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Abstract. Deformable image registration (DIR) is a popular technique for the alignment of digital images,
with highly relevant applications in medical image analysis. However, the numerical solution of DIR
problems can be very challenging in computational terms, as the improvement of the DIR solution
typically involves a uniform refinement of the underlying domain discretization that exponentially
increases the number of degrees of freedom. In this work, we develop adaptive mesh refinement
schemes particularly designed for the finite-element solution of DIR problems. We start by deriv-
ing residual-based a posteriori error estimators for the primal and mixed formulations of the DIR
problem and show that they are reliable and efficient. Based on these error estimators, we imple-
ment adaptive mesh-refinement schemes into a finite-element code to register images. We assess the
numerical performance of the proposed adaptive scheme on smooth synthetic images, where numer-
ical convergence is verified. We further show that the adaptive mesh refinement scheme can deliver
solutions to DIR problems with significant reductions in the number of degrees of freedom without
compromising the accuracy of the solution. We also confirm that the adaptive scheme proposed for
the mixed DIR formulation successfully handles volume-constrained registration problems, provid-
ing optimal convergence in analytic examples. To demonstrate the applicability of the method, we
perform adaptive DIR on medical brain images and binary images and study how image noise affects
the proposed refinement schemes.
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1. Introduction. Deformable image registration (DIR) consists of aligning two images
through a transformation that deforms one image onto the other. It arises in several appli-
cations, particularly in the medical imaging field [39]. Its mathematical formulation requires
three objects: a transformation model, defined by a family of suitable mappings that warp
the target image; a similarity measure, typically represented by a functional that quanti-
fies the difference between images; and a regularizer, which renders the problem well-posed
[34]. In addition to the many variants of these components, different modeling approaches
exist, among which we highlight the traditional variational minimization [28, 34], optimal
mass transport [25], and level-set modeling [40]. The solution of the DIR problem typically
considers incorporating an auxiliary time variable. This approach can be interpreted as a
semi-implicit formulation of the proximal point algorithm [38] extended to a more general
class of proximal operators by using forward-backward splitting [21]. The formulation of the
optical flow problem put forward by Horn and Schunk [28] leads to a more rigorous mathemat-
ical analysis of the DIR problem continuous formulation, which is in contrast with the lack of
rigorous numerical analysis of the discrete counterpart, recently developed in the variational
formulation [36] in an algorithm-specific fashion and also in the optimal-control setting within
a more classical Galerkin framework [33].

One active area of DIR application is the study of deformation in the lungs from the
analysis of computed tomography images of the thorax [15]. In this setting, the optimal
warping u that solves the DIR problem can be interpreted as a displacement field, from
which deformation metrics such as the strain tensor can be computed based on ∇u using the
framework of continuum mechanics. The study of deformation using DIR has revealed that
the lungs display a highly heterogeneous and anisotropic behavior [29]. Further, deformation
metrics from the strain tensor have proved very insightful in understanding certain pulmonary
diseases and lung injury progression [16, 37, 31]. The prediction of strain measures from
DIR is not without problems, as it has been shown that estimating the strain tensor from
direct differentiation of the transformation mapping yields spurious numerical errors that
can distort the physical meaning of the strain tensor [30]. This problem, together with an
effort of providing a rigorous analysis of the Galerkin formulation of DIR, motivated the
recent development of primal and mixed continuous formulations and finite-element schemes
[5]. This last work used null traction boundary conditions so as to avoid spurious stress. It
relied on the mixed theory of linear elasticity problems with pure-traction conditions [23],
which delivered a priori error estimates not only for the displacement solution but also for the
stress and rotation fields in the mixed formulation. These analytical results provide a sound
framework for the error assessment of stress and deformation estimates in DIR.

Depending on the amount of warping from the target to the reference images, the optimal
warping u can typically result in localized regions with high variations. These localizations
may not be accurately captured by the transformation model, which has motivated the de-
velopment of adaptive refinement techniques in other areas of numerical analysis [42]. In the
case of image processing, adaptive refinement finite-element techniques have been developed
and analyzed for the image segmentation [10, 11], image denoising [27, 26], and optical flow
[9, 8] problems. However, specific schemes developed for DIR formulations remain under-
studied. One exception is the work of Haber, Heldmann, and Modersitzki [24], where a finite-
difference scheme was employed to solve the DIR problem, and an oct-tree strategy was used toD

ow
nl

oa
de

d 
08

/3
0/

21
 to

 1
52

.7
4.

17
.1

52
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1240 BARNAFI, GATICA, HURTADO, MIRANDA, AND RUIZ-BAIER

improve the numerical solution by adaptive refinement. Another approach is the use of ad hoc
mesh-refinement techniques based on classical strategies in finite-element analysis for elasticity
[46, 35]. While very useful, this approach does not directly extend to mixed formulations, and
it lacks a theoretical framework that can guarantee the numerical convergence of the scheme.

In this work, we propose an a posteriori mesh-refinement scheme particularly tailored for
the primal and mixed finite-element formulations of the DIR problem. We validate the pro-
posed mesh-refinement scheme and the associated theoretical results through applications on
the registration of analytic and medical images, as well as images subject to incompressibility
constraints, where the performance of the methods is assessed in terms of error measures and
convergence rates. We start by constructing an optimal a posteriori error estimator Θ [42].
The estimator Θ is of residual type, and it is decomposed into a sum of local error indicators
θT that give a normwise equivalent of the total error. The estimator Θ is said to be reliable
(resp., efficient) if there exists Crel > 0 (resp., Ceff > 0) independent of the mesh sizes such
that

CeffΘ+ h.o.t. ≤ ∥error∥ ≤ CrelΘ+ h.o.t.,

where h.o.t. is a generic expression for denoting higher-order terms. This estimator is designed
to be effective in terms of computing cost, allowing one to rapidly identify regions with large
total error that are candidates for local mesh refinement. At the same time, the use of the
estimator prevents the refinement of areas where the error is small, delivering an efficient
scheme for error reduction, which is in contrast to uniform refinement schemes.

Outline. We have organized the contents of this paper as follows. The remainder of this
section introduces some standard notation and definitions of functional spaces. In section
2, we state the mathematical formulation of DIR, along with the similarity measure and
regularizer considered in this work. In section 3, we state the weak problems for the primal
and mixed formulations of DIR, along with their corresponding Galerkin schemes. In section
4, we develop a posteriori error indicators for the finite element formulations, to then derive
the corresponding theoretical bounds yielding reliability and efficiency of each estimator under
reasonable assumptions. To demonstrate the applicability of the proposed methods, in section
5 we apply the mesh-refinement scheme in the elastic registration of smooth and medical
images, where we confirm the reliability and efficiency of the estimators, along with assessing
their numerical performance. We end this article by discussing the results and sharing some
concluding remarks in section 6.

Preliminaries. Let us denote Ω ⊆ Rn, n ∈ {2, 3}, a given bounded domain with Lipschitz
boundary Γ := ∂Ω and denote by n the outward unit normal vector on Γ. Standard notation
will be adopted for Lebesgue spaces Lp(Ω) and Sobolev spaces Hs(Ω) with norm ∥ · ∥s,Ω and
seminorm | · |s,Ω. Given a scalar space A, we let A and A be its vectorial and tensor versions,
respectively, and ∥ · ∥, with no subscripts, will stand for the natural norm of either an element
or an operator in any product functional space.

As usual, for any vector field v = (vi)i=1,n, we set the gradient and divergence operator
as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

and div v :=

n∑
j=1

∂vj
∂xj

.
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Furthermore, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div τ be the
divergence operator div acting along the rows of τ , and define the transpose, the trace, the
tensor inner product, and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr(τ ) :=

n∑
j=1

τii, τ : ζ :=

n∑
j=1

τijζij , and τ d := τ − 1

n
tr(τ )I,

where I stands for the identity tensor in Rn×n. Then we recall that the space

H(div; Ω) := {τ ∈ L2(Ω) : div τ ∈ L2(Ω)} ,

equipped with the usual norm

∥τ∥2div,Ω := ∥τ∥20,Ω + ∥div τ∥20,Ω,

is a Hilbert space. Finally, we employ 0 to denote a generic null vector.

2. Mathematical formulation of the deformable image registration problem. In this
section we recall from [5, section 2] the elastic DIR model. Let n ∈ {2, 3} be the dimension of
the images we are interested in analyzing, and let Ω ⊆ Rn be a compact domain with Lipschitz
boundary Γ := ∂Ω. Let R ∈ H1(Ω) be the reference image and T ∈ H1(Ω̃) be the target
image. The DIR problem consists in finding a transformation u : Ω → Rn, also known as the
displacement field, that best aligns the images R and T , which is expressed as the variational
problem (cf. [34])

inf
u∈V

αD[u;R, T ] + S[u],(2.1)

where V is typically H1(Ω), D : V → R is the similarity measure between the images R and T ,
α > 0 is a weighting constant, and S : V → R is a regularization term rendering the problem
well-posed. A common choice for the similarity measure is the sum of squares difference, i.e,
the L2 error that takes the form

D[u;R, T ] :=
1

2

∫
Ω
(T (x+ u(x))−R(x))2.

For the case of elastic DIR, the regularizing term is commonly taken to be the elastic defor-
mation energy, defined by

S[u] :=
1

2

∫
Ω
Ce(u) : e(u),

where e(u) = 1
2{∇u+(∇u)t} is the infinitesimal strain tensor, i.e., the symmetric component

of the displacement field gradient, and C is the elasticity tensor for isotropic solids, that is,

Cτ = λtr(τ )I+ 2µτ ∀τ ∈ L2(Ω).(2.2)

Assuming that (2.1) has at least one solution with sufficient regularity, the associated Euler–
Lagrange equations deliver the following strong problem: Find u such that

div(Ce(u)) = αfu in Ω,

Ce(u)n = 0 on ∂Ω,
(2.3)
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1242 BARNAFI, GATICA, HURTADO, MIRANDA, AND RUIZ-BAIER

where

fu(x) =
{
T (x+ u(x))−R(x)

}
∇T (x+ u(x)) ∀x ∈ Ω a.e.(2.4)

We assume that there are positive constants Lf and Mf such that the nonlinear load term fu
satisfies

|fu(x)− fv(x)| ≤ Lf |u(x)− v(x)|, |fu(x)| ≤Mf ∀x ∈ Ω a.e.(2.5)

3. Continuous and discrete weak formulations of DIR. In this section we summarize
the continuous primal and mixed variational formulations of (2.3) derived in [5, section 3] and
[5, section 4], respectively, and recall the respective solvability results.

