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Abstract
Soil-based water filtering devices can be described by models of viscous flow in
porous media coupled with an advection–diffusion–reaction system modelling the
transport of distinct contaminant specieswithinwater, and being susceptible to adsorp-
tion in the medium that represents soil. Such models are analysed mathematically,
and suitable numerical methods for their approximate solution are designed. The
governing equations are the Navier–Stokes–Brinkman equations for the flow of the
fluid through a porous medium coupled with a convection-diffusion equation for
the transport of the contaminants plus a system of ordinary differential equations
accounting for the degradation of the adsorption properties of each contaminant.
These equations are written in meridional axisymmetric form and the corresponding
weak formulation adopts a mixed-primal structure. A second-order, (axisymmetric)
divergence-conforming discretisation of this problem is introduced and the solvabil-
ity, stability, and spatio-temporal convergence of the numerical method are analysed.
Some numerical examples illustrate themain features of the problem and the properties
of the numerical scheme.

Mathematics Subject Classification 65M30 · 76S05 · 76R50

1 Introduction

1.1 Scope

We are interested in the analysis and numerical approximation of the flow of a viscous
fluid through a porous medium, where it is assumed that the fluid carries a number m
of components that are adsorbed by the porous medium. While viscous flow in porous
media with adsorption arises in several applications including polymer flooding as part
of the process of enhanced oil recovery in petroleumengineering [18], chromatography
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[52], or water decontamination and removal of pollutants such as heavy metals or
radioactive ions [59], the particular formulation in the present work is motivated by
a model of a soil-based water filtering device designed to remove contaminants from
water by adsorption [48].

The governing equations for this process can be formulated as follows. We assume
that the porous medium is represented by a simply connected spatial domain Ω ⊂ R

3

whose boundary ∂Ω is split into three disjoints parts Γ in, Γ wall and Γ out repre-
senting the inlet, walls, and outlet boundaries. For all times 0 < t ≤ T , we
consider the Navier–Stokes–Brinkman equations written in terms of the volume aver-
age flow velocity u(t) : Ω → R

3 and the fluid pressure p(t) : Ω → R; as well
as the balances for contaminant concentration possessing sink terms that depend
on the rate of degradation of the adsorption properties of each material, described
in terms of the vector of concentrations of m ≥ 2 distinct types of contaminants
�θ(t) = (θ1(t), . . . , θm(t)) : Ω → R

m and of the adsorption capacity relative to each
contaminant �s(t) = (s1(t), . . . , sm(t)) : Ω → R

m . The coupled set of governing
equations (three partial differential equations (PDEs) and one ordinary differential
equation (ODE)) adopts the form

ρf(∂tu + u · ∇u) + K
−1νu − div(νε(u) − pI) = F(�θ), (1.1a)

divu = 0, (1.1b)

φ∂t �θ − div(D∇ �θ) + (u · ∇)�θ = −ρb∂t �s, (1.1c)

∂t �s = G(�s, �θ) in Ω × (0, T ], (1.1d)

where ε(u) = 1
2 (∇u + ∇uT) is the strain rate tensor, D = diag(D1(x), . . . , Dm(x))

denotes a space-dependent and positive definite matrix containing diffusivity coeffi-
cients, ν > 0 is the constant fluid viscosity, ρf , ρb are the constant densities of the
fluid phases and of the bulk filter medium, φ(x) is the porosity of the soil constituting
the porous medium, andK(x) > 0 is the permeability tensor (assumed symmetric and
uniformly positive definite). The source and reaction terms are

F(�θ) = g
m∑

i=1

θi ; Gi (si , θi ) = k+
i (x)

(
smax
i − si

)
θi , i = 1, . . . ,m, (1.2)

where G = (G1, . . . ,Gm)T, g is the gravity acceleration, smax
i is a constant repre-

senting the maximum amount of contaminant i that can be absorbed at a given point,
and k+

i (x) is a spatially-dependent modulation coefficient accounting for the forward
adsorption rate related to the loss of contaminant i due to the filtering process (bound-
ary conditions and further assumptions will be specified in later parts of the paper).

123



Axisymmetric Navier–Stokes–Brinkman-transport equations… 433

Thus, the flow of the incompressible fluid through Ω is modelled by the Navier–
Stokes–Brinkman equation (1.1a) and the continuity equation (1.1b), which express
the conservation of momentum and mass respectively. Equation (1.1c) describes the
evolution of �θ within Ω , under the effects of advection and diffusion, in addition to
adsorption by the filter media. Given the typical operating conditions within the filter,
we would expect the effects of advection to dominate those from diffusion, as noted
in [48]. The sink term −ρb∂t �s in (1.1c) accounts for the net and local removal of each
contaminant type due to the filtration process. This adsorption process is described
by a multicomponent Langmuir-type model, as given by (1.1d) and (1.2). Under this
model, it is assumed that each site has a maximum capacity for each individual con-
taminant, which we take to be uniform across the two layers of filter media. In this
way, the adsorption is noncompetitive and the saturation of a site by one contami-
nant does not prevent adsorption of the other contaminants at the same site. It is also
assumed that the adsorption process is irreversible for all contaminants and all filter
layers, so that once adsorbed, the contaminants remain attached to the filter media
with no desorption back into the fluid. As described previously, for each contaminant
we ascribe a spatially dependent adsorption rate k+

i (x), so (1.2) stipulates that the
rate of removal of a contaminant at a site is proportional to the concentration of the
contaminant present in the fluid at the site, the remaining capacity of the filter media
at the site, and the adsorption rate.

While modelling a filter calls for a three-dimensional domain, in practice most
filter designs display rotational symmetry around their central axis, with the flow
also expected to exhibit such symmetry. This property motivates an axisymmetric
formulation of the problem, allowing for the reduction from three to two spa-
tial dimensions, which evidently reduces the computational cost associated with
its solution. The model analysed herein is therefore a reformulation of (1.1) along
with suitable initial and boundary conditions as a meridional axisymmetric PDE-
ODE initial-boundary value problem. It is the purpose of this paper to advance a
second-order divergence-conforming discretisation for this problem. Specifically, we
introduce an axisymmetric H(div)-conforming method based on two-dimensional
Brezzi–Douglas–Marini (BDM) spaces [15] combined with an implicit, second-order
backward differentiation formula (BDF2) for time discretisation. Based on discrete
stability properties, we prove that the discrete problem has at least one solution and
the conditional uniqueness of the solution. At the core of this paper is the derivation of
an optimal a priori error estimate for the numerical scheme, where the main difficulty
is the fully discrete analysis verifying that each of the terms is bounded optimally
in the corresponding weighted spaces. Numerical examples illustrate the model and
reconfirm the theoretical order of accuracy.

1.2 Related work

To put the present work into the proper perspective, we mention that several studies
treat the axisymmetric formulation of the Stokes and Navier–Stokes flows, includ-
ing the discretisation employing spectral, mortar, and stabilised finite elements (see
e.g. [8,11,12,14,31], and references cited in these works). More recently, mixed for-
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mulations of Brinkman flow including the numerical analysis of finite element (FE)
approximations were studied. Anaya et al. [5] presented an augmented finite element
approximation based on an extension to the vorticity-based Stokes problem was. A
related recent model in [6] incorporates a stream function and vorticity formulation
of axisymmetric Brinkman flow, for which a conforming mixed FE approximation is
employed.

Papers concerning the coupling of flow and transport problems in a stationary and
non-stationary setting include [23,43,60]. In [23] the authors present a FEmethodwith
projection-based stabilisation for the double-diffusive convection in Darcy-Brinkman
flow, and a FE error analysis and a convergence analysis are performed for the time-
dependent case.

A time-dependent Boussinesq model with nonlinear viscosity depending on the
temperature is proposed in [2]. The authors analyse first and second order numerical
schemes based on finite element methods and derive an optimal a priori error estimate
for each numerical scheme. A related non-stationary phase-change Boussinesq model
is presented in [60], where a second order finite element method for the primal formu-
lation of the problem in terms of velocity, temperature, and pressure is constructed,
and conditions for its stability are provided.

The coupling of advection–diffusion–reaction systems with Brinkman equations
in their velocity–vorticity–pressure formulation, is studied in [43]. The equations are
discretised in space usingmixed FEmethods on unstructuredmeshes, whereas the time
integration hinges on an operator splitting strategy that uses the differences in scales
between the reaction, advection, and diffusion processes. The authors compare several
coupling strategies in terms of memory usage, iteration count, speed of calculation,
and dynamics of the energy norm.

Another class of related systems where high-order schemes have been successfully
applied include phase field models coupled with incompressible fluids, such as the
Navier–Stokes/Cahn–Hilliard and Cahn-Hilliard-Hele-Shaw systems. In this context
we can cite, for instance, the works [22,28,32,37].

With respect to axisymmetric formulations, we mention that the numerical analysis
of the axisymmetric Darcy and Stokes-Darcy flow using Raviart–Thomas (RT) and
BDM finite elements was presented in [30,31]. In [30], the authors established the
stability of the RT and BDM approximations for an axisymmetric Darcy flow problem
by extending the Stenberg criteria, and they also derive a priori error estimates.

A similar problem, addressing Brinkman flows coupled with a first-order transport-
adsorption PDE, is approximated numerically in [18] by an H(div)-conforming
scheme in combination with a DG method specifically tailored for discontinuous
fluxes, and then the method has been recently modified to accommodate the study of
double diffusion in viscous porous media [20], and the interaction with a rotating rigid
structure with applications in clarifier-thickener units [19].

Other contributions to the design of numerical methods for axisymmetric formu-
lations of coupled flow and transport problems include for instance [17], where a
semi-discrete discontinuous finite volume element (FVE) scheme is proposed and the
unique solvability of both the nonlinear continuous problem and the semi-discrete
counterpart is discussed. An FVE method is also proposed in [16] to discretise a
Stokes equation for flow coupled with a parabolic equation modelling sedimentation.

123



Axisymmetric Navier–Stokes–Brinkman-transport equations… 435

The method is based on a stabilised discontinuous Galerkin formulation for the con-
centration field, and a multiscale stabilised pair of P1-P1 elements for velocity and
pressure, respectively. A mixed variational formulation of a Darcy-Forchheimer flow
coupled with a energy equation is semi-discretised in [4] using Raviart–Thomas ele-
ments for fluxes and piecewise constant elements for the pressure, a posteriori error
estimates are also established.

The technological application behind the water filter model goes back to the obser-
vation that it is possible to remove arsenic from water by passing it through iron-rich
laterite soil [44]. The arsenic is removed through an adsorption process, which may be
enhanced by chemically treating the laterite to increase its porosity and surface area,
improving the adsorption efficiency [45]. Clearly, the formulation of accurate math-
ematical models of these filters, in addition to their efficient computational solution,
would greatly aid in the development of improved filters and guidelines for their safe
operation. The development and analysis of such a model forms the basis of the work
[48], where the authors examined the removal of a single contaminant (arsenic; case
m = 1 in our notation) in a cylindrical filter of uniform media. The authors utilised a
Darcy-Brinkman equation, coupled with an advection–diffusion–adsorption equation
to model the flow of the contaminated water through the filter and the removal of the
arsenic through adsorption. In practice, however, there are likely m > 1 contaminants
present, which calls for a filter consisting of multiple (up tom) layers in order to allow
for their removal. In this work we attempt to study the filtration process in a soil-based
water filter consisting of two distinct layers of differing media, in the presence of
multiple contaminant species.

Problems of a similar nature abound in the literature. For example, Goyeau et al.
[34] consider the numerical solution, via a finite volume method, of a double diffusive
problemwithin a porous medium. The problem in question concerns the flow of a fluid
within the porous medium, and the transport, within that fluid, of both heat and some
particulate species (or secondary fluid constituent). The paper [54] considers a similar
double diffusive problem, however, much like our proposed layered filter, the authors
allow for the possibility of heterogeneous stratified porous media. While many of the
studies concerning double diffusive problems consider entirely closed domains filled
with porous media, a large number of application cases, such as our filter, feature
partial enclosures with openings or infiltrations. The article [56] introduces such a
feature, with the addition of ‘free ports’ to their model domain. Considering other
potential variants, the authors of [61] extend the usual double diffusive problem by a
first-order reaction process between the diffusing species and the fluid. This reaction
process necessitates the addition of a sink term to the equation governing the species
concentration that plays a role similar to that on the right-hand side of (1.1c).

1.3 Outline of the paper

The remainder of this paper is organised as follows. In Sect. 2 we introduce the model
problem and state some preliminaries for its analysis, starting with a description of the
initial and boundary conditions for (1.1) that correspond to the filter model (Sect. 2.1).
Next, in Sect. 2.2, we reformulate (1.1) and the corresponding initial and boundary
conditions in meridional axisymmetric form, which under suitable assumptions leads
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tomodel in two (namely, radial and vertical) space dimensions.We provide in Sect. 2.3
some preliminaries on functional spaces associated with radially symmetric functions.
The weak (variational) formulation of the axisymmetric problem is stated in Sect. 2.4.
Further assumptions on the model coefficients, as well as a number of inequalities
related to the bilinear and trilinear forms involved in the weak formulation, are stated
in Sect. 2.5. Section 3 outlines the well-posedness analysis (proof of existence and
uniqueness of a weak solution) of the axisymmetric problem derived in Sect. 2.4.
Section 4 is devoted to the description of the spatio-temporal discretisation of the
axisymmetric model, starting by Sect. 4.1, where we introduce the basic triangula-
tion of the computational domain and some notation. We then proceed to specify, in
Sect. 4.2, the axisymmetricH(div)-conforming method, where we first derive a semi-
discrete (continuous in time) Galerkin formulation for the model problem, based on
two-dimensional BDM spaces adapted to the axisymmetric setting, and then pass to
a fully discrete scheme by applying a second-order time discretisation through an
implicit backward differentiation formula (BDF2). Next, in Sect. 4.3, we establish
discrete stability properties of the bilinear and trilinear forms involved in the method.
These properties allow us to prove (in Sect. 4.4) the existence of a discrete solution.
Then, in Sect. 5, we prove an optimal a priori error estimate for the numerical scheme,
where we verify that each of the terms is bounded optimally in the corresponding
weighted space. Finally, in Sect. 6 we present numerical examples generated by the
method introduced. Example 1 (Sect. 6.1) is an accuracy test with a manufactured
known exact solution of (1.1) equipped with initial and boundary conditions. Results
confirm that themethod converges to the exact solutionwith the expected second-order
rate. Next, in Example 2 (Sect. 6.2), numerical results are validated against experi-
mental data, and in Example 3 (Sect. 6.3) we solve the full two-layer, two-contaminant
filter model.

