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Fully mixed virtual element schemes for steady-state
poroelastic stress-assisted diffusion
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Abstract

We propose a fully mixed virtual element method for the numerical approximation of the coupling between stress-altered
diffusion and linear elasticity equations with strong symmetry of total poroelastic stress (using the Hellinger—Reissner
principle). A novelty of this work is that we introduce a less restrictive assumption on the stress-assisted diffusion
coefficient, requiring an analysis of the perturbed diffusion equation using Banach spaces. The solvability of the
continuous and discrete problems is established using a suitable modification of the abstract theory for perturbed saddle-
point problems in Banach spaces (which is in itself a new result of independent interest). In addition, we establish
optimal a priori error estimates. The method and its analysis are robust with respect to the poromechanical parameters.
We also include a number of numerical examples that illustrate the properties of the proposed scheme.

MSC (2010): 65N30; 65N15; 74D05.

Keywords: Coupled elasticity-diffusion; Mixed virtual element methods; Stress-based formulations; Error estimates.

1 Introduction

Scope. Mechanical deformations and the diffusion of solutes occur concurrently in various real-world problems, such as
those found in metallurgy, geomechanics, and biomedicine. In certain specific applications, the interaction mechanisms
involve stress altering the microstructure of the material. This phenomenon is referred to as stress-assisted diffusion, and
a number of contributions are available for the analysis and discretisations of that problem in a variety of forms [27-29].
When the underlying medium is poroelastic the coupling implies that the effective poroelastic stress contains contributions
from the fluid pressure and also from the diffusive quantity. The equations of poroelastic stress-assisted diffusion have been
analysed numerically with mixed finite element formulations in [33] (see also a similar treatment for poroelasticity-heat
equations in the recent work [16], as well as twofold saddle-point formulations for poroelasticity equations with nonlinear
permeability [36,39]).

The present work proposes a momentum and mass conservative, robust, and Biot-locking-free virtual element formu-
lation for poroelastic stress-assisted diffusion systems. It constitutes an extension of the stress-assisted diffusion VEM
scheme from [37] to the fully mixed poroelastic setting. The underlying model problem is based on [16,33], but the
formulation is simpler as it is based on the Hellinger—Reissner variational principle and imposing strong symmetry of the
total Cauchy stress. For this we follow the similar works [1,3,22]. In this context we also mention other recent polytopal
discretisations for poroelasticity in mixed form, as proposed in [10, 12,20,23,34,37,38,40,41,44].

As the continuous formulation is also novel, we conduct its well-posedness analysis treating the linear diffusion-stress
coupling terms as a perturbation of two perturbed saddle-point problems. For the stress-assisted diffusion nonlinearity
we use a fixed-point argument based on Banach’s contraction mapping theorem, and combine this with two applications
of the Babuska—Brezzi theory for perturbed saddle-points in [8, Chapter 4] and the Banach—Necas—Babuska theory for
global inf-sup conditions. The analysis requires uniform Lipschitz continuity on the nonlinearity as well as a small data
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assumption — a byproduct of using Banach fixed-point theory. However, and in contrast to previous analysis for stress-
assisted diffusion and nonlinear Biot systems in [27,36,37,39], here we only require the Lipschitz continuity of the inverse
stress-assistance in IL2(€2), which is a much more reasonable assumption. The price to pay is that now our diffusive flux
trial and test functions are sought in L*(€2), requiring a slightly more involved inf-sup condition, and to invoke a modified
abstract result for saddle-point problems in Banach spaces. However, the specific structure of this perturbed saddle-point
problem does not fall in the framework of [19, Theorems 3.1 and 3.4]. These results require the main diagonal block (in
our case, the flux-flux bilinear form) to be coercive on the kernel of the off-diagonal operator, and this condition is not met
in our case. On the other hand, the recent result in [17, Theorem 3.2] assumes that the main form is elliptic on the entire
space, which is also not the case for our flux-flux bilinear form. Nevertheless, we observe that the present formulation
possesses a dual structure: the perturbation block (the lower diagonal block) is induced by a bilinear form that is elliptic
on the whole space. Therefore we introduce a new abstract stability result—symmetric to [17, Theorem 3.2]—which is
tailored for the structure of the present problem.

The proposed formulation for Biot—stress-assisted diffusion is robust and conservative, and at the same time has fewer
unknowns than those used in [33]. Another important advantage of the analysis presented herein is that we are able to
establish in a straightforward manner the uniqueness of the discrete solution. This is a difficult task as observed in previous
works [27-29,33]. There, the solvability analysis of the continuous fixed-point scheme relies on regularity assumptions
on the exact solutions. In particular, in that Hilbert context it was possible to control (under small data assumptions) the
diffusive flux in the L°°—norm. The same holds in Banach spaces (using a primal formulation for the diffusion equation),

but in the L2+ —norm, where 7 is such that 2d/(d + 1) — e < r < 2 with € > 0. In both situations, such bounds enabled
the direct application of Banach’s Fixed Point Theorem. In contrast, at the discrete level, the additional regularity was not
ensured; and as a result, we could not establish the Lipschitz continuity—and thus the contractivity—of the fixed-point
operator in a direct way.

In the present work, by formulating the problem in Banach spaces and introducing a suitable fixed-point operator, we
obtain bounds in the associated norms that provide the necessary control on the data. Importantly, these bounds do not
rely on additional regularity assumptions and apply both at the discrete and continuous levels, thus allowing the use of
more natural smallness conditions and the application of Banach'’s fixed-point theory.

Outline. The remainder of the paper has been organised in the following manner. In the rest of this section we recall
usual notational convention for the domain and the used functional spaces. We also state the governing equations of
Biot—stress-assisted diffusion, giving also assumptions on the nonlinear diffusion coefficient and the rest of the model
parameters. Section 2 contains the derivation of the weak formulation in double saddle-point structure, it specifies the
splitting of kernels of suitable operators, and it examines the properties of all bilinear forms (including stability and
boundedness). This section also addresses the unique solvability of the separate Biot and mixed diffusion problems, and
proving an auxiliary abstract result for perturbed saddle-point problems in Banach spaces. In Section 3 we construct
the virtual element discretisation of the coupled model problem, introducing the needed discrete spaces, polynomial
interpolation and projection operators, appropriate stabilisation, and discrete operators. In Section 4 we show that the
scheme is well-posed using a similar fixed-point argument as in the continuous case. A priori error estimates are presented
in Section 5, and simple numerical tests are provided in Section 6, including the verification of optimal convergence,
simulation of classical benchmark tests for poromechanics, and a specific application for stress-assisted diffusion.

Recurrent notation. Let us consider a simply connected bounded and Lipschitz domain Q@ ¢ R?, d € {2,3} occu-
pied by a poroelastic body. The domain boundary 0f2 is partitioned into disjoint sub-boundaries where homogeneous
displacement and traction-type boundary conditions are imposed 92 := I'p U I'y, and it is assumed for sake of sim-
plicity that both sub-boundaries are non-empty |I'p| - [['x| > 0. Throughout the text, given a normed space S, by
S and S we will denote the vector and tensor extensions S? and S%*¢, respectively. We define the Hilbert spaces
H(div, Q) = {w € L*(Q) : divw € L*(Q)} and Hy(div, Q) := {w € H(div,Q) : w-n = 0 on 'y} with its norm
HwH?hmQ = HwH(Q)Q + ||divw||(2)79. We also define the Banach spaces H*(div, ) = {w € L4(Q) : divw € L3(Q)}
and H{(div, Q) := {w € H%(div,Q) : w-n = 0on Iy}, both endowed with the norm ||&||4aiv:0 = ||€[l0.a:0 +
| div &||o.2. Next, we recall the definition of the tensorial Hilbert spaces H(div, Q) = {7 € L?*(Q) : div T € L*(Q)},
H(curl, Q) = {7 € L*(2) : curlT € L?(Q) }, with their usual norms ||7'Hfliv’Q = ”THSQ + ||div T||(2]’Q, HT||(2:url,Q =

HT||3 o+ |lcurl 7-||(2) - Where the divergence acts on the rows of 7, and the curl of a tensor is here understood as the tensor
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formed by the curl of the rows of 7. We also define the following tensor space
HY™(div, Q) := {T € H(div,Q): 7=7%, 7n =0o0nTy},

which is Hilbert with the H(div) norm. Also, given a domain O (in R? or R9~!) we denote the inner product in L2(0)
(similarly for L?(O) and IL?(0)) by (e, ). When O = ) we simply write (e, ).

Finally, throughout the paper, when comparing two quantities a and b, we use the notation a < b to indicate that there
exists a constant M, independent of the mesh size h, such that a < Mb.

Strong mixed form. Let us recall that the steady-state Biot system states momentum and mass balances

—dive=f inQ,
sop + adivu — div (kVp) =g inQ,

respectively, where o = 2pe(u) + (Adiv(u) — ap — Bp)lis the poroelastic Cauchy stress tensor including a modulation
due to a diffusing quantity ¢, « is the Biot—Willis parameter, /3 is the modulation intensity, sq is the storativity coefficient,
K is a symmetric and positive-definite tensor of permeability of the porous media (scaled by the fluid viscosity), i.e., there
exist two strictly positive real numbers #; and k5 satisfying for a.e. & € Q and all £ € R? such that |¢| = 1

0<I€1SR($)£-€SI€2.

The coefficients \, i are the Lamé parameters of Hooke’s law, f :  — R% is the vector field of body loads and g : Q@ — R
is a scalar source/sink of fluid, and e(u) = 3(Vu + (Vu)*) is the infinitesimal strain tensor.

In addition to the mixed Biot equations, we also consider the presence of a solvent within the poroelastic domain. We
denote its concentration by ¢ : {2 — R and its movement in the body for given volumetric source £ is governed by

e —div(p(o)Ve) =4 in 2, (1.1)

with mixed boundary condition ¢ = ¢p on I'p and ¢(6)Vy - m = 0 on I'y. The scalar function ¢ : R¥*¢ — Ris a
stress-dependent diffusivity accounting for altered diffusion acting in the poroelastic domain and indicating a change in
microstructure due to poroelastic stress generation. We assume that this term takes the form

o(a) = nooo + exp(—m [tr a]?), (1.2)

where oo > 0 is the base-line effective diffusion (in the absence of stress assistance) and 7, 771 are positive modulation
parameters (the treatment can also be modified to accommodate for anisotropy with a tensor-valued diffusivity). For sake
of the analysis, we require o~ !(e) to be uniformly bounded away from zero and Lipschitz continuous with respect to
o c LQ(Q). More precisely, there exist positive constants o1, g2 and L,, such that

0<o1<o '(0)<pa<oo and |[lo (o) =0 ' (T)lloq < Lollo — 7llog, (1.3)

for all o, 7 € L2(Q2). The material properties are described at each point by the compliance tensor (the inverse of the
fourth-order linear isotropic stiffness tensor C) C~!, which is identified as a symmetric, bounded, and uniformly positive
definite linear operator characterised by its action

1 A
Ce(u) =2pe(u) + A(divau)l, Clo= % (a TSt tr(a)ﬂ),
and o = Ce(u) — {ap + By} to obtain C~ (o + {ap + Bp}l) = e(u).

The problem is rewritten, considering the elasticity equations with strong symmetric stress imposition, which are
coupled with the fluid phase obeying Darcy’s law for filtration in porous media, and a mixed form associated with (1.1).
The unknowns are the effective poroelastic Cauchy stress tensor o, the displacement vector u, the filtration flux vector z,
the fluid pressure p, the diffusive flux ¢, and the concentration ¢ such that

Clo=¢eu) - mﬂ in Q, (1.4a)
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—dive=f in €, (1.4b)

oc=o" in , (1.4¢)

K lz4+Vp=0 in Q, (1.4d)

sop+ atrC o + (ap + Bp)l] + divz =g in Q, (1.4e)
o(o) ¢ +Ve=0 in Q, (1.4f)

p+dive =1¢ inQ, (1.4g)

U =up, P=pPp, ¢ =¢D onI'p, (1.4h)

on=0 z-n=0, ¢(-n=0 onI'y, (1.41)

(stating a rescaling of the stress constitutive relation, the balance of linear momentum, the balance of angular momentum,
Darcy’s law, the balance of the total amount of fluid, the constitutive equation for the diffusive flux, the concentration
balance, and the mixed-loading boundary conditions of homogeneous type, respectively).

