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Abstract

The flow of incompressible fluid in highly permeable porous media in vorticity - velocity - Bernoulli
pressure form leads to a double saddle-point problem in the Navier—Stokes—Brinkman—Forchheimer
equations. The paper establishes, for small sources, the existence of solutions on the continuous
and discrete level of lowest-order piecewise divergence-free Crouzeix—Raviart finite elements. The
vorticity employs a vector version of the pressure space with normal and tangential velocity jump
penalisation terms. A simple Raviart—Thomas interpolant leads to pressure-robust a priori error
estimates. An explicit residual-based a posteriori error estimate allows for efficient and reliable a
posteriori error control. The efficiency for the Forchheimer nonlinearity requires a novel discrete
inequality of independent interest. The implementation is based upon a light-weight forest-of-trees
data structure handled by a highly parallel set of adaptive mesh refining algorithms. Numerical
simulations reveal robustness of the a posteriori error estimates and improved convergence rates by
adaptive mesh-refining.
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1 Introduction

Scope. Equations of incompressible flow in dimensionless rotational or Lamb form (using vorticity)
are of high importance in a number of applications. See, for example, the following non-exhaustive list
of recent contributions analysing numerical methods based on different formulations [2, 14, 20, 32, 38,
46, 47, 52] (and see also the references therein). It was observed in [5, 4, 6] that, in order to control
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the full H'(Q) norm of the velocity and maintain optimal convergence, vorticity-based formulations
for incompressible flow (with vorticity sought in L2(Q2) instead of the more common H(curl, ) case,
velocity in H(curl, Q) N H(div,$2), and Bernoulli pressure in L?(2)) required augmentation least-
squares terms coming from the incompressibility condition and constitutive equation for vorticity (the
latter resembling also the vorticity-stabilisation from, e.g., [1, 13]). The aforementioned works [5, 4, 6]
(which tackle Oseen, Navier—Stokes, and Forchheimer equations) also contain numerical evidence that
either the vorticity or divergence stabilisation parameters could be zero for some finite element pairs
approximating velocity and Bernoulli pressure.

The general Navier—Stokes and Forchheimer nonlinearities as well as the Brinkman drag will be
included in this paper using fixed-point arguments. In contrast to the works above, we do not use
augmentation techniques and treat the problem as a (perturbation of a) perturbed saddle-point prob-
lem embedded in another saddle-point problem. The analysis hinges on working on the kernel of the
divergence operator. At the discrete level we can perform a fairly similar analysis as long as we use
kernel-characterising spaces, such that the divergence of the discrete velocity is zero locally in each cell.
For this we can take for instance the nonconforming Crouzeix—Raviart finite element pair [28], which
is Stokes inf-sup stable and satisfies the required local kernel property. Pressure robust discretisations
achieve velocity errors in the broken H'(€2) norm which are proportional to the best approximation
error in the velocity, without dependence on the velocity error. In order to do so in the present setting,
we include a modification in the discrete right-hand side functional and in the nonlinear variational
forms using a lowest-order H(div, 2)-conforming interpolate of the velocity test function. This ap-
proach has been used for Stokes, Navier—Stokes, and many other variants in [1, 15, 40, 41, 43, 51], see
also the numerous references therein. This property is also closely related to the L?(£2) orthogonality
of divergence-free functions onto the space of gradients of functions in H!(Q2). This approach comes at
the price a small consistency error of optimal order, which is independent of the kinematic viscosity.

It is important to mention that the nonconformity of the method in combination with the need
to control the H(curl, Q) N H(div, ) part of the velocity norm, imply that we need to stabilise the
velocity-velocity bilinear form with tangential and normal jump terms to control the divergence and
curl part of the velocity norm on the discrete level. This was done in, e.g., [17, 16] for the grad-div,
curl-curl, and reduced Maxwell problems, and we recall that such stabilisation is not required for, e.g.,
Stokes equations with velocity in H*(2).

In many problems, solution singularities can cause suboptimal convergence, and adaptive mesh
refinement is essential for recovering optimal rates. A number of variants of residual-based a posteriori
estimators are available for Crouzeix—Raviart schemes applied to Stokes equations [25, 23]. In addition,
the literature of pressure-robust methods also has works designing a posteriori error estimators [41,
39], including the use of divergence-free reconstruction operators and techniques that are commonly
encountered in stream function-vorticity formulations of incompressible flow. The explicit residual-
based a posteriori error estimate follows the overall frame of [24] (that includes historical remarks
as well) with several additions for robustness (e.g. Lemma 5.3) required for the discrete norms.
The efficiency result, however, was surprisingly subtle for some novel inverse estimate of independent
innovation, we therefore establish in an appendix. The a posteriori error estimator contains a residual
contribution and a non-conformity contribution. We show that it is reliable and efficient, where the
efficiency proof relies upon a novel inverse estimate associated with element bubble functions. We use
the estimator as an indicator for adaptive mesh refinement, and this restores optimal convergence in
the case of singular solutions (which under uniform mesh refinement yield suboptimal convergence).

The particular adaptive meshes that we leverage in this work are hierarchically-adapted (i.e.,
nested) non-conforming octree-based meshes endowed with Morton (a.k.a., Z-shaped) space-filling-
curves for storage and data partitioning; see, e.g., [8]. This family of meshes can be very efficiently
handled (i.e., refined, coarsened, re-partitioned, etc.) using high-performance and low-memory foot-
print algorithms [18]. While these are n-cube meshes (e.g., made of quadrilaterals or cubes in 2D and
3D, resp.), we split their elements (e.g., into 2 triangles or 6 tetrahedra, resp.) to obtain the simplicial
meshes required by our finite element formulation. However, as these meshes are non-conforming
(in particular they have hanging faces at cell interfaces between cells located at different levels of



refinement), one needs to add additional multi-point constraints to the Crouzeix—Raviart finite ele-
ment spaces in order to have optimal approximability properties. In particular, following [11], these
additional constraints impose the trace average on a parent coarse face to be equivalent to the average
of the trace averages on the children faces, and we show via numerical experiments that this approach
recovers optimal convergence in the case of singular solutions.

Main contributions. In summary, to the best of our knowledge, the combination of the contribu-
tions addressed above (residual a posteriori error estimators for Navier—Stokes—Brinkman—Forchheimer
equations in vorticity form using non-conforming methods) is novel. In particular this work features

e a new non-augmented vorticity-based weak formulation for the Navier—Stokes equations with
Brinkman and Forchheimer effects, generalising the recent work [6],

e a rigorous solvability analysis and discrete problem for vorticity that attains pressure-robustness,
complementing the works [40, 43],

e a continuous and discrete analysis valid in 3D, extending the similar works for linear curl-curl
type problems that address the 2D case [17, 16, 12],

e a relatively simple residual-based a posteriori estimator for the pressure-robust scheme (com-
pared to those from, e.g., [25, 39]),

e the efficiency of the residual a posteriori error estimator requires an interesting novel result
regarding inverse estimates for the Forchheimer nonlinearity,

e efficient and reliable a posteriori estimators, which we prove theoretically and also confirmed
numerically (noting that the effectivity index —the ratio between the total error and the global
a posteriori error estimator— remains bounded between 1.6 and 1.9 for the tested cases),

e new handling of multipoint constraints needed for implementation of Crouzeix—Raviart elements
with hanging nodes in adaptive meshes constructed with octrees. This generalises the results
from [8].

Outline. This article is organised as follows: in the remainder of this section we provide notational
conventions and main assumptions to use throughout the paper. In Section 2 we give a brief overview
on the governing equations and their statement in weak perturbed saddle-point form. Section 3 deals
with the well-posedness analysis using Banach fixed-point theorem under small data assumptions and
a global inf-sup argument. The definition of the discrete problem and the analysis of its unique
solvability are addressed in Section 4. In Section 5 we derive Céa estimates and error bounds for the
specific finite element subspaces mentioned above. The definition of a posteriori error estimators and
their robustness analysis is given in Section 6. We continue in Section 7 describing the benchmark
setups we used in the numerical experiments, showcasing the properties of the proposed schemes, and
confirming numerically the predicted a priori convergence estimates and robustness of the a posteriori
error estimators. In Section 8 we give some concluding remarks, and Appendix A provides an inverse
estimate for the efficiency proof of its own interest.

Preliminaries and notation. Let us denote by Q C R? a bounded polyhedral Lipschitz domain
with boundary I". Standard notations will be adopted for Lebesgue spaces LP(2), with p € [1, 00| and
Sobolev spaces W"P(Q) with » > 0, endowed with the norms || e |[;»(q) and || @ ||y r.r(q). Note that
W OP(Q) = LP(Q) and if p = 2, we write H"(Q2) in place of W"2(f), with the corresponding Lebesgue
and Sobolev norms denoted by || [0 and || @ ||;.. The notation L3(£2) means the space of functions
in L2(Q) with zero mean value over Q. We also write | ® |,. for the H"-seminorm. The bracket (e, @)
denotes duality that extends the L?(T) scalar product for smooth functions in the trace space H'/?(T')
of H'(Q) and its dual H-Y/2(T'). By S we will denote the corresponding vectorial counterpart of the



generic scalar functional space S. The gradient, symmetric gradient, divergence and curl of a generic
vector field v = (v;) are defined as

3

i 1 . j

Vo := <8U > , Dv:==(Vo+Vovl), dive:= E %, and curlv:=V xwv.
8$j i,j=1,3 2 = 833j

In addition, we recall that the spaces
Ho(div; Q) := {v € L*Q): divvel?Q) and 4, =0 on 00},
Hy(curl; Q) := {veL*(Q): curlveL?Q) and 7 =0 on 09},

where v, and v, represent the normal and tangential trace, respectively, and Hilbert when equipped
with the norms HvH?hV’Q = Hv||3Q + HdivaaQ and HUqurl,Q = Hv||3Q + ||curl UH(2),Q7 respectively.
Then, we define the following space

V := Hy(div; Q) N Hy(curl; ),

endowed with the norm
[v[]3r := llv[I.q + [Idiv v||§ o + llcurl v[[3 g

Finally, the notation A < B abbreviates A < C'B with a generic h (mesh size)-independent constant C,
while some of the constants are still written explicit to emphasise and quantify particular assumptions.