2 Model problem and preliminaries

2.1 Initial and boundary conditions

Let us consider a porous skeleton consisting of two different materials separated by an
interface, where the matrix is saturated with an incompressible interstitial fluid (see a
diagrammatic representation on the left part of Fig. 1). The coupled set of governing
equations (1.1) is posed along with the initial and boundary conditions

u = uin, �θ = �θ in on Γ in × (0, T ], (2.1a)

u = 0, D∇ �θ · n = �0 on Γ wall × (0, T ], (2.1b)

(νε(u) − pI)n = 0, D∇ �θ · n = �0 on Γ out × (0, T ], (2.1c)
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Fig. 1 Left: schematic representation of the domain Ω , its various boundaries Γ in, Γ wall and Γ out, and
the material interface Σ . Right: reduction to the axisymmetric configuration

�θ(0) = �0, u(0) = �0, �s(0) = �0 in Ω. (2.1d)

Condition (2.1a) indicates that the contaminated water enters the filter at Γ in with
a constant influx velocity, and each contaminant θi , 1 ≤ i ≤ m present at a fixed
concentration θ in

i ; while condition (2.1c) accounts for zero normal stress and zero
contaminant flux at the outlet. The system is preliminarily flushed with clean water
and so there are no contaminants in the filter. Once the flow is at rest, we consider the
initial conditions (2.1d).

The two distinct materials that compose the porous domain will have different
permeability, porosity, as well as adsorption rate. Moreover, the diffusivities of the
contaminants will vary from one type of porous structure to another. However it is
important to remark that these differences in material properties, at least in the appli-
cations we address here, are not large enough to modify the flow regime between
the two subdomains and this explains why (1.1a)–(1.1d) are defined on the whole
domain Ω . Should this not be the case, one needs to solve explicitly for the coupling
of Navier–Stokes/Brinkman or Brinkman/Darcy equations including suitable trans-
mission conditions at the interface (see for instance [7,31] for formulations tailored to
axisymmetric domains).

2.2 An axisymmetric formulation

Assuming that the data, the domain and the expected flow properties are all symmetric
with respect to a given axis of symmetry denoted Γ sym, we may rewrite the model
equations in the meridional domain Ωa (see the right part of Fig. 1). In this case
the velocity only possesses radial and vertical components and we recall that the
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divergence operator in axisymmetric coordinates (in radial and height variables r , z)
is

divav := ∂zvz + 1

r
∂r (rvr ).

Then, making abuse of notation, we may rewrite the system (1.1) as

ρf(∂tu + u · ∇u) + K
−1νu − diva

(
νε(u)

) + ∇ p + ν(ur/r
2)e1 = F(�θ), (2.2a)

divau = 0, (2.2b)

φ∂t �θ − diva(D∇ �θ) + (u · ∇)�θ = −ρb∂t �s, (2.2c)

∂t �s = G(�s, �θ) for (r , z, t) ∈ Ωa × (0, T ], (2.2d)

while the corresponding initial and boundary conditions (2.1) take the form

u = uin, �θ = �θ in on Γ in
a × (0, T ], (2.3a)

u = 0, D∇ �θ · n = �0 on Γ wall
a × (0, T ], (2.3b)

u · n = 0, D∇ �θ · n = �0 on Γ sym × (0, T ], (2.3c)

(νε(u) − pI)n = 0, D∇ �θ · n = �0, on Γ out
a × (0, T ], (2.3d)

�θ(0) = �0, u(0) = 0, �s(0) = �0 in Ωa, (2.3e)

where the condition (2.3c) at the symmetry axis indicates slip velocity and zero normal
fluxes.

2.3 Preliminaries on spaces of radially symmetric functions

For α ∈ R and 1 ≤ p < ∞, let L p
α(Ωa) denote the space of measurable functions v

on Ωa such that

‖v‖p
L p

α (Ωa)
:=

∫

Ωa

|v|prα dr dz < ∞,
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and let us denote the scalar product in L2
α(Ωa) by (·, ·)α,Ωa . Moreover we intro-

duce Hq
α (Ωa) as the space of functions in L p

α(Ωa) whose derivatives up to order q
are also in L p

α(Ωa), and we denote by Hq
α, j (Ωa) its restriction to functions with null

trace on a given portion Γ
j
a of the boundary. By L and Lwe denote the corresponding

vectorial and tensorial counterparts of the scalar functional space L , we also will use �L
when the number of components of the vectorial space depends on m.

Furthermore, the space V 1
1 (Ωa) := H1

1 (Ωa) ∩ L2−1(Ωa) is endowed with the fol-
lowing norm and seminorm:

‖v‖V 1
1 (Ωa)

:= (‖v‖2
L2
1(Ωa)

+ |v|2
H1
1 (Ωa)

+ ‖v‖2
L2−1(Ωa)

)1/2
,

|v|V 1
1 (Ωa)

:= (|v|2
H1
1 (Ωa)

+ ‖v‖2
L2−1(Ωa)

)1/2
.

Let us define the space

H0(diva;Ωa) := {
v ∈ L2

1(Ωa) : divav ∈ L2
1(Ωa) and v|∂Ωa · n = 0

}
,

endowed with the norm

‖v‖diva,Ωa = (‖v‖L2
1(Ωa)

+ ‖diva(v)‖L2
1(Ωa)

)1/2
.

The essential boundary conditions (2.3a), (2.3b)1, (2.3c)1 suggest to employ the
functional spaces

V1
1,in,wall(Ωa) := {

v ∈ V 1
1 (Ωa) × H1

1 (Ωa) : v|Γ in
a ∪Γ wall

a
= 0 and v|Γ sym · n = 0

}
,

�H1
1,in(Ωa) = { �ψ ∈ �H1

1 (Ωa) : �ψ |Γ in
a

= �0}.

In what follows, to make notation more concise, we write L2
1 instead of L2

1(Ωa),
and proceed similarly for V1

1(Ωa), �L2
1(Ωa), �H1

1 (Ωa), and other spaces of functions
defined onΩa as well as their corresponding norms. That is, in the remainder any space
of functions and corresponding norm whose domain is not specified is understood to
refer to functions defined on Ωa.

2.4 Weak formulation of the axisymmetric problem

For a fixed t > 0, the weak (variational) formulation of problem (2.2), (2.3) is obtained
after testing against suitable functions and applying integration by parts in axisym-
metric coordinates; and it can be formulated as follows:

Find (u(t), p(t), �θ(t), �s(t)) ∈ V1
1 × L2

1 × �H1
1 × �L2

1 such that (2.3a) holds,

and for all v ∈ V1
1,in,wall(Ωa), q ∈ L2

1,
�ψ ∈ �H1

1,in(Ωa), and �l ∈ �H1
1 :

(
ρf∂tu(t), v

)
1,Ωa

+ a1
(
u(t), v

) + c1
(
u(t);u(t), v

) + b
(
v, p(t)

) = d1(�θ, v), (2.4a)
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b
(
u(t), q

) = 0, (2.4b)

(
φ∂t �θ(t), �ψ)

1,Ωa
+ a2

(�θ(t), �ψ) + c2
(
u(t); �θ(t), �ψ) + d2

(
s(t); �θ(t), �ψ) = 0,

(2.4c)

(
∂t �s(t), �l)1,Ωa

+ d3
(�θ(t); �s(t), �l) − d4

(�θ(t), �l) = 0. (2.4d)

Here the bilinear, trilinear, and nonlinear forms are defined as follows for all u, v,w ∈
V1
1, q ∈ L2

1, �s, �l ∈ �L2
1, and �θ, �ψ ∈ �H1

1 :

a1(u, v) :=
∫

Ωa

K
−1νu · vr dr dz +

∫

Ωa

νε(u) : ε(v)r dr dz +
∫

Ωa

ν

r
urvr dr dz,

a2(�θ, �ψ) :=
∫

Ωa

D∇ �θ : ∇ �ψr dr dz, b(v, q) := −
∫

Ωa

qdivavr dr dz,

c1(w;u, v) :=
∫

Ωa

ρf(w · ∇)u · vr dr dz, c2(v; �θ, �ψ) :=
∫

Ωa

(v · ∇)�θ · �ψr dr dz,

d1( �ψ, v) :=
∫

Ωa

F( �ψ) · vr dr dz, d2(�s; �θ, �ψ) :=
∫

Ωa

m∑

i=1

(
f (x, si )θiψi

)
r dr dz,

d3( �ψ; �s, �l) :=
∫

Ωa

m∑

i=1

g(x, ψi )si li r dr dz, d4( �ψ, �l) :=
∫

Ωa

m∑

i=1

g(x, ψi )s
max
i li r dr dz.

2.5 Further assumptions and preliminaries

The permeability tensor K ∈ [C(Ωa)]d×d is assumed symmetric and uniformly posi-
tive definite, hence its inverse satisfies

vTK−1(x)v ≥ α1|v|2 for all v ∈ R
d and x ∈ Ωa, for a constant α1 > 0.

We also require D to be positive definite, i.e.,

�ψT
D �ψ ≥ α2| �ψ |2 for all �ψ ∈ R

m, for a constant α2 > 0.

We assume there exist constants f1, f2, g1, g2 > 0 such that f1 ≤ f (x, s) ≤ f2, g1 ≤
g(x, θ) ≤ g2, and that f and g are Lipschitz continuous and satisfy

∣∣ f (s1) − f (s2)
∣∣ ≤ | f |Lip|s1 − s2|,

∣∣g(θ1) − g(θ2)
∣∣ ≤ |g|Lip|θ1 − θ2|.
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These assumptions imply that for all �s1, �s2, �s, �l ∈ �L2
1 and �θ, �ψ ∈ �H1

1 such that
smax
i ≤ smax, there hold

d2(�s; �θ, �θ) ≥ f1‖�θ‖2�L2
1
, (2.5)

d2(�s; �θ, �ψ) ≤ f2‖�θ‖�L2
1
‖ �ψ‖�L2

1
, (2.6)

d2(�s2; �θ, �ψ) − d2(�s1; �θ, �ψ) ≤ | f |Lip‖�s2 − �s1‖�L2
1
‖�θ‖ �H1

1
‖ �ψ‖ �H1

1
, (2.7)

d3( �ψ; �s, �s) ≥ g1‖�s‖2�L2
1
, (2.8)

d3( �ψ; �s, �l) ≤ g2‖�s‖�L2
1
‖�l‖�L2

1
, (2.9)

d4( �ψ, �l) ≤ g2s
max‖�l‖�L2

1
≤ Cd‖�l‖�L2

1
. (2.10)

If in addition �s ∈ �H1
1 , we also get

d3(�θ2; �s, �l) − d3(�θ1; �s, �l) ≤ |g|Lip‖�θ2 − �θ1‖ �H1
1
‖�s‖ �H1

1
‖�l‖�L2

1
. (2.11)

Due to the uniform boundedness ofK−1 andD, one can easily establish the following
properties for all u, v,∈ V1

1, q ∈ L2
1, and �θ, �ψ ∈ �H1

1 :

∣∣a1(u, v)
∣∣ ≤ Ca‖u‖V1

1
‖v‖V1

1
, (2.12a)

∣∣a2(�θ, �ψ)
∣∣ ≤ Ĉa‖�θ‖ �H1

1
‖ �ψ‖ �H1

1
, (2.12b)

∣∣b(v, q)
∣∣ ≤ Cb‖v‖V1

1
‖q‖L2

1
, (2.12c)

∣∣d1(�θ, v)
∣∣ ≤ CF‖�θ‖�L2

1
‖v‖V1

1
. (2.12d)

Moreover, thanks to the axisymmetric version of the well-known Sobolev embed-
dings (see [10,47]), we have that for p̂ ≥ 1,

‖w‖
L p̂
1 (Ωa)

≤ C∗
p̂‖w‖V1

1
for all w ∈ V1

1, (2.13)
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where the constant C∗
p̂ > 0 depends only upon |Ωa| and p̂. Also, for u, v,w ∈ H1

1 and
�θ, �ψ ∈ �H1

1 , Hölder’s inequality and (2.13) with 1
p̂ + 1

p̂∗ = 1
2 imply that (see [20])

∣∣c1(w;u, v)
∣∣ ≤ Cv‖w‖H1

1
‖u‖H1

1
‖v‖H1

1
,

∣∣c2(w; �θ, �ψ)
∣∣ ≤ C̄v‖w‖H1

1
‖�θ‖H1

1
‖ �ψ‖�L3

1
,

∣∣c2(w; �θ, �ψ)
∣∣ ≤ Ĉv‖w‖H1

1
‖�θ‖ �H1

1
‖ �ψ‖ �H1

1
.

Next, Poincaré’s inequality and the positive definiteness of D readily imply the
following coercivities (see [13, Chapter IX]):

a1(v, v) ≥ αa‖v‖2V1
1

for all v ∈ V1
in,wall(Ωa), (2.14)

a2( �ψ, �ψ) ≥ α̂a‖ �ψ‖2�H1
1

for all �ψ ∈ �H1
1,in(Ωa). (2.15)

We then proceed to characterise the kernel of the bilinear form b(·, ·) as

X :={
v ∈ V1

1,in,wall(Ωa) : b(v, q) = 0 for all q ∈ L2
1

}

={
v ∈ V1

1,in,wall(Ωa) : divav = 0 a.e. in Ωa
}
,

and using integration by parts directly implies the relations (see [13, Section IX.2])

c1(w; v, v) = 0 and c2(w; �ψ, �ψ) = 0

for all w ∈ X, v ∈ V1
1,in,wall(Ωa), and �ψ ∈ �H1

1,in(Ωa).
(2.16)

Note that for a given w ∈ X, property (2.14) together with (2.16) readily lead to the
ellipticity of the bilinear form

a1(·, ·) + c1(w, ·, ·) : V1
1,in,wall(Ωa) × V1

1,in,wall(Ωa) → R.

Moreover, it is well known (i.e. [13, Proposition IX.1.1]) that an inf-sup condition
holds for b(·, ·) in the following sense:

sup
v∈V1

1,in,wall(Ωa)\{0}

b(v, q)

‖v‖V1
1

≥ β‖q‖L2
1

for all q ∈ L2
1.

3 Well-posedness analysis of the continuous problem

This part of our analysis will be restricted to the case of no-slip velocity boundary
conditions on the whole boundary. Then we introduce the spaces

123



Axisymmetric Navier–Stokes–Brinkman-transport equations… 443

H1
1,� := {

w ∈ H1
1 : w = 0 on ∂Ωa

}
, V 1

1,� := {
w ∈ V 1

1 : w = 0 on ∂Ωa
}
,

and V1
1,� := V 1

1,� × H1
1,�.

From [42], we recall the weighted Sobolev inequality:

Lemma 3.1 For all v ∈ H1
1 there holds

‖v‖2
L4
1

≤ Ĉ‖v‖L2
1
|v|H1

1
.

We will also use the following lemma (for its proof in the axisymmetric case we
refer the reader to [13, Chapter IX]):

Lemma 3.2 If (u, p, �θ, �s) ∈ V1
1,� × L2

1 × �H1
1,� × �L2

1 solves (2.4), then u ∈ X is a
solution of the following reduced problem:

For all t ∈ (0, T ], find (u, �θ, s) ∈ X × �H1
1,� × �L2

1 such that
(
ρf∂tu(t), v

)
1,Ωa

+ a1
(
u(t), v

)

+ c1
(
u(t);u(t), v

) = d1(�θ, v) for all v ∈ V1
1,in,wall(Ωa), (3.1a)

(
φ∂t �θ(t), �ψ)

1,Ωa
+ a2

(�θ(t), �ψ)

+ c2
(
u(t); �θ(t), �ψ) + d2

(�s(t); �θ(t), �ψ) = 0 for all �ψ ∈ �H1
1,in(Ωa), (3.1b)

(
∂t �s(t), �l)1,Ωa

+ d3
(�θ(t); �s(t), �l) − d4

(�θ(t), �l) = 0 for all �l ∈ �L2
1. (3.1c)

Conversely, if (u, �θ, �s) ∈ X × �H1
1,� × �L2

1 is a solution of (3.1), then there exists a

pressure p ∈ L2
1 such that (u, p, �θ, �s) is a solution of (2.4).

