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Casilla 160-C, Concepción, Chile
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SUMMARY

This paper addresses the existence and regularity of weak solutions for a fully parabolic model of
chemotaxis, with prevention of overcrowding, that degenerates in a two-sided fashion, including an extra
nonlinearity represented by a p-Laplacian diffusion term. To prove the existence of weak solutions, a
Schauder fixed-point argument is applied to a regularized problem and the compactness method is used
to pass to the limit. The local Hölder regularity of weak solutions is established using the method of
intrinsic scaling. The results are a contribution to showing, qualitatively, to what extent the properties of
the classical Keller–Segel chemotaxis models are preserved in a more general setting. Some numerical
examples illustrate the model. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Scope

It is the purpose of this paper to study the existence and regularity of weak solutions of the
following parabolic system, which is a generalization of the well-known Keller–Segel model [1–3]

∗Correspondence to: Raimund Bürger, CI2MA and Departamento de Ingenierı́a Matemática, Universidad de
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DOUBLY NONLINEAR CHEMOTAXIS MODEL 1705

of chemotaxis:

�t u−div(|∇A(u)|p−2∇A(u))+div(�u f (u)∇v)

=0 in QT :=�×(0,T ), T>0, �⊂RN (1a)

�tv−d�v=g(u,v) in QT (1b)

|∇A(u)|p−2a(u)
�u
��

=0,
�v

��
=0 on �T :=��×(0,T ) (1c)

u(x,0)=u0(x), v(x,0)=v0(x) on � (1d)

where �⊂RN is a bounded domain with a sufficiently smooth boundary �� and outer unit
normal �. Equation (1a) is doubly nonlinear, since we apply the p-Laplacian diffusion operator,
where we assume 2�p<∞, to the integrated diffusion function A(u) :=∫ u0 a(s)ds, where a(·) is
a non-negative integrable function with support on the interval [0,1].

In the biological phenomenon described by (1), the quantity u=u(x, t) is the density of organ-
isms, such as bacteria or cells. The conservation PDE (1a) incorporates two competing mechanisms,
namely the density-dependent diffusive motion of the cells, described by the doubly nonlinear
diffusion term, and a motion in response to and toward the gradient ∇v of the concentration
v=v(x, t) of a substance called chemoattractant. The movement in response to ∇v also involves
the density-dependent probability f (u(x, t)) for a cell located at (x, t) to find space in a neigh-
boring location, and a constant � describing chemotactic sensitivity. On the other hand, the PDE
(1b) describes the diffusion of the chemoattractant, where d>0 is a diffusion constant and the
function g(u,v) describes the rates of production and degradation of the chemoattractant; we here
adopt the common choice

g(u,v)=�u−�v, �,��0 (2)

We assume that there exists a maximal population density of cells um such that f (um)=0.
This corresponds to a switch to repulsion at high densities, known as prevention of overcrowding,
volume-filling effect or density control (see [4]). It means that cells stop to accumulate at a given
point of � after their density attains a certain threshold value, and the chemotactic cross-diffusion
term �u f (u) vanishes identically when u�um. We also assume that the diffusion coefficient a(u)

vanishes at 0 and um, so that (1a) degenerates for u=0 and u=um, while a(u)>0 for 0<u<um. A
typical example is a(u)=�u(1−um), �>0. Normalizing variables by ũ=u/um, ṽ=v and f̃ (ũ)=
f (ũum), we have ũm=1; in the sequel we will omit tildes in the notation.
The main intention of the present work is to address the question of the regularity of weak

solutions, which is a delicate analytical issue since the structure of Equation (1a) combines a
degeneracy of p-Laplacian type with a two-sided point degeneracy in the diffusive term. We prove
the local Hölder continuity of the weak solutions of (1) using the method of intrinsic scaling (see
[5, 6]). The novelty lies in tackling the two types of degeneracy simultaneously and finding the
right geometric setting for the concrete structure of the PDE. The resulting analysis combines the
technique used by Urbano [7] to study the case of a diffusion coefficient a(u) that decays like a
power at both degeneracy points (with p=2) with the technique by Porzio and Vespri [8] to study
the p-Laplacian, with a(u) degenerating at only one side. We recover both results as particular
cases of the one studied here. To our knowledge, the p-Laplacian is a new ingredient in chemotaxis
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1706 M. BENDAHMANE ET AL.

models, so we also include a few numerical examples that illustrate the behavior of solutions of (1)
for p>2, compared with solutions to the standard case p=2, but including nonlinear diffusion.

1.2. Related work

To put this paper in the proper perspective, we recall that the Keller–Segel model is a widely studied
topic, see e.g. Murray [3] for a general background and Horstmann [1] for a fairly complete survey
on the Keller–Segel model and the variants that have been proposed. Nonlinear diffusion equations
for biological populations that degenerate at least for u=0 were proposed in the 1970s by Gurney
and Nisbet [9] and Gurtin and McCamy [10]; more recent works include those by Witelski [11],
Dkhil [12], Burger et al. [13] and Bendahmane et al. [4]. Furthermore, well-posedness results for
these kinds of models include, for example, the existence of radial solutions exhibiting chemotactic
collapse [14], the local-in-time existence, uniqueness and positivity of classical solutions, and
results on their blow-up behavior [15], and existence and uniqueness using the abstract theory
developed in [16], see [17]. Burger et al. [13] prove the global existence and uniqueness of the
Cauchy problem in RN for linear and nonlinear diffusion with prevention of overcrowding. The
model proposed herein exhibits an even higher degree of nonlinearity, and offers further possibilities
to describe chemotactic movement; for example, one could imagine that the cells or bacteria are
actually placed in a medium with a non-Newtonian rheology. In fact, the evolution p-Laplacian
equation ut =div(|∇u|p−2∇u), p>1, is also called non-Newtonian filtration equation, see [18] and
[19, Chapter 2] for surveys. Coming back to the Keller–Segel model, we also mention that another
effort to endow this model with a more general diffusion mechanism has recently been made by
Biler and Wu [20], who consider fractional diffusion.

Various results on the Hölder regularity of weak solutions to quasilinear parabolic systems
are based on the work of DiBenedetto [5]; the present paper also contributes in this direction.
Specifically for a chemotaxis model, Bendahmane et al. [4] proved the existence and Hölder
regularity of weak solutions for a version of (1) for p=2. For a detailed description of the intrinsic
scaling method and some applications, we refer to the books [5, 6].

Concerning uniqueness of solution, the presence of a nonlinear degenerate diffusion term and
a nonlinear transport term represents a disadvantage and we could not obtain the uniqueness of
a weak solution. This contrasts with the results by Burger et al. [13], where the authors prove
uniqueness of solutions for a degenerate parabolic–elliptic system set in an unbounded domain,
using a method that relies on a continuous dependence estimate from [21], that does not apply to
our problem because it is difficult to bound �v in L∞(QT ) due to the parabolic nature of (1b).

1.3. Weak solutions and statement of main results

Before stating our main results, we give the definition of a weak solution to (1), and recall the
notion of certain functional spaces. We denote by p′ the conjugate exponent of p (we will restrict
ourselves to the degenerate case p>2): 1/p+1/p′ =1. Moreover, Cw(0,T, L2(�)) denotes the
space of continuous functions with values in (a closed ball of) L2(�) endowed with the weak
topology, and 〈·, ·〉 is the duality pairing between W 1,p(�) and its dual (W 1,p(�))′.

Definition 1.1
A weak solution of (1) is a pair (u,v) of functions satisfying the following conditions:

0�u(x, t)�1 and v(x, t)�0 for a.e. (x, t)∈QT
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DOUBLY NONLINEAR CHEMOTAXIS MODEL 1707

u∈Cw(0,T, L2(�)), �t u∈L p′
(0,T ;(W 1,p(�))′), u(0)=u0

A(u)=
∫ u

0
a(s)ds∈L p(0,T ;W 1,p(�))

v∈L∞(QT )∩Lr (0,T ;W 1,r (�))∩C(0,T, Lr (�)) for all r>1

�tv∈L2(0,T ;(H1(�))′), v(0)=v0

and, for all �∈L p(0,T ;W 1,p(�)) and �∈L2(0,T ;H1(�)),∫ T

0
〈�t u,�〉dt+

∫ ∫
QT

{|∇A(u)|p−2∇A(u)−�u f (u)∇v}·∇�dx dt=0

∫ T

0
〈�tv,�〉dt+d

∫ ∫
QT

∇v ·∇�dx dt=
∫ ∫

QT

g(u,v)�dx dt

To ensure, in particular, that all terms and coefficients are sufficiently smooth for this definition
to make sense, we require that f ∈C1[0,1] and f (1)=0, and assume that the diffusion coefficient
a(·) has the following properties: a∈C1[0,1], a(0)=a(1)=0, and a(s)>0 for 0<s<1. Moreover,
we assume that there exist constants 	∈(0, 1

2 ) and 
2�
1>1 such that


1�(s)�a(s)�
2�(s) for s∈[0,	], 
1�(1−s)�a(s)�
2�(1−s) for s∈[1−	,1] (3)

where we define the functions �(s) :=s�1/(p−1) and �(s) :=s�2/(p−1) for �2>�1>0.
Our first main result is the following existence theorem for weak solutions.

