎B + 𝛻pB) ⋅ (

√
𝜈 curl𝜽 + 𝛻q)

+ ∫ΩD

𝜅D𝛻pD ⋅ 𝛻q,

 (𝜽, q) ≔ ∫ΩB

𝜅BfB ⋅ (
√
𝜈 curl𝜽 + 𝛻q) + ∫ΩD

𝜅DfD ⋅ 𝛻q + ∫ΩD

gDq.

Should a solution to problem (2.14) exist, we note that its uniqueness is a direct consequence of

the following result.

Lemma 2.1 Let (𝝎B, p) ∈ Z ×Q satisfy

((𝝎B, p), (𝜽, q)) = 0 ∀(𝜽, q) ∈ Z × Q. (2.15)

Then (𝝎B, p)= (0, 0).

Proof. We take (𝜽, q)= (𝝎B, p) as test functions, which leads to

‖𝝎B‖2
0,ΩB

+ ‖√𝜈 curl𝝎B + 𝛻pB‖2
0,ΩB

+ ‖𝛻pD‖2
0,ΩD

= 0,

implying that 𝝎B = 0 in ΩB and p= 0 in Ω. ▪

An appropriate modification of the arguments in the study of Alvarez and coworkers [16] implies

the existence of solutions to problems (2.1)–(2.10) and problem (2.14). Even if the formulation in

Alvarez and coworkers [16] involves Lagrange multipliers accounting for the interface coupling, the

regularity of the vorticity and pressure correspond to the ones we consider here. On the other hand,

the well-posedness of Equation (2.14) could be also derived adapting the steps from the very recent

results in Mabrouki and coworkers ( [24], section 2).

3 FINITE ELEMENT DISCRETISATION

In this section we introduce a Galerkin scheme associated to problem (2.14), we specify the finite

dimensional subspaces to employ, and analyse the well-posedness of the resulting methods using

suitable assumptions on the finite element spaces. The section also contains a derivation of error

estimates.

3.1 Formulation and solvability

Let {h(ΩB)}h>0 and {h(ΩD)}h>0 be shape-regular families of partitions of the domains ΩB and ΩD,

respectively, by tetrahedrons (if d = 3, or triangles if d = 2) T of diameter hT . We assume that they

match in Σ so that h(ΩB) ∪ h(ΩD) forms a partition of the global porous domain Ω, having meshsize



ANAYA ET AL. 533

h ≔ max{hT ∶ T ∈ h(Ω)}. Given an integer k≥ 1 and a set S⊂Rd, the space of polynomial functions

defined in S and having total degree ≤ k will be denoted by k(S).
For any T ∈ h(ΩB) we recall the definition of the local Nédélec space:

Nk(T) ≔ k−1(T)3 ⊕ Rk(T),

where Rk(T) is the subspace of k(T)3 composed by homogeneous polynomials of degree k, and

orthogonal to x. The finite element spaces for the approximation of the Brinkman vorticity and the

global pressure are then defined as

Zh ≔ {𝜽h ∈ Z ∶ 𝜽h|T ∈ Nk(T) ∀T ∈ h(ΩB)}, (3.1)

Qh ≔ {qh ∈ Q ∶ qh|T ∈ k(T) ∀T ∈ h(Ω)}, (3.2)

which are subspaces of Z and Q, respectively. If d = 2, then Zh = {𝜽h ∈ Z ∶ 𝜽h|T ∈ k(T) ∀T ∈
h(ΩB)}.

Therefore, a Galerkin scheme associated with the continuous variational formulation (2.14) reads

as follows: Find (𝝎B, h, ph) ∈ Zh × Qh such that

((𝝎B,h, ph), (𝜽h, qh)) =  (𝜽h, qh) ∀(𝜽h, qh) ∈ Zh × Qh. (3.3)

Theorem 3.1 (Solvability of the Galerkin method). The discrete problem (3.3) is
well-posed.

Proof. Since (3.3) consists of a square linear system, it suffices to establish the unique-

ness. Assuming that the data are homogeneous fB = 0, fD = 0 and gD = 0, we can choose

(𝜽h, qh)= (𝝎B, h, ph) as test functions in the Galerkin formulation. This leads to

‖𝝎B,h‖2
0,ΩB

+ ‖√𝜈 curl𝝎B,h + 𝛻pB,h‖2
0,ΩB

+ ‖𝛻pD,h‖2
0,ΩD

= 0,

implying that 𝝎B, h = 0 in ΩB and ph = 0 in Ω. ▪

3.2 Error estimates

Let us introduce, for s> 1/2, the Nédélec global interpolation operator h : Hs(curl;ΩB)∩Z→Zh (cf.

[25]), satisfying the following approximation property.