A similar problem of (2.4) but in Cartesian coordinates has been studied in [1].
The authors showed the existence of the solution by using the Galerkin method and
applying the Cauchy–Lipschitz theorem. The proof of the existence of the solution of
(2.4) can be showed by using the same method noting that F is a Lipschitz-continuous
function; and using equivalent embeddings stated for weighted Sobolev spaces in [42]
and weighted Poincaré-like inequalities in [58, Section 4.3].

Theorem 3.1 Assume that for r ≥ 4,

(u, �θ, s) ∈ L2(0, T ;X ∩ W 1,r
1

) × L2(0, T ; �H1
1,�) × L2(0, T ; �H1

1

)

is a solution to problem (3.1). Then such solution is unique.

Proof Throughout the proof, and for simplicity of the presentation, we assume that
the model constants are scaled as φ, ρb, ρf = 1.

123



444 G. Baird et al.

Let (u1, �θ1, s1) and (u2, �θ2, s2) be two solutions of (3.1). We denote

U := u1 − u2, �Θ := �θ1 − �θ2, and �S := �s1 − �s2.

Now, from (3.1b), by adding and subtracting c2(u2, �θ1, �Θ) and d2(�s2, �θ1, �Θ); and
using properties (2.16) and (2.7) we obtain

(∂t �Θ, �Θ)1,Ωa + a2( �Θ, �Θ)

= −c2(U; �θ1, �Θ) − d2(�s2; �Θ, �Θ) − d2(�s1; �θ1, �Θ) + d2(�s2, �θ1, �Θ),

1

2

d

dt
‖ �Θ‖2�L2

1
+ α2| �Θ|2�H1

1
≤ ‖U‖2�L4

1
|�θ1| �H1

1
‖ �Θ‖�L4 + | f |Lip‖�S‖�L2

1
‖�θ1‖ �H1

1
‖ �Θ‖�L4

1
.

By Lemma 3.1 and Young’s inequality it follows that

1

2

d

dt
‖ �Θ‖2�L2

1
+ α2| �Θ|2�H1

1

≤ Ĉ

4

(
ε1|U|2

H1
1
+ 1

ε1
|�θ1| �H1

1
‖U‖2

L2
1
+ ε2| �Θ|2�H1

1
+ 1

ε2
|�θ1|2�H1

1
‖ �Θ‖2�L2

1

)
.

(3.2)

Now, selecting v = U in (3.1a), adding and subtracting c1(u2;u1;U), and employing
properties (2.16) and (2.12d), we can readily see that

1

2

d

dt
‖U‖2

L2
1
+ ν‖ε(U)‖2

L
2
1
+ ν‖Ur‖2L2−1

≤ ‖U‖2
L4
1
|u1|H1

1
+ CF| �Θ| �L2

1
‖U‖L2

1
.

Applying Lemma 3.1 and Young’s inequality we conclude that

1

2

d

dt
‖U‖2

L2
1
+ αa‖U‖2

V1
1

≤ Ĉε3

2
|U|2

V1
1
+ Ĉ

2ε3
‖U‖2

L2
1
|u1|H1

1
+ CF

2

(| �Θ|2�L2
1
+ ‖U‖2

L2
1

)
.

(3.3)

In the samemanner, from (3.1c), after adding and subtracting d3(�θ2; �s1, �S), using (2.8),
(2.9), (2.10) and (2.11), we can assert that

1

2

d

dt
‖�S‖�L2

1
+ g1‖�S‖�L2

1

≤ |g|Lip
2

(‖ �Θ‖2�L2
1
+ ‖�s1‖2�H1

1
‖�S‖2�L2

1

) + |g|Lipsmax

2

(‖ �Θ‖2�L2
1
+ ‖�S‖2�L2

1

)
,

(3.4)

and choosing ε1 = 2ναa/Ĉ , ε2 = 2α2/Ĉ and ε3 = ναa/Ĉ , we obtain from (3.2),
(3.3) and (3.4) that
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d

dt

(‖U‖2
L2
1
+ ‖ �Θ‖2�L2

1
+ ‖�S‖2�L2

1

)

≤ C
(|u1|2H1

1
+ |�θ1|2�H1

1
+ ‖�θ1‖2�L2

1
+ ‖�s1‖2�H1

1
+ 1

)(‖U‖2
L2
1
+ ‖ �Θ‖2�L2

1
+ ‖�S‖2�L2

1

)
.

We may now integrate in time from τ = 0 to τ = t to infer the bound

‖U‖2
L2
1
+ ‖ �Θ‖2�L2

1
+ ‖�S‖2�L2

1

≤
∫ t

0
C

(|u1|2H1
1
+ |�θ1|2�H1

1
+ ‖�θ1‖2�L2

1
+ ‖�s1‖2�H1

1
+ 1

)(‖U‖2
L2
1
+ ‖ �Θ‖2�L2

1
+ ‖�S‖2�L2

1

)
dτ .

Applying Gronwall’s lemma, we now conclude that U = 0, �Θ = �0, and �S = �0. ��

Remark 3.1 It is worth mentioning that even without the coupling with the transport
equations for the contaminant dynamics, the Navier–Stokes equations in their merid-
ional formulation possess a unique solution only provided that the fluid viscosity
(whenever variable, then almost everywhere) is greater than a positive constant ν0,
which in turn depends on the geometry and on the data (see e.g. [13, sect. IX.2]). This
implies, in particular, that the symmetry of the problem setup can be violated in finite
time, due flow instabilities induced by certain regimes.

4 Spatio-temporal discretisation

4.1 Preliminaries

Let us denote by Th a regular partition of Ωa composed by triangular elements K of
diameter hK . The mesh size will be denoted by h = max{hK , K ∈ Th}, and for any
interior edge e in Eh , we will label K− and K+ the elements adjacent to it, while he
will stand for the maximum diameter of the edge. We suppose that v, w are smooth
vector and scalar fields defined over Th . Then, by (v±, w±) we will denote the traces
of (v, w) on e being the extensions from the interiors of the elements K+ and K−,
respectively. Let ne denote the outward unit normal vector to e on K , we define the
tangential component of u on each face e as uτ = u − (u · ne)ne. We introduce the
average {{·}} and jump �·� operators as follows:

{{v}} = (v− + v+)/2, {{w}} = (w− + w+)/2,

�v� = (v− − v+), �w� = (w− − w+),

whereas for boundary jumps and averageswe adopt the convention that {{v}} = �v� = v,
and {{w}} = �w� = w. In addition, we will use the symbol ∇h to denote the broken
gradient operator and εh to denote its symmetrised counterpart.
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4.2 An axisymmetric H(div)-conformingmethod

First, we recall the definition of the two-dimensional Brezzi–Douglas–Marini (BDM)
spaces (see e.g. [15]) locally on an element K ∈ Th , BDMk(K ) := (Pk(K ))2, where
Pk(K ) denotes the local space spanned by polynomials of degree up to k. In turn,
related to the axisymmetric setting, as in [30] we define

BDMaxi
k (K ) := {

v ∈ BDMk(K ) : v · nK |Γ sym = 0
}

= {
(vr , vz)

T ∈ BDMk(K ) : vr |Γ sym = 0
}
,

where the associated degrees of freedom are given by

∫

Eh
v · nK pr ds, p ∈ Rk(∂K ) for k ≥ 0,

∫

K
v · ∇ pr dr dz, p ∈ Pk−1(K ) for k ≥ 1,

∫

K
v · curl(bK p)r dr dz, p ∈ Pk−2(K ) for k ≥ 2,

where bK denotes a bubble function on the element K and

Rk(∂K ) := {
φ ∈ L2(∂K ) : φ|e ∈ Pk(e), e ∈ Eh(K )

}
.

Then, globally, for an integer k and a mesh Th on Ω , we utilise the discrete spaces

Hk
h := {

vh ∈ H(diva;Ωa) : vh |K ∈ BDMaxi
k (K ) for all K ∈ Th

}
,

Yk
h := {

qh ∈ L2
1(Ωa) : qh |K ∈ Pk(K ) for all K ∈ Th

}
,

Mk
h := {

ψh ∈ C(Ωa) : ψh |K ∈ Pk(K ) for all K ∈ Th
}
,

to define the following finite element subspaces for the approximation of the unknowns
u, p, �θ and �s, respectively, where the polynomial degree is k ≥ 1:

Vh := Hk
h ∩ H0(diva;Ωa), Qh := Yk−1

h ,

�Mh,0 := �Mk
h ∩ �H1

1,in(Ω), �Sh := �Yk−1
h .

Let us recall that for axisymmetric cases the property divaVh ⊆ Qh is not preserved
[31], and let us also recall from [30] the following discrete inf-sup condition for b(·, ·),
where β̃ is independent of h:

sup
vh∈Vh\{0}

b(vh, qh)
‖vh‖T1h

≥ β̃‖qh‖L2
1,0(Ωa)

for all qh ∈ Qh . (4.1)

123



Axisymmetric Navier–Stokes–Brinkman-transport equations… 447

Associated with these finite-dimensional spaces, we state the following semi-
discrete Galerkin formulation for problem (1.1), (2.1):

For a fixed t > 0, find (uh(t), ph(t), �θh(t), �sh(t)) ∈ Vh × Qh × �Mh,0 × �Sh

such that for all (vh, qh, �ψh, �lh) ∈ Vh × Qh × �Mh,0 × �Sh :
(
ρf∂tuh(t), v

)
1,Ωa

+ ah1
(
uh(t), vh

)

+ ch1
(
uh(t);uh(t), vh

) + b
(
vh, ph(t)

) = d1
(�θh(t), vh

)
,

b
(
uh(t), qh

) = 0,
(
φ∂t �θh(t), �ψ)

1,Ωa
+ a2

(�θh(t), �ψh
)

+ ch2
(
uh(t); �θh(t), �ψh

) = d2
(�sh(t); �θh(t), �ψh

)
,

(
∂t �sh(t), �lh

)
1,Ωa

+ d3
(�θh(t); �sh(t), �lh

) = d4
(�θh(t), �lh

)
.

(4.2)

Here the discrete versions of the trilinear forms a1(·, ·), c1(·; ·, ·) and c2(·; ·, ·) are
defined using a symmetric interior penalty, an upwind approach and a skew-symmetric
form, respectively (see e.g. [18,40,41]):

ah1 (u, v) :=
∫

Ωa

(
K

−1u · v + νεh(u) : εh(v) + ν
ur
r

νr

r

)
r dr dz

−
∑

e∈Eh

∫

e

(
{{νεh(u)ne}} · �vτ � − {{νεh(v)ne}} · �uτ �

+ a0
he

ν�uτ � · �vτ �
)
r ds,

ch1 (w;u, v) := 1

2

∫

Ωa

((w · ∇h)u · v − (w · ∇h)v · u) r dr dz

+
∑

e∈Eh

∫

e
ŵ

up
(u) · vr ds,

ch2 (v; �θ, �ψ) := 1

2

(∫

Ωa

(v · ∇h)�θ · �ψr dr dz −
∫

Ωa

(v · ∇h) �ψ · �θr dr dz
)

,

where the fluxes are defined as

ŵ
up

(u) := 1

2

(
w · nK − |w · nK |)(ue − u),

and ue denotes the trace of u taken fromwithin the exterior of K . Note that the trilinear
form associated with the advection term in the discrete formulation is written in non-
conservative form, which facilitates splitting that contribution in a skew-symmetric
manner, so that the energy stability analysis can follow the same treatment as in, e.g.,
the continuous problem. This strategy is rather standard and has been employed for
Boussinesq and related flow-transport couplings [2,23,60], also including the axisym-
metric case [36].
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We thenproceedwith themethodof lines, and for the timediscretisationwepartition
the interval [0, T ] into N subintervals [tn−1, tn] of length δt . We will use an implicit,
second-order backward differentiation formula (BDF2). Starting from the interpolates
u0h , �θ 0

h and �s 0h of the initial data on Vh , �Mh,0 and �Sh , respectively, we solve for
n = 1, . . . , N − 1 the nonlinear system

(
un+1
h − 4

3
unh + 1

3
un−1
h , vh

)

1,Ωa

= 2

3
δt

(
d1(�θ n+1

h , vh) − ah1 (un+1
h , vh) − ch1 (u

n+1
h ;un+1

h , vh) − b(vh, p
n+1
h )

)
,

b(un+1
h , qh) = 0,

(
�θ n+1
h − 4

3
�θ n
h + 1

3
�θ n−1
h , �ψh

)

1,Ωa

= 2

3
δt

(−d2(s
n+1
h ; �θ n+1

h , �ψh) − a2(�θ n+1
h , �ψh) − ch2 (u

n+1
h ; �θ n+1

h , �ψh)
)
,

(
�s n+1
h − 4

3
�s nh + 1

3
�s n−1
h , �lh

)

1,Ωa

= 2

3
δt

(−d3(�θ n+1
h ; �s n+1

h , �lh) + d4(�θ n+1
h , �lh)

)

(4.3)

for all vh ∈ Vh, qh ∈ Qh, �ψh ∈ �Mh and �sh ∈ �Sh .
Then, in a way analogous to the continuous case, we define the discrete kernel

Xh := {
vh ∈ Vh : b(vh, qh) = 0 for all qh ∈ Qh

}
,

however we cannot obtain a characterisation analogous to the discrete case.

Remark 4.1 The scheme (4.3) is fully implicit, and requires the solution of nonlinear
equations. However, the computational effort associated with this property for each
time step is compensated by the fact that in contrast to an explicit or semi-implicit
formulation, noCFL-type condition needs to be imposed that would limit δt in terms of
the spatial meshwidth. Moreover, while its computational burden may be challenging
for large-scale simulations for fully three-dimensional coupled problems,we recall that
the formulation of the present model (2.2), (2.3), as well as the corresponding analysis
and the numerical scheme (4.3), are based on the assumption of axisymmetry, which
means that the resulting continuous and discrete problems are limited to two space
dimensions. Furthermore, we emphasise that it is precisely the fully implicit scheme
(4.3) which is used for the numerical tests in Section 6.

4.3 Discrete stability properties

For the subsequent analysis, we introduce for r ≥ 0 the broken Hr
α(Th) space

Hr
α(Th) = {

v ∈ L2
α : v|K ∈ Hr

α(K ), K ∈ Th
}
,
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as well as the following parameter- and mesh- dependent broken norms

‖v‖2∗,Th :=
∑

K∈Th
‖εh(v)‖2

L
2
1(K )

+
∑

K∈Th
‖vr‖L2−1(K ) +

∑

e∈Eh

1

he
‖�vτ �‖2

L2
1(e)

,

‖v‖2T1h := ‖v‖2
L2
1(Ωa)

+ ν‖v‖2∗,Th for all v ∈ H1
1(Th),

‖v‖2T2h := ‖v‖2T1h +
∑

K∈Th
h2K |v|2

H2
1 (K )

for all v ∈ H2
1(Th),

where the stronger norm ‖ · ‖T2h is used to show continuity. It can be proven that this

norm is equivalent to ‖·‖T1h onH
1
1(Th) (see [9,27]). Finally, adapting the argument used

in [40, Proposition 4.5] and relying on the equivalent weighted Sobolev embeddings
in [42] we have the following discrete Sobolev embedding: for r = 2, 4 there exists a
constant Cemb > 0 such that

‖v‖Lr
1

≤ Cemb‖v‖T1h for all v ∈ H1
1(Th). (4.4)

Using these norms, we can establish continuity of the trilinear and bilinear forms
involved, stated in the following lemma that can be proved following [30, Section 3]
and [9, Section 4].

