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Abstract. We consider a time-dependent coupled Navier–Stokes/generalized poroelastic flow
problem and propose a unified and monolithic finite element discretization based on implicit time
stepping. To handle the fluid-structure interface we employ a Nitsche-type formulation. The resulting
discrete problem is shown to be well-posed using the theory of differential-algebraic equations (DAEs)
and the Banach fixed-point theorem. We prove stability and derive a priori error estimates for the
fully discrete scheme. The stability and convergence of the method are ensured by a properly
chosen penalty parameter independent of the mesh size. Numerical tests are presented to confirm
the theoretical convergence rates and to illustrate the ability of the method to capture the coupled
dynamics accurately.
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1. Introduction. Modeling the interaction between incompressible free-fluid
flow and flow through deformable porous media—commonly termed fluid–poroelastic
structure interaction (FPSI)—has attracted significant attention in recent years. This
multiphysics phenomenon arises in diverse applications across the geosciences, biome-
dicine, and industrial engineering, including groundwater movement and contaminant
transport in deformable fractured aquifers, hydraulic fracturing, blood flow in arter-
ies, interfacial transport within the eye or brain, the design of artificial organs, and
the performance of industrial filtration devices.

In the free-fluid region, motion is typically governed by the Navier–Stokes equations,
while the poroelastic medium is modeled by the generalized poroelasticity system,
which may be derived from linearized poro-hyperelasticity. These two flow regimes are
coupled through physical interface conditions: continuity of normal velocity, balance
of normal stresses, balance of contact forces, and, for tangential flow components,
the Beavers–Joseph–Saffman slip-with-friction condition. This formulation gener-
alizes classical coupled free-fluid/porous-medium models such as the Stokes–Darcy
system [17, 22, 25, 26] and extends concepts from fluid–structure interaction (FSI)
frameworks [8, 24] to account for fluid flow within a deformable porous matrix.

The mathematical and numerical analysis of FPSI problems has been addressed in
a growing body of literature, particularly for the Stokes–Biot coupling, where the
Stokes system models the free-fluid and the Biot equations describe the poroelastic
medium. Early and recent contributions have established the well-posedness, stability,
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and error estimates for various discretization strategies in coupled Stokes–Biot and
related fluid–poroelastic interaction problems. These include mixed finite element
formulations for nonlinear and non-Newtonian models [1], Lagrange multiplier tech-
niques [3], fully coupled Biot–Navier–Stokes schemes [4], and Nitsche-based partition-
ing approaches [12], as well as operator-splitting schemes for multilayered poroelastic
structures [13, 18, 19]. Stabilized and hybridizable discontinuous Galerkin meth-
ods have been developed for improved numerical robustness [20]. Extensions include
the treatment of nonlinear geometric effects in poroviscoelastic structures [30], total-
pressure approaches for interfacial flows in ocular fluid dynamics [33], porohyperelastic
coupling [35], and non-matching interface meshes [36].

Beyond the typical Stokes–Biot model, more general FPSI frameworks have incorpo-
rated nonlinear fluid models, non-Newtonian rheologies, anisotropic or heterogeneous
permeability, and nonlinear poroelastic constitutive laws, motivated by applications in
vascular biomechanics, tissue engineering, and geomechanics. These studies highlight
the complex interplay between free-fluid dynamics and the poroelastic response, and
underscore the need for robust, physically consistent, and computationally efficient
methods capable of handling the wide parameter regimes encountered in practice.

To enforce interface constraints in a finite element FE discretization, two main
schemes have been developed. The Lagrange multiplier formulation is conceptually
straightforward: it enlarges the discrete system by introducing additional multiplier
fields and requires the satisfaction of inf–sup conditions to guarantee stability. In con-
trast, the Nitsche approach enforces interface constraints weakly through a penalty or
stabilization parameter, without introducing extra unknowns. The Nitsche method,
first proposed by J. A. Nitsche [31], is a consistent boundary-penalty technique for
weakly imposing Dirichlet conditions in the variational formulation. As a result, the
algebraic system remains symmetric (or skew-symmetric) and positive definite when-
ever the underlying operators are elliptic, yielding better-conditioned linear systems
and more efficient solvers. Moreover, the Nitsche formulation facilitates the treatment
of non-matching or locally refined meshes at the interface, since no mortar spaces or
multiplier interpolations are required. The stability of the scheme requires only a
mesh-independent penalty parameter γ > 0, thereby avoiding the need for introduc-
ing additional variables requiring further inf-sup stability conditions, as is necessary in
Lagrange multiplier methods. Finally, because Nitsche’s method integrates naturally
into standard finite element assembly routines, it greatly simplifies implementation
in existing software libraries. These features make the Nitsche scheme an attrac-
tive, robust, and computationally efficient alternative for coupled fluid–poroelastic
simulations. Several studies have applied the Nitsche scheme to FSI [14, 15] and
Stokes–Darcy problems [21, 37, 38]. Moreover, a Nitsche-based framework for the
coupled Stokes–Biot problem was developed in [12, 27]. In this work, we employ the
Nitsche scheme to enforce continuity of the normal velocity across the interface.

We present mathematical and numerical analyses of the fully dynamic Navier–
Stokes–generalized poroelastic system, adopting the Brinkman model for fluid flow.
This formulation ensures mass conservation within the porous domain and accounts
for viscous effects in a manner consistent with thermodynamic principles [7]. The gen-
eralized poroelastic model—referred to as the linearized porohyperelastic model—was
initially studied by Chapelle et al. in [16], offering a more accurate alternative to the
classical Biot model, especially in thermodynamically consistent settings involving
variable porosity. More recently, a Stokes–generalized poroelasticity model was in-
troduced in [6], where continuous and discrete formulations were analyzed using a
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Lagrange multiplier approach. The present work extends the analysis in [16, 6] by in-
corporating a nonlinear convective term in the fluid region and employing the Nitsche
method to weakly enforce the continuity of normal velocity across the interface.

The remainder of the paper is organized as follows. Section 2 introduces the no-
tation, preliminaries, and mathematical model. Section 3 discusses the weak formu-
lation of the continuous model. Section 4 presents the Nitsche formulation for the
time-dependent model, establishes its well-posedness using the theory of DAEs and
the Banach fixed-point theorem, and provides a stability analysis. Section 5 analyzes
the fully discrete scheme, including well-posedness, stability analysis, and error esti-
mates, and explicitly derives the dependence of these estimates on the stabilization
parameter γ. In Section 6, we provides numerical examples to validate the theoretical
results. We conclude in Section 7 with a summary of our results and outline possible
extensions.

2. Multiphysics formulation of the model problem.

2.1. Notation and preliminaries. Throughout this manuscript, we utilize the
classical Sobolev spaces L2(Ω) and H1(Ω), equipped with their respective norms
‖ • ‖L2(Ω) and ‖ • ‖H1(Ω). The L2-inner product is denoted by (•, •), and, for any
arbitrary Hilbert space H, the duality pairing with its dual space H ′ is represented
by 〈•, •〉H′,H . We follow the convention of denoting scalars, vectors, and tensors
by a, a, and A, respectively. We further define the Bochner spaces Lp(0, T ;X)

and L∞(0, T ;X) for any Banach space X, with norms given by (
∫ T

0
‖x(s)‖qX ds)1/q

and ess sups∈(0,T ) ‖x(s)‖X , respectively. Weak time derivatives are considered in

W k,p(0, T ;X), defined as {x ∈ Lp(0, T ;X) : Dαx ∈ Lp(0, T ;X) for all n ∈ N, α ≤ k},
where 1 ≤ p ≤ ∞. For simplicity, C denotes a generic positive constant independent
of the mesh size h but possibly dependent on model parameters. We also use ε for
arbitrary constants (with different values in different contexts) arising from Young’s
inequality. Inequalities with constants independent of h are denoted by . or &, omit-
ting the constants. Homogeneous boundary conditions are assumed for the analysis,
as suitable lifting operators are known [29]; non-homogeneous conditions are treated
in Section 6.

2.2. Governing equations. Let us consider a bounded Lipschitz domain Ω ⊂
Rd, with d ∈ {2, 3}, together with a partition into non-overlapping, connected sub-
domains ΩS and ΩP, representing regions occupied by a free fluid governed by the
Navier–Stokes equations and a poroelastic material governed by a general, thermody-
namically consistent, linearized poro-hyperelastic system, respectively. The interface
between the two subdomains is denoted by Σ = ∂ΩS ∩ ∂ΩP. The boundary of the
domain Ω is separated according to the boundaries of the two individual subdomains,
that is, ∂Ω = ΓS ∪ ΓP. The free fluid region ΩS is governed by the Navier–Stokes
equations, with fluid velocity uS

f and fluid pressure pS as main unknowns:

ρf∂tu
S
f −∇ · σS

f (uS
f , p

S) + uS
f · ∇uS

f = fS in ΩS × (0, T ], (2.1a)

∇ · uS
f = 0 in ΩS × (0, T ], (2.1b)

where ε(uS
f ) = 1

2 (∇uS
f + (∇uS

f )T ) denotes the strain rate tensor; σS
f (uS

f , p
S) =

2µfε(u
S
f ) − pSI, stress tensor; fS : (0, T ] → L2(ΩS), external load; µf , fluid vis-

cosity, and ρf , fluid density.

The poroelastic region ΩP is governed by the linearized poro-hyperelastic model,
which includes viscoelastic properties. The primary variables are the relative fluid
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velocity uP
r , interstitial pressure pP, solid displacement yP

s , and solid velocity uP
s .

Furthermore, we adopt the notation σS
f , σP

f , and σP
s to denote σS

f (uS
f , p

S), σP
f (uP

r +

uP
s , p

P), and σP
s (yP

s , p
P), respectively. The resulting model is then defined as

ρfφ(∂tu
P
r + ∂tu

P
s )−∇ · σP

f − pP∇φ+ φ2κ−1uP
r − θ(uP

s + uP
r ) = 2ρfφfP, (2.2a)

(1− φ)2K−1∂tp
P + ∂t(∇ · yP

s ) +∇ · (φuP
r ) = ρ−1

f θ, (2.2b)

ρfφ∂tu
P
r + ρp∂tu

P
s −∇ · σP

f −∇ · σP
s − θuP

r − θuP
s = ρpfP + ρfφfP,

(2.2c)

ρpu
P
s = ρp∂ty

P
s , (2.2d)

in ΩP× (0, T ], where ρp = ρs(1−φ)+ρfφ denotes the density of the saturated porous
medium. Equation (2.2a) expresses the conservation of momentum for the fluid phase
(a generalized Stokes law with the Brinkman effect); equation (2.2b) represents mass
conservation; equation (2.2c) is the conservation of total momentum; and the last
equation relates the solid displacement and velocity. We note that the fourth equation
is multiplied by ρp to maintain the symmetry of the block operator problem. The
relevant parameters are given by: φ = φ(x), porosity; ρf , ρs, fluid and solid densities,
respectively; µf , fluid viscosity; κ, permeability tensor; fP : (0, T ]→ L2(ΩP), external
load; θ : (0, T ] → L2(ΩP), fluid source/sink; K, bulk modulus; and λp, µp, Lamé
parameters. The parameters ρs, ρf , µf , λp, µp are assumed to be positive constants.