3.1. DIR primal formulation. The primal variational formulation for the registration
problem reads, Find u ∈ H1(Ω) such that

a(u,v) = αFu(v), v ∈ H1(Ω),(3.1)

where a : H1(Ω)×H1(Ω) → R is the bilinear form defined by

a(u,v) :=

∫
Ω
Ce(u) : e(v) ∀u,v ∈ H1(Ω),(3.2)

and for every u ∈ H1(Ω), Fu : H1(Ω) → R is the linear functional given by

Fu(v) := −
∫
Ω
fu · v ∀v ∈ H1(Ω).

The conditions (2.5) imply the Lipschitz continuity and uniform boundedness of Fu, that is,

∥Fu − Fv∥H1(Ω)
′ ≤ LF ∥u− v∥0,Ω, ∥Fu∥H1(Ω)

′ ≤MF ∀u,v ∈ H1(Ω),(3.3)

respectively. We recall the results concerning the solvability of (3.1), as developed in [5, section
3]. First, we define the following linear auxiliary problem: Given z ∈ H1(Ω), find u ∈ H1(Ω)
such that

a(u,v) = αFz(v), v ∈ H1(Ω).(3.4)

Since this problem does not have unisolvency, we modify it by imposing weak orthogonality
to the rigid motions space, denoted by RM(Ω) and defined as (see [12, Equation 11.1.7])

RM(Ω) :=
{
v ∈ H1(Ω) : e(v) = 0

}
,(3.5)

which guarantees unique solvability of (3.4) since RM(Ω) is the null space of its solution
operator. Defining

H := RM(Ω)⊥ =

{
v ∈ H1(Ω) :

∫
Ω
v = 0,

∫
Ω
rotv = 0

}
,

where rotv = −∂v1/∂x2 + ∂v2/∂x1, for v = (v1, v2)
t, we consider the following restricted

problem: Given z ∈ H, find u ∈ H such that

a(u,v) = αFz(v), v ∈ H.(3.6)

Then, we have the following result, proven in [5, Theorem 2].D
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Theorem 3.1. Given z ∈ H, problem (3.6) has a unique solution u ∈ H, and there exists
Cp > 0 such that

∥u∥1,Ω ≤ αCp∥Fz∥H1(Ω)
′ .

We now define the operator T̂ : H → H given by T̂(z) = u, where u is the unique solution
to problem (3.6) and thus rewrite (3.1) as the fixed-point equation: Find u ∈ H such that

T̂(u) = u.(3.7)

The following result, also proven in [5, Theorem 3], establishes the existence and unique-
ness of a solution to the fixed-point equation (3.7).

Theorem 3.2. Under data assumptions (2.5), the operator T̂ has at least one fixed point.
Moreover, if αCpLF < 1, the fixed point is unique.

3.2. DIR mixed formulation. In what follows we introduce a mixed variational formula-
tion of (2.3). We begin by defining an auxiliary field as the skew symmetric component of the
displacement field gradient

ρ :=
1

2
(∇u−∇ut).

We note that from a continuum mechanics perspective, ρ corresponds to the rotation tensor,
which accounts for displacement gradients that do not induce deformation energy. We further
define the auxiliary stress tensor field σ := Ce(u). Further, we note that the constitutive
relation (2.2) can be inverted (cf. [6] or [22]) as

C−1σ =
1

2µ
σ − λ

2µ(2µ+ nλ)
tr(σ)I.

Then, the strong form of the mixed registration BVP associated with (2.3) becomes, Find u,
σ, and ρ such that

C−1σ = ∇u− ρ in Ω,

div(σ) = αfu in Ω,

σ = σt in Ω,

σn = 0 on ∂Ω.

(3.8)

Introducing the spaces

H0(div; Ω) =
{
τ ∈ H(div; Ω) : γnτ = 0

}
, Q := L2(Ω)× L2

skew(Ω),

where
L2
skew(Ω) := {η ∈ L2(Ω) : ηt = −η},

and using a standard integration by parts procedure, the weak formulation of the mixed DIR
problem (3.8) reads, Find (σ, (u,ρ)) ∈ H0(div; Ω)×Q such that

a(σ, τ ) + b(τ , (u,ρ)) = 0 ∀ τ ∈ H0(div; Ω),

b(σ, (v,η)) = αFu(v,η) ∀ (v,η) ∈ Q,
(3.9)
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where a : H0(div; Ω) × H0(div; Ω) → R and b : H0(div; Ω) ×Q → R are the bilinear forms
defined by

a(σ, τ ) :=

∫
Ω
C−1σ : τ ∀σ, τ ∈ H0(div; Ω),(3.10)

b(τ , (v,η)) :=

∫
Ω
v · divτ +

∫
Ω
η : τ ∀ τ ∈ H0(div; Ω), ∀(v,η) ∈ Q.(3.11)

In turn, given u ∈ L2(Ω), Fu : Q → R is the linear functional defined by

Fu(v,η) :=

∫
Ω
fu · v ∀(v,η) ∈ Q .

In order to have unisolvency of (3.9), we define the auxiliary problem: Given z ∈ L2(Ω), find
(σ, (u,ρ)) ∈ H0(div; Ω)×Q such that

a(σ, τ ) + b(τ , (u,ρ)) = 0 ∀ τ ∈ H0(div; Ω),

b(σ, (v,η)) = αFz(v,η) ∀ (v,η) ∈ Q,
(3.12)

which corresponds to a mixed formulation of the linear elasticity problem with pure traction
boundary conditions. Since this problem does not yield unique solvability, we impose weak
orthogonality to the rigid motions space RM(Ω) (cf. (3.5)). Defining H := H0(div; Ω) ×
RM(Ω), we arrive at the following equivalent mixed variational formulation of (3.12): Given
z ∈ L2(Ω), find ((σ,χ), (u,ρ)) ∈ H ×Q such that

A((σ,χ), (τ , ξ)) +B((τ , ξ), (u,ρ)) = 0 ∀ (τ , ξ) ∈ H,
B((σ,χ), (v,η)) = αFz(v,η) ∀ (v,η) ∈ Q,

(3.13)

where A : H ×H → R and B : H ×Q → R are the bilinear forms given by

A((σ,χ), (τ , ξ)) := a(σ, τ ) +

∫
Ω
χ · ξ ∀ (σ,χ), (τ , ξ) ∈ H,

B((τ , ξ), (v,η)) := b(τ , (v,η)) +

∫
Ω
ξ · v ∀ ((τ , ξ), (v,η)) ∈ H ×Q.

The following two lemmas proven in [23, Lemmas 3.3–3.4] are needed to establish the
well-posedness of (3.13).

Lemma 3.3. Let V := {(τ , ξ) ∈ H : B((τ , ξ), (v,η)) = 0 ∀(v,η) ∈ Q}. Then V =
V × {0}, with

V := {τ ∈ H(div; Ω) : div τ = 0 and τ = τ t in Ω},(3.14)

and there exists α̂ > 0 such that

α̂∥(τ , ξ)∥2H ≤ A((τ , ξ), (τ , ξ)) ∀ (τ , ξ) ∈ V.D
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Lemma 3.4. There exists β̂ > 0 such that

β̂∥(v,η)∥Q ≤ sup
(τ ,ξ)∈H
(τ ,ξ) ̸=0

|B((τ , ξ), (v,η))|
∥(τ , ξ)∥H

∀ (v,η) ∈ Q.

Theorem 3.5. There exists a unique solution ((σ,χ), (u,ρ)) ∈ H ×Q of (3.13). In addi-
tion, χ = 0 and there exist Cm > 0 such that

∥((σ,χ), (u,ρ))∥H×Q ≤ αCm∥Fz∥Q′ .

Proof. See [23, Theorem 3.1].

The treatment above allows us to define a fixed-point operator. Let T : L2(Ω) → L2(Ω)
given by T (z) := u ∀z ∈ L2(Ω), where u is the displacement component of the unique solution
of problem (3.13), and so the mixed formulation (3.9) can be restated as, Find u ∈ L2(Ω)
such that

T (u) = u .(3.15)

And the existence of a solution to the fixed-point problem (3.15) follows directly as in [5,
Theorem 12].

Theorem 3.6. Under data conditions (2.5) and assuming αCmLF < 1, there is a unique
fixed point for (3.15). With this, the mixed formulation (3.9) has a unique solution (σ, (u,ρ)) ∈
H0(div; Ω)×Q. Furthermore

∥(σ, (u,ρ))∥H0(div;Ω)×Q ≤ αCmMF .

3.3. The primal Galerkin finite-element scheme. Let Hh be a finite dimensional sub-
space of H1(Ω) and define Hh := RM⊥ ∩Hh. Then the primal nonlinear discrete problem is,
Find uh ∈ Hh such that

a(uh,vh) = αFuh
(vh), vh ∈ Hh.(3.16)

Analogously to the continuous case, we consider the auxiliary problem: Given zh ∈ Hh, find
uh ∈ Hh such that

a(uh,vh) = αFzh
(vh), vh ∈ Hh,(3.17)

and also let Th : Hh → Hh be the discrete operator given by Th(zh) = uh, where uh is the
solution to problem (3.17). Considering the same data assumptions as in the continuous case,
as well as the continuity and bound obtained before, we arrive at the following result, proven
in [5, Theorem 5].