Theorem 1.1
If u0,v0∈L∞(�) with 0�u0�1 and v0�0 a.e. in �, then there exists a weak solution to the
degenerate system (1) in the sense of Definition 1.1.

In Section 2, we first prove the existence of solutions to a regularized version of (1) by applying
the Schauder fixed-point theorem. The regularization basically consists in replacing the degenerate
diffusion coefficient a(u) by the regularized, strictly positive diffusion coefficient aε(u) :=a(u)+ε,
where ε>0 is the regularization parameter. Once the regularized problem is solved, we send the
regularization parameter ε to zero to produce a weak solution of the original system (1) as the
limit of a sequence of such approximate solutions. Convergence is proved by means of a priori
estimates and compactness arguments.

We denote by �t QT the parabolic boundary of QT , define M̃ :=‖u‖∞,QT , and recall the
definition of the intrinsic parabolic p-distance from a compact set K ⊂QT to �t QT as

p-dist(K ;�t QT ) := inf
(x,t)∈K , (y,s)∈�t QT

(|x− y|+ M̃ (p−2)/p|t−s|1/p)

Our second main result is the interior local Hölder regularity of weak solutions.

Theorem 1.2
Let u be a bounded local weak solution of (1) in the sense of Definition 1.1, and M̃=‖u‖∞,QT .
Then u is locally Hölder continuous in QT , i.e. there exist constants 
>1 and �∈(0,1), depending
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1708 M. BENDAHMANE ET AL.

only on the data, such that, for every compact K ⊂QT ,

|u(x1, t1)−u(x2, t2)|�
M̃

{
|x1−x2|+ M̃ (p−2)/p|t2− t1|1/p

p-dist(K ;�t QT )

}�

∀(x1, t1), (x2, t2)∈K

In Section 3, we prove Theorem 1.2 using the method of intrinsic scaling. This technique is
based on analyzing the underlying PDE in a geometry dictated by its own degenerate structure,
that amounts, roughly speaking, to accommodate its degeneracies. This is achieved by rescaling
the standard parabolic cylinders by a factor that depends on the particular form of the degeneracies
and on the oscillation of the solution, and which allows for a recovery of homogeneity. The crucial
point is the proper choice of the intrinsic geometry which, in the case studied here, needs to take
into account the p-Laplacian structure of the diffusion term, as well as the fact that the diffusion
coefficient a(u) vanishes at u=0 and u=1. At the core of the proof is the study of an alternative,
now a standard type of argument [5]. In either case the conclusion is that when going from a
rescaled cylinder into a smaller one, the oscillation of the solution decreases in a way that can
be quantified.

In the statement of Theorem 1.2 and its proof, we focus on the interior regularity of u; that
of v follows from classical theory of parabolic PDEs [22]. Moreover, standard adaptations of the
method are sufficient to extend the results to the parabolic boundary, see [5, 23].

1.4. Outline

The remainder of the paper is organized as follows: Section 2 deals with the general proof of
our first main result (Theorem 1.1). Section 2.1 is devoted to the detailed proof of existence of
solutions to a non-degenerate problem; in Section 2.2 we state and prove a fixed-point-type lemma,
and the conclusion of the proof of Theorem 1.1 is contained in Section 2.3. In Section 3 we use
the method of intrinsic scaling to prove Theorem 1.2, establishing the Hölder continuity of weak
solutions to (1). Finally, in Section 4 we present two numerical examples showing the effects of
prevention of overcrowding and of including the p-Laplacian term, and in the Appendix we give
further details about the numerical method used to treat the examples.

2. EXISTENCE OF SOLUTIONS

We first prove the existence of solutions to a non-degenerate, regularized version of problem (1),
using the Schauder fixed-point theorem, and our approach closely follows that of [4]. We define
the following closed subset of the Banach space L p(QT ):

K :={u∈L p(QT ) : 0�u(x, t)�1 for a.e. (x, t)∈QT }

2.1. Weak solution to a non-degenerate problem

We define the new diffusion term Aε(s) := A(s)+εs, with aε(s)=a(s)+ε, and consider, for each
fixed ε>0, the non-degenerate problem

�t uε −div(|∇Aε(uε)|p−2∇Aε(uε))+div(� f (uε)∇vε)=0 in QT (4a)

�tvε −d�vε =g(uε,vε) in QT (4b)

Copyright q 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009; 32:1704–1737
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|∇Aε(uε)|p−2aε(uε)
�uε

��
=0,

�vε

��
=0 on �T (4c)

uε(x,0)=u0(x), vε(x,0)=v0(x) for x ∈� (4d)

With ū∈K fixed, let vε be the unique solution of the problem

�tvε −d�vε =g(ū,vε) in QT (5a)

�vε

��
=0 on �T , vε(x,0)=v0(x) for x ∈� (5b)

Given the function vε, let uε be the unique solution of the following quasilinear parabolic problem:

�t uε −div(|∇Aε(uε)|p−2∇Aε(uε))+div(�uε f (uε)∇vε)=0 in QT (6a)

|∇Aε(uε)|p−2aε(uε)
�uε

��
=0 on �T , uε(x,0)=u0(x) for x ∈� (6b)

Here v0 and u0 are the functions satisfying the assumptions of Theorem 1.1.
Since for any fixed ū∈K, (5a) is uniformly parabolic, standard theory for parabolic equations

[22] immediately leads to the following lemma.

Lemma 2.1
If v0∈L∞(�), then problem (5) has a unique weak solution vε ∈L∞(QT )∩Lr (0,T ;W 2,r (�))∩
C(0,T ; Lr (�)), for all r>1, satisfying in particular

‖vε‖L∞(QT )+‖vε‖L∞(0,T ;L2(�))�C, ‖vε‖L2(0,T ;H1(�))�C, ‖�tvε‖L2(QT )�C (7)

where C>0 is a constant that depends only on ‖v0‖L∞(�), �, �, and meas(QT ).

The following lemma (see [22]) holds for the quasilinear problem (6).

Lemma 2.2
If u0∈L∞(�), then, for any ε>0, there exists a unique weak solution uε ∈L∞(QT )∩
L p(0,T ;W 1,p(�)) to problem (6).

2.2. The fixed-point method

We define a map � :K→K such that �(ū)=uε, where uε solves (6), i.e. � is the solution
operator of (6) associated with the coefficient ū and the solution vε coming from (5). By using
the Schauder fixed-point theorem, we now prove that � has a fixed point. First, we need to show
that � is continuous. Let {ūn}n∈N be a sequence in K and ū∈K be such that ūn → ū in L p(QT )

as n→∞. Define uεn :=�(ūn), i.e. uεn is the solution of (6) associated with ūn and the solution
vεn of (5). To show that uεn →�(ū) in L p(QT ), we start with the following lemma.

Lemma 2.3
The solutions uεn to problem (6) satisfy

(i) 0�uεn(x, t)�1 for a.e. (x, t)∈QT .
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1710 M. BENDAHMANE ET AL.

(ii) The sequence {uεn}n∈N is bounded in L p(0,T ;W 1,p(�))∩L∞(0,T ; L2(�)).
(iii) The sequence {uεn}n∈N is relatively compact in L p(QT ).

Proof
The proof follows from that of Lemma 2.3 in [4] if we take into account that {�t uεn}n∈N is
uniformly bounded in L p′

(0,T ;(W 1,p(�))′). �

The following lemma contains a classical result (see [22]).
Lemma 2.4
There exists a function vε ∈L2(0,T ;H1(�)) such that the sequence {vεn}n∈N converges strongly
to v in L2(0,T ;H1(�)).

Lemmas 2.2–2.4 imply that there exist uε ∈L p(0,T ;W 1,p(�)) and vε ∈L2(0,T ;H1(�)) such
that, up to extracting subsequences if necessary, uεn →uε strongly in L p(QT ) and vεn →vε strongly
in L2(0,T ;H1(�)) as n→∞, so � is indeed continuous on K. Moreover, due to Lemma 2.3,
�(K) is bounded in the set

W :={u∈L p(0,T ;W 1,p(�)) : �t u∈L p′
(0,T ;(W 1,p(�))′)}

Similarly to the results of [24], it can be shown that W ↪→L p(QT ) is compact, and thus � is
compact. Now, by the Schauder fixed-point theorem, the operator � has a fixed point uε such that
�(uε)=uε. This implies that there exists a solution (uε,vε) of∫ T

0
〈�t uε,�〉dt+

∫ ∫
QT

{|∇Aε(uε)|p−2∇Aε(uε)−�uε f (uε)∇vε}·∇�dx dt=0

∫ T

0
〈�tvε,�〉dt+d

∫ ∫
QT

∇vε ·∇�dx dt=
∫ ∫

QT

g(uε,vε)�dx dt

∀�∈L p(0,T ;W 1,p(�)) and ∀�∈L2(0,T ;H1(�))

(8)

2.3. Existence of weak solutions

We now pass to the limit ε→0 in solutions (uε,vε) to obtain weak solutions of the original
system (1). From the previous lemmas and considering (4b), we obtain the following result.