Let us now define two stress tensors in the poroelastic sub-domain as

σP
f (uP

r + uP
s , p

P) := 2µfφε(u
P
r ) + 2µfφε(∂ty

P
s )− φpPI, (2.3a)

σP
s (yP

s , p
P) := 2µpε(y

P
s ) + λp∇ · yP

s I− (1− φ)pPI. (2.3b)

This system is complemented by the following set of boundary conditions, where we
set ΓP = ΓD

P ∪ ΓN
P

uS
f = 0 on ΓS × (0, T ], yP

s = 0 on ΓP × (0, T ], (2.4a)

uP
r = 0 on ΓD

P × (0, T ], σP
fnP = 0 on ΓN

P × (0, T ]. (2.4b)

To avoid restricting the mean value of the pressure, we assume that |ΓN
P | > 0. We

also assume that ΓN
P is not adjacent to the interface Σ, i.e., dist(ΓN

P ,Σ) ≥ s > 0.
The interface conditions on the fluid–poroelastic interface Σ consist of mass conser-
vation (2.5a), balance of normal stresses (2.5b), and balance of contact forces (2.5c).
Conditions (2.5d)–(2.5e) together represent the Beavers–Joseph–Saffman (BJS) slip
condition modeling tangential friction, with (2.5d) involving both fluid and solid ve-
locities, and (2.5e) involving only the poroelastic fluid velocity on Σ:

uS
f · nS + (∂ty

P
s + uP

r ) · nP = 0 on Σ× (0, T ], (2.5a)

−(σS
fnS) · nS = −(σP

fnP) · nP on Σ× (0, T ], (2.5b)

σS
fnS + σP

fnP + σP
snP = 0 on Σ× (0, T ], (2.5c)

−(σS
fnS) · τ f,j = µfαBJS

√
Z−1
j (uS

f − ∂tyP
s ) · τ f,j on Σ× (0, T ], (2.5d)

−(σP
fnP) · τ f,j = µfαBJS

√
Z−1
j uP

r · τ f,j on Σ× (0, T ], (2.5e)

where nS and nP are the outward unit normal vectors to ΩS and ΩP, respectively,
τ f,j , 1 ≤ j ≤ d− 1, is an orthogonal system of unit tangent vectors on Σ, we denote
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Zj = (κτ f,j) · τ f,j , and αBJS ≥ 0 is a friction coefficient. We further set initial
conditions in the following manner

uS
f (x, 0) = uf,0(x), uP

r (x, 0) = ur,0(x), yP
s (x, 0) = ys,0(x),

uP
s (x, 0) = us,0(x), pP(x, 0) = pP,0(x).

Assumptions

(H.1) φ is such that φ, 1/φ, (1− φ) and 1/(1− φ) belong to W s,r(Ω) with s > d/r,
see [7, Lemma 13] and there exist constants φ and φ such that 0 < φ ≤ φ ≤
φ < ρs

ρs+ρf
< 1 a.e. in Ω.

(H.2) θ represents a fluid sink.
(H.3) The permeability tensor is symmetric and positive-definite, i.e.,

∃c > 0 xTκ−1x ≥ c|x|2 ∀x ∈ Rd.

From these assumptions, we obtain ellipticity properties to be used in both the well-
posedness analysis and the energy estimates.

3. Continuous analysis. We consider the following functional spaces (endowed
with the standard norms) as

Vf :=
{
uS
f ∈ H1(ΩS) : uS

f = 0 on ΓS

}
, Wf := L2(ΩS),

Vr :=
{
uP
r ∈ H1(ΩP) : uP

r = 0 on ΓD
P

}
, Wp := L2(ΩP),

Vs :=
{
yP
s ∈ H1(ΩP) : yP

s = 0 on ΓP

}
, Ws := L2(ΩP).

We now define, for all uS
f ,v

S
f ∈ Vf ,u,v ∈ H1(ΩP),yP

s ,w
P
s ∈ Vs, the following

bilinear forms related to the Navier–Stokes, Brinkman, and elasticity operators:

aS
f (uS

f ,v
S
f ) := (2µfε(u

S
f ), ε(vS

f ))ΩS , aP
f (u,v) := (2µfφε(u), ε(v))ΩP ,

aP
s (yP

s ,w
P
s ) := (2µpε(y

P
s ), ε(wP

s ))ΩP + (λp∇ · yP
s ,∇ ·wP

s )ΩP ,

c(uS
f ,u

S
f ,v

S
f ) := (uS

f ·∇uS
f ,v

S
f ).

Also, for all vS
f ∈ Vf , qS ∈Wf , vP

r ∈ Vr, q
P ∈Wp, w

P
s ∈ VP

s , w, ς ∈Ws, we define
the following bilinear forms:

bS(vS
f , q

S) := −
(
∇· vS

f , q
S
)
, bPf (vP

r , q
P) := −

(
∇· (φvP

r ), qP
)
,

bPs (wP
s , q

P) := −
(
∇·wP

s , q
P
)
, mξ(w, ς) := (ξw, ς).

Integration by parts in (2.1a), (2.2a) and (2.2c) leads to the interface term

IΣ := −〈σS
fnS,v

S
f 〉Σ − 〈σP

fnP,w
P
s 〉Σ − 〈σP

snP,w
P
s 〉Σ − 〈σP

fnP,v
P
r 〉Σ.

Using the interface conditions (2.5b)-(2.5e), we obtain

IΣ = −
∫

Σ

(σS
f (uS

f , p
S)nS)nS(nS · vS

f + nP · vP
r + nP ·wP

s ) ds

−
∫

Σ

(σP
fnP)τ f,j(τ f,j · vP

r ) ds−
∫

Σ

(σS
fnS)τ f,j(v

S
f −wP

s ) · τ f,j ds

=: bΓ(vS
f ,v

P
r ,w

P
s ;uS

f , p
S) + bΓ(uS

f ,u
P
r , ∂ty

P
s ; ςvS

f ,−qS)
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+ aBJS(uS
f , ∂ty

P
s ;vS

f ,w
P
s ) + bBJS(uP

r ;vP
r ),

together with the definitions

aBJS(uS
f ,y

P
s ;vS

f ,w
P
s ) :=

d−1∑
j=1

∫
Σ

µfαBJS

√
Z−1
j (uS

f − yP
s ) · τ f,j(vS

f −wP
s ) · τ f,j ds,

bBJS(uP
r ;vP

r ) :=

d−1∑
j=1

∫
Σ

µfαBJS

√
Z−1
j (uP

r · τ f,j)(vP
r · τ f,j) ds,

bΓ(vS
f ,v

P
r ,w

P
s ;uS

f , p
S) := −

∫
Σ

(2µfε(u
S
f )−pSI)nSnS(nS · vS

f + nP · vP
r + nP ·wP

s ) ds.

We use a shorthand notation for trial and test functions ~x = (uS
f , p

S,uP
r , p

P,yP
s ,u

P
s ),

~y = (vS
f , q

S,vP
r , q

P,wP
s ,v

P
s ) and denote the corresponding product space as

~X := Vf ×Wf ×Vr ×Wp ×Vs ×Ws.

Furthermore, we define the bilinear forms E,H : ~X× ~X→ R, which contain all terms
with and without time derivatives, respectively:

E(∂t~x, ~y) := mρf (∂tu
S
f ,v

S
f ) +mρfφ(∂tu

P
r ,w

P
s ) +mρp(∂tu

P
s ,w

P
s ) +mρfφ(∂tu

P
r ,v

P
r )

+mρfφ(∂tu
P
s ,v

P
r )−mρp(∂ty

P
s ,v

P
s ) + aP

f (∂ty
P
s ,v

P
r ) + aP

f (∂ty
P
s ,w

P
s )

−mθ(∂ty
P
s ,w

P
s )−mθ(∂ty

P
s ,v

P
r ) + aBJS(0, ∂ty

P
s ;vS

f ,w
P
s )

+ bΓ(0,0, ∂ty
P
s ; ςvS

f ,−qS) + ((1− φ)2K−1∂tp
P, qP)ΩP

− bPs (∂ty
P
s , q

P),

H(~x, ~y) := mρp(uP
s ,v

P
s ) + aS

f (uS
f ,v

S
f ) + aP

f (uP
r ,w

P
s ) + aP

s (yP
s ,w

P
s ) + aP

f (uP
r ,v

P
r )

+ bS(vS
f , p

S) + bPs (wP
s , p

P) + bPf (vP
r , p

P)−mθ(u
P
r ,w

P
s )−mθ(u

P
r ,v

P
r )

+mφ2/κ(uP
r ,v

P
r ) + bΓ(vS

f ,v
P
r ,w

P
s ;uS

f , p
S) + aBJS(uS

f , 0;vS
f ,w

P
s )

+ bBJS(uP
r ;vP

r ) + bΓ(uS
f ,u

P
r ,0; ςvS

f ,−qS)− bPf (uP
r , q

P)− bS(uS
f , q

S),

L(~x, ~x, ~y) := c(uS
f ,u

S
f ,v

S
f ),

whereas the right-hand side terms are denoted by the form F , given by:

F (~y) := (fS,v
S
f )ΩS

+ (ρfφfP,v
P
r ) + (ρpfP,w

P
s ) + (rS, q

S) + (ρ−1
f θ, qP).

First, we multiply (2.1a)–(2.1b) and (2.2a)–(2.2d) by their respective test functions,
apply integration by parts, and impose the boundary conditions (2.4a)–(2.4b). The
balance of normal stress, the BJS conditions, and the conservation of momentum
(2.5b)–(2.5e) are then naturally incorporated into the derivation of the weak formula-
tion, while the conservation of mass (2.5a) is enforced strongly. Hence, the continuous

weak formulation reads: for t ∈ (0, T ], find ~x(t) ∈ ~X, with uS
f ·nS +

(
∂ty

P
s +uP

r

)
·nP =

0, and subject to the given initial conditions, such that

E(∂t~x, ~y) +H(~x, ~y) + L(~x, ~x, ~y) = F (~y), (3.1)

for all ~y ∈ ~X. We further define

∣∣uS
f − yP

s

∣∣2
BJS

:= aBJS(uS
f ,y

P
s ;uS

f ,y
P
s,h) =

d−1∑
j=1

µfαBJS‖Z−1/4
j (uS

f − yP
s ) · τ f,j‖20,Σ,
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∣∣uP
r

∣∣2
BJS

:= bBJS(uP
r ;vP

r ) =

d−1∑
j=1

µfαBJS‖Z−1/4
j uP

r · τ f,j‖20,Σ.

Given that the primary objective of this study is to analyze the discrete formulation
using Nitsche’s method, we do not present the continuous analysis, which can be
found in the recent work [6].

4. Discrete weak formulation with Nitsche. Suppose that T S
h and T P

h are
shape-regular, quasi uniform partitions of ΩS and ΩP, respectively, each consisting of
affine elements of maximal diameter h. The two partitions may be non-matching at
the interface Σ, where the (d−1)-dimensional diameter of a face on Σ is denoted by hE
and EΣ represents the faces lying on the boundary Σ. To discretize the unknowns in
the Navier–Stokes and generalized poroelasticity problems, we define Xk

h = { q ∈
C(Ω): q|K ∈ Pk(K) ∀K ∈ Th}, where Pk(K) is the space of polynomials of degree
k ≥ 1 on each K. With these definitions we then set up the following discrete spaces:

Vf,h = Vf ∩
[
Xk+1
h

]d
, Wf,h = Wf ∩Xk

h , Vr,h = Vr ∩
[
Xk+1
h

]d
,

Vs,h = Vs ∩
[
Xk+1
h

]d
, Wp,h = Wp ∩Xk

h , Ws,h = Ws ∩
[
Xk
h

]d
.

The global velocity and pressure spaces are defined as

Vh :=
{
~vh = (vS

f,h,v
P
r,h,w

P
s,h) ∈ Vf,h ×Vr,h ×Vs,h

}
,

Wh :=
{
~qh = (qS

h, q
P
h ) ∈Wf,h ×Wp,h

}
.

The semi-discrete weak formulation reads: find ~xh(t) ∈ Xh such that

Ē
(
∂t~xh, ~yh

)
+ H̄

(
~xh, ~yh

)
+ L(~xh, ~xh, ~yh) = F (~yh), ∀ ~yh ∈ Xh, (4.1)

where

Ē
(
∂t~xh, ~yh

)
:= E

(
∂t~xh, ~yh

)
+ cΓ

(
0,0, ∂ty

P
s,h; vS

f,h, v
P
r,h, w

P
s,h

)
, (4.2a)

H̄
(
~xh, ~yh

)
:= H

(
~xh, ~yh

)
+ cΓ

(
uS
f,h, u

P
r,h,0; vS

f,h, v
P
r,h, w

P
s,h

)
. (4.2b)

The conservation of mass is enforced weakly using the Nitsche parameter γ, i.e.,

cΓ
(
uS
f,h, u

P
r,h, y

P
s,h; vS

f,h, v
P
r,h, w

P
s,h

)
:=

∫
Σ

γ

hE

(
nS · uS

f,h + nP · uP
r,h + nP · ∂tyP

s,h

)(
nS · vS

f,h + nP · vP
r,h + nP · wP

s,h

)
ds,

and the initial conditions uS
f,h(0), uP

r,h(0), yP
s,h(0), pP

h (0), uP
s,h(0) are suitable approx-

imations of uf,0, ur,0, ys,0, pP,0, and us,0, respectively.