Lemma 3.2 For all 𝜽B ∈Hs(curl;ΩB) with s ∈ (1/2, k], there exists C> 0 independent
of h, such that ‖𝜽B −h𝜽B‖Z ≤ 𝐶ℎs‖𝜽B‖Hs(curl;ΩB).

On the other hand, for all s> 1/2, the usual Lagrange interpolant Πh: H1 + s(Ω) ∩ Q→Qh features

a similar property.

Lemma 3.3 For all q ∈ H1+s(Ω), s ∈ (1/2, k] there exists C> 0, independent of h, such
that ‖q − Πhq‖Q ≤ 𝐶ℎs‖q‖H1+s(Ω).

The following auxiliary result will be used in the derivation of the error estimates.

Lemma 3.4 For all (𝜽B, q) ∈ Z ×Q, there exist C1, C2 > 0 such that

C1(‖𝜽B‖2
0,ΩB

+ ‖√𝜈 curl𝜽B + 𝛻qB‖2
0,ΩB

+ ‖𝛻qD‖2
0,ΩD

+ ‖q‖2
0,Ω) ≤ ((𝜽B, q), (𝜽B, q)), (3.4)
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and

((𝜽B, q), (𝜽B, q)) ≤ C2(‖𝜽B‖2
0,ΩB

+ ‖√𝜈 curl𝜽B + 𝛻qB‖2
0,ΩB

+ ‖𝛻qD‖2
0,ΩD

+ ‖q‖2
0,Ω). (3.5)

Proof. For a given (𝜽B, q) ∈ Z ×Q there holds that

‖q‖0,Ω ≤ ‖𝛻q‖−1,Ω ≔ sup
v∈H1

0
(Ω)𝑑⧵{0}

(v, 𝛻q)0,Ω‖v‖1,Ω
= sup

v∈H1
0
(Ω)𝑑⧵{0}

(v, 𝛻qB)0,ΩB
+ (v, 𝛻qD)0,ΩD‖v‖1,Ω

= sup
v∈H1

0
(Ω)𝑑⧵{0}

(v, 𝛻qB +
√
𝜈 curl𝜽B)0,ΩB

− (v,
√
𝜈 curl𝜽B)0,ΩB

+ (v, 𝛻qD)0,ΩD‖v‖1,Ω

= sup
v∈H1

0
(Ω)𝑑⧵{0}

(v, 𝛻qB +
√
𝜈 curl𝜽B)0,ΩB

−
√
𝜈(𝜽B, curlv)0,ΩB

+ (v, 𝛻qD)0,ΩD‖v‖1,Ω

≤ sup
v∈H1

0
(Ω)𝑑⧵{0}

(‖𝛻qB +
√
𝜈 curl𝜽B‖0,ΩB

+ ‖𝛻qD‖0,ΩD
)‖v‖0,Ω +

√
𝜈‖𝜽B‖0,ΩB

‖curlv‖0,ΩB‖v‖1,Ω

≤ C(‖𝛻qB +
√
𝜈 curl𝜽B‖0,ΩB

+ ‖𝜽B‖0,ΩB
+ ‖𝛻qD‖0,ΩD

).
▪

Thus Equation (3.4) follows. Finally, Equation (3.5) is obtained directly from triangle inequality.

Theorem 3.5 (Optimal convergence). Assume that 𝝎B ∈Hs(curl;ΩB), and p ∈
H1+s(Ω), for some s ∈ (1/2, k]. Then, there exists C> 0 independent of h and 𝜈, such that

‖𝝎B − 𝝎B,h‖0,ΩB
+ ‖√𝜈 curl(𝝎B − 𝝎B,h) + 𝛻(pB − pB,h)‖0,ΩB

+‖𝛻(pD − pD,h)‖0,ΩD
+ ‖p − ph‖0,Ω ≤ 𝐶ℎs(‖𝝎B‖Hs(curl;ΩB) + ‖p‖H1+s(Ω)).

Proof. The result is a consequence of the error equation

((𝝎B − 𝝎B,h, p − ph), (𝜽h, qh)) = 0 ∀(𝜽h, qh) ∈ Zh × Qh, (3.6)

in combination with Lemmas 3.4, 3.2 and 3.3. ▪

Our next result establishes a duality argument, permitting us to improve the convergence of the

vorticity and global pressure errors in the L2 − norm.

Theorem 3.6 (An L2 − estimate). Assume that 𝝎B ∈Hs(curl;ΩB), and p ∈ H1+s(Ω),
for some s ∈ (1/2, k]. Then, there exists C> 0 independent of h and 𝜈, such that

‖𝝎B − 𝝎B,h‖0,ΩB
+ ‖p − ph‖0,Ω ≤ 𝐶ℎ1+s(‖𝝎B‖Hs(curl;ΩB) + ‖p‖H1+s(Ω)).