2 Model problem and its weak formulation

2.1 The governing equations

We start with the steady Navier—Stokes—Brinkman—-Forchheimer equations in their usual velocity—
pressure form. They consist in finding velocity u and kinematic pressure P such that

1
klu—vAu+ (u-V)u+Flulu+ -VP=f in Q diveu=0 in (2.1)
P

with £ > 0 the permeability of the porous media (assumed constant), v the kinematic fluid viscosity,
F > 0 the Forchheimer coefficient, p the fluid mass density, and f a given external force. Problem
(2.1) can be equivalently set in terms of vorticity, velocity and pressure (similarly as done in, e.g., [7]
for Brinkman and in [3] for Oseen equations). For this, we introduce the rescaled vorticity vector

w = +/rvcurlu

and use the identity v - Vu = curlu x u + %V(u -u). Then we introduce the rescaled Bernoulli
pressure

1 1

pi=-P+-u-u—AX

p 2

for A defined as the mean value of %u -u; and employ the following vector identity
curlcurlu = —Au + V(divu)

together with the incompressibility constraint. These steps lead to the following equations

1
k1 u + Vveurlw + Flu|u + Vp + Tw Xxu = f, w —+/veurlu = 0, dive = 0. (2.2)
v

Furthermore, we focus on homogeneous Dirichlet boundary conditions for velocity and therefore an
additional condition is required to enforce the uniqueness of the Bernoulli pressure. This gives

u=0 on I' and /p:O. (2.3)
Q

However, similar results as those shown below are also valid for other types of boundary conditions.



2.2 Mixed weak formulation

First, multiplying the first, second and third equations of (2.2) by v € V, 8 € L2(Q2) and q € LZ(Q),
respectively, integrating by parts and utilising the boundary condition, we obtain the problem: Find
((u,w),p) € [V x L2(2)] x L3(Q) such that

1
/i_l/u'v—i—ﬁ/w-curlv—/pdivv—/(uxw)-v+F/|u]u-v:/f-v,
Q Q Q Vv Ja Q Q

ﬁ/O-curlu—/w-HzQ (2.4)
) Q

—/ qgdivu = 0.
Q

We introduce the bounded bilinear forms a : [V x L2(Q)]x [VxL3()] = R, b: [V xL2(Q)] xL3(Q2) —
R, and, for each @ € V, the bilinear form c* : [V x L%(Q)] x [V x L2(Q)] — R as

a(u,w;v,0) = /{_l/u-v—i—ﬁ/ w-curlv+ﬁ/ 0-curlu—/w-0, (2.5a)
Q Q Q Q
b(v,0;q) := —/ g divw, (2.5b)
Q

Au, w;v,0) = (uxw) v+ F/ |u|w - v. (2.5¢)

\f

On the other hand, we define the functional F € [V x L2(Q)]’ as
F(v,0) / f-v (2.6)

Then, the formulation consists in finding ((u,w),p) € [V x L?(Q2)] x LZ(Q), such that:

a(u,w;v,0)  + b(v,6;p) + M(u,w;v,0) =F(v,0),
b(u, w; q) =0,

for all ((v,0),q) € [V x L2(Q)] x L3(Q).

3 Analysis of the coupled problem

The following well-known symmetric and non-symmetric versions of the generalised Lax—Milgram
lemma will be used in the forthcoming analysis (for a proof see, e.g., [30, Theorems 1.3 & 1.2]).

Lemma 3.1 Let H be a real Hilbert space, and let A : HxH — R be a symmetric and bounded bilinear
form. Assume that
A(u,v)
sup
0#veH vl

> allullpg Yu e H. (3.1)
Then, for each F € H' there exists a unique v € H such that

1
A(u,v) = F(v) Vv eH, and lulla < EHFHH’

Lemma 3.2 Let Hy,Hy be real Hilbert spaces, and let B : H; X Hy — R be a bounded bilinear form.
Assume that

B
o Bw)

D > allulu, YueH, (3.2a)
0£vEH2 HvHHz

ot



sup B(u,v) >0 Vv € Hy,v#0. (3.2b)
ueH1

Then, for each F € H there exists a unique u € Hy such that

1
B(u,v) = F(v) Vv € Ha, and llulla, < 5||F||H/2

We will combine these results with the Banach fixed-point theorem to demonstrate the well-
posedness of (2.7) under a small data assumption.
3.1 Stability properties of a linear problem
First we recall the continuous embedding from H'(Q) into LP(£2), for all p € [1, 6]:
lwllte) < Cs wlhe ¥Vw e HY(Q) (3.3)

with Cs > 0 depending only on || and p (see [45, Theorem 1.3.4]).

Next we easily deduce from from the Cauchy—Schwarz inequality, the continuity of a(e,e), b(e,e):

la(u, w; v, 0)| < (k —i—f—i—l)(
|0(v,0;4)| < llg

)(lvllv + [[8]l02), (3.4a)
Q)- (3.4b)

In turn, using Holder’s inequality together with (3.3), we readily deduce that

Q)- (3.5)

¢, 0:0,0)] < C3( 75 )l v + Jelon)

Similarly, the linear functional F'(e) is bounded

a(llvllv +18]lo.g)- (3.6)

Now, it is straightforward to see that the kernel of the bilinear form b(e, e) is a closed subspace of
V x L%(Q). Tt is denoted as Vo x L?(Q2), and the first component admits the characterisation

Vo:={veV: divv=0 in Q}. (3.7)

Lemma 3.3 The bilinear form a(e,®) induces an invertible operator on Vo x L?(Q).

Proof. We proceed using Lemma 3.1. First, from (3.4a) we observe that a(e,e) is bounded. To
show that it also satisfies the inf-sup condition (3.1), we proceed as in, e.g., [3, Section 2.3]. For all
(z,¢) € Vo x L%(Q) (see (3.7)), we can define ¥ := 2z and 6 := /vecurlz — ¢, and then immediately
assert that

~

a(z,¢;0,0) = 267" |lz[|3 o + vllcurlel|g o + [I€]I5 o > min{2x, v} |23

Furthermore, it is clear that ||3|lv = 2||z[|v and ||8]jo.0 < (1+ v2)(|zllv +|/¢]loc), and from this, we
can conclude that

a(z,¢v,0) a(z,¢;9,0)

sup > — = >a|z V(z,¢) € VoxL2(Q) (3.8)
04(v.0)evoxr2(@) 1vllv +[10][o 1v]lv + [|0]]0,0
in{2x"1, 1,1
with o 1= min{2 ", v, } Thus, the result follows. O

2(3+/v)



On the other hand, from the equivalence H(Q) = V (see [31, Lemma 2.5]), we have that b(e,e)
satisfies the following inf-sup condition (see [31, Section 5.1])

sup b(v,0;q)

————— > Bllqlloa Vg€ L. (3.9)
0£(w,0)evxr2@) [vlv + 1000 °

Let us now define the bilinear form A : ([V x L#(Q)] x L()) x ([V x L%(Q)] x L3()) — R as
A(z,¢,7v,0,q) == a(z,¢;v,0) + b(z,¢;q) + b(v,0;7). (3.10)

Owing to (3.4a) and (3.4b), it is clear that A(e,e) is bounded. Moreover, from (3.8), (3.9) and [29,
Proposition 2.36] it is not difficult to see that the following inf-sup condition holds:

'A(Z7 C? T;U707 Q)
sup
04((v.0).)elVxL2@xL2@)  ((v,0), )]l
for all ((z,¢),7) € [V x L?(Q)] x L§(Q), where [|((2,¢), 7)| := |lzl]lv + I<[lo. + [|I7]lo.0, and
B min{2x~1, v, 1}3?
CEr o

> [[((2.¢).7)] (3.11)

(3.12)

3.2 Well-posedness analysis via Banach fixed-point

We proceed similarly to [27] using a fixed-point strategy to prove the well-posedness of (2.7). Let us
introduce the bounded set

~ ~ 2
Ki={aeV: [alv<lflof (3.13)
with « the constant defined in (3.12). Then, we define a fixed-point operator as
F:K—-K, u— Zu)=u, (3.14)

where, given 1 € K, u is the first component of (u,w), where ((u,w),p) € [V x L2(Q)] x L3(Q) is the

solution of the linearised version of problem (2.7): Find ((u,w),p) € [V x L%(Q)] x L3(Q) such that
a(w,wiv,0) + bov,6p) + H(uwiv,0) = F(v,0),
(3.15)
b(u,w; q) =0

for all ((v,0),q) € [V x L%(Q)] x L3(Q). It is clear that ((u,w),p) is a solution to (2.7) if and only
if u satisfies .#(u) = wu, and consequently, the well-posedness of (2.7) is equivalent to the unique
solvability of the fixed-point problem: Find w € K such that

Z(u) = u. (3.16)

In this way, in what follows we focus on proving the unique solvability of (3.16).