4.1. Existence and uniqueness of semi-discrete solution. The existence
and uniqueness of the solution is proved in two steps:

1. We introduce the set Kh :=
{
vS
f,h ∈ Vf,h : ‖∇vS

f,h‖0,ΩS
≤ 1

CS2
fK

3
f
‖fS‖0,ΩS

}
,

where Sf ,Kf > 0 are the Sobolev and Korn’s constants, respectively and
define the discrete fixed-point operator as

Jh : Kh → Kh, wS
f,h 7→ Jh(wS

f,h) = uS
f,h, (4.3)
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where, for a given wS
f,h ∈ Kh, the function uS

f,h denotes the first component
of the solution to the linearised version of problem (4.1), given by fixing
wS
f,h ∈ Vf,h in the nonlinear form, such that

c(wS
f,h,u

S
f,h,v

S
f,h) = (wS

f,h ·∇uS
f,h,v

S
f,h),

and then prove the well-posedness of the resulting Oseen/generalised poroe-
lasticity problem.

2. Next, we show that the discrete fixed-point operator Jh admits a fixed point.

First, we show that the Oseen/generalised poroelasticity system is well-posed. To
prove the existence of a solution, we employ the theory of differential-algebraic equa-
tions (DAEs) [10].

Let {φS
uf ,i
}ki=1, {φP

ur,i}
k
i=1, {φP

ys,i}
k
i=1, {φS

pf ,i
}ki=1, {φP

pp,i
}ki=1 and {φP

us,i}
k
i=1 be bases

of Vf,h, Vr,h, Vs,h, Wf,h, Wp,h, and Ws,h, respectively. We write the linearized
version of problem (4.1) in matrix form. For this we introduce, for 1 ≤ i, j ≤ k, the
notation

Mξ = mξ(φ
P
?,j ,φ

P
?,i), AS

f = aS
f (φS

uf ,j
,φS

uf ,i
), AP

f = aP
f (φP

?,j ,φ
P
?,i),

AP
s = aP

s (φP
ys,j ,φ

P
ys,i), BS = bS(φS

uf ,j
, φS
p,i), ABJS

ss = aBJS

(
0,φP

ys,j ; 0,φP
ys,i

)
,

BP
s = bPs (φP

ys,j , φ
P
p,i), BP

f = bPf (φP
ur,j , φ

P
p,i), ABJS

fs = aBJS

(
φS
uf ,j

,0; 0,φP
ys,i

)
,

ABJS
ff = aBJS

(
φS
uf ,j

,0; φS
uf ,i

,0
)
, ABJS

rr = aBJS

(
φP
ur,j ,0; φP

ur,i,0
)
,

Bf,Γ = bΓ
(
φS
uf ,j

,0,0; φS
uf ,i

,0
)
, Bp,Γ = bΓ

(
0,φP

ur,j ,0; φS
uf ,i

,0
)
,

Bs,Γ = bΓ
(
0,0,φP

ys,j ; φ
S
uf ,i

,0
)
, Cf,Γ = bΓ

(
φS
uf ,j

,0,0; 0, φS
p,i

)
,

Cp,Γ = bΓ
(
0,φP

ur,j ,0; 0, φS
p,i

)
, Cs,Γ = bΓ

(
0,0,φP

ys,j ; 0, φS
p,i

)
,

Nff,Γ = cΓ
(
φS
uf ,j

,0,0; φS
uf ,i

,0,0
)
, Nrr,Γ = cΓ

(
0,φP

ur,j ,0; 0,φP
ur,i,0

)
,

Nss,Γ = cΓ
(
0,0,φP

ys,j ; 0,0,φP
ys,i

)
, Nfr,Γ = cΓ

(
φS
uf ,j

,0,0; 0,φP
ur,i,0

)
,

Nfs,Γ = cΓ
(
φS
uf ,j

,0,0; 0,0,φP
ys,i

)
, Nrf,Γ = cΓ

(
0,φP

ur,j ,0; φS
uf ,i

,0,0
)
,

Nrs,Γ = cΓ
(
0,φP

ur,j ,0; 0,0,φP
ys,i

)
, Nsf,Γ = cΓ

(
0,0,φP

ys,j ; φ
S
uf ,i

,0,0
)
,

Nsr,Γ = cΓ
(
0,0,φP

ys,j ; 0,φP
ur,i,0

)
, C = c(wS

f,h,φ
S
uf ,i

,φS
uf ,j

).

For the sake of the forthcoming analysis, we use ∂ty
P
s,h instead of uP

s in the poroelas-
tic region. Therefore we can rewrite the weak formulation (4.2a) in the DAE system
form as

M∂t~xh(t) + N~xh(t) = L(t), (4.4)

where

L =



FuS
f,h

Fur

FyP
s,h

0
FpS

h

FpP
h


, M =



Mρf 0 (ABJS
fs )∗ +Nsf,Γ + B∗e,Γ 0 0 0

0 Mρfφ M−θ +AP
f +Nsr,Γ Mρfφ 0 0

0 Mρfφ ABJS
ss +AP

f +M−θ +Nss,Γ Mρp 0 0

0 0 M−ρp 0 0 0
0 0 (Cs,Γ)∗ 0 0 0
0 0 −(BP

s )∗ 0 0 M (1−φ)2

K


,
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N =



AS
f +ABJS

ff + B∗f,Γ + Bf,Γ +Nff,Γ + C Nrf,Γ + B∗p,Γ 0 0 BS + Cf,Γ 0

Bp,Γ +Nfr,Γ AP
f +M−θ +Mφ2/κ +Nrr,Γ +ABJS

rr 0 0 Cp,Γ BP
f

ABJS
fs + Be,Γ +Nfs,Γ AP

f +M−θ +Nrs,Γ AP
s 0 Cs,Γ BP

s

0 0 0 Mρp 0 0

−(BS)∗ + (Cf,Γ)∗ (Cp,Γ)∗ 0 0 0 0

0 −(BP
f )∗ 0 0 0 0


.

We readily note that the matrix M + N yields a generalized saddle-point structure of
the form

M + N =

(
A BT

−B C

)
,

with

A =


Mρf +AS

f +ABJS
ff + B∗f,Γ + Bf,Γ +Nff,Γ + C Nrf,Γ + B∗p,Γ (ABJS

fs )∗ +Nsf,Γ + B∗e,Γ 0

Bp,Γ +Nfr,Γ AP
f +M−θ +Mφ2/κ +Npp,Γ +Mρfφ M−θ +AP

f +Nsr,Γ Mρfφ

ABJS
fs + Be,Γ +Nfs,Γ AP

f +M−θ +Nrs,Γ +Mρfφ AP
s +ABJS

ss +AP
f +M−θ +Nss,Γ Mρp

0 0 M−ρp Mρp

 ,

BT =


BS + Cf,Γ 0
Cp,Γ BP

f

Cs,Γ BP
s

0 0

 , C =

(
0 0
0 M (1−φ)2

K

)
.

We now prove an auxiliary estimate that will be used in our subsequent analysis.
For this we employ the trace, Hölder, and Young inequalities. Let uh ∈ H1(Ω), qh ∈
L2(Ω). Then we have:

2µf (ε(uh)n · n,uh · n)Σ ≤ 2µf
∑
E∈EΣ

‖ε(uh)n‖0,E‖uh · n‖0,E

≤ 2µf
∑
E∈EΣ

(hEδ1
2
‖ε(uh)‖20,E +

h−1
E

2δ1
‖uh · n‖20,E

)
≤ δ1C2

trµf‖ε(uh)‖20,Ω +
µ

δ1

∑
E∈EΣ

1

hE
‖uh · n‖20,E , (4.5a)

(qh,uh · n)Σ ≤
∑
E∈EΣ

‖qh‖0,E ‖uh · n‖0,E

≤
∑
K∈Th

C2
tr δ2

2µf
‖qh‖20,K +

1

2 δ2

∑
E∈EΣ

µf
hE
‖uh · n‖20,E . (4.5b)

Lemma 4.1. Under Assumptions (H.1)–(H.3) and 4
C2 ‖fS‖0,ΩS

< 1, the linear oper-
ator A is continuous and elliptic for any given wS

f,h ∈ Kh.

Proof. From trace, Cauchy–Schwarz, Young inequalities, and (4.5a), it follows that
there exist constants Cf , Cs, Cr, CBJS > 0 such that

aS
f (uS

f,h,v
S
f,h) ≤ Cf‖uS

f,h‖1,ΩS
‖vS

f,h‖1,ΩS
,

aP
f (yP

s,h,w
P
s,h)−mθ(y

P
s,h,w

P
s,h) ≤ Cs‖yP

s,h‖1,ΩP
‖wP

s,h‖1,ΩP
,

aP
f (uP

r,h,v
P
r,h)−mθ(u

P
r,h,v

P
r,h) +mφ2

κ

(uP
r,h,v

P
r,h) ≤ Cr‖uP

r,h‖1,ΩP‖vP
r,h‖1,ΩP ,

and

aBJS(uS
f,h,u

P
s,h;vS

f,h,v
P
s,h) + bBJS(uP

r ;vP
r )
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≤ CBJS(‖uS
f,h‖1,ΩS

+ ‖uP
s,h‖1,ΩP

+ ‖uP
r ‖1,ΩP

)(‖vS
f,h‖1,ΩS

+ ‖vP
s,h‖1,ΩP

+ ‖vP
r ‖1,ΩP

),

bΓ(vS
f,h,v

P
r,h,w

P
s,h;uS

f,h, 0) ≤ C‖uS
f,h‖1,ΩS

(γµf
hE
‖vS

f,h ·nS+ vP
r,h ·nP+wP

s,h ·nP‖20,E
) 1

2

cΓ(uS
f,h,u

P
r,h,y

P
s,h;vS

f,h,v
P
r,h,w

P
s,h) ≤ C γµf

hE
‖uS

f,h · nP + uP
r,h · nP + yP

s,h · nP‖0,E

× ‖vS
f,h · nP + vP

r,h · nP +wP
s,h · nP‖0,E .

For the nonlinear term, we apply the Cauchy–Schwarz, Sobolev, and Korn’s inequal-
ities to obtain

c(wS
f,h,u

S
f,h,v

S
f,h) ≤ S2

fK
3
f‖∇wS

f,h‖0,ΩS ‖∇uS
f,h‖0,ΩS‖∇vS

f,h‖0,ΩS

≤ C

4
‖∇uS

f,h‖0,ΩS
‖∇vS

f,h‖0,ΩS
,

and thus, the operator A is continuous.

On the other hand, we use Sobolev, Korn’s inequalities [11] and the assumptions in
Section 2.2, to arrive at the bounds

aS
f (vS

f,h,v
S
f,h) + c(wS

f,h,v
S
f,h,v

S
f,h)

≥ |aS
f (vS

f,h,v
S
f,h)| − |c(wS

f,h,v
S
f,h,v

S
f,h)| ≥ 3C

4
‖vS

f,h‖21,ΩS
,

aP
f (wP

s,h,w
P
s,h)−mθ(w

P
s,h,w

P
s,h) ≥ C‖wP

s,h‖21,ΩP
,

aP
f (vP

r,h,v
P
r,h)−mθ(v

P
r,h,v

P
r,h) +mφ2/κ(vP

r,h,v
P
r,h) ≥ C‖vP

r,h‖21,ΩP
,

aBJS(vS
f ,w

P
s ;vS

f ,w
P
s ) + bBJS(vP

r ;vP
r ) ≥ µfαBJSK

−1/2
max (|vS

f −wP
s |2BJS + |vP

r |2BJS),

bΓ(vS
f,h,v

P
r,h,w

P
s,h;vS

f,h, 0)

≥ Cε‖vS
f,h‖21,ΩS

+ ε−1
∑
E∈EΣ

1

hE
(‖vS

f · nS + vP
r,h · nP +wP

s,h · nP‖20,E),

cΓ(vS
f,h,v

P
r,h,w

P
s,h;vS

f,h,v
P
r,h,w

P
s,h) ≥ C γµf

hE
‖vS

f,h · nS + vP
r,h · nP +wP

s,h · nP‖20,E ,

therefore showing that A is coercive.

