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We study a mathematical model describing the interaction between a fluid and a poroelastic structure,
along with its numerical approximation. The fluid domain is governed by the unsteady incompressible
Stokes equations, while the poroelastic region is modeled using the linearized poro-hyperelastic
equations. Within this region, the Brinkman equation is employed to describe fluid flow through the
porous medium, incorporating inertial effects into the fluid dynamics. A generalized poromechanical
framework is adopted to incorporate these inertial effects in accordance with thermodynamic principles.
An alternative formulation is used in which the primary variables are the elastic stress and structural
velocity. This formulation serves as a mathematical tool to establish the unique solvability of the
governing equations, with the existence proof relying on an auxiliary multi-valued parabolic problem.
For the numerical approximation, we propose a Lagrange multiplier-based mixed finite element method
and demonstrate the well-posedness of both semi-discrete and fully discrete problems. Furthermore,
we derive a priori error estimates for both discretization schemes. Numerical experiments validate
the theoretical convergence rates. Finally, we apply the proposed monolithic scheme to simulate
two-dimensional phenomena arising in geophysical flows and brain biomechanics.

Keywords: Coupled poro-hyperelasticity/free-flow problem, saddle-point formulations, error estimates,
mixed finite element methods.

1. Introduction

The interaction between a free-flowing fluid and a deformable porous medium poses a challenging multiphysics
problem. The complexity arises from the disparate material properties across geometric interfaces, and
examples of such challenges widely exist in industrial problems, including groundwater flow in fractured
aquifers, oil and gas extraction, and filter design. These processes are also found in biomechanical applications
such as perfused living tissues [5], transport of lipids and drugs in blood vessel walls [28, 49], water transport
and drug delivery in the brain [45, 47], and addressing ocular diseases like glaucoma [26, 40] or diagnosing
fibrosis in the lungs [14].

There is an extensive literature on fluid poroelastic structure interaction (FPSI) problems, which exhibit
features of both coupled Stokes—Darcy interfacial flows [30, 35, 39, 51] and fluid structure interaction (FSI)
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[13, 32]. In FPSI scenarios, the behavior of the free fluid is described by the Stokes (Navier—Stokes) equations,
while the flow within deformable porous media is governed by the Biot system of poroelasticity [15]. This
system couples an elasticity equation for the deformation of the porous solid with a Darcy law describing fluid
flow, ensuring mass conservation within the pore network. The coupling of the Stokes and Biot regions involves
interface conditions ensuring the continuity of normal flux, the Beavers—Joseph—Saffman (BJS) slip condition
for tangential velocity, the balance of forces, and the continuity of normal stress. One of the first theoretical
studies of the Stokes—Biot model is provided in [43], where well-posedness is demonstrated using semigroup
methods. A numerical investigation is presented in [9], employing the variational multiscale finite element
method (FEM) and proposing both monolithic and iterative partitioned methods. In [23], a non-iterative
operator-splitting method is developed for the coupled Navier—Stokes—Biot model. Additionally, readers are
referred to [22], where a loosely coupled partitioned approach is utilized based on Nitsche’s method. An
analysis of a Lagrange multiplier formulation for imposing normal flux continuity is provided in [4], and for
an extension to non-Newtonian fluids, see [2]. A Stokes—Biot model with a total pressure formulation that
does not require Lagrange multipliers or a Nitsche parameter for imposing interface conditions is studied in
[40]. The well-posedness of a Stokes—Biot system with a multilayered porous medium using Rothe’s method
is obtained in [16].

More recently, researchers have focused on utilizing the framework of Biot theory with finite strain
to develop general poromechanics formulations [27, 50]. A thermodynamically consistent poromechanics
formulation was introduced in [24, 27]. In particular, [27] develops a model for the general case of large
deformations, illustrating that fluid and solid phases coexist at every point in the computational domain.
The nonlinear constitutive behavior and the geometric effects of large deformations were avoided in [24]
by considering a linearized version of the aforementioned poromechanic model under the assumption of small
deformations. Such a model is known as a linearized poro-hyperelastic or generalized poroelastic model, and
its existence and uniqueness are discussed in [12].

In this paper, we present mathematical and numerical analyses for the fully dynamic Stokes—generalized
poroelasticity system using a velocity—pressure formulation for Stokes, a displacement formulation for
elasticity, and a velocity—pressure formulation for Brinkman. This formulation, which has not been studied
in the literature, is attractive due to its relative simplicity, and it primarily follows the approach discussed in
[2]. In the porous region, we employ the Brinkman model for fluid flow to ensure mass conservation within the
pores, integrating viscous effects into the fluid dynamics in accordance with thermodynamic principles [11].
This model offers a more accurate alternative to the conventional Stokes—Biot model, particularly suitable
for thermodynamically consistent scenarios involving variable porosity. We enforce the continuity of the
normal velocity on the interface using a Lagrange multiplier. The original weak formulation contains two
types of non-coercive terms: one that prevents an energy norm bound for the relative velocity, and another
arising from the time derivatives of the displacement. These terms result in a time-dependent system, which
introduces analytical challenges. To address these challenges, we reformulate the problem using a mixed
elasticity approach, where the elastic stress and structural velocity serve as the primary variables [43]. This
leads to a system akin to a degenerate evolution saddle-point problem, which we recast as a parabolic-type
system following the methodology in [44]. By applying classical semigroup theory [42], we establish the
existence of a solution for the reformulated system, and equivalently for the original formulation, by invoking
the invertibility of the stress-strain relation. Subsequently, we return to the original formulation to conduct a
stability and error analysis of semi- and fully-discrete FE approximations, employing finite differences in time
and FEs in space. We employ a Taylor—Hood FE family for the porous medium to approximate relative velocity,
solid displacement, and pressure, ensuring the velocity and displacement approximations are of higher order
than the pressure [11]. For the Stokes medium, we use Taylor—-Hood elements to approximate fluid velocity and
pressure and introduce a conforming Lagrange-multiplier discretization to satisfy discrete inf—sup conditions,
ensuring accuracy on nonmatching interface grids as well. Although the convergence rate for both the relative
velocity and displacement is suboptimal, this result was expected due to the inability to establish an error
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FIG. 2.1. Tllustration of typical subdomain configurations, boundaries, and interface in a poromechanic/free flow problem setting.

bound in the energy norm, as mentioned earlier. This work presents a novel contribution to the theoretical and
numerical analysis of interface-coupled problems.

Outline of the paper. The rest of the paper is organized as follows. Section 2 introduces the notation,
preliminaries, and the mathematical model. Section 3 is devoted to the weak formulation and establishes the
well-posedness of the original formulation, along with the corresponding stability bounds. The semi-discrete
approximation and its well-posedness analysis are presented in Section 4. Section 5 provides the analysis of
the fully discrete scheme. In Section 6, we present numerical experiments to validate the theoretical results
on spatio-temporal convergence. Additionally, we simulate: (i) a typical reservoir model using real data,
(ii) a scenario with large interface displacements, and (iii) a simplified but physiologically relevant brain
biomechanics problem. Finally, we conclude in Section 7 with a summary of our results and directions for
future work. In Appendix A, we establish the well-posedness of an alternative formulation; providing the
mathematical foundation for the original formulation discussed in Section 3.

2. Multiphysics formulation of the model problem

Notation and preliminaries. Throughout this manuscript, we utilize the classical Sobolev spaces L?(Q) and
H'(Q), equipped with their respective norms || - || 12(e) and || - [|1(q)- The L*-inner product is denoted as (-, ),
and for any arbitrary Hilbert space H, we represent the duality pairing with its dual space H' as (-,-)p' p.
Also, we use the convention of denoting scalars, vectors, and tensors as a, a, and A, respectively. Finally,
we define the Bochner spaces L”(0,7;X) and L*(0,7;X) for any Banach space X, with norms given by

1/q
(fOT llx(s) 1% ds) and sup, o 1) [[x(s)||x, respectively. We consider weak time derivatives in wkr(0,T;X),
defined as {x € L?(0,T;X) : D*x € LP(0,T;X) forall n € N,|a| < k}, where 1 < p < eo. For simplicity, C
denotes a generic positive constant independent of the mesh size / but possibly dependent on model parameters.
We also use € for arbitrary constants (with different values in different contexts) arising from Young’s
inequality. Inequalities with constants independent of % are denoted by < or 2, omitting the constants.

Governing equations. Let us consider a bounded Lipschitz domain Q C R?, d € {2,3}, together with
a partition into non-overlapping and connected subdomains Qg,Qp representing zones occupied by a free
fluid region with flow governed by the Stokes equations and a poroelastic material governed by the general
thermodynamically consistent linearized poro-hyperelastic system, respectively. The interface between the
two subdomains is denoted as £ = dQg N dQp. The boundary of the domain € is separated in terms of the
boundaries of two individual subdomains, that is, dQ = I's UT'p (see a sketch in Figure 2.1).

The free fluid region Qg is governed by the Stokes equations, with the primary variables being the fluid
velocity u?- and the fluid pressure pS:

prouy — V6% (u},p°) = fs in Qg x (0,7], (2.1a)
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Veup=0 in Qg x (0,7], (2.1b)

where T > 0 is the final time. Here, e(ujsc) = %(Vu? + (Vu}SC)T) denotes the deformation strain tensor;

O'fp(ujsf,ps) = Z,ufe(ujsf) — pSL, stress tensor; fs: (0,7] — L?(Qs), external load; uy, fluid viscosity, and
Py, fluid density.

The poroelastic region Qp is governed by the linearized poro-hyperelastic model (which includes
viscoelastic properties), with the primary variables being the absolute fluid velocity u?, interstitial pressure
pb, solid displacement y¥, and solid velocity u®:

produy— Vo (uf, p°) = pPVe + 97k (uf —ul) =2pro fp+6u;  inQpx(0,T], (22a)

(1—9)’ K~ op"+ V- (¢uy+(1-¢)u;) =p;'6 inQpx (0,7], (2.2b)

2
ps(1=9)ou =V -6y, p") = p'V(1-9) - % (i —u) =ps(1=9)fp  nQx(0T], (22
pput = p,ay° in Qp x (0,7]. (2.2d)

Equation (2.2a) is the conservation of momentum for the fluid (generalized Stokes law with Brinkman effect);
(2.2b) represents mass conservation; (2.2¢) is the conservation of momentum of the solid phase, and the last
one (multiplied by p, to maintain the symmetry of the block system) relates solid displacement and velocity.
The relevant parameters are ¢ = ¢ (x), porosity; py, ps, fluid/solid density; 1y, fluid viscosity; k, permeability
tensor; fp : (0,7] — L2(Qp), external load; 6 : (0,7] — L?(Qp), fluid source/sink; K, bulk modulus; and
Ap, 1p, Lamé parameters. The parameters ps, pr, lr, Ay, I, are assumed to be positive constants. Let us now
define stress tensors in the poroelastic sub-domain as

o (ul,p") :=2us0€ (uf) — 9p"1, (2.3a)
of (yF) :=2u,e (3F) + A,V - »PL, (2.3b)
o (y;.p") =06"—(1-9)p"L (2.3¢)

Remark 2.1. As discussed in [9], directly using the absolute velocity in the weak formulation results in
unbalanced conditions at the interface in linearized poroelastic models. This motivates the use of the relative
velocity between the fluid and solid phases ul: = u}; - uf, and also combine (2.2a) and (2.2c) to transform
(2.2¢) into a total momentum equation. '

Furthermore, we adopt the notation 0'52, 0‘5, and 6% to denote O'fc (u;, ps), 0‘? (uf +ul,p?), and

o® (yF, p), respectively. The resulting model is then defined as

Pro (D) +oul) —V-6% — PV + 97k ul — 0(uf +u)) =2ps0 fp inQpx (0,T], (2.4a)
(192K '9p"+0, (V-3F) + V- (ou}) =p; 6 in Qp x (0,T], (2.4b)

produy +pyou; —V-06%—V-0f — 0uf —0ul =p,fp+prdfp inQpx(0,T], (24c)

ppus = pporyt in Qp x (0,T], (2.4d)

where p, = ps(1—¢)+ pr¢ denotes the density of the saturated porous medium. This system is complemented
by the following set of boundary conditions

u?-:O on Tsx(0,T], y»=0 on Ipx(0,7], u®=0 on Ipx(0,7].
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The interface conditions on the fluid—poroelastic interface ¥ consist of mass conservation (2.5a), balance of
normal stresses (2.5b), and balance of contact forces (2.5¢). Conditions (2.5d)—(2.5¢) together represent the
Beavers—Joseph—Saffman (BJS) slip condition modeling tangential friction, with (2.5d) involving both fluid
and solid velocities, and (2.5¢) involving only the poroelastic fluid velocity on X:

u}-ns+ (dys +uy) np=0 on Xx(0,T], (2.52)
— (stpns) ng = — (Gjpinp) -np on Xx(0,T], (2.5b)

chns + O'?np + anp =0 on Xx(0,T], (2.5¢)
—(o%ns) - tr; = wroms\/Z; ' (w5 —ayF) -ty on Xx(0,T], (2.5d)

— (O'jrinp) ~‘L'f1j=,ufO£BJS\/Zj71uE-Tf,j on XX (0, T], (2.5¢)

where ng and np are the outward unit normal vectors to s and Qp, respectively, Tr;,1 < j<d—1, is an
orthogonal system of unit tangent vectors on X, we denote Z; = (K'L‘ 1, j) -Tr j» and opys > 0 is an experimentally
determined friction coefficient. We further set the initial conditions:

u?(x70) = uf70(x)7 ul:(x,O) = uh,o(x)v yf(x,O) = ys.()(x)7 uf(x70) = uS.,O(x)a pP('va) = pP’O('x)' (2.6)

3. Weak formulation
We consider the following functional spaces (endowed with the standard norms) as
Vi={ufcH (Qs):uj=00nTs}, W;=L*(Qs), V,={uf cH'(Qp):u=00nT}},
W,=L§(Qp), V,={yecH (Qp):yf=00nTp}, W,=L*(Qp),

and denote the product space as X = Vix V., X Vi x Wy x Wy x W), x Al

Let us define, for all u]Sc7vJsC € Vy,u,v € H(Qp),yY,wP € V,, the operators and associated bilinear forms
related to the Stokes, Brinkman, and elasticity operators, respectively:

ngfs :Vf%V/f, <£ffsujsc,\’§-> ?(ul??vf) (Zﬂfs(“j) ( JS‘))QS’
.QZ;D ‘H' (Qp) — H 1 (Qp), (;szu,v) = a? (u,v) = (2usr0€ (u),€ (v))QP,
AV = Ve (0] wd) = al (v),wl) = (21 (37) € (W) g, + (ApV 35, VW) g -

In addition, for all ¢° € Wy,q" € W,,v} € Vy,wi € vi,v) € V,,w,§ € Wy, we define

%S :Vf_>vVY/7 <%Svjsf7 > bs(vfﬂ S) (V vf7 S)Q57

@f:VS%W;, <‘@§ w.q > ( s7q ) (V Ws,q )Qp7
’%al;:vr_)W;ﬂ <%$vf’qP> ( rq ) ( ((PV )7q )Qp?
,//g; ZWS—>W/S, ,//lgw,C m‘: w C) éw C

Integration by parts in (2.1a), (2.4a) and (2.4c) leads to the interface term
Iy = —<G?ns,V§c>z — <O'?nP,WE>): - <O'5np,wf,’>z — <O'?np,vf>):.