Proof. Let us consider the following well-posed problem

((𝝎̃, p̃), (𝜽B, q)) = ∫ΩB

(𝝎B − 𝝎B,h) ⋅ 𝜽B + ∫Ω
(p − ph)q ∀(𝜽B, q) ∈ Z × Q, (3.7)

and let us assume the additional regularity 𝝎̃ ∈ H1(curl; ΩB) and p̃ ∈ H2(Ω).
Moreover, we also assume that there exists a constant C > 0, independent of 𝜈 such that

‖𝝎̃‖H1(curl;ΩB) + ‖p̃‖H2(Ω) ≤ C(‖𝝎B − 𝝎B,h‖0,ΩB
+ ‖p − ph‖0,Ω). (3.8)
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Then we can choose (𝜽B, q)= (𝝎B −𝝎B, h, p− ph) in Equation (3.7), to obtain

‖𝝎B − 𝝎B,h‖2
0,ΩB

+ ‖p − ph‖2
0,Ω = ((𝝎̃, p̃), (𝝎B − 𝝎B,h, p − ph)),

and the required result follows as a consequence of Equation (3.6) together with Lem-

mas 3.2, 3.3, the bound Equation (3.8), and Theorem 3.5. ▪

3.3 Recovering the velocity field

The solution of the continuous and discrete problems Equations (2.14) and (3.3), deliver the Brinkman

vorticity and global pressure (𝝎B, p) ∈ Z × Q and (𝝎B, h, ph) ∈ Zh × Qh, respectively. From these quan-

tities we can readily obtain the continuous and discrete velocities. In fact, according to Equations (2.12)

and (2.1) we have

uB = 𝜅B(fB −
√
𝜈 curl𝝎B − 𝛻pB) in ΩB, (3.9)

uD = 𝜅D(fD − 𝛻pD) in ΩD. (3.10)

Similarly, at the discrete level Equations (3.9) and (3.10) correspond to computing the

Brinkman and Darcy velocities as a postprocess from the discrete Brinkman vorticity and the

global pressure:

uB,h = 𝜅B(hfB −
√
𝜈 curl𝝎B,h − 𝛻pB,h) in ΩB, (3.11)

uD,h = 𝜅D(hfD − 𝛻pD,h) in ΩD, (3.12)

where h ∶ L2(Ω)𝑑 → Uh ≔ {vh ∈ L2(Ω)𝑑 ∶ vh|T ∈ k−1(T)𝑑 ∀T ∈ h(Ω)} is the L2-orthogonal

projector satisfying for any s ∈ (0, k]

‖v − hv‖0,Ω ≤ 𝐶ℎs‖v‖s,Ω. (3.13)

Note that both uB, h and uD, h are element-wise discontinuous, and, should further features be sought

(e.g., local divergence-free), one requires additional projection steps (see for instance Equation [26]).

In any case, the rate of convergence of the velocity postprocessing can be quantified as follows.

Theorem 3.7 (Convergence of the velocity postprocessing). Let 𝝎B ∈ Z and p ∈ Q be
the unique solutions of Equation (2.14) and𝝎B, h ∈Zh and ph ∈Qh be the unique solutions
of Equation (3.3). Assume that 𝝎B ∈Hs(curl;ΩB), p ∈ H1 + s(Ω), fD ∈ Hs(ΩD)d and fB ∈
Hs(ΩB)d, for some s ∈ (1/2, k]. Then, there exists C> 0 independent of h and 𝜈, such that

‖uB − uB,h‖0,ΩB
+ ‖uD − uD,h‖0,ΩD

≤ 𝐶ℎs(‖fB‖s,ΩB
+ ‖fD‖s,ΩD

+ ‖𝝎B‖Hs(curl;ΩB) + ‖p‖1+s,Ω).

Proof. Collecting the results from Equations (3.9)–(3.11), and (3.12), and using

triangle inequality, it follows that

‖uB − uB,h‖0,ΩB
+ ‖uD − uD,h‖0,ΩD

≤ C(‖fB − hfB‖0,ΩB
+ ‖fD − hfD‖0,ΩD

+ ‖√𝜈 curl(𝝎B − 𝝎B,h) + 𝛻(pB − pB,h)‖0,ΩB

+ ‖𝛻(pD − pD,h)‖0,ΩD
).

▪

Then the desired result is obtained from Theorem 3.5 and Equation (3.13).
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4 REDUCTION TO THE AXISYMMETRIC CASE

Let us now consider d = 3 and assume that the data, the porous domain Ω along with its subdomains,

and the expected flow properties are all symmetric with respect to a given axis Γs. Therefore the

governing equations can be redefined in the meridional domain Ωa (see Figure 1, right panel), the

Brinkman and Darcy velocities involve only the radial and vertical components, and the Brinkman

vorticity is now the scalar field 𝜔B =
√
𝜈 rot uB.1 In analogy to Equations (2.1)–(2.10), the boundary

value problem now reads

𝜅−1
D uD + 𝛻pD = fD, and 𝑑iva uD = gD in Ωa

D, (4.1)

𝜅−1
B uB +

√
𝜈 curla 𝜔B + 𝛻pB = fB, 𝑑iva uB = 0, and 𝜔B −

√
𝜈 rot uB = 0 in Ωa

B, (4.2)

(uB|Ωa
B
− uD|Ωa

D
) ⋅ n = 0, pB|Ωa

B
− pD|Ωa

D
= 0, and 𝜔B = 0 on Σa, (4.3)

uD ⋅ n = 0 on 𝜕Ωa
D ⧵ Σa,

(4.4)

uB = 0 on 𝜕Ωa
B ⧵ Σa.