Lemma 4.2. The operator B and its transpose BT are bounded and continuous.

Proof. For all ~vh = (vS
f,h,v

P
r,h,w

P
s,h, ) ∈ ~Vh and ~qh = (qS

h, q
P
h ) ∈ ~Qh and using trace,

Cauchy–Schwarz, Young’s inequalities and (4.5b), we have

〈B(~vh), ~qh〉 = (∇ · vS
f,h, q

S
h) + (∇ ·wP

s,h, q
P
h ) + (∇ · (φvP

r,h), qP
h )

+

∫
Σ

qS
h(nS · vS

f,h + nP · vP
r,h + nP ·wP

s,h) ds

. ‖vS
f,h‖21,ΩS

+ ‖vP
s,h‖21,ΩP

+ ‖vP
r,h‖21,ΩP

+ ‖qP
h ‖20,ΩP

+
∑
K∈Th

C2
tr δ2

2µf
‖qS
h‖20,K

+
1

2 δ2

∑
E∈EΣ

µf
hE

(‖nS · vS
f,h‖20,E + ‖nP · vP

r,h‖20,E + ‖nP ·wP
s,h‖20,E).

The next results help to establish the Ladyzhenskaya–Babuška–Brezzi (LBB) condi-
tion for the B block.
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Lemma 4.3. There exists a constant ξ1(Ω) > 0 such that

inf
~qh∈Wh

sup
~vh∈Vh

bS(vS
f,h, q

S
h) + bPf (vP

r,h, q
P
h ) + bPs (wP

s,h, q
P
h )

‖~vh‖Vh
‖~qh‖Wh

≥ ξ1 > 0.

Proof. This is proven by using the usual inf-sup condition for the Stokes problem
[9] and the weighted inf-sup condition in [7, Lemma 14].

Lemma 4.4. There exists a constant ξ2(Ω) > 0, such that

inf
~qh∈Wh

sup
~vh∈Vh

〈B(~vh), ~qh〉
‖~vh‖Vh

‖~qh‖Wh

≥ ξ2,

where

〈B(~vh), ~qh〉 := bS(vS
f,h, q

S
h) + bPf (vP

r,h, q
P
h ) + bPs (wP

s,h, q
P
h )

+ Cf,Γ(vS
f,h, q

S
h) + Cp,Γ(vP

r,h, q
S
h) + Cs,Γ(wP

s,h, q
S
h).

Proof. The term bΓ(vS
f,h,v

P
r,h,w

P
s,h; 0, qS

h) is defined as

bΓ(vS
f,h,v

P
r,h,w

P
s,h; 0, qS

h) := Cf,Γ(vS
f,h, q

S
h) + Cp,Γ(vP

r,h, q
S
h) + Cs,Γ(wP

s,h, q
S
h)

=

∫
Σ

qS
h(nS · vS

f,h + nP · vP
r,h + nP ·wP

s,h) ds.

Consider the discrete space associated with the strong imposition of the mass balance
across the interface

Vh,0 = {vh ∈ Vh : nS · vS
f,h + nP · vP

r,h + nP ·wP
s,h = 0 on Σ}.

This space naturally yields that bΓ(vS
f,h,v

P
r,h,w

P
s,h; 0, qS

h) = 0 for all vh ∈ Vh,0, so we
obtain

sup
0 6=~vh∈Vh,0

〈B(~vh), ~qh〉
‖~vh‖Vh

= sup
0 6=~vh∈Vh,0

bS(vS
f,h, q

S
h) + bPf (vP

r,h, q
P
h ) + bPs (wP

s,h, q
P
h )

‖~vh‖Vh

≥ ξ1‖~qh‖Wh
∀~qh ∈Wh,

by virtue of Lemma 4.3. Now, we can use this space to derive a lower bound as follows

sup
0 6=~vh∈Vh

〈B(~vh), ~qh〉
‖~vh‖Vh

≥ sup
0 6=~vh∈Vh,0

〈B(~vh), ~qh〉
‖~vh‖Vh

≥ ξ2‖~qh‖Wh
∀~qh ∈Wh,

which concludes the proof.

Before presenting the proof of existence and uniqueness of a solution to the discrete
problem (4.4), we require some additional results.

We denote the bilinear forms associated with the matrices A, B, and C by φA(•, •),
φB(•, •), and φC(•, •), defined on (Vh×Ws,h)×(Vh×Ws,h), Vh×Wh, and Wh×Wh,
respectively. For a given wS

f,h ∈ Kh, we write

φA(wS
f,h; (~uh,u

S
s,h), (~vh,v

S
s,h)) =

(
~vh
vS
s,h

)T
A

(
~uh
uS
s,h

)
,

φB(~vh, ~ph) = ~vThB~ph, φC(~ph, ~qh) = ~qThC~ph.

By identifying functions in the FE spaces with algebraic vectors of their corresponding
degrees of freedom, we note that ker(φA) = ker(A), ker(φB) = ker(B), and ker(φC) =
ker(C). Also, for φBT (~qh, ~vh) = φB(~vh, ~qh), we have that ker(φBT ) = ker(BT ).
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Lemma 4.5. Under Assumptions (H.1)-(H.3) and 4
C2 ‖fS‖0,ΩS

< 1, the bilinear
forms φA(•, •), φB(•, •) and φC(•, •) satisfy

ker(φA) ∩ ker(φB) = {0}, ker(φC) ∩ ker(φBT ) = {0},

for any given wS
f,h ∈ Kh. Moreover, φA(•, •) and φC(•, •) are positive definite and

semi-definite, respectively.

Proof. Lemma 4.1 implies the coercivity of φA(•, •) and ker(φA) = {0}, hence the
first statement of the lemma follows. We next note that ker(φBT ) consists of ~qh ∈Wh

such that

φBT (~qh, ~vh) = 0, ∀~vh ∈ Vh.

Therefore, the inf-sup condition from Lemma 4.4 implies that ker(φBT ) = {0}, which
gives the second statement of the lemma. The positive semi-definiteness of φC(•, •)
is straightforward.

Now, we are in position to establish the well-posedness of the fixed-point operator Jh.

Lemma 4.6. Under Assumptions (H.1)–(H.3) and 4
C2 ‖fS‖0,ΩS < 1, if the matrices

A and C are positive semi-definite and ker(A) ∩ ker(B) = ker(C) ∩ ker(BT ) = {0},
then the matrix M + N is invertible for any given wS

f,h ∈ Kh.

Theorem 4.7. Under Assumptions (H.1)-(H.3) and 4
C2 ‖fS‖0,ΩS

< 1, for any ε̂′f , ε̆
′
f

that satisfy
3− 2(ς + 1)ε̂′fCtr

4
> 0,

where ς ∈ {−1, 0, 1} provided that γ > (ς + 1)(ε̂′f )−1, there exists a unique solution

(uS
f,h, p

S
h,u

P
r,h, p

P
h ,y

P
s,h,u

P
s,h) ∈W 1,∞(0, T ; Vf,h)×L∞(0, T ; Wf,h)×W 1,∞(0, T ; Vr,h)

×W 1,∞(0, T ; Wp,h) ×W 1,∞(0, T ; Vs,h)× W 1,∞(0, T ; Ws,h) of the weak formulation
(4.4), for any given wS

f,h ∈ Kh.

Proof. The matrix E has no zero rows, which implies that the system has no al-
gebraic constraints. Hence, the initial data can be chosen to satisfy the prescribed
boundary conditions. In particular, the initial values

uS
f,h(0) = uf,0, uP

r,h(0) = ur,0, yP
s,h(0) = ys,0, pP

h (0) = pP,0
h , uP

s,h(0) = us,0

are consistent and do not lead to any incompatibility issues. Furthermore, owing
to Lemma 4.6, the matrix M + N with s = 1 is invertible. According to the DAE
theory (see [10, Theorem 2.3.1]), if the matrix pencil sM+N is nonsingular for some
s 6= 0 and the initial data are consistent, then the system (4.4) admits a solution.
Consequently, [10, Theorem 2.3.1] guarantees the existence of a solution to the weak
semi-discrete formulation (4.4).

To show uniqueness, we assume that there are two solutions satisfying these equa-
tions with the same initial conditions. Then, we readily have that their difference
(ũS

f,h, p̃
S
h, ũ

P
r,h, p̃

P
h , ỹ

P
s,h, ũ

P
s,h) satisfies (4.4) with zero data. By setting

(vS
f,h, q

S
h,v

P
r,h, q

P
h ,w

P
s,h,v

P
s,h) = (ũS

f,h, p̃
S
h, ũ

P
r,h, p̃

P
h , ∂tỹ

P
s,h, ũ

P
s,h),

in (4.4) and using the well-known inequality

− (ξa, a)− (ξb, b) ≤ 2(ξa, b) ≤ (ξa, a) + (ξb, b), (4.6)
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we derive the following weak form of the energy balance

1

2
∂t

(
(ρf ũ

S
f,h, ũ

S
f,h) + (ρs(1− φ)ũP

s,h, ũ
P
s,h)ΩP

+ ((1− φ)2K−1p̃P
h , p̃

P
h )ΩP

+ (
√
ρfφ(ũP

r,h + ũP
s,h),

√
ρfφ(ũP

r,h + ũP
s,h))ΩP

+ (2µpε(ỹ
P
s,h), ε(ỹP

s,h))ΩP

+ (λp∇ · ỹP
s,h,∇ · ỹP

s,h)ΩP

)
+
∣∣ũS
f,h − ∂tỹP

s,h

∣∣2
BJS

+ (2µfε(ũ
S
f,h), ε(ũS

f,h))ΩS

−
∑
E∈EΣ

∫
Σ

(1 + ς)(2µfε(ũ
S
f,h)nS · nS)(nS · ũS

f,h + nP · ũP
r,h + nP · dτ ỹP

s,h) ds

+ (φ2κ−1ũP
r,h, ũ

P
r,h)ΩP +

∑
E∈EΣ

∫
Σ

γµf
hE

(
nS · ũS

f,h + nP · ũP
r,h + nP · dτ ỹP

s,h

)2
ds

+
∣∣ũP
r,h

∣∣2
BJS

+ (wS
f,h · ∇uS

f,h,u
S
f,h) = 0.

By invoking assumptions (H.1)–(H.3), applying Lemma 4.1 together with the trace,
Young’s, and Cauchy–Schwarz inequalities, employing the estimate

ρf φ
∥∥uP

r + uP
s

∥∥2

0,ΩP
≥ ρf φ

(
1
2

∥∥uP
r

∥∥2

0,ΩP
−
∥∥uP

s

∥∥2

0,ΩP

)
,

and then integrating in time over (0, t] for arbitrary t ∈ (0, T ]. This readily gives

‖ũP
s,h‖L∞(0,T ;L2(ΩP)) = ‖ũS

f,h‖L2(0,T ;H1(ΩS)) = ‖p̃P
h‖L∞(0,T ;L2(ΩP)) = 0,

‖ỹP
s,h‖L∞(0,T ;H1(ΩP)) = ‖ũP

r,h‖L2(0,T ;L2(ΩP)) = 0.

Finally, we use the inf-sup condition (4.4) for p̃S
h, p̃

P
h together with (4.4) to obtain

‖(p̃S
h, p̃

P
h )‖Wh

. 0. This implies ‖p̃S
h‖L∞(0,T ;L2(ΩS)) = 0. Hence, the solution of (4.4)

is unique, and equivalently, the fixed-point operator Jh is well-posed.

The subsequent theorem establishes the well-posedness of Nitsche’s scheme (4.1).