Using the interface condition (2.5b) we set A = f(ajstns) ‘ng = *(G?Tlp) -np on X, which is used as a
Lagrange multiplier to impose mass conservation on the interface. Utilizing the BJS conditions (2.5d)-(2.5¢)
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and the balance of stress (2.5b)-(2.5¢), we obtain
Iy = /Z(O',»np)np(ns Vinp- v +np-wy)ds — /(GJP»np)rfJ(rf,j«vl:)ds
/(Gf”S)Tfl (vi—wy) Tpds,

::CIBJS(uf,a[yS;Vf,Ws)+bB]S( )—i—br(vf,v whid) Vujsc,vfcer,yf,wfeVs,

together with the definitions
agys (u5, 0 yts v, wh Z/WO‘BJS C W -yy) T (Vi W) Ty s,

bBJS /[JfOCBJs (u Tf]) (V,P Tf_’j) ds, br (V?7V,P,W§;7L) = <v§~n5 + (v],)—&—wf) -np,l>):.

‘We further define

d—1

S P2 . S yP.,S P —1/4 /s P 2

|uf—ys |8ys == aBss (ufay_wufvys): Z.ufaBJSHZj / ("f—ys)"ff.,jHo,):’
J=1

d-1
|uP’BJS = bpss (u):v)) = z,lﬂfO‘BJSHZ;lM“rP'7.f7j||%,>:~
=

Note that for br to be well-defined, it is necessary that A € A = (V- np\):)/, which is the space denoted as

H&)l/ 2 (X) equipped with the norm || - HH&; /2 .- With the bilinear forms above we define the following operators

@’

B H (Qs) » HYA(E),  (/BSuf,wh)s = apys (u},0;0,wF),
S H' (Qp) = H'2(D),  (Z2SyF, wh)s = ays(0,5:0,wt),
B H (Qs) = H'2(D),  (FSuf,v})s = apss(u},0:v5,0),
B H' (Qg) - H'2(®),  (ZB5uf vy = beys(ul;vF),
Brr:Vy—H(E), (Brrvy,wx =br (v,0,0;1),
Byr:V, = H2(R), (B,rvE, 1) =br (0,vF,0;1),
Bir V= H2(Z), (Borwl,w)s =br(0,0,w';p),

where (-, )y denotes the L2(Z) inner product of two H'/2(X) functions [21]. We will use the shorthand notation
for trial and test functions ¥ = (uf7 uf yP ul pS pPA), ¥ (v?, vowP WP S P, u). We define bilinear forms
E,H: X x X — R which contains all terms with and without time derivatives, respectively:
E(at}753> = mPf (atujsc7 Vjsf) + mpf(p (a,up VP) + m’)fq) (aﬂl?, V]:) + mpf(p (a,u}:7 W?)
+mpp(at ) mpp(alym )+a?(8,y£,vl:)+a?(8tyf,wf)
+ agsys (O>afys ;vﬂws) +m(17¢)2 (atpP’qP) +b§(qp> atysp) + br (0707 atylf’”) )
(L



LAGRANGE MULTIPLIER FEM FOR POROELASTIC-FLUID PROBLEMS 7

H(,3) = aj (uy, v§) +ap (u) v7) +ay(u), wi) +af (v, wy)

— Mg (u]r” V]:> — Mg (uspv vlrJ) — Mg (urpvwsp) — Mg (uspvwsp)

+ m¢2/K(uE7 Vf) + mPp (u_l:a VE) + bs (ps7 v]S‘) + bjg(ppv V}I’))
+ b5 (p° wh) +apss (u5,0:v3,wh) + bess (uy3v)) +br (v, vi whi )
-p° (qs,u?) - b?(qp, ub) + br (u?-, ub, 0;1),
whereas the right-hand side terms are denoted by the form F, given by:
SN S , P P , P —1g P
F(y) — (fSavf) + (pr¢fP7vr) + (ppraws)+ (pf¢fP7ws) + (pf G,Q )
The weak formulation reads: for ¢ € (0, T, find #(r) € X for given initial conditions such that

forally € X where the balance of normal stress, the BJS conditions, and conservation of momentum (2.5b)-
(2.5e) have been utilized naturally in the derivation of the weak formulation, while the essential conservation
of mass (2.5a) is imposed weakly (see also [7, 33]).

3.1. Assumptions

(H.1) ¢ issuch that ¢,1/¢,(1—¢) and 1/(1 — ¢) belong to W*"(Q) with s > d/r, see [11, Lemma 13] and there
exist constants ¢ and ¢ such that 0 < ¢ < ¢ < ¢ < lej’spf < lae.in Q.

(H.2)The source term O represents a fluid sink. These terms naturally arise in poromechanical mass conservation
laws, and handling them is crucial for the well-posedness and stability analysis (see, e.g., [24]).

(H.3) K is symmetric and positive-definite, i.e., 3C; > 0: (¢*x vy, v]) > G|V} |[§ g, forall v} € V.

From these assumptions, we obtain ellipticity properties to be used in the well-posedness analysis, the stability
analysis and the energy estimates. We point out that (H.2) is used to simplify the proof of existence and stability
of solutions. However, it can be relaxed by exploiting an exponential scaling of the velocity. Nevertheless, this
can turn the analysis much more involved.

Remark 3.1. We do not analyze the original formulation directly using standard Hilbert space theory or
Galerkin-type methods, as commonly employed in Stokes—poroelasticity and Stokes—elasticity couplings. In
that context, non-coercivity typically stems from coupling or boundary/interface conditions and can often be
handled via an inf-sup condition, yielding bounds in H(div). In contrast, our formulation involves a more
severe form of non-coercivity: the energy terms involving ut and d;y% cancel out due to symmetry, which
prevents coercivity on u¥ in the H' norm. This cancellation hinders uniform energy control, making it difficult
to apply compactness arguments or derive a priori estimates needed for Lions—Magenes-type evolution theory.
Although the system is linear, the lack of coercivity in the variational formulation makes classical Galerkin
methods not straightforwardly applicable.

Similar non-coercivity issues also arise in poromechanics models for incompressible or nearly
incompressible media, as analyzed in [12], where well-posedness was established using a combination of
semigroup and variational techniques, together with inf-sup and T-coercivity arguments. Consequently, we
introduce a mixed formulation in Appendix A as an auxiliary tool to establish the well-posedness of the primal
Sformulation at both continuous and discrete levels. Once existence is established, we revert to the original
formulation for all subsequent analyses (stability, error estimates, and numerical experiments), as our primary
focus is the study of the original formulation.
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3.2. Existence and uniqueness of solution of the original formulation

In this section we discuss how the well-posedness of formulation (3.1) follows from the existence of a solution
of (A.2). First we recall that u® is the structure velocity, so the displacement solution can be recovered from

t) :y570+/0t ub(s)ds, Vre(0,T]. (3.2)

Since uf € L*(0,T;V;) (in Appendix A), then yf € Wh=(0,T;Vy) for any Y50 € V5. By construction, uf = a,yf
and yf(o) =Ys50-

Theorem 3.2. Assume (H.1)-(H.3). Then, for data fg € W"'(0,T;L?(Qs)), fp € WH1(0,T;L2(Qp)),
6 € Wh(0,T; W), and (u}(0) = uyo,u7(0) = u0,¥5(0) = y; 0,45 (0) = us 0, pF(0) = p*0) € Vs x V, x
Vi x Wy x W, where (uf70,uno,ysﬁo,us’o,pp’o) are compatible initial data, there exists a unique solution
W= (0,T;Vy) x Wh=(0,T;V,) x W= (0,T; V) x W= (0, T; W) x L (0, T;W5) x W= (0,T;W),) x
L= (0,T;A) solving (3.1).

Proof. We use the solvabilty of (A.2) to establish that of (3.1). Let (%, ) (see Appendix A) be a solution
to (A.2), and define yf as in (3.2) so that u = 8,ys The only difference between (A.2) and (3.1) lies in
the terms af (yf,wP) versus b, (VF,6F). Selecting the terms in (A.2) with T° € Z, where Z = ]qum(Qp),

we obtain (J; (AO'P —&(y})),7%)q, = 0. Since &(V,) C Z, it follows that J,(Ac® — &(yF)) = 0. Integrating
from 0 to ¢ € (0,7] and using O‘P(O) A™ £(ys (0)), we conclude that 6°(r) = A~'&(yF(1)). Consequently,
bsig(VE,0°) = (6, €(vF))q, = (A~ s(ys) e(VP))q, =ab (yF,vP), so that the bilinear and linear terms in (3.1)
follow as in (A.2). Thus, (uf, uf,yo+ Joub (s )ds ub ps ,pP A) solves (3.1) and, in particular, u® € W;. O

Next, we provide a stability bound for the solution of (3.1).

Lemma 3.3. Assuming sufficient regularity of the data as well as (H.1)—(H.3), there exists a positive constant
C (possibly depending on K, x,pr,Ps, Ap, ls, Up, §, OBys,Ck ) such that

P2
I

S22 P2
||ufH “(O,T'LZ(QS )+||ur H o

=(0,T:L2(Qp) )JFH)'A ||L°°(()TH'(QP ) +||1’ ||L"°(0TL2(QP o+ [l (0,1:L2(Qp))

p Si12
HL2(o T:L2(Qp)) +lp ”Lz(O,T;LZ(Qs))

P
+ [uf - atyS’LZ(OTBJS +[u; ‘LZ 0,7;BJS) +||uf||L2(OTH1 QS)+||"
2
+11p* ||L2(or 12(0p)) T HAHLZ(OAT;A) S ||fP||L2(O,T;L2(QP)) + HszLZ(o,T;LZ(Q)) +1101720.7:22(04))
[43(0) 1506 + 125 (0115, + 155 (0) ||%,szp +1127(0)5 0p + 15 (0)15.0p

where we introduced the notation |v|? 12(0.7:B3S) =[5 |v[3;5 ds.

Proof . We test the system against y = (u* U uP 9, y" uP pS pP 1) and add the first three equations. Using the
inequality (A.14) and we can derive the following estimate

1
Eat<(Ps(1_¢)“fvuls))QP+(\/pf¢(“}r)+“§)>\/Pf‘P(“rP"‘“?))+((1_¢)2K PP 0" g, + (prufuj)
+(2up£(yf),€(ﬁ))gp+(/1pV’yf,V~yf)szp)+|uf AP oy + [1F [y + (921l utf) (33)

+ (znufe(ui'%e(ujsf))ﬂs < <vau]S">QS + (pprv u.I:)QP + (pf¢fP7 U )QP + (2pf¢fP7ur)Qp + (pf_'leapP)Qp

Applying Young’s inequality with £ > 0 to RHS3 3), together with hypotheses (H.1)—(H.3), Korn’s inequality,
and the estimate p ¢ [|uf +u} (5 o, > Pr ¢ (% [} 115, — ||uf|\%ﬁgp> , and integrating in time over (0, 7] for any
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t € (0,T] on LHS(33), with ¢; and ¢, data-dependent, we combine lower and upper bounds to obtain an
estimate. Taking the supremum over ¢ € (0,7 and using [ @(s)ds < T ||@||«, the desired result follows:

alk

S2 P2 P2
(Cl - CZTEI) (HufHL""(O,T;LZ(QS)) + ||u L”(O,T;LZ(QP)) + HYX ||L°°<O,T;H1(Qp)) + ||p ||L°°((),T;L2(QP))

t t
P2 S P2 P2 S|12
+”“S”L°°(0,T;L2<Qp>)) +Cl/0 ‘“f_a’ys|ms+c1/0 |, |5 ds+ (1 _6281)”ufHLZ(O,T;Hl(Qs))

P2 &2 2 2 2 2
+c1u, ||L2(0’T;Lz(gp)) < o (HfP||L2(07T;L2(QP)) + ||fs||L2(o,T;L2(gS))) + 8*1H9||L2(0,T;L2(QP))

+eaer (1w} |20 70200 + 1P°200.722(05))) + 2 (13(0) 15 0 + 127 (0)115.0p + 1¥5 (O)1F
+11P°(0)15.0p + 1145 (0)]15.0p)- (3.4)

Finally, we use the inf-sup condition (A.5b) for pg, ﬁp,i together with (3.1) and then using the continuity
bounds in Lemmas A.1 and A.2, and applying integration in time, we have

t t
S|12 P2 2 ~ S12 P2 S12 S P2
& [ (I7°F s + 1773 00 + IAIR) ds < Cea [ (151 oy + 115 0+ 15 8 o + 15 = 25 s

+ [ IBss + £l 05 + 1 fe R 0y ) ds. (3.5)

Adding (3.4) and (3.5), and choosing & and & small enough, readily yields the desired result. [

Corollary 3.4. Assume (H.1)—(H.3). Then, there exists a unique X in W' (0,T;V) x Wh=(0,T;V,) x
W(0,T; V) x W= (0,T; W) x L= (0,T;Wy) x Wh=(0,T;W,) X L™(0,T;A), solving (3.1).

Proof . Let Ec'i, i=1,2, be two solutions of (3.1) with the same data. Subtracting both weak formulations yields
homogeneous initial data and zero RHS. Consider X = ¥' — % and substitute ¥ instead of ¥ with homogeneous
initial data and forcing terms in Lemma 3.3. This gives that the solution to problem (3.1) is unique. [

4. Semi-discrete formulation

Suppose that ﬂhs and ,?hp are shape-regular quasi-uniform partitions of Qg and Qp, respectively, both
consisting of affine elements with maximal element diameter 4. The two partitions may not match at the
interface X. For the discretization of the fluid velocity and pressure, we choose Inf-sup stable Taylor—Hood
FE spaces V¢, C Vy and Wy, C Wy. For the discretization of the generalized Biot unknowns, we define
Xk ={qeC(Q): qlx €Px(K) VK € ,} where P,(K) denotes the space of polynomials of degree k > 1
defined over K. With them, we define the following conforming discrete spaces:

119 ]9 k ¢
Vo=V XS Vo= Ven X Wou=WonxE W =won [XE]
On V;;,V,; and V, ;, we prescribe homogeneous boundary conditions on I's and I'p, and the discrete space
for the Lagrange multiplier is A, = V., - np|x, equipped with the norm || - ||, = || - ||H_]/2(Z).
00

The first semi-discrete problem reads: find ¥, € W1 (0, T;Vfﬁh) x Whe (0, T;V,’h) x Whe (07 T;VSJ,) X
W= (0,T; Wy ) X L= (0,T; Wy ) x W (0,T; W), 1) x L (0,T; Ay), such that

E(9X,¥;) +H(E,¥1) = F(¥), 4.1

for all §, € X;,. The initial conditions u$;,(0),uf,(0),y7,(0),uf,(0), and pj(0) are suitable approximations

of uro,urp,y,0,Us,0, and PP, respectively. To prove that (4.1) is well-posed we follow the same strategy as in
the continuous case.
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As a corollary of Theorem A.18 and Remark A.19, we obtain the following well-posedness result for the
original semidiscrete problem (4.1) The proof is identical to the proof of Theorem 3.2.