(4.5)

In order to adapt the analysis presented in the previous sections to axisymmetric enclosures, we

require a modification of the functional spaces as advanced in Equation [27]. We begin by denoting

L
p
𝛼(Ωa) the weighted Lebesgue space of measurable functions 𝜑 satisfying

‖𝜑‖p
L

p
𝛼 (Ωa) ≔ ∫Ωa

|𝜑|pr𝛼 drdz < ∞,

and L2
1,0(Ωa) will denote its restriction to functions with zero weighted integral. The weighted Sobolev

space Hk
r (Ωa) consists of all functions in L2

1(Ωa) whose derivatives of order ≤ k are also in L2
1(Ωa), and

its semi-norm is defined as usual. For k= 1 we have

|𝜑|2
H1

1
(Ωa) ≔ ∫Ωa

(|𝜕r𝜑|2 + |𝜕z𝜑|2)r drdz,

and the space H̃1
1(Ωa

B) ≔ H1
1(Ωa

B) ∩ L2
−1(Ωa

B), equipped with the norm

‖𝜑‖H̃1
1
(Ωa

B
) ≔ (‖𝜑‖2

L2
1
(Ωa

B
) + 𝜈|𝜑|2

H1
1
(Ωa

B
) + 𝜈‖𝜑‖2

L2
−1
(Ωa

B
))

1∕2,

is a Hilbert space. The space H(curla,Ωa
B) ≔ {𝜑 ∈ L2

1(Ωa
B) ∶ curla𝜑 ∈ L2

1(Ωa
B)} will be provided

with the norm ‖𝜑‖2
H(curla,Ωa

B
) = ‖𝜑‖2

L2
1
(Ωa

B
) + 𝜈‖curla𝜑‖2

L2
1
(Ωa

B
)2 , and we notice that ‖⋅‖H(curla,Ωa

B
) and‖⋅‖H̃1

1
(Ωa

B
) are equivalent norms.

A variational formulation for system Equations (4.1)–(4.5) can be derived as in Section 2. In par-

ticular, we repeat the arguments in Equations (2.11)–(2.13) together with Lemmas 1.2 and 1.3 from

Anaya and coworkers [28], to obtain the following variational formulation: Find (𝜔B, p) ∈ Za × Qa

such that

a((𝜔B, p), (𝜃, q)) =  a(𝜃, q) ∀(𝜃, q) ∈ Za × Qa, (4.6)

where the associated functional spaces are

Za ≔ {𝜑 ∈ H̃1
1(Ωa

B) ∶ 𝜑 = 0 on Σa}, Qa ≔ H1
1(Ωa) ∩ L2

1,0(Ωa),

1We recall that the needed differential operators in axisymmetric coordinates are 𝑑ivav ≔ 𝜕zvz + 1

r
𝜕r(𝑟𝑣r), rot v≔ 𝜕rvz − 𝜕zvr ,

𝛻𝜑 := (𝜕r𝜑, 𝜕z𝜑)T , and curla 𝜑≔ (𝜕z𝜑,−r−1𝜕r(r𝜑))T .
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and the bilinear form a ∶ (Za ×Qa) × (Za ×Qa) → R and linear functional  a : Za ×Qa →R are now

specified as

a((𝜔B, p), (𝜃, q)) ≔∫Ωa
B

𝜔B𝜃𝑟 drdz + ∫Ωa
B

𝜅B(
√
𝜈 curla 𝜔B + 𝛻pB) ⋅ (

√
𝜈 curla 𝜃 + 𝛻q)r drdz

+ ∫Ωa
D

𝜅D𝛻pD ⋅ 𝛻qr drdz,

 a(𝜃, q) ≔∫Ωa
B

𝜅BfB ⋅ (
√
𝜈 curla𝜃 + 𝛻q)r drdz + ∫Ωa

D

𝜅DfD ⋅ 𝛻q r drdz + ∫Ωa
D

gDq r drdz,

Introducing the finite element subspaces (for any k≥ 1)

Za
h ≔ {𝜃h ∈ Za ∶ 𝜃h|T ∈ k(T) ∀T ∈ h(Ωa

B)}, (4.7)