Theorem 4.8. Under Assumptions (H.1)-(H.3) and 4
C2 ‖fS‖0,ΩS < 1, for any ε̂′f , ε̆

′
f

that satisfy
3− 2(ς + 1)ε̂′fCtr

4
> 0,

where ς ∈ {−1, 0, 1} provided that γ > (ς + 1)(ε̂′f )−1, there exists a unique solution

(uS
f,h, p

S
h,u

P
r,h, p

P
h ,y

P
s,h,u

P
s,h) ∈W 1,∞(0, T ; Vf,h)×L∞(0, T ; Wf,h)×W 1,∞(0, T ; Vr,h)

×W 1,∞(0, T ; Wp,h) ×W 1,∞(0, T ; Vs,h) ×W 1,∞(0, T ; Ws,h) of the weak formulation
(4.1).

Proof. According to the relations provided in (4.3), we aim to establish the well-
posedness of the variational formulation (4.1). To this end, we employ Banach’s
fixed-point theorem by demonstrating that the operator Jh admits a unique fixed
point in the set Kh. The validity of the assumption 4

C2 ‖fS‖0,ΩS
< 1 as shown in

Lemma 4.7, ensures that Jh is well-defined.

Let wS
f1,h,w

S
f2,h,u

S
f1,h,u

S
f2,h ∈ Kh be given, such that uS

f1,h = Jh(wS
f1,h) and

uS
f2,h = Jh(wS

f2,h). Then, by the definition of Jh, the following identities hold for

~xh1 = (uS
f1,h, p

S
h1,u

P
r1,h, p

P
h1,y

P
s1,h,u

P
s1,h), ~xh2 = (uS

f2,h, p
S
h2,u

P
r2,h, p

P
h2,y

P
s2,h,u

P
s2,h) ∈

Xh:

AwS
f1,h

(~xh1, ~yh) := Ē
(
∂t~xh1, ~yh

)
+ H̄

(
~xh1, ~yh

)
+ c(wS

f1,h,u
S
f1,h,v

S
f,h) = F (~yh),
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AwS
f2,h

(~xh2, ~yh) := Ē
(
∂t~xh2, ~yh

)
+ H̄

(
~xh2, ~yh

)
+ c(wS

f2,h,u
S
f2,h,v

S
f,h) = F (~yh),

for all ~yh = (vS
f,h, q

S
h,v

P
r,h, q

P
h ,w

P
s,h,v

P
s,h) ∈ Xh.

By adding and subtracting appropriate terms, we can derive the following:

AwS
f1,h

(~xh1 − ~xh2, ~yh) = −c
(
wS
f1,h −wS

f2,h;uS
f2,h,v

S
f,h

)
∀~yh ∈ Xh. (4.7)

Given that wh1 ∈ Kh, and using (4.7) along with the coercivity of the bilinear forms
established in Lemma 4.1, we can deduce:

3C

4

∥∥uS
f1,h − uS

f2,h

∥∥
1,ΩS
≤ sup

0 6=~yh∈Xh

AwS
f1,h

(~xh1 − ~xh2, ~yh)

‖~yh‖

= sup
0 6=~yh∈Xh

−c
(
wS
f1,h −wS

f2,h;uS
f2,h,v

S
f,h

)
‖~yh‖

≤ S2
fK

3
f

∥∥wS
f1,h −wS

f2,h

∥∥
1,ΩS

∥∥uS
f2,h

∥∥
1,ΩS

,

which together with the fact that uS
f2,h ∈ Kh, allows us to assert the bounds

3C

4

∥∥uS
f1,h − uS

f2,h

∥∥
1,ΩS
≤ 1

C
‖f‖0,ΩS

∥∥wS
f1,h −wS

f2,h

∥∥
1,ΩS

,∥∥uS
f1,h − uS

f2,h

∥∥
1,ΩS
≤ 1

3

∥∥wS
f1,h −wS

f2,h

∥∥
1,ΩS

.

In turn, these steps establish that Jh is a contraction mapping. Hence, uS
f,h ∈ Kh

is the unique fixed point of Jh and ~xh1 ∈ W 1,∞(0, T ; Vf,h) × L∞(0, T ; Wf,h) ×
W 1,∞(0, T ; Vr,h) ×W 1,∞(0, T ; Wp,h) ×W 1,∞(0, T ; Vs,h) ×W 1,∞(0, T ; Ws,h) is the
unique solution of (4.1).

5. Fully discrete formulation. For the time discretization we employ the back-
ward Euler method with constant time-step τ , T = Nτ , and let tn = nτ , 1 ≤ n ≤ N .
Let dτu

n := τ−1(un − un−1) be the first order (backward) discrete time deriva-
tive, where un ≈ u(tn). The fully discrete problem reads: given u0

f,h = uS
f,h(0),

u0
r,h = uP

r,h(0), y0
s,h = yP

s,h(0), pP,0
h = pP

h (0), and u0
s,h = uP

s,h(0), find ~xnh ∈ ~Xh, such
that for 1 ≤ n ≤ N , there holds

Ē
(1

τ
~xnh, ~yh

)
+ H̄(~xnh, ~yh) + (uS,n−1

f,h ·∇uS,n
f,h ,v

S
f,h) = Fn(~yh) + Ē(

1

τ
~xn−1
h , ~yh), (5.1)

for all ~yh ∈ ~Xh and where Fn stands for the evaluation of F at time tn. The method
requires solving at each time step the algebraic system

LX = F̃ , (5.2)

where L := 1
τM + N. The tilde notation on the right-hand side vectors signifies that

they include contributions from the backward Euler time discretization.

Theorem 5.1. Under Assumptions (H.1)–(H.3) and ‖uS,n
f,h‖1,ΩS <

µf
2S2
fK

3
f
, 1 ≤

n ≤ N, the fully discrete scheme (5.2) admits a unique solution.

Proof. Consider the matrix obtained from (5.2) by scaling the matrix M by 1
τ and

adding it to N. This resulting matrix has the same structure as M + N, which is
shown to be nonsingular in the proof of Lemma 4.5. Therefore, the scaled matrix is
nonsingular, and so is the matrix in (4.4).
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5.1. Stability analysis of the fully discrete scheme. In the following lemma,
we discuss the stability analysis of fully discrete problem. We will make use of the
discrete space–time norms, where I = (0, T )

‖φ‖2l2(I;X) := τ

N∑
n=1

‖φn‖2X , ‖φ‖2l∞(I;X) := max
0≤n≤N

‖φn‖2X , |φ|l2(I;BJS) = τ

N∑
n=1

|φ|2BJS .

Lemma 5.2. Under Assumptions (H.1)-(H.3) and ‖uS,n
f,h‖1,ΩS

<
µf

2S2
fK

3
f
, 1 ≤ n ≤ N,

for any ε̂′f , ε̆
′
f such that

1

4

(
3− 2(1 + ς)ε̂f

′Ctr − ε̆′f
)
> 0,

where ς ∈ {−1, 0, 1} provided that γ > (ς + 1)(ε̂′f )−1, there exist constants 0 < c < 1
and C > 1, uniformly independent of the mesh size h, such that

‖uS,N
f,h ‖

2
0,ΩS

+ ‖uP,N
r,h ‖

2
0,ΩP

+ ‖yP,N
s,h ‖

2
1,ΩP

+ ‖pP,N
h ‖20,ΩP

+ ‖uP,N
s,h ‖

2
0,ΩP

+
∣∣∣uP,n
r,h

∣∣∣2
BJS

+ τ

N∑
n=1

(
∣∣∣uS,n
f,h − dτy

P,n
s,h

∣∣∣2
BJS

+ ‖uP,n
r,h ‖

2
0,ΩP

+ ‖pS,n
h ‖

2
0,ΩS

+ ‖pP,n
h ‖

2
0,ΩP

) + τ2
N∑
n=1

(‖dτuS,n
f,h‖

2
0,ΩS

+ ‖dτuP,n
r,h ‖

2
0,ΩP

+ ‖dτyP,n
s,h ‖

2
1,ΩP

+ ‖dτpP,n
h ‖

2
0,ΩP
‖dτuP,n

s,h ‖
2
0,ΩP

) + cτ

N∑
n=1(

‖uS,n
f,h‖

2
1,ΩS

+
∑
E∈EΣ

h−1
E ‖nS · uS,n

f,h + nP · uP,n
r,h + nP · dτyP,n

s,h ‖
2
0,E

)
. exp(T )

[
‖u0

f,h‖20,ΩS
+ ‖u0

r,h‖20,ΩP
+ ‖y0

s,h‖21,ΩP
+ ‖pP,0

h ‖
2
0,ΩP

+ ‖u0
s,h‖20,ΩP

+ ‖fP(0)‖0,ΩP

+ Cτ

N∑
n=1

‖fS(tn)‖20,ΩS
+ ε−1

1 τ

N∑
n=1

(
‖fP(tn)‖20,ΩP

+ ‖θ(tn)‖20,ΩP
+ ‖rS(tn)‖20,ΩS

)
+ τ

N∑
n=1

‖dτfnP‖
2
0,ΩP

]
.

More precisely, we have

c < min

{
1

4

(
3− 2(1 + ς)ε̂f

′Ctr − ε̆′f
)
, γ − (ς + 1)(ε̂′f )−1

}
, C > (ε̆′f )−1.

Proof. We choose (vS
f,h, q

S
h,v

P
r,h, q

P
h ,w

P
s,h) = (uS,n

f,h , p
S,n
h ,uP,n

r,h , p
P,n
h , dτy

P,n
s,h ) in (5.1),

apply (4.6), and use the following identity
∫

ΩP
ςndτ ς

n = 1
2dτ‖ς

n‖20,ΩP
+ 1

2τ‖dτ ς
n‖20,ΩP

.
With this we readily obtain the energy inequality

dτ
2

(
ρf‖uS,n

f,h‖
2
0,ΩS

+ ρs(1− φ)‖uP,n
s,h ‖

2
0,ΩP

+ (1− φ)2K−1‖pP,n
h ‖

2
0,ΩP

+ 2µp‖ε(yP,n
s,h )‖20,ΩP

+ λp‖∇ · yP,n
s,h ‖

2
0,ΩP

+ ρfφ‖(uP,n
s,h + uP,n

r,h )‖20,ΩP

)
+
τ

2

(
ρf‖dτuS,n

f,h‖
2
0,ΩS

+ ρs(1− φ)‖dτuP,n
s,h ‖

2
0,ΩP

+ (1− φ)2K−1‖dτpP,n
h ‖

2
0,ΩP

+ 2µp‖dτε(yP,n
s,h )‖20,ΩP

+ λp‖dτ∇ · yP,n
s,h ‖

2
0,ΩP

+ ρfφ‖dτ (uP,n
s,h + uP,n

r,h )‖20,ΩP

)
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+
∣∣∣uS,n
f,h − dτy

P,n
s,h

∣∣∣2
BJS

+
∣∣∣uP,n
r,h

∣∣∣2
BJS

+ (φ2κ−1uP,n
r,h ,u

P,n
r,h )ΩP

+ (2µfε(u
S,n
f,h), ε(uS,n

f,h))ΩS

−
∑
E∈EΣ

∫
Σ

(1 + ς)(2µfε(u
S,n
f,h)nS · nS)(nS · uS,n

f,h + nP · uP,n
r,h + nP · dτyP,n

s,h ) ds

+
∑
E∈EΣ

∫
Σ

γµf
hE

(nS · uS,n
f,h + nP · uP,n

r,h + nP · dτyP,n
s,h )2 ds

+ (uS,n−1
f,h ·∇uS,n

f,h ,u
S
f,h) ≤ (fS(tn),uS,n

f,h)ΩS + (ρpfP(tn), dτy
P,n
s,h )ΩP

+ (rS(tn), pS,n
h )ΩS

+ (ρfφfP(tn),uP,n
r,h )ΩP

+ (ρ−1
f θ(tn), pP,n

h )ΩP
.