2 Weak formulation and continuous well-posedness analysis

The functional structure of the coupled problem (1.4) is developed next. In particular, the ordering of the unknowns for
the fluid part of the problem are reversed from their typical form. This section also contains the analysis of existence and
uniqueness of weak solution by means of Banach’s fixed-point theorem, complemented by an abstract result required to
establish the unique solvability of the diffusion sub-problem.

2.1 Derivation and main properties

We apply algebraic manipulations and multiply the strong form of the balance equations and constitutive relations by
suitable test functions, integrate by parts in the constitutive relations and in the diffusion term, and employ the boundary
conditions to obtain the weak formulation: for f € L2(Q2), g,¢ € L2(Q), up € HééQ(FD), and pp, pp € H(l)(/)z(FD); find

(o,p,u,2,¢, ) € Hy™(div, Q) x L%(Q) x L2(Q) x Hx(div, Q) x HY (div, ) x L?(£) such that

Clo, )+ (QM(E?d)\’tr 7) + (div T, u) + (2u6fd)\,tr'r) = (up,Tn)p, Vre HY"(div,Q2), (2.1a)

(tro, zﬂofdAH [so—i-ﬁ](l%@—&-(q,divz)—i—a% v q) = Vg € L2(Q), (2.1b)
(dive,v) = —(f,v) Yo € L%(Q), (2.1¢)

(k7 1z, w) — (p,divw) = —(pp,w - n>pD Vw € Hy(div, 2), (2.1d)

(0(0)71¢, &) = (¢, divé) = —{pp, & - n)ry, V€ € Hy(div,Q), (2.1e)

—(¥,div¢) = (¢, ¥) = = (£, ) vy € LA(Q), (2.1f)

where the ordering of the unknowns obeys to the subsequent structure of the analysis. Indeed, we group the Biot function
spaces as well as trial and test functions for stress-pressure and displacement-discharge flux as follows

V= HY"(div, Q) x L*(Q), Q:=L*(Q) x Hx(div,Q),
(endowed with the canonical graph norms of the product spaces) and

o:=(o,p), T:=(1,9) €V, and u:=(u,z), 9:=(v,w)€Q,

respectively. Then, (2.1) consists in finding (&, %) € V x Q and ({, ¢) € H¥ (div, ) x L(Q), such that
A(¢,7)+ B(T,4) + D(p,T) = F(T) V7 eV, (2.2a)
B(é,9) — C(u,v) = G(v) VU € Q, (2.2b)
ac (¢, &) + b(&, ) = H(E) V€ € Hy(div, ), (2.20)
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(¢, ) — clp, ) = I(¥) Vip € L3(Q), (2.2d)

where the bilinear forms A: VxV R, B:VxQ R, C:QxQ —R,D:L*Q) xV— R, b: Hy(div,Q) x
L2(Q) = R,c: L%(Q) xL3(Q) — R, and (foragiven & € L%(Q)) the bilinear form ag : Hf (div, Q) x H (div, Q) — R,
are defined as

2
- o\ L 1 ap aq (0%
A, 7):=(C o,7)+ (2,u+d)\’tr7-) + (2,u+d)\’trU) + |:80+ 2,u+d)\](p’Q)’
B(%,8) := (v,divT) + (¢,divw), C(4,9) := (x '2z,w), D@, 7):= (2 B_f_’bd)\,trT + adg),
L

az(C.€) == (0(6)7'¢. &), b(€,Y) = —(¥,divE), c(p,¥) = (0,).

Similarly, the linear functionals F: V — R, G : Q — R, H : H§(div, Q) — R, and I : L?(Q) — R are

F(?) = <’U,D,TTL>FD + (gaQ)a G(T_j) = 7(fav) - <pD,'UJ : n>FD7
H(E) = _<¢D7€'n>FDa I(¢) = —(ﬁ’f(][))
We proceed to examine the properties of the bilinear forms and linear functionals. As an intermediate step we denote

by B and B* the operators induced by the bilinear form B(e, ); and by b and b* of the operators induced by the bilinear
form b(e, ®). Their kernels admit the following characterisations:

Vo :=ker(B) = {F € V: B(,%) =0, Vi € Q}

=: Vo1 x Voo = {7 € HY™(div, Q) : divr = 0in Q} x {0}, (2.3a)
Qo := ker(B*) = {5 € Q: B(F,%) =0, V7 € V}
=: Q01 X QOQ = {0} X {’LU S HN(diV, Q) : divw =01in Q} (23b)

The characterisation of Vo (and similarly for Q1) follows as in [18, Section 3.3]. It is possible to realise that Vg = 0
in the distributional sense, which gives ¢ € H'(£2). Moreover, integrating by parts (g, divw) in (2.3b), we arrive at
(w-n,q)r, = 0 for all w € Hy(div, ). Next, using the surjectivity of the normal trace from Hy/(div, 2) onto

Hy/?(T'p) (cf. [25, Lemma 51.5]), yields ¢ = 0 on T'p, and hence ¢ € HL ().

In turn, the spaces Vi, Vs, Qg and Qg are characterised as follows:

Vi = {o € HY™(div,Q) : (o,7) =0, VT € Vo1}, Vg =L2(Q),
Qi =L%(Q), Qf ={z e Hy(div,Q): (z,w) =0, Yw € Qpa},

and hence Vi = Vi x Vg, and Qf = Qg; x Qg are closed subspaces of V and Q, respectively.

For the diffusion block, the well-posedness analysis will rely on an abstract result (to be proven later in Theorem 2.5)
for which the main bilinear form az (e, @) only needs to be positive semi-definite on the whole space H4N(div, Q) but the
perturbed bilinear term, i.e., c(e, @) is required to be elliptic on the whole space L2(£2). This new theoretical framework
does not require a restriction to the kernel of b, and thus its characterisation is not necessary for the subsequent analysis.

Lemma 2.1 (boundedness of the bilinear forms) The bilinear forms A(e,e), B(e,e), C(e,0), D(e,0), as(e,e) b(e, e),
and c(e, ) are bounded. That is:

A&, 7)| < [Allllg]lv]IF]lv V&, 7 eV,
|B(7,3)| < [|B|l|I7]v]|Z]q VFEV,Vi€Q,
C(@, )| < ||C]ll|d]lqllq Vi, % € Q,
1D(4, 7) < | Dlllllloell v vy € L*(Q),VF €V,
laz (¢, &)1 < lallll¢]la.av:ll€llaaive V¢, € € Hy(div, Q),
b(&, )| < [bI1€]la.aivall¢loo Ve € HY(div, Q), Vo € LA(Q),
le(e, )] < llellllello.allllos Voo, ¢ € L*(€),
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where the boundedness constants are given by

1 A avd da? 1
Al = — Bl :=1 C|l=—
14l max{2u+2u(2u+d)\)’2u+d)\’so+2u+d)\}’ 1Bl:=1, lCl= =
BVd(1 + a) 9
Dl|li=—m 7 = C b|| :=1 =1
1Dl St dn lall := 02Cqnp, 1[0l o lell ;

and Cepy, is the constant from the continuous embedding L*()) < L2(1).

Proof. The boundedness of the bilinear forms is a direct consequence of the Cauchy—Schwarz and Holder inequalities,
and thus further details are omitted. O

Lemma 2.2 (symmetry and positive semi-definiteness of diagonal forms) The bilinear forms A(e,e) and C(e,e) are
symmetric and positive semi-definite, and (for a given & € 1L2(Q)) also az (e, ®) is positive semi-definite.

Proof. 1t is clear that A(e,e) and C(e,e) are symmetric, whereas that C'(e, ®) is positive semi-definite. To prove that
A(e, o) is positive semi-definite, note that given 7 € V, we have

2a da?
AR, 7)) = (1 —(q,t —_— 2.
(77 = €+ 2 ) + s+ 30l

2
Next, applying suitably Young’s inequality in the second term of the above equation with € := 02+ d(;) T 2da? and

recalling that

1

m(tra’,tr’r) VO’,TEH(diV,Q),
readily yields

50
d(so(2u + dX\) + 2da?)

1 S0
A7) > — 792 S0
(7,7) 2 QHHT 6.0+ 5 lla

oo + [trr|§q >0 VFeV, (2.4)

which shows the desired result. Finally, for a given & € L?(12) since a5 (¢, ¢) = (0(6)71¢,¢) > 01|<]13 ¢ > 0, the form
ag (e, e) is positive semi-definite. O

We proceed similarly to [26, Section 2.3] to show that A(e, e) is V-elliptic. To do that, we recall the decomposition
H(div, Q) = Hy(div, Q) @& RI, with Hy(div, Q) := {T € H(div, ) : / trr = 0} .
Q

We also recall two useful estimates, whose proofs can be found in [26, Lemma 2.3] and [26, Lemma 2.4]. Specifically,
there exists C7 > 0, depending only on €2, such that

Cy [ITolloe < |79

0.0+ ||divr

loo VT eH(div,Q), and (2.5)
there exists Cs > 0, depending only on 'y and €2, such that
Oy HTHdiV,Q < HTOHdiV,Q Vr:i=710+mle HN(diV, Q), (2.6)

with 7 € Hy(div,2) and m € R. Then, we have the following result.

Lemma 2.3 (coercivity for the main diagonal forms) There exist constants o 4, o, ac > 0 such that

A(F, ) > aq||FZ VT e Vo =ker(B), (2.7a)
(v, 9) 2 acllll Vo € LX(Q), (2.7b)
C(8,%) > acll¥]lg V¥ € Qo. (2.7¢)
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Proof. For (2.7a), we let 7 = (1, q) € Vo1 X Vgo. This means, according to (2.4), (2.5) and (2.6), that
AR, 7) > aall 7[R,

C1Cy

with oy =
n
(2.3b)), we have

. On the other hand, we observe that (2.7b) is trivially satisfied with . = 1. Finally, given ¥ € Qg (cf.

1
C(v,9) > —||lw 2
K2

1 .
= {lwl§o+ [ divew|§o + lv[§a}
which shows (2.7¢) with ac = %2 O

Lemma 2.4 (continuous inf-sup conditions) There exist positive constants 5g, By such that

sup (7. %) > ABl|Y]q V% € [ker(B*)]*, (2.8a)
zen{o} ITllv
b(&, ¢)

V¢ € Hy(div, Q). (2.8b)

sup
verz@n\oy [[¥llo.

Proof. To prove (2.8a), it suffices to establish the following two independent inf—sup conditions, which follow from the
diagonal structure of B(e,e):

(v,divT)

sup 2 > By|vlloa Vv € Qg (2.9a)
rery™ (div. o)\ {0y 17 lldiv,0
,divaw
p (@A) Belwlaive Vw € Qp. (2.9b)

4EL2(Q )\{0} gllo.

For (2.92), we refer to [26, Lemma 2.2, eq. (14)], whereas (2.9b) holds by virtue of the existence of a constant 52 > 0,
such that (see, e.g., [15, Lemma 3.2])

,divaw ~
sup la.divw) Ballgllon Vg€ Vg =L*9Q),
weH (div,02)\{0} ||w”d1VQ

and the identity given by [8, eq. (4.3.18)], which also implies that 8y = Bg. Thus, the required inequality (2.82) is obtained
with B = 21322

Regarding the inf-sup condition for the bilinear form b(e, ) (cf. (2.8b)) let us first define v := |£]2¢ € L*3(Q), and
consider the problem of finding ¢ € VV1 A/ 3(Q) such that

V{b\:'y in €2, 1;:0 on Of).
Testing against V¢ for any ¢ € W(l)’4(Q) we have

/v&-vg:/y-vg V¢ e Wit(9). (2.10)
Q Q

The bilinear form a : VV1 A/ 3(Q) X Wé’4(Q) — Rdefined as a(1), ¢) := [, Vi) - V( is bounded using Hélder’s inequality
|a(4, O < [IVYlloa/zall VElloae < 1914zl
and it satisfies the inf-sup Banach—Necas—Babugska condition: for a fixed ¢ € VV1 A/ 3(9),

wp | EO

ceWLA(@)\{0} HCH14Q ceWyt()\{0}

CTram 12 1%l /30
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by duality between L*/3(Q) and L*(2) and Poincaré inequality. In turn, the linear functional F : Wé’4(Q) — R defined
as F'(¢) := fQ ~ - V( is bounded thanks to Holder’s inequality

IFOI < I

047302 VCllos0 < lvlloa/zallCli e,

and so we obtain that there exists a unique 12 € W(l)’4/ 3(Q) satisfying (2.10). This is a standard consequence of the theory

of elliptic operators in reflexive Banach spaces [25, Theorem 2.6]. The continuous dependence on data associated with
this problem, in combination with the continuous embedding W'4/3(Q) < L2(Q) (valid for Lipschitz domains in 2D
and 3D), then gives

[Pl < Il

where the hidden constant depends only on the norm of the continuous embedding and the Poincaré constant.