Theorem 4.1. Under the same assumptions as Theorem A.18, and compatible initial data in Vs, XV, X
Vin X Wy x W, as above, there exists a unique solution X, € Wlhe (O,T;Vﬂh) x Whe (O,T;Vryh) X
W= (0,T: V) x Wh (0, T3 Wy ) x L (0,T; W) X W (0,7 W), ) xL2(0,T;A) of (4.1).

The proof of the following stability result is identical to the proof of Theorem 3.3.

Lemma 4.2. For the solution of (4.1), assuming (H.1)—(H.3) as well as sufficient regularity of the data, there
exists C(K,%,pr,Ps, Ap, hr, p, @, Oys, Ck) > 0 such that

S P P P P
||uf,h||L“(()_’T;L2(QS)) + ||unhHLN(07T;L2(QP)) + ||ys,h| LW(O,T;HI(QP)) + th HL"“(O,T;LZ(QP)) + Hus,h||L°°(()7T;L2(QP))

S P P s P S
+ ‘uf,h — Y5 L2(0.T:BIS) + |uy, |Lz(07T;BJS) + H“f,h”Lz(g,T;Hl @s) T +H“r,h||L2(O7T;L2(QP)) +1Ppll20,r:2(0)

+ ||p£||L2(07T;L2(QP)) 1Al 20,7:0) S IFpll20, 702000y + sz 0 m2(0)) + 1011200, 7:02006))

+ 112451, (0) o, + [l (0 lo.cp + 15 (0) 1.0 + 121 (0) lo.2p + 1245, (0) 0.2

4.1. Error analysis for the semi discrete scheme

In this section we analyze the spatial discretization error. Let k¢ and s¢ be the degrees of polynomials in V¢,
and Wy, let k, and s;, be the degrees of polynomials in V,;, and W, ;, respectively, and let k; and s, be the
polynomial degree in V, , and Wy ,.

4.1.1. Approximation error
Let O 1,0p 4, and Q, ;, be the Lz-projection operators onto W, W, ,, and W ;, respectively:

(p°— Qf,hpquz)gs =0 Vg, € Wy, (4.2a)
(P* = 0pnr” . di) g, =0 Yy € Wy, (4.2b)
(uf —Q,put, v§h>QP =0 Wh, € Wy, (4.2¢)

These operators satisfy the approximation properties [38]:

1P° = Qrar®lloos < TR |l 410 0<r, <s, (4.3)
1P" = Q" llogp < CHH PPl 1,00 0<r, <sp, (43b)
g — Qs [lo.0p < CTA™ |1l |1, 41,0 0<rg <sy. (4.3¢)

The definition Ay, = V.5 ~np{): implies the following approximation property [48, Appendix A]
] -
12— Q2 plla, < Ci "2 Al > —1/2 <1, <kp—1/2. (4.4)
Next, for all v?- € V¢, we define a Stokes-like projector (Sf’h,Rf’h) V= Ve xWep,as

ajsf (Sf'7hvﬁc,vfr’h> - bjsc (vjsf’h,Rf’thSc) = a)Sc (vjsqv;’h) Vv%h € Vi, (4.5a)
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b} (Syavi.ay) = by (vi,qy) Vg5, € Wi p. (4.5b)
The operator Sy, satisfies the approximation property [4, 31]:
v} —Syavilliag < Crh™ ||v§-||,kf+mS 0< re, <kp. (4.6)
Let IT,.;, be the Stokes projection onto V,.;, satisfying for all wev,,
(V-IL,v ;) = (V-V).q;) Vg, € Wy, (4.7a)
<I'I,,hvf . np,vlzh . np>Z = <vf . np,vlzh . np>Z Vvih €V, (4.7b)
We will make use of the following estimates regarding IT,.;,:

||VrP — thvl:H(),QP < th’kp+1 HVI:HH,-,(I)H 0< Tk, <kp, (4.8a)

(Qp)

| TL,v <Ct ||v‘,’}|179p. (4.8b)

alrs

Finally, let S, ; be the Scott—Zhang interpolant from V; onto Vj 5, satisfying [41]:
195 = Ssn¥s lo.0p +h1Y; = Seays |y g, < CHRS Iy 1.0 0 <1 < ks 4.9)

4.1.2. Construction of a weakly-continuous interpolant

In this section we use the operators defined above to build an operator onto a space with weak continuity of
normal velocities. Let us consider

U= {(vfc,vrp,wf) erxV,sz:v?-ns—i—vl,)-np—f—wf-npzo onX},

U, = { (v?-’h,vlzh,wzh) S Vf_’h X Vr,h X V&h tbr (v§~7h,vih,WEh;Hh) = O,Vuh S Ah} .

We will construct an interpolation operator I : U — Uy, as a triple I, (v, v}, wY) = (Lzv3, Lyvy, I pwh), with
the following properties:

br (L vy, vy LWy piy) = 0 Vi € A, (4.10a)
b} (Lpvy —v3.q;) =0 Vg, € Wy, (4.10b)
by Ly —v),q,) =0 Yap € Wy (4.10c)

We let I, ;=S¢ and I , := S ;. To construct I,.,, we first consider an auxiliary Stokes problem
—AL+VpS =0 and V-£=0 in Qp, 4.11)
{=0 onIp, and & -np= (v? _If7hV§) ‘ns+ (w —Lwt) -np onX.

Define w = § +vF. From (4.11) we have

Vaw=V.-L+Vaf=v.l in Qp, (4.12a)

wenp={§ np+vy-np=—Ipvi-ng—Lwy -np onX. (4.12b)
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We now let I,’hvrP = II,,w. Next, we verify that the operator I, = (If,h,lr,mls,h) satisfies (4.10a)-(4.10c).
Property (4.10b) follows immediately from (4.5b), while, using (4.12a) and (4.7a), property (4.10c) follows

from

(V . I,7hvl:,q£)gp = (V . thw,qg)gp = (V . W,qZ)QP = (V . VE,QE)QP ng S W,,Jl.

Using (4.12b) and (4.7b), we have for all u, € Ay,

<Ir,hvl:-np,llh>z = (yw-np, i)y = (W-np, i)y = <—If,hvjsr'ns —Is,hwf-np,#h>27

which implies (4.10a).
The approximation properties of the components of I, are the following.

Lemma 4.3. For smooth v?,vf, wf, and for 0 < Tk, < kp, 0 < ur <kys, 0 <r, <k, there holds

v —Trvilias < thrkaV?Hrk 1,055

P

st 7IS,hw}:||O,QP +h ’wl: sth‘l Qp < thrk‘d—l ”wEHi’ks-ﬁ-l.,QP?

IV} =Ty llo.cp < CHOA™ W7 L, 1,00+ V3l 1,05 0% WY 1 1.0)-

Proof . The proof follows the approach of [4, Lemma 5.1]. [J

4.2. Error estimates

(4.13a)
(4.13b)

(4.13¢)

Theorem 4.4. Assuming (H.1)-(H.3) and sufficient smoothness for the solution of (3.1), the solution of (4.1)

with w5, (0) = Ty pupo, up,(0) = Lattro,  ¥0,(0) = Lipyso,  uE,(0) = Qspttso, and pj(0) =

satisfies

Qr,hpmo

P P P P P P P P
[ — g pll = 0.7:02(00)) + 1P = Prlli=0.1:0200)) +11¥s = Yonllieo.r:m0 @p)) + 18 — sl =072 )

S .S P P S P s P
+ [l — w2000 0g)) + 18 — Wenll 20702000y + ‘ ("f -0y, — (uf,h - alys,h)

PP S s PP
+ |u; *ur,h|Lz(07T;BJS)+||P = Pullzorz@e) TP = Prllzorz@e) T 14 = Aall 20,7500

< cv/erpt) |1 (1081 gt

T, —1 P P P
0 (1812 ety 1 sy 19 s )

. rsj-'rl S
I ) 1

oyt
LA (HP Il OT:H % (@p)) T 3 ||L2 011 (@p)) T 9P I OTH“"“(QP)))
+h's™ (||)’s HLw 0.7:H s (Qp)) T Iy} HLz 0.TH (@) T lys 2 (0,7:H% ! (Qp))
+|9y? ||L°° 071k (@p)) T [ HLz 0.7 H’kﬁ](gp)))

w1 (113,P P
A0 (20 s+ Haf“s 20w+ ary)

+h%" (||7LHL2 o1 (. +|W|Lm 0.1:H " (x +||8’M|L2 OTHkP():)))]’

where 0 <ry, <kp, 0<rs, <sp, 1 <ri, <kp, 0<r;, <sp, 1 <y <k, 0< 1 <5, —1/2§r,~(p

L2(0,T:BIS)

20,7:#" " (Qg))

<k,—1/2.
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Proof . We recall that, due to (3.1), (u?-,urp,&tyf) € U and so (Ifﬁu?-,Ihhurp,ls7h8tyf) € Uy, for any € (0,7T].
We split individual errors into approximation and discretization contributions

e =u —up), = (uf =T p}) + (L} —uih) =Xi+0., ic{f.r}
e =y —yon= (v —Lds) + (Lays —¥on) ==X+ Os
€55 1= uél') - uSP-,h = (uf - QSvhu?) + (Qs,huf - uih) = xss + ¢ss.h7
S— Qf,hPS) + (Qf,hPS - PZ) =Xfpt+ Orpons
. P P _ P P P Py .__
Cpp ;=P —Pp = (p _Qp,hp )+ (Qp,hp _ph) = Xpp +¢pp,h7
e =A—dy=(A—=03A)+ (01— X)) == X2+ Oan-

epi=p"=py=(p

Subtracting (4.1) from (3.1) yields the following error equation

ajsc(ef,v%h) +a?(er,wih) +a§(e_\.,w§h) +a?(er,v};h) +a?(8,es,v1:h) +apys(ey, a,ex;v%h,wih) +a?(8,e_\.,w§h)
+bs (v?-,h’efp) +b5(wih’epp) + bjg(vf,h?eplﬂ +br(v§',h7vil1vwih;ek) - bf(atemqg) - b?(ehqg) - bs (ef,t]]s)
—mg (e, wy ;) —mo(dres,wy ;) —mo(e,,vy,) —mg(dres,Vyy) +my2 i (€r,V)),) + bais (e Vh,) +mp o (Orer, wy ;)

S 2 p—1
+mPp<atess,W§h)+mpf¢(8ter,v1;h)+mpf(atef7vf'7h)+mpf¢(atess7vl’2[1)+ ((1 _(p) K 3,epp,qz>gp :O
NeXt’ Setting v?,h = ¢f,h’v}:‘jh = ¢r.h7w§h = 8’¢S,h’v5h = ¢ss,h7q2 = ¢fp,h7 and qllj = ¢Pp7h’ we get

b (va ¢fp,h) = b? (Xr, ¢pp~,h) = b,l; (‘Pr.,h?%I’P) =0, ((1 - ¢)2K_18,x,,,,, ¢pp’h) =0,

where we have used the properties of the projection operators (4.2b), (4.10b), and (4.10c). Moreover, from
(4.10a) and (4.1) we obtain br (@ ;,9,,,9:9; ,;Pa.4) = 0. On the other hand, by definition of H&)I/z (Z) [48],
there exists w € H' (Qp) such that

(A, w-np)x =||IA]3,, and [wliap = [A]la, 4.14)

This implies that (x4, 9, np)z = (X1,9,, np)x = [ 22 H/Z\h Rearranging terms, the error equation becomes

a]S‘(¢f,h?¢f,h)+a;(¢r,h7at¢s7h)+a?(¢r,h?¢r,h)+a§(&f¢s,h?¢r,h)+a;(at¢s7h7at¢s7h)+a§(¢s,hvaf¢s,h)
+apis(@ .1, 0P 139 .1 0P 1) + O3S (9,15 9,0) + 119 (0r @10 919 4) +mp, (Or s 1919 1)
+1mpro (0191 @p) +1Mp o (1D 1y @) +1mp (@ f 1y @ y) +((1— 0) K0 0pp s Gppon)
—mMe (¢r,h’ at‘l’s,h) — Mg (af¢s,h7 ar¢s,h) - m9(¢r,h7 ¢r,h) — Mg (at‘l’s,ha ¢r,h) + m¢2/K(¢r,h7 ¢r,h)
=+ ot i+ ot Is+ Fe, (4.15)

where the RHS terms are defined as follows
/l = a? (xf7 ¢f,h) +mg (xr’ ¢ss,h) +mg (xrﬂ ¢r,h) +m9(al‘xs7 ¢rh) - mq)Z/K(Xr? ¢r,h) - mpp (aIXss’ ¢ss,h)

—Mpo (alxr’ ¢r,/1) —Mp ¢ (&lxsw ¢r,h) +mg (atxsa ¢ss,h) —Mpro (@Zm ¢ss,h> - mPf»(ale;M ¢f,h)7
/2 = — a; (xr, ¢r¢h) - Cl; (atxm ¢r.h) )
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d—1

d—1
S3==), <.ufaBJS\/Zjl (xf - 8sz> “Trs (¢f_,, - 8t¢s,h> 'Tf,/>2 -X <nufaBJS\/Zjlxr T O Tflj>za
/ =

j=1
= — b (‘Pf,m%fp) +by (atxsa‘Pppah) —br (¢f'7h’¢r»h70;x’l) ’
/5 = _ajPi (xraat¢s,h) (xsaat¢s h) —dy (atxwal \h) fG - _< s nP’XA> _bf(at‘ps’hv)(pp)'
It is important to remark that we have the equation

mpf¢(at¢rh78f¢s i) +mp(1— (af¢ss hvat¢sh) +mp.p (3t¢ss w09y h) +mPf¢(at¢rh>¢rh)
+1mpo (@5 s @pp) +mp (0@ s B )

1
= 50 (VP9 055 G 00+ I1VP 1= 008454l 0

Next, we combine the above equation with assumptions (H.1)—(H.3), inequality (A.14), and the estimate
2 1 2 2 . .
rh T Ossn ||O’QP >prd (j H 0.1 ||0~,QP — H:pmh ||O’QP> , and then use the respective coercivity to get

2
1519 2 59 (1940 + 10,3 00 + 194153 0y + 10001 R0y + 18,0l 00) +[0 4~ 00|
104l ps + 19,415 00+ 110 1411 0 (4.16)

We proceed to bound the terms on the RHS in (4.15). Using Lemma A.1, Cauchy—Schwarz and Young’s
inequalities, as well as (4.14), we have

si<cet( 12, By + 190, By + 108l 0y + 192,13 0 + 192, 1B 0 )

2 2 2 2
1 (11041 0y + 110l + 10,4300+ 19413 0 )

Next we estimate the terms involving @, , in H'(Qp), since we do not have bounds on ¢, in the energy norm
on the LHS. We use inverse, Cauchy—Schwarz, and Young’s inequalities. Taking € = £ h%, we get

S22 el0, R0, +Cer 2102, gy + 112,13 0,). @17

Similarly, using Cauchy—Schwarz, trace and Young’s inequalities, we obtain

S ei(|0— 00| 1 alns) +Cer (121 oy + 100 00 + 12,13 0 ) -

BJS

Finally, using Cauchy—Schwarz and Young’s inequalities as well as (4.14), we can derive the bound

J+Clzlly.  @18)

Ar=Ce! (Il as +192,07 0,) + &1 (197401 0

Combining (4.15)-(4.18), integrating over [0,¢], where 0 <7 < T, and taking &; small enough, gives

2
@7 (t )||OQS+H¢rh( )\|ogp+||¢\h( )||1Qp+|\¢pph( )||09P+H¢“h( HOQP‘*‘/ ‘¢fh P,

BJS

2 2 2
+/0 101|555 + 10,1720 712 (0p)) T 19 7.0l 7200 75110 (26))
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—1 2 2 2 2
< C81 (||aleHL2(()7T;L2(QP)) + foHLZ(o’T;HI (Qs)) + HatstLZ(o,T;HI (Qp)) + erHLZ(QT;LZ(QP))
2 2 2 2
JerrHLZ((),T;I-II(QP)) + ||8IXsHL2((),T;L2(QP)) + ||afxss”[‘z((),]";Lz(Qp)) + ||3rXr||Lz(07T;Lz(QP)>
+fol7||%,2(O7T;L2(QS)) +h72HgtstiZ(O,T;Hl(Qp)) +h72||xr”i2(0~,T;L2(9p)))

+Cll2all 2 O.T;Ah)2+ 0, h(O)H%,Qp +& (||¢fh||i2 0.7:H! (Qg)) T ||¢ssh||i2 (0,T:L2(Qp))

2
+H¢rh||L2()TL2QP +||¢Pl7h||L20TL2(QP +H¢fh||L2()TL2QS +/ ‘¢fh ¢‘hBJS

2
+f |¢,,h|BJs) 11040305+ 1,4(0) 13 0, + 19,4(0) 13 0 + 1954 (0)[32(0

0us(O) o +C [ (S5+ S5) b (@.19)

Taking u§,11(0) = If.huf_’(), uEh(O) = I,’huno, yih(O) = Is7hys70, p;h(o) = Qp,hpp’o, uEh(O) = Qs,hus,O:
gives ¢f,h(0) =0, ¢r,h(0) =0, ¢s,h(0) =0, ¢PPJI(0) =0 ¢ss,h(0) =0.