Lemma 4.1 The following properties hold:

∣∣ah1 (u, v)
∣∣ ≤ C‖u‖T2h‖v‖T1h for allu ∈ H2

1(Th), v ∈ Vh,
∣∣ah1 (u, v)

∣∣ ≤ C̃a‖u‖T1h‖v‖T1h for allu, v ∈ Vh,
∣∣b(v, q)

∣∣ ≤ C̃b‖v‖T1h‖q‖L2
1

for all v ∈ H1
1(Th), q ∈ L2

1,

and for all u, v,w ∈ H1
1(Th) and �ψ, �θ ∈ �H1

1 , there holds

∣∣d1(�θ, v)
∣∣ ≤ CF‖�θ‖�L2

1
‖v‖T1h , (4.5a)

∣∣ch2 (w; �θ, �ψ)
∣∣ ≤ C̃‖w‖T1h‖ �ψ‖ �H1

1
‖�θ‖ �H1

1
. (4.5b)

Note that while the coercivity of the form a2(·, ·) in the discrete setting is readily
implied by (2.15), there also holds (cf. [41, Lemma 3.2])

ah1 (v, v) ≥ α̃a‖v‖2T1h for all v ∈ Vh, (4.6)

provided that a0 > 0 is sufficiently large and independent of the mesh size.
Let w ∈ H0(div0;Ω), due to the skew-symmetric form of the operators ch1 and ch2 ,

and the positivity of the non-linear upwind term of ch1 (see e.g. [60]), we can write

ch1 (w;u,u) ≥ 0 for all u ∈ Vh, (4.7)
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ch2 (w; �ψh, �ψh) = 0 for all �ψh ∈ Mh, (4.8)

as well as the following relation (which is based on (4.4) and follows by the same
method as in [24,40]):

For anyw1,w2,u ∈ H2
1(Th) there holds for all v ∈ Vh∣∣ch1 (w1;u, v)

∣∣ − ∣∣ch1 (w2;u, v)
∣∣ ≤ C̃c‖w1 − w2‖T1h‖v‖T1h‖u‖T1h .

(4.9)

4.4 Existence and uniqueness of discrete solutions

In what follows we will use the following algebraic relation: for any real numbers
an+1, an , an−1 and defining Λan := an+1 − 2an + an−1, we have

2(3an+1 − 4an + an−1, an) = |an+1|2 + |2an+1 − an|2 + |Λan|2
− |an|2 − |2an − an−1|2. (4.10)

Theorem 4.1 Let (un+1
h , pn+1

h , �θ n+1
h , �s n+1

h ) ∈ Vh × Qh × �Mh,0 × �Sh be a solution
of problem (4.3). Then the following bounds are satisfied, where C1,C2 and C3 are
constants independent of h and δt :

‖un+1
h ‖2

L2
1
+ ‖2un+1

h − unh‖2L2
1
+

n∑

j=1

‖Λu j
h‖2L2

1
+

n∑

j=1

δt‖u j+1
h ‖2T1h

≤ C1
(‖�θ 1

h ‖2�L2
1
+ ‖2�θ 1

h − �θ 0
h ‖2�L2

1
+ ‖u1h‖2L2

1
+ ‖2u1h − u0h‖2L2

1

)
,

‖�θ n+1
h ‖2�L2

1
+ ‖2�θ n+1

h − �θ n
h ‖2�L2

1
+

n∑

j=1

‖Λ�θ j
h ‖2�L2

1
+

n∑

j=1

δt |�θ j+1
h |2�L2

1

≤ C2
(‖�θ 1

h ‖2�L2
1
+ ‖2�θ 1

h − �θ 0
h ‖2�L2

1

)
,

‖�s n+1
h ‖2�L2

1
+ ‖2�s n+1

h − �s nh ‖2�L2
1
+

n∑

j=1

‖Λ�s jh‖2�L2
1

≤ C3
(‖�θ 1

h ‖2�L2
1
+ ‖2�θ 1

h − �θ 0
h ‖2�L2

1
+ ‖�s 1h ‖2�L2

1
+ ‖2�s 1h − �s 0h ‖2�L2

1
+ nδtC

2
d

)
.

(4.11)

Proof First we take �ψh = 4�θ n+1
h in the third equation of (4.3) and use properties (2.5),

(4.8) and relation (4.10) to deduce the inequality

‖�θ n+1
h ‖2�L2

1
+ ‖2�θ n+1

h − �θ n
h ‖2�L2

1
+ ‖Λ�θ n

h ‖2�L2
1
+ 4α2δt |�θn+1

h |2�H1
1

≤ ‖�θ n
h ‖2�L2

1
+ ‖2�θ n

h − �θ n−1
h ‖2�L2

1
.
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Hence, summing over n, we get

‖�θ n+1
h ‖2�L2

1
+ ‖2�θ n+1

h − �θ n
h ‖2�L2

1
+

n∑

j=1

‖Λ�θ j
h ‖2�L2

1
+ 4α2

n∑

j=1

δt |�θ j+1
h |2�H1

1

≤ ‖�θ 1
h ‖2�L2

1
+ ‖2�θ 1

h − �θ 0
h ‖2�L2

1
.

(4.12)

Similarly, in the fourth equation of (4.3), we take �lh = 4�s n+1
h and apply (2.10), (2.8)

together with Young’s inequality to get

‖�s n+1
h ‖2�L2

1
+ ‖2�s n+1

h − �s nh ‖2�L2
1
+ ‖Λ�s nh ‖2�L2

1

≤ 4δtCd‖�θ n+1
h ‖�L2

1
+ ‖�s nh ‖2�L2

1
+ ‖2�s nh − �s n−1

h ‖2�L2
1

≤ 2δtCp|�θ n+1
h |2�H1

1
+ 2C2

dδt + ‖�s nh ‖2�L2
1
+ ‖2�s nh − �s n−1

h ‖2�L2
1
.

Summing over n we therefore obtain

‖�s n+1
h ‖2�L2

1
+ ‖2�s n+1

h − �s nh ‖2�L2
1
+

n∑

j=1

‖Λ�s j
h ‖2�L2

1

≤ 2Cp

n∑

j=1

δt |�θ j+1
h |2�H1

1
+ 2nδtC

2
d + ‖�s 1h ‖2�L2

1
+ ‖2�s 1h − �s 0h ‖2�L2

1
. (4.13)

We get the second result of (4.11) by replacing (4.12) in (4.13). Finally we take
vh = 4un+1

h and qh = 4pn+1
h in the first and second equation of (4.3), respectively

and apply (4.10), (4.5a), (4.6) and (4.7) to deduce the estimate

‖un+1
h ‖2

L2
1
+ ‖2un+1

h − unh‖2L2
1
+ ‖Λunh‖2L2

1
+ 4δt α̃a‖un+1

h ‖2T1h
≤ 4δtCF‖�θ n+1

h ‖�L2
1
‖un+1

h ‖L2
1
+ ‖unh‖2L2

1
+ ‖2unh − un−1

h ‖2
L2
1
.

Now we use Young’s inequality with ε = α̃a to arrive at

‖un+1
h ‖2

L2
1
+ ‖2un+1

h − unh‖2L2
1
+ ‖Λunh‖2L2

1
+ δt2α̃a‖un+1

h ‖2T1h
≤ 2

C2
FCp

α̃a
δt |�θ n+1

h |2�H1
1

+ ‖unh‖2L2
1
+ ‖2unh − un−1

h ‖2
L2
1
,
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and summing over n we can assert that

‖un+1
h ‖2

L2
1
+ ‖2un+1

h − unh‖2L2
1
+

n∑

j=1

‖Λu j
h‖2L2

1
+ 2α̃a

n∑

j=1

δt‖u j+1
h ‖2T1h

≤ C2
FCp

2

n∑

j=1

δt |�θ j+1
h |2�H1

1
+ ‖u1h‖2L2

1
+ ‖2u1h − u0h‖2L2

1
.

(4.14)

Finally we get the first result in (4.11) from the bounds (4.12) and (4.14). ��
In order to establish the existence of discrete solution we shall make use of

Brouwer’s fixed-point theorem in the form given by [33, Corollary 1.1, Chapter IV]:

Theorem 4.2 (Brouwer’s fixed-point theorem) Let H be a finite-dimensional Hilbert
space with scalar product denoted by (, )H and corresponding norm ‖·‖H . Let Φ :
H → H beacontinuousmapping forwhich there existsμ > 0 such that (Φ(u), u)H ≥
0 for all u ∈ H with ‖u‖H = μ. Then there exists an element u ∈ H such that
Φ(u) = 0, ‖u‖H ≤ μ.

Theorem 4.3 (Existence of discrete solution) Under the assumptions of Sect. 4.3 and
Theorem 4.1 the problem (4.3) admits at least one solution

(un+1
h , pn+1

h , �θ n+1
h , �s n+1

h ) ∈ Vh × Qh × �Mh,0 × �Sh .

Proof To simplify the proof we introduce the following constants:

Cu := C1
(‖�θ 1

h ‖�L2
1
+ ‖2�θ 1

h − �θ 0
h ‖�L2

1
+ ‖u1h‖L2

1
+ ‖2u1h − u0h‖L2

1

)
,

Cθ := C2
(‖�θ 1

h ‖�L2
1
+ ‖2�θ 1

h − �θ 0
h ‖�L2

1

)
,

Cs := C3
(‖�θ 1

h ‖�L2
1
+ ‖2�θ 1

h − �θ 0
h ‖�L2

1
+ ‖�s 1h ‖�L2

1
+ ‖2�s 1h − �s 0h ‖�L2

1
+ nδtC

2
d

)
.

We proceed by induction on n ≥ 2. We define the mapping

Φ : Vh × Qh × �Mh,0 × �Sh → Vh × Qh × �Mh,0 × �Sh

using the relation

(
Φ(un+1

h , pn+1
h , �θ n+1

h , �s n+1
h ), (vh, qh, �ψh, �lh)

)
1,Ωa

= 1

2δt

(
3un+1

h − 4unh + un−1
h , vh

)
1,Ωa

+ ah1
(
un+1
h , vh

) + ch1
(
un+1
h ;un+1

h , vh
)

+ b(vh, p
n+1
h ) − b(un+1

h , qh) − d1
(�θ n+1

h , vh
)
1,Ωa

+ 1

2δt

(
3�θ n+1

h − 4�θ n
h + �θ n−1

h , �ψh
)
1,Ωa

+ a2
(�θ n+1

h , �ψh
) + ch2

(
un+1
h ; �θ n+1

h , �ψh
) + d2

(�s n+1
h ; �θ n+1

h , �ψh
)

+ 1

2δt

(
3�s n+1

h − 4�s nh + �s n−1
h , �lh

)
1,Ωa

+ d3
(�θ n+1

h ; �s n+1
h , �lh

) − d4
(�θ n+1

h , �lh
)
.
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Note this map is well-defined and continuous onVh ×Qh × �Mh,0 × �Sh . On the other
hand, if we take

(vh, qh, �ψh, �lh) = (un+1
h , pn+1

h , �θ n+1
h , �s n+1

h ),

and employ (2.5), (2.8), (2.10), (2.15), (4.7), (4.8), (4.5a) and (4.6), we obtain

(
Φ(un+1

h , pn+1
h , �θ n+1

h , �s n+1
h ), (un+1

h , pn+1
h , �θ n+1

h , �s n+1
h )

)
1,Ωa

≥ − 1

2δt
‖4unh − un−1

h ‖L2
1
‖un+1

h ‖L2
1
+ α̃a‖un+1

h ‖2T1h − CF‖θn+1
h ‖�L2

1
‖un+1

h ‖L2
1

− 1

2δt
‖4�θ n

h − �θ n−1
h ‖�L2

1
‖�θ n+1

h ‖�L2
1
+ α2‖�θ n+1

h ‖2�H1
1

+ f1‖�θ n+1
h ‖�L2

1

− 1

2δt
‖4�s nh − �s n+1

h ‖�L2
1
‖�s n+1

h ‖�L2
1
+ g1‖�s n+1

h ‖�L2
1
− Cd‖�θ n+1

h ‖�L2
1
.

Next, using (4.11) and Theorem 4.1, we deduce that

(
Φ(un+1

h , pn+1
h , �θ n+1

h , �s n+1
h ), (un+1

h , pn+1
h , �θ n+1

h , �s n+1
h )

)
1,Ωa

≥ α̃a‖un+1
h ‖2

L2
1
+ g1‖�s n+1

h ‖2�L2
1
+ α2‖�θ n+1

h ‖2�L2
1
+ f1‖�θ n+1

h ‖2�L2
1
− 5

2δt
Cu‖un+1

h ‖L2
1(Ωa)

− CFC
1/2
θ Cp‖un+1

h ‖L2
1
− 5

2δt
Cθ‖�θ n+1

h ‖�L2
1
− Cd‖�θ n+1

h ‖�L2
1
− 5

2δt
Cs‖�s n+1

h ‖�L2
1
.

Then, setting

CR = min {α̃a, g1, f1, α2} , Cr = 2max

{
5

2δt
Cu,CFC

1/2
θ Cp,

5

2δt
Cθ ,Cd ,

5

2δt
Cs

}
,

we may apply the inequality a+ b ≤ √
2(a2 + b2)1/2, valid for all a, b ∈ R, to obtain

(
Φ(un+1

h , pn+1
h , �θ n+1

h , �s n+1
h ), (un+1

h , pn+1
h , �θ n+1

h , �s n+1
h )

)
1,Ωa

≥ CR
(‖un+1

h ‖2
L2
1
+ ‖�θ n+1

h ‖2�L2
1
+ ‖�s n+1

h ‖2�L2
1

)

− Cr
(‖un+1

h ‖2
L2
1
+ ‖�θ n+1

h ‖2�L2
1
+ ‖�s n+1

h ‖2�L2
1

)1/2
.

Hence, the right-hand side is nonnegative on a sphere of radius r := Cr/CR . Conse-
quently, by Theorem 4.2, there exists a solution to the fixed-point problem

Φ
(
un+1
h , pn+1

h , �θ n+1
h , �s n+1

h

) = 0.

��
The uniqueness of discrete solution is now proved following the ideas in [53,55],

that is, exploiting the discrete summation by parts and Gronwall’s Lemma, together
with coercivity and continuity properties of the variational forms.
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Theorem 4.4 (Uniqueness of discrete solution) Problem (4.3) has a unique solution
(unh, p

n
h ,

�θ n
h , �s nh ) in Vh × Qh × Mh,0 × Sh for a sufficiently small time step δt and

αa ≥ C̃cCu + 2C̃, min{α̃a, g1} ≥ C2
θ

(
C̃ + | f |Lip

) + 2|g|2Lip. (4.15)

Proof Let (u(i)n
h , p(i)n

h , �θ (i)n
h , �s (i)n

h ), i = 1, 2, be two solutions of problem (4.3) and
define

(
Un
h, P

n
h , �Θ n

h , �S n
h

) :=
(
u(1)n
h − u(2)n

h , p(1)n
h − p(2)n

h , �θ (1)n
h − �θ (2)n

h , �s (1)n
h − �s (2)n

h

)
.