Qa
h ≔ {qh ∈ Qa ∶ qh|T ∈ k(T) ∀T ∈ h(Ωa)}, (4.8)

we can write a Galerkin scheme associated to Equation (4.6): Find (𝜔B, h, ph) ∈ Za
h × Qa

h such that

a((𝜔B,h, ph), (𝜃h, qh)) =  a(𝜃h, qh) ∀(𝜃h, qh) ∈ Za
h × Qa

h. (4.9)

As in Section 3 we can compute continuous and discrete velocities using

uB = 𝜅B(fB −
√
𝜈 curla 𝜔B − 𝛻pB) in Ωa

B, uD = 𝜅D(fD − 𝛻pD) in Ωa
D, (4.10)

and

uB,h = 𝜅B(hfB −
√
𝜈 curla 𝜔B,h − 𝛻pB,h) in Ωa

B, uD,h = 𝜅D(hfD − 𝛻pD,h) in Ωa
D.

(4.11)

On the other hand, the well-posedness analysis and error estimates for (4.9) can be established

following the lines of Section 3 in combination with the following well-known result (cf. Mercier and

Raugel [27], Lemma 6.3), see also Belhachmi and coworkers [29]).

Lemma 4.1 There exists C> 0, independent of h and 𝜈, such that for all 𝜃 ∈ Hk+1
1 (Ωa) ∶

‖𝜃 − Πh𝜃‖H̃1
1
(Ωa) ≤ 𝐶ℎk‖𝜃‖Hk+1

1
(Ωa),

whereΠh ∶ H̃1
1(Ωa)∩H2

1(Ωa) → Za
h is the Lagrange interpolator of a sufficiently smooth 𝜃.

Theorem 4.2 (Convergence of the axisymmetric solution). Let us consider (𝜔B, p) ∈
Za ×Qa, and (𝜔B, h, ph) ∈ Za

h × Qa
h to be the unique solutions of the continuous and

discrete problems (4.6) and (4.9), respectively. For k≥ 1, assume that 𝜔B ∈ Hk+1
1 (Ωa

B),
p ∈ Hk+1

1 (Ωa), fD ∈ Hk
1(Ωa

D)2 and fB ∈ Hk
1(Ωa

B)2. Then, there exist C, Ĉ > 0 independent
of h and 𝜈 such that

‖𝜔B − 𝜔B,h‖0,Ωa
B
+ ‖√𝜈 curl(𝜔B − 𝜔B,h) + 𝛻(pB − pB,h)‖0,ΩB

+ ‖𝛻(p − ph)‖0,Ωa
D

+‖p − ph‖0,Ωa + ‖uB − uB,h‖0,Ωa
B
+ ‖uD − uD,h‖0,Ωa

D

≤ 𝐶ℎk(‖𝜔B‖Hk+1
1

(Ωa
B
) + ‖p‖Hk+1

1
(Ωa) + ‖fB‖Hk

1
(Ωa

B
) + ‖fD‖Hk

1
(Ωa

D
)),

and
‖𝜔B − 𝜔B,h‖0,Ωa

B
+ ‖p − ph‖0,Ωa ≤ Ĉhk+1(‖𝜔B‖Hk+1

1
(Ωa

B
) + ‖p‖Hk+1

1
(Ωa)).
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Proof. The first error estimate follows as a direct consequence of Lemma 4.1 and

Equations (4.10)–(4.11). The second estimate follows by a standard duality argument (see

Theorem 3.6). ▪

5 NUMERICAL RESULTS

The following set of examples serves to confirm numerically the convergence rates anticipated in

Theorems 3.5, 3.6, and 3.7, and Theorem 4.2.

TABLE 1 Test 1. Experimental accuracy of the proposed finite element method against manufactured exact
solutions. Convergence achieved using a scheme of increasing order k ∈ {1, 2, 3} (from top to bottom)

h euB
0 Rate euD

0 Rate e𝝎B
0 Rate e(𝝎B ,pB)

1 Rate epD
1 Rate ep

0 Rate

(k = 1)

0.707 0.2755 – 0.1084 – 0.0164 – 0.3901 – 0.3235 – 0.0700 –

0.500 0.1308 0.90 0.0507 1.47 0.0105 1.41 0.2978 0.97 0.2304 0.97 0.0407 1.68

0.326 0.0677 1.14 0.0354 0.84 0.0029 2.09 0.1798 1.01 0.1359 1.23 0.0139 2.05

0.199 0.0382 1.16 0.0204 1.12 0.0007 2.07 0.0997 1.02 0.0807 1.05 0.0046 2.02

0.094 0.0200 0.96 0.0112 0.99 0.0002 1.97 0.0504 0.99 0.0417 0.98 0.0012 1.94

0.048 0.0101 1.01 0.0060 0.94 5.54e-5 1.95 0.0260 0.98 0.0212 1.00 0.0003 1.99

0.025 0.0052 1.03 0.0029 1.07 1.53e-5 1.98 0.0130 1.06 0.0105 1.08 7.60e-5 2.02

0.013 0.0026 1.11 0.0015 1.08 4.39e-6 2.00 0.0066 1.09 0.0053 1.09 1.97e-5 2.02

0.007 0.0013 1.07 0.0007 1.17 1.35e-6 1.98 0.0032 1.18 0.0026 1.15 4.95e-6 2.01

0.004 0.0007 1.10 0.0003 1.09 3.65e-7 1.99 0.0016 1.11 0.0014 1.00 1.26e-6 1.99

(k = 2)