Next, for any & € Hy;(div, 2) we choose ¢ = 12 and exploiting the fact that QZ € Wé’4/ 3(Q), we invoke the integration

by parts formula to derive

14730 S [17ll0.4/3:0: (2.11)

LbE W) b6 _ —JodivED  [oVI-&  fov-€

sup =

verz@\oy 2Pl ™ 2 dllon  2l¥llog 20¢lloe  2lPlon

17110,4/3:2€ll0,4:2
> = [[€llo.4:0; 2.12)
H’Y||0,4/3;Q

where in the second-last equality we have used (2.10) and in the last inequality we have used the definition of v and (2.11).

On the other hand, and again for any £ € H;(div, ), we can construct Y =—divE e L2(Q). This straightforwardly
implies that

~ . : 2
o 1b(€, ) N b(E, ) — Jo ¥ divE B | div €|l o _ 1HdiV€||0,Q- (2.13)

verzonoy 2 [Wlloe = 21dlloe 2dlloe  20divéloe 2

Finally, it suffices to add (2.12) with (2.13) to obtain the desired inf-sup condition, with constant 5; > 0 depending only
on the Poincaré and continuous embedding constants. U

Remark 2.1 It is important to clarify that the unique solvability of the auxiliary problem (2.10) is understood in a weak
sense and it only needs the Banach—Necas—Babuska argument in combination with Poincaré’s inequality. Note that we
are not claiming a classical solution of the Dirichlet Poisson problem with LS (Q) control, which allows (from the sharp
result in [35]) a solution integrability only up to W'*(Q) with % —e<s<3+eford=3and % —e< s <4+ ¢€for
d=2.

The strategy for the analysis of well-posedness of (2.2) is simply to decompose the problem into the poroelasticity equations
(first two equations in that system) and the remaining diffusion equation in mixed form. We separate the analysis for each
problem in the following sub-section.

2.2 Unique solvability of decoupled Biot equations and mixed diffusion equations

As announced in Section 1, the following result is a dual to [17, Theorem 3.2] and it provides the necessary framework to
establish the well-posedness of the diffusion subproblem without requiring coercivity of az (e, e).

Theorem 2.5 (Abstract result for Q-elliptic perturbed saddle-point problems) Let H and Q be reflexive Banach spaces,
andleta: Hx H — R b: HxQ — R,andc: Q X Q — R be bounded bilinear forms with boundedness constants
denoted by ||a||, ||bl|, and ||c||, respectively. Assume that:

i) a(e,e) is positive semi-definite, that is a(7,7) > 0 forall T € H.
ii) b(e,e) satisfies a transposed continuous inf-sup condition, that is, there exists a constant B > (0 such that

b(7,v)
sup
veq {0} [IvllQ

> Blrllg VreH.
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iii) c(e,e) is Q-elliptic, that is, there exists a constant vy > 0 such that
o(v,0) = Aoly Vo€ Q.
Then, for each pair (F,G) € H' x @, the problem: Find (o,u) € H X Q such that

a(o,7) +b(t,u) = F(r) V7€ H, (2.14a)
b(o,v) — c(u,v) = G(v) Vv e Q, (2.14b)

, vy and B such that

has a unique solution. Moreover, there exists a positive constant C, depending only on ||b||, ||c

bl

loller + llulle < CLIF||a + [[Gllor}- (2.15)

Proof. The proof is symmetric to that of [17, Theorem 3.2]. The argument is driven by the strong Q-ellipticity of the
form c(e, ). To begin, we establish existence. Indeed, the @Q-ellipticity of c(e, e) (hypothesis iii)) guarantees, by the
Banach—Necas—Babuska theorem, for each ( € H, the existence of a unique u¢ € () such that

c(uc,v) =b(¢,v) YveQ, (2.16)

as well as a unique ug € () such that
c(ug,v) = G(v) YoveQ. (2.17)

The corresponding a priori estimates are given, respectively, by

161l

1
lucle < ZZliclaand luollq < ZlIGllgr V¢ € H. (2.18)

Next, we use the transposed inf-sup condition ii) to obtain for each ( € H

3 b(¢, clue,v
Blicly < sup 2&W gy )
ve\(oy Ivlle  weqrioy Ilvlle

< lellluclle- (2.19)

Noting from (2.16) that u¢; depends on ¢, we define a new form © : H x H — R by
O, 1) =a((,7) +b(r,u¢) V¢ 7€ H.

In what follows, we prove that ©(e, ) is bilinear. Indeed, for (1, (> € H and scalars z,y € R, we use the bilinearity of
b(e,e) and c(e, ) to arrive at

c(wug, +yugy, v) = we(ug, v) +ye(ug, v) = 2b(C1, v) + yb(G, v) = b(xC1 + yC2,v) v € Q.

By the uniqueness of the solution to (2.16), we must have ¢, y4¢, = Tu¢, + yuc,. Thus for the first argument, we have

O(x¢1 + yC2, ) = a(xC1 + Y2, T) + b(T, Un¢y +y¢s)
= za(C1, 7) + ya(Ce, 7) + b(T, 2u¢, + yue,)
= za(C1, ) + ya(Ce, 7) + xb(7, u¢, ) + yb(T, ug,)
=20(¢1,7) +yO(, 7),

which proves the linearity in the first argument. The linearity in the second argument and the boundedness of O (e, e)
follow directly from the properties of a(e, e) and b(e, o).

We now demonstrate that © (e, ) is H-elliptic. From the definition of . in (2.16), we have the identity c(u¢, uc) =
b(¢, u¢), which, along with hypotheses i) and iii), yields

2
O(¢, ¢) = al¢, Q) +b(¢, ue) = a(¢, ¢) + elug, ue) = eluc,ue) = V|uclly = ’7<”f”> IS
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This proves that © (e, e) is elliptic on H with a constant ag = % > 0. Thus, applying again the Banach—Necas—Babuska
theorem, we conclude that there exists a unique o € H such that ©(o,7) = F(7) 4 b(7,ug) for all 7 € H, that is

a(o,7) + b(t,u,) = F(7) + b(T,u0) V7 € H,
which can be rearranged as
a(o,7) + b(T,us —ug) = F(r) V7€ H. (2.20)
Now, letting u = u, — ug € Q, it follows from (2.16) and (2.17) that
c(u,v) = c(ug,v) — c(ug,v) = b(o,v) — G(v),

that is
b(o,v) —c(u,v) =Gv) YveQ,
which, together with (2.20), shows that (o, u) € H x @ is a solution to (2.14a).

In turn, the a priori estimate for the solution is derived now. First, we establish the bound for o. From the stability of
the bilinear form O (e, ®), we have

lell?
lofler < e E Nz + (16 [[uoll@) -

The above together with the second inequality in (2.18), yields

]2 [16]]]]c||?
lollg < WHFHH' + WHG”Q’- (2.21)

Next, we establish the bound for u. Using the triangle inequality and the bounds for u, and ug in (2.18), we get
1] 1
lullg < lollg + —|1Gllor-
lulle = ZFllolla + TGl

Substituting the estimate (2.21) into this inequality yields

[NElR

b2l | 1
s 17+ (PERE 42 6o 2.22)

ullg < ; —
N 7362 gl

Having proved the existence of a solution (o, u), it only remains to show the uniqueness, for which we let (7,1) € H X Q
be such that

Vr e H,
Yo € Q.

a(o,7) 4+ b(T, )
U, )

Then, taking 7 = ¢ and v = u, and then subtracting the resulting equations and using i) and iii), we get

=0
=0

0=a(6,5) + c(@, @) > y]all3.
from which @ = 0. In addition, it is clear from the second row of the homogeneous system and (2.16) that us = u, which,
invoking (2.19), yields ¢ = 0, thus confirming the uniqueness of the solution.
Finally, (2.21) and (2.22) imply (2.15) and complete the proof. g

We are now in a position to establish the well-posedness of the decoupled subproblems. To this end, the analysis of the
Biot equations is based on the classical theory for perturbed saddle-point problems from [8, Theorem 4.3.1], whereas the
well-posedness of the mixed diffusion equations follows from Theorem 2.5.

Firstly, let us assume that 5 € L2(Q) is prescribed. Then, we have the following result.

10



181

182

183

184

185

186

187

188

190

191

192

193

194

195

196

197

198

Theorem 2.6 (well-posedness of the Biot equations) There exists a unique (6,4) € V x Q such that

A(¢,7)+ B(7,4) = —D(p,7) + F(7) VT eV, (2.23a)
7) = G(9) Vo € Q, (2.23b)
and moreover
1+ ad)p
1(6, 1) [lvxq < MH@HOQ + I fllo.2 + lluplli/2,00rp + lglloe + [1Ppll1/2,00,0p -

Proof. It follows from Lemma 2.2, and equations (2.7a), (2.7c), and (2.82) of Lemmas 2.3 and 2.4 and a straightforward
application of [8, Theorem 4.3.1]. O

Similarly, for a prescribed & € Hy " (div, 2), we have the following result.

Theorem 2.7 (well-posedness of the mixed perturbed diffusion equation) There exists aunique (¢, ¢) € Hy(div, Q) x
L2(82) such that

a5(¢, &) + b(&, ) = H(E) V¢ € Hy(div, Q), (2.242)
(¢, ) — clp ) = I(¥) Vi € L*(Q), (2.24b)

and furthermore

Proof. The well-posedness follows from the properties of the forms a(e,e), b(e, ), and cz (e, ®) established in Lemmas
2.2,2.3, and 2.4 in combination with Theorem 2.5. O

2.3 Unique solvability of the coupled problem via fixed-point theory
We define the following map

THTIHQ) 5 VX Q, §er TUNE) = (TPR), TFU®)), T @) = ((0,p),B) = (6, 0),

where (¢, 4) € V x Q is the unique solution of the poroelasticity equations as stated in Theorem 2.6. In turn, we define
the solution operator associated with the mixed diffusion equations as

T HY ™ (div, Q) — Hy(div, Q) x L2(Q), & = TU(8) = (71"(5), 1 (3)) := (¢, ),

where (¢, ) is the unique solution of the diffusion equations as stated in Theorem 2.7. These maps are well-defined and
so it is the following one .
J:L2(Q) = L2(Q), @~ J(Q):= Jo(gPe ). (2.25)

Finding a fixed point ¢ of 7 is therefore equivalent to solve (2.2). For this we use Banach fixed point theorem and start
by considering, for a generic r > 0, the following closed ball

W= {p e L*(Q) : |§llog < r},

and proceed next to show that J maps it to itself and that 7 is Lipschitz continuous.

Lemma 2.8 (ball mapping property) Under the small data assumption

<r (2.26)

it follows that JJ (W) C W.