Lemma 2.5
For each fixed ε>0, the weak solution (uε,vε) to (4) satisfies the maximum principle

0�uε(x, t)�1 and vε(x, t)�0 for a.e. (x, t)∈QT (9)

Moreover, the first two estimates of (7) in Lemma 2.1 are independent of ε.

Lemma 2.5 implies that there exists a constant C>0, which does not depend on ε, such that

‖vε‖L∞(QT )+‖vε‖L∞(0,T ;L2(�))�C, ‖vε‖L2(0,T ;H1(�))�C (10)

Notice that, from (9) and (10), the term g(uε,vε) is bounded. Thus, in light of classical results on
Lr regularity, there exists another constant C>0, which is independent of ε, such that

‖�tvε‖Lr (QT )+‖vε‖Lr (0,T ;W 1,r (�))�C for all r>1

Copyright q 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009; 32:1704–1737
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Taking �= Aε(uε) as a test function in (8) yields

∫ T

0
〈�t uε, A(uε)〉dt+ε

∫ T

0
〈�t uε,uε〉dt+

∫ ∫
QT

|∇Aε(uε)|p dx dt

−
∫ ∫

QT

� f (uε)∇vε ·∇Aε(uε)dx dt=0

then, using (10), the uniform L∞ bound on uε, an application of Young’s inequality to treat the
term ∇vε ·∇Aε(uε), and defining Aε(s) :=

∫ s
0 Aε(r)dr , we obtain

sup
0�t�T

∫
�
Aε(uε)(x, t)dx+ε sup

0�t�T

∫
�

|uε(x, t)|2
2

dx+
∫ ∫

QT

|∇Aε(uε)|p dx dt�C (11)

for some constant C>0 independent of ε.
Let �∈L p(0,T ;W 1,p(�)). Using the weak formulation (8), (10) and (11), we may follow the

reasoning in [4] to deduce the bound

‖�t uε‖L p′ (0,T ;(W 1,p(�))′)�C (12)

Therefore, from (10)–(12) and standard compactness results (see [24]), we can extract subse-
quences, which we do not relabel, such that, as ε→0,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aε(uε)→ A(u) strongly in L p(QT ) and a.e.

uε →u strongly in Lq(QT ) for all q�1

vε →v strongly in L2(QT )

∇vε →∇v weakly in L2(QT ) and ∇Aε(uε)→∇A(u) weakly in L p(QT )

|∇Aε(uε)|p−2∇Aε(uε)→�1 weakly in L p′
(QT )

vε →v weakly in L2(0,T ;H1(�))

�t uε →�t u weakly in L p′
(0,T ;(W 1,p(�))′) and �tvε →�tv

weakly in L2(0,T ;(H1(�))′)

(13)

To establish the second convergence in (13), we have applied the dominated convergence theorem to
uε = A−1

ε (Aε(uε)) (recall that A is monotone) and the weak-� convergence of uε to u in L∞(QT ).
We also have the following lemma, see [4] for its proof.
Lemma 2.6
The functions vε converge strongly to v in L2(0,T ;H1(�)) as ε→0.

Next, we identify �1 as |∇A(u)|p−2∇A(u) when passing to the limit ε→0 in (8). Owing to
this particular nonlinearity, we cannot employ the monotonicity argument used in [4]; rather, we
will utilize a Minty-type argument [25] and make repeated use of the following ‘weak chain rule’
(see e.g. [26] for a proof).
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Lemma 2.7
Let b :R→R be Lipschitz continuous and non-decreasing. Assume u∈L∞(QT ) is such that
�t u∈L p′

(0,T ;(W 1,p(�))′), b(u)∈L p(0,T ;W 1,p(�)), u(x,0)=u0(x) a.e. on �, with u0∈
L∞(�). If we define B(u)=∫ u0 b(�)d�, then

−
∫ s

0
〈�t u,b(u)�〉dt=

∫ s

0

∫
�
B(u)�t�dx dt+

∫
�
B(u0)�(x,0)dx−

∫
�
B(u(x,s))�(x,s)dx

holds for all �∈D([0,T ]×�) and for any s∈(0,T ).

Lemma 2.8
There hold �1=|∇A(u)|p−2∇A(u) and ∇Aε(uε)→∇A(u) strongly in L p(QT ).

Proof
We define QT :={(t,s, x) : (x,s)∈Qt , t ∈[0,T ]}. The first step will be to show that∫ ∫ ∫

QT

(�1−|∇
|p−2∇
) ·(∇A(u)−∇
)dx ds dt�0 ∀
∈L p(0,T ;W 1,p(�)) (14)

For all fixed ε>0, we have the decomposition∫ ∫ ∫
QT

(|∇Aε(uε)|p−2∇Aε(uε)−|∇
|p−2∇
) ·(∇A(u)−∇
)dx ds dt= I1+ I2+ I3

I1 :=
∫ ∫ ∫

QT

|∇Aε(uε)|p−2∇Aε(uε) ·(∇A(u)−∇Aε(uε))dx ds dt

I2 :=
∫ ∫ ∫

QT

(|∇Aε(uε)|p−2∇Aε(uε)−|∇
|p−2∇
) ·(∇Aε(uε)−∇
)dx ds dt

I3 :=
∫ ∫ ∫

QT

|∇
|p−2∇
 ·(∇Aε(uε)−∇A(u))dx ds dt

Clearly, I2�0 and from (13) we deduce that I3→0 as ε→0. For I1, if we multiply (4a) by
�∈L p(0,T ;W 1,p(�)) and integrate over QT , we obtain∫ T

0

∫ t

0
〈�t uε,�〉ds dt−

∫ ∫ ∫
QT

�uε f (uε)∇vε ·∇�dx ds dt

+
∫ ∫ ∫

QT

|∇Aε(uε)|p−2∇Aε(uε) ·∇�dx ds dt=0

Now, if we take �= A(u)−Aε(uε)∈L p(0,T ;W 1,p(�)) and use Lemma 2.7, we obtain

I1 = −
∫ T

0

∫ t

0
〈�t uε, A(u)〉ds dt+

∫ T

0

∫ t

0
〈�t uε, Aε(uε)〉ds dt

+
∫ ∫ ∫

QT

�uε f (uε)∇vε ·(∇A(u)−∇Aε(uε))dx ds dt
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= −
∫ T

0

∫ t

0
〈�t uε, A(u)〉ds dt+

∫ ∫
QT

Aε(uε)dx dt−T
∫

�
Aε(u0)dx

+
∫ ∫ ∫

QT

�uε f (uε)∇vε ·(∇A(u)−∇Aε(uε))dx ds dt

Therefore, using (13) and Lemma 2.6 and defining A(u) :=∫ u0 A(s)ds, we conclude that

lim
ε→0

I1=−
∫ T

0

∫ t

0
〈�t u, A(u)〉ds dt+

∫ T

0

∫
�
A(u(x, t))dx dt−T

∫
�
A(u0(x))dx

and from Lemma 2.7, this yields I1→0 as ε→0. Consequently, we have shown that

lim
ε→0

∫ ∫ ∫
QT

(|∇Aε(uε)|p−2∇Aε(uε)−|∇
|p−2∇
) ·(∇A(u)−∇
)dx ds dt�0

which proves (14). Choosing 
= A(u)−�� with �∈R and �∈L p(0,T ;W 1,p(�)) and combining
the two inequalities arising from �>0 and �<0, we obtain the first assertion of the lemma. The
second assertion directly follows from (14). �

With the above convergences we are now able to pass to the limit ε→0, and we can identify
the limit (u,v) as a (weak) solution of (1). In fact, if �∈L p(0,T ;W 1,p(�)) is a test function for
(8), then by (13) it is now clear that∫ T

0
〈�t uε,�〉dt →

∫ T

0
〈�t u,�〉dt as ε→0

∫ ∫
QT

|∇Aε(uε)|p−2∇Aε(uε) ·∇�dx dt →
∫ ∫

QT

|∇A(u)|p−2∇A(u) ·∇�dx dt as ε→0

Since h(uε)=uε f (uε) is bounded in L∞(QT ) and by Lemma 2.6, vε →v in L2(0,T ;H1(�)), it
follows that ∫ ∫

QT

�uε f (uε)∇vε ·∇�dx dt→
∫ ∫

QT

�u f (u)∇v ·∇�dx dt as ε→0

We have thus identified u as the first component of a solution of (1). Using a similar argument,
we can identify v as the second component of a solution.