0.707 0.2157 – 0.0938 – 0.0030 – 0.1269 – 0.0677 – 0.0105 –

0.500 0.0977 2.08 0.0419 2.07 0.0015 1.91 0.0751 1.81 0.0224 3.25 0.0020 3.20

0.326 0.0466 1.97 0.0198 1.75 0.0003 3.07 0.0225 2.12 0.0084 2.07 0.0006 3.12

0.199 0.0153 2.05 0.0075 1.96 7.42e-5 2.99 0.0073 2.06 0.0027 2.10 8.50e-5 3.08

0.094 0.0040 1.98 0.0023 1.79 1.07e-5 2.87 0.0018 1.85 0.0007 1.97 9.59e-6 2.91

0.048 0.0010 1.96 0.0006 1.98 1.59e-6 2.85 0.0005 1.98 0.0002 2.00 1.25e-6 3.01

0.025 0.0003 2.09 0.0002 2.11 2.12e-7 3.11 0.0001 2.10 4.77e-5 2.12 1.59e-7 3.01

0.013 7.27e-5 2.19 4.51e-5 2.15 2.75e-8 3.03 3.23e-5 2.20 1.22e-5 2.01 3.12e-8 3.01

0.007 1.73e-5 2.10 1.49e-5 2.17 4.03e-9 2.98 1.02e-5 2.09 3.85e-6 1.89 1.02e-8 3.00

0.004 4.55e-6 2.03 5.36e-6 2.09 1.02e-9 2.49 3.91e-6 1.99 9.45e-7 1.98 4.24e-9 3.01

(k = 3)

0.707 0.0583 – 0.0285 – 0.0024 – 0.2307 – 0.1697 – 0.0268 –

0.500 0.0303 2.88 0.0058 2.96 0.0011 3.26 0.0433 3.82 0.0113 4.80 0.0016 4.96

0.326 0.0054 3.21 0.0025 2.94 0.0001 4.27 0.0066 3.40 0.0041 3.43 0.0001 4.48

0.199 0.0009 3.12 0.0004 3.32 1.11e-5 4.17 0.0007 3.33 0.0003 3.30 8.01e-6 4.23

0.094 0.0001 2.98 7.93e-5 2.94 6.66e-7 4.16 6.89e-5 3.25 3.25e-5 3.23 2.90e-7 4.23

0.048 1.65e-5 3.07 1.17e-5 2.85 4.17e-8 4.13 7.54e-6 3.20 2.39e-6 3.19 1.10e-8 4.18

0.025 2.21e-6 3.02 1.43e-6 3.24 2.78e-9 4.10 9.24e-7 3.14 1.51e-7 3.02 3.7e-10 4.10

0.013 2.95e-7 3.00 1.85e-7 3.03 1.9e-10 4.06 1.22e-7 3.08 1.03e-8 3.00 1.5e-11 4.07

0.007 2.99e-8 3.00 1.75e-8 2.98 1.0e-11 3.99 1.18e-8 3.17 1.21e-9 3.10 2.2e-12 3.78

0.004 4.01e-9 2.99 1.86e-9 2.99 8.2e-13 4.31 1.16e-9 2.95 1.8e-10 2.87 1.4e-13 3.93
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FIGURE 2 Test 1. Numerical solution of the Brinkman-Darcy coupled problem, generated with the lowest order method.

Brinkman vorticity (left), global pressure (center), and postprocessed velocities (right) [Color figure can be viewed at

wileyonlinelibrary.com]

5.1 Test 1: Experimental convergence in 2D

We begin with a two-dimensional example where the Brinkman and Darcy subdomains ΩB = (0,

1)2, ΩD = (0, 1)× (1, 3/2) are separated by the segment Σ= (0, 1)× {1}. We choose arbitrary model

parameters 𝜅D = 0.02 I, 𝜅B = 0.05 I, and 𝜈 = 0.01, and propose the following closed-form solutions to

(2.1)–(2.5):

uB =
(

sin (𝜋𝑥)2 sin (𝜋𝑦)2 cos(𝜋𝑦)
− 1

3
sin(2𝜋𝑥) sin (𝜋𝑦)3

)
,uD = uB ×

(
0

3

2
− y

)
,𝝎B =

√
𝜈 curluB,

p =
(

x − 1

2

)3

−
(

y − 3

2

)3

,

which satisfy exactly the boundary and interface conditions (2.6)–(2.10). Notice that uD is not diver-

gence free, but gD (and analogously the forcing terms fB, fD) are constructed from the manufactured

solutions above. Two families of successively refined unstructured meshes for ΩB and ΩD are gener-

ated, matching on the interface as required by the conformity of the global pressure approximation.