11



Proof. Given ¢ € W, by (2.25), (2.26) and the estimate given by Theorem 2.7 we have

17 (@)llo. = 175 (T (@) llo.e S 1ellog + lep 2000, < 7

1o which means that 7 (W) C W. O

We continue the analysis with the Lipschitz-continuity property of 7. To this end, we recall that Theorems 2.6 and 2.7
establish the existence of positive constants Cg and C'p such that

AL, 7) + B(# @) + B((, %) — C(w, . 2 .

sup MGV FBE8) £ BE) ~OW.5) 5 0y a)lyq ¥ (E @) €V x Q, .27

(7,3)€VXxQ (7, V) [lvxq

7.5)#0
sup GE(C>€) + b(&a ¢) + b(Cﬂﬁ) - C(fba W
(&) €HE (div,2) xL2(Q) || (sa W ||H‘I§(div,§2)><L2(Q)
(&)#0

> Cpl|(¢ )l @vayxz@ (¢ @) € Hy(div, Q) x L2(). (2:27b)

200 Lemma 2.9 (Lipschitz continuity) There exists a positive constant L 7 such that
1T (p1) = T(p2)lloge < Laller — wallon  Ver,p2 € LA(9). (2.28)

Proof. Given 1, 2 € L2(2), we let JB° (1) = (&1, 11) € V x Q and JBY(p3) = (&2, 12) € V x Q be the unique
solutions of (2.23). Then, applying the inf-sup condition (2.27a) with ({, W) = (&1 — &2, U1 — U2), it follows that

5 4 5 N A 1—0’2, + B — U9 +B&1—5’2,17—Cﬁ1—ﬁ2,’l7
Cull(&1 — G2yt — )lvxq < sup A=) ¥ BTt o) + B )= X )
(7,8)€VxQ H(T:U)”VxQ
(7,9)#0
D 7)— D T
= sup (90177) (90277-)

Foexg (T 0)[vxq
(75)70

MH I
=90+ dA Y1 — ¥L210,Q-

The bound above implies that

(1+ad)p

[T (1) — TP (p2) o le

(2.29)

On the other hand, given o1, 02 € HYY™ (div, ), we let 74 (a1) = ({1, 1) € Hy(div, Q) x L?(Q) and T4 (05) =
(€, 2) € Hy(div, Q) x L2(£2) be the unique solutions of (2.24). This means

oy (6175) — Qoy (C2>€) + b(Ev Y1 — @2) =0 VS € HN(diV7 Q)a
b(Cl - C27¢}) —C(§01 - 802,7/)) =0 Vw € LQ(Q)

Then, by adding and subtracting the term a,, ({5, £), it follows that
oy (€1 — €2,€) +b(C1 — €2, %) +b(&, 1 — p2) — c(p1 — 92,¢) = a0, (C2,€) — Coy (€2, §)-
Thus, from (2.27b) with & = o1 and (¢, ¢) = (¢; — €y, Y1 — ©2), and the assumptions for o' (cf. (1.3)) we find that

‘aaz(CQvg) aa1(C27£)’

o1 — @2llo + 1€ — Calladivia < sup
v CD (&,9) €HE (div,Q)xL2(Q) ” (E 1/}) ”H4 S (div,Q)xL2(Q)
(EM)#O
, [ oo™~ olo) )¢, €
< sup
Cp (6.4) €HE (div, Q) xL2(2) 1(&,%) HHI‘{T(div,Q)xLQ(Q)
(&)#0

12
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< ?D"UQ —o1lloallCallo0
LQ
< 713("6 0.2 + llepll 20000 lo2 — a1llog,
which implies that
diff diff LQ
175" (1) = T3 (02) [l < CT)(WHO@ + [lepll1/2,00,0p) lo1 — o2llo.0- (2.30)

Then, the estimate in (2.28) follows from the definition of 7 (cf. (2.25)), the Lipschitz-continuity of jzdiff (cf. (2.30)) and
JE°t (cf. (2.29)) with
Ly(1+ ad)s
Ly :=
CBCD (2/1, + dA

)(HEHO,Q + 1l 172,00, )- (2.31)

g

Owing to the above analysis, we now establish the main result of this section.

Theorem 2.10 (well-posedness of the fully-coupled continuous problem) Suppose that ||{|o.o + [|¢p|li/2,001 < 7

and Ly < 1 (¢f. (2.31)). Then, the coupled problem (2.2) has a unique solution (&,4) € V x Q and ({,p) €
Hy (div, Q) x L%(Q2). Moreover, we have

S (1+ad)p
H(UauaCa(P)HVXQXHi{I(div,Q)XL%Q) S <2u—i—d)\ +1 (WHO,Q + ”SODH1/2,00;FD) + | fllo2 + llglloe

+ [lupll1 /2,007 + lPD 1 /2,000 - (2.32)

Proof. We firstrecall that Lemma 2.8 guarantees that J maps W into itself. Then, bearing in mind the Lipschitz-continuity
of 7 : W — W given by Lemma 2.9 along with the fact that L 7 < 1, a direct application of the classical Banach fixed-
point Theorem yields the existence of a unique fixed point ¢ € W of this operator, and hence a unique solution of (2.2).
In addition, the a priori estimates provided by Theorem 2.6 and 2.7 yield (2.32), which completes the proof. U

3 Virtual element discretisation

This section introduces the VEM-based discrete formulation for the fully-coupled problem (2.1)-(2.2). We employ a VEM
for both 2D/3D linear elasticity problems based on the Hellinger—Reissner variational principle (cf. (1.4a)-(1.4c)). The
main advantage of this type of VE space is that it allows the symmetry of the discrete tensor to be enforced strongly.
Moreover, its definition is unified in both 2D and 3D, taking into account that in 3D, facets correspond to the faces of the
polyhedral element, while in 2D, they correspond to the edges of the polygonal element. On the other hand, the VEM
employed here for mixed second order elliptic problems (corresponding to the equations (1.4d)-(1.4e) and (1.4f)-(1.4g))
requires separate definitions in 2D and 3D. In addition, we introduce appropriate polynomial projection, interpolation and
stabilisation operators to guarantee computability of the discrete formulation.

We recall that the detailed construction, unisolvence in terms of the corresponding Degrees of Freedom (DoFs),
additional properties of the VE spaces; as well with the properties of the polynomial spaces and the computability of the
polynomial projection operators in terms of the (respective) DoFs presented in this section are provided in [2, 5, 6,47].

Assumptions on the mesh. Let 7, be a collection of polygonal/polyhedral meshes on €2 and 3, be the set of all facets
in 3D (edges in 2D). The diameter of a polygon/polyhedron K is represented by hx and the length/area of a facet f is
represented by h y. The maximum diameter of elements in 7}, is represented by h. It is assumed that there exists a uniform
positive constant 1 such that

(A1) Every element K has a star-shaped interior with respect to a ball with a radius greater than nhg.
(A2) Every facet f € OK has a star-shaped interior with respect to a ball with a radius greater than nh .

(A3) Every facet f € 0K satisfies the inequality hy > nhy.

13
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Polynomial spaces. In this paper, we consider an arbitrary polynomial degree £ > 1. The space of polynomials of
total degree at most k defined locally on K € T}, (or facet f € F},) is represented by Py (K'), and its vector and tensor
counterparts are represented by P (K') and P (K), respectively. We also consider the standard notation P_; (K) = {0}.

The spaces G (K) := V(Pj41(K)) and GP(K) denote the gradients of polynomials of degree < k + 1 on K
and the complement of the space G (K) in the vector polynomial space Py (K) such that the direct sum Py (K) =
Gk (K)® G (K) holds, respectively. In particular, we select G{ (K) = &1 Pj_ (K) (resp. GF (K) 1= & A (Pj_1(K))
where & = (12, —21)% in 2D (resp. x := (21,72, x3)® and A the usual external product in 3D).

Let xg = (21K, 22,Kx)" (tesp. ¢x = (21K, T2, i, 3,k )") denote the barycentre of K and let M (K) be the set of
vector scaled monomials as

M) = { (* ;;Kf € Pu(K): 0<lal <k},

where a = (a1, ag)® (resp. @ = (o, ag, 3)®) is a non-negative multi-index with || = oy + ag and & = 27"z

in 2D (resp. |a| = a1 + az + a3 and ** = z{'z5%25® in 3D), with analogous definition for the scalar and tensor
version My and M. Notice that the polynomial decompositions presented before hold also in terms of the scaled
monomial. For example, in the 2D case, we can take the sets G(K) and G (K) as MY (K) := VM1 (K) \ {0}
and MY (K) := m*M;_(K), with m* = (B 22 xlfK_ml)t and m := *;®K respectively; and providing the

hx
decomposition M, (K) = MY (K) & M (K).

The set of polynomials that solves locally the constitutive law in linear elasticity is defined as I\\7[[k(K ) = {my, €
My (K) : my = Ce(my) for some my 1 € My 1(K)}. On the other hand, the set of scaled rigid body motions of an

element K is given by
1 0 T2 E—X2
hOE , 0 , - EELE in 2D,
hpe hE

RBM(K) := = 0 0 T 0 e
1 T1—%1,P T3,Pp—X3 :
0 9 hp ) 0 ) hp ) hp y 0 in 3D.
1 T2—T2 P T1,P—T1
0 0 hp 0 hp hp

In this case, the polynomial decomposition Py (K) = RBM(K) @ RBM;- (K), holds with

RBMJ‘(K) = {mk e My, : /K my - mggm = 0, Vmgpm € RBM(K)} .

3.1 VEM for Hellinger—Reissner linear elasticity

The associated (conforming) VE space for H(div, 2) in both 2D and 3D locally solves the constitutive law in linear
elasticity [2,47] and its defined by
S"F(K) = {1}, € H(div, K) : Tpn|; € Pr(f), Vf € OK,
div ), € Pi(K), 71, = Ce(v*) for some v* € H'(K)}.

Notice that the polynomial space }fbk(K) = {pr € Pr(K) : Pr = Ce(ppy1) for some py1 € Pri(K)} C SPE(K).
To define the global discrete spaces we patch together the local spaces in the following way

Sk = {7, € HY™(div,Q): Th|x € S"F(K), VK € Tp},

UM .= (v, e L2(Q): vp|x € PL(K), VK € Tp}.

The associated DoFs for 7, € S"*(K) and v;, € UM*(K) := Py(K) are given as follows

o — [ Tpn-my, VYmy € Mg(f),
hy Jy

1
. / div 7y, Mgy,  Vmggye € RBMY(K),
hi Jx

1

o — v -myg,  Vmyg GMk(K)
hi JKk

14



22 3.2 VEM for perturbed mixed second-order elliptic problems

The conforming VE approximation for the space H(div, 2) in 2D is defined locally by solving a div-rot problem [6], as
follows

VIR (K) .= {¢), € H(div, K) N H(rot, K): &, -n|f € Pr(f), Vf C 9K,
divg;, € Pr(K), rot§), € Pr_1(K)}.

Observe that Py (K) C ngk(K ). In turn, the global discrete space is defined as
Vi = {&, € Hx(div,Q): &,k € VIJ(K), VK € Tp}.
We consider the following DoFs for &, € V;l]’)k (K):

e The values of £}, - n at the k£ + 1 Gauss—Lobatto quadrature points of each edge of K,

1
.h/ & -my y, Vmy e MY [ (K),
K JK
1
.h/ &, -mP, vmy e MP(K).
K JK

In contrast, the 3D version of the conforming VE approximation for the space H(div, €2) locally solves a V(div)-
curl curl problem [5] and it is defined as

VIER(K) = {¢, € H(div, K) NH(curl,K): &, -n|; € Pri1(f), Vf € 9K,
V(divEy,) € Gi—1(K), curlcurl§, € Pr(K)}.

Note that Py (K) C V;ll’)kH(K ). Then, the discrete global spaces are defined by
Vit = {¢, € Ha(div,Q): &,|x € Vi (K), VK € T}
The set of DoFs for &, € VgL]’)kH (K) is provided next

e The values of &}, - n at the k£ + 2 quadrature points on each face of K,
1

o h/ &, -my ;, vmy ;€ MY (K),
K JK
1

* / - m?ﬂ? Vm?ﬂ € M?Jrl(K)'
K JK

Finally, the global discrete space for the space L2(€2) is defined in general for 2D and 3D as

QMF .= {4y, € L2(Q): Yp|k € Pr(K), VK € Ty},

and, for a given 1, € Q"*(K) := Py (K), the DoFs for the space above are defined by

1
ol / i, Wy € My(EK).
hik Jk

23 3.3 Polynomial projection and interpolation operators
2e¢  For each element K, we introduce the following local polynomial projection operators:
* The C-energy projection is defined as iK : g(K ) — Mk(K ) by
/ ¢! (’7’ - i’KT) . fy, =0, Ve S(K), Vi, € My(K), 3.1)
K
245 where S(K) := {7 € H(div, K) : T = Ce(v) for some v € H!(K)}.
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* The L? projection is defined by H%K : L2(K) — My(K) where

/K (5 - H%f%) ‘my = 0, V€ € LK), Ymy, € My(K), (3.2)
with an analogous definition for scalar functions.

The detailed proof of computability of these operators in terms of the respective DoFs can be found in [2,5,6,47]. In
addition, we state a result involving classical polynomial approximation theory [13]. The estimate is presented for scalar
functions, but it also holds in general for vector and tensor functions.