Theorem 3.7. Assume that data assumptions (2.5) hold. Then, the operator Th has at least
one fixed point. Moreover, if αCpLF < 1, then such a fixed point is unique.D
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3.4. The mixed Galerkin finite-element scheme. In this section we recall the Galerkin
finite-element scheme for (3.9). First, let {Th}h>0 be a regular family of triangulations of the
polygonal region Ω̄ by triangles K of diameter hK with global mesh size h := max{hK : K ∈
Th} such that they are quasi-uniform around Γ. Let us consider finite dimensional subspaces
Hσ

h , Q
u
h , and Qρ

h of H(div; Ω), L2(Ω), and L2
skew(Ω), respectively. Then we introduce the

product spaces

Hh := (Hσ
h ∩H0(div; Ω) )× RM, Qh := Qu

h ×Qρ
h,

and define the discrete version of (3.13): Given zh ∈ Qu
h , find ((σh,χh), (uh,ρh)) ∈ Hh×Qh

such that

A((σh,χh), (τ h, ξh)) +B((τ h, ξh), (uh,ρh)) = 0 ∀ (τ h, ξh) ∈ Hh,

B((σh,χh), (vh,ηh)) = αFzh
(vh,ηh) ∀ (vh,ηh) ∈ Qh.

(3.18)

The unique solvability and stability of (3.18), being the Galerkin scheme of a linear elasticity
problem with pure traction boundary conditions, has already been established in [23, Theorem
4.1]. This allows us to define the discrete operator T h : Qu

h → Qu
h given by T h(zh) := uh,

where uh is the unique displacement from (3.18), and then we rewrite the discrete nonlinear
problem as, Find uh ∈ Qu

h such that

T h(uh) = uh.(3.19)

The well-posedness of problem (3.19) is now recalled from [5, Theorem 14].

Theorem 3.8. Assuming (2.5) and αCmLF < 1, the problem (3.19) has a unique solution
uh ∈ Qu

h , which yields ((σh,χh), (uh,ρh)) ∈ Hh × Qh the unique solution of (3.18) with
zh = uh, which satisfies

∥((σh,χh), (uh,ρh))∥H×Q ≤ αCmMF .

4. Residual-based a posteriori error estimators. In this section we derive a reliable and
efficient residual-based a posteriori error estimator for each one of the Galerkin finite-element
schemes (3.16) and (3.18).

4.1. Preliminaries. We first let Eh be the set of all edges of the triangulation Th, and given
K ∈ Th, we let E(K) be the set of its edges. Then we decompose Eh as Eh = Eh(Ω) ∪ Eh(Γ),
where Eh(Ω) := {e ∈ Eh : e ⊆ Ω} and Eh(Γ) := {e ∈ Eh : e ⊆ Γ}. Further, he stands for the
length of a given edge e. Also, for each edge e ∈ Eh we fix a unit normal vector ne := (n1,n2)

t

and let se := (−n2,n1)
t be the corresponding fixed unit tangential vector along e. However,

when no confusion arises, we simple write n and s instead of ne and se, respectively. Now, let
τ ∈ L2(Ω) such that τ |K ∈ C(K) on each K ∈ Th. Then, given e ∈ Eh(Ω), we denote by [τ s]
and [τ n] the tangential and normal jumps of τ across e, that is, [τ s] := (τ |K − τ |K′)|es and
[τ n] := (τ |K − τ |K′)|en, respectively, where K and K ′ are the triangles of Th having e as
a common edge. Additionally, given scalar, vector, and tensor valued fields v, φ = (φ1, φ2)

t

and τ := (τij)1≤i,j≤2, respectively, we let

curl(v) :=

(
∂v
∂x2

− ∂v
∂x1

)
, curl(φ) :=

( ∂φ1

∂x2
−∂φ1

∂x1

∂φ2

∂x2
−∂φ2

∂x1

)
, curl(τ ) :=

(
∂τ12
∂x1

− ∂τ11
∂x2

∂τ22
∂x1

− ∂τ21
∂x2

)
.
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Next, we collect a few preliminary definitions and results that we need in what follows.
Given an integer k ≤ 0 and S ⊆ R2, we let Pk(S) be the space of polynomials of degree ≤ k.
Then, we let Ih : H1(Ω) → Xh be the usual Clément interpolation operator (cf. [17]), where

Xh := {vh ∈ C(Ω̄) : vh|K ∈ P1(K) ∀K ∈ Th}.

The following lemma establishes the local approximation properties of Ih. For a proof, see
[17].

Lemma 4.1. There exist constants c1, c2 > 0, independent of h, such that for all v ∈ H1(Ω)
there holds

∥v − Ih(v)∥0,K ≤ c1hK ∥v∥0,∆(K) ∀K ∈ Th,

∥v − Ih(v)∥0,e ≤ c2h
1/2
e ∥v∥0,∆(e) ∀ e ∈ Eh(Ω) ∪ Eh(Γ),

where ∆(K) := ∪{K ′ ∈ T : K ′ ∩K ̸= ∅} and ∆(e) := ∪{K ′ ∈ T : K ′ ∩ e ̸= ∅}.
The main techniques involved below in the proof of efficiency include the localization

technique based on element-bubble and edge-bubble functions. Given K ∈ Th and e ∈ E(K),
we let ψK and ψe be the usual triangle-bubble and edge-bubble functions [43, equations (1.5)–
(1.6)], respectively, which satisfy

(i) ψK ∈ P3(K), ψK = 0 on ∂K, supp(ψK) ⊆ K, and 0 ≤ ψK ≤ 1 in K,
(ii) ψe ∈ P2(K), ψe = 0 on ∂K, supp(ψe) ⊆ ωe, and 0 ≤ ψe ≤ 1 in ωe,

where ωe := ∪{K ′ ∈ Th : e ∈ E(K ′)}. Additional properties of ψK and ψe are collected in
the following lemma (cf. [41, Lemma 1.3], [43, section 3.4], or [44, section 4]).

Lemma 4.2. Given k ∈ N ∪ {0}, there exist positive constants γ1, γ2, γ3, γ4, and γ5,
depending only on k and the shape regularity of the triangulations, such that for each K ∈ Th
and e ∈ E(K), there hold

γ1 ∥q∥20,K ≤
∥∥∥ψ1/2

K q
∥∥∥2
0,K

, ∥ψKq∥1,K ≤ γ2h
−1
K ∥q∥0,K ∀ q ∈ Pk(K),(4.1a)

γ3 ∥p∥20,e ≤
∥∥∥ψ1/2

e p
∥∥∥2
0,e
, ∥ψep∥1,ωe

≤ γ4h
−1/2
e ∥p∥0,e , ∥ψep∥0,ωe

≤ γ5h
1/2
e ∥p∥0,e ∀ p ∈ Pk(e).

(4.1b)

4.2. A posteriori error analysis for the primal finite-element scheme. We now derive
a reliable and efficient residual-based a posteriori error estimator for (3.16). We draw ideas
from [2, 3] (see also the monograph [42]). Letting uh ∈ Hh be the unique solution of (3.16),
we define for each K ∈ Th the a posteriori error indicator,

Θ2
K :=h2K

∥∥αfuh
− div(Ce(uh))

∥∥2
0,K

+
∑

e∈E(K)∩Eh(Ω)

he∥[Ce(uh)ne]∥20,e +
∑

e∈E(K)∩Eh(Γ)

he∥Ce(uh)ne∥20,e,

(4.2)

where, according to (2.4),

fuh

∣∣
K
(x) :=

{
T (x+ uh(x))−R(x)

}
∇T (x+ uh(x)) ∀x ∈ K,D
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and introduce the global a posteriori error estimator

Θ :=

∑
K∈Th

Θ2
K


1/2

.

The following theorem constitutes the main result of this section.

Theorem 4.3. Let u ∈ H and uh ∈ Hh be the solutions of (3.1) and (3.16), respectively,
and assume that αCpLF < 1/2. Then, there exist constants h0, Crel, Ceff > 0, independent of
h, such that for h ≤ h0 there holds

CeffΘ ≤ ∥u− uh∥H ≤ CrelΘ.(4.3)

The reliability (upper bound in (4.3)) and the efficiency (lower bound in (4.3)) of Θ are
established separately in the following two lemmas. The corresponding proofs are postponed
to Appendix A.

Lemma 4.4. Assume that αCpLF < 1/2. Then, there exist h0, Crel > 0, independent of h,
such that for h ≤ h0 there holds

∥u− uh∥H ≤ CrelΘ.

Lemma 4.5. There exist constants η1, η2, η3 > 0 and Ceff > 0, independent of h, but de-
pending on γ1, γ2, γ3, γ4, and γ5 (cf. (4.1)), such that for each K ∈ Th there holds

hK
∥∥αfuh

− div(Ce(uh))
∥∥
0,K

≤ η1∥u− uh∥0,K ,

h1/2e ∥[Ce(uh) · ne]∥0,e ≤ η2

{
∥u− uh∥0,ωe +

∑
K∈ωe

hK∥u− uh∥0,K

}
,

h1/2e ∥Ce(uh) · ne∥0,e ≤ η3∥u− uh∥0,K ,

where ωe := ∪{K ′ ∈ Th : e ∈ E(K ′)}. Further, it holds that

CeffΘ ≤ ∥u− uh∥H .

4.3. A posteriori error analysis for the mixed finite-element scheme. In this section we
derive a reliable and efficient residual-based a posteriori error estimator for (3.18). Throughout
the rest of this section we let ((σ,χ), (u,ρ)) ∈ H ×Q and ((σh,χh), (uh,ρh)) ∈ Hh×Qh be
the solutions of the continuous and discrete formulations (3.13) and (3.18), respectively. We
introduce the global a posteriori error estimator

Ψ :=

∑
K∈Th

Ψ2
K


1/2

,
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where we define for each K ∈ Th

Ψ2
K :=

∥∥αfuh
− divσh

∥∥2
0,K

+ ∥σh − σt
h∥20,K + ∥χh∥20,K + h2K∥curl(C−1σh + ρh)∥20,K

+ h2K∥C−1σh + ρh∥20,K +
∑

e∈E(K)∩Eh(Ω)

he∥[(C−1σh + ρh)s]∥20,e

+
∑

e∈E(K)∩Eh(Γ)

he∥(C−1σh + ρh)s∥20,e.

(4.4)

The following theorem constitutes the main result of this section.