3.3 Well-definiteness of the fixed-point map

Let us first provide sufficient conditions under which the operator . (cf. (3.14)) is well-defined, or
equivalently, the problem (3.15) is well-posed.

Lemma 3.4 (Unique solvability of the linearised problem) Let u € K and assume that

4 1
< .
,YQCS(ﬁ F)HJ oo <1 (3.17)

with 7y the positive constant in (3.12). Then, there exists a unique ((u,w),p) € [V x L2(Q)] x L3(Q)
solution to (3.15). In addition, there holds

(. w), p)]| < jrfum. (3.18)

7



Proof. We proceed similarly as in the proof of [19, Theorem 3.6]. In fact, given u € K, we begin by
defining the bilinear form:

B%(z,¢,750,0,q) = A(z,¢,7;v,0,q) + *(2,(;v,0) (3.19)

with A(e, e) and c%(e, e) the forms defined in (3.10) and (2.5¢). Then, problem (3.15) can be rewritten
equivalently as: Find ((u,w),p) € [V x L2(Q2)] x L(£2), such that

B%(u,w,p;v,0,q) = F(8,v) Y ((v,0),q) €[V x L*(Q)] x L(Q). (3.20)

Therefore, to prove the well-definiteness of %, in the sequel we equivalently prove that problem (3.20)
is well-posed by means of Lemma 3.2. First, given ((z,¢),r), ((v,0),q) € [V x L2(Q)] x L&(Q2) with
((v,0),q) # 0, from (3.5) we observe that

B%(z,¢,r;v,0,q) _ |A(2,¢,r9,0,0)|  |(2,(:,0)|

sup

0£(w o pelvxrzoxze) (@09~ |(@,8).9)] I((@.0), 9
|A(2,¢,7:9,0,0)| o/ 1 _
> — = G5(—= +F)llulvlizlv + lI<lo.0)-
1((v,0),9)]l <ﬁ )
Together with the global inf-sup condition (3.11) and the fact that ((, 5), q) is arbitrary, this implies
Ba(Z7C7r;v707Q) ( 2 1 F
sup > (7= Cs(—= +F)llulv ) II((¢2z),n)].  (3.21)
04(w0).)elVxL2@)xL2@)  I(v,8), )]l > (ﬁ )

Hence, from the definition of the set K (cf. (3.13)), and assumption (3.17), we easily get

1 0
— F) <! 3.22
=+ [ fllo.o < 5 (3.22)

C3(z +F)laly < 2c3(

N

and then, combining (3.21) and (3.22), we obtain

B%(z,{,r;v,0,q) _ v
sup 26750 0:0) > (¢, (3.23)
0£(w0).elvxL2@xrz@)  1((v,0), )]l

On the other hand, for a given ((z,¢),7) € [V x L2(Q)] x L3(9), we observe that

sup B%(v,8,q;2,¢,7)
0+£((v,0),9)€[V xL2(Q)]xLE(Q)

B%(v,0,q;2,¢,7)
> sup
0£(w0).elvxL2@xr2@)  I(v,8),9)ll
A(v,0,q;2,¢,7) + *(v,6;2,¢)
= sup
0%((0,0),q)€[V xL2(Q)]xL2(Q) [((v,0),9)l

with the problem definition in the last step. Putting this together with (3.5) implies

sup B%(v,0,q;2,¢,7)
0#£((v,0),9)€[V xL2(Q)]xL2(2)

0a).  (3:24)

> sup A(’U707q;zvca’r) —C§<

1
> — +F)lallv(lzllv + (1<
0£(w o).V @xr2@)  I(v,0),9)]l )

NG

Therefore, using the fact that 5% (e, e) is symmetric, from (3.11) and (3.24) we obtain

up B(0,0,2.¢.1) > (1= G35+ F) fally ) (2. 00l

0#£((v,0),9)€[V xL2(Q)]xL3(Q)



Using also (3.22), yields

sup B%(v,0,q;2,¢,7) >
0#£((v,0),9)€[V xL2(Q)]xL(2)

o2

1((z,€), )] >0 (3.25)

for all ((z,¢),r) € [V x L%(Q)] x L&(2).

In this way, from (3.23) and (3.25) we obtain that B%(e, e) satisfies the hypotheses of Lemma 3.2,
which allows us to conclude the unique solvability of (3.15), or equivalently, the existence of a unique
((u,w),p) € [VxL2(Q)]xL3(Q) such that .# (u) = w. Finally, from (3.23), with ((z,¢),7) = ((u,w), p)
and (3.20), we readily obtain that

[ullv < [|((w,w),p)|| < illfl!o,ﬂ (3.26)

implying that u belongs to K and concludes the proof. O

3.4 Well-posedness of the continuous problem

Now we provide the main result of this section, namely, the existence and uniqueness of solution of
problem (2.7). This result is established in the following theorem.

Theorem 3.5 (Unique solvability) Let f € L2() such that

?Cs<ﬁ + F) [fllo <1 (3.27)

with 7y the positive constant in (3.12). Then, F (cf. (3.14)) has a unique fized-point u € K. Equiva-
lently, problem (2.7) has a unique solution ((u,w),p) € [K x L%(Q)] x L3(). Moreover, there holds

1((w, w), p)]| < 3HfHo,Q- (3.28)

Proof. Recall that (3.27) ensures the well-definiteness of .%. Now, let w1, U2, w1, uy € K, be such
that % (u1) = w1 and #(u2) = uy. According to (3.14), it follows that there exist unique (w1, p1),
(wa,p2) € L2(Q2) x LE(Q), such that for all ((v,0),q) € [V x L2(Q)] x L3(9), there hold

Bal (ul,wl,pl;U,O,Q) = F(’U,O), and Ba2(u2,w2,p2;v,0,q) = F(v70)

Then, subtracting both equations, adding +cth (ug,ws;v,0), and recalling the definition of B% in
(3.19), we easily arrive at

B (uy — ug,w; — wa, p1 — P2;0,0,q) = 2 (uz, wa; v,0) —  (ug,ws; v, 0).

Therefore, recalling that u; € K from the latter identity, together with (3.23), the inequality |u;| —
|us| < |u1 — u2|, and simple computations, we obtain

B B% (uy — ug, w1 — w2, p1 — p2; 0,0, 9)
5 llur —usflv < sup
2 0%((0,0),9)€[V xL2(Q)]xL2(Q) [((v,0), 9l
ca2 (u27w2; v, 9) — cal (u27w2; v, 0)
= sup
04((0,0).) €[V X L2 ()] xL2(Q) (v, 6),q)ll

1 ~
< C( 75+ F)la = @zllv(ualv + lwallo).

Together with the fact that (w2, ws) satisfy (3.18), this yields
T T 2 o0 1 2
H«f (Ul) - J(UQ)”V = Hul — u‘2||V < ;CS (— + F) ;Hf

NG

o0lur — usllv .
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Combining the previous estimate with (3.27) and the Banach fixed-point theorem, readily implies
that .# has a unique fixed-point in K, and so there exists a unique ((u,w),p) € [V x L2(Q)] x L3(2)
solution to (2.7). Finally, the estimate (3.28) is obtained analogously to (3.26). O

Note that the formulation analysed above can also be defined in 2D. The vorticity is then the scalar
w = y/vcurl u, the operator curl is to be replaced by rot, and the weak convective term is now written
as —% Jowu-v. The space for vorticity is then L2(Q). At the discrete level these considerations also
hold, but for sake of conciseness of the presentation we only discuss the 3D case.

4 Galerkin scheme

In this section we introduce the Galerkin scheme associated with problem (2.4), and show using
Banach’s fixed-point arguments that it admits a unique discrete solution.

4.1 Definition of the non-conforming method

First, let us denote by {7} a family of non-degenerate simplicial meshes on Q C R (we simply assume
that the domain is polytopal, so that no special treatment of the boundary is needed), and denote
by &, the set of all facets (edges in 2D) in the mesh, distinguishing between inner facets 5};“ and the
set of facets lying on I, E}: . By hx we denote the diameter of the element K and by hr we denote
the length/area of the facet F'. As usual, by h we denote the maximum of the diameters of elements
in 7;,. For a smooth vector, scalar, or tensor field ¢ defined on Ty, ¢ denote its traces taken from
the interior of K+ and K, respectively. We also denote by n* the outward unit normal vector to
K% (and for boundary faces it points outward of the domain ). For any inner facet F' we define the
normal and tangential jumps of any element-wise defined vector function v € L2(f2) across F by

[v-n]rp:=v" -n"4+v - n7, [vxn]p:=vtxnT+v xn”

with K+ and K~ the two elements adjacent to F', and use the convention that [v - n]z := v - n and
[vxn]p:=vxnif F € 5,1; . For all meshes we assume that they are sufficiently regular (there exists a
uniform positive constant 7; such that each element K is star-shaped with respect to a ball of radius
greater than nihg). It is also assumed that there exists 72 > 0 such that for each element and every
facet F' € 0K, we have that hp > mohg, see, e.g., [29]). For £ > 0, by Py(K) we denote the space of

polynomials of total degree at most ¢ defined locally on the generic element K € 7.