First we take (vh, qh) = (Un+1
h , Pn+1

h ) and multiply the first two equations of (4.3)

by 4δt . Then, adding±ch1 (u
(1)n+1
h ,u(2)n+1

h ,Un+1
h ), using relation (4.10) and properties

(4.6), (4.7), (4.9) and (2.12d) we conclude that

‖Un+1
h ‖2

L2
1
+ ‖2Un+1

h − Un
h‖2L2

1
+ ‖ΛUn

h‖2L2
1
+ 4δt α̃a‖Un+1

h ‖2T1h
≤ 4δtCF‖ �Θ n+1

h ‖�L2
1
‖Un+1

h ‖L2
1
+ 4δt C̃c‖Un+1

h ‖2T1h‖u
(2)n+1
h ‖L2

1

+ ‖Un
h‖2L2

1
+ ‖2Un

h − Un−1
h ‖2

L2
1
.

Summing over n, remarking thatU0
h = U1

h = 0 and applyingTheorem4.1 andYoung’s
inequality, we get

‖Un+1
h ‖2

L2
1
+ ‖2Un+1

h − Un
h‖2L2

1
+

n∑

j=1

‖ΛU j
h‖2L2

1
+ 4α̃a

n∑

j=1

δt‖U j+1
h ‖2T1h

≤ 2CF

n∑

j=1

δt‖ �Θ j+1
h ‖2�L2

1
+ 2CF

n∑

j=1

δt‖U j+1
h ‖L2

1
+ 4CuC̃c

n∑

j=1

δt‖U j+1
h ‖2T1h .

(4.16)

Similarly, we multiply the third equation of (4.3) by 4δt and take �ψh = �Θ n+1
h .

Adding and subtracting ch2 (u
(1)n+1
h ; �θ (2)n+1

h , �Θ n+1
h ) and d2(�s (1)n+1

h ; �θ (2)n+1
h , �Θ n+1

h )

and employing properties (2.7), (2.15), (4.5b) and (4.8), we can assert that

‖ �Θ n+1
h ‖2�L2

1
+ ‖2 �Θ n+1

h − �Θ n
h ‖2�L2

1
+ ‖Λ �Θ n

h ‖2�L2
1
+ 4δt α̂a | �Θ n+1

h |2�H1
1

+ 4δt g1‖ �Θ n+1
h ‖2�L2

1

≤ 4C̃δt‖Un+1
h ‖T1h‖�θ (2)n+1

h ‖ �H1
1
‖ �Θ n+1

h ‖ �H1
1

+ 4δt | f |Lip‖�S n+1
h ‖�L2

1
‖�θ (2)n+1

h ‖ �H1
1
‖ �Θ n+1

h ‖ �H1
1

+ ‖ �Θ n
h ‖2�L2

1
+ ‖2 �Θ n

h − �Θ n−1
h ‖2�L2

1
.

Again, we sum over n remarking that �S 0
h = �S 1

h = 0, and then apply Theorem 4.1
together with Young’s inequality to obtain

‖ �Θ n+1
h ‖2�L2

1
+ ‖2 �Θ n+1

h − �Θ n
h ‖2�L2

1
+

n∑

j=1

‖Λ �Θ j
h ‖2�L2

1
+ 4min{α̂a, g1}

n∑

j=1

δt‖ �Θ j+1
h ‖2�H1

1
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≤ 2C̃
n∑

j=1

δt‖U j+1
h ‖2T1h + 2δt

n∑

j=1

C2
θ ‖ �Θ j+1

h ‖2�H1
1

+ 2δt | f |Lip
n∑

j=1

(‖�S j+1
h ‖2�L2

1
+ C2

θ ‖ �Θ j+1
h ‖2�H1

1

)
.

In the same manner, from the fourth equation of (4.3), choosing �lh = �S n+1
h , mul-

tiplying by 4δt , using properties (2.8) and (2.9), summing over n, and employing
Theorem 4.1 and Young’s inequality we conclude that

‖�S n+1
h ‖2�L2

1
+ ‖2�S n+1

h − �S n
h ‖2�L2

1
+

n∑

j=1

‖Λ�S j
h ‖2�L2

1
+ 4g1

n∑

j=1

δt‖�S j+1
h ‖2�L2

1

≤ 2|g|Lip
n∑

j=1

δt‖ �Θ j+1
h ‖2�H1

1
+ 2C2

s

n∑

j=1

δt‖�S j+1
h ‖2�L2

1

+ 2δt |g|Lip
n∑

j=1

(‖ �Θ j+1
h ‖2�L2

1
+ ‖�S j+1

h ‖2�H1
1

)
.

(4.17)

We then add inequalities (4.16) and (4.17) to obtain

‖Un+1
h ‖2

L2
1
+ ‖2Un+1

h − Un
h‖2L2

1
+

n∑

j=1

‖ΛU j
h‖2L2

1

+ 4(α̃a − C̃cCu − 2C̃)

n∑

j=1

δt‖U j+1
h ‖2T1h + ‖ �Θ n+1

h ‖2�L2
1
+ ‖2 �Θ n+1

h − �Θ n
h ‖2�L2

1

+
n∑

j=1

‖Λ �Θ j
h ‖2�L2

1
+ 4

(
min{α̂a, g1} − C2

θ (C̃ + | f |Lip) − 2|g|2Lip
) n∑

j=1

δt‖ �Θ j+1
h ‖2�H1

1

+ ‖�S n+1
h ‖2�L2

1
+ ‖2�S n+1

h − �S n
h ‖2�L2

1
+

n∑

j=1

‖Λ�S j
h ‖2�L2

1
+ 4g1

n∑

j=1

δt‖�S j+1
h ‖2�L2

1

≤ Ck

n∑

j=1

δt

(
‖U j+1

h ‖2
L2
1
+ ‖ �Θ j+1

h ‖2�L2
1
+ ‖�S j+1

h ‖2�L2
1

)
,

(4.18)

where Ck depends on h and is independent of δt . For a sufficiently small time step δt ,
the term Ckδt (‖Un+1

h ‖2
L2
1
+ ‖ �Θ n+1

h ‖2�L2
1
+ ‖�S n+1

h ‖2�L2
1
) (that is, the summand for j = n

on the right-hand side of (4.18)) can be absorbed by the terms on the left-hand side of
the inequality. Taking into account (4.15) and applying the discrete Gronwall’s lemma,
we obtain Un+1

h = 0, �Θ n+1
h = 0 and �S n+1

h = 0, and therefore the inf-sup condition
(4.1) implies Pn+1

h = 0 and the uniqueness of the solution. ��
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5 Error analysis

The following development follows the structure adopted in [2]. We start by recalling
some interpolation results from [11] and [30].

Lemma 5.1 Let Lh be the Lagrange interpolation operator Lh : C0(Ωa) → Vh,
where Vh denotes the space of Lagrange finite elements of order k. We also con-
sider its vectorial counterpart, keeping the same notation. Then for all l and for all p
such that 1 ≤ l ≤ k + 1, 1 ≤ p ≤ +∞, l > 3

p or p = 1, l = 3 there exists a constant

C∗ > 0 independent of h, such that for all v∈ Wl,p
1 (Ωa), the following inequalities

hold;

‖v − Lh v‖L p
1 (Ωa)

≤ C∗hl |v|
Wl,p

1 (Ωa)
, |v − Lh v|L p

1 (Ωa)
≤ C∗hl−1|v|

Wl,p
1 (Ωa)

.

Lemma 5.2 Let Πh be the BDMaxi
k interpolation operator Πh : C0(Ωa) → Hk

h.

Then for all v ∈ Hk+1
1 (Ωa), the following inequalities hold:

‖v − Πh v‖L2
1(Ωa)

≤ C∗hk+1|v|Hk+1
1 (Ωa)

, ‖v − Πh v‖T1h ≤ C∗hk‖v‖Hk+1
1 (Ωa)

.

Proof Thefirst property results from [30,CorollaryA.7]. The proof of the second result
comes much in the same way as in the Cartesian case, by making use of the equivalent
weighted inverse inequalities and weighted approximation properties proved in [11],
see [31, Section 3.1] and [9]. ��
Lemma 5.3 Let Ih denote the modified Clément interpolation operator

Ih : H1
0,1(Ωa) → Mk

h,

and the same notation is kept for its vectorial counterpart. Then for all l and for all p
such that 1 ≤ l ≤ k + 1, 1 ≤ p ≤ +∞ there exists a constant C∗ > 0 independently
of h such that for any function v ∈ Wl,p

1 (Ωa),

‖v − Ih v‖L p
1 (Ωa)

≤ C∗hl |v|
Wl,p

1 (Ωa)
.

Lemma 5.4 Assume that u ∈ H2
1 and �θ ∈ �H1

1 . Then

(
∂tu(t), v

)
1,Ωa

+ ah1
(
u(t), v

) + ch1
(
u(t);u(t), v

) + b(v, p) − d1
(�θ(t), v

) = 0,
(
∂t �θ(t), �ψ)

1,Ωa
+ a2

(�θ(t), �ψ) + ch2
(�u(t); �θ(t), �ψ) + d2

(�s(t); �θ(t), �ψ) = 0

for all (v, �ψ) ∈ Vh × Mh,0. A similar result also holds for the fourth equation in
(4.2).

Proof Since we assume u ∈ H2
1(Ωa), integration by parts yields the required result.

See also [9]. ��
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Now we decompose the errors as follows:

u − uh = Eu + ξu = (u − Πh u) + (Πh u − uh),

p − ph = Ep + ξp = (p − Lh p) + (Lh p − ph),

�θ − �θh = E �θ + ξ�θ = (�θ − Ih �θ) + (Ih �θ − �θh),
�s − �sh = E�s + ξ�s = (�s − Lh �s) + (Lh �s − �sh).

Assuming that u0h = Πh u(0), �θ0h = Ih �θ(0) and �s0h = Lh �s(0), we will use also the
notation En

u = u(tn) − Πh u(tn) and ξnu = Πh u(tn) − unh , and the corresponding
notation for other variables. Since for the first time iteration of system (4.3) we adopt
a backward Euler scheme, we require error estimates for this step.

Theorem 5.1 Let us assume that

u ∈ L∞(0, T ; H3
1 ) ∩ L∞(0, T ;V1

1,�), u′ ∈ L∞(0, T ;H1
1),

u′′ ∈ L∞(0, T ;L2
1), p ∈ L∞(0, T ; H2

1 ), �θ ∈ L∞(0, T ; �H3
1,�),

�θ ′ ∈ L∞(0, T ; �H2
1 ), �θ ′′ ∈ L∞(0, T ; �L2

1), �s ∈ L∞(0, T ; �H3
1 ),

�s ′ ∈ L∞(0, T ; �H2
1 ), �s ′′ ∈ L∞(0, T ; �H1

1 ),

and also that ‖u‖L∞(0,T ;H1
1)

< M for a sufficiently small constant M > 0 (a precise

condition for M, can be found in Theorem 5.2). Then there exist positive constants C1
u ,

C1
θ , C

1
s , independently of h and δt , such that

‖ξ1u‖2
L2
1
+ 1

2
δt α̃a‖ξu‖2T1h ≤ C1

u(h
2k + δ4t ),

1

4
‖ξ1�θ ‖2�L2

1
+ 1

2
δt α̂a‖ξ�θ‖2�H1

1
≤ C1

θ (h2k + δ4t ),

1

2
‖ξ1�s ‖2�L2

1
+ 1

2
δt g1‖ξ1�s ‖2�L2

1
≤ C1

s (h
2k + δ4t ).

Proof Since these bounds are similar to those used in Theorems 5.2–5.4, we post-
pone some details until the proof of those theorems. First, based on the regularity
assumptions for u, for all x there exists γ ∈ (0, 1) such that

u(0) = u(δt ) − δtu′(δt ) + 1

2
δ2t u

′′(δtγ ),

where u satisfies the error inequality

‖ξ1u‖2
L2
1
+ δt α̃a‖ξ1u‖2T1h

≤ −(
Πh u(δt ) − u(δt ) − (u0h − u(0)), ξ1u

)
1,Ωa

+ δt b
(
Lh p(δt ) − p(δt ), ξ1u

)

+δt ah1
(
Πh u(δt ), ξ

1
u
) − δt

(
ch1 (u

1
h;u1h, ξ1u ) − ch1 (u(δt ),u(δt ), ξ

1
u )

)

−δt d1
(�θ1h − �θ(δt ), ξ

1
u
) − δ2t

2

(
u′′(δtγ ), ξ1u

)
,
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which follows by choosing ξ1u as test function in the first equation of Lemma 5.4 and
system (4.2), performing an Euler scheme step, subtracting both equations and adding
±ah1 (Πh u(δt ), ξ

1
u ).

Now by applying the error approximation results from Lemmas 5.1–5.3, Young’s
inequality and the stability properties from Sect. 4.3, we get

‖ξ1u‖2
L2
1
+ 1

4
δt α̃a‖ξ1u‖2T1h

≤ Ch2kδt
(‖u(δt )‖2Hk+1

1
+ ‖u(0)‖2

Hk+1
1

+ ‖�θ(δt )‖2Hk+1
1

+ ‖p(δt )‖2Hk
1

)

+ Cδ4t ‖u′′‖2
L∞(0,δt ;L2

1)
+ 48C2

Fδt‖ξ1�θ ‖2�L2
1
.

(5.1)

Next we follow the same steps to obtain for �θ

1

2
‖ξ1�θ ‖2�L2

1
+ 1

2
δt α̂a‖ξ1�θ ‖2�H1

1

≤ Cδt h
2k(‖u(δt )‖2Hk+1

1
+ ‖�θ(δt )‖2�Hk+1

1
+ ‖�θ(0)‖2�Hk+1

1

)

+ Cδ4t ‖T ′′‖2
L∞(0,δt ;L2

1)
+ 3C̃C∗δt

2α̂a
‖ξu‖2T1h + 5δt | f |2LipC∗

α̂a
‖�θ(δt )‖2‖ξ1�s ‖2�L2

1
,

(5.2)

and analogously for �s

1

2
‖ξ�s‖2�L2

1
+ 1

2
δt g1‖ξ�s‖2�L2

1

≤ Ch2kδ2t
(‖�s(δt )‖2�Hk

1
+ ‖�s(0)‖2�Hk

1
+ ‖�θ(δt )‖2�Hk+1

1

)

+ Cδ4t ‖�s′′‖2
L∞(0,δt ; �L2

1)
+ 5|g|2Lipδt

2g1

(
1 + ‖�s(δt )‖2�H1

1

)‖ξ�θ‖2�H1
1
.