Next, we bound the terms on the RHS involving d,@, ,. By applying integration by parts over [0,], where
0 <t < T, along with Cauchy—Schwarz and Young’s inequalities, Lemma A.1, and (4.14), we obtain

t t t
/0 /5 ds= Cl? (Xra ¢s,h) ‘E) - /0 Cl? (afxw ¢s,h) ds+ af (XW ¢s,h) ’:) _/0 aél“) (atxs7 ¢s,h) ds
ot
+alj)" (afxs7¢s,h) |6 _/ Cl? (attxs7¢s,h) ds

<C (”atx HLZ(OTHI(QP ) + ||atxs||L2(0THl( ) + HgtthHLz(OTHl(Qp ) + ||¢5h||L2(OTH1(Qp)))
+Ce! (||Xr(f>||1,szp+||Xs(t)||1,gp+Hatxs(f)nl,gp)+€1||¢s,h(t)||1,gp-

Employing again Cauchy—Schwarz and Young’s inequalities, we have

t t r
o —/ (@512, 20) 5 ds+ b5 (D100 Xpp) |i) _/0 b5 (9550 pp) ds

/Ot Fods = (@m0, 20)
<€ (&7 10 0) 3 2 + 190200 220 712(090) * 1922 B0 7:0,))
+ [lxa (f)||/2\h +e1l|@, (1)1 0p + 119, h||L2(0 TH (@)’ (4.20)
Choosing a sufficiently small & in (4.19)-(4.20), we derive the following bound from (4.19)

19 1.1 (D155 + 10O 0p + 11854 O)IF 0 + 191 (1500 + 1955 O 1.0 +19 1 — 99417200 7135

C
Jr|¢rh|L2 0,T:BJS) +”‘I’rh”[} ()TLZ(QP Jr”‘I’thLZ OTHI(QS>) (||foL2 ()THI(QS +||X ”LZ ()TLZ(QP))

+h72||xr||L2(07T;H1(Qp)) + h72||atxs||L2(o7T;Hl(QP)) + ||atxs||L2(o7T;L2(QP)) + ||al‘XSsHL2(().T;L2(QP))
2,1 0p + 1921720 702000 128017200 7220006)) + 12011 0 + 192,017 @ + 122 (IR,

+ 1120 (1) 5

) +C(||&fx ||L2(OTH1( ) + ||anAHL2 0 TA;,) + ||atxpp||L2(0TL2(QP))

+ HattstLZ 0,7;H!(Qp)) + HXI'lHLz OTA,,) + H¢Sh||L2(OTHl(Qp ) + ||8txf||L2(0,T;L2(QP))
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+ HaleHIZJZ(O.T;Hl(QP)))’ (421)

Next, we employ the inf-sup condition (A.23b) with the choice (¢%,4", 1) = (¢fp’h, Opp.is ¢;L’h) and utilize
the error equation derived by subtracting (4.1) from (3.1). We treat the term a? (e,, v':h> similarly as in (4.17).

Integrating over the interval (0, 7] and applying Lemma A.1 along with the trace inequality, we obtain

2 2 2 2
||¢fp,h||L2<o,T;L2(QS))+‘|¢pp~,hHL2(0,T;L2(Qp))+||¢k,h LZ(O,T;A,,) S ||¢f,h‘|L2(0,T;H1(QS))

2 2 2 2
+ H¢r,h||L2(07T;L2(QP)) + |¢f,h - at¢s,h|L2(0,T;BJs) + H¢r,h||L2(01T;L2(QP)) + HXfHLZ(o,T;Hl(QS)) (4'22)
2 2 2 2 2
+ erHLZ(QT;HI(QP)) + ||xr‘|L2(0,T;L2(QP)) + fop||Lz(()7T;L2(Qp)) + ||%I7P||L2(()7T;L2(QP)) + ||X)LHL2(O7T;A;,) .
Adding (4.21) and (4.22), and taking & small enough, and then €; small enough, gives

2

19,4(0) .+ 1924(1) .+ 19,40) .y + 190 Ol + 150 ) By + |~ 30|

+[9. |22(07T;BJS) 1022001200 + 19 4l 0.700 05)) + 195911720, 7:22(0))

+ ||¢pp,h||1242(o,T;L2(gP)) + H¢/1.h||L2(o,T;Ah)2 < C(||¢S,h||i2(07T;H1(QP>)

12122 0,780 gy T 12 122 0 7m0 ) A N9 222 0 700 )+ IR 2 0 702 )
+ ”athHIz}(O,T;LZ(Qp)) + Hatxm||%2<0,T;L2(Qp)) + ||at75r”i2(o,T;L2<gp)) + fop”iZ(o,T;LZ(gs))

12017 ap + 12O ap + 122 ) L + 1 20 5 00+ 19025 0+ 19022 0 7111 )

+ ||atll ||L2(0,T;A,,) + ||at1pp||iz(0’T;L2(QP)) + ”al‘fstLz(O,T;Hl(Qp)) + ”XPPH%,Z(O’T;LZ(QP))
12207, + 19 20 02000 + 192 20 7000 )

Gronwall’s and triangle inequalities alongside the approximation properties (4.3a)-(4.3c), (4.4), and (4.13a)-
(4.13c), imply the result. [

Remark 4.5. We observe that relative velocity and solid displacement exhibit sub-optimal convergence. Their
corresponding blocks in the system matrix diagonal makes it difficult to derive an energy bound.

5. Fully discrete formulation

5.1. Definition and unique solvability

For the time discretization we employ the backward Euler method with constant time-step 7, T = N7, and let
t, =nt,0<n<N.Letdeu" := 17! (u" — u”’l) be the first order (backward) discrete time derivative, where
u" = u(ty,). The fully discrete problem reads: given u%h = u?’h(O), ugh = uf’h(O), y?_’h = yih(O), pI;’O =
ph(0), and u®, = u®, (0), find ¥}, € X, such that for 1 < n < N, there holds

s,h
1., o o . 1,1 .
E(;x’;myh)+H(xlh1’yh) :Fn(yh)+E(;x;lz layh)v (51)

forally, € X, and where F” stands for the evaluation of F at time t,.
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Theorem 5.1. The fully discrete method (5.1) has a unique solution under the assumptions (H.1)-(H.3).

—=n =

Proof . The aim is to show that E( X, %) +H(X),, %) is coercive. Consider

1, . Sa S, 1 P l p pn_p Pn P l p pn P
E(szvxh>+H(xh’xh):ajs‘( fZ’ fZ)+ ( rhn7ysh)+ —4 (y‘v,,;ll’ys,}?)+a?(ur,hn’ur,hn)+;afc(ysj:’ur,;:’)

1 1 1 1
P, . Pn _Pn Sn . Pn,._ Sn _Pn Pn N Pn Pn Pn Pn
+§af(ys,h7ys,h)+?aBJS(uf,h’ys,h’uf'Ji’ys,h)7;’"9( rh’ysh) 2m9(ys,h’ys7h)7m9(ur,h7ur,h)

1 Pn P, 1 Pn P, 1 Pn _P, 1 Pn P,
Tme(ysw rh ) +m¢2/K‘( rf?’urhn) + ;mpfﬁb (ur,i:l’ys,frzl) + ?mpp(us,f’ys,;:) + EmPf‘P(urJf’urJf)

1 S.n S 1 P.n Pn)

) ) 1 2 P.n 1 Pn, Pn
+ ;mpf(uf’h,uf;h) + Empfd) (us,h U )+ E((l —9)°K lph 7ph)QP + ?bBJS(ur,h U )-

We bound some of the terms above using the inequality (A.14). This gives

1 Pn _P, 1 P
;a?(un;’ys,:) (ys h? "

1 1
o Pn P,
”l) Tme(ysh’ rh)+?mpf¢(ur,:7ys,i:l)

1 P,
- ;mg( rhn’ysh)

1 Pn _Pn 1 Pn _Pn 1P Pn Pn 1P Pn _Pn 1 Pn Pn
+Empf¢(usvh’urvh)+?mpl’( h’ySh) Z - ;af< rh ’urh) B ;af(ys,h7ys,h)+ %me(ur,h ’ur,h)

P.n

1 Pn P 1 Pn P, 1 1 Pn P
W A 4 n)_gmpfﬂb( s,h0 sh)+ mpp( xZ’uv,Zl)'

+ 7me Yo Yn) = }mpffl’(“r,h U

By combining both estimates above and using Lemma A.1, we arrive at

1_, . = Snp2 P,
E(- x27xh)+H(xZ,xh)>Huf;ZHmﬁllu C 170+ 1Yen

P2
+ 6.0,

+|"fh ysh|BJS+||ysh
) ) S, P,
+ H“s,'h 16,00 + Py 16,00 + [ llo.05 + |“,"hn|zBJs~

It is clear that all RHS are positive. Hence, the bilinear form on the LHS is positive-definite and consequently
the matrix obtained from the system (5.1) is non-singular. The uniqueness follows from the fact that a linear
system with a non-singular matrix admits a unique solution. [J

5.2. Stability analysis of the fully discrete scheme

In this section we will make use of the following discrete space—time norms

0<n<N

N
2
H¢||12 0.T:X) TZ”‘P HXa ||¢||1°°0Tx) = max [[¢" ”Xv |¢\z2(o,T;BJs) ::TZ|¢|BJS'
n=1

Lemma 5.2. Under assumptions (H.1)-(H.3), the fully discrete solution to (5.1) satisfies

S 2 P P P P
H“f.hle(QT;LZ(QS)) + ||ur,h||l°°(07T;L2(QP)) +1ph HIN(O,T;L2<QP)) + ||ys7hHl°°(07T;H1(QP)) + Hus,h||l°°(07T;L2(Qp))

S P P s P p
+ ‘uf,h —dryg, POTBIS) + |ur,h|12(0.T;Bjs) + [luy 2 (0,7:11 (Qs)) T ||ur,h||12(0’T;L2(QP)> + llusulli20,7:02(00)
+ HPhHIZ 07:12(Qs)) T ||ph||12(0TL2(QP ) T Anlli20,7:0,) < (||fP||12 o) T I1fsllzor2)

0 P,0 0
+ 152al11.20 + 125 lo.cp + 124005 )

0 0
10l 20.7:2(00)) + U7 allo.0s + [0

where C (K, k, Pr,Ps, Ap, s lp, @, ays, Cr,Cr,Ck ) is a positive constant.
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Proof . We choose ¥, =X}, in (5.1) and using (A.14), we have

no S

Sa S, P, P, 1, Pn P, P, P, S
a]Sc(uf;Z,uf,Z)+a§(ys7:,d,ysﬁ)—|— ((1—¢)K ld’ph " PP ey _|_mp_r(17¢)(drusf,zydr)’sff)+mpf(druf,h,uf_’,,)

Pa Py (P P, S, PaSa P, P P, Pa P,
+mppg(de(u, )y +ugy), (u ) +ugy) +ais Wy, deygysuyy, dey o)) +beis(u,54,5) +meo (01,5

S, P, P.n P.n — Pn
=( ’S‘l?uf;Z)Qp + (prﬂdr)’s,;:)gp + (Pf¢f3,dr}'s7h Jop + (2079 f3, u,, )ap + (Pf len,l’h )Qp-

Now, as a consequence of the following identity
n n 1 n||2 1 7|2
T"d. X" = Sde||[Y"[[5 .0, + 5Tl Y" (15,05 (5.2)
Qp 2 ’ 2 ’

we readily obtain an energy inequality. By using Cauchy-Schwarz and Young’s inequalities, together
with Lemma A.l under assumptions (H.1)-(H.3), and using the estimate pso ||uf, Jruth(z)QP >

pro (%HuEhHéQP — HuEhHéQP) we then sum over n = 1,...,N and multiply by 7 to obtain

N
SN2 PN 2 PN |2 PN |2 PN 2 S, P2 P2
[y 6,05 + 1), 10,00 + 1Y T.0p T 120" 0.0 + 1455 0,05 +7 Y (s — dey iy [Bas + 11, [s
n=1

N
P2 S, i2 2 S,n 2 P2 P2 P,n 2 P2
+ ||’4r,hn||0,szP + ||uf7Z||1,QS) +7 Z(Ildruf,Z 0,05 + ||dr“r,h"||0,szp + ||drys7;,l\|1,gp +ldep)," 16.0p + \|dr“§7:||o,gp)
n=1

N
PO _
S (||“?f,h||%,szs+||“(r),h||(2),9p+H)’(s),h||%,szp+||l’h' ||(2),Qp+||ug,h||(%,gp+5l 1TZ(||fP(fn)H%,Qp+||9(fn)\|(2).szp
n=1

N
S, P, S, P, P,

n=1

Next, employing the inf—sup condition for ( p:’", p}:’", A}l), in a similar way, we readily obtain

N
S, P,
et ) (Ip5" R, + 105" R, , + 1471%,)
n=1

N
~ S.ny 2 P2 S.n P.n 2 2 2
<Cet ) (llupylias+lu 5.0, + U7, —dey 3 Tass + [ fst)ll6.05 + [1Fp ()5 0p)- G4
n=1

Combining (5.3) and (5.4), and taking & and in turn € small enough, we obtain the desired result. [

5.3. Error estimates for the fully discrete scheme

Theorem 5.3. Assuming (H.1)-(H.3) and sufficient smoothness for the solution of (3.1), then the solution of
the fully discrete problem (5.1) satisfies

s _ s P_ P PP P_ P
w7 — s ull2 0700 (0g)) + 18 — Urplli= 0,200 + 1Y = Yonlli=o.r:m0 @) + 1P = Prlli=0.7:22(00))
P_ P P_.P s P s P
+ g — vyl 0,702 0p)) + 118r = Uepll 20,702 0p)) + (W5 — deys) = (U3 — deys )l 2 0.7:815)

P_ P S S P_ P
+ [uy —“r,h\ﬂ(o,T;BJs)‘f‘HP —Ph||12(o,T;L2(QS))+||P _ph|‘12(O,T;L2(Qp))+||)“_)“h”lz(O,T;Ah)

Tk S S
< VBT 1 (185 it 1985 )
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1 P P
R ([ ug 2 (0,7:Hs 1 (Qp)) T [9ruy |2 o,T;H'sﬁl(Qp)))

e, —1
+H ([l e )+ lowr]

2o.rH " (Qp 12 OTH'kP“(Qp)))

opt1
+H ([P

I=(0,T;H'* (
.71 (@p)) T Ip* ||12<0,T;H’w“<szp>> +lop” Iz (O,T;H”v“(sm))

—"_hrksil(”ys Hloo ()TH'k5+1(Q +||ysH120TH’kS+1 +||atys||L2 OTHrkSH(Qp))

p))

+||ay? HLOQ 078k (Qp)) T (A ||L2 0.7 kaﬁ‘(gﬂ))

+ 1|8 +h’kﬁ2<uxn ) FIAl y T IoAl

2o.r:H" ! (Qg)) 2(0,T:H " (= 12(0.T:H " (= 12 OTHkI’(Z)))]

+ T 19yy |20, r:0m (@p)) 11095 220,712 (0p)) + 19035 (0.8 (0p)) + 1100035 220,710 (00p))

+ 11908 | 20 712 (p)) T 110 20 722(0)) + 1962”200 7:22(00)) + ||aﬂujsf||L2(0,T;L2(Qp)):| :

whereogrkfgkf,Ogrsfgsf, 1<r, <kp, 0<ry, <sp, 1 <1y, <y, 0< 75 <5, —1/2§r,;p§l}p—l/2.