For the approximation of velocity and pressure we use the nonconforming Crouzeix—Raviart Stokes
inf-sup stable element (see [28]) where the velocity space consists of piecewise vector-valued d-linear
polynomials on each dimension and continuous at the barycentre of the intra-element facets, the
discrete pressure consist of piecewise constant functions, and for sake of inf-sup stability we also
need that the curl of the discrete velocity lives in the space of vorticity and so we take piecewise
vector-valued constants. This gives

Vi, o= {v, € L2(Q) vy, € PI(K) VK €Ty, Jr([on]r) =0 VF € EM,  Jp(vp|r) = 0VF € &)1,
W, = {0, € L2(Q) : 04|k € Po(K)W"D/2 VK e T;}, (4.1)
Qn = {an € L§(Q) : anlx € Po(K) VK € Tn}.

For any facet F' € &, with barycentre Cr, the nodal functional Jr is defined by

Jr(v) = v(Cr) o JF(v):th/des

and the degrees of freedom associated with facets on 5,1: vanish for any v, € Vj,. We recall the
definition of the Crouzeix-Raviart interpolation ZR : V.— V}, as

IRu(Cp) = Jp(v)  VF €&,
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We also recall that element-wise integration by parts on a given K € Ty, readily gives that ZR preserves
the averages of first derivatives.

Next, defining the lowest-order Raviart—Thomas space
RT((7;) := {vy € H(div,Q) : VK € Tj,, 3ckx € R ag € R: wvy|x(x) = cx + axax}
we recall the Raviart-Thomas interpolation ZRT : V & V;, — RT((T3) as

1
ng - [I8Tv](Cp) = hF/ v-np VE € &), (4.2)
F

Note that even if RTo(7,) ¢ V), (since the tangential components of Raviart—Thomas functions are
not necessarily continuous at each Cr), the interpolation is well-defined for v € Vj, and we have that
(see, e.g., [13])

IRy =7RTw  WweV.

For the subsequent analysis we consider the following broken norm for the space Vj,

1 .
vally = Z (;thHg,K + v||curlwy|§ g + ||div val§ &)
KeTy,

1
+ > - (Wllon xndel p + 1 [on - n]rlf ) (4.3)
FEg}Lnt

as well as the piecewise H!(7},)-seminorm

Iolfe = > [Vl k.
KeTy

We also have that the Raviart—Thomas interpolator is stable on V and also on V,

||IRT'th < CRTH'UHh Yve VUV (4.4)

The following approximability bounds are known for Crouzeix—Raviart and Raviart—Thomas inter-
polants

v — ZRw]|;, < Corhlv)20 Yo € H3(Q), (4.5a)
v — ZRTw|jpq < Crh|v|l, Yo € VUV (4.5b)

with (4.5a) stated in [15, Section 2.3|, and the constant Ccr depends only on the mesh regularity. In
addition, the constant Cr only depends on the shape of the triangles/tetrahedra (maximum angle)
but not on their size (see, e.g., [23, 35]). Let P, denote the L? projection operator, which satisfies the
following approximation property (see [30, Theorem 3.6]):

1Prg — qlloe < Cphlghe Vg€ H(Q). (4.6)

Since the method is nonconforming in the velocity space, for the discrete setting we will require
the broken curl and broken divergence operators (associated with the non-diagonal part of the bilinear
form aj(e,e) and the discrete bilinear form by, (e, e))

curl, : Va Vv, - L%Q), div,: VeV, = L*Q)
in the following sense

(curlpvp) |k == curl (vy|g) and (divpwy)|kx = div(vy|k) VK € Th.

11



With these ingredients, we can define element-wise variational forms. The forms that require modifi-
cation are as follows

1
ap(wp, wp; vp, 0p) = H/

0
L IMTop+ Y hF/ (v[un x n]p - [vn x n]p + [us - n]p[vs - 0]r
F

Fegint

—|—ﬁ/wh-curlhvh+ﬁ/ Oh-curlhuh—/wh-eh,
Q Q Q

1
= — Z/uh-IRT'vh

K K

KeTy,
9
+ Z h/ (v[up x n]p - [vp x n]p + [uy - n]plv, -n]p)
Fegint FJr
+v Z / wy, -curlvy, + /v Z / Hh-curluh—/wh-eh, (4.7a)
KeTy K KeTh K Q
br(vn, On; an) == —/ gndivav, = — Y / gndiv vy, (4.7b)
a 1 ~ ~
ey (W, wn; vy, 0p) = —\ﬁ /ﬂ(uh X wp) IRy, + F/Q |un| wp CIRT oy, (4.7¢)
Fp(vp, 05) iz/Qf'IRTUh (4.7d)

with ¥ > 0 a sufficiently large, user specified penalty parameter. The stabilisation in ay(e, ) uses
normal and tangential jumps across inter-element boundaries, which are needed for controlling the
consistency error and in general for the convergence of the scheme, as discussed in, e.g., [33, 36] for
elasticity equations (see also for example [37, 48] for the case of nonconforming schemes on quadrilater-
als). We also provide numerical evidence in Section 7 that if ¢ = 0 then the method does not converge.
Note also that, in [16] the jumps do not require a penalisation parameter since in that formulation
the curl-curl and div-div terms are explicitly present in the continuous and discrete bilinear form (and
the jump terms only contribute to maintain consistency). Also, note that the 2D Crouzeix—Raviart
space used in [16] is also element-wise divergence-free, but the underlying continuous space only sets
tangential components on boundary edges. Another variant in [34] imposes continuity only of the
tangential components at the edges’ midpoints.

The interpolation of the test velocity in the right-hand side functional (4.7d) follows the definition
proposed in [40], but we stress that one could use any smoother operator such that the velocity
error (in the broken norm (4.3)) is proportional to the corresponding best approximation error [51].
We proceed similarly for the convective and Forchheimer nonlinearities in (4.7c), as well as for the
Brinkman term.

Having introduced the additional notations described above, the nonlinear discrete problem consists
in finding ((up,wn),pn) € (Vi x W) x Qp, such that:

an(wh, Wh; v, 0n) 4 On(Vn, Onipn) + ) (un, whsvn, 0r) = Fu(vp, 0), (48)
br(Wh, Wh; qn) =0

for all ((vp,0r),qn) € (Vi x Wp) x Q. Note that the interpolated test discrete velocity on the
right-hand side functional induce a variational crime approach that maps discretely divergence-free
test functions to divergence-free functions in H(div,2). This can also be regarded as a smoothing
approach that permits to have a discrete load Fj well defined for all continuous functionals on V.
This setting has been used extensively in, e.g., [1, 51, 40, 43], with the additional aim of achieving
pressure robustness of the formulation. We also recall that interpolated test velocities are used in the
convective nonlinearity. Finally, using the Cauchy—Schwarz and Holder inequalities, it is clear that
the bilinear forms a;, and by, are bounded

an(up, wp; vk, Or) < (lunlln + lwnlloq)(lvrln + [10kllo0),
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b (v, On; qn) < llanllo.o(llvnlla + 10nllo0)

as well as ¢,” and Fj:

e (wns wni vn, 03)] < oy l[@nln(lwnlln + [wnllo.) ([oalln + [6nll0.0), (4.92)
| Fn(vn, 04)] < Cr | fllos(lvnlla + 18n]0.0) (4.9b)

with C;, > 0 and Cp, > 0 depending on the boundedness constant of the operator ZRT denoted by
CRr, as well as on the penalty parameter ¢.

4.2 Further properties of the discrete problem

Discrete kernel properties. First, we denote the kernel of the bilinear form by (e, e) as V?L X Wy,
(noting that the discrete vorticity space does not play an active role), and from [35, Lemma 4.62] we
can see that, since the broken divergence of an element-wise affine function is element-wise constant,
we can readily choose as test function ¢ = div,vy,, yielding the characterisation

V?L = {Uh € Vy: divpv, = 0} . (4.10)

Similarly, we stress that
curl v, € Wy, Yvy, € Vy,. (4.11)

The following lemma corresponds to the discrete version of Lemma 3.3. It depends on a mesh size
smallness assumption, which can easily be avoided — and the proof thus further simplified — either if
we have a discrete Kérn-type inequality using the broken curl part of the discrete velocity norm (which
is indeed valid trivially in the 2D case thanks to a discrete Poincaré inequality for Crouzeix—Raviart
elements [16]), or if the first term in the definition of ay (e, e) is symmetric (for example, if it has also
the Raviart—Thomas interpolation applied to the trial discrete function). We opt to keep the present
form as it makes the a posteriori analysis more straightforward.

Lemma 4.1 (Invertibility on the kernel) The restriction of ay(e,e) to the kernel of by(e,e) in-
duces an invertible operator, provided that the mesh size h is sufficiently small:

h< 20F1ﬁ (4.12)
Proof. First, we note that for any z;, € Vy, from the definition (4.3), it readily holds
1Znllo.0 < VEl|Zn |- (4.13)
Then, we can assert that
(21, I8 21,)0.0 = %(ZMIRTZh —zn)o,0 + (2Zn, Z1)0,0
>~z — IR znllo.ollznllo0 + 1215 0
> —Crhv/klzn; + l|zall6 o (4.14)

having used the Cauchy—Schwarz inequality, as well as (4.5b) and (4.13) in the last step.