We stress that the discrete velocities are obtained as postprocess from the discrete Brinkman vortic-

ity and discrete global pressure. Moreover, the zero-mean condition enforcing the uniqueness of the

global pressure is implemented using a scalar Lagrange multiplier (adding one row and one column to

the matrix system that solves for 𝝎B, h and ph). All linear systems are solved using the direct method

MUMPS. Errors between the exact and approximate solutions are measured in the norms involved in

the convergence analysis of Section 3.2, and will adopt the following notation

e(𝝎B,pB)
1 = ‖√𝜈 curl(𝝎B − 𝝎B,h) + 𝛻(pB − pB,h)‖0,ΩB

, epD

1 = ‖𝛻(pD − pD,h)‖0,ΩD
,

whereas es
0 will denote the L2 − norm of the error associated to the generic quantity s. The obtained

error history is reported in Table 1. The asymptotic O(hk) decay of the error observed for each field

(except for the Brinkman vorticity and global pressure in their L2 −norms, which exhibit a decay of

O(hk+1)), indicates an overall optimal convergence of the proposed method as predicted by Theorems

3.5, 3.6, and 3.7. Sample approximate solutions generated with the lowest order method are displayed

in Figure 2, showing accurate profiles, also near the interface.

http://wileyonlinelibrary.com
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0.011 0.023 0.034 50.000.0 -0.4 0 0.4-0.73 0.73

0.0066 0.013 0.020.00

0.014 0.028 0.0420.00 0.06

0.03 0.01-0.019 -0.0091 0.00039

-0.023 0 0.023 50.040.0-

-0.03

FIGURE 3 Test 2. Numerical solution of the Brinkman-Darcy coupled problem, generated with the lowest order method.

Brinkman vorticity magnitude and streamlines (top left), iso-surfaces of the global pressure (top right), and postprocessed

velocities (magnitudes on the bottom left, and example of the x-component and streamlines on bottom right) [Color figure can

be viewed at wileyonlinelibrary.com].

5.2 Test 2: Cracked porous media

Our next test focuses on the simulation of flow in fractured porous structures, and the test configuration

has been adapted from Alvarez and coworkers [16]. A box of two porous materials having different

volume fractions of calcarenite and sand is considered, where the interface between the Brinkman and

Darcy subdomains is a smoothed “V-shaped” surface (see also [2, 5]). The domain size is now [0,

1.5]× [0, 0.2]× [0, 1], the Darcy subdomain is located below Σ, and external forces on both domains

correspond to gravity, and a smooth flow rate in the x-direction fB = fD = (0.1cos2(𝜋xz), 0,−0.98)T . The

permeabilities and viscosity are set to 𝜅B = 5 I, 𝜅D = 1 I, and 𝜈 = 0.001. The unstructured tetrahedral

mesh consists of approximately 1.313.372 elements and 241.250 vertices. We use the same strategy

to impose zero-mean pressure as in the previous test, but now the linear systems are inverted with

the BICGSTAB Krylov solver, and the discrete Brinkman vorticity is approximated using Nédélec

elements with k= 1. Such a spatial resolution and the chosen finite element family implies that the

matrix system has 408.503 unknowns. The method from Alvarez and coworkers [16] entails a discrete

problem with 4.173.527 (more than 10 times the cost of the present scheme). The generated numerical

http://wileyonlinelibrary.com
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TABLE 2 Test 3. Error history associated to the finite element method with order k= 2, in an axisymmetric
setting. Errors measured in the weighted norms (denoted with subscript a), and computed against a reference
fine-mesh solution obtained with a higher order method

h euB
0,a Rate euD

0,a Rate e𝝎B
0,a Rate e(𝝎B ,pB)

1,a Rate epD
1,a Rate ep

0,a Rate

0.7311 0.4045 – 0.4024 – 0.0281 – 0.1012 – 0.0615 – 0.0252 –

0.5193 0.1814 2.13 0.2062 1.97 0.0120 2.45 0.0429 1.91 0.0452 2.06 0.0061 2.92

0.3242 0.0802 1.85 0.0689 1.94 0.0027 2.82 0.0201 1.94 0.0151 1.93 0.0028 2.95

0.2141 0.0322 1.95 0.0281 2.02 0.0008 2.99 0.0083 1.96 0.0077 1.96 0.0005 2.98

0.1162 0.0080 1.98 0.0064 1.96 1.10e-4 3.00 0.0025 1.94 0.0022 1.94 8.31e-5 2.92

0.0533 0.0020 1.95 0.0016 2.01 1.71e-5 2.97 0.0006 1.97 0.0004 1.95 1.22e-5 2.99

0.0316 0.0006 2.04 0.0005 2.04 2.18e-6 2.93 0.0002 2.03 7.98e-5 1.96 1.58e-6 3.03