Theorem 4.6. Assume that αCmLF < 1/2. Then, there exist Crel, Ceff > 0 independent of
h such that

CeffΨ ≤ ∥(σ,χ)− (σh,χh)∥H + ∥(u,ρ)− (uh,ρh)∥Q ≤ CrelΨ.(4.5)

Pertaining to the reliability of the estimator (the upper bound in (4.5)), we begin by
stating a more general result due to Lemmas 3.3 and 3.4 and Theorem 3.6.

Theorem 4.7. Given F̄ ∈ H ′ and Ḡu ∈ Q′, there exists a unique ((σ̄, χ̄), (ū, ρ̄)) ∈ H ×Q
such that

A((σ̄, χ̄), (τ , ξ)) +B((τ , ξ), (ū, ρ̄)) = F̄ ((τ , ξ)) ∀(τ , ξ) ∈ H ,

B((σ̄, χ̄), (v,η)) = Ḡu((v,η)) ∀(v,η) ∈ Q .
(4.6)

In addition, there exists C > 0, depending only on α̂, β̂, ∥a∥, and ∥b∥, such that

∥(σ̄, χ̄)∥H + ∥(ū, ρ̄)∥Q ≤ C{∥F̄∥H′ + ∥Ḡu∥Q′}.(4.7)

To derive an upper bound for ∥(σ,χ) − (σh,χh)∥H we consider the functional Sh :
H(div; Ω) → R defined by

Sh(τ ) := a(σh, τ ) + b(τ , (uh,ρh)) ∀ τ ∈ H(div; Ω),(4.8)

where a and b are the bilinear forms defined in (3.10) and (3.11), respectively, and let Sh|V
be the restriction of S to V , the first component of the kernel V of B (cf. (3.14)). We note
that Sh(τ h) = 0 for each τ h ∈ Hσ

h .
Now, we make use of a particular problem of the form (4.6) with F̄ ∈ H ′ and Ḡu ∈ Q′

defined by

F̄ ((τ , ξ)) := 0 ∀ (τ , ξ) ∈ H and Ḡu((v,η)) := B((σ,χ)− (σh,χh), (v,η)) ∀ (v,η) ∈ Q

and let ((σ̄, χ̄), (ū, ρ̄)) ∈ H ×Q be the unique solution of this particular problem. We note
that

Ḡu((v,η)) =

∫
Ω
(αfu − divσh) · v −

∫
Ω
χh · v −

∫
Ω
σh : η,

this conforming to the definition of B and the second equation of (3.13). Adding and sub-
tracting a suitable term we can rewrite the above equation as

Ḡu((v,η)) =

∫
Ω

(
αfuh

− divσh

)
· v −

∫
Ω
χh · v −

∫
Ω
σh : η + α

∫
Ω
(fu − fuh

) · v.D
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Applying the Cauchy–Schwarz inequality and noting that σh : η = 1
2(σh − σt

h) : η, together
with the condition (2.5), we can establish

∥Ḡu∥Q′ ≤ C
{ ∥∥αfuh

− divσh

∥∥
0,Ω

+ ∥σh − σt
h∥0,Ω + ∥χh∥0,Ω + αLF ∥u− uh∥0,Ω

}
;

by the previous estimate and the continuous dependence results (4.7), we have

∥(σ̄, χ̄)∥H ≤ C
{ ∥∥αfuh

− divσh

∥∥
0,Ω

+ ∥σh − σt
h∥0,Ω + ∥χh∥0,Ω + αLF ∥u− uh∥0,Ω

}
.

(4.9)

Now, applying the triangle inequality we obtain

∥(σ,χ)− (σh,χh)∥H ≤ ∥(σ,χ)− (σh,χh)− (σ̄, χ̄)∥H + ∥(σ̄, χ̄)∥H ,(4.10)

and hence it remains to estimate ∥(σ,χ)− (σh,χh)− (σ̄, χ̄)∥H . First observe that (σ,χ)−
(σh,χh) − (σ̄, χ̄) ∈ V ; hence applying the ellipticity of A in V (cf. Lemma 3.3) and analo-
gously to [19, Lemma 4.6], and using (4.9) and (4.10), it follows that

∥(σ,χ)− (σh,χh)∥H ≤ C
{
∥Sh|V ∥V ′ +

∥∥αfuh
− divσh

∥∥
0,Ω

+ ∥σh − σt
h∥0,Ω + ∥χh∥0,Ω

(4.11)

+ αLF ∥u− uh∥0,Ω
}
.

To estimate ∥Sh|V ∥V ′ (cf. (4.8)) in (4.11), we use the following result, derived in [19, Lemma
4.7].

Lemma 4.8. There exists C > 0 such that

∥Sh|V ∥V ′ ≤ C

h2K∥curl(C−1σh + ρh)∥20,K +
∑

e∈E(K)∩Eh(Ω)

he∥[(C−1σh + ρh)s]∥20,e

+
∑

e∈E(K)∩Eh(Γ)

he∥(C−1σh + ρh)s∥20,e

 .

(4.12)

From the above, the following lemma is configured.

Lemma 4.9. Assume that αCmLF < 1/2. Then, there exists C > 0 such that

∥(σ,χ)− (σh,χh)∥H ≤ C

∑
K∈Th

Ψ̃2
K


1/2

,

where

Ψ̃2
K := h2K∥curl(C−1σh + ρh)∥20,K +

∑
e∈E(K)∩Eh(Ω)

he∥[(C−1σh + ρh)s]∥20,e

+
∑

e∈E(K)∩Eh(Γ)

he∥(C−1σh + ρh)s∥20,e

+ ∥αfu − divσh∥0,Ω + ∥σh − σt
h∥0,Ω + ∥χh∥0,Ω + αLF ∥u− uh∥0,Ω.D
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Proof. It follows straightforwardly from (4.11) and (4.12).

Now we proceed to obtain the corresponding upper bound for ∥(u,ρ)− (uh,ρh)∥Q.

Lemma 4.10. Assume that αCmLF < 1/2. Then, there exists C > 0 such that

∥(u,ρ)− (uh,ρh)∥Q ≤ C

∑
K∈Th

Ψ2
K


1/2

,

where Ψ2
K is the local indicator defined in (4.4).

Proof. The proof follows directly from [19, Lemma 4.9] with small modifications.

The reliability of Ψ is a straightforward consequence of Lemmas 4.9 and 4.10, assuming
αCmLF < 1/2.

On the other hand, the efficiency analysis focuses on deriving upper bounds depending on
the actual errors for the seven terms defining the local indicator Ψ2

K (cf. (4.4)). For this, and
analogously to [19, section 4.3], we begin with the first three bounds; more precisely, since
div(σ) = αfu in Ω, we have that

∥αfu − divσh∥20,K ≤ ∥σ − σh∥2div,K .

Next, adding and subtracting σ, and using that σ = σt in Ω, leads to

∥σh − σt
h∥20,K ≤ 4∥σ − σh∥20,K .

Finally, since χ = 0, we obtain

∥χh∥20,K = ∥χ− χh∥20,K .

The upper bounds for the terms involving only the tensor C−1σh + ρh are established in
the following result.

Lemma 4.11. There exist C1, C2, C3, C4 > 0, independent of h, such that for each K ∈ Th
there holds

h2K∥curl(C−1σh + ρh)∥20,K ≤ C1

{
∥σ − σh∥20,K + ∥ρ− ρh∥20,K

}
∥C−1σh + ρh∥20,K ≤ C2

{
∥u− uh∥20,K + h2K∥σ − σh∥20,K + h2K∥ρ− ρh∥20,K

}
he∥[(C−1σh + ρh)s]∥20,e ≤ C3

∑
K⊆ωe

{
∥σ − σh∥20,K + ∥ρ− ρh∥20,K

}
∑

e∈Eh(Γ)

he∥(C−1σh + ρh)s∥20,e ≤ C4

∑
e∈Eh(Γ)

{
∥σ − σh∥20,K + ∥ρ− ρh∥20,K

}
,

where ωe := ∪{K ′ ∈ Th : e ∈ E(K ′)}.
Proof. See [19, section 4.3].

5. Applications and performance assessment.

5.1. Numerical implementation. We now turn to the implementation of some numerical
tests that confirm the predicted reliability and efficiency of the a posteriori error estimators
(4.2) and (4.4). The DIR problem is in all cases restricted to images mapped to the unitD
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square Ω = (0, 1)2, and uniform triangular partitions are employed for all initial meshes. The
discretization of the primal problem is done with continuous piecewise linear and continuous
piecewise quadratic approximations for displacement. For the case of the mixed formulation
we consider the lowest-order family of Brezzi–Douglas–Marini elements for the rows of the
Cauchy stress tensor, and piecewise constant approximations of the entries of the displacement
vector and the rotation tensor [22]. The Picard method is used to linearize the problem and
we set a fixed tolerance of 1e-5 on the energy norm of the difference between two consecutive
solutions. Unless otherwise specified, all linear solves related to the fixed-point iteration (in
both primal and mixed formulations) are carried out with the stabilized biconjugate gradient
method (BiCGStab) using an incomplete LU decomposition as preconditioner.

Mesh adaptation guided by the a posteriori error estimators is carried out by a classical
conforming partitioning. No coarsening is applied (mainly due to the capabilities of the
current version of the finite element library we use herein [1]). After computing locally the
error indicators, we proceed to tag elements for refinement using the Dörfler strategy [20],
where we mark sufficiently many elements so that one establishes equidistribution of the error
indicator mass, and then the diameter of each triangle in the new adapted mesh (contained
in a generic element K on the initial grid) is set proportional to the diameter of the initial
element times the ratio ζ̄h/ζK , where ζ̄h is the mean value of a generic error estimator ζ over
the initial mesh (see, for instance, [41]). For this, in each of the accuracy tests below, we
consider an arbitrary constant γratio such that the elements to be refined are the ones such
that the local error ζi is bigger than γratiomaxi ζi so as to generate either a roughly similar
number of degrees of freedom or similar individual error magnitudes as in the case of uniform
refinement. The density of the refinement process is tuned at will.