Next, and similarly to the continuous case, it is clear that ay(e,e) is bounded. In addition, for all
(zn,€p) € VIX W), (see (4.10)), and owing to (4.11), we can define ¥y, := 2zp, and ), := \/vcurlz,—(,,
and invoke (4.14), from which we obtain

ah(Zh, Ch? iJ\h7 eh)

2 29
= (20, T z)o0 + > h/ (v[un x nlf + [up - n]f) +v Y fleurlza|f x + [¢alEq
Fegi T F KEeT,
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205k, 29 ) )
e+ Y 2 / (vfun x nl3 + [un - nl?)
Vi Fegint he Jr

+v Y leurlzy|ff g + €450
KeTy,

Crh
>2(1- S )y + I,
Thus, using (4.12) together with the fact that ||vg||, = 2||zn||n and HahHO7Q < (1 + vv)(llzalln +
1<k ll0.2), we can conclude that

2 2
> = _
Z KHZhHO,Q

2
0,0

an(zn, Cpivn, On)  an(zn, CpiVn, On)

sup > — = > ap ([|znlln + 1<ullo0) (4.15)
0 (wn0meVixQ 1Unlln +118nlloe ™ |4l + [B4llo.c
for all (zp, () € V% x Q, with ayp := m Thus, the result follows directly from Lemma 3.1. [

Discrete inf-sup conditions. The discrete inf-sup condition for the discrete divergence operator
is satisfied for Crouzeix—Raviart elements [28]. This is recalled in the following result.

Lemma 4.2 The pair (Vi,, Qp) is inf-sup stable with constant B, > 0 independent of the mesh size

b 01;
0<pBp:= inf sup On (0, O an) (4.16)

an€Qu\0} v, ev,\ {0} [Vnllnllanlloq’
In addition, we have the following properties, shown in [43, Lemma 3.1].

Lemma 4.3 For all vy, € Vy, there holds
b (v, ®:q) = b (TR vy, e; q) Vg € L2(Q), (4.17a)

b(ZRth,o;q):/Vq-(IRth) Vg € HY(Q). (4.17b)
Q

4.3 Discrete fixed-point arguments

Here we proceed similarly as in the continuous setting. To begin with, we define the bilinear form
Ap s ([Viex W] x Qn) x ([Vi x Wp] x Qp) — R as

An(zn, Chy Thi Vs On, qn) = an (W, wh; vk, 0r) + bp(Vn, On;pn) + bn(wn, wh;an)- (4.18)

It is easy to see that Aj, is bounded (since a; and by, are), and furthermore, using (4.15), (4.16), and
[29, Proposition 2.36], we have that A;, satisfies the following inf-sup condition

An(zh, €y T Vh, Ony 1)
sup
0£((wn,0n)sam)EVrxWalxQn (VR On),qn)lln

for all ((zn,Cy),n) € [V x Wi] x Qu, where [|((za, Cp), o) lln := l|znln+[1C5]
is the discrete version of v (cf. (3.12)).

> &/H((waCh)’Th)Hh (4‘19)

0.2+ [7rllon, and 5 > 0
Let us introduce the following set

~ N 2
Ky = {U €Vy: |upln < ﬁthHfHo,Q} (4.20)

with 7 the global inf-sup constant defined in (4.19). Then, and again analogously to the continuous
case, we define the following fixed-point operator

ﬂh : Kh — Kh, ’l/lh — ﬂh(ah) = Up, (4.21)
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where, given uy, € Ky, uy, is the first component of ((wp,wn),pr) € [V X W] x Qp, the solution of
the linearised version of problem (4.8): Find ((wpn,wp),pr) € [Vi X W3] x Qp such that

ap(wn, wn; vy, 0n)  + bu(Vh, On3pn) + C}?h(uhvwmvhvoh) = F, (IR vy, 0y), (4.22)
by (wh, wh;qn) =0,

for all ((vh,Gh),qh) S [Vh X Wh] X Qp.

It is clear that ((wp,wp),pp) is a solution to (4.8) if and only if w; satisfies .Zp(up) = up, and
consequently, the well-posedness of (4.8) is equivalent to the unique solvability of the fixed-point
problem: Find uj € K} such that

ﬁh(uh) = Up. (4.23)

In what follows we focus on (4.23). We start by establishing that .%}, is well-defined.

Lemma 4.4 (Wellposedness of the discrete linearised problem) Letu; € Ky, and assume that

4
?CchCFthHO,Q <1 (4.24)

with the positive constant 7 in (4.19). Then, there exists a unique ((up,wn),pn) € [V X Wp] X Qp,
solution to (4.22). In addition, there holds

2
[((wn, wn), pa)lln < §0Fh||f|!o,9- (4.25)

Proof. Given uy, € K}, we proceed as in the proof of Lemma 3.4 and define the bilinear form
By (zh, Chs Ths Ohy Ony an) = An(2n, $hy Thi Vh, Oy an) + 3" (2, s O, Oh). (4.26)

Using (4.9a), (4.19), (4.24) and [29, Proposition 2.36] we obtain the inf-sup condition

By (2, Chy Thi Ohs O, qn)
sup
0 ((v1,01),0n)E[V i x W] xQp | ((vn, 0n),an) |0

Vv
B |-

1((Chszn),7h)In (4.27)

for all ((vp,01),qn) € [V X W}] x Qp. Therefore, owing to the fact that for finite dimensional linear
problems surjectivity and injectivity are equivalent, from (4.27) and Lemma 3.2 we obtain that there
exists a unique ((up,wp),pr) € [V X W] x Qy, satisfying (4.22) with u;, € K. O

The following theorem establishes the well-posedness of the nonlinear discrete problem (4.8).

Theorem 4.5 (Unique solvability of the discrete nonlinear problem) Let f € L2(Q) such that

4
?CChCFthHO,Q <1 (4.28)

with ¥ the positive constant in (4.19). Then, F#}, (cf. (4.21)) has a unique fized-point u, € Kjy,.
Equivalently, problem (4.8) has a unique solution ((upn,wp),pr) € [Kn X Wp] X Qp. This discrete
solution satisfies

2
[((wn, wn), pr)lln < §0Fh||f|!o,ﬂ~ (4.29)

Proof. Employing (4.27) and (4.25), along with (4.28), the proof follows adapting the steps developed
in the proof of Theorem 3.5. Further details are omitted. O
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5 A priori error bounds

Now we turn to the error analysis. First we derive a Strang-type estimate. Then, under a small data
assumption we show linear convergence of the method in the energy norm. Finally, we show that the
velocity-vorticity error is independent of the pressure error.

Lemma 5.1 (Céa estimate) Let ((u,w),p) € [VxL2(Q)]xL3(Q) and ((wp,wn),pr) € [Vix Wp] x
Qp, the solution of (2.7) and (4.8), respectively. Then there hold the error estimate

2
u,w),p) — ((wp,wp), <(1+4+= inf u,w),p) — ((zp, ), T
I((w).p) = (Caneon)p)lln < (1 2) e (s w)) = (G )
2 By vy, 0 — F 0
+ 2 sup h (u7wap7’vh7 hﬂh) h(’vhu h) (51)
Y 0A((0r,01),an) E[VAX W] xQp 1((vh, 0n), an) I

Proof. Let ((zn,€y),h) € [V X W3] X Qp, be arbitrary, we have the decomposition

U—Up=U—2Zp+ (2 —Un) =U— 2+ Xyy W—Wh=w—C(+ (C) —wh) =w—wh + X
P—pPh=p—Th+ (rh—Pn) =P —Th+ Xp:
(5.2)
Then, from (4.27), using (4.8) and the Cauchy—Schwarz inequality, we have

gl By™ (X Xew» Xpi Vhs Ons an)
IO Xw) s Xp)lIn < sup
2 wren 0#((vr,01),qn) E[VRXWp]XQp, Il ((vn, 0n), qn)In

< [[((w, w),p) = (24, Cp)s )l
+ sup B;:h(u—'U/h,w—Wh,p—ph;’vh,ah,Qh)
0£((v1,01),an) E[V i x W] X Qp (v, On), an)ln

= [[((w,w),p) = ((Zn, Cn): ma)lln
By (w, w, p; vp, On,qn) — Fr(vp, 05)

+ sup
075((vh70h)7Qh)€[VhXW}L]XQ}L H ((Uh? 0h)7 Qh) ||h

(5.3)

Finally, (5.1) is obtained directly from estimate (5.3) along with the error decomposition (cf. (5.2))
and the triangle inequality. O

The first term on the right-hand side of (5.1) measures the approximation property of [V}, x Wp,] x
Qp, with respect to the norm ||((e, e), ®)||;,, while the second term captures the consistency error arising
from the nonconforming discretisation.

Let ((u,w),p) be the solution of the continuous problem. Similarly to [15, Lemma 3.2], assuming
that ((u,w),p) € (V x HY(Q)) x HY(Q), from (2.7), integrating by parts, using the strong form of the
momentum balance (first equation in (2.2)), and applying some algebraic manipulations, we get

1B, (w, w, p; 04, O, qn) — Fr(va, 0n)|
1
= |B)" (w,w,p; vp, 0h, qn) — /(/ﬁ? u+ vrveurlw + Flulu +Vp+ —w x u) - - IRTyy|

f
Z / curlw - vh—IRT'vh +Z / Vp-( 'vh—IRT'vh)

KeTy KeTy

g‘f

— u—u w) - RTU u —|ullu - RT’U . .
+]ﬁ/ﬂ<[ W xw) T h+F/Q[|h| ulJu- IR o, (5.4)

Now, we are ready to determine the order of convergence of the proposed method.