Proposition 3.1 (polynomial approximation) Given K € Ty, assume that v € H¥(K), with1 <3
exist vy € Pr(K) and a positive constant that depends only on n (cf. (Al)-(A3)) such that for 0 <
estimate holds

< k+ 1. Then, there
7 < S the following

v —vrlr i S hi vls K-

Next, the nature of the space defined in Section 3.1 allow us to define locally the Fortin-like interpolation operator
FRK . HY(K) — S™F(K) through the associated DoFs in a unified way for an element K (cf. [11]). Whereas, following
Section 3.2, the Fortin-like interpolation operators F];]’)K :HYK) — Vgl’)k (K) and Fgg L HY(K) - Vgl]’)kH(K ) are
defined by their associated DoFs, taking into account that the element K refers to a polygon in 2D and a polyhedral in 3D.
See, e.g., [6, Section 3.2] and [7, Section 4.1] for their respective constructions. Moreover, the associated commutative
property holds for each operator as follows: for each K € 7}, we have

div(FPEr) = I0 X (divr), div(F5f¢) =10 (dive), div(Fi 1 e) = 10" (divg). (3.3)

Proposition 3.2 (Hellinger—Reissner VEM interpolation estimates) Given K € T, assume that = € H(div, K) N
H®(K), with 1 <5 < k + 1. Then, there exists a positive constant that depends only on 1 (cf. (Al)-(A3)) such that, for
0 <7 <5, the following estimate holds

T —F 7k S R k-

Proposition 3.3 (mixed VEM interpolation estimates) Given K € T and 1 < 5 < k + 1, there exist positive constants
that depend only on n (cf. (Al)-(A3)) such that for 0 <7 < 'S the following estimates hold

kK -7 k+1,K -7 5,0
1€ = F5p Ellori Shi €lsnns € —F5h  Ellogn S M s V€ € WH(K).

Remark 3.1 Typically, one also requires an interpolation property for the divergence part of the flux (or stress) space to
obtain error estimates (see, for example, [30-32] for mixed VEM in the LP context). Such a property calls for additional
regularity for the divergence part, for example (using the notation from Proposition 3.3 in the 2D case)

| div(€ — FEEe)ox SPLT|divelse V€ € WHY(K) such that div € € HY(K).

Here we proceed differently and derive estimates involving the divergence by simply using the commutativity property
(3.3) and applying Proposition 3.1. This avoids the assumption of more regularity for the divergence, but rather asking it
for the concentration.

3.4 Discrete problem

Without losing generality we denote by VF the global discrete spaces defined in Section 3.2, i.e., Vhk = ngk (resp.
VhE — V?bkﬂ) for polygonal elements (resp.i polyhedral elements), we algo introdu;e the discrete product spaces
Yk = Shk x QMF and QMF .= UM* x V| and note that the space VF := V% 1 H{ (div, Q) consists of the
discrete space V¥ equipped with the norm ||-|| A.div:q- For brevity, (and wherever needed) the polynomial projections of

oy, € Sz, € VIF and ¢h € V" are denoted by o), = i’KO'h, zhn = H%th and C{I = H%Kch, respectively,
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262 where the projection H%K refers to H%K in the two dimensional setting (resp. Hzfl in the three dimensional setting).
2ss  We recall that the computability of the discrete formulation (introduced below) follows directly from the computability of
26« the projection operators discussed in Section 3.3.
Given &y, := (on,p1n), Tn = (Th,qn) € VP 4y, == (up, z3), Uy = (v, wy) € Q™F, and a fixed polynomial
&), € My (K), the computable discrete bilinear forms Ay, : VAF x Vb s R, B : Vil 5 QMF 5 R, € : QMF x QMF —
R, Dy : QMF x VEF 5 R a5 VhE x VhE SR b QME x VAR 5 R and ¢ : QMF x Q% — R, are defined as

w(Gh, Th) Z AK T

KeT,
=D [<c-1< Vo), Ve ST (A P en (L 1))
KeTh
2
QaPp C.K aqgp C,K a
+(2M+d)\ r( 3" Th) +(2M+d)\,tr( Woon) gt [so+2u+d)\}(ph,qh)l<],
B(#p,0p) = Y BN(#4,0h) = ) [(UhadiVTh)K + (Qh,divwh)K}
KeT, KeT,
=) Cf(iip, B
KeT,
= Z |:(K’_1(H2,th)7 H%Kwh)K + Sg?K((l - H%K)Zha (1 - Hz’K)wh)]a
KeT,
Dp(Yn,7n) = > Dp(vn,Fn) = > (5 thd)\’tr( VL) + aday) ik
KeTy KeTy H
(Cn&n) = > af (Cho &)
KeTh
0,0, ,K
=2 [@( W) TG IR g )+ ST (1 - TR (1 —HZ’K>sh>]’
KeT,
b(&poon) = D b5 (&poon) == > (divE,, vn)k
KeTy, KeTy
clonvn) = D Hlenvn) =D (envn)x
KeTy, KeT

The stabilisation terms Sf’K Yk Yk 5 R, SS’K QM x QMF — R, and Sg’K - VhE « VhE R are assumed
to be any positive semi-definite inner products satisfying the following condition: for each K € 7Ty, there exist positive
constants Cy,, Cs,, Cs, (independent of i and K) such that

Cs_ll(c_lTh,Th)K < SS’K(T}L, Th) < C$1<C_1Th,Th)K VTh & ker( g’K), (3.43)
Cs_zl (mflwh, 'wh)K < SS’K(wh,'wh) < CSQ(K'Jil'UJh,wh)K Ywy, € ker(l_[%K), (3.4b)
C' (0(64) " €n 1)k < S5 (€4, €1) < Cia(0(6) T €n )k V&), € ker(TINK). (3.4¢)

Finally, the computable linear functionals F' : VhE 5 R, G : Qh’]C — R, H: Vhk R, and Iy, : Q’“”c — R are given
by

= Z FE(#) = Z { Z <UD>7'hn>F+(gth)K]a

KeTn KeTy, "FEOKNI'p
=Y GN@p) == > [(f,vh)K—i— > <pD7wh‘n>F]7
KeTy KeT FedKnNI'p
=Y HNE) ==Y > (en.&n
KeTy KeT, FEOKNT'p
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265

266

267

268

269

270

271

272

273

= > IWn) == ) (Lvn)k

KeTy, KeTy

The discrete version of (2.2) is defined next: find (G, %) € VF x QMF and (¢4, ¢),) € QMF x {/'h’g, such that

Ap(Gn, Th) + B(Th, un) + Dp(on, 7n) = F(F3) VE, € Yk, (3.52)
B(&'1, V) — Ch(tp ’5h) = G(vp) Vo), € QM (3.5b)

o, (Chs &) +b(Ens0n) = H(Ep) Vg, € VIE, (3.5¢)

(Chﬂbh) — c(n,n) = 1(¢n) Vip, € QM. (3.5d)

4 Discrete well-posedness analysis

This section extends the results shown in Section 2 to the VEM formulation proposed in (3.5). Following the analysis for
the continuous problem, we employ a discrete fixed-point argument to state the well-posedness of the fully-coupled discrete
problem. We recall that, thanks to stabilisation, the discrete operators inherit the properties presented in Section 2.1.

4.1 Properties of the discrete operators

Note that, for each K € 7y, given 7, € V¥ and ¥), € Q™F, we have that div 7}, € Py(K), divaw, € Pi(K) (see also
the definition of the 2D (resp. 3D) VEM space in Section 3.2 (resp. [5, Theorem 8.2])), g, € Pr(K), and v;, € Py (K).
Hence, the the following characterisations hold:

V.= ker(Blyns) = {7, € V¥ . B(F),,0,) = 0, ¥8), € Q"*}

=Vl x Vi = {1, e S : divr,|x =0, VK € T} x {0}, (4.1a)
Q) = ker(B*|quni) = {05 € Q" 1 B(#, %)) =0, V7, € V)
= Qlhy x Qly = {0} x {wy € VI ¢ divawy|xc = 0, VK € Ty} (4.1b)

On the other hand, the orthogonal spaces (V1)L = (VE)L x (VAL and (Q})* = (QB,)* x (Qf,)+ are closed subspaces
of V7* and Q"*, where

(Vo) = {on €™ 2 (o, Ta)i = 0, Vi € Vi, VK € Th}, (Vi)™ = QM
Q) =QM, and (Qf)* = {zn € VM1 (2, wh)k =0, Yy, € Qfy, VK € Ty}
In what follows, we prove some key properties of the discrete bilinear forms.

Lemma 4.1 (symmetry and positive semi-definiteness of discrete diagonal forms) The bilinear forms Ap(e,e) and
. o . . N C,K ~ . .. ; .
Ch (e, ®) are symmetric and positive semi-definite; and (for a given &), := [~ o) a, &, (e, @) is positive semi-definite.

Proof. The proof reduces to employ the arguments in Lemma 2.2 together with the properties of the stabilisation operators
in (3.4). Indeed, we can extend (2.4) for all 7, € V7* as follows

Lo 1. cK C.K C.K C.K
Ah(ThyTh)ZﬂH( W) e ST (A= )T (L= )T
50

S0 2 C,K 2
t ’ > 0. 4.2

In addition, for a given &, we have
0,K 0,K 0,K
ay 5. (&, €n) = @1HH Reld g+ S35 (- I )€, (1 —1127)€,) 2 0,

thanks to the positive semi-definitess of Sf’K (e, ) and Sg K (o,0). g
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279

280

281

282

283

Lemma 4.2 (coercivity for the main discrete diagonal forms) There exist constants @4, o, > 0 such that
Ah(?hth) Z@AH’F}LH%’ V’Fh EVQ, (4.3a)

c(n,n) = @l vnllsa  Vion € QM. (4.3b)

Proof. Note that (4.2) and (3.4a) imply that for all 75, € VS

50
(so(2p + dA) + 2da?)

S o NP S S0 . _
An(Th, Th) 2 mln{ﬂ, Ca'Imilba + 5”%”3,9 +min{~ CCq e Tl o 44

Thus, applying (2.5) and (2.6) to T}, there exist C';,Cs > 0 such that Ay (T, Tr) > @a H?thnv,g’ where a4 =

%EQ min{1, C’S_ll}. Finally, in a similar manner to Lemma 2.3, we obtain that (4.3b) holds with @, = 1. O

Lemma 4.3 (discrete inf-sup conditions) There exist positive constants B, 3, such that

B(7, 0 = s . .
sup M > (llvnllq V¥, € [ker(B})] 4, (4.5a)
#revrivgoy  [Tallv
b(€h7wh)

sup S B ladgive  VE, € VIR (4.5b)

wneqrrv (ot 1¥nllog

Proof. We start by recalling from [1, Proposition 5.6] the following discrete inf-sup condition

vy, div T —
sup IV 5 5 Ve e (@) (4.6)
reshi (o} [ 7hlldiv.e

Similarly to [8, Proposition 5.4.2], given that divwy, € Py (K) for all K € Ty, wy, € (Qh,)+ C Hy(div, ), and the
definition of H%K in (3.2), we have that
(qn, divwy,) (ng, divwy,) (q,divwy,)

sup —_— > sup sup

> > > Byl|lw||aiv,0 4.7)
seqrivioy  lanllon etz IMdlloe  ~ gerz@nop Crlla :

0,Q

where in the last inequality we have used the continuous inf-sup condition (2.9b). Here 35 = g—i, ng = H%Kq| K for
all K € Ty, and C; being the associated continuity constant of Hg in the L2-norm. Therefore, the bounds in (4.6)-(4.7)

yields (4.5a) with 3 B = @. Much in the same way, (3.2) and the continuous inf-sup condition (2.8b) lead to

—(vp,, div — (1194, div — (v, div —
sup (1/1h—§h) > sup M > sup M > 51:”5}1”4,di\’;97
wneqrigor  [¥nllog verznfor  IM¢Yloq verz@nfop Crllvllog
for all &, € V¥ C H(div, ). Thus, (4.5b) holds with 3, = 2. O

4.2 Unique solvability of the discrete coupled problem

We follow the analysis in Section 2.2-2.3 to derive the unique solvability of the discrete problem (3.5). Given two
computable prescribed functions @, € Q"% and &, € S™*, the following results imply the well-posedness of the
decoupled equations corresponding to the discrete Biot equations (3.5a)-(3.5b) and the discrete mixed perturbed diffusion
equation (3.5¢)-(3.5d). The proof follows as in the continuous case by employing Lemmas 4.1-4.3, and the discrete
versions of [8, Theorem 4.3.1] and Theorem 2.5.