3. HÖLDER CONTINUITY OF WEAK SOLUTIONS

3.1. Preliminaries

We start by recasting Definition 1.1 in a form that involves the Steklov average, defined for a
function w∈L1(QT ) and 0<h<T by

wh :=

⎧⎪⎨
⎪⎩

1

h

∫ t+h

t
w(·,�)d� if t ∈(0,T −h]

0 if t ∈(T −h,T ]
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Definition 3.1
A local weak solution for (1) is a measurable function u such that, for every compact K ⊂� and
for all 0<t<T −h,∫

K×{t}
{�t (uh)�+(|∇A(u)|p−2∇A(u))h ·∇�−(�u f (u)∇v)h ·∇�}dx=0 ∀�∈W 1,p

0 (K ) (15)

The following technical lemma on the geometric convergence of sequences (see e.g. [27,
Lemma 4.2, Chapter I]) will be used later.

Lemma 3.1
Let {Xn} and {Zn}, n∈N0, be sequences of positive real numbers satisfying

Xn+1�Cbn(X1+�
n +X�

n Z
1+�
n ), Zn+1�Cbn(Xn+Z1+�

n )

where C>1, b>1, �>0 and �>0 are given constants. Then Xn, Zn →0 as n→∞ provided that

X0+Z1+�
0 �(2C)−(1+�)/
b−(1+�)/
2 with 
=min{�,�}

3.2. The rescaled cylinders

Let B�(x0) denote the ball of radius � centered at x0. Then, for a point (x0, t0)∈Rn+1, we denote
the cylinder of radius � and height � by

(x0, t0)+Q(�,�) := B�(x0)×(t0−�, t0)

Intrinsic scaling is based on measuring the oscillation of a solution in a family of nested and
shrinking cylinders whose dimensions are related to the degeneracy of the underlying PDE. To
implement this, we fix (x0, t0)∈QT ; after a translation, we may assume that (x0, t0)=(0,0). Then
let ε>0 and let R>0 be small enough so that Q(Rp−ε,2R)⊂QT , and define

�+ := esssup
Q(Rp−ε,2R)

u, �− := ess inf
Q(Rp−ε,2R)

u, � := essosc
Q(Rp−ε,2R)

u≡�+−�−

Now construct the cylinder Q(a0Rp, R), where

a0=
(�
2

)2−p 1

�(�/2m)p−1

with m to be chosen later. To ensure that Q(a0Rp, R)⊂Q(Rp−ε,2R), we assume that

1

a0
=
(�
2

)p−2
�
( �

2m

)p−1
>Rε (16)

and therefore the relation

essosc
Q(a0Rp,R)

u�� (17)

holds. Otherwise, the result is trivial as the oscillation is comparable to the radius. We mention
that for � small and for m>1, the cylinder Q(a0Rp, R) is long enough in the t-direction, so that
we can accommodate the degeneracies of the problem. Without loss of generality, we will assume
�<	< 1

2 .
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Consider now, inside Q(a0Rp, R), smaller subcylinders of the form

Qt∗
R ≡(0, t∗)+Q(dRp, R), d=

(�
2

)2−p 1

[�(�/4)]p−1
, t∗<0

These are contained in Q(a0Rp, R) if a0Rp�− t∗+dRp, which holds whenever �(�/2m)�
�(�/4) and

t∗ ∈
(

(�/2)2−p R p

�(�/4)p−1
− (�/2)p−2Rp

�(�/2m)p−1
,0

)

These particular definitions of a0 and of d turn out to be the natural extensions to the case p>2
of their counterparts in [7]. Notice that for p=2 and a(u)≡1, we recover the standard parabolic
cylinders.

The structure of the proof will be based on the analysis of the following alternative: either there
is a cylinder Qt∗

R , where u is essentially away from its infimum or such a cylinder cannot be found
and thus u is essentially away from its supremum in all cylinders of that type. Both cases lead to
the conclusion that the essential oscillation of u within a smaller cylinder decreases by a factor
that can be quantified, and which does not depend on �.

Remark 3.1 (See Porzio and Vespri [8, Remark 4.2])
Let us introduce quantities of the type Bi R��−bi , where Bi and bi>0 are constants that can be
determined a priori from the data, independently of � and R, and � depending only on N and p.
We assume without loss of generality that

Bi R
��−bi�1

If this was not valid, then we would have ��CRε for the choices C=maxi B
1/b
i and ε=�/mini bi ,

and the result would be trivial.

3.3. The first alternative

Without loss of generality, we assume from now on that �+ =1.

Lemma 3.2
There exists �0∈(0,1), independent of � and R, such that if

|{(x, t)∈Qt∗
R : u(x, t)>1−�/2}|��0|Qt∗

R | (18)

for some cylinder of the type Qt∗
R , then u(x, t)<1−�/4 a.e. in Qt∗

R/2.

Proof
Let u� :=min{u,1−�/4}, take the cylinder for which (18) holds, define

Rn = R

2
+ R

2n+1
, n∈N0

and construct the family

Qt∗
Rn

:=(0, t∗)+Q(dRp
n , Rn)= BRn ×(�n, t

∗), �n := t∗−dRp
n , n∈N0
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note that Qt∗
Rn

→Qt∗
R/2 as n→∞. Let {�n}n∈N be a sequence of piecewise smooth cutoff functions

satisfying

⎧⎪⎨
⎪⎩

�n =1 in Qt∗
Rn+1

, �n =0 on the parabolic boundary of Qt∗
Rn

|∇�n|�2n+1

R
, 0��t�n�

2p(n+1)

dRp , |��n|�2p(n+1)

Rp

(19)

and define

kn :=1− �

4
− �

2n+2
, n∈N0

Now take �=[(u�)h−kn]+�p
n , K = BRn in (15) and integrate in time over (�n, t) for t ∈(�n, t∗).

Applying integration by parts to the first term gives

F1 :=
∫ t

�n

∫
BRn

�suh[(u�)h−kn]+�p
n dx ds

= 1

2

∫ t

�n

∫
BRn

�s(([(u�)h−kn]+)2)�p
n dx ds

+
(
1− �

4
−kn
)∫ t

�n

∫
BRn

�s

(([
u−
(
1− �

4

)]+)
h

)
�p
n dx ds

= 1

2

∫
BRn×{t}

([u�−kn]+h )2�p
n dx ds−

1

2

∫
BRn×{�n}

([u�−kn]+h )2�p
n dx ds

− p

2

∫ t

�n

∫
BRn

([u�−kn]+h )2�p−1
n �s�n dx ds

+
(
1− �

4
−kn
)∫ t

�n

∫
BRn

�s

(([
u−
(
1− �

4

)]+)
h

)
�p
n dx ds

In light of standard convergence properties of the Steklov average, we obtain

F1→F∗
1 := 1

2

∫
BRn×{t}

([u�−kn]+)2�p
n dx ds−

p

2

∫ t

�n

∫
BRn

([u�−kn]+)2�p−1
n �s�n dx ds

+
(
1− �

4
−kn
)(∫

BRn×{t}

[
u−
(
1− �

4

)]+
�p
n dx ds

−p
∫
BRn×{�n}

[
u−
(
1− �

4

)]+
�p−1
n �s�n dx ds

)
as h→0
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Using (19) and the non-negativity of the third term, we arrive at

F∗
1 � 1

2

∫
BRn×{t}

([u�−kn]+)2�p
n dx− p

2d

(�
4

)2 2p(n+1)

Rp

∫ t

�n

∫
BRn

�{u��kn} dx ds

− p

d

(�
4

)2 2p(n+1)

Rp

∫ t

�n

∫
BRn

�{u�1−�/4} dx ds

� 1

2

∫
BRn×{t}

([u�−kn]+)2�p
n dx− 3

2

p

d

(�
4

)2 2p(n+1)

Rp

∫ t

�n

∫
BRn

�{u��kn} dx ds

the last inequality coming from u�1−�/4⇒u��kn . Since [u�−kn]+��/4, we know that

([u�−kn]+)2 = ([u�−kn]+)2−p([u�−kn]+)p�
(�
4

)2−p
([u�−kn]+)p

�
(�
2

)2−p
([u�−kn]+)p

therefore, the definition of d implies that

F∗
1 � 1

2

(�
2

)2−p
∫
BRn×{t}

([u�−kn]+)p�p
n dx

−3

2
p2p−2

(�
4

)p 2p(n+1)

Rp
�(�/4)p−1

∫ t

�n

∫
BRn

�{u��kn} dx ds (20)

We now deal with the diffusive term. The term

F2 :=
∫ t

�n

∫
BRn

(a(u)p−1|∇u|p−2∇u)h ·∇{[(u�)h−kn]+�p
n }dx ds

converges for h→0 to

F∗
2 :=
∫ t

�n

∫
BRn

a(u)p−1|∇u|p−2∇u ·(∇(u�−kn)
+�p

n + p(u�−kn)
+�p−1

n ∇�n)dx ds

=
∫ t

�n

∫
BRn

a(u)p−1|�n∇(u�−kn)
+|p dx ds+ F̃∗

2

where we define

F̃∗
2 := p

∫ t

�n

∫
BRn

a(u)p−1|∇u|p−2∇u ·∇�n(u�−kn)
+�p−1

n dx ds

Since ∇(u�−kn)+ is non-zero only within the set {kn<u<1−�/4} and
a(u)�
1�(�/4) on {kn<u<1−�/4}
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we may estimate the first term of F∗
2 from below by∫ t