Theorem 5.2 (Rate of convergence) Let ((u,w),p) and ((up,wp),pr) solve the continuous and
discrete problems (2.7) and (4.8), respectively. Assume that the data satisfies

8 1
2 F <1 .
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and that ((u,w),p) € (H3(Q) x HY(Q)) x HY(Q2). Then there exists Crate > 0, independent of h, such
that
1((w, w), p) — ((wn, wn), pr)lln < Crateh{|u|2,9 + lwlie + \P|1,9}- (5.6)

Proof. To prove the result, we must estimate the two terms on the right-hand side of (5.1). For
the first term, we can use the properties in (4.6) (to estimate the errors for w and p) and (4.5a) (to
estimate the error for u), while for the second term, we apply estimate (5.4), along with interpolation
properties (4.4) and (4.5b), and the Cauchy—Schwarz inequality, to obtain

I((.0).) = (s o). ol < (Con+2Cr) (1+2) i ula + wlia + plia

2
+ Cr(vVv + 1)§h{||curlw

2 1
+CQCRT:7+F ullo.0 + [|w|lo.q)llvw — upl||4-
S ’7(\5 )lwllo,o + [[wlloo) |

00 + [IVpllon }

From the latest estimate, using the fact that (u,w) satisfies estimate (3.26) and applying hypothesis
(5.5), we obtain (5.6). O

The estimate above can be refined to reflect the pressure-robustness of the formulation. Consider
the continuous and discrete problems in their reduced form (in the continuous and discrete kernels V|
and Vg, respectively)

a(u,w;v,0) + c(u,w;v,0) = F(v,0) Y(v,0) € Vo x W, (5.7a)
and
ah(uh, Wh; Up, Bh) + Czh (uh, Wp; Up, Oh) = Fh(vh, G)h) V(’Uh, Hh) S V?L X Wh, (57b)
which are equivalent to (2.7) and (4.8), respectively.

In order to show a pressure-robust refinement of the previous results, we require an auxiliary bound
regarding the piecewise norm control in the discrete norm || e ||, of vector fields from V + V. In
turn, for this as well as for the a posteriori error estimation later on, we will employ the companion

operator
J €LV V) (5.8)

that is a right-inverse of the Crouzeix-Raviart interpolation TR € £(V;V},), satisfying

lo.o S lwn — Tw|lpw,

1A, (wh — Twp)

as well as other additional L? orthogonality properties not needed herein (see the precise design for
2D and 3D in [22, 26]).

Lemma 5.3 For anyv € V and wp, € Vi, and 1 < s <6 in 3D (and 1 < s < 0o in 2D), there holds
[0+ whlle(@) + 0+ wallpw < Cyllo +wil (5.9

with Cy depending on §) and the shape-regularity of the mesh Ty, (and as well on s in the 2D case).

Proof. We first add £Jwp, to the left-hand side of (5.9), use triangle inequality, and invoke the
well-known discrete Sobolev embedding with constant Cyg(s) > 0:

[wllLs) < Cas(s)|lwllpw ~— Vw eV

applied on the term v — Jwy, € V. Then, we employ the continuous Sobolev embedding (3.3), and
this gives

LHS 5 9) := [|[v + wallLs) + |v + whllpw < Cas(s)l|v + Twpllpw + [lwn — TwilLs ) + lv + wallpw
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< (14 Cas(3)lv + Twhllpw + [wn — Twh|lus ) + lwn — Twnlpw
(14 Cas(s)llv + Twallpw + (1 + Cs) lwn — Twa||pw

<
< (14 Cys(s))[leurl (v + Twp)|o.q + |div(v + Tws)|o.q] + (1 + Cs)|[wh — Twh|lpw

with the equivalence — valid for v + Jwj;, € V — between the piecewise norm ||  ||,w and the
semi-norm in Hy(curl, Q) N Hy(div, Q) [31, Lemma 2.5 & Remark 2.7] in the last step.

Using next again triangle inequality and the definition of the broken curl, the broken divergence,
and the discrete velocity norm || e ||, from the bounds above we readily get

LHS 5 9) < [(1 + Cas(s))Crorm + (1 + Cs)lwn, — Twp[lpw
+ (1 + C’ds(s))[chrlh(U + wh)Ho@ + Hdivh(v + IUh)H[)VQ]
< Cyllv + wp|n

with the following estimate from [26] in the last step:
lwn = Twallpw < lv + whllpw,
as well as the fact that
leurl (v +wh)llog + [[diva(v + wh)llo.o S v + wh[lpw-

Therefore Cy > 0 depends on Cg, Cys(s) and on the parameter-dependent constant Cporm > 0. O

Lemma 5.3 implies, in particular, that

[w —upllLa) < Cyllu — uplln- (5.10)

Theorem 5.4 (Pressure-robust error bound) Assume that (u,w), (up,wp) are the unique so-
lutions to (5.7a) and (5.7b), respectively. Suppose further that the data satisfies (5.5) with r =

1— C’gCRT% (% + F> | Fllo.o > 0, and that the continuous vorticity is more reqular w € H (). Then

. 1 1
fuunll+ o —wilboe < Chloha+ int N (u ol + o~ Gala). (511
(vhﬂh)evgxwh r rap

apllvnlln=1

Proof. Let us adopt the notation @ := (u,w), ¥ := (v,0), Z:= (z,{) € V® x W and similarly for
their discrete counterparts iy, Uy, 25 € V2 x Wy, denoting the corresponding discrete norm as, e.g.,
121l == l|znlln + ||$kllo0- First we decompose

1

@ — il = @ — T+ T — G = T — T — B

and note that g, := i, — ¥}, belongs to V9 x W, Then, using the inf-sup condition of ay(e, ), the
definition of 7, and the definition of the discrete problem (5.7b), we can write the following

an||Zn | |9l < sup an(Yn, Zn) = sup an (i — Up, Z1)
OyéEhGV?IXWh OyéfhEVgXWh
= sup (ah(ﬁ — U, Zh) — ah(ﬁ, Zh) + ah(ﬁh, Eh))
O#Z}LEVELXW;L
= sup (an(@ — Tn, Zn) + [Fr(Zn) — " (@n, 2) — an(@, 2)]). (5.12)
0£5,EVOXW),

Consequently, dividing through ay,||2,|| and using the boundedness of ay,(e, ) as well as the triangle
inequality [|@ — dip | < |4 — Up|| + |9, we obtain the following estimate

(5.13)

|G — @) < inf (1 + 1) li— g+ sup AU =G () — an(@ 5|
HeVIxw, | SEVO W), A
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composed by the best approximation in V2 X W}, and the consistency error.

Note that even if ZRTzy, is not in H'(Q), we have
IZR 20 lLa() < I1ZRT2n — zallLage) + |20llLa@) < CllzallLi@) < ClIVaznloq < Cullznlln, — (5.14)

thanks to triangle inequality, inverse estimates, and discrete Sobolev properties [42, Theorem 4.12].

Next, we proceed to add £c}(4, 2},) to the numerator in the consistency error ap (4, 2,)+c),” (Un, Z)—
Fy(2Z). The + will contribute to complete a full residual ay, (i, 2,) + ¢} (4, Z,) — F,(Z)), so we need to
investigate first the remainder terms as follows, adding and subtracting appropriate terms. Applying
Holder’s inequality, property (5.14), and reverse triangle inequality, gives

L L. 1
|l (tn, Zn) — e (0, Zn)| = \—/ up % (wp, —w) - IR z), + F/ lup|(up, —u) - IRz,
Q 0

N

1
+ ﬁ/ﬂ(u —up) X w CIRT g, — F/Q[|u\ — |up|]u -IRTzh’
2

< ZHuhHhHw — wllo.llzalln + FCZlun|lnllu — wnlloollznln

Ci
+ —=llu —unlla@) lwlloalizalln + FClu — upllps ) llullo.ollznlln
N
1
< CLM,C. + MG (F + ﬁ) (= unlln + o = wnllog)znlln  (5.15)

where for the last estimation we have used that ) are solutions to the continuous and discrete
problems featuring a continuous dependence on data that we denote here by M = %H flloo and

My, = %CFthHO’Q, respectively (cf. (3.28) and (4.29), respectively); we have also used (5.10).

We now look again at the numerator of the consistency error and rewrite f in terms of the left-hand
side of the momentum balance equation in (2.2), use the fact that

/ Vp- IRz, =0
Q

(see, e.g., [40]) and apply integration by parts on the term /v [, curl ,z;, - w, to get
an(t, Zn) + ¢ (Un, Zn) — Fu(Zn) + e (U, 2n) — cj (4@, Zn)]
=V [ eurlu—w)- G+ v [ curle (a, ~ %) + 6 (@, 5) — (3. )
< Vlleurlw|oollzn — IR 20,0

1
+CC.+ MO (Ft 2 ) (fu—unll + oo — wnlos)

Ly - -
< |chlwlio + CMpCy + MG F + —= | [|[@ = anl| |24 ][n-
N
Here we have used the estimate in (5.15) and the fact that if @ is the exact smooth solution of (5.7a)
then y/veurlu = w in Q, and have also used approximation properties of ZRT. This yields
|Fu(Zn) — " (i, 2n) — an(@, Z)|
sup

ZHEVIXW), an | Znll

1
< | M, Cy + M F+— )| — -
_Ch|w[1,Q+C[ hC + Cﬁ}( +\/;>Hu 'LLh”

And the proof is complete after combining this estimate, the small data assumption (5.5), and (5.14).
Il
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6 A posteriori error analysis

This section is devoted to a reliable and efficient computable error control. The derivation of the
reliable error bound departs from the assumption that (u,w,p) € V x L%(Q) x L2(Q) solves (2.4) and
(up,wp,pr) € Vi x Wp X Qp solves (4.8) to define the errors e, := u — Juy, €, := w — wy, and
ep :=p—pp as in (5.2) except that e, :=u — Juy, € V is not equal to u —up, € V+ V.