Theorem 4.4 (well-posedness of the discrete Biot equations) There exists a unique (&', dy,) € VP* x Q™* such that

Ap(Gh, Th) + B(Th,tdn) = —Dp(Ph, Th) + F(Th) VF, € VI, (4.82)
B(&,9n) — Ch(tin, B) = G(6h) Vo, € QME. (4.8b)
Moreover,
(1+ ad)p

(& n, dn)llvxq S 1@nllo.c + 1 llo.2 + Il /2,000 + llgllo.e + lPpll/2,00rp-

2+ dA
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285

286
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289

290

Theorem 4.5 (well-posedness of the discrete mixed perturbed diffusion equation) There exists a unique (Cp,, pn) €
VEE 5 QMF such that

ay, 5 (Cn €n) +b(En, dn) = H(Ep) Ve, € VIE, (4.9a)
b(Cps¥n) — c(on, ¥n) = 1(¥n) Vi, € QMF. (4.9b)

Moreover ,

Next, we define the following discrete maps

j}?iot . Qh,k(Q) — Vh’k Qh,k
Pn = T (@n) = (T (8n), Tan " (@n), T3 (@) = ((on, pr), Gn) = (&ny ),

where (G, 4y) € VF x QM is given by Theorem 4.4; and
j}fliff .ghk {/h,E « Qh,k
G Ti(@n) = (Tih" (Fn), Tan" (G1)) = (Cpo on),

with ({},, ¢n) provided by Theorem 4.5. These maps are well-defined, along with the discrete solution operator defined
next

jh : Qh’k — Qh7k7
Bh = Tn(Bn) = Tsit (T (B))- (4.10)

In what follows, we show well-posedness of the fully-coupled discrete problem (3.5) through the equivalent fixed-point
formulation J3(¢n) = ¢n. First, we define the discrete closed ball for some r > 0

W= {@n € Q" 1 |Bhllog < 7}
Next, we prove that J, maps Wy, into itself and show the Lipschitz continuity of 7;,.
Lemma 4.6 (discrete ball mapping property) Under the small data assumption in (2.26), it follows that 7 (W) € Wi,
Proof. Given @;, € Wy, the definition (4.10), (2.26) and the estimate given by Theorem 4.5 provide that

170(@n)lloe = 1755 (T (@)llog < Il + llenli /2000 < -

Lemma 4.7 (discrete Lipschitz continuity) There exists a positive constant L 7, such that
1T (018) — Tn(2n)lloge < L, lle1n — anlloe  Voin, pan € QP (4.11)

Proof. Given o1, pon € QMF, we let 721 (p13) = (G, tin) € VP x QMF and J21%(op) = (Gon, tian) €
Vh* x QMF be the unique solutions of (4.8). Then, applymg the discrete version of the inf-sup condition (2.27a) with
(Ch, W) = (61p — Fop, Uy, — Uap), imply that CBH(Ch, Wp,)|[yn.k @k is bounded by

Ap(G1n — Gon, Th) + B(Th, try, — tan) + B(G 1, — Gan, Un) — Cp (1, — Uy, Up)

sup — =
(7, n)E(VAk x QAR {(0,0)} [(Fr, On)llvxq
D ,Trn)— D ,T 1+ ad)p
_ sup h(©1n _‘h)_) w(Q2ns Th) S( )53 lotn — eonllo.
(7B )€ (VAR x QR {(0,0)} (71, n)llvxq 2+ dX
Thus,
B10t (1 + Oéd)ﬁ
j i R —— — . 4.12
17102 (1) — T (p2n) lla,divie a. (2M+d)\)||801h Panllog (4.12)
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295
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298

Similarly, let o1y, 02, € Sh*, such that 79 (a1;,) = (11, ¢1p,) € QMF x VE and T (a91) = (p2n,Cop) €
QMF x V¥ be the unique solutions of (4.9). Equivalently, we have

ah,alh(Cngh) + ah,dzh(c2h7£h) + bh(gh, ©1h — @Zh) =0 th c (Qh,k7
br(Cun = Con¥n) — chlin — won, ) =0 V€, € VIF,

and from here we add and subtract the term a ol (Caps &),) to obtain

ap.o, (C1n = Cons §n) + 0(C1n = Cons ) + b(&n, 010 — P21) — c(p1n — pon, V) = g (Conr €n) — A, (Cons &n)-

Then, the discrete version of (2.27b) with & = o, and (¢, ¢) = (C15 — Cans P1n — P21), together with the assumptions
on o~ 1(e) (cf. (1.3)), allow us to readily see that

la
T1n

(C 3 S ) — 04 (C ) 5 )|
4,divi2 + [[e1n — w2nll00) < sup 2h Sh on > 2h Sh
€ me@rixqrin 00} (€ Un)llrz@)<ms @ive)

[ oo™ = o) e &
< sup Q

o (Eh,wh)e({lh*EXQh’k)\{(QO)} H (£h7 wh) HL2(Q) ><H4N(div,Q)

Co(lI¢in = Canl

< Lyllog, — oiplloallCanllosn

< L@ar(WHO,ﬂ + HSODHl/z,oo;FD)HU% - UthO,Qy
where C'; is the continuity constant of the projection operator %K in the IL?-norm, which implies that

L,Cy

| TshT (o1) — T (o an) loe < ol ([[€]lo.2 + lepll1/2,00rp) lo1h — o2nllo0- (4.13)
D

Then, the estimate (4.11) follows from the definition of 7, (4.10), the Lipschitz-continuity of de}iﬁ (4.13) and that of
T3t (4.12), with
L,Cr(1+4 ad)B

L7 = =—— 14
T CBCD(2u+d)\)(H

0.2 + l¢plli/2,000)- (4.14)

g

We are ready to state the main result of this section which is a consequence of Lemmas 4.6-4.7 together with the Banach
fixed-point theorem.

Theorem 4.8 (well-posedness of the fully-coupled discrete problem) Suppose that ||{|jo.o + ||¢pl|1 /2,000, < 7 and
Lz, < 1(cf (4.14)). Then, the coupled problem (3.5) has a unique solution (G, tp) € VK x QMF and (¢, 01) €
Vk 5 QME. Moreover, and similarly to the continuous case, we have

- (1+ad)B
101 Uin, G 1) v @xErs (div ) xL2 () S <2M+d)\ + 1) (Illoe + llepll12,00r0) + I fllog + llglloe
+ llublli /2,000 + [1PDI1/2,00Tp - (4.15)

S A priori error analysis

This section is devoted to deriving the optimal a priori error estimate. The first step is to establish the Strang-type
inequalities which are formulated in the theorem below.

Theorem 5.1 (quasi-optimality) In addition to the assumptions of Theorems 2.10 and 4.8, let (&', 4, (,p) € V x Q X
Hy (div, Q) x L2(Q) and (Gp, Gn, Cpyon) € VIF x QME x VIE x QRE be the unique solutions to (2.2) and (3.5),
respectively. Under these conditions, the following error estimates hold:

5 5 o o - o -~ F R 1 | L
(6 = Gn,t—dn)llvxq S 16 = Fpllv + (|6 = Fpllv + 4 — d@)|lv + [[d — 4y [lq
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299

300

301

302

(1+ad)p

— 5.1
20T d) le — enlloo; (5.1)

adivio + [l — H%KVJHO,Q

kK 0,K
(€ = Chrp — <Ph)HH§,(div,Q)xL2(Q) SI¢— F; q 4,divi + 1€ — HE ¢
+ Lo(Illlo. + lleplli /2,000l — oy lv, (5.2)

=F kK 0,K \ = ._ ~F _ 70.K kK _\ =T 0,K kK
where &), := (F*% o 11,7 p), &), == (o), pn), ty, := (I w, F g™ 2), g, = (up, 127 2), and by F ;™ we represent

the Fortin operators either Fgé( or Fgg 1’K, depending on the spatial dimension under consideration.

Proof. We proceed in a similar way as in [37], noting from (2.2) and (3.5) that (&', — &E, Uy, — ﬁf) € VF 5 QMF is the
unique solution to

Ap(@h — &5 7)) + B(Fp, iy —ar ) = F1(Th) VT, € VIE,

B(&), — &, 0h) — Cu(dy — 4y ,51) = G1(0) Vo, € QMF,

where

Fy(7y) i= A&, 71) — An(&T, Tr) + B(F, @ — 1) + Dilp — on, Tn),

G1(By) := B(G — &%, %)) — C(@,By) + Ch (5, Tp).
By exploiting the continuous dependence on data established in Theorem 4.4, we can deduce that
1(Gh = &, tin — @3 [vxaq S [ Fillv + [Gillqr (5.3)

Now, noting that Ay, (&',, Tr) = A(&},, Tr), by applying the continuity of the bilinear forms A(e,e), A} (e,e), B(e,e),
D(e,0),C(e,0),and C,(e, ), as well as using the triangle inequality, it is possible to deduce that

S o = ST S o S oF
(I6 = &nllv + 116 = apllv)lTrlly < (16 = 4llv + |6 — &pllv) | Trllv, (5.4a)

A N

|B(Fn, i — )| S || — i |l allv, (5.4b)
(1+ ad)p
- 5.4
o+ dA e — wnlloallTallv, (5.4¢)

| <116 — & llvlvnlla. (5.4d)
- LTI SF - - - - -
| S (|u =y, | + Uy, — 4, |Q)llvellq S [I(d — 4y, [|q + |4 — 4y, [lQ)lvnllq-  (5.4e)

Upon substitution of (5.4) into (5.3), and invoking the triangle inequality, the result (5.1) follows. Conversely, for the

diffusivity problem, it follows once more from (2.2) and (3.5) that ({;, — FZ’KC , Op — H%Kgo) € Vhk x QM* constitutes
the unique solution of

G, (G = B3 C,80) + D& 00 — TN 0) = F(€) Ve, € VI, (5.52)
b(Ch — FRR¢, ) — clon — T 0, 00) = Calun) iy, € QM (5.5b)
where
Fy(€h) = a0 (¢, €4) — 0y, (F™ ¢, €4) +0(En, 0 — TN ),
Can) = b(C — FENC ) — el — TP, y).

The continuous dependence on data shows

kK 0,K = =~
1(Ch —Fg ™ ¢ on — I o)l aivioyxrz@) S [F2llas @ivioy + 1G2llz @y - (5.6)

After adding and subtracting suitable terms, applying the continuity of the bilinear forms a, (e, ), ay o, (®,®), b(e,e),
and c(e, e), and invoking the triangle inequality, we can deduce that

a5 (¢, &p) — a0, FHEC ) S U1C = F ¢laaiva + 1€ — H%KC 4,div;2) € || 4,divi
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307

308

309

310

311

312

313

314

315

316

317

318

319

320

+ Lo(ltlloe + lenlli 2000 ) lo = [9l1€nlladivias (5.7a)
(& o — T 0)] < Ml — T ollo llénladivie, (5.7b)
(¢ — FE ¢, )] S 1IC = FE ¢ laaivallvnllog, (5.7¢)
le(e — X0, vn)| < lle — I % ¢llollvnlloe- (5.7d)

Finally, proceeding as in the previous case, the substitution of (5.7) into (5.6), combined with the triangle inequality, yields
the estimate (5.2). Il

Theorem 5.2 (convergence rates) In addition to the hypotheses of Theorem 5.1, assume that

(14 ad)p
2u + dX

N —

+ Lo(l€llo.22 + [lenll1/2,00rp) <

Additionally, suppose that there exist s € [1,k+ 1] ands € [1,k + 1] such that o € H*(Q),p € H¥(Q),u € H*(Q), 2z €
H*(Q),¢ € H(Q) and p € H*(Q). Then, there holds

en g hmin{s,g} (Ho_

s@ T lIplsa + lullse + [1zls.0 + [Cllse + llellso) (5.8)

where e, = |6 — a'p|lv + ||U — dpllq + (€ — Chlladivia + [l — @nlloo-

Proof. The proof relies on estimates (5.1) and (5.2), in conjunction with the smallness assumption and the approximation
properties of the spaces stated in Propositions 3.1, 3.2, 3.3, and in [13]. O

6 Numerical results

In this section we illustrate the accuracy and performance of the proposed scheme (cf. Section 3) through several numerical
experiments. We show the optimal behaviour of the method under different polytopal meshes. Finally, we simulate an
application-oriented problem.