�n

∫
BRn

a(u)p−1|�n∇(u�−kn)
+|p dx ds�[
1�(�/4)]p−1

∫ t

�n

∫
BRn

|�n∇(u�−kn)
+|p dx ds (21)

Let us now focus on F̃∗
2 . Using that ∇(u�−kn)+ is non-zero only within the set {kn<u<1−�/4},

integrating by parts, and using (3) and (19), we obtain

|F̃∗
2 | � p

∫ t

�n

∫
BRn

|a(u)|p−1|∇(u�−kn)
+|p−1|∇�n|(u�−kn)

+�p−1
n dx ds

+
∣∣∣∣∣p
(
1− �

4
−kn
)∫ t

�n

∫
BRn

�p−1
n ∇�n ·∇

{
1

p−1

(∫ u

1−�/4
a(s)ds

)p−1

+

}
dx ds

∣∣∣∣∣
� p[
2�(�/2)]p−1

∫ t

�n

∫
BRn

|∇�n|(u�−kn)
+|�n∇(u�−kn)

+|p−1 dx ds

+p
(�
4

)∣∣∣∣∣−
∫ t

�n

∫
BRn

(∫ u

1−�/4
a(s)ds

)p−1

+
((p−1)�p−2

n |∇�n|2+�p−1
n ��n)dx ds

∣∣∣∣∣
Next, we take into account that (∫ u

1−�/4
a(s)ds

)+
��

4
�(�/4)

and apply Young’s inequality

ab� �r

r
ar + br

′

r ′�r ′ if a,b�0,
1

r
+ 1

r ′ =1, �>0 (22)

for the choices

r = p, a=|∇�n|(u�−kn)
+, b=|∇(u�−kn)

+|p−1 and �−p′
1 = p′

p

(
p−1
1 −1)�(�/4)p−1


p−1
2 �(�/2)p−1

>0

This leads to

|F̃∗
2 | � 1

�p1
[
2�(�/2)]p−1

(�
4

)p 2p(n+1)

Rp

∫ t

�n

∫
BRn

�{u��kn} dx ds

+(p−1)�p
′

1 [
2�(�/2)]p−1
∫ t

�n

∫
BRn

|�n∇(u�−kn)
+|p dx ds

+p2
(�
4

)p
�(�/4)p−1 2

p(n+1)

Rp

∫ t

�n

∫
BRn

�{u��kn} dx ds

�
{

(p−1)
p−1
2 �(�/2)p−1

(
p−1
1 −1)�(�/4)p−1

}p−1

[
2�(�/2)]p−1
(�
4

)p 2p(n+1)

Rp

∫ t

�n

∫
BRn

�{u��kn} dx ds
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+(
p−1
1 −1)�(�/4)p−1

∫ t

�n

∫
BRn

|�n∇(u�−kn)
+|p dx ds

+p2
(�
4

)p
�(�/4)p−1 2

p(n+1)

Rp

∫ t

�n

∫
BRn

�{u��kn} dx ds (23)

Hence, from (21) and (23), and observing that[
�(�/2)

�(�/4)

]p(p−1)

=
(
4

2

)p�2
=2p�2

we obtain

F∗
2 � �(�/4)p−1

∫ t

�n

∫
BRn

|�n∇(u�−kn)
+|p dx ds−

⎧⎨
⎩p2+2p�2

[
p′
p2

p(
p−1
1 −1)

]p−1
⎫⎬
⎭

×
(�
4

)p 2p(n+1)

Rp
�(�/4)p−1

∫ t

�n

∫
BRn

�{u��kn} dx ds (24)

Finally, for the lower-order term

F3 :=
∫ t

�n

∫
BRn

(�u f (u)∇v)h ·∇{[(u�)h−kn]+�p
n }dx ds

we have

F3→F∗
3 :=
∫ t

�n

∫
BRn

�u f (u)∇v ·(∇(u�−kn)
+�p

n + p(u�−kn)
+�p−1

n ∇�n)dx ds

=
∫ t

�n

∫
BRn

�u f (u)∇v ·∇(u�−kn)
+�p

n dx ds

+p
∫ t

�n

∫
BRn

�u f (u)∇v ·∇�n(u�−kn)
+�p−1

n dx ds as h→0

Applying Young’s inequality (22) with

r = p, a=∇(u�−kn)
+�n, b=�u f (u)�p−1

n ∇v and �p2 = p

2
�(�/4)p−1>0

using the fact that (u�−kn)+��/4 and defining M :=‖�u f (u)‖L∞(QT ), we may estimate F∗
3 as

follows:

F∗
3 �

�p2
p

∫ t

�n

∫
BRn

|∇(u�−kn)
+�n|p dx ds+ Mp′

p′�p
′

2

∫ t

�n

∫
BRn

|∇v|p′
�{u��kn} dx ds

+pM
∫ t

�n

∫
BRn

|∇v|
(�
4

)
|∇�n|�{u��kn} dx ds
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� 1

2
�(�/4)p−1

∫ t

�n

∫
BRn

|∇(u�−kn)
+�n|p dx ds

+ (p/2)−p′/p

p′
Mp′

�(�/4)

∫ t

�n

∫
BRn

|∇v|p′
�{u��kn} dx ds

+�p3

(�
4

)p ∫ t

�n

∫
BRn

|∇�n|p�{u��kn} dx ds+
pM p′

p′�p
′

3

∫ t

�n

∫
BRn

|∇v|p′
�{u��kn} dx ds

applying again Young’s inequality (22) to the last term in the right-hand side, this time with

r = p, a=|∇�n|�/4, b=M |∇v|, �p
′

3 =�(�/4)>0

Using (19), we obtain

F∗
3 �F∗∗

3 := 1

2
�(�/4)p−1

∫ t

�n

∫
BRn

|∇(u�−kn)
+�n|p dx ds

+ Mp′

p′�(�/4)

[( p
2

)−p′/p+ p

]∫ t

�n

∫
BRn

|∇v|p′
�{u��kn} dx ds

+
(�
4

)p 2p(n+1)

Rp
�(�/4)p−1

∫ t

�n

∫
BRn

�{u��kn} dx ds

Additionally, using Hölder’s inequality, we may write

∫ t

�n

∫
BRn

|∇v|p′
�{u��kn} dx ds�‖∇v‖p′

L p′ p(QT )

(∫ t

�n
|A+

kn,Rn
(
)|d


)1−1/p

where |A+
kn,Rn

(
)| denotes the measure of the set

A+
kn,Rn

(
) :={x ∈ BRn : u(x,
)>kn}
Thus, we obtain

F∗∗
3 � 1

2
�(�/4)p−1

∫ t

�n

∫
BRn

|�n∇(u�−kn)
+|p dx ds

+
(�
4

)p 2p(n+1)

Rp
�(�/4)p−1

∫ t

�n

∫
BRn

�{u��kn} dx ds

+ Mp′

p′�(�/4)

[( p
2

)−p′/p+ p

]
‖∇v‖p′

L p′ p(QT )

(∫ t

�n
|A+

kn,Rn
(
)|d


)1−1/p

(25)
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Combining the resulting estimates (20), (24), (25) and multiplying by 2(�/2)p−2 yields

esssup
�n�t�t∗

∫
BRn×{t}

([u�−kn]+)p�p
n dx ds+

2

d

∫ t∗

�n

∫
BRn

|�n∇(u�−kn)
+|p dx ds

�

⎧⎨
⎩3

2
p2p−2+ p2+2p�2

[
p′
p2

p(
p−1
1 −1)

]p−1
⎫⎬
⎭
(�
4

)p 2p(n+1)

Rp

2

d

∫ t∗

�n

∫
BRn

�{u��kn} dx ds

+2
(�/2)p−2Mp′

p′�(�/4)

[( p
2

)−p′/p+ p

]
‖∇v‖p′

L p′ p(QT )

(∫ t∗

�n
|A+

kn,Rn
(
)|d


)1−1/p

(26)

Next we perform a change in the time variable putting t̄ :=(1/d)(t− t∗), which transforms
Q(dRp

n , Rn) into Qt∗
Rn
. Furthermore, if we define ū�(·, t̄) :=u�(·, t) and �̄n(·, t̄)=�n(·, t), then

defining for each n,

An :=
∫ 0

−Rp
n

∫
BRn

�{ū��kn} dx dt̄=
1

d

∫ t

�n

∫
BRn

�{u��kn} dx ds

we may rewrite (26) more concisely as

‖(ū�−kn)
+�̄n‖p

V p(Qt∗
Rn

)
� 2

⎧⎨
⎩3

2
p2p−2+ p2+2p�2

[
p′
p2

p(
p−1
1 −1)

]p−1
⎫⎬
⎭
(�
4

)p 2p(n+1)

Rp
An

+2

[( p
2

)−p′/p+ p

]
Mp′

p′
(�
2

)(p−2)/p
�(�/4)1−p−1/p

×‖∇v‖p′
L p′ p(QT )