(5.3)

In this way, from (5.1) and (5.3) we obtain that

3C̃C∗ε2δt
2α̂a

‖ξu‖2T1h ≤ C(h2k + δ4t ) + 144C̃C∗C2
Fδt

α̃a α̂
‖ξ1�θ ‖2�L2

1
,

5δt | f |2LipC∗

α̂a
‖�θ(δt )‖2‖ξ1�s ‖2�L2

1

≤ C(h2k + δ4t ) + 25δt | f |2LipC∗|g|2Lip
α̂ag21

(
1 + ‖�s(δt )‖2�H1

1

)‖�θ(δt )‖2‖ξ�θ‖2�L2
1
.

We substitute these inequalities into (5.2) and consider δt sufficiently small such that
the terms multiplying ‖ξ�θ‖2�L2

1
can be absorbed into the left-hand side of the inequality

123



Axisymmetric Navier–Stokes–Brinkman-transport equations… 459

to get

1

4
‖ξ1�θ ‖2�L2

1
+ 1

2
δt α̂a‖ξ�θ‖2�H1

1
≤ C1

θ (h2k + δ4t ). (5.4)

Finally we deduce the first and third desired estimates by directly substituting (5.4)
on (5.1) and (5.3). ��
Theorem 5.2 Let (u, p, �θ, �s) be the solution of (2.2), (2.3) under the assumptions of
Sect. 3, and (uh, ph, �θh, �sh) be the solution of (4.3). Suppose that

u ∈ L∞(0, T ;Hk+1
1 ) ∩ L∞(0, T ;V1

1,�),
�θ ∈ L∞(0, T ; �Hk+1

1,� ), u′ ∈ L∞(0, T ;Hk
1), u(3) ∈ L2(0, T ;L2

1)

and ‖u‖L∞(0,T ;H1
1)

< M for a sufficiently small constant M > 0. Then there exist
positive constants C, γ1 ≥ 0 independent of h and δt such that for all m + 1 ≤ N,

‖ξm+1
u ‖2

L2
1
+ ‖2ξm+1

u − ξmu ‖2
L2
1
+

m∑

n=1

‖Λξnu ‖2
L2
1
+

m∑

n=1

δt α̃a‖ξn+1
u ‖2T1h

≤ C(δ4t + h2k) +
m∑

n=1

γ1δt‖ξn+1
�θ ‖2�L2

1
.

Proof We choose as test function vh = ξn+1
u in the first equation of (4.3) and insert

the terms

± 1

2δt

(
3u(tn+1) − 4u(tn) + u(tn−1), ξ

n+1
u

)
,

± 1

2δt

(
3Πh u(tn+1) − 4Πh u(tn) + Πh u(tn−1), ξ

n+1
u

)
, ±ah1

(
Πh u(tn+1), ξ

n+1
u

)
.

Hence we get

− 1

2δt

(
3ξn+1

u − 4ξnu + ξn−1
u , ξn+1

u
)
1,Ωa

− 1

2δt

(
3En+1

u − 4En
u + En−1

u , ξn+1
u

)
1,Ωa

+ 1

2δt

(
3u(tn+1) − 4u(tn) + u(tn−1), ξ

n+1
u

)
1,Ωa

− ah1 (ξn+1
u , ξn+1

u )

+ ah1 (Πh u(tn+1), ξ
n+1
u ) + ch1 (u

n+1
h ,un+1

h , ξn+1
u ) + b(ξn+1

u , pn+1
h )

= d1(�θn+1
h , ξn+1

u ).

(5.5)

Considering the first equation in Lemma 5.4 at t = tn+1 with v = ξn+1
u , and after

inserting the term

± 1

2δt

(
3u(tn+1) − 4u(tn) + u(tn−1), ξ

n+1
u

)
1,Ωa

,
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we readily deduce the identity

1

2δt

(
3u(tn+1) − 4u(tn) + u(tn−1), ξ

n+1
u

)
1,Ωa

+ ah1
(
u(tn), ξ

n+1
u

)

+ ch1
(
u(tn+1),u(tn+1), ξ

n+1
u

) + b(ξn+1
u , p(tn+1))

= d1(�θ(tn+1), ξ
n+1
u )

−
(
u′(tn+1) − 1

2δt

(
3u(tn+1) − 4u(tn) + u(tn−1)

)
, ξn+1

u

)

1,Ωa

.

(5.6)

We can then subtract (5.6) from (5.5) and multiply both sides by 4δt to obtain an
identity I1 + I2 + · · · + I8 = 0, where

I1 := 2
(
3ξn+1

u − 4ξnu + ξn−1
u , ξn+1

u
)
, I2 := 4δt a

h
1 (ξn+1

u , ξn+1
u )1,Ωa ,

I3 := 4δt

(
u′(tn+1) − 1

2δt

(
3u(tn+1) − 4u(tn) + u(tn−1)

)
, ξn+1

u

)

1,Ωa

,

I4 := 2
(
3En+1

u − 4En
u + En−1

u , ξn+1
u

)
, I5 := −4δt d1(�θn+1

h − �θ(tn+1), ξ
n+1
u )1,Ωa ,

I6 := 4δt a
h
1

(
En+1
u , ξn+1

u
)
,

I7 := 4δt
(
ch1 (u

n+1
h ,un+1

h , ξn+1
u ) − ch1

(
u(tn+1),u(tn+1), ξ

n+1
u

))
,

I8 := 4δt b(ξ
n+1
u , pn+1

h − p(tn+1)).

For the first term, using (4.10) we can assert that

I1 = ‖ξn+1
u ‖2

L2
1
+ ‖2ξn+1

u − ξnu ‖2
L2
1
+ ‖Λξn+1

u ‖2
L2
1
− ‖ξnu ‖2

L2
1
− ‖2ξnu − ξn−1

u ‖2
L2
1
.

Using the ellipticity stated in (4.6), we readily get

I2 ≥ 4δt α̃a‖ξn+1
u ‖2T1h .

By using Taylor’s formula with integral remainder we have

|∗|u′(tn+1) − 3u(tn+1) − 4u(tn) + u(tn−1)

2δt
= δ

3/2
t

2
√
3
‖u(3)‖L2(tn−1,tn+1;L2

1)
,

then by combining Cauchy-Schwarz and Young’s inequality, we obtain the bound

|I3| ≤ δ4t

24ε1
‖u(3)‖2

L2(tn−1,tn+1;L2
1)

+ δtε1

2
‖ξn+1

u ‖2T1h .

Now we insert ±4δt E ′
u(tn+1) into the fourth term, which leads to
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I4 = −4δt (E
′
u(tn+1), ξ

n+1
u )1,Ωa

+
(
E ′
u(tn+1) − 3En+1

u − 4En
u + En−1

u

2δt
, ξn+1

u

)

1,Ωa

.

Proceeding as before and using Lemma 5.2 on the first term of I4, we get

|I4| ≤ C

2ε2
h2k‖u′‖2

L∞(0,T ;Hk
1)

+ δtε2

2
‖ξn+1

u ‖2T1h
+ δ4t C

2ε3
‖u(3)‖2

L2(0,T ;L2
1)

+ δtε3

2
‖ξn+1

u ‖2T1h .

Now by (4.5a), appealing to Lemma 5.3, and inserting±4δt d1(Ih �θn+1, ξn+1
u ), we are

left with

|I5| ≤ 4δtCF‖ξn+1
�θ + En+1

�θ ‖�L2
1
‖ξn+1

u ‖T1h
≤ 16C2

Fδt

2ε4

(
Ch2k‖�θ‖2

L∞(0,T ; �Hk+1
1 )

+ ‖ξn+1
�θ ‖2�L2

1

)
+ δtε4

2
‖ξn+1

u ‖2T1h .

And again by Lemmas 5.2 and 4.1 we immediately have

|I6| ≤ 4δt C̃a‖En+1
u ‖T1h‖ξ

n+1
u ‖T1h ≤ 2C̃2

aδt h
2k

ε5
‖u‖2

L∞(0,T ;Hk+1
1 )

+ δtε5

2
‖ξn+1

u ‖2T1h .

Adding and subtracting suitable terms within I7
yields

I7 = Ĩ7 − 4δtch1
(
un+1
h , ξn+1

u , ξn+1
u

)
,

where we define

Ĩ7 := − 4δt
(
ch1 (u(tn+1),Πh u(tn+1), ξ

n+1
u ) − ch1 (Πh u(tn+1),Πh u(tn+1), ξ

n+1
u )

+ ch1 (Πh u(tn+1),Πh u(tn+1), ξ
n+1
u ) − ch1 (Πh u(tn+1),u(tn+1), ξ

n+1
u

+ ch1 (Πh u(tn+1),u(tn+1), ξ
n+1
u ) − ch1 (u(tn+1)u(tn+1), ξ

n+1
u )

)
.

The bound (4.9) and Lemma 5.2 imply that

| Ĩ7| ≤ 4δt C̃c
(‖ξn+1

u ‖2T1h‖Πh u(tn+1)‖T1h + ‖Πh u(tn+1)‖T1h‖E
n+1
u ‖T1h‖ξ

n+1
u ‖T1h

+ ‖En+1
u ‖T1h‖u(tn+1)‖T1h‖ξ

n+1
u ‖T1h

)

≤ 4δt

(
C̃cC

∗‖ξn+1
u ‖2T1h‖u‖2

L∞(0,T ;H1
1)

+ h2kCC̃2
c

2ε6
‖u‖2

L∞(0,T ;H1
1)

‖u‖2
L∞(0,T ;Hk+1

1 )
+ ε6

2
‖ξn+1

u ‖2T1h
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+ Ch2kC̃2
c

2ε7
‖u‖2

L∞(0,T ;Hk+1
1 )

‖u‖2
L∞(0,T ;H1

1)
+ ε7

2
‖ξn+1

u ‖2T1h
)

≤ 4δt

(
C∗C̃cM‖ξn+1

u ‖2T1h + h2kC

2ε6
‖u‖2

L∞(0,T ;H1
1)

‖u‖2
L∞(0,T ;Hk+1

1 )

+ ε6

2
‖ξn+1

u ‖2T1h + Ch2k

2ε7
‖u‖2

L∞(0,T ;Hk+1
1 )

‖u‖2
L∞(0,T ;H1

1)

+ ε7

2
‖ξn+1

u ‖2T1h
)

,

where C∗ is a positive constant coming from Lemma 5.2. Finally, using Lemmas 4.1
and 5.1 we obtain

|I8| ≤ 8δtCC̃2
bh

2k

ε8
‖p‖2L∞(0,T ;Hk (Ωa))

+ δtε8

2
‖ξn+1

u ‖2T1h .

Hence, by choosing εi = α̃a/3 for i = {1, 2, 3, 4, 5, 8}, ε6 = ε7 = 7α̃a/16, collecting
the above estimates, and summing over 1 ≤ n ≤ m for all m + 1 ≤ N ; we get

‖ξm+1
u ‖2

L2
1
+ ‖2ξm+1

u − ξmu ‖2
L2
1
+

m∑

n=1

‖Λξnu ‖2
L2
1
− 3‖ξ1u‖2

L2
1

+
m∑

n=1

δt α̃a‖ξn+1
u ‖2T1h ≤ C(δ4t + h2k) + 24C2

Fδt

α̃a

m∑

n=1

‖ξn+1
�θ ‖2�L2

1
.

where 4C̃cC∗M ≤ α̃a/4 and γ1 = 24C2
F/α̃a . Finally, using Theorem 5.1, we get the

desired result. ��
Theorem 5.3 Let (u, p, �θ, �s) be the solution of (2.2), (2.3) under the assumptions of
Sect. 3 and (uh, ph, �θh, �sh) be the solution of (4.3). If

u ∈ L∞(0, T ;Hk+1
1 ) ∩ L∞(0, T ;V1

1,�), �θ ∈ L∞(0, T ; �Hk+1
1,� ),

�θ ′ ∈ L∞(0, T ; �Hk
1 ), �θ (3) ∈ L2(0, T ; �L2

1), �s ∈ L∞(0, T ; �Hk
1 ),

then there exist constants C, γs, γu > 0, independent of h and δt , such that for all
m + 1 ≤ N

‖ξm+1
�θ ‖2�L2

1
+ ‖2ξm+1

�θ − ξm�θ ‖2�L2
1
+

m∑

n=1

‖Λξn+1
�θ ‖2�L2

1
+

m∑

n=1

δt α̂a‖ξn+1
�θ ‖2�H1

1

≤ C(δ4t + h2k) +
m∑

n=1

γsδt‖ξn+1
�s ‖2�L2

1
+

m∑

n=1

γuδt‖ξn+1
u ‖2T1h .
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Proof Proceeding similarly as in the proof of Theorem 5.2, we choose as test function
�ψh = ξn+1

�θ in the second equation of (4.3) and insert suitable additional terms to
obtain the following identity, which is analogous to (5.5):

− 1

2δt

(
3ξn+1

�θ − 4ξn�θ + ξn−1
�θ , ξn+1

�θ
)
1,Ωa

− 1

2δt

(
3En+1

�θ − 4En
�θ + En−1

�θ , ξn+1
�θ

)
1,Ωa

+ 1

2δt

(
3�θ(tn+1) − 4�θ(tn) + �θ(tn−1), ξ

n+1
�θ

)
1,Ωa

− ah2 (ξn+1
�θ , ξn+1

�θ ) + ah2 (Ih �θ(tn+1), ξ
n+1
�θ ) + ch2 (u

n+1
h , �θ n+1

h , ξn+1
�θ )

= −d2(�s n+1
h ; �θ n+1

h , ξn+1
�θ ). (5.7)

Starting from the second equation in Lemma 5.4, focusing on t = tn+1, using �ψ =
ξn+1
�θ and proceeding as in the derivation of (5.6), we obtain

1

2δt

(
3�θ(tn+1) − 4�θ(tn) + �θ(tn−1), ξ

n+1
�θ

)
1,Ωa

+ ah2
(�θ(tn+1), ξ

n+1
�θ

)

+ ch2
(
u(tn+1), �θ(tn+1), ξ

n+1
�θ

)

= d2
(�s(tn+1); �θ(tn+1), ξ

n+1
�θ

)

−
(

�θ ′(tn+1) − 3�θ(tn+1) − 4�θ(tn) + �θ(tn−1)

2δt
, ξn+1

�θ

)

1,Ωa

.

(5.8)

Next we proceed to subtract (5.8) from (5.7), and to multiply both sides by 4δt . This
leads to an identity Î1 + Î2 + · · · + Î7 = 0, where

Î1 := 2
(
3ξn+1

�θ − 4ξn�θ + ξn−1
�θ , ξn+1

�θ
)
1,Ωa

, Î2 := 4δt a
h
2

(
ξn+1
�θ , ξn+1

�θ
)
,

Î3 := 4δt

(
�θ ′(tn+1) − 3�θ(tn+1) − 4�θ(tn) + �θ(tn−1)

2δt
, ξn+1

�θ

)

1,Ωa

,

Î4 := 2
(
3En+1

�θ − 4En
�θ + En−1

�θ , ξn+1
�θ

)
1,Ωa

, Î5 := 4δt a
h
2

(
En+1

�θ , ξn+1
�θ

)
,

Î6 := 4δt
(
ch2

(
un+1
h , �θ n+1

h , ξn+1
u

) − ch1
(
u(tn+1), �θ(tn+1), ξ

n+1
u

))
,

Î7 := 4δt
(
d2

(�s n+1
h , �θ n+1

h , ξn+1
�θ

) − d2
(�s(tn+1); �θ(tn+1), ξ

n+1
�θ

))
.