Let us also recall from [5] that the implementation of the fixed-point scheme includes an
additional stabilization term associated with dynamic gradient flows, that essentially trans-
lates to having a pseudo timestep in the Euler–Lagrange equations (2.3), that then read,
knowing uk, for k = 1, . . ., solve

uk+1

δt
− div(Ce(uk+1)) =

uk

δt
− αfuk .

Further details can be found in [5, Appendix C]. Therefore the primal and mixed Galerkin
methods, as well as the a posteriori error indicators Θ and Ψ, are modified accordingly and
only affect, the residual terms associated with the momentum equation. The Picard iterations
with pseudo timestepping are located inside the adaptive refinement loop, which consists of
solving, estimating, marking, and refining. All numerical simulations were run on a laptop
computer using a single core in an i7-4750HQ processor (2.0 GHz 6 MB L3 cache).

We stress that hypothesis αCmLF < 1 can be rarely verified in practice and should be
instead used to understand that the lack of uniqueness is mainly driven by the Lipschitz con-
stant LF , which can be computed from the images R and T . As α is a modeling choice, the
actual regularization is handled by a sufficiently small pseudo timestep δt, which renders the
problem convex. A solution to the registration problem in such a time-dependent context
corresponds to the limiting steady state of the problem. The explicit treatment of the nonlin-
earity given by fuk imposes a CFL condition, which requires δt to be possibly smaller than
what is required for convexity. In this regard, it has been shown that it suffices to considerD
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δt ∝ α−1 in both primal and mixed formulations, which indeed leads to convergent numerical
schemes [7].

5.2. Example 1: Registration of smooth synthetic images. We assess the accuracy of
the primal and mixed DIR methods using a smooth synthetic image under a smooth trans-
formation. To this end, we define the reference image R : [0, 1]2 → R by

R(x1, x2) = sin(2πx1) sin(2πx2).(5.1)

We further define a manufactured displacement and the corresponding stress and rotation
tensor fields by

u(x1, x2) =

 0.1 cos(2πx1) sin(2πx2) +
x2
1(1−x1)2x2

2(1−x2)2

2λ

−0.1 sin(2πx1) cos(2πx2) +
x3
1(1−x1)3x3

2(1−x2)3

2λ

 ,(5.2)

σ(x1, x2) = Ce(u), ρ(x1, x2) =
1

2
(∇u−∇ut).

Then, we construct a synthetic target image via composition of the reference image and
the inverse warping, namely T = R ◦ (id + u)−1. An initial target in the fixed-point scheme
is a perturbation of the reference image, that is, T0(x1, x2) = sin(2πx1) sin(2π[x2 + 0.01]).
These manufactured solutions satisfy the zero-traction boundary condition, and they are used
to construct an additional body load (apart from fu) that needs to be incorporated as the
right-hand side in the discrete problems, as well as in the residual term associated with
the momentum conservation equation in the definition of the error indicators. The model
parameters employed in this test are Young modulus E = 1000, Poisson ratio ν = 0.4 (used
to obtain the Lamé constants of the solid, λ = Eν

(1+ν)(1−2ν) and µ = E
2+2ν ), a weight constant

α = 100, and pseudo timestep δt = 0.1α−1. The initial mesh considered elements with edge
length of 0.1768. The primal adaptive scheme considered γratio = 0.01, while the mixed
adaptive scheme used γratio = 0.05.

On sequences of uniformly or adaptive refined meshes, we solve the DIR problem with
primal and mixed methods and compute (nonnormalized) errors between the approximate
and exact solutions in their natural norms, that is, for the primal method eu = ∥u− uh∥1,Ω;
whereas for the mixed method eu = ∥u− uh∥0,Ω and eρ = ∥ρ− ρh∥0,Ω, eσ = ∥σ − σh∥div,Ω.
We also point out that in the case of adaptive mesh refinement, the experimental rates of
convergence r̂ate are computed differently than in the uniform case

rate = log(e/ê)[log(h/ĥ)]−1, r̂ate = −2 log(e/ê)[log(DoF/D̂oF)]−1,

where e and ê denote errors produced on two consecutive meshes. These grids have respective
mesh sizes h and h′ (needed to compute the experimental order of convergence rate), or they
are associated with DoF and D̂oF degrees of freedom, respectively (when computing r̂ate). In
addition, the effectivity index associated with the global estimators for the primal and mixed
discretizations is computed as

eff(Θ) =
λeu
Θ

, eff(Ψ) =

{
e2σ + e2u + e2ρ

}1/2
Ψ

,D
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1254 BARNAFI, GATICA, HURTADO, MIRANDA, AND RUIZ-BAIER

where the additional scaling (with the dilation modulus λ) for the indicator Θ is motivated
by the fact that the efficiency bound arising from the proof of Lemma 4.5 is proportional to λ
due to the definition of the Hooke tensor C. Such an explicit scaling is, however, not required
for the a posteriori estimation in the mixed method.

In Figure 5.1(a), (b) we show the reference image Rh and the resampled image Th =
T (x + uh(x)), and the panels (c)–(h) show examples of meshes adaptively refined guided
by the estimators. We note that the primal method refines largely around the center of the

(a)

(b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 5.1. Example 1: adaptive mesh refinement in the registration of a smooth synthetic images. (a),
(b) Projected fields of the reference R and composed T (x+ uh(x)) images; (c), (d), (e) evolution of the mesh
adaption for the primal scheme using the error indicator Θ; (f), (g), (h) evolution of the mesh adaption for the
mixed scheme using the error indicator Ψ; (i), (j), (k) stress, displacement, and rotation norm fields predicted
by the mixed scheme using mesh adaptivity.D
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domain. We also show in panels (i)–(j) the approximate solutions (the Frobenius norm of
stress, displacement magnitude, and Frobenius norm of the rotation matrix) generated with
the mixed method at the final refinement level.

The numerical convergence of the primal and mixed DIR methods is shown in Figure
5.2(a) and Figure 5.2(b), respectively. We observe that both methods do exhibit monotonic
convergence. For this particular example, no major differences arise between the uniform and
adaptive refinement schemes. Convergence rates for both methods are reported in Table 5.1,
where we verify that optimal convergence rates are achieved with O(hk). No differences are
observed in the number of Picard iterations required by the uniform and adaptive refinement
strategies. The mixed DIR method also displays optimal convergence rates; see Table 5.2. We
further note that the effectivity index values for the mixed scheme are roughly constant and

1e− 04

1e− 03

1e− 02

1e− 01

1e+ 00

1000 10000

e

DoF

uniform k = 1
adaptive k = 1×

×
×

×
×

×
uniform k = 2
adaptive k = 2

×
×

×

×

×

×

(a)

1e− 03

1e− 02

1e− 01

1e+ 00

1e+ 01

1e+ 02

1e+ 03

1e+ 04

100 1000 10000

e

DoF

uniform eσ
uniform eu
uniform eρ
adaptive eσ

×
× × × ×

×

×
adaptive eu

× × ×
×

× ×

×
adaptive eρ

×
×

×
×

× ×

×

(b)

Figure 5.2. Example 1, smooth synthetic image registration example: Error convergence with respect to
the number of degrees of freedom for both (a) primal and (b) mixed DIR formulations. Uniform refinement is
shown in solid lines, while the adaptive refinement is shown in dotted lines.

Table 5.1
Example 1, smooth synthetic image registration example: error measures, convergence rates, and Picard

iteration count for the approximate displacements uh produced with the primal method (of polynomial degrees
k=1 and k=2) and tabulated according to the resolution level. (a) Uniform mesh refinement, (b) adaptive mesh
refinement based on error estimator Θ, with γratio = 0.1, also displaying the rescaled effectivity index.

(a) Primal method, uniform refinement

k DoF h rate iter

1 165 0.1768 1.403 15
581 0.08839 1.073 16

2181 0.04419 1.058 14
8453 0.0221 1.028 12

33285 0.01105 1.013 8

2 581 0.1768 0.789 11
2181 0.08839 2.028 7
8453 0.04419 2.019 9

33285 0.0221 1.947 9
132101 0.01105 1.364 9

(b) Primal method, adaptive refinement

k DoF hmin r̂ate eff(Θ) iter

1 165 0.1768 1.403 0.7875 15
565 0.08839 1.1 0.7306 16

2069 0.04419 1.074 0.7056 14
7525 0.0221 1.06 0.6918 11

21957 0.01105 0.8978 0.6658 8

581 0.1768 0.789 0.3317 11
2117 0.08839 2.066 0.3353 14
7237 0.04419 2.036 0.334 12
7749 0.04419 3.033 0.3385 10

25221 0.0221 1.596 0.3549 10D
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Table 5.2
Example 1, smooth synthetic image registration example: convergence rates, and Picard iteration count for

the approximate Cauchy stress, displacements, and rotation σh,uh,ρh for the mixed formulations. (a) Uniform
mesh refinement, (b) adaptive mesh refinement guided by Ψ, with γratio = 0.05.

(a) Mixed method, uniform refinement

DoF h rateσ rateu rateρ iter

323 0.3536 1.214 1.009 1.355 7
1219 0.1768 0.5156 0.613 1.143 7
4739 0.08839 1.001 1.06 1.107 7

18691 0.04419 1.005 1.028 1.051 10
74243 0.0221 1.004 1.01 1.019 10

(b) Mixed method, adaptive refinement

DoF hmin r̂ateσ r̂ateu r̂ateρ eff(Ψ) iter

323 0.3536 1.214 1.009 1.355 1.004 7
1219 0.1768 0.5156 0.613 1.143 0.9991 7
4739 0.08839 1.001 1.06 1.107 0.9959 7

17187 0.04419 1.034 1.059 0.9751 0.9944 10
64323 0.0221 1.013 1.023 0.8751 0.9922 10

Table 5.3
Example 1, volume-constrained smooth synthetic image registration: error measures, convergence rates, and

Picard iteration count for the approximate displacements uh produced with the primal method. (a) Uniform
mesh refinement, (b) adaptive mesh refinement based on error estimator Θ, with γratio = 0.1, also displaying
the rescaled effectivity index.