A1−1/p
n (27)

where V p(�T )= L∞(0,T ; L p(�))∩L p(0,T ;W 1,p(�)) endowed with the obvious norm. Next,
observe that by application of a well-known embedding theorem (cf. [5, Section I.3]), we get

1

2p(n+1)

(�
4

)p
An+1 = |kn−kn+1|p An+1�‖(ū�−kn)

+‖p
p,Q(Rp

n+1,Rn+1)

� ‖(ū�−kn)
+�̄n‖p

p,Q(Rp
n ,Rn)

�C‖(ū�−kn)
+�̄n‖p

V p(Qt∗
Rn

)
Ap/(N+p)
n (28)

Now, applying (27), we get

1

2p(n+1)

(�
4

)p
An+1 � 2C

⎧⎨
⎩3

2
p2p−2+ p2+2p�2

[
p′
p2

p(
p−1
1 −1)

]p−1
⎫⎬
⎭

×
(�
4

)p 2p(n+1)

Rp
A1+p/(N+p)
n
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+2C

[( p
2

)−q/p+ p

]
Mp′

p′
(�
2

)(p−2)/p
�(�/4)1−p−1/p

×‖∇v‖p′
L p′ p(QT )

A1−1/p+p/(N+p)
n (29)

Now let us define

Xn := An

|Q(Rp
n , Rn)|

, Zn := A1/p
n

|BRn |
, n∈N0

Dividing (29) by (1/2p(n+1))(�/4)p|Q(Rp
n+1, Rn+1)| yields

Xn+1 � 2pn

⎛
⎝2C

⎧⎨
⎩3

2
p2p−2+ p2+2p�2

[
p′
p2

p(
p−1
1 −1)

]p−1
⎫⎬
⎭ X1+p/(N+p)

n

+23−2/p+pC

[( p
2

)−p′/p+ p

]
Mp′

p′
(�
2

)p−2
�(�/4)1−p−1/p

×RN�‖∇v‖q
L p′ p(QT )

X p/(N+p)
n Z p−1

n

⎞
⎠

� 
2pn(X1+�
n +X�

n Z
1+�
n ), n∈N0

with �= p/(N+ p)>0, �= p−2>0 and


 := 2Cmax

⎧⎨
⎩3

2
p2p−2+ p2+2p�2

[
p′
p2

p(
p−1
1 −1)

]p−1

,

23−2/p+p
[( p

2

)−p′/p+ p

]
Mp′

p′
(�
2

)p−2 [�(�/4)]1−p−1/p RN�

⎫⎬
⎭>0

(In the choice of � we need the assumption that p is strictly larger than 2.) In the spirit of
Remark 3.1, let us assume that (�

2

)p−2 [�(�/4)]1−p−1/p RN��1

Therefore, with this assumption we conclude that 
 is independent of � and R.
Reasoning analogously, we obtain

Zn+1�
2pn(Xn+Z1+�
n )

Now, let 
=min{�,�} and notice that if we set �0 :=2
−(1+�)/
(2p)−(1+�)/
2 , then it follows from
(18) that

X0+Z1+�
0 �2
−(1+�)/
(2p)−(1+�)/
2 (30)
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Then, using Lemma 3.1, we are able to conclude that Xn, Zn →0 as n→∞. Finally, notice that
Rn → R/2 and kn →1−�/4, and this implies that

|{(x, t)∈Q((R/2)p, R/2) : ū�(x, t̄)�1−�/4}|=|{(x, t)∈Qt∗
R/2 : u(x, t)>1−�/4}|=0

This completes the proof. �

Now we show that the conclusion of Lemma 3.2 is valid in a full cylinder of the type Q(�,�).
To this end, we exploit the fact that at the time level −t̂ := t∗−d(R/2)p, the function x �→u(x, t)
is strictly below 1−�/4 in the ball BR/2. We use this time level as an initial condition to make
the conclusion of the lemma hold up to t=0, eventually shrinking the ball. This requires the use
of logarithmic estimates.

Given constants a,b,c with 0<c<a, we define the non-negative function

�±
a,b,c(s) :=

(
ln

a

a+c−(s−b)|±
)+

=
⎧⎨
⎩
ln

a

a+c±(b−s)
if b±c≶s≶b±(a+c)

0 if s�b±c
(31)

whose first derivative is given by

(�±
a,b,c)

′(s)=

⎧⎪⎨
⎪⎩

1

(b−s)±(a+c)
if b±c≶s≶b±(a+c)

0 if s≶b±c

�0

and its second derivative, away from s=b±c, is

(�±
a,b,c)

′′ ={(�±
a,b,c)

′}2�0

Given u bounded in (x0, t0)+Q(�,�) and a number k, define

H±
u,k := esssup

(x0,t0)+Q(�,�)

|(u−k)±|

and the function

�±(H±
u,k, (u−k)±,c) :=�±

H±
u,k ,k,c

(u), 0<c<H±
u,k (32)

Lemma 3.3
For every number �1∈(0,1), there exists s1∈N, independent of � and R, such that

|{x ∈ BR/4 : u(x, t)�1−�/2s1}|��1|BR/2| for all t ∈(−t̂,0)

Proof
Let k=1−�/4 and

c=�/22+n (33)

with n∈N to be chosen. Let 0<�(x)�1 be a piecewise smooth cutoff function defined on BR/2
such that �=1 in BR/4 and |∇�|�C/R. Now consider the weak formulation (15) with �=2�+
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(uh)(�+)′(uh)�p for K = BR/2, where �+ is the function defined in (31). After an integration in
time over (−t̂, t), with t ∈(−t̂,0), we obtain G1+G2−G3=0, where we define

G1 := 2
∫ t

−t̂

∫
BR/2

�s{uh}�+(uh)(�
+)′(uh)�p dx ds

G2 := 2
∫ t

−t̂

∫
BR/2

(|∇A(u)|p−2a(u)∇u)h ·∇{�+(uh)(�
+)′(uh)�p}dx ds

G3 := 2
∫ t

−t̂

∫
BR/2

(�u f (u)∇v)h ·∇{�+(uh)(�
+)′(uh)�p}dx ds

Using the properties of the function �, we arrive at

G1=
∫ t

−t̂

∫
BR/2

�s{�+(uh)}2�p dx ds=
∫
BR/2×{t}

{�+(uh)}2�p dx−
∫
BR/2×{−t̂}

{�+(uh)}2�p dx

Due to Lemma 3.2, at time −t̂ , the function x �→u(x, t) is strictly below 1−�/4 in the ball BR/2,
and therefore �+(u(x,−t̂))=0 for x ∈ BR/2. Consequently,

G1 →
∫
BR/2×{t}

{�+(u)}2�p dx−
∫
BR/2×{−t̂}

{�+(u)}2�p dx

=
∫
BR/2×{t}

{�+(u)}2�p dx as h→0 (34)

The definition of H±
u,k implies that

u−k�H+
u,k = esssup

Q(t̂,R/2)

∣∣∣∣(u−1+ �

4

)+∣∣∣∣��

4
(35)

If H+
u,k =0, then the result is trivial; so we assume H+

u,k>0 and choose n large enough so that

0<
�

22+n
<H+

u,k

Therefore, since H+
u,k+k−u+c>0, the function �+(u) is defined in the whole cylinder

Q(t̂, R/2) by

�±
H+
u,k ,k,c

(u)=

⎧⎪⎪⎨
⎪⎪⎩
ln

H+
u,k

H+
u,k+c+k−u

if u>k+c

0 otherwise

Relation (35) implies that

H+
u,k

H+
u,k+c+k−u

�
�

4

2c− �

4

=2n, and therefore �+(u)�n ln2 (36)
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in the non-trivial case u>k+c, we also have an estimate for the derivative of the logarithmic
function:

|(�+)′(u)|2−p =
∣∣∣∣∣ −1

H+
u,k+c+k−u

∣∣∣∣∣
2−p

�
∣∣∣∣1c
∣∣∣∣
2−p

=
( �

22+n

)p−2
(37)

With these estimates at hand, we have for the diffusive term:

G2→G∗
2 := 2

∫ t

−t̂

∫
BR/2

a(u)p−1|∇u|p−2∇u ·∇{�+(u)(�+)′(u)�p}dx ds

=
∫ t

−t̂

∫
BR/2

a(u)p−1|∇u|p{2(1+�+(u))[(�+)′(u)]2�p}dx ds+G̃∗
2 as h→0

where we define

G̃∗
2 :=2p

∫ t

−t̂

∫
BR/2

a(u)p−1|∇u|p−2∇u ·∇�{�+(u)(�+)′(u)�p−1}dx dt

Applying Young’s inequality (22) with the choices

r = p, a=|∇u|p−1�p−1|(�+)′(u)|2/p′
, b=|(�+)′(u)|1−2/p′ |∇�| and �4=1

we obtain

|G̃∗
2| � 2p

∫ t

−t̂

∫
BR/2

a(u)p−1|∇u|p−1|∇�|�+(u)|(�+)′(u)|�p−1 dx ds

= 2p
∫ t

−t̂

∫
BR/2

a(u)p−1�+(u)|∇u|p−1�p−1|(�+)′(u)|2/p′ |(�+)′(u)|1−2/p′ |∇�|dx ds

� 2�p4

∫ t

−t̂

∫
BR/2

a(u)p−1�+(u)|∇u|p[(�+)′(u)]2�p dx ds

+ 2p

p′�q4

∫ t

−t̂

∫
BR/2

a(u)p−1�+(u)|∇�|p|(�+)′(u)|2−p dx ds

= 2
∫ t

−t̂

∫
BR/2

a(u)p−1�+(u)|∇u|p[(�+)′(u)]2�p dx ds

+2(p−1)
∫ t

−t̂

∫
BR/2

a(u)p−1�+(u)|∇�|p|(�+)′(u)|2−p dx ds

In face of this estimate, we obtain

G∗
2 = 2

∫ t

−t̂

∫
BR/2

a(u)p−1|∇u|p[(�+)′(u)]2�p dx ds

−2(p−1)
∫ t

−t̂

∫
BR/2

a(u)p−1�+(u)|∇�|p|(�+)′(u)|2−p dx ds
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� 2[
1�(�/4)]p−1
∫ t

−t̂

∫
BR/2

|∇u|p[(�+)′(u)]2�p dx ds

−2(p−1)
∫ t

−t̂

∫
BR/2

a(u)p−1�+(u)|∇�|p|(�+)′(u)|2−p dx ds

� 2[
1�(�/4)]p−1
∫ t

−t̂

∫
BR/2

|∇u|p[(�+)′(u)]2�p dx ds

−2(p−1)n ln2

(
C

R

)p ( �

22+n

)p−2
∫ t

−t̂

∫
BR/2

a(u)p−1�{u>1−�/4} dx ds

and, finally,

G∗
2 � 2[
1�(�/4)]p−1

∫ t

−t̂

∫
BR/2

|∇u|p[(�+)′(u)]2�p dx ds

−2(p−1)n ln2

(
C

R

)p ( �

22+n

)p−2
t̂ |BR/2|[
2�(�/4)]p−1 (38)

where we have used estimates (36), (37), the properties of �, and the fact that


1�(�/4)�a(u)�
2�(�/4) on the set {u>1−�/4}
Moreover, from the definition of t̂ and our choice of t∗ (recall that t∗�dRp−a0Rp), there holds

t̂�a0R
p =
(�
2

)2−p R p

�(�/2m)p−1
(39)

Taking into account (39), we obtain from (38) that

G∗
2 � 2[
1�(�/4)]p−1

∫ t

−t̂

∫
BR/2

|∇u|p[(�+)′(u)]2�p dx ds

−2(p−1)n ln2C p2(1+n)(2−p)|BR/2|
[

2

�(�/4)

�(�/2m)

]p−1

(40)

On the other hand, for the lower-order term, by passing to the limit h→0, we have

G3→G∗
3 := 2

∫ t

−t̂

∫
BR/2

�u f (u)∇v ·∇u{(1+�+(u))[(�+)′(u)]2�p}dx ds

+2p
∫ t

−t̂

∫
BR/2

�u f (u)∇v ·∇�{�+(u)(�+)′(u)�p−1}dx ds

� 2M
∫ t

−t̂

∫
BR/2

(1+�+(u))[(�+)′(u)]2�p|∇u||∇v|dx ds

+2pM
∫ t

−t̂

∫
BR/2

�+(u)|(�+)′(u)|1−2/p′ |∇v||∇�||(�+)′(u)|2/p′
�p−1 dx ds
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Applying Young’s inequality (22) to the first term on the right-hand side with

r = p, a=|∇u|, b=|∇v| and �5=
(
p�(�/4)p−1

M(1+n ln2)

)1/p

and to the second term with

r = p, a=|(�+)′(u)|1−2/p′
, b=|∇v||(�+)′(u)|2/p′

�p−1 and �6=1

we obtain

G∗
3 � 2�(�/4)p−1

∫ t

−t̂

∫
BR/2

|∇u|p[(�+)′(u)]2�p dx ds

+2M
∫ t

−t̂

∫
BR/2

�+(u)|∇�|[(�+)′(u)]2−p dx ds

+2M
p−1

p

(
p�(�/4)p−1

M(1+n ln2)

)1/(1−p) ∫ t

−t̂

∫
BR/2

(1+�+(u))[(�+)′(u)]2�p|∇v|p′
dx ds

+2M(p−1)
∫ t

−t̂

∫
BR/2

�+(u)|∇�||∇v|p′ [(�+)′(u)]2�p dx ds

Using the estimates (36) and (37) and the properties of �, we then get

G∗
3 � 2�(�/4)p−1

∫ t

−t̂

∫
BR/2

|∇u|p[(�+)′(u)]2�p dx ds+2Mn ln2
C

R

( �

22+n

)p−2
t̂ |BR/2|

+2M
p−1

p

(
p�(�/4)p−1

M(1+n ln2)

)1/(1−p)

(1+n ln2)
( �

22+n

)−2
∫ t

−t̂

∫
BR/2

|∇v|p′
�{u>1−�/4} dx ds

+2M(p−1)n ln2
C

R

( �

22+n

)−2
∫ t

−t̂

∫
BR/2

|∇v|p′
�{u>1−�/4} dx ds

Then, applying Hölder’s inequality and recalling the definition of t̂ , we get

G∗
3 � 2�(�/4)p−1

∫ t

−t̂

∫
BR/2

|∇u|p[(�+)′(u)]2�p dx ds

+2MCn ln22(1+n)(2−p)�(�/2m)1−p|BR/2|Rp−1
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+2M(p−1)

{(
p�(�/4)p−1

M(1+n ln2)

)1/(1−p)
1+n ln2

p
+C

R
n ln2

}( �

22+n

)−2

×‖∇v‖p′
L p′ p(QT )

(a0R
p|BR/2|)1−1/p

In addition, thanks to Remark 3.1, we may estimate

( �

22+n

)−2
(
p−p′

�(�/4)p−1

M(1+n ln2)

)1/(1−p)

a1−1/p
0 Rp−1 � 1

C
( �

22+n

)−2
a1−1/p
0 Rp−2�1, �

( �

2m

)1−p
R p−1 � 1

and this finally gives

G∗
3 � 2�(�/4)p−1

∫ t

−t̂

∫
BR/2

|∇u|p[(�+)′(u)]2�p dx ds+2MCn ln22(1+n)(2−p)|BR/2|

+2M(p−1)Cn ln2‖∇v‖p′
L p′ p(QT )

|BR/2|1−1/p (41)

Combining estimates (34), (40) and (41) yields∫
BR/2×{t}

{�+(u)}2�p dx ds

�2M(p−1)Cn ln2‖∇v‖p′
L p′ p(QT )

|BR/2|1−1/p

+(1−
p−1
1 )2[�(�/4)]p−1

∫ t

−t̂

∫
BR/2

|∇u|p[(�+)′(u)]2�p dx ds

+2n ln22(1+n)(2−p)|BR/2|
{
MC+(p−1)C p
p−1

2

[
�(�/4)

�(�/2m)

]p−1
}

and since 
1>1 and n>0, this implies

sup
−t̂�t�0

∫
BR/2×{t}

{�+(u)}2�p dx

�2M(p−1)Cn ln2‖∇v‖p′
L p′ p(QT )

|BR/2|1−1/p

+2n ln222−p|BR/2|
{
MC+(p−1)C p
p−1

2

[
�(�/4)

�(�/2m)

]p−1
}

(42)

Since the integrand in the left-hand side of (42) is non-negative, the integral can be estimated
from below by integrating over the smaller set S={x ∈ BR/2 : u(x, t)�1−�/22+n}⊂ BR/2. Thus,
noticing that

�=1 and {�+(u)}2�(ln(2n−1))2=(n−1)2(ln2)2 on S
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we obtain that (42) reads

|{x ∈ BR/2 : u(x, t)�1−�/22+n}|

� 2Cn|BR/4|
(n−1)2 ln2

{
22−p

[
MC+(p−1)C p
p−1

2

[
�(�/4)

�(�/2m)

]p−1
]

+M(p−1)‖∇v‖p′
L p′ p(QT )

}

for all t ∈(−t̂,0). To prove the lemma we just need to choose s1 depending on �1 such that
s1=2+n with

n>1+ 2C

�1 ln2

{
22−p

[
MC+(p−1)C p
p−1

2

[
�(�/4)

�(�/2m)

]p−1
]

+M(p−1)‖∇v‖p′
L p′ p(QT )

}

since if n�1+2/� then n/(n−1)2��, �>0. Furthermore, s1 is independent of � because

[
�(�/4)

�(�/2m)

]p−1

=
[

(�/4)�2/(p−1)

(�/2m)�1/(p−1)

](p−1)

=��2−�12m�1−2�2�2m�1−2�2

The last inequality holds since �2>�1. �

Now, the first alternative is established by the following proposition.