For the first, second, and third terms, we use (4.10), (2.15), and Taylor expansion
together with Young’s inequality, respectively, to obtain

Î1 = ‖ξn+1
�θ ‖2�L2

1
+ ‖2ξn+1

�θ − ξn�θ ‖2�L2
1
+ ‖Λξn+1

�θ ‖2�L2
1
− ‖ξn�θ ‖2�L2

1
− ‖2ξn�θ − ξn−1

�θ ‖2�L2
1
,

Î2 ≥ 4δt α̂a‖ξn+1
�θ ‖2�H1

1
,

| Î3| ≤ δ4t

24ε1
‖�θ (3)‖2

L2(tn−1,tn+1; �L2
1)

+ δtε1

2
‖ξn+1

�θ ‖2�H1
1
.
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Inserting ±4δt E ′
�θ (tn+1) into Î4 and using Lemma 5.3 leads to the bound

| Î4| ≤ C

2ε2
h2k‖�θ ′‖2

L∞(0,T ; �Hk
1 )

+ δtε2

2
‖ξn+1

�θ ‖2�H1
1

+ δ4t C

2ε3
‖�θ (3)‖2

L2(0,T ; �L2
1)

+ δtε3

2
‖ξn+1

�θ ‖2�H1
1
.

Employing again Lemma 5.3 in combination with (2.12b) we have

| Î5| ≤ 2Ĉ2
aδt h

2k

ε4
‖�θ‖2

L∞(0,T ;Hk+1
1 )

+ δtε4

2
‖ξn+1

�θ ‖2�H1
1
.

In order to derive a bound for Î6 we proceed as for the bound on I7 in the proof of
Theorem 5.2; namely adding and subtracting suitable terms in the definition of Î6,
defining Ĩ6 in this case by

Î6 = Ĩ6 + 4δt c
h
2

(
un+1
h , ξn+1

�θ , ξn+1
�θ

)
,

and applying (4.8), (4.5b) and Lemma 5.3 to the result, we get

| Ĩ6| ≤ 4δt

(
C̃2C∗

2ε5
‖ξn+1

u ‖2T1h‖�θ‖2
L∞(0,T ; �H1

1 )
+ 1

2ε5
‖ξ�θ‖2�H1

1

+ h2kCC̃2

2ε6
‖u‖2

L∞(0,T ;H1
1)

‖�θ‖2
L∞(0,T ; �Hk+1

1 )
+ ε6

2
‖ξn+1

�θ ‖2�H1
1

+ Ch2kC̃2

2ε7
‖u‖2

L∞(0,T ;Hk+1
1 )

‖�θ‖2
L∞(0,T ; �H1

1 )
+ ε7

2
‖ξn+1

�θ ‖2�H1
1

)
.

Next we add and subtract suitable terms in Î7 to obtain

Î7 = −4δt
(
d2

(�s n+1
h , Ih �θ(tn+1), ξ

n+1
�θ

) − d2
(
Lh �s(tn+1), Ih �θ(tn+1), ξ

n+1
�θ

)

+ d2
(
Lh �s(tn+1), Ih �θ(tn+1), ξ

n+1
�θ

) − d2
(
Lh �s(tn+1), �θ(tn+1), ξ

n+1
�θ

)

+ d2
(
Lh �s(tn+1), �θ(tn+1), ξ

n+1
�θ

) − d2
(�s(tn+1), �θ(tn+1), ξ

n+1
�θ

)

+ d2
(�s n+1

h , ξn+1
�θ , ξn+1

�θ
))

.

After passing the last expression to the left-hand side and using (2.5), we can combine
(2.6) and (2.7), to infer that the remaining terms in Î7 (which we now denote as Î ∗

7 )
are bounded as follows:
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| Î ∗
7 | ≤ 8| f |2Lipδt

ε8
‖ξn+1

�s ‖2�L2
1
‖�θ‖2

L∞(0,T ; �H1
1 )

+ ε8δt

2
‖ξ�θ‖2�H1

1

+ 8 f 22 δt h2k

ε9
‖�θ‖2

L∞(0,T ; �Hk+1
1 )

+ δtε9

2
‖ξ�θ‖2�H1

1

+ 8| f |2Lipδt h2k
ε10

‖�s‖2
L∞(0,T ; �Hk

1 )
‖�θ‖2

L∞(0,T ; �H1
1 )

+ δtε10

2
‖ξ�θ‖2�H1

1
.

In this manner, and after choosing εi = 3α̂a/7 for i ∈ {1, 2, 3, 4, 8, 9, 10} and ε5 =
ε6 = ε7 = α̂a/4, we can collect the above estimates and sum over 1 ≤ n ≤ m, for all
m + 1 ≤ N , to get

‖ξm+1
�θ ‖2�L2

1
+ ‖2ξm+1

�θ − ξm�θ ‖2�L2
1
+

m∑

n=1

‖Λξn�θ ‖2�L2
1
+

m∑

n=1

δt α̂a‖ξn+1
�θ ‖2�H1

1
− 3‖ξ1�θ ‖2�L2

1

≤ C(δ4t + h2k) + 56| f |2Lipδt
3̂αa

‖�θ‖2
L∞(0,T ; �H1

1 )

m∑

n=1

‖ξn+1
�s ‖2�L2

1

+ 8δt C̃2C∗

α̂a
‖�θ‖2

L∞(0,T ; �H1
1 )

m∑

n=1

‖ξn+1
u ‖2T1h .

Identifying the constants

γs = 56| f |2Lip
3̂αa

‖�θ‖2
L∞(0,T ; �H1

1 )
, γu = 8C̃2C∗

α̂a
‖�θ‖2

L∞(0,T ; �H1
1 )

we may conclude the proof. ��
Theorem 5.4 Let (u, p, �θ, �s) be the solution of (2.2), (2.3) under the assumptions of
Sect. 3, and (uh, ph, �θh, �sh) be the solution of (4.3). If

u ∈ L∞(0, T ;Hk+1
1 ) ∩ L∞(0, T ;V1

1,�), �θ ∈ L∞(0, T ; �Hk+1
1,� ),

�s ∈ L∞(0, T ; �Hk
1 ), �s ′ ∈ L∞(0, T ; �Hk

1 ), �s (3) ∈ L2(0, T ; �L2
1),

then there exist constants C, γ2 > 0 that are independent of h and δt such that for all
m + 1 ≤ N

‖ξm+1
�s ‖2�L2

1
+ ‖2ξm+1

�s − ξm�s ‖2�L2
1
+

m∑

n=1

‖Λξn�s ‖2�L2
1
+

m∑

n=1

δt g1‖ξn+1
�s ‖2�L2

1

≤ C(δ4t + h2k) + γ2

m∑

n=1

δt‖ξn+1
�θ ‖2�L2

1
.
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Proof We choose as test function �lh = ξn+1
�s in the third equation of (4.3) and add and

substract suitable terms. Analogously to (5.6) and (5.7), we obtain

− 1

2δt

(
3ξn+1

�s − 4ξn�s + ξn−1
�s , ξn+1

�s
)
1,Ωa

− 1

2δt

(
3En+1

�s − 4En
�s + En−1

�s − 3�s(tn+1) + 4�s(tn) − �s(tn−1), ξ
n+1
�s

)
1,Ωa

+ d3
(�θ n+1

h , ξn+1
�s , ξn+1

�s
) + d3

(�θ n+1
h ;Lh �s(tn+1), ξ

n+1
�s

) − d4
(�θ n+1

h , ξn+1
�s

) = 0.
(5.9)

Nowwe consider (2.4d) at time t = tn+1, using also �l = ξn+1
�s as test function. Adding

and subtracting a suitable term, we deduce the relation

1

2δt

(
3�s(tn+1) − 4�s(tn) + �s(tn−1), ξ

n+1
�s

)
1,Ωa

+ d3
(�θ(tn+1); �s(tn+1), ξ

n+1
�s

)

= d4
(�θ(tn+1), ξ

n+1
�s

)

−
(

�s ′(tn+1) − 1

2δt

(
3�s(tn+1) − 4�s(tn) + �s(tn−1)

)
, ξn+1

�s

)

1,Ωa

.

(5.10)

As in the two previous proofs, we subtract (5.10) from (5.9) and multiply both sides
by 4δt to obtain Ī1 + Ī2 + · · · + Ī6 = 0, where

Ī1 := 2
(
3ξn+1

�s − 4ξn�s + ξn−1
�s , ξn+1

�s
)
1,Ωa

, Ī2 := d3(�θ n+1
h , ξn+1

�s , ξn+1
�s ),

Ī3 := 4δt

(
�s ′(tn+1) − 1

2δt

(
3�s(tn+1) − 4�s(tn) + �s(tn−1)

)
, ξn+1

�s

)

1,Ωa

,

Ī4 := 2
(
3En+1

�s − 4En
�s + En−1

�s , ξn+1
�s

)
1,Ωa

,

Ī5 := −4δt
(
d3(�θ n+1

h ;Lh �s(tn+1), ξ
n+1
�s ) − d3(�θ(tn+1); �s(tn+1), ξ

n+1
�s )

)
,

Ī6 := −4δt d4
(�θ n+1

h − �θ(tn+1), ξ
n+1
�s

)
.

For the first, second, and third terms, we proceed to use (4.10), the ellipticity (2.8),
and Taylor expansion to get

Ī1 = ‖ξn+1
�s ‖2�L2

1
+ ‖2ξn+1

�s − ξn�s ‖2�L2
1
+ ‖Λξn+1

�s ‖2�L2
1
− ‖ξn�s ‖2�L2

1
− ‖2ξn�s − ξn−1

�s ‖2�L2
1
,

Ī2 ≥ 4δt g1‖ξn+1
�s ‖2�L2

1
,

| Ī3| ≤ δ4t

24ε1
‖�s(3)‖2

L2(tn−1,tn+1; �L2
1)

+ δtε1

2
‖ξn+1

�s ‖2�H1
1
.

For the fourth termwe include±4δt E ′
�s(tn+1) and use Taylor’s formula andLemma5.3,

which leads to
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| Ī4| ≤ C

2ε2
h2k‖�s ′‖2

L∞(0,T ; �Hk
1 )

+ δtε2

2
‖ξn+1

�s ‖2�L2
1

+ δ4t C

2ε3
‖�s (3)‖2

L2(0,T ; �L2
1)

+ δtε3

2
‖ξn+1

�s ‖2�L2
1
.

To handle Ī5, we add and subtract the terms

d3
(�θ(tn+1); �s(tn+1), ξ

n+1
�s

)
and d3

(
Ih �θ(tn+1)M; �s(tn+1), ξ

n+1
�s

)
.

Then, owing to (2.9), (2.11), Lemma 5.1, and Young’s inequality, we end up with

| Ī5| ≤ Cg22δt h
2k

ε4
‖�s‖2

L∞(0,T ; �Hk
1 )

+ ε4δt

2
‖ξ�s‖2�L2

1
+ 8|g|2Lipδt

ε5
‖ξn+1

�θ ‖2�H1
1
‖�s‖2

L∞(0,T ; �H1
1 )

+ ε5δt

2
‖ξ�s‖2�L2

1
+ C |g|2Liph2kδt

ε6
‖�θ‖2

L∞(0,T ; �Hk+1
1 )

‖�s‖2
L∞(0,T ; �H1

1 )

ε6δt

2
‖ξ�s‖2�L2

1
.

Finallywe insert±4δt d4(Ih �θ(tn+1), ξ
n+1
�s ) in Ī6 and useLemma5.3 in order to deduce

the bound

| Ī6| =
∣∣∣4δt

(
d4

(�θn+1
h − Ih �θ(tn+1), ξ

n+1
�s

) + d4
(
Ih �θ(tn+1) − �θ(tn+1), ξ

n+1
�s

))∣∣∣

≤ 8|g|2Lipδt
ε7

‖ξn+1
�θ ‖2�L2

1
+ C |g|2Liph2k

ε8
‖�θ‖2

L∞(0,T ; �Hk+1
1 )

+ ε7 + ε8

2
δt‖ξ�s‖2�L2

1
.

It then suffices to take εi = 3g1/4 for all i ∈ {1, . . . , 10} and to sum over 1 ≤ n ≤ m,
for all m + 1 ≤ N in the above estimates, which, in combination with Theorem 5.2
implies that

‖ξm+1
�s ‖2�L2

1
+ ‖2ξm+1

�s − ξm�s ‖2�L2
1
+

m∑

n=1

‖Λξn�s ‖2�L2
1
+

m∑

n=1

δt g1‖ξn+1
�s ‖2�L2

1

≤ C(δ4t + h2k) + 32|g|2Lip
3g1

(
1 + ‖�s‖2

L∞(0,T ; �H1
1 )

)
δt

m∑

n=1

‖ξn+1
�θ ‖2�L2

1
,

and the result follows by choosing

γ2 = 32|g|2Lip
3g1

(
1 + ‖�s‖2

L∞(0,T ; �H1
1 )

)
.

��
Theorem 5.5 Under the same assumptions of Theorems 5.2–5.4, there exist positive
constants γ̂u, γ̂θ and γ̂s independent of δt and h, such that for a sufficiently small δt
and all m + 1 ≤ N, the following inequalities hold:
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(
‖ξm+1

u ‖2
L2
1
+ ‖2ξm+1

u − ξmu ‖2
L2
1
+

m∑

n=1

(‖Λξnu ‖2
L2
1
+ δt α̃a‖ξn+1

u ‖2T1h
))1/2

≤ γ̂u(δ
2
t + hk),

(
‖ξm+1

�θ ‖2�L2
1
+ ‖2ξm+1

�θ − ξm�θ ‖2�L2
1
+

m∑

n=1

(‖Λξn�θ ‖2�L2
1
+ δt α̂a‖ξn+1

�θ ‖2�H1
1

))1/2

≤ γ̂θ (δ
2
t + hk),

(
‖ξm+1

�s ‖2�L2
1
+ ‖2ξm+1

�s − ξm�s ‖2�L2
1
+

m∑

n=1

(‖Λξn�s ‖2�L2
1
+ δt g1‖ξn+1

�s ‖2�L2
1

))1/2

≤ γ̂s(δ
2
t + hk).

Proof From Theorem 5.2 and 5.4 we have the estimates

m∑

n=1

γuδt‖ξn+1
u ‖2T1h ≤ C(δ4t + h2k) + γ1γu

α̃a

m∑

n=1

δt‖ξn+1
�θ ‖2�L2

1
,

m∑

n=1

γsδt‖ξn+1
�s ‖2�L2

1
≤ C(δ4t + h2k) + γsγ2

g1

m∑

n=1

δt‖ξn+1
�θ ‖2�L2

1
,

which, after substituting them back into Theorem5.3, yield

‖ξm+1
�θ ‖2�L2

1
+ ‖2ξm+1

�θ − ξm�θ ‖2�L2
1
+

m∑

n=1

‖Λξn�θ ‖2�L2
1
+

m∑

n=1

δt α̂a‖ξn+1
�θ ‖2�H1

1

≤ C(δ4t + h2k) + γ1γug1 + γsγ2α̃a

α̃ag1

m∑

n=1

δt‖ξn+1
�θ ‖2�L2

1
.