(a) Primal method, uniform refine-
ment

DoF h rate iter

165 0.1768 1.37 8
581 0.08839 1.025 10

2181 0.04419 0.9901 10
8453 0.0221 0.8515 10

33285 0.01105 0.5709 10

(b) Primal method, adaptive refinement

DoF hmin r̂ate eff(Θ) iter

165 0.1768 1.37 10330 12
581 0.08839 1.025 9843 11

2101 0.04419 1.02 9854 12
8165 0.0221 0.8495 10960 12

32013 0.01105 0.5718 14630 13

close to 0.43 and that the convergence rate is not substantially improved by the adaptivity in
this example.

We studied the ability of the proposed DIR adaptive schemes to handle constrained prob-
lems by considering a volume-constrained transformation. To this end, we consider the same
images defined in (5.1) and transformation (5.2), where we chose ν = 0.49999 to reflect the
nearly incompressible behavior of the displacement field. The primal DIR method did not
converge when using iterative methods, so we solved the linear system using a direct method.
In contrast, the mixed DIR method did not exhibit any convergence issues using iterative
methods. The convergence of the primal DIR method under uniform and adaptive refinement
is shown in Table 5.3. Under both schemes, the convergence is suboptimal as the number
of DoFs increases. In contrast, the mixed DIR method under both uniform and adaptive
refinement shows optimal convergence rates; see Table 5.4. Figure 5.3 shows the reference and
resampled target images for the mixed DIR method, along with the adaptive meshes for both
formulations. Adaptive refinement in this case results in a rather uniform mesh with some
small regions of larger mesh size, similarly to the trend observed in the nonconstrained case;
see Figure 5.1.

5.3. Example 2: Registration of smooth synthetic images with high gradients. Next,
we modify the closed-form displacement of Example 1 to produce higher gradients in theD
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Table 5.4
Example 1, volume-constrained smooth synthetic image registration example: convergence rates, and Pi-

card iteration count for the approximate Cauchy stress, displacements, and rotation σh,uh,ρh for the mixed
formulations. (a) Uniform mesh refinement, (b) adaptive mesh refinement guided by Ψ, with γratio = 0.05.

(a) Mixed method, uniform refinement

DoF h rateσ rateu rateρ iter

323 0.3536 1.215 1.012 1.249 10
1219 0.1768 0.5167 0.6176 1.16 10
4739 0.08839 1.002 1.056 1.09 10

18691 0.04419 1.006 1.025 1.04 10
74243 0.0221 1.004 1.009 1.015 10

(b) Mixed method, adaptive refinement

DoF hmin r̂ateσ r̂ateu r̂ateρ eff(Ψ) iter

323 0.3536 1.215 1.012 1.249 0.9943 6
1219 0.1768 0.5167 0.6176 1.16 0.9709 7
4739 0.08839 1.002 1.056 1.09 0.959 7

18691 0.04419 1.006 1.025 1.04 0.9313 7
73512 0.0221 1.01 1.016 0.9966 0.8385 7

(a) (b)

(c) (d)

Figure 5.3. Example 1: Volume-constrained DIR. (a) Reference image, (b) mesh adaptivity in the primal
method, (c) resampled target image for the mixed DIR method, and (d) mesh adaptivity in the mixed method.

reference image and initial target image. To this end, we consider the following image and
displacement field expressions:

u(x1, x2)=

 0.1 cos(πx1) sin(πx2) +
x2
1(1−x1)

2x2
2(1−x2)

2

2

−0.1 sin(πx1) cos(πx2) +
x3
1(1−x1)

3x3
2(1−x2)

3

2

, R(x1, x2) =
x1x2(x1 − 1)(x2 − 1)

(x1 + 0.01)4 + (x2 + 0.01)4
,

T0(x1, x2) = e−50[(x1−0.2)2+(x2−0.2)2].

All other remaining model and mesh parameters are kept the same as in Example 1.D
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We show in Figure 5.4(a), (b) synthetic images projected onto the space of piecewise
linear and continuous functions, as well as a few adapted meshes produced with the indicators
(c)–(h), where one sees that the agglomeration of vertices occurs not so much due to the
high gradients of the synthetic images, but mainly because of the features in the solutions to
the elasticity problem. Panels (i), (j), (k) have snapshots of approximate solutions generated
with the mixed method after five steps of adaptive refinement and plotted on the deformed
domain. We note that for the adaptive algorithm with γratio = 0.01, the error indicator makes

1.7e+01 3.3e+01 5.0e+010.0e+00 6.6e+01

R

(a)

2.5e-01 5.0e-01 7.5e-011.6e-28 1.0e+00

(b)

(c) (d) (e)

(f) (g) (h)

1.6e+02 3.2e+02 4.8e+025.5e-01 6.4e+02

(i)

2.5e-02 5.0e-02 7.5e-025.3e-04 1.0e-01

(j)

2.2e-01 4.4e-01 6.6e-013.6e-06 8.9e-01

(k)

Figure 5.4. Example 2: adaptive mesh refinement in the registration of smooth synthetic images with high
gradients. (a), (b) Reference image R and composed target image T (x + uh(x)); (c), (d), (e) evolution of
the mesh adaption for the primal DIR method using the error indicator Θ; (f), (g), (h) evolution of the mesh
adaption for the mixed DIR method using the error indicator Ψ; (i), (j), (k) stress, displacement, and rotation
norm fields predicted by the mixed scheme using mesh adaptivity.D
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the refinement to be applied uniformly for the first three iterations, after which localized
meshing takes place in certain regions of the domain.

Figure 5.5(a) shows the numerical convergence of the primal DIR method under uniform
and adaptive refinement. We observe monotonic convergence for all displacement field error
as the number of DoFs increases. A notable improvement in convergence is observed for the
particular case of the adaptive refinement scheme using second-order element interpolations.
Convergence rates for the primal DIR method using uniform and adaptive refinement are
reported in Table 5.5, where we observe that the case of adaptive refinement using second-
order elements results in convergence rates that reach k = 2, which is notoriously higher than
the convergence rate of k = 1.5 reached by the primal method under uniform refinement. For
the case of the mixed method, adaptive refinement always results in better convergence than

1e− 03

1e− 02

1e− 01

1e+ 00

100 1000 10000

e

DoF

uniform k = 1
uniform k = 2
adaptive k = 1

× ×
×

×
×

×

×
adaptive k = 2

•

•
•

•

•

•

•

(a)

1e− 03

1e− 02

1e− 01

1e+ 00

1e+ 01

1e+ 02

1e+ 03

1e+ 04

100 1000 10000

e

DoF

uniform eσ
uniform eu
uniform eρ
adaptive eσ

× × × × × × × ×

×
adaptive eu

△ △ △ △ △ △ △
△

△
adaptive eρ

•
• •

• • •
• •

•

(b)

Figure 5.5. Example 2: Error convergence for (a) primal DIR method and (b) mixed DIR method under
uniform and adaptive mesh refinement.

Table 5.5
Example 2. Convergence rates, and Picard iteration count for the approximate displacements uh produced

with the first- and second-order primal method, and tabulated according to the resolution level, under uniform
(a) and adaptive mesh refinement guided by Θ with γratio = 0.01 ( (b), also displaying the rescaled effectivity
index).

(a) Primal method, uniform refine-
ment

k DoF h rate iter

1 53 0.3536 0.481 4
165 0.1768 0.526 6
581 0.0884 0.859 19

2181 0.0442 0.793 24
8453 0.0221 0.620 28

2 165 0.3536 0.844 4
581 0.1768 0.529 6

2181 0.0884 0.900 20
8453 0.0442 1.169 25

33285 0.0221 1.564 29

(b) Primal method, adaptive refinement

k DoF hmin r̂ate eff(Θ) iter

1 53 0.3536 0.617 0.8314 4
165 0.1768 1.277 0.8282 6
581 0.0884 1.037 0.8205 11

2105 0.0442 1.084 0.8187 15
8177 0.0221 1.099 0.8219 18

2 165 0.3536 1.398 1.6422 4
581 0.1768 1.489 1.6926 6

2181 0.0884 1.891 1.6360 12
4959 0.0442 1.786 1.6799 15

13129 0.0221 2.097 1.6492 18D
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Table 5.6
Example 2. Convergence rates, and Picard iteration count for the approximate Cauchy stress, displace-

ments, and rotation σh,uh,ρh produced with the lowest-order mixed method, and tabulated according to the
resolution level, under uniform (a) and adaptive mesh refinement guided by Ψ with γratio = 0.009 ( (b), also
displaying the effectivity index).

(a) Mixed method, uniform refinement

DoF h rateσ rateu rateρ iter

323 0.3536 0.552 0.278 1.174 7
1219 0.1768 0.278 0.728 0.674 13
4739 0.0884 0.443 0.846 0.882 28

18691 0.0442 0.741 1.183 0.658 45
74243 0.0221 0.598 1.235 0.606 50

(b) Mixed method, adaptive refinement

DoF hmin hmax r̂ateσ r̂ateu r̂ateρ eff(Ψ) iter

323 0.3536 0.3536 0.965 0.518 1.169 0.5333 5
1219 0.1768 0.1768 0.955 0.725 0.869 0.5272 8
4692 0.0742 0.1250 0.952 0.946 1.002 0.5188 19
6277 0.0264 0.1250 1.066 1.114 1.106 0.5139 21

18884 0.0107 0.0817 1.052 1.039 1.067 0.5205 24
32998 0.0051 0.0730 0.986 0.958 0.975 0.5216 30
94153 0.0020 0.0601 0.961 0.963 0.959 0.5210 30

uniform refinement for the displacement, stress and rotation fields; see Figure 5.5(b). Table 5.6
reports the convergence rates of the mixed method, where we note that the adaptive refinement
always results in rates that are greater than those obtained under uniform refinement. Further,
we observe that in systems with a roughly similar number of DoFs, the number of Picard
iterations needed to reach the tolerance is smaller in the case of adaptive refinement.