We define the total computable error via the local polynomial approximation of the discrete solutions as é% =
=2 =2 =2 52 4 a2 =2 :
&, +ey, + en +e,, + en + e , with

®hn’
9 _ CK 2 di — di 2 a2 . _ 2
€y, = lo— o onlloe+lldive —diveonlga, €y, = llu—ulfa,
_ 0K - : 2
eihn = ||z =TI zulgo + Idivz —divzslga, &, =P —pulldo
= 07K 3 3 = o—
ezhn = || — I Cullion + 1dive —dive,lsa, €, = lle —enllba-

The experimental rate of convergence r(-) applied to the total error €, (or to any of its components) in the refinement
1 < j is computed from the formula (&)’ = log(e}"" /&])/log(h/*'/h7), where h7 denotes the mesh size in the
refinement j. The fixed-point algorithm has stopping criterion driven based on the £?-norm of the increments (i.e., the
difference between the DoFs at the iteration i and i — 1 of the fixed-point algorithm) with a tolerance of 5 x 1076, We
stress that these experiments were implemented in the library VEM++ [21].

Finally, following [2,47], we define the stabilisation term Sf’K(ah,Th) = (hg tr(C)/2) [y onn - Thpn, While
Sg ’K(o, -) and Sg ’G’“K(-, -) are given by a scaled DOFI-DOFT stabilisation (see [37]), with respective scaling factors given

by || [ &7 and | [ 0 ()|, where ||-|| ;> denotes the Frobenius norm of the matrix.

6.1 Convergence rates under uniform refinement: 2D case

For this test, the modulation parameter is prescribed as 7; = 1073 (cf. (1.2)), whereas all remaining model parameters
are fixed to unity. The smooth manufactured solutions are defined as follows

u(x1,z2) = (cos(4mzy) cos(4mas) + €71, sin(4may) sin(4mas) + e‘”)t ,
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Figure 6.1: Example 1. Variety of 2D meshes used in the uniform refinement convergence test.

p(x1,x2) = cos(2mxy) cos(2mxe) + €™,  p(x1,22) = sin(27wzy ) sin(27xe) + €™,

in the unit square domain © = (0, 1)? with the polygonal discretisations depicted in Figure 6.1, the boundary conditions
are defined in the following sets: I'n = {(z1,22) € 92 : 21 =0orze =0} and I'p = 90 \ I'n. In particular, the
right-hand sides functions (f, g and ¢) and the stress-dependent diffusivity (cf. (1.2)) are sufficiently smooth, as they are
derived from the prescribed manufactured solutions. We recall that the polynomial order in two dimensions is given by k
for both the Hellinger—Reissner VEM space and the mixed VEM space.

The error history is reported in Table 1. Here, we observe optimal rate of convergence O(h*) (k = 1, 2) as predicted by
Corollary 5.2 for all the meshes listed in Figure 6.1. Moreover, we provided in detail the computable error for the variables
of interest, obtaining their expected optimal convergence rates. The number of iterations required by the fixed-point
algorithm to convergence are displayed in the last column. Snapshots of the variables of interest are shown in Figure 6.2
for the Hexahedral mesh (see Figure 6.1(c)) in the last refinement step with polynomial degree k = 2.

Finally, Table 2 illustrates the performance of the scheme under large variations of the physical parameters. The test
considers nearly incompressible materials (A = 10), very small storativity (so = 10~®), and weak Biot-Willis coupling
(a = 107%). The mesh is fixed to the Hexahedral case (cf. Figure 6.1(c)) and we set the polynomial degree k = 1.
Once again, we observe the expected optimal convergence rates, confirming the robustness of the method in these extreme
settings.

6.2 Convergence rates under uniform refinement: 3D case

We extend Example 6.1 by consider the unit cube domain 2 = (0, 1)? discretised using the polyhedral meshes illustrated
in Figure 6.3, the sub-boundaries are defined by the sets I'n = {(x1,x2,23) € 9Q: 21 =0o0rze = 0orzg = 0} and
I'p = 09 \ I'n. We set unity model parameters and define the manufactured solutions by

w(z1, 9, 23) = (cos(4mxs) cos(4mas) + e*, sin(4mry) sin(4nxz) 4 €2, cos(4mwz)sin(dny) 4 €™3)*

p(x1, 2, x3) = sin(2mwx) sin(2mas) + €™,  p(x1, 2, x3) = cos(2mx) cos(2mxe) + €72,

where the polynomial order in this case is given by k for the Hellinger—Reissner and % + 1 for the mixed VEM spaces. One
more time, all the model parameters are fixed to unity except for the modulation parameter which now given by ; = 1075.

In three dimensions, the computational cost increases substantially, even in the lowest-case order k£ = 1; for example,
the Hellinger—Reissner subsystem alone yields a linear system of dimension 542,925 x 542,925, with 100,405,246 nonzero
entries in the last refinement step of the Voronoi mesh (cf. Figure 6.3(c)). Such system sizes would normally pose a
considerable challenge, both in terms of memory requirements and solution time. However, VEM++ exploits parallelisation
through MPI and its interface with PETSc-MUMPS (see [4,42]), which allows distributed assembly and the efficient solution
of large-scale sparse systems. For this study, computations were performed on the NCI Gadi HPC cluster using the
hugemem queue (1,5 TB of RAM per node with 48 CPUs), with 16 CPUs for the first two refinements, 32 CPUs for the
third, and 64 CPUs for the final refinement, demonstrating both the scalability of the implementation and its robustness in
handling high-dimensional three-dimensional problems.
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Figure 6.2: Example 1. Snapshots of the variables of interest for the Hexahedral mesh in the last refinement step with
k = 2. The parameters are set to unity, except for n; = 1073,
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Figure 6.3: Example 2. Cross-section of a variety of 3D meshes used in the uniform refinement convergence test.

We summarise the error history in Table 3. One more time, the prediction provided by Corollary 5.2 holds for all the
meshes listed in Figure 6.3, we observe optimal rate of convergence O(h?). Snapshots of the variables of interest are
shown in Figure 6.4 for the Voronoi mesh with 4,000 elements (last refinement step).

6.3 Sleep-driven molecular clearance within brain tissue

Neurodegenerative diseases such as Alzheimer’s and dementia are linked to the accumulation of proteins (functional
molecules) and metabolites (intermediate or residual products of metabolism) within brain tissue. To mitigate this, the
brain enhances its clearance mechanisms during sleep. Studies indicate that sleep deprivation impairs molecular clearance,
and this effect cannot be compensated for by an extra night’s sleep [24]. Moreover, it has been shown that the cortical
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1.00e-01|3.31e+01| * (3.29e+01 *15.28e-01 * 11.66e+00| * 1.92e-02| * ]2.90e+00| * 1.95e-02| * |3
5.00e-02(8.65e+00| 1.93 |8.61e+00| 1.93 |7.61e-02| 2.79 [4.15e-01| 2.00 |4.85e-03| 1.99 |7.46e-01| 1.96 |4.88e-03| 2.00
2.50e-02(2.19e+00| 1.99 |2.17e+00| 1.99 |1.14e-02| 2.74 |1.00e-01| 2.05 |1.22e-03| 2.00 |1.97e-01| 1.92 |1.22e-03| 2.00
1.25e-02|5.48e-01 | 2.00 | 5.45e-01 | 2.00 [2.06e-03| 2.46 |2.45¢-02| 2.03 |3.04e-04| 2.00 |5.59¢-02| 1.82 [3.05e-04| 2.00

A W

1.03e-01(4.07e+01| * |4.04e+01| * |9.22e-01| * |1.97e+00| * [2.42e-02| * [3.74e+00| * |2.54e-02| *
5.07e-02{1.03e+01| 1.93 {1.03e+01| 1.93 |1.15e-01| 2.93 |4.64e-01| 2.04 |5.70e-03| 2.04 |8.95e-01| 2.01 |5.99e-03| 2.04
2.66e-02|2.79e+00| 2.02 |2.78e+00| 2.02 |1.81e-02| 2.87 |1.23e-01| 2.06 |1.53e-03| 2.03 |2.38e-01| 2.05 |1.59e-03| 2.06
1.32e-02|6.90e-01 | 2.00 | 6.87e-01| 2.00 |2.90e-03| 2.63 |3.00e-02| 2.02 |3.77e-04| 2.01 |5.88e-02| 2.00 [3.89e-04| 2.01
1.03e-01{3.18e+01| * |3.16e+01| * |7.09e-01| * |1.49e+00| * |1.81e-02| * |2.83e+00| * |1.90e-02| *
5.07e-02{7.79e+00| 1.98 |7.75e+00| 1.98 |8.71e-02| 2.95 |3.48e-01| 2.04 |4.32e-03| 2.02 |[6.63e-01| 2.04 |4.44e-03| 2.05
2.66e-0212.07e+00]| 2.05 |2.06e+00| 2.05 |1.35e-02| 2.88 [9.16e-02| 2.07 |1.15e-03| 2.05 |1.74e-01| 2.07 |1.16e-03| 2.07
1.32e-02]5.11e-01 | 2.01 | 5.09e-01 | 2.01 [2.16e-03| 2.63 |2.27e-02| 2.00 |2.84e-04| 2.00 |4.28e-02| 2.01 |2.86e-04| 2.01
4.36e-02(8.51e+00| * |8.47e+00| * 16.32e-02| * ]3.96e-01 ¥ |4.44e-03| * |7.12e-01| * |4.74e-03| *
2.55e-02]2.92e+00| 1.99 |2.91e+00| 1.99 |1.48e-02| 2.70 |1.42e-01| 1.90 |1.58e-03| 1.92 |2.44e-01| 1.99 |1.61e-03| 2.00
1.79e-0211.46e+00| 1.96 |1.45e+00| 1.96 [6.15e-03| 2.47 |7.18e-02| 1.93 |7.97e-04| 1.93 |1.22e-01| 1.94 |8.08e-04| 1.95
1.39e-02 8.82e-01| 1.98 | 8.78e-01 | 1.98 (3.38e-03| 2.37 [4.36e-02| 1.97 |4.82e-04| 1.99 |7.33e-02| 2.02 |4.85e-04| 2.02

1.00e-01{6.68e+00| * [6.66e+00| * [2.23e-01| * |1.98e-01 ¥ 11.94e-03| * [3.32e-01 * 0 |2.16e-03| *

5.00e-02|8.71e-01| 2.94 | 8.70e-01 | 2.94 |1.47e-02| 3.92 [2.40e-02| 3.05 |2.45e-04| 2.99 |4.20e-02| 2.98 |2.72e-04| 2.99
2.50e-02| 1.10e-01| 2.99 | 1.10e-01| 2.99 |9.68e-04| 3.92 |[2.70e-03 | 3.15 |3.07e-05| 3.00 |5.25¢-03| 3.00 |3.41e-05| 3.00
1.25e-02|1.38e-02 | 3.00 | 1.38e-02| 3.00 (7.12e-05| 3.77 |3.18e-04| 3.09 |3.84e-06| 3.00 |6.56e-04| 3.00 |4.27e-06| 3.00