Using the trace, Cauchy–Schwarz, Young’s, Korn’s and Sobolev inequalities, together

with Lemma 4.1 and the estimate ρf φ ‖uP
r +uP

s ‖20,ΩP
≥ ρf φ

(
1
2‖u

P
r ‖20,ΩP

−‖uP
s ‖20,ΩP

)
,

we then sum over n = 1, . . . , N and multiply by τ to obtain

‖uS,N
f,h ‖

2
0,ΩP

+ ‖uP,N
r,h ‖

2
0,ΩP

+ ‖yP,N
s,h ‖

2
1,ΩP

+ ‖pP,N
h ‖20,ΩP

+ ‖uP,N
s,h ‖

2
0,ΩP

+ τ

N∑
n=1

(
∣∣∣uP,n
r,h

∣∣∣2
BJS

+
∣∣∣uS,n
f,h − dτy

P,n
s,h

∣∣∣2
BJS

+ ‖uP,n
r,h ‖

2
0,ΩP

)
+ τ2

N∑
n=1

(
‖dτuS,n

f,h‖
2
0,ΩS

+ ‖dτuP,n
r,h ‖

2
0,ΩP

+ ‖dτyP,n
s,h ‖

2
1,ΩP

+ ‖dτpP,n
h ‖

2
0,ΩP

+ ‖dτuP,n
s,h ‖

2
0,ΩP

)
+ τ

N∑
n=1

(
3− 2(1 + ς)ε̂f

′Ctr − ε̆′f
)

4
‖uS,n

f,h‖
2
1,ΩS

+ τ

N∑
n=1

∑
E∈EΣ

(
γ − 1 + ς

ε̂f
′
)
h−1
E

‖nS · uS,n
f,h + nP · uP,n

r,h + nP · dτyP,n
s,h ‖

2
0,E . ‖u0

f,h‖20,ΩS
+ ‖u0

r,h‖20,ΩP

+ ‖y0
s,h‖21,ΩP

+ ‖pP,0
h ‖

2
0,ΩP

+ ‖u0
s,h‖20,ΩP

+ (ε̆′f )−1τ

N∑
n=1

‖fS(tn)‖20,ΩS

+ ε−1
1 τ

N∑
n=1

(‖fP(tn)‖20,ΩP
+ ‖θ(tn)‖20,ΩP

+ ‖rS(tn)‖20,ΩS
) + ε1τ

N∑
n=1

(‖pP,n
h ‖

2
0,ΩP

+ ‖pS,n
h ‖

2
L2(ΩS) + ‖uP,n

r,h ‖
2
0,ΩP

) + τ

N∑
n=1

(ρpfP(tn), dτy
P,n
s,h )ΩP . (5.3)

Next, to bound the last term on the right-hand side we use summation by parts

τ

N∑
n=1

(fP(tn), dτy
P,n
s,h ) = (fP(tN ),yP,N

s,h )− (fP(0),y0
s,h)− τ

N−1∑
n=1

(dτf
n
P,y

P,n
s,h )

≤ ε1
2
‖yP,N

s,h ‖
2
0,ΩP

+
1

2ε1
‖fP(tN )‖20,ΩP

+
τ

2

N−1∑
n=1

‖yP,n
s,h ‖

2
0,ΩP

+
1

2
(‖yP,0

s,h‖
2
0,ΩP

+ ‖fP(0)‖20,ΩP
+ τ

N−1∑
n=1

‖dτfnP‖20,ΩP
). (5.4)

Finally, applying the inf–sup condition (4.4) to pS,n
h and pP,n

h , along with (5.1) and
the continuity bounds from Lemma 4.1. Next we sum over n = 1, . . . , N and multiply
by τ , and combine the result with (5.3)-(5.4). By choosing ε1 sufficiently small and
applying the discrete Gronwall inequality [32], we obtain the desired result.
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5.2. Error analysis. We now turn to analyzing the spatial discretization error.
Let kf and sf be the degrees of polynomials in Vf,h and Wf,h, let kp and sp be
the degrees of polynomials in Vr,h and Wp,h respectively, and let ks and ss be the
polynomial degree in Vs,h and Ws,h.

Let Qf,h, Qp,h, and Qs,h be the L2-projection operators onto Wf,h,Wp,h, and Ws,h

respectively, satisfying:

(pS −Qf,hpS, qS
h)ΩS = 0 ∀qS

h ∈Wf,h, (5.5a)

(pP −Qp,hpP, qP
h )ΩP

= 0 ∀qP
h ∈Wp,h, (5.5b)

(uP
s −Qs,hu

P
s ,v

P
s,h)ΩP

= 0 ∀vP
s,h ∈Ws,h. (5.5c)

These operators satisfy the approximation properties [32]:

‖pS −Qf,hpS‖0,ΩS
≤ C?1hrsf ‖pS‖rsf ,ΩS

0 ≤ rsf ≤ sf + 1, (5.6a)

‖pP −Qp,hpP‖0,ΩP ≤ C?1hrsp ‖pP‖rsp ,ΩP
0 ≤ rsp ≤ sp + 1, (5.6b)

‖uP
s −Qs,hu

P
s ‖0,ΩP

≤ C?1hrss ‖uP
s ‖rss ,ΩP

0 ≤ rss ≤ ss + 1. (5.6c)

Next, we consider a Stokes-like projection operator (Sf,h, Rf,h) : Vf → Vf,h ×Wf,h,
defined for all vS

f ∈ Vf as

aS
f (Sf,hv

S
f ,v

S
f,h)− bSf (vS

f,h, Rf,hv
S
f ) = aS

f (vS
f ,v

S
f,h) ∀vS

f,h ∈ Vf,h, (5.7a)

bSf (Sf,hv
S
f , q

S
h) = bf (vS

f , q
S
h) ∀qS

h ∈Wf,h. (5.7b)

The operator Sf,h satisfies the approximation property [3, 23]:

‖vS
f − Sf,hv

S
f‖1,ΩS ≤ C?1h

rkf−1‖vS
f‖rkf ,ΩS , 1 ≤ rkf ≤ kf + 1. (5.8)

Similarly, let Πr,h be the Stokes projection onto Vr,h satisfying for all vP
r ∈ Vr,

(∇ ·Πr,hv
P
r , q

P
h ) = (∇ · vP

r , q
P
h ) ∀qP

h ∈Wp,h, (5.9a)

‖vP
r −Πr,hv

P
r ‖0,ΩP

≤ C?1hrkp−1‖vP
r ‖Hrkp (ΩP), 1 ≤ rkp ≤ kp + 1. (5.9b)

Finally, let Ss,h be the Scott–Zhang interpolant from Vs onto Vs,h, satisfying [34]:

‖yP
s − Ss,hy

P
s ‖0,ΩP

+ h
∣∣yP
s − Ss,hy

P
s

∣∣
1,ΩP

≤ C?1hrks‖yP
s ‖rks,ΩP

, 1 ≤ rks ≤ ks + 1.

(5.10)

Theorem 5.3. Under Assumptions (H.1)-(H.3) and ‖uS,n
f,h‖1,ΩS

<
µf

2S2
fK

3
f
, 1 ≤ n ≤

N, for any ε̂′f and ε̆′f that satisfies

1− (ς + 1)ε̂′fCtr

2
> 0,

where ς ∈ {−1, 0, 1}, provided that γ > (ς + 1)(ε̂′f )−1, and under sufficient smooth-
ness conditions for the solution of (4.4), the solution of (5.1) with initial conditions
uS
f,h(0) = If,huf,0, u

P
r,h(0) = Ir,hur,0, y

P
s,h(0) = Is,hys,0, p

P
h (0) = Qr,hp

p,0, and

uP
s,h(0) = Qs,hus,0, satisfies

‖uS
f − uS

f,h‖2l∞(I;L2(ΩS)) + ‖uP
r − uP

r,h‖2l∞(I;L2(ΩP)) + ‖pP − pP
h‖2l∞(I;L2(ΩP))
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+ ‖yP
s − yP

s,h‖2l∞(I;H1(ΩP)) + ‖uP
s − uP

s,h‖2l∞(I;L2(ΩP)) + |uP
r − uP

r,h|2l2(I;BJS)

+ |(uS
f − dτyP

s )− (uS
f,h − dτyP

s,h)|2l2(I;BJS) + ‖uP
r − uP

r,h‖2l2(I;L2(ΩP))

+
(1− (ς + 1)ε̂′fCtr

2

)
‖uS

f − uS
f,h‖2l2(I;H1(ΩS)) + ‖pS − pS

h‖2l2(I;L2(ΩS))

+ ‖pP − pP
h‖2l2(I;L2(ΩP)) +

(
γ − 1 + ς

ε̂f
′

) ∑
E∈EΣ

µf
hE

‖(uS
f − uS

f,h) · nS + (uP
r − uP

r,h) · nP + dτ (yP
s − yP

s,h) · nS‖20,E

. exp(T )

[
h2rkp−2

(
‖uP

r ‖2l2(I;H
rkp (ΩP))

+ ‖uP
r ‖2l2(I;H

rkp
+1

(ΩP))
+ ‖uP

r ‖2l∞(I;H
rkp

+1
(ΩP))

+ ‖uP
r ‖2l∞(I;H

rkp (ΩP))
+ ‖∂tuP

r ‖2L2(I;H
rkp (ΩP))

+ ‖∂tuP
r ‖2L2(I;H

rkp
+1

(ΩP))

+ ‖∂tuP
r ‖2L∞(I;H

rkp (ΩP))
+ ‖∂ttuP

r ‖2L∞(I;H
rkp (ΩP))

)
+ h2rss

(
‖uP

s ‖2l2(I;Hrss (ΩP))

+ ‖uP
s ‖2l∞(I;Hrss (ΩP)) + ‖∂tuP

s ‖2L2(I;Hrss (ΩP))

)
+ h2rks−2

(
‖yP

s ‖2l∞(I;Hrks
+1

(ΩP))

+ ‖∂tyP
s ‖2L∞(I;Hrks

+1
(ΩP))

+ ‖∂tyP
s ‖2L∞(I;Hrks (ΩP)) + ‖∂tyP

s ‖2L2(I;Hrks
+1

(ΩP))

+ ‖∂tyP
s ‖2L2(I;H

rks
+1

(ΩP))
+ ‖∂ttyP

s ‖2L∞(I;H
rks

+1
(ΩP))

+ ‖∂ttyP
s ‖2L∞(I;H

rks (ΩP))

)
+ h2rsp

(
‖pP‖2l∞(I;H

rsp (ΩP)) + ‖∂tpP‖2L2(I;H
rsp (ΩP))

)
+ h2rkf

(
‖uS

f‖2
l2(I;H

rkf
+1

(ΩS))

+ ‖∂tuS
f‖2
L2(I;H

rkf
+1

(ΩS))

)
+ h2rsf ‖pS‖2

l2(I;H
rsf (ΩS))

+ τ2
(
‖∂ttuP

r ‖2L2(I;L2(ΩP))

+ ‖∂ttuP
r ‖2L∞(I;L2(ΩP)) + ‖∂tttuP

r ‖2L2(I;L2(ΩP)) + ‖∂ttuP
s ‖2L2(I;L2(ΩP))

+ ‖∂ttuP
s ‖2L∞(I;L2(ΩP)) + ‖∂tttuP

s ‖2L2(I;L2(ΩP)) + ‖∂ttyP
s ‖2L∞(I;H1(ΩP))

+ ‖∂ttyP
s ‖2L2(I;H1(ΩP)) + ‖∂tttyP

s ‖2L2(I;H1(ΩP)) + ‖∂ttpP‖2L2(I;L2(ΩP))

+ ‖∂ttuS
f‖L2(I;L2(ΩP)) + ‖∂tuS

f‖2L2(0,T ;H1(ΩS))

)]
,

where 0 ≤ rkf ≤ kf , 0 ≤ rsf ≤ sf + 1, 0 ≤ rkp ≤ kp, 0 ≤ rsp ≤ sp + 1, 0 ≤ rks ≤ ks,
0 ≤ rss ≤ ss + 1.

The proof of this result is postponed to Appendix A.

6. Numerical tests. We now present several numerical examples that validate
the accuracy of the derived error estimates. All simulations were performed using the
open-source finite element library Gridap (version 0.17.12) [5], whose high-level API
supports all components necessary for defining the problem, including integration over
facets and separate domains, e.g., Σ, ΩS, and ΩP, as required by (5.1).