5.4. Example 3: Registration of brain medical images. We now turn to the application
of the adaptive primal and mixed DIR methods in the registration of medical images of human
brains [18]. The reference and target images for the brain have dimensions 258× 258 and the
voxel resolution corresponds to 1mm; see top panels in Figure 5.6. We proceed to solve
the DIR problem using both primal and mixed adaptive schemes, starting from structured
meshes with 32768 triangular elements. The elasticity parameters are set to E = 15, ν = 0.3,
the weight constant is α = 50, and the pseudo timestep is δt = 0.01/α. The tolerance for
the Picard scheme is increased to 1e-04, and for the mixed method the refinement density
proportion is ruled by the constant γratio = 0.1. The primal method requires an average
(over the number of mesh refinement steps, here assigned to 4) of 19 Picard steps to reach
convergence, which is slightly larger for the mixed method (22 iterations). The first two plots
on the middle row of Figure 5.6 depict the composed images T ◦ (id + uh) generated with
the primal and mixed methods, where we can notice very similar patterns in both cases.
The two other figures on the right show the similarity between reference and warped images,
|R(x)− T (x+ uh(x))| resulting from both methods.

We also plot an example of a mesh obtained after four steps of adaptive refinement with the
primal and mixed methods (see Figure 5.7). For illustration purposes we initiate the process
from a coarse mesh of 8196 triangles (corresponding to a low resolution image of 64×64 pixels;
starting with images of higher resolution implies that the meshes obtained after adaptive
refinement are too dense to be easily visualized). The figures exemplify the concentration of
refinement near the skull, which is consistently the zone with highest gradients in the reference
and target images, as well as in stress and rotations (as inferred from panels (g), (h), (i) in
Figure 5.6, where the Frobenius norm of the rotation tensor is plotted in log-scale for clarity).D
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R(x) T (x)

(a) (b)

(c) (d)

4.9e-021.6e-02 3.2e-020.0e+00

(e)

3.9e-021.3e-02 2.6e-020.0e+00

(f)

1.1e+013.7e+00 7.4e+001.3e-03

(g)

5.6e-03 1.1e-02 1.7e-026.4e-05 2.3e-02

(h)

4.6e-011.0e-04 1.0e-03 1.0e-026.9e-06

(i)

Figure 5.6. Example 3. Registration of brain medical images. (a) Reference image; (b) target image;
(c), (d) resampled (composed) images from solutions using primal and mixed schemes, respectively; (e), (f)
similarity plots resulting from primal and mixed schemes, respectively; (g), (h), (i) stress, displacement, and
rotation norm fields resulting from the mixed DIR scheme using adaptive mesh refinement.

On the other hand, the displacements are, in comparison, rather smooth and they seem not
to contribute substantially to the local error indicators.

In Table 5.7 we report information about the CPU time required in each step of the
overall solution algorithm. We record the wall-time during the execution of the mixed and
primal DIR methods, when starting from a coarse grid (representing 8715 DoFs for the primalD
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(a) (b)(a)

(a) (b)(b)

Figure 5.7. Example 3. Adaptive mesh refinement in the registration of brain medical images. (a) Mesh
after four steps of adaptive refinement using the error indicator Θ for the primal DIR method; (b) mesh after
four steps of adaptive refinement using the error indicator Ψ for the mixed DIR method.

Table 5.7
Example 3. CPU time (in [s]) of each step of the adaptive finite element method for the DIR problem,

measured for the primal and mixed methods, starting from coarse meshes. The time associated with the solution
of the linear systems is averaged over the number of inner Picard iterations.

Refin.
level

Matrix
assembly

Solution
computation

IO and
residual

Evaluation
of estimator

Marking and
refinement

Primal method 1 0.101 0.075 (avg) 0.102 0.096 0.544
(total CPU time: 73.16) 2 0.099 0.163 (avg) 0.110 0.130 0.757

3 0.162 0.312 (avg) 0.192 0.235 1.284
4 0.489 1.127 (avg) 0.481 0.704 3.351
5 0.853 2.093 (avg) 0.758 0.812 5.246

Mixed method 1 0.418 1.445 (avg) 0.101 0.099 0.530
(total CPU time: 997.83) 2 0.443 2.373 (avg) 0.109 0.141 0.668

3 0.578 4.746 (avg) 0.135 0.154 0.719
4 0.704 8.390 (avg) 0.204 0.237 1.298
5 0.921 22.45 (avg) 0.439 0.304 2.616

method and 76573 DoFs for the mixed scheme) and in both cases applying five iterations of
adaptive mesh refinement. An average of 17 fixed-point iterations are needed for the primal
approximations and 25 for the mixed scheme.D
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To assess the performance of the adaptive refinement DIR schemes on images under the
presence of noise, we considered the case of brain images with Gaussian noise (zero mean,
standard deviation of 0.1); see Figures 5.8(a) and 5.8(b) for the resulting reference and target
images. The numerical solution of this problem included the use of Anderson acceleration at
each time step for improved convergence [45]. Figures 5.8(c) and 5.8(d) show the resampled
target images for the primal and mixed schemes, which are both similar to the reference
image, confirming the ability of the proposed adaptive methods to handle Gaussian noise at
moderate levels. The resulting meshes for the primal and mixed schemes are shown in Figures
5.9(a) and 5.9(b), respectively. Similar to the case of noise-free brain images, mesh refinement
predominantly concentrates in the region where the skull is located. We note, however, that
noise also increases the level of refinement in other regions of the brain image that do not have
anatomical changes (e.g., area outside the skull). The mixed scheme displays an attenuation
of this spurious refinement under noise.

5.5. Example 4: Registration of binary images. The last example of application adressed
in this study consists of a classic benchmark in DIR which introduces two important challenges.
First, reference and target images are binary-composed, i.e., they have intensity values of either

(a) (b)

(c) (d)

Figure 5.8. Example 3: Adaptive DIR of brain images with Gaussian noise; the variance is σ = 0.1. (a)
Reference image, (b) target image, (c) resampled target image, primal scheme, and (d) resampled target image,
mixed scheme.
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1264 BARNAFI, GATICA, HURTADO, MIRANDA, AND RUIZ-BAIER

(a) (b)

Figure 5.9. Example 3: Adaptive mesh refinement in brain images under noise. (a) Primal scheme, and
(b) mixed scheme.

0 or 1, which creates steep numerical gradients at the binary interface of order 1/h. Thus, the
images do not satisfy condition (2.5). Second, the transformation between images involves
large displacements and deformations, which questions the validity of the elastic strain energy
from a physical viewpoint. We define the ball B(x, r) = {x ∈ R2 : |x| ≤ r} to set the images
as

R(x) =

{
1 x ∈ B((0.5, 0.5), 0.32) ∩ [B((0.5, 0.5), 0.16)]c ∩ [{x1 > 0.5} ∩ {0.4 < x2 < 0.6}]c,
0 otherwise,

T (x) =

{
1 x ∈ B((0.5, 0.5)0.25),

0 otherwise.

Both methods consider quadrature rules of sixth order, with an initial mesh given by a
unit square with 20 elements per side, which yields a total of 800 triangular elements. In this
example, γratio = 0.075. We consider the parameters α = 1000, E = 15, and ν = 0.3 and set
the pseudo timestep to δt = h2min/α for the primal case and δt = 0.01h2min/α, where hmin is the
minimum characteristic length of the mesh. This was motivated by a possible CFL condition
on the timestep arising from the explicit treatment of the nonlinearity and proved effective
during numerical tests. The convergence was set through the ℓ∞ norm of the increment
|uk−uk−1|ℓ∞ with a tolerance of hmin, so that iterations stop when the displacement changes
by less than the smallest element. A maximum number of 100 iterations was always achieved,
following previous works adressing this problem [34]. Both the primal and mixed DIR problems
for this example were solved in serial with the iterative scheme BiCGStab preconditioned
with an incomplete LU factorization, using the default parameters available in FEniCS. The
solution of the mixed DIR problem required a considerable numerical effort to converge to a
solution that met the error criterion. To overcome this difficulty, we used at each refinement
level the solution of the primal formulation as an initial solution for the mixed case, and then
employed five iterations of the mixed formulation only. This was already implemented in [5]
to substantially improve the registration of lung images in a mixed formulation.D
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We report the solution with its components in Figure 5.10. In the first row we show the
reference (a) and target (b) images, constructed as in [34], with the solution reported in the
second row together with its absolute error |R(x) − T (x + uh(x))| in primal (c), (e) and
mixed (d), (f) form. We note that the mixed DIR performs slightly worse than the primal
DIR method, which is to be expected due to the lower order of approximation used. The last

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 5.10. Example 4. Registration of binary images (O-C). (a) Reference image, (b) target image,
(c), (d) resampled (composed) images from solutions using primal and mixed schemes, respectively; (e), (f)
similarity images resulting from the primal and mixed methods, respectively; (g), (h), (i) stress, displacement,
and rotation norm fields using the adaptive mixed DIR method; (j) displacement norm field using the adaptive
primal DIR method.D
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(a) (b)

Figure 5.11. Example 4. Registration of binary images. Mesh after three steps of adaptive refinement for
(a) primal DIR problem and (b) mixed DIR problem.

Table 5.8
Example 4. CPU time (in [s]) of each step of the adaptive finite element method for the DIR problem,

measured for the primal and mixed methods, starting from coarse meshes. The time associated with the solution
of the linear systems is averaged over the number of inner Picard iterations.

Refin.
level

Matrix
assembly

Solution
computation

IO and
residual

Evaluation
of estimator

Marking and
refinement

Primal method 1 0.018 0.036 (avg) 0.024 0.017 0.010
(total CPU time: 261.83) 2 0.031 0.076 (avg) 0.029 0.023 0.023

3 0.293 0.181 (avg) 0.049 0.054 0.081
4 0.293 0.627 (avg) 0.130 0.140 0.202
5 0.751 2.381 (avg) 0.338 0.466 0.799

Mixed method 1 0.04 0.051 (avg) 0.058 0.016 0.006
(total CPU time: 326.61) 2 0.248 0.112 (avg) 0.037 0.047 0.064

3 0.777 0.361 (avg) 0.037 0.047 0.064
4 2.781 1.256 (avg) 0.142 0.147 0.243
5 10.725 5.104 (avg) 0.464 0.545 1.031

row shows the magnitude of all components of the solution, in both primal (j) and mixed (g),
(h), (i) formulations. Also, in Figure 5.11 we present the refined mesh after three steps, where
it can be observed how the mixed scheme yields a more localized refinement even though the
amount of refined elements is the same in both schemes. Finally, we provide information on
the CPU time required in each step of the overall solution algorithm in Table 5.8.