Proof . We split errors into approximation and discretization errors similarly as before. Subtracting (5.1)
from (3.1) yields the error equations. Let r, denote the difference between the time derivative and
its discrete analogue r,(0) = 0;0(t,) — d:0". The proof follows that of Theorem 4.4: First, substitute

(v%,uvlzh,wzh,vih,qﬁ,qg) = (%1, Onde®sp O 97,49, ) in the error equation, split the individual
errors, and apply the properties of the projection operators. This procedure gives

ay <¢?,hv¢?,h) (914, de @0 y) +ay (874, 974) +af (dedfy, @)y) +af (de@) )y, d=07 )
ag (95, de®0y) +mpo (dedlly, dedly) +mp, (de@l g dedlp) +mpsg (deh)y 8)1)
+mp, (de®3 5,95 1) +mpso (Aol 1, 001) + (1—0)°K ' dey, 0 (b[};lp,ll)QP —mg (97),,d:97 )
—mg (de@5 ), dedt ) —mo (975, 974) —mo (de@ ), 971) +mg2 s (07,97)
s (94 Al 04 de 0L ) + biss (913 0Ly) = 6+ 2, (5.5
where

&:=—d (x;,¢;.7,,) —db (20, 00,) —ab (dexl, 00) — anss (x?,dfx?;fp?,h,dm?ﬁ) —beys (23 97)
-’ (‘P?,h’?{?p) br (¢f B ¢rh,0,x2) +by (drx?7¢,'}p,h) +me (X, d: 95 ,) +mo(deXs,deds )
+mo(Xy, Opn) +me(de Xy, 8r) —my2 (X7 075) —mppo (deXy  de@y ) —mp, (de X, d= 95 )
—mp o (de X, O01) —mpyo (de X, O71) —mp, (deX 87 1) — @ (ra(), 91) +mo (ra(3), =97 )
+mg(ra(ys), 00) —mpo (ra()),de®? ) — mp, (ru(yy), de@’ty) — mp o (ru(uy ), )1)
—mp o (ra (), 973) + 65 (ra(0)), Oy ) — (1= 9)°K ™ ru(p), Do) ap — mp, (ra(43), 9% ),

H=—a (x!,ds n) —ay Y (x).d- 0} n) —dy (dex!,d:9" ) — by (d:0% 1 xpp)

- Cl? (rn (yfv))?df"’?,h) — aBJs (0, Tn ()’Eﬁ ¢;l',h7df¢?,h> - br(0,0, dT¢g,h;XX)'
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Using inequality (A.14) and identity (5.2), together with assumptions (H.1)-(H.3) and the estimate
pro |0, + o shHOQP >prd ( |7 hHOQP || @ ‘hHOQ ) the left-hand side of (5.5) becomes

1 2 2 2 2 2 2
LS5 25z (1970 0y + 10518 0, + 102413 0, + 105413 0y + 110541305 ) +5 (Ide7 4113 g

2 2 2 2
+|de 971 110.0p + 15 1117 0p + [1de @y, 4ll6.0p + ||df¢?s,h||0,szp) + —d. 95, BIS
2
+ 10055 T 1074 ll0.0p + 1% 4117 0
Now, we bound the terms on the RHS similarly as in Theorem 4.4. This yields
& <& (1217 as + 122117 op + lde22 17 0p + 127116.0p + 14z 2 115.0p + 1425115, 0p + 14221115

2 2 2 2 2 2 2
+27 0.0 + HZ;VEHLZQ) + [|de 2t 115,05 + ||rn()’§)\|1,gp + ||Vn()’§)\|0,szp + ||Vn(uf)||0,gp + ||rn(“f)||o,gp

Py |12 S\|12 2 2 2
+1ra(p") 16,05 + Ira () [5.05) +CllAR A, + €1 (107 4111 05 + 1874150, + 105,

2 2 2
+ ||¢:l,h||0,§2p + |¢:l,h{BJS + H¢[’:])JlHO,QP)' (56)

2
”’ BIS

Combining (5.5) and (5.6), summing over n = 1,..., N, and multiplying by 7, from Lemma A.1 we get

N
2 2 2

+||¢ ||09P+||¢ ||lgp+||¢pph||0ﬂp+||¢Uh||0,gp+f Z(Hd7¢;’”,h”0,ﬁs+Hd‘5¢:~l,h”0,£2p
n=1

2
+ ’¢ h|BJS + ||¢;th%QP

2
h

N
2 2 2
+ldeds i ll1.0p + 1dedpy 1llo.0p + Hd1¢?s,h||o,gp) +7 Z (
n=1

2 2
+1197110.0p + H¢?,h||1,gs> < C{”‘P hHO O T ||¢rh||0,§zp+ H¢ + ||¢pp,h||0 op 110 vh”O Qp

TZ (HZ/||1QS+||Z ||1szp+||drl ||1$2p +1x7 ||0s2p+||drls||ogp+||drlss||ogp+|\drxf||oszs

2 2
+ () 15,05 + 7 () 15 0,

2 2
+ Hdrxfno,gp + Hl?pHo,Qs + ||rn()’§>||1,szp + 1l (¥5)

N
2 2
)+ert Z(”‘P;,h“l,gs +11¢5 + (|95 Yh||OQp+ 19741150,

Py (12 S\ (12
Fllra(p)6,0p + 7 (u7)

2 2
+‘¢;l‘,h_df¢?,h +‘¢2h|BJS+|| h||09p+||¢pph||ogp +CTZ HMHA, +)|. (5.7

BJS

Next, for each term in ., we use the summation by parts TYN_| (0 (ta),d9%,) = (v (tn),9Y,) —
(v(0),09,) — TN/ (drv",9},), where v is any of the functions in .. Then, we apply Cauchy—Schwarz
and Young’s inequalities to obtain

M=

T

€ 1 g N=1
(U(fn)adrﬂ,h) < EHWS\{hH(z),QP+27,1HU(IN)||<2),QP+§ Z 9%
n=1

n=1

N—1
+5 (1804150, + 10050 +7 Y 140" (5 qp)-
n=1

l\)\'—‘
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Next we proceed to bound each term of JZ. It follows that
& N2 ! 2 0 12
T Z H < eognllig, +7 Z 105117 0p +11054ll10p €1 (||Xs I3 op T Pk op T Idex |13 Op
n=1 n=1
+Hlpp||0 opt v ()11 o T 2y ||H 12 QP>> +C(||Xs 13 op T 2207 Qp T llde 22|13 Qp
+2pp 16,05 + Iro 1T 0p + ||X,(1)||?,71/z( ) +7 Z =23 117 op + lde 22117 0p

Hldede 2 17 @ + e [16.0p + dera WO 0p + ey 12 1/mp)

For the initial conditions, we set u? h =1y, huf 0, U l:h = Irhuro ylzh(O) =L4¥,0. P (0) = Qpsp”?, and uPh =
Qs 150, implying ¢(}_ﬁ =0, ¢ f])H h= ¢§ = pp » = 0. And analogously to (4.22), we have

an 190 2s) <:g,r§: (¢fhnlgs+—h2n¢zhnagp+—|¢zhnagp

&t Z ||¢fp h”LZ (Qs)

n=1

+[0%,— dr¢sh|BJs+||XfH1QS+||X ||1Qp+||x ||OQP+||Xfp|ogp+||%pp||ogp+|X}L||21/2>:>

Note that the terms involving d; on the RHS require a special treatment as in [40]. Consequently

TZ HersHlQp‘f‘HdrerlQp+\|drlpp||ogp+”drl/1|| 1/2Qp+||drxs||ogp+||drx ||ogp+||drxss”09p

n=1
+|Idrx§’rH5,QS) S/O (192117 0p + 192,117 @p + 19 X115, 05 + 1922111 /2.0 + 1925 5.0 + 192115 2

2 g + 10213 0 ) -
To bound ||d-d X" ”1 qp» We use the Integral Mean Value and Mean Value Theorems. Therefore
N-1
T Z ||drdrlz||1 Qp = CCS(SSUI;HanXJh Qp-
te(0

On the other hand, regarding the time discretization error, Taylor’s expansion gives

T Z Hrn HHk < CT ||all¢HL2(0THk ’ T Z Hdl'rn HHk < CT ||all‘l¢HL2(0THk(S)) (58)

The assertion of the theorem follows from combining (5.7)-(5.8), the discrete Gronwall inequality [38] for
a, = |¢1ny h 2, triangle inequality, and the approximation properties (4.3a)-(4.3c), (4.4), (4.13a)-(4.13c). O

6. Numerical tests

All routines have been implemented using the open-source FE library FEniCS [1], along with the module
Multiphenics [10] (to handle specific terms related to subdomains and boundaries). The solvers used in this
work are monolithic. We utilized the MUMPS [6] distributed direct solver for the linear systems in the first
three examples and UMFPACK [29] for the fourth example. While the model, the continuous and discrete
analyses are valid also in the 3D case, our numerical tests were only performed in 2D.
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6.1. Convergence tests against manufactured solutions
The accuracy of the discretization is verified using the following closed-form solutions defined on the domains
Qp=(0,1)x(0,1),Qs = (0,1) x (1,2), separated by the interface ¥ = (0,1) x {1}

uf} = sin(z) ( — cos(mx) sin(wy) ) , P> =sin(r) cos(mx) cos(my),

sin(7x) cos(my)
W 1?sin®(47y) — 1x3 cos(4my) ©.1)
r t?sin®(4my) + 2tx3 sin(4my) )’ '

3 2.3
P tx° cos(4my) p [ 0.5t°x°cos(4my) P 201 .
s ( —odsin(amy) )0 ¥ =\ C2Psin(dny) )0 P = F (7 sin(mo)sin(dny)).

The synthetic model parameters are takenas A, = 1, = 4y =10, a5 =1,¢ =0.1, k =p,=pr=K=1,0 =
—0.01, all regarded non-dimensional, as we will be simply testing the convergence of the FE approximations.
These functions do not necessarily fulfill the interface conditions, so additional terms are required giving
modified relations on X:

u,sf ‘ns+ (Ot +uy) -np=my.,, —(6°ns)-ns=— (“?”P) “np +m>237ex =4,
oins+oynp+oinp =m3 o, —(09ns) Tr;= proms\/Z; ' (UF—AY)) - Tp i mi e,
—(ojlinp) “Ty,j = HraBIS \/Eul: “Trj +mg,ex7

and the additional scalar and vector terms mixex (computed with the exact solutions (6.1) entail the following
changes in the linear functionals

F(VJS*") :/Q vajS‘7<m§‘,7ex7ij"Tf,j>Zv F(VE) ::A pf¢va]S‘+<m%,ex’vl:'nP>Zi<m§l,ex’vl:'rf-,j>z7
S P
F(W?) ::/Q prPWE_‘_<m)%,ex7wf+<m§,ex’w5'ff7j>z>2> F([J) = _<m12,exhu'>2'
P

We generate successively refined simplicial grids and use a sufficiently small (non dimensional) time step
7 = h? and final time T = 1, to guarantee that the error produced by the time discretization does not dominate.
Errors between the approximate and exact solutions are shown in Table 6.1. Theoretically, we observe that both
the relative velocity and solid displacement exhibit sub-optimal convergence, but in practice only the relative
velocity exhibits this behavior in our tests. Additionally, the fluid pressure shows super-convergence.

The backward Euler method is assessed for time convergence and verified by partitioning the time
interval (0,1) into successively refined uniform discretizations and computing cumulative errors é; =

(XN tl|s(tnsr) — SZH [) 1/2, where || - ||« is the appropriate space norm for the generic vector or scalar field
s. For this test we use a fixed mesh involving 923915 DoFs. The results are shown in Table 6.2, confirming the
expected first-order convergence.

6.2. Simulation of subsurface fracture flow

This test illustrates the applicability of the formulation in hydraulic fracturing and problem setup is similar
to [3, 40]. Consider a rectangular domain Q with dimensions (0,3.048) x (0,6.096), consisting of a macro
void or open channel Qg filled with an incompressible fluid, and the poro-hyperelastic domain is defined as
Qp = Q\ Qg. The permeability k and porosity ¢ (heterogeneous but isotropic in the xy-plane) are derived
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DoFs| h |H€u§.||12(Hl)| rate |||€ps||12(L2)| rate |H€ur||12(L2)| rate |Hepp\|,z(Lz)| rate

1107 (0.2795| 0.214600 | — | 28.57000 | — | 4.998000 | — | 0.375800 | —
3995(0.1398 | 0.035700 |2.586| 0.900800 |4.987| 0.136400 |5.196| 0.060180 |2.643
15147{0.0699 | 0.009108 |1.972| 0.335000 | 1.427| 0.045020 | 1.599| 0.016930 |1.830
5895510.0349| 0.002272 |2.003 | 0.047570 |2.816| 0.007665 |2.554| 0.004460 |1.924
23258710.0175| 0.000567 |2.003| 0.006113 |2.960| 0.001311 |2.547| 0.001058 |2.075

DoFs| h |Hey_1§||12(Hl)| rate |||eu§||12<Lz)| rate |He,1||lz(H,1/z)| rate

1107 ]0.2795| 0.454600 | — | 0.241100 | — 13.81000 —
3995(0.1398| 0.181500 |1.325| 0.048640 [2.309| 0.297700 |5.536
15147{0.0699 | 0.048740 |1.897| 0.012250 |1.989| 0.080220 |1.892
5895510.0349| 0.012440 |1.970| 0.003070 [1.996| 0.007744 |3.373
23258710.0175| 0.003128 | 1.991 | 0.000763 |2.009 | 0.000654 |3.566

TABLE 6.1 Experimental errors related to spatial discretization
and convergence rates are computed for the approximate solutions
u$, pS.uy,p,ys g and Ay, using P3 — Py —P5 — P! — P; — P} — P
The computations are performed at the last time step.