For the last term on the right-hand side of this last bound we have

‖ξm+1
�θ ‖2�L2

1
≤ 2(‖Λξm�θ ‖2�L2

1
+ ‖2ξm�θ − ξm−1

�θ ‖2�L2
1
),

and considering δt sufficiently small and applying Gronwall’s lemma, we readily infer
the estimate

‖ξm+1
�θ ‖2�L2

1
+ ‖2ξm+1

�θ − ξm�θ ‖2�L2
1
+

m∑

n=1

(‖Λξn+1
�θ ‖2�L2

1
+ δt α̂a‖ξn+1

�θ ‖2�H1
1

)

≤ C(δ4t + h2k).

(5.11)

The first and third bounds follow by combining (5.11) and Theorems 5.2 and 5.4. ��
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Lemma 5.5 Under the same assumptions of Theorem 5.5, we have

(
m∑

n=1

δt‖p(tn+1) − pn+1
h ‖2

L2
1

)1/2

≤ γ̂p(δ
2
t + hk).

Proof Owing to the inf-sup condition (4.1), there exists wh ∈ X⊥
h such that

b(wh, p(tn+1) − pn+1
h ) = ‖p(tn+1) − pn+1

h ‖2
L2
1
, (5.12)

‖wh‖T1h ≤ 1

β̃
‖p(tn+1) − pn+1

h ‖L2
1
. (5.13)

From (4.3) and Lemma 5.4, proceeding as in the proof of Theorem 5.2, we obtain

δt b(wh, p(tn+1) − pn+1
h )

= −δt

(
u′(tn+1) − 3un+1

h − 4unh + un−1
h

2δt
,wh

)

1,Ωa

+ δt a
h
1 (un+1

h − u(tn+1),wh)

+ δt
(
ch1 (u

n+1
h ;un+1

h ,wh) − ch1 (u(tn+1);u(tn+1),wh)
)

+ δt d1(�θ(tn+1) − �θ n+1
h ,wh)

≤ δ2t

2
√
3
‖u(3)‖L2(tn−1,tn+1,L2

1)

√
δt‖wh‖T1h + C̃aC

∗hkδt‖u‖L∞(0,T ;Hk+1
1 )

‖wh‖T1h
+ C̃aδt‖ξn+1

u ‖T1h‖wh‖T1h + C∗C̃cδt‖u‖L∞(0,T ;H1
1)

‖ξu‖T1h‖wh‖T1h
+ 2δtCC̃ch

k‖u‖L∞(0,T ;H1
1)

‖u‖L∞(0,T ;Hk+1
1 )

‖wh‖T1h
+ CFδt h

kC∗‖�θ‖L∞(0,T ; �Hk+1
1 )

‖wh‖T1h + CFδt‖ξ�θ‖�L2
1
‖wh‖T1h .

Summing over 1 ≤ n ≤ m for all m + 1 ≤ N and substituting back into Eqs. (5.12)
and (5.13), we obtain

(
m∑

n=1

δt‖p(tn+1) − pn+1
h ‖2

L2
1

)1/2

≤ C

β̃

(
δ2t + hk +

( m∑

n=1

δt‖ξn+1
�θ ‖2�L2

1

)1/2

+
( m∑

n=1

δt‖ξn+1
u ‖2T1h

)1/2)
,

and the desired result readily follows from Theorem 5.5. ��
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6 Numerical tests

The numerical realisation has followed a strategy based on direct Stokes solvers as it is
directly linkedwith the structure of the numerical method that we have analysed. Other
methods, such as Gauge–Uzawa [49,51] and variants of Chorin–Temam splittings [39]
are certainly possible (see also the review [35]). The implementation of all numerical
tests has been conducted using the open-source finite element library FEniCS [3].

6.1 Example 1: accuracy tests

In our first computational test we examine the convergence of the Galerkin method
(4.2), taking as computational domain the square Ω = (0, 1)2. We take the parameter
values ν = 0.1, k+(x) = 1, g = (0,−1)T,K−1 = I,D = 10−3I, Ds = 1,ρf = φ = 1,
ρb = 0.1, a0 = 500 · 10k , where k is the polynomial degree. Following the approach
of manufactured solutions, we prescribe boundary data and additional external forces
and adequate source terms so that the closed-form solutions to (1.1), (2.1) are given
by the smooth functions

u(r , z, t) =
(

0
− cos(rπ/2) exp(−t)

)
, �θ(r , z, t) =

(
z2r2(3 − 2r)(1 − exp(−t))
z2r2(3 − 2r)(1 − exp(−t))

)
,

p(r , z, t) = (r3 − 2z4) sin(t), �s(r , z, t) =
(
1 − exp(−z2r2(3 − 2r)(t + exp(t)))
1 − exp(−z2r2(3 − 2r)(t + exp(t)))

)
.

As u is prescribed everywhere on ∂Ωa, for sake of uniqueness we impose p ∈
L2
0,1(Ωa) through a real Lagrange multiplier approach. It is also noted that the exact

solutions satisfy the boundary conditions (2.3a), (2.3b), (2.3c) on the inlet, wall, and
symmetry axis, respectively, whereas instead of (2.3d) we set

u = uout, D∇ �θ · n = �0,

on the outlet Γ out
a × (0, T ]. The accuracy of the spatial semi-discretisation is tested by

considering a sequence of uniformly refined meshes {Th,l}l of mesh size hl = 2−l
√
2,

and fixing T = 0.005 with δt = 0.001. Relative errors in their natural norms, along
with the corresponding convergence rates are computed as

eu =
‖u − uh‖T1h

‖u‖T1h
, ep =

‖p − ph‖L2
1(Ωa)

‖p‖L2
1(Ωa)

, e�θ =
‖�θ − �θh‖ �H1

1 (Ωa)

‖�θ‖ �H1
1 (Ωa)

,

e�s =
‖�s − �sh‖ �H1

1 (Ωa)

‖�s‖ �H1
1 (Ωa)

, rate = log(e(·)/ẽ(·))[log(h/h̃)]−1,

where e, ẽ denote errors generated on two consecutive meshes of sizes h and h̃, respec-
tively. These quantities are listed in Table 1 for k = 0 and k = 1, and they indicate
optimal error decay in the light of Theorem 5.5.
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Table 1 Example 1 (spatial accuracy test): experimental errors and convergence rates for the approximate
solutions uh , ph , �θh and �sh
k DoF eu rate ep rate e�θ rate e�s rate

1 75 0.05435 – 0.57400 – 0.26530 – 0.11760 –

259 0.02894 0.909 0.12480 2.201 0.13940 0.928 0.05934 0.986

963 0.01466 0.981 0.05242 1.252 0.07039 0.986 0.02978 0.995

3715 0.00736 0.995 0.02545 1.042 0.03537 0.993 0.01490 0.999

14595 0.00368 0.998 0.01202 1.083 0.01792 0.981 0.00746 0.999

2 195 0.00537 – 0.77890 – 0.00071 – 0.05373 –

715 0.00149 1.848 0.11910 2.710 0.00018 1.947 0.01480 1.860

2739 0.00038 1.953 0.01749 2.767 4.619e-5 2.001 0.00378 1.970

10723 9.074e−5 2.084 0.00249 2.813 1.154e−5 2.001 0.00095 1.992

42435 2.328e−5 1.963 0.00052 2.256 2.909e−6 1.988 0.00024 1.998

Values are displayed for schemes with first- and second-order in space

Table 2 Example 1 (time accuracy test): experimental errors and convergence rates for the approximate
solutions uh , ph , �θh and �sh , computed for each refinement level

δt êu rate êp rate ê�θ rate ê�s rate

2.5 0.5496 – 0.5663 – 17.691 – 0.6738 –

1.25 0.1408 1.964 0.1177 2.266 3.2720 2.435 0.1673 2.009

0.625 0.0289 2.284 0.0258 2.188 0.6621 2.305 0.0409 2.032

0.3125 0.0066 2.119 0.0061 2.091 0.1519 2.124 0.0105 1.965

0.1562 0.0016 2.047 0.0015 1.976 0.0366 2.054 0.0027 1.934

Regarding the convergence of the time advancing scheme, now we set T = 5 and
consider a sequence of uniform refined time partitions τl , l ∈ {1, 2, 3, 4, 5} where the
time step is 5/2l . Absolute errors are computed as

êu =
( m∑

n=1

δt‖u(tn+1) − un+1
h ‖2T1h

)1/2

, êp =
( m∑

n=1

δt‖p(tn+1) − pn+1
h ‖2

L2
1

)1/2

,

ê�θ =
( m∑

n=1

δt‖�θ(tn+1) − �θ n+1
h ‖2�H1

1

)1/2

, ê�s =
( m∑

n=1

δt‖�s(tn+1) − �s n+1
h ‖2�L2

1

)1/2

,

and we readily observe from Table 2 that the method converges to the exact solution
with the expected second-order rate.

6.2 Example 2: validation against experimental data

Nowwe define a different adimensionalisation of (1.1a)–(2.1d) that is an adaptation of
the recent model (tailored specifically for soil-based water filters for arsenic removal)
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proposed in [48]. This problem considers only one type of contaminant and only
one type of adsorption. Defining as L, vi , θ0, smax the representative length of the
column, the linear inflow rate, initial solids concentration, and maximum adsorption,
respectively; we define dimensionless variables as

r̄ = r

L
, z̄ = z

L
, ū = u

vi
, θ̄ = θ

θ0
, p̄ = L(p − patm)

μvi
, s̄ = s

smax
, t̄ = k+θ0t,

and we also define the constants

Re = ρfvi L

ν
, Pe = vi L

D
, Da = κ

L2 , α = ρbsmax

θ0
, β = k+L2θ0

D
. (6.1)

Making abuse of notation, the problem defined in Ωa × (0, T ] adopts the form

β Re

Pe
∂tu + Reu · ∇u + 1

Da
u − 1

φ
diva(ε(u)) + ∇ p + 1

φ
(ur/r2)e1 = 0,

divau = 0,

φβ

Pe
∂tθ − 1

Pe
diva(∇θ) + u · ∇θ = −αβ

Pe
∂t s,

∂t s = θ(1 − s).

The setup consists of a lab-scale filter (a column of height 1 and radius R̄ = 0.11,
already in dimensionless units) where one varies the feed flow rate, the arsenic con-
centration at the feed, and also the bed height. Gravitational effects are not considered,
and the boundary and initial conditions are precisely as in (2.3a)–(2.3e). The config-
uration of the system implies that the non-dimensional constants from (6.1) assume
the values

Re = 68.1, Pe = 1.11 · 105, Da = 8000, α = 248, β = 136,

and the remaining parameter values are φ = 0.48, uin(r , z) = (0, 1
R̄2 (r− R̄)(r+ R̄))t,

θ in = 1. We employ a structured mesh of 8000 triangular elements and define a
constant time step of δt = 0.15 (adimensional time t = 0.15 ≈ 1 day). Note that
some of the parameter values used in this test do not coincide with the ones published
in [48], but that model was based on a different formulation using Darcy-Brinkman
flows.

During the filtration process the soil-based bed reaches a point in time where it is
no longer adequate for adsorption. This phenomenon can be observed in Fig. 2 where
we plot the evolution of the average concentration of the contaminant θ on the outlet,
that is
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Fig. 2 Example 2 (validation against experimental data): contaminant concentration after one day (left).
Value of θ |avg(t) (experimental observation from [48] and numerical simulation) using raw laterite as the
adsorbent (right)

θavg(t) = 2

R̄2

∫

Γ out
a

θ r ds.

We also compared the predictions of the model with experimental data, collected
for a filter that uses raw laterite as an adsorbent medium, and to which an arsenic
solution is injected in its upper part (as explained in [48]). The qualitative results
displayed on Fig. 2 seem to show an acceptable adjustment to the experimental data.
This suggest that the model and the axisymmetric divergence-conforming scheme can
be used effectively as a tool to study the behaviour of the filtration process under
similar flow regimes.

6.3 Example 3: two contaminants in two-layer filter

Wemodel a filter with two contaminants and two layers. The domain has a R/L ratio of
0.22. While the inlet is the top wall, the outlet is the region {(z, r)|z = 0 and 0 ≤ r ≤
0.25R}. For (2.2) we take (1.2) withm = 2 and and we consider μ = 8.94 ·10−4 Pa s,
vi = 6.0·10−3 m/s,ρf = 103 kg/m3, θ in1 = 8.0·10−5 kg/m3, θ in2 = 2.0·10−5 kg/m3,
smax
1 = 10−3 kg/kg, smax

2 = 10−2 kg/kg. In addition, the rheology of the grains is
different in the top and bottom halves of the domain. More precisely, we have

Dtop = 3.8 · 10−11 m2/s, Dbot = 7.6 · 10−12 m2/s, φtop = 0.32, φbot = 0.28,

ρb,top = 1050 kg/m3, ρb,bot = 1100 kg/m3, k+
1,top = 5.0 · 10−3 m3/(kg s),

k+
2,top = 0m3/(kg s), k+

1,bot = 2.5 · 10−3 m3/(kg s), k+
2,bot = 10−3 m3/(kg s),
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Fig. 3 Example 3 (two contaminants in two-layer filter): concentration of contaminants at times t =
10, 100, 300

and the permeability K(x) = κ(x)I has a log-uniform distribution in each layer that
satisfies

1.57 · 10−9 m2 ≤ κtop(x) ≤ 3.04 · 10−6 m2,

5.18 · 10−10 m2 ≤ κbot(x) ≤ 10−6 m2.

Qualitative results for the concentration of the two contaminants at times t = 10, 100
and 300 are shown on Fig. 3. As expected, most of the first contaminant is retained in
the upper layer, whereas the second one passes the first layer to begin to be retained
in the lower layer.
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Fig. 4 Example 3 (two contaminants in two-layer filter): concentration of contaminants θavg,i (t) using a
cylinder and changing order of layers (top); and similar computation using a truncated cone (bottom)

Now we change values to smax
1 = 10−7 kg/kg and smax

2 = 10−6 kg/kg and run the
simulation for a longer time to assess how the swapping the order of layers and the
geometry affect the contaminant removal, measured by θavg(t). For the first two tests
we use the same cylinder, altering only the order of the layers. As we can see from
the top panels of Fig. 4, reversing the order of the layers softens the transition towards
saturation, but the most important behaviour is reached essentially at the same time
in both cases. We also test with a truncated cone (see dimensions in the bottom left
panel of Fig. 4). The saturation is now achieved in a much shorter time, which could
be explained by a combined effect of volume reduction (and therefore of adsorbent
mass), and faster flow patterns that decrease the retention time and thus the adsorption
of the system.

Remark 6.1 In Example 2 we have conducted simulations with a relatively high Péclet
number. Some studies (e.g. [25,62]) indicate that spurious oscillations in the contam-
inant concentration can be significant for larger values of this parameter, and in such
cases a stabilisation would be required. This is common practice for highly advective
flows, and one could appeal, for instance, to SUPG stabilisation [38] that does not
require substantial modifications on the discrete formulation and its analysis. Some-
what related stabilised formulations specifically designed for axisymmetric, swirling,
and moving boundary flows can be found in [21,26,29,46,50,57].
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