6. Discussion. In this work, we present a novel adaptive mesh-refinement scheme for
the numerical solution of primal and mixed DIR problems. Our method hinges upon the
development of a posteriori error estimators for both the primal and mixed finite-element
formulations that are reliable and efficient, and at the same time, they are easily computed.
These estimators allow for an optimal refinement of the mesh in zones where the accuracy of
the numerical approximation does not perform well. Thus, one distinctive feature of our work
is the effectiveness of the mesh-adaption strategy, as they are justified on selectively reducingD
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the local approximation error made by the finite-element schemes employed. This contrasts
with current methods of mesh adaption employed in DIR problems, which either refine the
discretization uniformly or rely on heuristic grounds to select regions that are refined.

To assess the numerical performance of the proposed method, we employ uniform and
adaptive mesh refinement to solve a DIR problem based on smooth synthetic images where
the displacement solution is known in advance. In Example 1, we show that both the uniform
and adaptive refinement schemes display optimal convergence, and no marked differences
in convergence rate arise between them. In contrast, adaptive refinement results in higher
convergence rates that those delivered by uniform refinement in Example 2; see Figure 5.2.
This improvement in convergence is explained by the ability of the adaptive method to refine
regions where gradients in the image and in the displacement fields are considerably higher
than the average gradients in the image, while keeping coarser elements in regions where the
gradients are low. Such improvement is not observed in Example 1 because the magnitude of
gradients was not as high nor as localized as in Example 1. It is important to remark that the
numerical convergence obtained in these cases strongly relies on the smoothness of the chosen
images and fabricated solution. The use of smooth and bounded images and the existence of
a regular solution ensures that the Lipschitz and upper bound constants LF and MF are well
defined and take on reasonable values. Further, the existence of a regular solution is crucial to
prove the approximation properties of the finite-element scheme. The convergence properties
shown in this example may not directly extend to real-life applications, where images may
display high gradients, and the solution may not be regular.

We studied the ability of the proposed refinement schemes to handle constrained DIR
problems. In particular, Example 1 deals with a volume-preserving problem, which is achieved
by considering an elastic energy that strongly penalizes volumetric deformations. Our results
show that the primal DIR method displays suboptimal convergence (see Table 5.3). This
poor behavior is expected and is similar to that found in traditional elasticity problems where
material incompressibility (ν → 0.5) results in volumetric-locking phenomena [12]. Notably,
the mixed DIR scheme adequately handles this volumetric constraint, delivering considerably
better results with optimal convergence rates; see Table 5.4. These findings confirm that the
mixed DIR formulation and the proposed adaptive scheme are suitable to handle volume-
constrained DIR problems.

To demonstrate the applicability of the adaptive refinement method in medical images,
we perform DIR on human brain images; see Figure 5.6. In this case, both the primal and
mixed methods using adaptive refinement deliver acceptable results, as shown in the images
of the similarity measure; see Figure 5.6(e), (f). Further, the mixed DIR method delivers
the stress field, which shows that most of the deformation occurs in the vicinity of the skull.
These regions are indeed the ones where most of the mesh refinement takes place, based on
the error estimators Θ and Ψ; see Figure 5.7. Table 5.7 reports the distribution of computing
time among different tasks in the solution of the DIR problem using adaptive refinement.
We conclude that, for this example, the cost of evaluating the local estimator for the primal
method (also including assembly of the global one) is roughly half of the time spent in the
initial assembly of the left-hand side of the matrix systems, representing around 15% of the
time spent in marking and refining. Also, the evaluation of the estimator in the mixed DIR
method appears to be faster than in the primal DIR method, which is possibly due to fewerD
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applications of numerical differentiation in constructing the residual terms. Future extensions
of this work could consider the use of robust preconditioners that can reduce the computing
time in the solution of the linear systems [32]. We also conclude that both DIR adaptive
schemes result in overall increased levels of refinement when compared to the noise-free case;
see Figure 5.9. Still, both schemes are able to concentrate the mesh refinement in the same
regions observed in the noise-free case, delivering acceptable resampled images despite the
presence of noise; see Figure 5.8

As a final example of application, we use the adaptive refinement scheme to register O-C
binary images. We remark that this challenging problem is well addressed by the proposed
adaptive method, as observed in the intensity figures showing the difference between the
reference and the composed target images; see Figure 5.10(e), (f). The high accuracy of the
DIR solution relies on the five levels of mesh refinement performed in the region around the
solid circle in the target image; see Figure 5.11. In terms of CPU time, we observe that
computing efforts are largely focused on solving the systems of equations. The remaining
tasks do not take more than roughly 1% and 3% of the total CPU time in the primal and
mixed methods, respectively. Since the solution time directly depends on the number of DoFs,
we conclude that the proposed adaptive mesh refinement scheme can significantly reduce the
computational effort needed to register images in real-life applications, as it delivers attractive
reductions in the number of DoFs without compromising the accuracy of the registration.

Appendix A. Proofs of robustness in the primal case. In this appendix we include the
proofs of reliability and efficiency stated in section 4.2.

Proof of Lemma 4.4.

Proof. Let us first define

Rh(w −wh) := αFu(w −wh)− a(uh,w −wh) ∀wh ∈ Hh.

As a consequence of the ellipticity of a (cf. (3.2)) with ellipticity constant ᾱ (cf. [12, Corollary
11.2.22]), we obtain the following condition:

ᾱ∥v∥1,Ω ≤ sup
w∈H
w ̸=0

a(v,w)

∥w∥H
∀v ∈ H.

In particular, for v = u − uh ∈ H, we notice from (3.1) and (3.16) that a(u − uh,wh) = 0
∀wh ∈ Hh, and hence we obtain a(u − uh,w) = a(u − uh,w − wh) = Rh(w − wh), which
yields

ᾱ∥u− uh∥H ≤ sup
w∈H
w ̸=0

Rh(w −wh)

∥w∥H
∀wh ∈ Hh.(A.1)

From the definition of Rh(w − wh), integrating by parts on each K ∈ Th, and adding and
subtracting a suitable term, we can writeD
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Rh(w −wh) = αFuh
(w −wh) + αFu(w −wh)− a(uh,w −wh)− αFuh

(w −wh)

(A.2)

= α {Fu(w −wh)− Fuh
(w −wh)} − α

∫
Ω
fuh

· (w −wh)−
∑
K∈Th

∫
K
Ce(uh) : e(w −wh),

= α{(Fu − Fuh
)(w −wh)} − α

∫
Ω
fuh

· (w −wh)

−
∑
K∈Th

{
−
∫
K
div(Ce(uh)) · (w −wh) +

∫
∂K

(Ce(uh)ne) · (w −wh)

}
,

= α{(Fu − Fuh
)(w −wh)}+

∑
K∈Th

∫
K
(div(Ce(uh))− αfuh

) · (w −wh)

−
∑

e∈Eh(Ω)

∫
e
[(Ce(uh)ne)] · (w −wh)−

∑
e∈Eh(Γ)

∫
e
(Ce(uh)ne) · (w −wh).

Then, choosing wh as the Clément interpolant of w, that is, wh := Ih(w), the approximation
properties of Ih (cf. Lemma 4.1) yield

∥w −wh∥0,K ≤ c1hK ∥w∥1,∆(K) , ∥w −wh∥0,e ≤ c2he ∥w∥1,∆(e) .(A.3)

In this way, applying the Cauchy–Schwarz inequality to each term (A.2), and making use of
(A.3) together with the Lipschitz continuity of Fu (cf. (3.3)), we obtain

Rh(w −wh) ≤ αc1LFhK∥u− uh∥H∥w∥1,∆(K)

+ Ĉ

∑
K∈Th

Θ2
K


1/2∑

K∈Th

∥w∥21,∆(K) +
∑

e∈Eh(Ω)

∥w∥21,∆(e)


1/2

,

where Ĉ is a constant depending on c1 and c2 and Θ2
K defined by (4.2). Additionally using

the fact that the number of triangles in ∆(K) and ∆(e) is bounded, we have∑
K∈Th

∥w∥21,∆(K) ≤ C1∥w∥21,Ω and
∑

e∈Eh(Ω)

∥w∥21,∆(e) ≤ C2∥w∥21,Ω,

where C1, C2 are positive constant, and using that αCpLF ≤ 1/2, it follows that h0 :=
1/(2c1αLF ); finally substituting in (A.1), we conclude that

∥u− uh∥H ≤ CrelΘ,

where Crel is independent of h.

Proof of Lemma 4.5.

Proof. Using the first inequality in (4.1), and letting RK(uh) := αfuh
− div(Ce(uh)), we

haveD
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∥RK(uh)∥20,K ≤ γ−1
1

∥∥∥ψ1/2
K RK(uh)

∥∥∥2
0,K

= γ−1
1

∫
K

αψKRK(uh)
{
fuh

− fu} − γ−1
1

∫
K

ψKRK(uh){div(Ce(uh)− Ce(u))}

= γ−1
1

∫
K

αψKRK(uh)
{
fuh

− fu}+ γ−1
1

∫
K

(Ce(uh)− Ce(u)) · ∇(ψKRK(uh))

≤ αγ−1
1 ∥RK(uh)∥0,K∥fuh

− fu∥0,K + γ−1
1 γ2h

−1
K ∥Ce(uh)− Ce(u)∥0,K∥RK(uh)∥0,K ,

where for the last inequality we used the inverse inequality (second relation in (4.1)). Next,
we have

hK∥RK(uh)∥0,K ≤ αhKγ
−1
1 ∥fuh

− fu∥0,K + γ−1
1 γ2∥Ce(uh)− Ce(u)∥0,K ;

now, using (2.5) and grouping terms, we conclude with η1 > 0 independent of h that

hK
∥∥αfuh

− div(Ce(uh))
∥∥
0,K

≤ η1∥u− uh∥0,K .

We omit further details and repeating arguments used for the remaining inequalities.
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