T| é, | rate | &, | rate | é,p | rate | ép | rate | ép | rate
‘f p r p y s

0.5{0.0293| — |[0.5374| — |0.0514| — |(0.1013| — |1.3238| -—
0.225]0.0146 | 1.005|0.2688 | 1.000 | 0.0231 | 1.150| 0.0504 | 1.008 | 0.5736 | 1.207
0.125]0.0073|1.000|0.1345{0.990 | 0.0109 | 1.078|0.0251 | 1.003 | 0.2645 | 1.117
0.0625|0.0036 |0.999 | 0.0673 | 0.998 | 0.0053 | 1.033 | 0.0126 | 1.001 | 0.1266 | 1.063
0.03125|0.0018 | 0.998 | 0.0337|0.998 | 0.0027 | 1.001 | 0.0063 | 0.999 | 0.0619 | 1.033
0.015625|0.0009{0.997]0.0169 [ 0.997 | 0.0014 | 0.967 | 0.0031 [ 0.996 | 0.0306 | 1.018

T| éu? | rate |||él”]2(1_]—1/2)| rate

0.5]0.1458| — 0.1505 —
0.22510.0729| 1.000 0.0749 1.007
0.125]0.0365 | 1.000 0.0374 1.003
0.062510.0182 | 1.000 0.0187 1.002
0.03125{0.0091 | 1.000 0.0093 1.000
0.015625 | 0.0046 | 0.999 0.0047 1.000

TABLE 6.2 Experimental cumulative errors
associated with the temporal discretization and
convergence rates for the approximate solutions
ujsc,ps,ul:,ph,yf, and uf, using a backward

Euler scheme.

from the non-smooth pattern found in the SPE — 10 benchmark data/model 2'. We rescale this pattern as in

' www.spe.org/web/csp
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[4] and map it onto a piecewise constant field using an unstructured triangular mesh for the poro-hyperelastic
region. Note that the present formulation requires smooth porosity. Therefore, we project both the porosity and
permeability data onto a Py field (Figure 6.1). There are 85 distinct layers within two general categories and we
choose layer 80 from the dataset (Upper Ness region exhibiting a fluvial fan pattern — flux channels of higher
permeability and porosity). No gravity and no external loads are considered and the unstructured triangular
mesh has 1629 elements for the Stokes region and 18897 elements for the poro-hyperelastic domain. In the
poroelastic region we incorporate (U ¢k~ 'u, instead of ¢>k~'u,. The boundary conditions are

Injection: uﬁv -ns = 10, ujsf Tr=0 on Einflow,
stress free: (6hnp) =0, (O‘Enp) =0 on Tjeft,
Normal relative velocity: uf - np = 0 on Xpottom U Zright U Ztop,
Normal displacement: yf -np=0 on Lpottom U Zright U Ltop
Shear traction: (G4np) - T7,; =0, (0%np) - Ts; =0 on Zpotom U Lright U Ztop-

The initial conditions are set accordingly to #3(0) =0, u;(0)=0, y;(0)=0, u}(0)=0and p*(0)=0.
The total simulation time is 7 = 10 hours and the time step is T = 30 s. The Lamé coefficients and bulk
modulus are determined from the Young’s modulus E and the Poisson’s ratio v via the relationships A, =
Ev/[(1+V)(1—-2v)]and up, = E/[2(1 4 Vv)] . Given the porosity ¢, the Young’s modulus is determined from
the law E(x) = 107 (1 —2¢(x))>!. The model parameters are taken as v =0.2, uy = 10, agjs = 1, ps = 1000,
pp =1016, 8 =0, co = 6.89 x 1072, K = (1 — ¢)?/co. These parameters are typical for hydraulic fracturing
[22, 36].

For this test, we use Taylor—-Hood IP’%—IP 1 elements for the fluid velocity and pressure in the fracture region,
and ]P’%—]P’]—]P’%—P% elements for the relative velocity, pressure, solid displacement, and solid velocity in the
porous medium, with continuous IP; elements for the Lagrange multiplier. Snapshots of the approximate
solutions (relative velocity, solid velocity, solid displacement, poro-hyperelastic pressure, and fluid pressure
and velocity magnitude in the Stokes region) for fluid injection into a fractured porous medium using the
SPE10-based benchmark are shown in Figure 6.2. Most leak-off occurs at the fracture tip, where the relative
velocity in the porous medium is largest in the adjacent high-permeability channel. The injected fluid increases
the interfacial pressure, producing the expected channel-like filtration from the Stokes to the poro-hyperelastic
domain, visible in the porous pressure plot on the left of Figure 6.2 with higher values near the tip. The
model also accommodates spatially varying porosity, which explains leakage near the base of the injection
(downward) and an additional upward flow about two-thirds along the tip.

6.3. Channel filtration and stress build-up on interface deformation

We continue our set of numerical simulations addressing an important practical problem. We adopt a similar
setup as in [40]. Consider the domains Qg = (—1,1) x (0,2),Qp = (—1,1) x (—2,0), separated by the interface
Y = (—1,1) x {0}. Even if the present model is stated in the limit of small strains, it is possible to have large
displacements, likely located near the interface (and without violating the model assumptions). We smoothly
move the fluid domain and the mesh to avoid distortions generated near the interface. For this we use a standard
harmonic extension that is solved at each time step: Find d; = d, +d such that —Ad;, = 0 in Qg, d,=d,
on X, Vah -ns = 0 on the walls of Qg, and &h = 0 on the inlet. Note that, in contrast to [40], we are usingA a
homogeneous Neumann boundary condition at the sides. Then, we perform an L2-projection of both d;, and d,
into V, 4+ V¢, and add them to obtain the global displacement d;. We assume that there are no body forces
or gravity acting on the system.

The boundary conditions is as follows, assuming that the flow is driven by pressure differences only. On the
top segment we impose the fluid pressure pisn = Q.Sinz(ﬂ:t), and on the outlet (the bottom segment) the fluid
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FIG. 6.1. Material properties (porosity ¢ (x), permeability k(x), and Young’s modulus E(x)) from layer 80 of the SPE10 benchmark
dataset for reservoir simulations, projected onto a [P field for the poro-hyperelastic sub-domain.
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FI1G. 6.2. Approximate solutions for fluid injection into a fractured porous medium using the SPE10-based benchmark test.

pressure pF, = 0. On the vertical walls of Qg we set u? = 0 while on the vertical walls of Qp we set the

slip conditions yf -np =0 and ulr) -np = 0. The model parameters (all adimensional) are taken as k¥ = 0.005,
)Lp =10, Hp = 5, Pp = 1.07, Pr= 1, apys = 0.1, Uy = 08,0=0,c0=0.02,¢0=03,K= (1 —¢)2/Co.

This example uses the same FEs as before and the numerical results are presented in Figure 6.3. The effect
of the interface is clearly seen in the poroelastic domain. Close to the interface, the relative velocity, the
solid displacement, and the fluid pressure are heterogeneous in the horizontal direction before recovering the
expected constant value (constant in the horizontal direction) expected in the far field. Also, we plot the overall
displacement in the domain. From Figure 6.4 one can see that for large enough interfacial displacements, the
elements close to it exhibit a large distortion.

6.4. Interfacial flow in the brain

To conclude this section, we present a 2D simulation related to brain biomechanics. More specifically, we
investigate how the incoming cerebrospinal fluid (CSF) flow from the spinal canal effects the brain tissues.
In other words, we can say that the chosen problem is motivated by real-world applications like modeling
the glymphatic system, where the brain porous tissue interacts with the surrounding CSF. For example, a
heartbeat creates pressure waves in the CSF around the brain, which then spread through the brain. A number
of mechanical processes constantly affect the brain function: blood entering and leaving, fluid movements such
as CSF and interstitial fluid in and around the brain and spine, pressures inside the skull, brain tissue shifts,
and fluid flow between cells.

Following [18], we represent the brain parenchyma as a 2D poro-hyperelastic sub-domain Qp, and the
surrounding CSF-filled spaces as a free fluid (Stokes) sub-domain denoted by Qg. The sub-domains share a
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FIG. 6.3. Filtration into a deformable porous medium at time t = 2 with 7 = 0.1. The solid line indicates the undeformed domain.

(a) (b) (©) (d

FIG. 6.4. Zoom of the meshes on the interface at times t = 1 (a, ¢) and t = 2 (b,d). We show the results without (a,b) and with (c,d) the
harmonic extension.

common boundary ¥ = Qg N Qp with normal vector ng, pointing from Qg to Qp on X and outwards on the
boundary dQg. The following parameter values are adopted from [18, 25, 46]: us =7 x 1077, agis =1, co =
2x107°,¢=02,K=(1—9)*/co, k=1x 1078, u, =267 x 1073, A, = 26488 x 1073, 6 = 0, py = 1.005,
pp = 1.03. The traction boundary conditions are applied as follows: at the top right (O'JSc -ng = (10,10)) and
bottom right (O'JSC -ng = (1,1)) regions in the axial slices of the brain, and at the top (0'?- -ns = (10, 10)) region
in the coronal slices of the brain. A homogeneous Dirichlet boundary condition is imposed on the remaining
parts of the boundary. The snapshots of the approximate solutions (interstitial fluid pressure, interstitial fluid
velocity, brain tissue displacement, brain tissue velocity, CSF pressure, CSF velocity) for the axial and coronal
slices, which illustrate the interfacial flow in the brain, are shown in Figures 6.5 and 6.6, respectively.

For the axial slices, excess pore pressure in the parenchyma drains across the interface. Under the
considered flow and loading rates, the boundary conditions at the bottom left localize the Stokes pressure
and velocity, producing steep pore pressure gradients and higher velocities in that region. The Biot pressure
then dissipates through the porous domain, with permeation patterns following brain displacement. Near the
top-right interface, displacement is noticeably smaller than in the parenchyma center. In the coronal slices, fluid
pressures in the subarachnoid space (CSF) and parenchyma show a stronger gradient near the top interface,
leading to smooth displacements with slightly higher magnitudes in the top-center region. On average, CSF
pressure remains higher than parenchyma pressure. In both views, interstitial fluid (ISF) velocity within the
parenchyma is consistently low compared to CSF flow.

7. Conclusion

In this paper, we propose a model for the coupling between free fluid and a generalized poroelastic body.
This model is a novel contribution to the field of theoretical and numerical partial differential equations
in interface coupled problems. We employed the Brinkman equation for fluid flow in the porous medium,
incorporating inertial effects into the fluid dynamics. A Lagrange multiplier—based formulation is proposed,
and an alternative formulation is used in which the primary variables are the elastic stress and structural
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FIG. 6.5. Snapshots of the approximate solutions for the interfacial flow in an idealized geometry at 7' = 1 with dt = 0.005. The traction
boundary conditions in the top right and bottom left corners (axial slices), respectively.

(a) porous pressure (b) relative velocity (c) solid displacement (d) solid velocity (e) Stokes pressure (f) Stokes velocity

FIG. 6.6. Snapshots of the approximate solutions for the interfacial flow in an idealized geometry at 7' = 1 with dt = 0.005. The traction
boundary conditions at the top (coronal slices), respectively.

velocity. This formulation serves as a mathematical tool to establish the unique solvability of the governing
equations, and corresponding a priori error estimates for both the semi- and fully discrete schemes are derived.

Theoretically, we observe that both relative velocity and solid displacement exhibit sub-optimal
convergence, but only the relative velocity exhibits such a behavior in practice in our tests. The solid and
relative velocity blocks in the diagonal of the system matrix makes it difficult to derive a bound in the
energy norm. We also conducted numerical validation of spatio-temporal accuracy, and additionally observe
superconvergence for Stokes pressure. We performed tests of realistic applications using this model, studying
the behavior of poromechanical filtration in subsurface hydraulic fracture with challenging heterogeneous
material parameters and channel filtration when stress builds up on interface deformation. The set of tests also
includes a typical application in biomechanical modeling of the brain to study how the incoming CSF flow
from the spinal canal effects the brain tissues. Further perspectives of this work include the extension to the
fully nonlinear regime, as well as other types of transmission conditions that would allow greater generality
in the poromechanical problems we can tackle, together with the development of robust iterative solvers that
would enable the use of this model in 3D scenarios.
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A. Mixed formulation

Following [43], we consider a mixed elasticity formulation in terms of structure velocity and elastic stress. Let

us recall the inverse stress-strain relation
p p
Ao’ = g(y,), (A1)

where A is a symmetric and positive definite compliance tensor. Similarly to y, o in the original formulation,
the initial stress o is determined from p™® using (2.3c). In particular, we will show that 6f = A~'g(y, ).

In the isotropic case AG¥ = ﬁ(cp - ﬁ tr (o)1), with A~'e = 2u,€ + A, tr(€)L. The regularity of the
displacement implies that the functional space for the elastic stress is Z = ]Lgym (Qp) with the norm ||6F |2 :=

Y izt |l G ”(2),QP' The mixed formulation handles (2.4¢) in a different manner. We still test this equation, as

before, against v/ € V and integrate by parts, but we use the constitutive relation (2.3c). This yields

—/Q of :wdx= (O‘P:G(vf)—(l—q))pPwa)dx—/Zcfnp-vfds.
Jop .

.Qp

We remove yb by differentiating (A.1) in time and writing u instead of d,y" € V. Testing against ¥ € Z
gives
/ (Ad67: 7° — & () : 7°) dx = 0.
Qp

The rest of the equations are handled in the same way as in the original formulation, resulting in the same

functionals and interfacial terms. Next, we define bfig(~7 ):VsxZ—Randdy(-,-) : ZxZ— Rby

by (ug,7°) == (e(u),7")q,, ay(c”,1"):= (AO‘P,’L'P)QP,
and then proceed to group the trial and test spaces and functions in the following manner
o= (uy,ub u3), V=iV € V=V, xV,x Vg,
pi= (" 6" . p5 1), G:= (4", 7", ) €0:=W,xZxW;xA,

and use the norms [y := [|uf[lv, +[[u{[lv, + [u}llv,. 15l 5 = lP"lIw, + 6”1z + Ip°[lw, + [ A]|a. With
this, the weak formulation is written as a degenerate mixed evolution problem

& 1u(t) +o/u(t)+ A pt) = f(t) inV’, (A.2a)
o2 p(t) — Pu(t) + € plt) = g(1) in Q' (A.2b)
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where the operators & : V=V . 2:V 50, ¢:0—0,&:V—V,&:0— 0, and the functionals

fe \'4 ,8 € Q’ are defined as follows (where we are also using the notation (%’SPigq, 2)

[ ] — Mo+ H + S
i 0
'%’E 0 0 %ir
B = | B B, 0 PBr
0 0 %5 PBr
_ A
f= 0 0 0
0 0 0

—My+ ,g{fP
Mo+ /F AP
BJS
’Q{fs

& = ///Pftp
0

) € =

0
0
0 [0]4><47
0

= b]:lg(l ) '2)):

0
()

S BIS
Af + Ay

//pfq, 0
'///Pp 0 ,

0

2p9fp
ppfp+pProfp |,
fs

f= g=

SO O D

Lemma A.1. Assuming (H.1)-(H.3), the linear operators <f, & and & are continuous and monotone.