Proposition 3.1
The numbers �1∈(0,1) and s1�1 can be chosen a priori independently of � and R, such that if
(18) holds, then

u(x, t)<1− �

2s1+1
a.e. in Q(t̂, R/8)

We omit the proof of Proposition 3.1 because it is based on the argument of [5, Lemma 3.3; 7],
and we may use for the extension the same technique applied in the proof of Lemma 3.2.

Corollary 3.1
There exist numbers �0,
0∈(0,1) independent of � and R such that if (18) holds, then

essosc
Q(t̂,R/8)

u�
0�

Proof
In light of Proposition 3.1, we know that there exists a number s1 such that

esssup
Q(t̂,R/8)

u�1− �

2s1+1

and this yields

essosc
Q(t̂,R/8)

u= esssup
Q(t̂,R/8)

u− ess inf
Q(t̂,R/8)

u�
(
1− 1

2s1+1

)
�

In this way, choosing 
0=1−1/2s1+1, which is independent of �, we complete the proof. �
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3.4. The second alternative

Let us suppose now that (18) does not hold. Then the complementary case is valid and for every
cylinder Qt∗

R we have

|{(x, t)∈Qt∗
R : u(x, t)<�/2}|�(1−�0)|Qt∗

R | (43)

Following an analogous analysis to the performed in the case in which the solution is near its
degeneracy at one, a similar conclusion is obtained for the second alternative (cf. [4, 7]). Specifically,
we first use logarithmic estimates to extend the result to a full cylinder and then we conclude that
the solution is essentially away from 0 in a cylinder Q(�,�). In this way we prove the following
corollary.

Corollary 3.2
Let t̃ denote the second-alternative-counterpart of t̂ . Then there exists 
1∈(0,1), depending only
on the data, such that

essosc
Q(t̃,R/8)

u�
1�

Since (18) or (43) must be valid, the conclusion of Corollary 3.1 or 3.2 must hold. Thus, choosing

=max{
0,
1} and t� =min{t̂, t̃}, we obtain the following proposition.

Proposition 3.2
There exists a constant 
∈(0,1), depending only on the data, such that

essosc
Q(t�,R/8)

u�
�

The local Hölder continuity of u in QT now follows (see, e.g. [5, 6], or the proof of [23,
Theorem 2]).

4. NUMERICAL EXAMPLES

In this section, we provide two numerical examples to illustrate how the approximate solutions of
the chemotaxis model (1) vary when changing the parameter p from standard nonlinear diffusion
(p=2) to doubly nonlinear diffusion (p>2). For the discretization of both examples, a standard
first-order finite volume method (see the Appendix for details on the numerical scheme) on a regular
mesh of 262 144 control volumes is used. We choose a simple square domain �=[−1,1]2 and
use the functions a(u)=�u(1−u), f (u)=(1−u)2 and g(u,v)=�u−�v, along with parameters
that are indicated separately for each case.

4.1. Example 1

For the first example, we choose �=0.01, �=40, �=160, �=0.2 and d=0.05. The initial condition
for the species density is given by

u0(x)=
{
1 for ‖x‖�0.2

0 otherwise
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Figure 1. Example 1: numerical solution for species u, at t=1.0 for p=2 (left), and p=6 (right).

and the chemoattractant is assumed to have the uniform concentration v0(x)=4.5. In a first
simulation, we consider the simple case of p=2 and we compare the result with an analogous
experiment with p=6. We evolve the system until t=1.0, and show in Figure 1 a snapshot of the
cell density at this instant for both cases.

4.2. Example 2

We now choose the parameters �=0.5, �=5, �=0.5, �=1 and d=0.25. The initial condition for
the species density is given by

u0(x)=
{
1 for ‖x−(−0.25,0.25)‖�0.2 or ‖x−(0.25,−0.25)‖�0.2
0 otherwise
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Figure 2. Example 2: numerical solution for species u, at t=0.1 for p=2 (left), and p=6 (right).

and for the chemoattractant

v0(x)=
{
4.5 for ‖x−(0.25,0.25)‖�0.2 or ‖x+(0.25,0.25)‖�0.2

0 otherwise

The behavior of the system for the cases p=2 and p=6 at different times is presented in
Figures 2–4.

4.3. Concluding remarks

We first mention that, from the previous examples, one observes that even though the numerical
solutions obtained with p=2 differ from those obtained with p>2, the qualitative structure of the
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Figure 3. Example 2: numerical solution for species u, at t=0.5 for p=2 (left), and p=6 (right).

solutions remains unchanged. We also stress that the numerical examples illustrate the effectiveness
of the mechanism of prevention of overcrowding, or volume-filling effect, since all solutions
assume values between 0 and 1 only. In particular, all examples exhibit plateau-like structures
where u=um=1, at least for small times, which diffuse very slowly, illustrating that the diffusion
coefficient vanishes at u=1 (recall the special form of the functions a(u) and f (u): they include
the factor (1−u), and therefore the species diffusion and chemotactical cross diffusion terms
vanish at u=0 and u=um=1).

In Example 2, the solution for p=2 has a smoother shape than the one for p=6, which exhibits
sharp edges. These sharp edges do not only appear for u=0 and u=um, where one expects them,
due to the degeneracy of the diffusion term and the choice of initial data, but also for intermediate
solution values, as is illustrated by the plots for p=6 of Figures 2 and 3.
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Figure 4. Example 2: numerical solution for species u, at t=2.5 for p=2 (left), and p=6 (right).

APPENDIX

The definition of the finite volume method is based on the framework of [28]. An admissible mesh
for � is given by a family T of control volumes of maximum diameter h, a family of edges E
and a family of points (xK )K∈T. For K ∈T, xK is the center of K , Eint(K ) is the set of edges 

of K in the interior of T, and Eext(K ) the set of edges of K on the boundary ��. For all 
∈E,
the transmissibility coefficient is

�
 =

⎧⎪⎪⎨
⎪⎪⎩

|
|
d(xK , xL)

for 
∈Eint(K ), 
=K |L
|
|

d(xK ,
)
for 
∈Eext(K )
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where K |L denotes the common edge of neighboring finite volumes K and L . For K ∈T and

=K |L∈E(K ) with common vertices (a�,K ,L)1���I with I ∈N\{0}, let T
 (T ext

K ,
 for 
∈Eext(K ),
respectively) be the open and convex polygon built by the convex envelope with vertices (xK , xL)

(xK , respectively) and (a�,K ,L)1���I . The domain � can be decomposed into

�̄=
⋃
K∈T

⎛
⎝
⎛
⎝ ⋃

L∈N (K )

T̄K ,L

⎞
⎠∪
⎛
⎝ ⋃


∈Eext(K )

T̄ ext
K ,


⎞
⎠
⎞
⎠

For all K ∈T, the approximation ∇huK ,
 of ∇u is defined by

∇hu
n
K ,
 :=

{
unL −unK if 
=K |L∈Eint(K )

0 if 
∈Eext(K )

To discretize (1), we choose an admissible mesh of � and a time step size �t>0. If MT>0 is the
smallest integer such that MT�t�T , then tn :=n�t for n∈{0, . . . ,MT }.

The terms An+1
K ,gn+1

K , f n+1
K shall approximate the averages

1

�t |K |
∫ tn+1

tn

∫
K
A(u(x, t))dx dt,

1

�t |K |
∫ tn+1

tn

∫
K
g(u(x, t),v(x, t))dx dt

1

�t |K |
∫ tn+1

tn

∫
K
f (u(x, t))dx dt

respectively, and they are defined by

An+1
K = A(un+1

K ), gn+1
K =g(un+1

K ,vn+1
K ), f n+1

K = f (un+1
K )

The initial conditions are discretized by

u0K = 1

|K |
∫
K
u0(x)dx, v0K = 1

|K |
∫
K

v0(x)dx

We now give the finite volume scheme employed to advance the numerical solution from tn to
tn+1, which is based on a simple explicit Euler time discretization. Assuming that at t= tn , the
pairs (unK ,vnK ) are known for all K ∈T, we compute (un+1

K ,vn+1
K ) from

|K |u
n+1
K −unK

�t
= ∑


∈E(K )

�
|∇h A
n
K ,
|p−2

h ∇h A
n
K ,


+�
∑


∈E(K )

�
[(∇hv
n
K ,
)

+unK f nK −(∇hv
n
K ,
)

−unL f nL ]

|K |v
n+1
K −vnK

�t
= ∑


∈E(K )

�
∇hv
n
K ,
+|K |gnK

Here |·|h denotes the discrete Euclidean norm, w+ :=max{w,0}, and w− :=max{−w,0}. The
Neumann boundary conditions are taken into account by imposing zero fluxes on the external
edges.
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17. Laurençot P, Wrzosek D. A chemotaxis model with threshold density and degenerate diffusion. In Nonlinear

Elliptic and Parabolic Problems: Progress in Nonlinear Differential Equations and their Applications, Chipot M,
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