0.0150 1.16e-4 1.98 1.04e-4 1.98 2.80e-7 2.87 4.55e-5 1.93 2.32e-5 2.08 2.01e-7 2.98

0.0079 3.41e-5 2.01 2.71e-5 1.95 4.79e-8 2.95 1.21e-5 2.02 5.47e-6 1.94 1.95e-8 2.95

0.0042 8.63e-6 1.97 7.01e-6 1.93 1.35e-8 2.98 2.72e-6 1.97 1.67e-6 1.96 1.90e-9 2.96

solutions are presented in Figure 3, and one expects continuity of the normal velocities across the

interface (observed in the streamlines on the bottom right panel), very regular pressure profiles and

continuous across the interface (that we see in the top right panel). The flow patterns in the Brinkman

domain are however not expected to be as uniform as in the study of Alvarez and coworkers [16], since

the problem configuration in our case assumes a nonconstant flow rate. This condition also implies

that now the flow is higher in the larger Darcy domain.

5.3 Test 3: Accuracy assessment in an axisymmetric enclosure

We finally turn to the verification of the convergence analysis in the axisymmetric case, for which we

construct a cylindrical domain of height 4, representing a simplified oil filter (see a similar test in study

of Anaya and coworkers [28]). We write the problem and its discretisation using a half cross-section

of the domain, with minimum and maximum radii 0.5 and 2, respectively. The Brinkman subdomain

(located on the upper part of the filter) is separated from the Darcy domain by a curved interface Σa

parametrized, in the meridional axisymmetric coordinates, as (r, z)= (t, 2+ 0.2t+ 0.1t cos[6𝜋t− 3𝜋]),

with t ∈ (0, 2). The permeabilities in each domain are constant 𝜅B = 500 I, 𝜅D = 100 I, and the fluid

viscosity is 𝜈 = 0.01. We construct smooth forcing terms representing an external motion of the fil-

ter fB = (0,−𝜈rsin2(𝜋rz))T , fD = (0, 𝜈z2 cos(2𝜋rz))T , and choose gD = − 𝜈 sin(𝜋r) sin(𝜋z). Interface and

boundary conditions are imposed as in Equations (4.3)–(4.5), and in the absence of a closed-form solu-

tion to the problem we generate a reference numerical solution with a method of order k= 3, and using

a highly refined mesh for the axisymmetric domain. Then we produce a sequence of coarser meshes

and obtain approximate solutions using Equation (4.9) with k= 2. We compute errors against the ref-

erence fine solution and collect the result of the convergence history in Table 2. Again we evidence

optimal rates of convergence, this time according to Theorem 4.2. We also depict the numerical solu-

tions and extrude into the cylindrical domain the approximate Brinkman vorticity, global pressure and

individual velocities (see Figure 4). For a given spatial resolution, the method with k= 1 results in a

matrix system with 38.103 degrees of freedom, and if the polynomial order is k= 2 then the matrix

system has 151.232 unknowns. Other schemes may be much more expensive, as for example the meth-

ods for axisymmetric Stokes-Darcy problems proposed in the study of Ervin [4], which for the same

mesh involves 301.820 degrees of freedom for the scheme that uses Taylor-Hood elements for the
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FIGURE 4 Test 3. Numerical solution of the axisymmetric Brinkman-Darcy coupled problem, generated with the

second-order method. Brinkman vorticity and sketch of curved interface and symmetry axis (top left), distribution of global

pressure (top, second panel), and radial and vertical components of the postprocessed velocities (top third and right figures).

The bottom row shows different views of the axisymmetric solutions extruded to the three-dimensional domain (only an angle

of 3𝜋/4 is plotted for visualization purposes) [Color figure can be viewed at wileyonlinelibrary.com]

approximation of velocity and pressure in the Stokes domain, or 275.216 degrees of freedom for the

one using the MINI-element in that same region.

6 CONCLUDING REMARKS

We recall that as the discrete global pressure is H1(Ω) (or H1(Ωa)-) conforming, the meshes for the

Brinkman and Darcy subdomains have been assumed to match on the interface. In order to relax this

condition, one could devise appropriate extensions using domain decomposition or a discontinuous

Galerkin counterpart of (3.3), which could be quite useful in, for example, subsurface flow applications.

Another extension currently under study is the imposition of stress-free boundary conditions (which

are not straightforward in the context of vorticity-based formulations). These ideas are not explored

here, but they certainly deserve further investigation.
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