Proof . From Cauchy—Schwarz and Young inequalities, there exist Cy,Cy,C,,Cgys > 0 such that

a (ujsc,vﬁ)
af( uy,vy) —me (uy, V) <

B VE) — a8 e ) <
apys (U5, ub:v§, ) + beys(urv)) <

s s
Crlluflloslvilies:
Cyllu? 11,05 1VE 111,05
Crlla} 1.0 1V) 11020

Coss ([|uf .0 + 17100 + 147l 1.25)

(IvFlIas + ¥ ae + 1V ll10e)

where we have also used the trace inequality. Thus, <7, & and &, are continuous.
On the other hand, there exist positive constants ¢, 0, 0, such that

af(
mg (V)

ay (va"f) 2 O‘f”"f”l Qg
P P)

ro r

ay(v

asJs (vfaw;7va

Vg, Vg

vr)+m¢z/K(v R

P _P P _P
) 9(vs s

P _P

r r)

wh) +bpys (Visv)) > HfOCBJsKmax (|Vf

vs) =

P2
04|V (17,0

P2
> 0 |[vr [l g

wh [3ys + |Vl:|2BJs)7

where we have used Korn’s inequality and Section 3.1. Therefore .o/ is monotone. In addition, from

(619,9) = prollv) + VEH(Z),QP +(1-

we get the monotonicity of &1,&>. O

0oV 30, (4.9 =(1-9)K

TP 0p + 114220 G

Lemma A.2. The operator % and its adjoint B* are bounded and continuous.

Proof . For all v = (vy, v} ,v}) € Vand G = (¢",7%,4% 1) € O we have

S\ S S P P P P P
(B),4) < Ivilliasllalogs + Vi llieellg llo.p + Ve llieplla lo.ge + [V

P
17" llo.cp

P P = —
lla+1ve e l[Btlla +lIvsThie, [lla < [¥llv 114l 5-
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O

Lemma A.3. There exists a constant & () > 0 such that

. b5 (v}.q°) + b7 (9v7.q")
inf sup

>& > 0.
(4°.0.4".0)<0 (£.00%) eV 1(vF,0.v3) I 11(4",0,45,0)l| 5

Proof . It follows from Stokes inf-sup condition [17] and its weighted form in [11, Lemma 14]. [
Lemma A 4. There is a constant &(Q) > 0, such that

br(vP,0,vS;
inf sup aldd ! )

>&>0.
(0.00.1)€0 (.00%) eV 1(vF,0,v3)[[311(0,0,0, 1) 5

Proof . Owing to the Riesz representation theorem, for y € HO_O1 / 2(2) there exists & € Héé : (X) and assuming

ns sufficiently smooth, we have ||& [y )= |l ||a- Let us consider the following problem
00

(=
—AV;+VE=0, V-$;=0 inQs, (A.3)
9jsf:0 onIT, ﬁjsf:éns onX.
Thanks to [34], we can assert that there exists a unique velocity solution to (A.3), for which there holds
197105 < HénsHH&{z(E) SHElA  and  [P7llog < (KA (A4

and so i)?‘ € H(Qs) = {vjsc e HY(Qs) : vy3 = Eng}. In this way, we can choose v¥ = 0 and write it as

P S. 55 g g
" br(vy,0,v};u) C sy Gnsonsop)y (S [lMI > &l
ooy TR0y~ (0.0.%5)]5 19311.0 193hes 1197 ~ S

|17Qs

where we have used (A.4) and hence this concludes the result. [

Lemma A.5. There exist constants §3(Q),84(Q), Es(Q) > 0, such that

inf sup e (7 77) >& (A.5a)
00V (058 e 10O 10.27-0.0)]5 = >

- i bS(v?,qS) +b§ (vE.q") +br (vf,v?,O;u) > g, (Ash)
Fotwdoorney 1050V 0.6 A5 |

inf sup M > &s. (A.5¢)

geoyey PlIgldll —

Proof . By choosing 7¥ = £(vf) and applying Korn’s inequality gives (A.5a). Combining Lemmas A.3 and A 4
implies the result stated in (A.5b). Therefore, (A.5c) follows from (A.5a) and (A.5b). O
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The next result (cf. [42, Theorem 6.1(b)]) is used to establish existence of solution to (A.2).

Theorem A.6. Let the linear, symmetric and monotone operator N be given for the real vector space E to its
algebraic dual E*, and let Ej, be the Hilbert space which is the dual of E with the seminorm

x|p = (N x,0)'/2, x€E.

Let #* C E x E,, be a relation with domain D = {x € E : .#*(x) # 0}. Assume that .4* is monotone and
Rg(AN +.#*) = E},. Then, for each ug € D and for each f € W (0,T;E}), there is a solution of

%(e/l/u(t)) + M (u(t)) D f(t), 0<t<T,

with N/ u e W= (0,T;E}), u(t) €D forall 0 <t < T, and N u(0) = A uo.

Whenever possible we will use the shorthand notation as & = (u, u® ,ufc, pPob), B = (v, v?,qP ,T0).

2 = prollVy +VEIG o, + o5 (1= O)IVEIG o, + rIIVHIG o is
equivalent to ||v1,)||(2)!QP + ||vf||%7QP + ||VJSC||(2)79$. We denote by W,.», W2 Wy, Wy, 5 and Z, the closure of V,
V., V¢, W, and Z with respect to the norms

Note first that the seminorm induced by & is |[¥

17 ,., = (Prous ui)ap, 411y, , = (optts )0, 147y, , = (pruf,uf)ag,
1P 11,, = (1 =9)*K'p", p")gy,  [I2°]Z, := (AT",7")q,. (A.6)

Let Sy := W,2 x W0 X Wy 5 X Wy, 5 X Zy. We introduce the inner product (-, -)s, by

(@.B)s, = (prouy . vi) g, + (Prouy Vi) g, + (Prous,vy) o, + (Pruy.vy)
+(ppus ) g, + (1=9)°K~'p",q") o + (A0, 77)
Next we define the domain D C S, as
D:={G eV, x Vix Vy x W,xZ:3(pS, 1) € Ws x Ast. ¥(¥,§) € Vx 0 (A.8)holds for f € Sh}. (A7)
Setting f = (f,8) = ((frs f5: f7), (8p»8e.0,0) € S, the equations defined on the domain are
(& + A u+Bp=7], (A.8a)
— B+ EP =3, (A.8b)
and the corresponding set of equations are
ay (u},v5) +af(uf vi) +ab (uf,v7) +ab(ul Vi) +af(ul vE) + 5 (vE, p°) + BE (v p¥) + B (ovr . pF)
Hbr (Ve vy V) —m (], v) —me (g V7) — me (U, vy)) —ma (7, V7)) +mg2 e (), v7) + g (u) VY)
+mp, (U5 V5) 1m0 (u) V7)1 (U5, V) g, (U, V) + by (v, 67) + bius (w3 v7) + s (u, 453 v5,vY)
= (Ppfssv) g, + (PrOJrs V7)o, + (PrOSr VY ) o, + (PrO S5, V) )0 + (prfr.vi)as (A.9a)
(19K 'p".q") o, — b5 (5. q") — b (ouy.q") — b°(u},q°) +ap(c”,27) — b, (u], 7")
= ((1-9)’K'8,,0") o, + (A8e: T )p (A.9b)
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br(u},uy,uf:p) =0. (A.9¢)

As there may be more than one ;‘ € §), generating the same ¢ € ID, we introduce (denoting ? —a=(f—
uy, fs—u}, fy —u3,g, — p*, 8 — 6)) the multivalued operator .#(-) with domain ID as

M (8):={f—a cSh:dsolves (A.8) for f € SH}. (A.10)

Next, we consider the problem: given by € W' (0, ;W) ,),h, € WH(0,T; W) ,), by € WH (0, T; W, ),
h, € WH(0,T;W) ) and h, € W1(0,T;25), find & € D such that

a(r)+.# (a(r)) > h(r). (A.11)

SR

where h(r) = (hy(r), b (1), hs(t),hp(t), he()). Using Theorem A.6, we can show that (A.2) is well-posed.

Theorem A.7. Suppose (H.1)-(H.3). For each fq € W'1(0,T;L%(Qs)), fp € WH1(0,T;L2(Qp)), 6 €
W(0,T;W7,), and (u;(0) = uro,uf (0) = uy0,u3(0) = uso,p"(0) = p™°,6%(0) = 6f) € V, x Vi x Vy
xWp, x Z, where (uno,us’o,uf,o,pp’o,O‘g) € D are compatible initial data, there exists a unique solution of
(A2) with wx p € W=(0,T;V,) x Wh=(0,T;V,) x W= (0,T;Vy) x W= (0,T;W,) x W= (0,T;Z) x
L= (0,T;Wy) x L*(0,T;A).

To prove Theorem A.7 we proceed in the following manner. Step 1: Establish that the domain D defined
above is nonempty; Step 2: Show solvability of the parabolic problem (A.11); and Step 3: Show that the
original problem (A.2) is a special case of (A.11). We address each step in what follows.

Step 1: The domain D is nonempty. We first introduce operators that will be used to regularize the problem.
LetRy:Vy = VLR :V, — L2,Lf Wy — W} L,:W,— W;, be defined by

(Ry (u}) ,V5) =g (us,vy) = (€ (u}) ,ts(vf))QP . (Re(u)) V) =1, (u),vy) = (e (u)) € (vf))QP ,
S

(L (%)) =1 (1°.0°) = (1°.4°) g (Lp (P").4") =1p (P".4") = (P".4") g, -

Lemma A.8. The operators Rs,R,,Ly, and L, are bounded, continuous, and coercive.

Proof . The coercivity bounds follow directly from the definitions, using Korn’s inequality [19] for R, and R,,
whereas the continuity bounds follow from Cauchy—Schwarz and Young’s inequalities. [J

For the regularization of the Lagrange multiplier, let (1) € H'! (Qp) solve the auxiliary problem

-V-Vy(A)=0 in Qp,
Vy(A)-n=4 onX, w(A)=0 onIp.

From the continuous dependence on data and trace continuity, there exist constants ¢*,C* > 0, such that
HyMllay < A4l < YA 0. (A12)
Lemma A.9. The operator Ly : A — N, defined as

(Lxd,6) =12(A,8) == (Vy(4),Vy(§))a,,

is continuous and coercive.
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Proof . Tt follows from (A.12) that there exist positive constants ¢* and C* such that
(L2, &) < C[AlAllE NI, (LxA,2) > ¢ A]K, VA& €A,

which completes the proof. [

In order to establish that D is nonempty we first show that there exists a solution to a regularization of
(A.92)-(A.9c) and then send the regularization parameter to zero.

Lemma A.10. The domain D specified by (A.7) is nonempty.

Proof . We follow four steps. o
1. Regularization of (A.8): For ¥ = (v} W{",v}") € V.G = (¢™, 7% g% u') € 0,i = 1,2, define the
operators Z: V— V' and £ : 0 — 0’ as

() = (ROP)AT) + (R (V01) 0P2) = 1y (W 0F2) 1, (VP 072).
P

For € > 0, consider the regularized problem: given (f,g) € S}, determine v, € V,Ge € O satisfying

(ER+E + A Ve +BGe = [ (A.13a)
—BVe+ (L + &) Ge = 8- (A.13b)

2. Existence of unique solution of (A.13a)-(A.13b): We define the map & : V x é — (\7 X Q)’ as

SV _( #+E+a A v
i)~ - B eZ+& ) g |

From Lemmas A.1-A.2 it can be shown that & is bounded and continuous. Additionally, leveraging Lemmas
A.1 and A.9, Assumptions in Section 3.1, and the inequality

—(§a,a) = (6b,b) <2(§a,b) < (§a,a) + (b, D), (A.14)

we can conclude that

v v 2 2 2 S 2 2 S\ (2
(2(2). (3)) zc (ele0r o, +ellewDlRa, +19F Ra, + 1%~ ¥ s + DL s + IO
HIE R+ ela® By + (1 02K a7 IR, + el + 14 R, + 14130, (a15)

It follows that & is coercive. Thus, the Lax—Miligram Lemma establishes the existence of a solution (#g, pe) €
V x 0 of (A.132)-(A.13b), where @, — (u}fg,u};g?u}g) and e = (pE, 6%, pS, Ac).

3. Uniform boundedness: From inequality (A.15) and (A.13a)-(A.13b), we have that

P |2 P 2 S 2 S p 2 p |2 P (2
gHur,&‘”l,Qp+£||us,£Hl,Qp+||uf,£H1,QS+’uf,s_us,slBJs+|ur,£’BJS+||ur,EHO,Qp
P2 S12 21 ,.P(12 P 2 2 S 2
+[10:16,0, T ElIPello.0s + (1 —0) K IPellop + 1usello.0p + €l Aelln + 47 616,06

SC(||fV||O7QP||u§€ 0~,Qp+||fr| O,Qp+||fr|

P P 7 P
0,Qp ”ur,s' 0,Qp ”us,e”O,QP + HfYHOAQP ||ur,8| 0,Qp
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+Hgl7||0~,QPHpEHOA,QP + ”ge”O,QP”G}:HO,QP + ”f.‘f”O-,QP”u?,SHO,Qs) : (A.16)
On the other hand, as a consequence of (A.9b), it follows that 0'5 and v, ¢ satisfy
ay (65,7") =G, (U5, 7°) = (Age,T"),, VT €Z
Therefore, applying the inf-sup condition (A.5a), we obtain:

”uP ” < su M = su ai (GE’TP) o (Ag@7TP)
" e " (0500 [(0,2%,0,0)] 5

(0.22,0,0)e QH(O’TP’O’O)HQ (0,27,0,0)€0

< loelloge + 1Zello.cp-
(A.17)

Combining (A.16) and (A.17), and using Young’s inequality, we eventually obtain

P |2 P |2 S 112 S p |2 p |2 P |2 p
||uS.8||lQP+8Hur8||lQP+|‘uf',8||l,QSJr|uf,87uS78|BJS+|ur,E|BJS+||ur7€||O7QP+||u‘,

71160 + 1515 0p + 11815 0p + 1 76.0p  (A18)

. p
+ 11681505 + 143615 05 < l12pll0.05 [1PE
To obtain bounds for p¥, pg, and A, we use (A.5b). With 7 = (p?,0,p$, A¢) € O, we have

b3 (v§, pg) + b5 vy, pE) +br(vy,v$,0; Ae)
1(vF,0,v)lly

IPEllo.0s + [1PEll0.ap + [|2ella <C  sup
(v,P,O,v?)GV

S ellurellop + 143 ell0s + 1#5ell0p + 136 — uge| 5y
+ |y, !BJS + (| e llo.cp + e llo.p + [ 7lloc + IFrllogs-  (A19)

Employing again Young’s inequality, (A.18), and (A.19), we arrive at

2 2 S 12 S 2

H“];,sHLQp +8||“rp,s||1,9p + (|7 el 0 + ‘uf,s - “];e‘BJS + |“ {BJS + H“reHo op T H“s el Qp T AR Qp
S|2 2 2 S |12 - _

+11Pello.aq + ||Pg||0,gp + [ Aella + lluyell5.04 S ||gp||o,szp + ||fr\|0,§zp + ||fs||0,gp + ng”o,gp + ||ff||0,szs,

which implies that all the quantities [[u}¢|l10ps (45 ell10s> [[#rellogps [Whellogp, [0 ]0.0p IIPEll0.gss
I pEHQQP, and ||A¢]|a are bounded independently of €. Using (A.13a) and the continuity of R, (cf. Lemma
A.8), we can readily see that

luFellr.cn < llurello.ce + u5elhop + 1P loge + |1 Aea + 117 logp + 1 Fsllop + 1 fllos-

Therefore ||u} |10 is also bounded independently of &.