Recall from (3.26) that u belongs to K and thereafter define the bilinear form B* (e, ) as in (3.19)
(with @ replaced by u). Recall (3.23) and deduce that there exists some test function (v,0,q) €
V x L%(Q) x L(Q) of norm ||((v,8),q)|| < 1 at most one and

2w ewren)ll = B (eu,ews ey 0,6, 9).

The solution (u,w,p) € V x L2(Q) x L3(Q) to (2.4) also satisfies B% (u, w,p;v,0, q) = F(v,0), whence

Flewewepll = [ F-0 =B (Tunwrpis0.0.0).

The right-hand side in this identity defines a residual in terms of the test functions v, 08, and g. The
discrete solution (up,wp,pr) € Vi, x W, X Qp, to (4.8) involves the discrete right-hand side from (4.7d)
and the operator ZRT from (4.2). With the definition of the Crouzeix-Raviart interpolation v, := ZRv
and the piecewise constant integral means wy and pp of w and p, respectively, we investigate the first
identity of (4.8) for 8, = 0 and (4.7a)-(4.7c), namely

/Qf.IRTrvh:i/Quh-IRT’U—FZ }i/F(y[[uhxn]]F-[['vhxn]]F—l—[[uh-n]]p[[vh-n]]F)

Fegnt
-I-/ (ﬁ wp, - curlv — ppdiv 'v) + / (F|uh| uy, — v Y2y, x wh) IRy
Q Q

with [ (Vv wp, - curlv, —ppdivey) = [ (Vv wp - curlv — ppdive) for all K € T from the in-
tegral mean property of the gradients for the Crouzeix—Raviart interpolation in the last step. The
combination of the last two identities and the definitions (3.19) and (3.10) reveal the key identity

Hewewell = [ 0= 457" [ (w, T80 = (Fw) o)

+ Z ;:i/ (v[up x n]p - [vy x n]p + [up - n]plvs -n]p)
Fegirt F

+ / (F\uh\ wy, — v Y2y, x wh) IR + / (V71/2’U, X wp, — Flu| Juh) x)
Q Q

—/ <V1/20-cur1juh—wh~9>+/qdivjuh.
Q Q

The jump terms with [up]r = [up—Jup]r and [vp]F = [vr—v]F allow for standard trace inequalities
and interpolation local interpolation error estimates and eventually verify

9
Z e /F(V[[uh x n]r - [vp X n]F + [up - n]plvy, - n]]F) < (1 +v)Jun — Tunllpw
Fegint

with [|[v — vp[lpw < 1 in the last step. The remaining terms that involve a factor v, v, = ZRv, or
ZRTv;, = ZRTw combine to one residual term plus perturbations. The residual reads

/ (f — & tuy + v 2wy x wp, — Flug| up) - (v —ITw) + 57! / (up, — Juyp) - v
Q Q
and the remaining perturbations read

o/ /Q ((u—up) Xwp) v+ /Q F((lunl = ul) wp + [ul(w, — Tup)) v
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“lwpllo.e + Fllunllog] lu — wnllLaollvlao + Fllulullvliwllun — Tunloe

<[v
< Cas(9)Cs(4) [ |wnllo.o + Fllunllo] [l — whllpw + Cas (4)Cs (4)F|ul omaxCrllwn — Tt lpw

S D

~

with discrete Sobolev (resp. Sobolev) inequalities with constant Cgg(4) S 1 (resp. Cg(4)
interpolation error estimates, and |v|; o < 1 in the last step.

The discrete equations also reveal ap(up,wp;0,0y) = 0 = by (up, wp; qp) for all piecewise constant
0;, € Wy, and for all piecewise constant ¢, € Q) with integral mean zero over the domain. Those
identities localise (utilise fQ divpup, = 0 from a piecewise integration by parts to overcome the global
constraint in ;) and lead to the discrete identities

Vveurlu, =w, and divyu, =0

for the piecewise constant functions (from piecewise action of the differential operators). Hence
—/ (Vv 6 - curl Juy, — wy, - 6) +/ q divJuy,
Q Q

= / Vv 0 - curl (up — Juyp) — / q divp(up — Jup)
Q Q
< (vvl6l +V2|ql) llun — Tunllpw < V2+ v JJun — Tunllpw

with Cauchy inequalities and ||((v,0),q)|| < 1 in the last steps.

The combination of all the above estimates and the standard error estimate ||h7_—1(v ~ IR |loa <
lvallpw < 1 reveal that

I (eus €ws ep)ll = 2Cas()Cs(4)y " (v wnllog + Fllunllog) Il — wnllow
< (1 + 1/1/2 + (F + ﬁ_l)hmax)muh - juhmPW
+hr(f — £ g + 7 2, x wg, — Flug|ug) [lo.0-

(The notation < includes generic constants as well as v &~ 1, while we keep 7 in the rather explicit
negative term of the lower bound.) Since e, = u — Juy, the triangle inequality |u — upfpw <
[(ew, €w, ep)|| + lun — Tup|lpw, provides

I — wnllpw + llewllog + lleplloe — 2Cas(4)Cs(4)y ™ (fl/z [wnllo.0 + Fllun o,ﬂ) llee = wnlpw
S (U402 4 (F 4 57 ) hana) llun — Tupllpw (6.1)

+ 1 (f — £y + v 2, x wp, — Flug) us)lloo-

The proof concludes with a discussion of the factor Cys(4)Cs(4) (V™12 ||wpllo.q + Fllunllogn) < 7/4
which follows from (4.29) for small sources f in L2(Q2). The point is that the latter estimate allows
us to absorb the negative term on the lower bound of (6.2) and this leads to the a posteriori error
control. The discrete Friedrichs inequality ||up|o,0 < Carflun|pw for all Crouzeix—Raviart functions
with homogeneous boundary conditions and [|up||pw < Cyflup|[n by (5.9) provide

_ _ 2
v wnllog + Fllunlog < v |walloq + CarCyFllunlln < \/V‘l + C§FC;¢2F2§CFh\\f|!0,Q

with a Cauchy inequality and (4.29) in the last step. Hence in case that

1£llo0 < 77/ (8Ck, Cas(4)Cs(4) /v~ + C3CEF?) (6.2)

the lower bound in (6.2) provides error control over 3 ||u — wp|lpw + ||€w /|02 + [lep[lo,o- This concludes
the proof of the a posteriori error estimate. The final form of the explicit residual-based a posteriori
error estimate employs the well-established formula

lun — Tunllte £ hptlunle x nelE ~ > hel[Duyle x np|;.
Fee Fee
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This gives rise to the explicit residual-based a posteriori error estimator with the contribution

P(K) = K f = 57w + v Pup x wp = Flup | uslf§ g + K[V Y |[Dusle x npll§ 7 (6.3)
FeF(K)

for each triangle K € 7, and the global version n(7s) := /> ke, n*(K).

Theorem 6.1 (A posteriori error control) Provided the source is sufficiently small such that (6.2)
holds, we have reliability
llee = wnllpw + llewllo.e + llepllo.o < n(Tn)-

Efficiency holds even in local form up to data oscillations: For any K € Ty, with neighbourhood Q(K)
covered by the union of all simplices in T;, with zero distance to K, we have

n(K) < | Dpwlv —up)

0,0(k) + [v —upllox + lw — whllox + lpn — pllo.x + osce(f, K).

The generic multiplicative constants behind the notation < exclusively depend on the material con-
stants, upper bounds of the solutions w and wy, in L2(Y), and the shape reqularity of T,.

Proof. Reliability follows from the analysis prior to the statement of Theorem 6.1. The remaining
efficiency follows with Verfiirth’s bubble-function methodology. This is well established for the side
contributions

K[V D) [Dup]p x npll20m) S [ Dpw(u — up)

0,Q(K)
and follows verbatim [26, 50]. The volume contribution, however, challenges with a technical (possibly
unexpected) trap. The overall idea is to design a local test function vx that allows an evaluation of

the residual functional and thereby involves the exact solution. The data oscillations arise from the
approximation of the source f in the very first step. In order to estimate the volume contribution

pic 1= K1V = b+ 07 2 x o = Flu wn o

of K € Ty, we consider the volume-bubble function by € WO1 *°(K) on a simplex K C R%. The latter
is the product of all d + 1 barycentric coordinates of the vertices of K times a factor (d 4 1)%*! for
the normalisation 0 < b <1 = maxbg in K. With the abbreviation

v =1L -k tuy + v 120, x wp, — Flup| wp,

the admissible test function reads bxvg and belongs to V (for by is extended by zero). The typical
application in Verfiirth’s bubble-function methodology considers only polynomial test functions that

allow a standard inverse estimate ||g|lo,x < Cequ}(ﬂgHO’K for all g € Pi(K)? In the application

of this paper vk is polynomial up to this extra term bxF|up|uj, and hence requires a new inverse
estimate. After surprisingly large efforts, Appendix A provides

IfIf+g

The test function bxvgi € V therefore satisfies the novel nonstandard inverse estimate

0.5 < Coalbi2(F1F +9)losc for all £,g € Pi(K)%

1/2
vk llox < Ceqllbr *vicllo, i

The remaining arguments in the efficiency proof are standard nowadays and (partly) apply verbatim.
This, a triangle inequality, and the definition of the oscillations reveal

e < KV F = T Flo i+ vicllo s < osep(f, K) + Cegl K|l v o, (6.4)

With v replaced by bxvg € V in the first equation in (2.4), the last term relates to
1/2 _ -
HbK/ UK”(Q)’K = / brvg - (Hlf — K 1uh +v 1/2uh X Wp — F]uh]uh)
K
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- / v - (I — 1) f +/ <1/1/2w - curl (bxvk) —pdiv(bKvK)) (6.5)
K K
+/ bV - (m_l(u —up) — v P (u X w —up X wp) + Flu]u — |y uh)) .
K
The last right-hand side (6.5) consists of six summands we enumerate St, . .., S¢ in the order displayed.
Notice that there is a factor | K |'/¢ omitted compared to (6.4) and hence we can afford a factor |K|~1/¢

in the upper bounds of Si,...,5. A Cauchy inequality and the definition of the oscillations provide

o,K]K\_l/dosck(f, K).