6.1. Convergence tests against manufactured solutions. The accuracy of
the discretization is verified using the following closed-form solutions defined on the
domains ΩP = (0, 1) × (0.5, 1),ΩS = (0, 1) × (0, 0.5), separated by the interface Σ =
(0, 1)× {0.5}

uS
f =

(
tx3 cos(4πy)
−2tx3 sin(4πy)

)
, pS = t2(1− sin(4πx) sin(4πy)),

uP
r =

(
t2 sin2(4πy)− tx3 cos(4πy)
t2 sin2(4πy) + 2tx3 sin(4πy)

)
, uP

s =

(
tx3 cos(4πy)
−2tx3 sin(4πy)

)
,
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yP
s =

(
0.5t2x3 cos(4πy)
−t2x3 sin(4πy)

)
, pP = t2(1− sin(4πx) sin(4πy)).

The synthetic model parameters are taken as λp = µp = µf = 10, αBJS = 1, φ = 0.1,
κ = ρp = ρf = K = 1, θ = 0.0, γ = 40, all regarded non-dimensional as we will be
simply testing the convergence of the FE approximations. The model problem is then
complemented with the appropriate Dirichlet boundary conditions and initial data.
These functions do not necessarily fulfill the interface conditions, so additional terms
are required giving modified relations on Σ:

uS
f · nS +

(
∂ty

P
s + uP

r

)
· nP = m1

Σ,ex, −
(
σSnS

)
· nS = −

(
σP
fnP

)
· nP +m2

Σ,ex,

−
(
σS
fnS

)
· τ f,j = µfαBJS

√
Z−1
j

(
uS
f − ∂tyP

s

)
· τ f,j +m4

Σ,ex,

σS
fnS + σP

fnP + σP
snP = m3

Σ,ex, −(σP
fnP) · τf,j = µfαBJS

√
Z−1
j uP

r · τ f,j +m5
Σ,ex,

and the additional scalar and vector terms mi
Σ,ex (computed with the exact solutions

(6.1) entail the following changes in the linear functionals)

F (vS
f ) :=

∫
ΩS

fSv
S
f +

∫
Σ

γµf
hE

m1
Σ,ex(vS

f · nS)−
∫

Σ

γµf
hE

m1
Σ,ex(2µfε(u

S
f ))nSnS

− 〈m4
Σ,ex,v

S
f · τf,j〉Σ,

F (vP
r ) :=

∫
ΩP

ρfφfPv
S
f +

∫
Σ

γµf
hE

m1
Σ,ex(vP

r · nP) + 〈m2
Σ,ex,v

P
r · nP〉Σ

− 〈m5
Σ,ex,v

P
r · τf,j〉Σ,

F (wP
s ) :=

∫
ΩP

ρpfPw
P
s +

∫
Σ

γµf
hE

m1
Σ,ex(wP

s · nP) + 〈m3
Σ,ex,w

P
s 〉Σ

+ 〈m4
Σ,ex,w

P
s · τf,j〉Σ, F (qS) := −

∫
Σ

γµf
hE

m1
Σ,exq

S.

We generate successively refined simplicial grids and use a sufficiently small (non
dimensional) time step τ = h × 10−3 and final time T = 0.001, to guarantee that
the error produced by the time discretization does not dominate. Errors between the
approximate and exact solutions are shown in Table 1.

6.2. 2D flow in a channel with rigid obstacles between porous layers.
The computational domain is a two-dimensional channel that contains a free-flow
region bounded above and below by porous layers. Three rigid, eye-shaped obstacles
are embedded in the central free-flow region. At the inlet, the free-flow velocity
uS
f , pore velocity uP

r , and solid displacement yP
s are prescribed by the inflow profile

uin =
(

1
0.49 (0.1 (x2 + 0.2) (1.2 − x2))0.49, 0

)
. No-slip conditions are applied on the

surfaces of the rigid obstacles, i.e., uS
f = 0. On the exterior walls, uP

r = 0 and yP
s = 0.

At the outlet, a do-nothing (zero-traction) boundary condition is imposed on both
the velocity and displacement fields.

The physical parameters are defined as follows: µf = 0.01, ρf = 1.0, ρp = 1.0,
µp = 1.0336 × 103, λp = 4.9364 × 104, κ = 1 × 10−3, K = 1 × 106, θ = 0, αBJS = 1,
φ = 0.3, and γ = 30. The simulation is performed with a time step τ = 10−3 until
the final time T = 0.1.

Figure 6.1(a) shows velocity streamlines and vectors across the entire domain for
both the fluid velocity uS

f,h and the porous velocity uP
r,h. The free flow accelerates
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DoFs h ‖euS
f
‖ rate ‖euP

r
‖ rate ‖epS‖ rate ‖epP‖ rate

111 0.5000 1.79× 10−4 – 3.91× 10−3 – 6.76× 10−3 – 1.87× 10−6 –
439 0.2500 2.90× 10−5 2.627 2.06× 10−3 0.929 8.86× 10−4 2.932 3.45× 10−7 2.440

1767 0.1250 4.67× 10−6 2.632 4.23× 10−4 2.281 1.07× 10−4 3.054 1.55× 10−8 4.475
7111 0.0625 9.41× 10−7 2.312 8.84× 10−5 2.258 1.80× 10−5 2.571 1.16× 10−9 3.741

28551 0.0312 2.52× 10−7 1.901 1.73× 10−5 2.353 4.85× 10−6 1.887 2.41× 10−10 2.269

DoFs h ‖eyP
s
‖ rate ‖euP

s
‖ rate

111 0.5000 2.98× 10−6 – 1.08× 10−5 –
439 0.2500 1.17× 10−6 1.350 1.67× 10−6 2.700

1767 0.1250 1.65× 10−7 2.825 3.10× 10−7 2.424
7111 0.0625 2.40× 10−8 2.779 6.78× 10−8 2.196

28551 0.0312 4.15× 10−9 2.532 1.64× 10−8 2.045

Table 1
Experimental errors and convergence rates computed at the final time step for variables

uS
f ,u

P
r , p

S, pP,yP
s , and uP

s using the finite element spaces P2
2–P1–P2

2–P1–P2
2–P2

1.

(a) Fluid and porous velocity (b) Fluid and porous pressure

(c) Solid displacement (d) Solid velocity

Fig. 6.1. Coupled fluid–poroelastic simulation results: (a) free-flow velocity uS
f,h and porous

velocity uP
r,h (streamlines and vectors); (b) profiles and iso-contours of pressures pSh (free flow) and

pPh (poroelastic medium); (c) magnitude of solid displacement |yP
s,h|; (d) magnitude of solid velocity

|uP
s,h|. Colorbars indicate magnitudes; streamlines and vectors depict flow or solid motion.

along the main channel and forms recirculation zones behind the obstacles. Higher
pore-fluid velocities occur near obstacle boundaries and along the interface, indicating
regions of enhanced exchange between the free fluid and the porous medium. Fig-
ure 6.1(b) shows the pressures pS

h in the free-flow region and pP
h in the poroelastic

medium. The pressure varies along the channel, with a clear difference across the
fluid–poroelastic interface caused by the resistance of the porous matrix. This pres-
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Fig. 6.2. Velocity streamlines (left), pressure profiles (center), and displacement magnitude
associated with flow through a microfluidic chip.

sure difference drives fluid exchange across the interface and influences the motion
of the solid skeleton. Figure 6.1(c) shows the solid displacement magnitude |yP

s,h| in
the poroelastic layer. The largest displacements occur near the fluid–solid interface
and behind the obstacles, indicating how the solid deforms in response to the flow.
Figure 6.1(d) shows the poroelastic solid velocity magnitude |uP

s,h|. Most solid mo-
tion occurs near the interface and along obstacle boundaries, corresponding to areas
of high pressure gradient and strong pore-fluid flow. This indicates strong coupling
between the fluid and the solid.

6.3. 3D simulation of the blood flow through a microfluidic chip with
cylindrical poroelastic obstacles. To demonstrate that our numerical method is
both stable and accurate, we perform a 3D simulation of fluid flow inside a microfluidic
chip [28], with a slight modification to the radius of the obstacles. The chip dimensions
are 2 cm× 4.2 cm× 0.5 cm. On the left side, there is one inlet for blood to enter, and
on the right side, there are two outlets where blood leaves. Similarly, there is a single
inlet on the left for water to flow in and two outlets on the right for water to flow
out. Inside the chip, ten pillars made of poroelastic materials (such as hydrogels or
polymer composites) are arranged in specific positions. Six of these pillars have a
radius of 0.2 cm, and the remaining four have a radius of 0.15 cm. The parameters
are defined as µf = 0.01, ρf = 1.0, ρp = 1.2, µp = 1.0336 × 103, λp = 4.9364 × 104,
κ = 1 × 10−3, K = 1 × 106, θ = 0, αBJS = 1, φ = 0.3, and γ = 30, and their units
are in the CGS system. This problem was solved with a time step of τ = 10−3 and a
final time of T = 1. The boundary conditions are as follows: on the inlet,

uS
f = uin =

(
20 (z − 0.5) (1.5− z) z (0.7− z)

0.49
, 0, 0

)
.

On the lateral walls, the channel top, and the channel bottom (excluding the pillar
hole), uS

f = 0. On the outlet, σS
f nS = 0. Finally, on the top and bottom of the

cylinder, yP
s = uP

r = 0. We report in Figure 6.2 the numerical results, showing the
expected behavior of flow through deformable obstacles.

7. Conclusion. A Nitsche-based formulation is proposed for the Navier–
Stokes/generalized poroelasticity model, and the well-posedness of the discrete for-
mulations is proved using DAE theory and Banach fixed point theorem. A priori
error estimates for the fully discrete schemes are derived. Finally, we conduct a series
of numerical experiments to validate the theoretical findings on spatio-temporal con-
vergence. Specifically, we present a two-dimensional simulation of flow in a channel
containing obstacles between a porous substrate, and a three-dimensional simulation
of blood flow through a microfluidic device featuring cylindrical poroelastic obsta-
cles. Further perspectives of this work include the extension to the fully nonlinear
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regime, as well as other types of transmission conditions that would allow for greater
generality in the types of poromechanical problems we can tackle.
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porohyperelastic structure interaction, SIAM J. Sci. Comput., 43 (2021), pp. A2923–A2948.

[36] R. E. Showalter, Poroelastic filtration coupled to Stokes flow, in Control theory of partial
differential equations, vol. 242 of Lect. Notes Pure Appl. Math., Chapman & Hall/CRC,
Boca Raton, FL, 2005, pp. 229–241.

[37] J. Yu, Y. Sun, F. Shi, and H. Zheng, Nitsche’s type stabilized finite element method for the
fully mixed Stokes-Darcy problem with Beavers-Joseph conditions, Appl. Math. Lett., 110
(2020), pp. 106588, 8.

[38] J. Yu and Y. Zhang, Nitsche’s type stabilization for the fully mixed Navier-Stokes/Darcy
problem, J. Appl. Anal. Comput., 11 (2021), pp. 1481–1493.

Appendix A. Proof of Theorem 5.3.

Proof. We introduce the errors for all variables and split them into approximation
and discretization errors:

enf := uS,n
f − uS,n

f,h = (uS,n
f − If,hu

S,n
f ) + (If,hu

S,n
f − uS,n

f,h) := χnf,h + φnf,h,

enr := uP,n
r − uP,n

r,h = (uP,n
r −Πr,hu

P,n
r ) + (Πr,hu

P,n
r − uP,n

r,h ) := χnr,h + φnr,h,

eny := yP,n
s − yP,n

s,h = (yP,n
s − Ss,hy

P,n
s ) + (Ss,hy

P,n
s − yP,n

s,h ) := χny,h + φny,h,

ens := uP,n
s − uP,n

s,h = (uP,n
s −Qs,hu

P,n
s ) + (Qs,hu

P,n
s − uP,n

s,h ) := χns,h + φns,h,
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enfp := pS,n − pS
h = (pS,n −Qf,hpS,n) + (Qf,hp

S,n − pS,n
h ) := χnfp,h + φnfp,h,

enpp := pP,n − pP,n
h = (pP,n −Qp,hpP,n) + (Qp,hp

P,n − pP,n
h ) := χnpp,h + φnpp,h.