Distorted |Quadrilateral

1.03e-01[9.66e+00| * [9.63¢+00| * |4.39e-01| * |2.70e-01| * |2.87e-03| * |4.73e-01| * |3.16e-03| *
5.07¢-02|1.20e+00| 2.94 [1.20e+00| 2.94 [2.64e-02| 3.96 |3.34e-02| 2.94 [3.35¢-04| 3.03 |5.62e-02| 3.00 |3.70e-04| 3.02
2.66e-02| 1.67¢-01 | 3.05 [1.67e-01| 3.05 |1.98¢-03| 4.01 |4.71e-03| 3.03 |4.62e-05| 3.07 |7.78¢-03| 3.06 |5.11e-05 3.07
1.32e-02(2.05e-02 | 3.01 |2.04e-02| 3.01 [1.31e-04| 3.89 |5.88¢-04| 2.98 [5.64e-06| 3.01 |9.53e-04| 3.01 |6.25¢-06| 3.01
1.03e-01[5.91e+00] * |5.89e+00| * [2.68¢-01] * |1.58¢-01| * |[1.71e-03| * |2.80e-01| * |1.84e-03] *
5.07e-027.02¢-01 | 3.00 | 7.01e-01 | 3.00 |1.52e-02| 4.04 |1.88e-02| 3.00 |1.98¢-04 3.04 |3.20e-02| 3.05 |2.09¢-04| 3.06
2.66e-02|9.53¢-02 | 3.09 [9.52e-02| 3.09 |1.11e-03| 4.06 |2.54e-03| 3.10 |2.66e-05| 3.11 |4.36e-03| 3.09 |2.84e-05| 3.09
1.32e-02| 1.17e-02 | 3.01 | 1.17e-02| 3.01 [7.39e-05| 3.88 |3.15¢-04| 3.00 [3.25e-06| 3.01 |5.28¢-04| 3.02 |3.45¢-06| 3.02
436e-02[8.58¢-01| * |856e-01| * [1.29e-02] * |[3.27e-02] * |2.54e-04] * |541e02] * |3.42e-04] *
2.55¢-02 1.71e-01 | 3.00 | 1.71e-01 | 3.00 |1.57e-03| 3.91 |6.21e-03| 3.09 |4.86e-05| 3.07 |1.03e-02| 3.08 |6.50e-05| 3.09
1.79e-02|6.39e-02 | 2.78 | 6.37e-02| 2.78 |4.19e-04| 3.71 |2.27¢-03| 2.83 [1.77e-05| 2.85 |3.79¢-03| 2.82 |2.39¢-05| 2.82
1.39¢-02|2.93¢-02 | 3.08 [2.93e-02| 3.08 |1.62e-04| 3.75 |1.05¢-03| 3.06 |8.27e-06| 3.01 |1.72¢-03| 3.12 |1.08¢-05 3.13

Distorted |Quadrilateral || Triangular |Hexahedral

AW W WER W W W W WWW BL W W W W LW WL W W W W W W W

Triangular |Hexahedral

Table 1: Example 1. Convergence history and fixed-point iteration count for a variety of 2D meshes with polynomial
degrees k = 1,2. The parameters are set to unity, except for n; = 1073,
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1.03e-01|7.52e+02| * |7.22e+02| * |2.11e+02| * |1.43e+00| * 1.81e-02| * |1.50e+00| * 1.90e-02| * |1
5.07e-02|1.61e+02| 2.17 |1.59e+02| 2.13 |2.30e+01| 3.12 |3.43e-01| 2.01 [4.32e-03| 2.02 |3.53e-01| 2.04 |4.44e-03| 2.05
2.66e-02|4.29e+01| 2.05 |4.27e+01| 2.04 [3.19e+00| 3.06 |9.12e-02| 2.05 |1.15e-03| 2.05 |9.26e-02| 2.07 |1.16e-03| 2.07
1.32e-02|1.04e+01| 2.03 |1.04e+01| 2.03 |3.85e-01| 3.03 |2.26e-02| 2.00 |2.84e-04| 2.00 |2.28e-02| 2.01 |2.86e-04| 2.01
1.03e-013.18e+01| * |3.16e+01| * 7.09e-01 * 11.49e+00| * 1.81e-02| * ]2.83e+00{ * [1.90e-02| *
5.07e-02|7.79e+00| 1.98 |7.75e+00| 1.98 |8.71e-02| 2.95 |3.48e-01| 2.04 |4.32e-03| 2.02 |[6.63e-01| 2.04 |4.44e-03| 2.05
2.66e-02|2.07e+00| 2.05 {2.06e+00| 2.05 |1.35e-02| 2.88 |9.16e-02| 2.07 |1.15e-03| 2.05 |1.74e-01| 2.07 |1.16e-03| 2.07
1.32e-02|5.11e-01| 2.01 | 5.09e-01 | 2.01 |2.16e-03| 2.63 [2.27e-02| 2.00 |2.84e-04| 2.00 |4.28e-02| 2.01 |2.86e-04| 2.01
1.03e-01|3.18e+01| * |3.16e+01| * 7.08e-01 * 11.43e+00| * 1.81e-02| * |2.91e+00| * 1.90e-02| *
5.07e-02|7.79e+00| 1.98 |7.75e+00| 1.98 |8.70e-02| 2.95 |3.43e-01| 2.01 |4.32¢-03| 2.02 |6.83¢-01| 2.04 |4.44e-03| 2.05
2.66e-02|2.07e+00| 2.05 [2.06e+00| 2.05 |1.35¢-02| 2.88 [9.12¢-02| 2.05 |1.15¢-03| 2.05 | 1.79¢-01| 2.07 |1.16e-03| 2.07

©|1.32e-02|5.11e-01{ 2.01 | 5.09¢-01| 2.01 |2.16e-03 | 2.63 [2.26e-02| 2.00 |2.84e-04| 2.00 |4.41e-02| 2.01 |2.86e-04| 2.01
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=108
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Table 2: Example 1. Convergence history and fixed-point iteration counts are shown for the Hexahedral mesh with
polynomial degree k£ = 1 and extreme values for the parameters A, sg, and . In each test, the remaining parameters are
set to unity, except 17, = 1073,

interstitial space in mice (the narrow, irregularly shaped region between neurons and blood vessels in the cerebral cortex)
increases by more than 60% during sleep, resulting in more efficient clearance [48].

Experimentally, MRI scans can visualise the distribution of the fluorescent cerebrospinal fluid (CSF) tracer Gadobutrol
within brain tissue under various conditions, including sleep and awake states [24] (see Figure 6.5). In this example,
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Figure 6.4: Example 2. Snapshots of the variables of interest for the Voronoi mesh in the last refinement step with & = 1.
The modulation parameter is set to 171 = 10—, while the remaining parameters are set to unity.
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2.17e-01|6.07e+01| * |6.04e+01 * 3.14e-01 * 2.36e+00 * 2.97e-02| * ]4.69e+00 * 2.98e-02
1.44e-01|2.84e+01| 1.87 |2.83e+01| 1.87 |1.05e-01| 2.71 |1.06e+00| 1.97 |1.34e-02| 1.97 |2.11e+00| 1.97 |1.34e-02| 1.97
1.08e-01|1.63e+01| 1.94 |1.62e+01| 1.93 |5.44e-02| 2.29 |6.01e-01| 1.98 |7.56e-03| 1.98 |1.19e+00| 1.99 |7.57e-03| 1.99
8.66e-02|1.05e+01| 1.96 |1.05e+01| 1.96 |3.40e-02| 2.11 |3.85e-01| 1.99 |4.85e-03| 1.99 |7.65e-01| 1.99 |4.85e-03| 1.99

2.08e-01|5.81e+01| * 15.79e+01| * |2.88e-01| * |2.22e+00| * |2.78e-02| * |4.39e+00| * |2.79e-02| *
1.04e-01|1.53e+01| 1.93 |1.52e+01| 1.93 |5.07e-02| 2.50 |5.67e-01| 1.97 |7.08e-03| 1.98 |1.12e+00| 1.98 |7.08e-03| 1.98
8.33e-02|9.85e+00| 1.96 |9.82e+00| 1.96 |3.18e-02| 2.09 |3.66e-01| 1.96 [4.54e-03| 1.99 |7.16e-01| 1.99 |4.54e-03| 1.99
6.94e-02|6.87e+00| 1.97 |6.85e+00| 1.97 |2.19e-02| 2.04 |2.56e-01| 1.96 |3.16e-03| 1.99 |4.98¢e-01| 1.99 |3.16e-03| 1.99

3.59¢-01|1.43e+02| * [1.42e+02| * |1.50e+00| * |6.94e+00| * |8.81le-02| * |1.33e+01| * |8.53e-02| *
1.80e-01|4.39e+01| 1.70 |4.38e+01| 1.70 |1.91e-01| 2.98 |1.63e+00| 2.09 |2.04e-02| 2.11 |3.21e+00| 2.05 |2.04e-02| 2.07
8.98e-02|1.12e+01| 1.97 |1.11e+01| 1.97 |3.71e-02| 2.36 |4.33e-01| 1.91 |5.16e-03| 1.98 |8.13e-01 | 1.98 |5.16e-03| 1.98
7.19e-02|7.21e+00| 1.97 |7.18e+00| 1.97 [2.35e-02| 2.05 |2.85e-01| 1.87 |3.31e-03| 1.99 |5.21e-01| 2.00 |3.31e-03| 1.99

3.46e-01|1.27e+02| * [1.27e+02| * |1.41e+00| * |5.54e+00| * |7.0le-02| * |1.08e+01| * |6.99e-02| *
1.73e-01|3.64e+01| 1.81 |3.63e+01| 1.80 |1.59e-01| 3.15 |1.42e+00| 1.97 |1.77e-02| 1.99 |2.66e+00| 2.03 |1.69e-02| 2.05
1.37e-01|2.32e+01| 1.95 |2.32e+01| 1.95 |8.70e-02| 2.60 |8.90e-01| 2.01 |1.10e-02| 2.04 |1.68e+00| 1.98 |1.07e-02| 1.98
1.09e-01|1.48e+01| 1.97 |1.47e+01| 1.97 |5.12e-02| 2.29 |5.67e-01| 1.95 |6.90e-03| 2.03 |1.07e+00| 1.97 |6.78e-03| 1.97
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Table 3: Example 2. Convergence history and fixed-point iteration count for a variety of 3D meshes for the lowest-case
order k = 1. We considered unit parameters except for 7; = 1075,

we focus on the mathematical modelling of this process by tracking the concentration of the CSF tracer under sleep and
awake states in coronal slices of the brain. The mesh originally introduced in [9] provides the geometry of the coronal
slice boundary. We extend this geometry by including the left, right, and bottom ventricles, and employ the capabilities of
PolyMesher [43] to discretise the domain with 19,999 Voronoi cells.

Following [33], we neglect convection and assume that stress-dependent diffusion is the dominant transport mechanism.
This assumption is supported by experimental data indicating that transport within brain tissue occurs 5 — 26% faster than
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Figure 6.5: Example 3. Two-dimensional schematic illustration of molecular clearance in brain tissue of a fluorescent CSF
tracer. The experimental setup is shown at the top middle. The MRI scans for the sleep and awake states are shown on the
left and right pannels. The bottom middle panels show the expected CSF tracer concentration computational simulations
in a polytopal mesh of a coronal slice of the brain with 1,999 Voronoi cells.

predicted by Fickian diffusion [45]. The expansion of the cortical interstitial space during sleep leads to an increase in the
volume fraction of brain tissue [48]. This can be measured as a porosity of ¢ = 0.14 in the awake state and ¢ = 0.23 in
the sleep state.

We imposed a compression condition on = —(po7/2)n on the brain cortex and clamped the brain tissue along the
three ventricles. In addition, a ventricular pressure of pp = pg is prescribed, while no filtration flux is imposed in the
cortex. The initial concentration of the CSF tracer Gadobutrol is assumed to be uniformly distributed within the brain
cortex, with a value of g = 6.05 x 10~*g/mm3. We adimensionalise the concentration using this quantity and set the
boundary condition ¢p = 1; no CSF tracer flux is allowed through the ventricles. Finally, we assume that no external
forces act in the simulation; that is, the right-hand sides f, g, and £ are set to zero.

The stress-assisted diffusion coefficient is modified from (1.2) and now takes the form

o(a) = % (1 + exp(—nltro]?)) ,

where gy = 5.30 x 10~2mm?/s and = 2.00 x 10~!. The coupling parameters are set to o = 1, 8 = 0.35. Relevant

parameters associated with the brain transport problem including mechanical properties of brain tissue are given next
(see [14,20,46]):
Ev E
E =8.00 x 10 %, v=10495, = -
g/mms’, v ! O+ni-2) " 20+

ko =143 x 10°gmm/s®, Kk =rol, so=2.00x 10" ¥mms?/g.

We report snapshots of the approximated variables of interest ¢y, up, o, and zhH for the lowest order VEM scheme
(cf. Section 3) in Figure 6.6. The sleep state is displayed in the left column, and the awake state in the middle column.
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Figure 6.6: Example 3. Snapshots of the variables of interest for the sleep-driven metabolite clearance within brain tissue
simulation. The geometry of the human brain is discretised with 19,999 Voronoi cells and the polynomial degree for the

VEM scheme is setto &k = 1.

a7 The right column illustrates the difference between the two states. The simulation results indicate that the CSF tracer
w7s  concentration is approximately 13% higher in the awake state, particularly in the region adjacent to the ventricles. The
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computational results reproduce the experimentally observed differences in CSF tracer concentration clearance between
the awake and sleep states, indicating that stress-dependent diffusion can play a key role in this process.
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