Sl = / bK’UK . (Hl — l)f S Hb%QUK
K

Recall that bgwvy has a support on the simplex K and vanishes on its boundary 0K. Hence the
Gauss and Stokes theorems show [, div(bgvg) =0 and [, w-curl (bgvg) = 0. Since p;, and wy, are
constant on K, we infer

SQ+S3:V1/2/

(w—wp) - curl (bgvg) + / (pn, — p) div(bgvik)
K K

1/2 —
S (lw — whllo.x + lpn = Pllo.s) 103 v llo.re | K|~/

with an inverse estimate |bxvi|i x S ||b}(/2UK||07K|K\*1/d in the last step. A Cauchy inequality
controls the term

_ _ 1/2
542/ brvi -k (w—up) < &0 vk llollw — o
K

The nonlinear term Ss is related to v1/2S5 < Hb}{/Q'UKHLoo(K) [(w—wup) X w+up x (w—wp)||L1 (k) Since
w and wuy, are bounded in L?(Q) by the a priori error analysis, a Cauchy inequality for the L' integrals
may be written as [|(u — up) X w|Lix) S [lu — unllox and |Jup X (W — wp)|lLik) S lw — wnllox-

This and the inverse estimate Hb}(/Q’UKHLoo(K) < \K|*1/d||b}</2vK|]07K establish

S5 S v 2KV by 2o o e (e —

0.5 + [[w—wnllox).
We can afford the above inverse estimate Hb%szHLm(K) < ]K\*l/de%QUKHQ,K in the nonlinear term
_ 1/2
So < 1K1 g el Fllul w — foan s o)

The elementary estimate | |ala—[b|b| < (|a]+|b])|a—b| for vectors a,b € R? and a Cauchy and triangle
inequality provide
e w = |un| wn L) < (wllo.x + lwnllo.x)llw — wnllo k-

Let us hide several constants in the notation < as before but also upper bounds of ||uy |0k and ||uljo,x
to infer
_ 1/2
So < 1Ky e o, Flllw — wnllo k-

Let us hide the material constants |F|, !, v, and v~! in the notation < for a summary of the above

estimates of S1,..., S¢ in (6.5). After a division of the factor Hb}(/QvK
nothing left to prove) we infer

lo.x (if positive as else there is

1/2
103 vl S 1w = wnllose + 1w — willo s + 1o = pllo s +oscr(f, K).

The combination with (6.4) concludes the proof of the local efficiency

pr S llu —upllox + |lw — whllo,x + lpn — pllo,x + osci(f, K)

of the volume contribution in lower order terms. The efficiency proof does not require any smallness
assumption neither on the mesh-size nor on the closeness of the exact and discrete solution. O
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Algorithm 7.1 Adaptive Mesh Refinement and coarsening algorithm

1: INPUT: coarse mesh Cp, 6" € (0,1), 6° € (0,1), lmax

2: OUTPUT: solution of (4.8) on an adapted mesh

3: Set Tp, to be the result of (optionally) applying several levels of uniform refinement to Cp
4: SOLVE the discrete problem (4.8) on 7Ty,

5 for l =1,... . do

6: ESTIMATE: for every cell K € Ty, compute the local error indicator n(K) from (6.3)
7 MARK for refinement a M" C 7T, with largest n(K) such that |M"| = 0|7},

8: MARK for coarsening another set M C T, with smallest n(K) such that |M°| =~ 6°|T},|
9: ADAPT: refine K € M" and coarsen K € M€ to construct a new 7T, for the next step
10: SOLVE the discrete problem (4.8) on Ty,

11: end for

7 Numerical results

In this section we report and discuss a number of numerical examples to illustrate the performance of
the proposed mixed finite element schemes and a posteriori error estimators. The realisation of the
numerical methods designed in the paper is conducted with a combination of open source software
packages in the so-called Gridap ecosystem [10, 49, 9]. In all cases, we use a Newton method with
exact Jacobian, setting a tolerance of 1078 on the 2 norm of the increment and 10~'2 on the /> norm
of the residual. The linear systems were solved either with UMFPACK (2D cases) or the multifrontal
massively parallel sparse direct solver MUMPS (3D cases).

The adaptive mesh refinement procedure follows Algorithm 7.1. It comprises an standard SOLVE —
ESTIMATE — MARK — ADAPT loop. This algorithm can be in principle combined with any kind of
adaptive mesh approach. Our implementation of Algorithm 7.1 particularly leverages hierarchically-
adapted (i.e., nested) non-conforming octree-based meshes; see, e.g., [8]. Forest-of-octrees meshes can
be seen as a two-level decomposition of €2, referred to as macro and micro level, respectively. The
macro level is a suitable conforming partition Cp, of Q into quadrilateral (d = 2) or hexahedral cells
(d = 3). This mesh, which may be generated, e.g., using an unstructured mesh generator, is referred
to as the coarse mesh. At the micro level, each of the cells of C;, becomes the root of an adaptive
octree with cells that can be recursively and dynamically refined or coarsened using the so-called
1 : 2¢ uniform partition rule. If a cell is marked for refinement, then it is split into 2¢ children cells
by subdividing all parent cell edges. If all children cells of a parent cell are marked for coarsening,
then they are collapsed into the parent cell. The union of all leaf cells in this hierarchy forms the
decomposition of the domain at the micro level, i.e., 7. While these meshes are made of quadrilaterals
or cubes, we split their elements into simplices (2 triangles per mesh quadriteral in 2D, 6 tetrahedra
per mesh cube in 3D) to obtain the simplicial meshes for our formulation; see, e.g., Figure 7.3.

The adaptive meshes resulting from this approach are non-conforming. In particular, they have
hanging faces at the interface of neighbouring cells at different levels of refinement. Mesh non-
conformity requires special adaptations to the Crouzeix—Raviart finite element space used in our
formulation. In particular, following [11], we impose a set of linear multi-point constraints for the
velocity degrees of freedom located at these non-conforming interfaces such that the average of the
averages on the finer children faces equals the average on the coarse parent face (so-called Option C
n [11]). While this approach was mathematically proven in [11] to lead to optimal convergence rates
in the case of the Douglas—Santos—Sheen—Ye finite element, our numerical results confirm that this is
also the case for the Crouzeix—Raviart finite element. We used the GridapP4est. j1 [44] Julia package
in order to handle such kind of meshes (including facet integration on non-conforming interfaces as
per required by the stabilization terms in the formulation and the computation of the a posteriori
error estimator) and finite element space constraints. This package, built upon the p4dest meshing en-
gine [18], is endowed with the so-called Morton space-filling curves, and it provides high-performance
and low-memory footprint algorithms to handle forest-of-octrees.
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DoF's ‘ h ‘ |lu — wp||n ‘ rate ‘ lw —whllon ‘ rate ‘ lp — prlloq ‘ rate ‘ lossgiy | 10SScurl
standard CR — Py — Py scheme, with kinematic viscosity v =1
3310.7071| 6.09e-02 * 5.60e-02 * 1.93e-01 * 3.47e-18 | 1.04e-17
1451 0.3536 | 3.56e-02 |0.774| 3.26e-02 0.779 | 1.01e-01 |0.925|6.94e-18 | 2.78e-17
609 | 0.1768 | 1.82e-02 |0.969 1.64e-02 0.994 | 5.27e-02 |0.945 | 2.43e-17 | 2.78e-17
2497 0.0884 | 9.05e-03 |1.007 | 8.04e-03 1.028 | 2.72e-02 |0.952|1.38e-16 | 6.94e-17
10113 | 0.0442 | 4.50e-03 |1.008 | 3.97e-03 1.019 | 1.38e-02 |0.975|1.08e-15 | 2.06e-16
40705 | 0.0221 | 2.25e-03 |1.003 1.97e-03 1.007 | 6.97e-03 |0.989 | 1.80e-15 | 4.02e-16
163329 | 0.0110 | 1.12e-03 |1.001| 9.86e-04 1.002 | 3.50e-03 |0.995|1.49e-13 | 8.33e-16
CR — Py — Py scheme with variational crime, with kinematic viscosity v =1
3310.7071| 5.59e-02 * 5.38e-02 * 1.71e-01 * | 1.73e-18 | 4.34e-18
1451 0.3536 | 3.43e-02 |0.705| 3.30e-02 0.705 | 9.31e-02 | 0.873|6.94e-18 | 2.78e-17
609 | 0.1768 | 1.75e-02 |0.971 1.66e-02 0.995 | 4.91e-02 |0.923 | 2.78e-17 | 4.16e-17
24971 0.0884 | 8.66e-03 |1.015| 8.08e-03 1.036 | 2.57e-02 |0.932|6.77e-17 | 8.33e-17
10113 | 0.0442 | 4.30e-03 |1.011| 3.97e-03 1.023 | 1.32e-02 |0.964 | 1.19e-15 | 2.26e-16
40705 (0.0