Denote the time discretisation errors as rn(φ) = dτφ− ∂tφ, for φ ∈ {uS,n
f ,uP,n

r ,yP,n
s ,

pP,n,uP,n
s }. Subtracting (5.1) from (3.1) and adding the resulting equations, we

obtain the following error equation

mρf (dτe
n
f ,v

S
f,h) +mρfφ(dτe

n
r ,w

P
s,h) +mρp(dτe

n
s ,w

P
s,h) +mρfφ(dτe

n
r ,v

P
r,h)

+mρfφ(dτe
n
s ,v

P
r,h)−mρp(dτe

n
y ,v

P
s,h) +mρp(ens ,v

P
s,h) + aS

f (enf ,v
S
f,h) + aP

f (enr ,w
P
s,h)

+ aP
s (eny ,w

P
s,h) + aP

f (enr ,v
P
r,h) + aP

f (dτe
n
y ,v

P
r,h) + aP

f (dτe
n
y ,w

P
s,h) + bS(vS

f,h, e
n
fp)

+ bPs (wP
s,h, e

pp
h ) + bPf (vP

r,h, e
n
pp)−mθ(e

n
r ,w

P
s,h)−mθ(e

n
s ,w

P
s,h)−mθ(e

n
r ,v

P
r,h)

−mθ(e
n
s ,v

P
r,h) +mφ2/κ(enr ,v

P
r,h) + bΓ(vS

f,h,v
P
r,h,w

P
s,h; enf , e

S
fp)− bPs (dτe

n
y , q

P
h )

− bPf (enr , q
P
h )− bS(enf , q

S
h) + bΓ(enf , e

n
r , dτe

n
y ; ςvS

f ,−qS
h) + aBJS(enf , dτe

n
y ;vS

f,h,w
P
s,h)

+ cΓ(enf , e
n
r , dτe

n
y ;vS

f,h,v
P
r,h,w

P
s,h) + bBJS(enr ,v

P
r,h) + ((1− φ)2K−1dτe

n
pp, q

P
h )ΩP

+ (uS,n
f · ∇uS,n

f − uS,n−1
f,h · ∇uS,n

f,h ,v
S,n
f,h) + E = 0,

where the discretisation error is given by

E = mρf (rn(uS
f ),vS

f,h) +mρfφ(rn(uP
r ),wP

s,h) +mρp(rn(uP
s ),wP

s,h) +mρfφ(rn(uP
r ),

vP
r,h) +mρfφ(rn(uP

s ),vP
r,h) + aP

f (rn(yP
s ),vP

r,h) + ((1− φ)2K−1rn(pP), qP
h )ΩP

− bPs (rn(yP
s ), qP

h ) + aP
f (rn(yP

s ),wP
s,h) + aBJS(0, rn(yP

s );vS
f,h,w

P
s,h) + bΓ

(0,0, rn(yP
s );vS

f,h, 0)− bΓ(0,0, rn(yP
s ); 0, qS

h) + cΓ(0,0, rn(yP
s );vS

f,h,v
P
r,h,w

P
y,h).

Setting vS
f,h = φnf,h,v

P
r,h = φnr,h,w

P
s,h = dτφ

n
y,h,v

P
s,h = φns,h, q

S
h = φnfp,h, and qP

h =
φnpp,h, we conclude that the following terms simplify due to the properties of the
projection operators (5.5b), (5.7b) and (5.9a):

bS(χnf,h, φ
n
fp,h) = bPf (χnr,h, φ

n
pp,h) = bPf (φnr,h, χ

n
pp,h) = 0,

((1− φ)2K−1dτχ
n
pp,h, φ

n
pp,h) = 0.

Rearranging terms and using the results above, the error equation becomes

aS
f (φnf,h,φ

n
f,h) + aP

f (φnr,h, dτφ
n
y,h) + aP

f (φnr,h,φ
n
r,h) + aP

f (dτφ
n
y,h,φ

n
r,h)

+ aP
f (dτφ

n
y,h, dτφ

n
y,h) + aP

s (φny,h, dτφ
n
y,h) + aBJS(φnf,h, dτφ

n
y,h;φnf,h, dτφ

n
y,h)

+ bΓ(φnf,h,φ
n
r,h, dτφ

n
y,h;φnf,h, 0) + bΓ(φnf,h,φ

n
r,h, dτφ

n
y,h; ςφnf,h, 0)

+ cΓ(φnf,h,φ
n
r,h, dτφ

n
y,h;φnf,h,φ

n
r,h, dτφ

n
y,h) +mρfφ(dτφ

n
r,h,φ

n
s,h)

+mρp(dτφ
n
s,h,φ

n
s,h) +mρfφ(dτφ

n
r,h,φ

n
r,h) +mρfφ(dτφ

n
s,h,φ

n
r,h)−mθ(φ

n
r,h,φ

n
r,h)

+ ((1− φ)2K−1dτφ
n
pp,h, φ

n
pp,h)ΩP −mθ(φ

n
r,h,φ

n
s,h)−mθ(φ

n
s,h,φ

n
s,h)

−mθ(φ
n
s,h,φ

n
r,h) +mφ2/κ(φnr,h,φ

n
r,h) +mρf (dτφ

n
f,h,φ

n
f,h) + bBJS(φnr,h,φ

n
r,h)

= J1 + J2 + J3 + J4 + J5 + J6 + J7 + J8 + J9, (A.1)

where the right-hand side terms are defined as follows

J1 :=− aS
f (χnf,h,φ

n
f,h) +mθ(χ

n
r,h,φ

n
r,h) +mθ(χ

n
s,h,φ

n
r,h)−mφ2/κ(χnr,h,φ

n
r,h)
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−mρfφ(dτχ
n
r,h,φ

n
r,h)−mρfφ(dτχ

n
s,h,φ

n
r,h)−mρf (dτχ

n
f,h, φ

n
f,h)

−mρfφ(rn(uP
r ),φnr,h)−mρfφ(rn(uP

s ),φnr,h)−mρf (rn(uS
f ), φnf,h),

J2 :=− aP
f (χnr,h,φ

n
r,h)− aP

f (dτχ
n
y,h,φ

n
r,h)− aP

f (rn(yP
s ),φnr,h),

J3 :=−
d−1∑
j=1

〈
µfαBJS

√
Z−1
j (χnf,h − dτχny,h) · τ f,j , (φnf,h − dτφ

n
y,h) · τ f,j

〉
Σ

− ((1− φ)2K−1rn(pP), φnpp,h)ΩP
−
d−1∑
j=1

〈
µfαBJS

√
Z−1
j χnr,h · τ f,j ,φ

n
r,h · τ f,j

〉
Σ
,

J4 :=− bS(φnf,h, χ
n
fp,h) + bPs (dτχ

n
y,h, φ

n
pp,h) + bPs (rn(yP

s ), φnpp,h),

J5 :=− aP
f (χnr,h, dτφ

n
y,h)− aP

s (χny,h, dτφ
n
y,h)− aP

f (dτχ
n
y,h, dτφ

n
y,h)

+mθ(χ
n
r,h, dτφ

n
y,h)−mρp(dτχ

n
y,h, dτφ

n
y,h) +mθ(χ

n
s,h, dτφ

n
y,h)

− bPs (dτφ
n
y,h, χ

n
pp,h)−mρfφ(dτχ

n
r,h, dτφ

n
y,h)− aP

f (rn(yP
s ), dτφ

n
y,h)

− aBJS(0, rn(yP
s );φnf,h, dτφ

n
y,h)−mρfφ(rn(uP

r ), dτφ
n
y,h)

−mρp(rn(uP
s ), dτφ

n
y,h)− aP

f (rn(yP
s )), dτφ

n
y,h),

J6 :=− bΓ(χnf,h,χ
n
r,h, dτχ

n
y,h;φnf,h, 0)

− bΓ(φnf,h,φ
n
r,h, dτφ

n
y,h; ςχnf,h, 0)− bΓ(0,0, rn(yP

s );φnf,h, 0),

J7 :=− bΓ(χnf,h,χ
n
r,h, dτχ

n
y,h; 0, φnfp,h)

− bΓ(φnf,h,φ
n
r,h, dτφ

n
y,h; 0,−χnfp,h)− bΓ(0,0, rn(yP

s ); 0, φnfp,h),

J8 :=− cΓ(χnf,h,χ
n
r,h, dτχ

n
y,h;φnf,h,φ

n
r,h, dτφ

n
y,h)

− cΓ(0,0, rn(yP
s );φnf,h,φ

n
r,h, dτφ

n
y,h),

J9 :=− (uS,n
f · ∇uS,n

f − uS,n−1
f,h · ∇uS,n

f,h ,φ
n
f,h).

We employ the inequality (4.6) along with the estimate

ρf φ
∥∥φnr,h + φns,h

∥∥2

0,ΩP
≥ ρf φ

(
1
2

∥∥φnr,h∥∥2

0,ΩP
−
∥∥φns,h∥∥2

0,ΩP

)
, (A.2)

and apply the coercivity properties of the bilinear forms, together with the trace in-
equality, Hölder’s inequality, and Young’s inequality, to estimate the LHS of (A.1).
Furthermore, the terms J1 through J8 are estimated analogously, following the ap-
proach presented in [6].

For the nonlinear error term, we have

uS,n
f ·∇uS,n

f − uS,n−1
f,h ·∇uS,n

f,h

= S(uS,n
f ) ·∇uS,n

f + uS,n−1
f · ∇(χnf,h + φnf,h) + (χn−1

f,h + φn−1
f,h ) ·∇uS,n

f,h ,

where S(uS,n
f ) = uS,n

f −u
S,n−1
f . Then, using Sobolev and Korn’s inequalities, and the

assumption ‖uS,n
f,h‖1,ΩS

<
µf

2S2
fK

3
f
, 1 ≤ n ≤ N, we get

τ

N∑
n=1

J9 := −τ
N∑
n=1

(uS,n
f ·∇uS,n

f − uS,n−1
f,h ·∇uS,n

f,h ,φ
n
f,h)Ωf

≤ τ
N∑
n=1

(
‖S(uS,n

f )‖0,4,ΩS
‖∇uS,n

f ‖0,ΩS
‖φnf,h‖0,4,ΩS

+ ‖uS,n−1
f ‖0,4,ΩS
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‖∇χnf,h‖0,ΩS
‖φnf,h‖0,4,ΩS

+ ‖uS,n−1
f ‖0,4,ΩS

‖∇φnf,h‖0,ΩS
‖φnf,h‖0,4,ΩS

+‖χn−1
f ‖0,4,ΩS‖∇u

S,n
f,h‖0,ΩS‖φ

n
f,h‖0,4,ΩS + ‖φn−1

f,h ‖0,4,ΩS‖∇u
S,n
f,h‖0,ΩS

‖φnf,h‖0,4,ΩS

)
≤ τ

N∑
n=1

(µf
2
‖S(∇uS,n

f )‖0,ΩS
‖∇φnf,h‖0,ΩS

+
µf
2
‖∇χnf,h‖0,ΩS

‖∇φnf,h‖0,ΩS

+
µf
2
‖∇φnf,h‖20,ΩS

+
µf
2
‖∇χn−1

f ‖0,ΩS
‖∇φnf,h‖0,ΩS

+
µf
2
‖∇φn−1

f,h ‖0,ΩS

‖∇φnf,h‖0,ΩS

)
≤ µfτ

N∑
n=1

‖∇φnf,h‖20,ΩS
+ τ

N∑
n=1

µf
4
‖∇φn−1

f ‖20,ΩS
+

3µf
4
τ

N∑
n=1

(‖∇S(uS,n
f )‖20,ΩS

+ ‖∇χnf,h‖20,ΩS
+ ‖∇χn−1

f,h ‖
2
0,ΩS

).

By substituting the bounds for J1–J9 into (A.1) and choosing ε1 sufficiently small, we
obtain the desired bound. Next, we apply the inf–sup condition (4.4) with the choice

(qS,n
h , qP,n

h ) = (φnfp,h, φ
n
pp,h), and use the error equation obtained by subtracting (5.1)

from (3.1). The analysis follows the approach in [6], with the additional approximation

property τ
∑N
n=1 ‖S(uS,n

f )‖21,ΩS
≤ Cτ2‖∂tuS

f‖2L2(0,T ;H1(ΩS)). Finally, combining all the

estimates with the discrete Gronwall inequality [2], the triangle inequality, and the
approximation properties in (5.6a)–(5.6c), (5.8), and (5.9b)–(5.10) yields the assertion
of the theorem.
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