4. Passing to the limit: Since V and O are reflexive Banach spaces, as € — 0 we can apply the Banach—
Alaoglu-Bourbaki Theorem [20] to extract weakly convergent subsequences {Ve,} _,, {Gen},., and

{eVen}, | such that Ve, — ¥ in V, Gen — Gin O, &V, — ¢ in V'. This implies
C+EV+BG=F, &HG— BV =3
Moreover, from (A.13a)—(A.13b) we can infer that

limsup ({&/ Ve, Ve) + (EiVe, Ve) + (62de. Ge)) < f(¥) +§(d) = C(¥) + (£19,7) + (624.4).

£—0
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Since & + & + & is monotone and continuous, it follows (see [42, Def. on p. 38]) that .«7% = {. Hence, ¥ and
g solve (A.9a)-(A.9c), which establishes that D is nonempty. [

Corollary A.11. Under the assumptions (H.1)-(H.3), we have that Rg(I+ .#) =

Proof . We need to show that for f €S, there exists v € D such that fe (I + ) (v ) Let f € S’ From
Lemma A. 10, there exists & € D solving (A.9a)—(A.9¢). Hence, f — ae ///( ),andso f € (I+///)( ). O

Step 2: Solvability of the parabolic problem. We begin by showing that .# (cf. (A.10)) is monotone.

Lemma A.12. Under the assumptions (H.1)-(H.3), the operator # defined by (A.11) is monotone.

Proof . For & € I, it holds that  — & € . (&), and B €S,. Using the definition of the inner product (+37)sy>
(A.9a) and (A.9b) we have

(f—a,B)s, = dy (u3,v}) +ay(w) V) +dy (uy,vy)) +dy (ug,v)) +d (ug, V)
+agjs (uf,uf,vf7 vP) + bpys (ul3vE) +b° (V?‘ p°) +bF (VE, pP) +bf (¢vr.p")

+br (Vi) VEA) —me (u) ,vE) —me (ul ,VE) — me (u} ,VE) — me () ,VY)
+mgz (), V) + b5, (V5,67) — b7 (uy,q") — b (ou),q") —b° (u},q°) — bl (w5, 77) . (A20)

As the model problem is linear, the coercivity of the bilinear forms in (A.20) (cf. Lemmas A.1 and A.5) suffices
to assert the monotonicity of .. [

Lemma A.13. Assume (H.1)-(H.3). Then, for each hy € Wh1(0, T:W5), hy € w10, T;W,,), hs €
WI*I(O,T;W;Z), h, e WHL(0, T, W/ 2) and he € WL1(0,T;Z5), and compatible initial data 6(0) € V, x Vg x

Vi x W, X Z, there exists a solutlon to (A.11) with & € WH=(0,T;V,) x Wh=(0,T; V) xW=(0,T; V) x
W= (0,T;W,) x W= (0,T;Z).

Proof . Applying Theorem A.6 with A" =1, #* = # E =S,,E, =S}, and using Lemma A.12 and Corollary
A.11, we obtain existence of a solution to (A.11). [

Step 3: The mixed problem (A.2) is a special case of (A.11). Finally, we establish the existence of a solution
to (A.2) as a corollary of Lemma A.13.

Lemma A.14. [f ¢ (t) € D solves (A.11) for h= (O,fp,fs,pf_1 (1—9)72K8,0), then it also solves (A.2).

Proof. Let @(r) € D solve (A.11). For h = (fp,fp,fs,p;I(I — ¢)72K6,0), there exists f € S} such that
f— & € .# (&) which satisfies @+ (f — &) = h. Then (%&,B)Sz +(f—a,B)s, = (h,B)s,. From the
definition of (-,-)s,, along with (A.9a) and (A.9b), we can deduce part of (A.2). Equation (A.9¢c), stemming
directly from the definition of D, implies the remainder of (A.2). [

Proof of Theorem A.7 . The solvability of (A.2) follows from Lemma A.13 and Lemma A.14. From Lemma
A.13 we have that & € W'(0,T;V,) x Wh=(0,T; V) x W= (0,T; V) x Wh=(0,T;W,) x W= (0,T;Z).
Finally, the inf-sup condition (A.5b) and equation (A.2a) imply that p5 € L=(0,T; W) and A € L*(0,T;A).
O
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Theorem A.7 assumes that (u 7.0, Ur0, Us 0, pP*O, O‘g) € D. We provide a procedure for obtaining such initial
data.

Lemma A.15. Assume (H.1)—~(H.3) and (p"°,u0,u50) € W), x V, x V. Then, there exist (us,685) € V< Z
and (p5°,Ay) € W x A such that (A.9) holds for a suitable fe S5,

Proof . We solve a sequence of subproblems, using previously obtained solutions as data:

1.Define
Ao = 6 gnp - np|y = (2447 9€ (w0 +us0) np-np — 9 p*) ‘Z <A

(well-defined since 0‘?0 is meaningful for given (p™%,u,0,u50) € W, x V, x Vy). From (A.9a) and (A.9b),
choose the bilinear forms with vF and ¢. For given data Ay € A, choose 8 = 0, boundary conditions on I'p,
and —G?)Onp -np = Ao, —O‘?Onp T = ufaBJsZ;l/ 2 uo- Tr,; on X. This defines a well-posed generalized
Brinkman problem (by Lemma A.1), which is satisfied by the given data (u.0, # 0, pP*O) €V, xVyxWp.

2.Define (uf.,(h pS*O) € Vy x Wy. From (A.9a) and (A.9b), choose the bilinear forms with vjs, and qs, and
set us( - Tr,; = 0 in apys. For given data 4y € A and boundary conditions on I's and —GJS,TOnS “ns = Ao,
—Gﬁ_ons “Tp = ‘LlfaB]SZ;l/zuf_Q -Tr,j on X, this is a well-posed Stokes problem (thanks to Lemma A.1).

3.Define (oF, ur0,¥50) € Z x V, x V5. We choose 6 = 0 from (A.9a) with test function vP, adopt boundary
conditions on Tp and 6} yns + 6% gnp + 61 ons = 0, =65 ons -ns = Ay, =63 ons - 7, j = wpomisZ, usg-
Tr,j on X. Then, owing to Lemma A.1, the elasticity problem

dy(66,7") = by (y50,7) =0 Vi¥ €Z, (A21)

is well-posed. Note that (p5°, pP0 us0,20) € Wy x W, x V; x A are data, and that Y50 is not part of the
initial condition for the alternative formulation, but it will be used to recover y,  in the original formulation.

4.Define a suitable extension for u; o € V. Choose u, o € V; to satisfy (A.9c) and u, o - 7¢,; = 0 on X. Note that
(u0,ur0) € V. x Vy are given as data for this problem.

Then (uy,0,ur0,u50,p™°,65) € Vi x V, x Vg x W), x Z and (p30,29) € W x A satisfy (A.9a)-(A.9¢), with
((1 - ¢)2K_1ppaqp)gp - bl: (u§7qp) - b? (¢u}:7qP) = ((1 - ¢)2K_1g_paqp)gp )
dy (6", 7%) — b, (ug. ") = (Age,TP)Qp,
therefore obtaining the desired result. [J

We will refer to (uy0,ur0,u5,0, ", 64) € VX V, X Vi x W, x Z and (ug0, 40,150, p™°,¥59) € Vs X
V, x Wy x W), x V; constructed in Lemma A.15 as compatible initial data for the alternative and the original
formulations, respectively. It follows from (A.21) that 65 = A~ '&(y, ).

A.1. Mixed formulation for discrete analysis

Let V, , consist of polynomials of degree at most k. The stress FE space Zj, C Z is
7, = {oP €Z: 0|, ePY" (K)?, VK € Z,P}.
We group the spaces (endowed with the continuous norms) as well as trial and test functions as follows

{]h = V,«’h X Vg,h X Vf.h, Oy = Wp,h X Ly X Wf’h X Ap, ﬁh = (u,P’h,uEh,u?h) S Vh,
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= P <P _S A 3 - P P S v = . P P S A
Ph = (phvo.haphvlh) €0n, Vhi= (vr}hvvs,havf,h) €V, Gni= (qhvrhchhauh) € On,

The semi-discrete formulation for the mixed method remains as before, except that instead of seeking yi i We
now seek O'z € W=(0,T;Zj,) from the governing equations. The discrete mixed evolution problem is

O & ity (t) + Ay, (1) + B i (t) = £ (1) in V7, (A.222)
O, ErnPu(t) — By (t) + Chn(t) = g(1) in 0y, (A.22b)

where the operators <, : V; — V;l,%h V), — é;,,‘gh 1 Op — é;,,gl,h V, — V}l,éazih :Op — Q;,, and the
functionals f € V), g € O, are the discrete counterparts of the operators introduced before.

We demonstrate the well-posedness of the mixed formulation and subsequently deduce the well-posedness

of the primal formulation, akin to the continuous case. The initial conditions vlzh (0), vz #(0), v? ,(0),pF(0) and

c},(0) = A~ "e(y; ,(0)) are suitable approximations of v,.0,v;0,vr0,p"" and 6 = A~ '€ (y, ), respectively.

A.2. Discrete inf-sup conditions

Lemma A.16. There exist constants By, B, B3 > 0, independent of h such that

P P P
. bsig (vs.h7 Th)
inf sup

(pr 0)6\7,, (0,77.,0,0)€0, ||(0»V§h70)||f/||(07 TZ,0,0)HQ

s,h

. b5 (v50a8) % (V4o ) b (V505 05100
inf sup : '

(0D (2, 008, )%, 107,205 DIl (0.6 A5

B
inf_) sup <_; (vh)lql1>
dic0y,ev 1Vrllyldnllg

Z ﬁl ) (A23a)

> P, (A.23b)
> Bs. (A.23c)

Proof . Equation (A.23a) follows by choosing T}: = e(vih) and and then applying Korn’s inequality [19].
Equation (A.23b) follows from the Stokes discrete inf-sup condition [17] and its weighted variant in [11,
Theorem 7]. The one for br(-,-;-) can be done as in [37, Corollary 3.5]. Hence, (A.23c) follows from (A.23a)
and (A.23b). O

A.3. Existence and uniqueness of discrete solution

In order to show well-posedness of (A.22), we proceed as in the continuous problem. We introduce W% e W? e

W]%’h, Wi,h and Z}ZI as the closure of the spaces V,;,, V5, V¢, W, and Z;, with respect to the norms (A.6),
and denote S, , = W3, X W?,h X Wj%,h X Wg)h x Z7. Then, define
Dy, = {66]1 S Vr,h X Vs,h X Vf,h X Wp.h x 2y .3 (pi,lh) S Wf.h X Ay, such that
V(¥1,Gn) € Vi x Oy satisfy (A.25a) — (A.25b) for some f € S’zyh} C S (A.24)

Defining f = (f,3) = ((frs fs» f1):8p+8e+0,0)) € S, the equations defined on the domain are

(810 + ) Y+ Bhpn = 1, (A.252)
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~ By + Erpbn = §- (A.25b)
As in the continuous case, we define .4, with domain IDj, as

My (@) =={f — 0 €S}, : By solves (A.252) — (A.25b) for f €S}, },

and for h = (fp, fp. fs pf_l(l — ¢)7?K®, 0), consider the problem

%ah(t) + M, (G (t)) > h. (A.26)
Remark A.17 (Compatibility of discrete stress and displacement spaces). We establish well-posedness
using the stress-based formulation, and derive stability for the displacement-based formulation. In the
continuous setting, these formulations are equivalent due to the invertibility of the stress-strain relation and
the corresponding regularity.

At the semi-discrete level this is more subtle. In the steady case, compatibility between discrete stress and
displacement is not guaranteed [8] (for example, enforcing stress symmetry and ensuring the divergence of
the stress lies in the dual of the discrete displacement space is not possible without specifically designed FE
spaces). Here the stress is reconstructed dynamically at each time step from O'],z = A’ls(y];h), thus stress-
displacement compatibility is maintained throughout the time evolution. Key are the discrete spaces, which
allow us to impose G+ =A’1€(y5 ») strongly. The discrete displacement belongs to Vyj = VN [X,Il‘H]d, where
each component lies in Py, (K) for all K € F¥. The discrete strain s(yih) then belongs to PY™ (K)?*4. In
turn, the stress space is

Z,:={o} € Z: o} |x c PY"(K)", VK € F},

so that s(yf ») C Zy, by construction. Thus, the discrete stress 0'5 = A‘ls(ysh) is symmetric, displacement-
compatible, and preserves the structure needed for the equivalence of the mixed and primal formulations.

Theorem A.18. For each fg € WH(0,T;L(Qs)), fp € WH(0,T;L2(Qp)), W), 6 € WH(0,T; W),
and compatible initial data (ulzh(O), uih(O),u‘?_’h(O),p}j(O), 07(0) € Vo X Vo X Vo X Wy X Zy
under assumptions (H.1)-(H.3), there exists a solution of (A.22) with (ty,py) € WH> (07 T§Vr,h) X
W= (0,T5V, ) x WE= (0,13 V) x W (0, Ts W, ) x Wh=(0,T5Zy) x L (0,T; W) x L(0,T; Ay).

To prove Theorem A.18 we proceed as in the continuous problem: first we show that I, is nonempty, then
we show solvability of (A.26), and finally show that the solution to (A.24) satisfies (A.22). With (A.23a) and
(A.23b), the proof follows closely that of Theorem A.7. The only difference is that the operator Ly from Lemma
A.9 is now defined as Ly : Ay — A}, (Ly M1, Mn2) = (Mn,1, Mn2)x. Furthermore, Ly is bounded, continuous,
coercive and monotone, following immediately from its definition, since (Lz iy, ;) 1/2 = Il [ Ay -

Remark A.19. To satisfy the compatible initial data assumption for 0,(0) € V., X V5 x V¢ 3 X W, , X Zy and
(MEh(O),uih(O),u%h (0)7p1;(0)7y§h(0)) € Vr,h X Ws,h X Vf,h X Wp,h X Vs,h) we take (ﬁh(o)aﬁh(o)) €V, x 0
to be the Dy-elliptic projection of (Uo, Po) constructed in Lemma A.15:
(&n+ ) un(0) + By, 5n(0) = (&1 + ) o + By, o in Vi,
— By (0) + 2,91 (0) = —Bhlio + &4 Po in 0.
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