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Abstract5

We propose a fully mixed virtual element method for the numerical approximation of the coupling between stress-altered6

diffusion and linear elasticity equations with strong symmetry of total poroelastic stress (using the Hellinger–Reissner7

principle). A novelty of this work is that we introduce a less restrictive assumption on the stress-assisted diffusion8

coefficient, requiring an analysis of the perturbed diffusion equation using Banach spaces. The solvability of the9

continuous and discrete problems is established using a suitable modification of the abstract theory for perturbed saddle-10

point problems in Banach spaces (which is in itself a new result of independent interest). In addition, we establish11

optimal a priori error estimates. The method and its analysis are robust with respect to the poromechanical parameters.12

We also include a number of numerical examples that illustrate the properties of the proposed scheme.13
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1 Introduction16

Scope. Mechanical deformations and the diffusion of solutes occur concurrently in various real-world problems, such as17

those found in metallurgy, geomechanics, and biomedicine. In certain specific applications, the interaction mechanisms18

involve stress altering the microstructure of the material. This phenomenon is referred to as stress-assisted diffusion, and19

a number of contributions are available for the analysis and discretisations of that problem in a variety of forms [27–29].20

When the underlying medium is poroelastic the coupling implies that the effective poroelastic stress contains contributions21

from the fluid pressure and also from the diffusive quantity. The equations of poroelastic stress-assisted diffusion have been22

analysed numerically with mixed finite element formulations in [33] (see also a similar treatment for poroelasticity-heat23

equations in the recent work [16], as well as twofold saddle-point formulations for poroelasticity equations with nonlinear24

permeability [36, 39]).25

The present work proposes a momentum and mass conservative, robust, and Biot-locking-free virtual element formu-26

lation for poroelastic stress-assisted diffusion systems. It constitutes an extension of the stress-assisted diffusion VEM27

scheme from [37] to the fully mixed poroelastic setting. The underlying model problem is based on [16, 33], but the28

formulation is simpler as it is based on the Hellinger–Reissner variational principle and imposing strong symmetry of the29

total Cauchy stress. For this we follow the similar works [1, 3, 22]. In this context we also mention other recent polytopal30

discretisations for poroelasticity in mixed form, as proposed in [10, 12, 20, 23, 34, 37, 38, 40, 41, 44].31

As the continuous formulation is also novel, we conduct its well-posedness analysis treating the linear diffusion-stress32

coupling terms as a perturbation of two perturbed saddle-point problems. For the stress-assisted diffusion nonlinearity33

we use a fixed-point argument based on Banach’s contraction mapping theorem, and combine this with two applications34

of the Babuška–Brezzi theory for perturbed saddle-points in [8, Chapter 4] and the Banach–Nečas–Babuška theory for35

global inf-sup conditions. The analysis requires uniform Lipschitz continuity on the nonlinearity as well as a small data36
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assumption – a byproduct of using Banach fixed-point theory. However, and in contrast to previous analysis for stress-37

assisted diffusion and nonlinear Biot systems in [27,36,37,39], here we only require the Lipschitz continuity of the inverse38

stress-assistance in L2(Ω), which is a much more reasonable assumption. The price to pay is that now our diffusive flux39

trial and test functions are sought in L4(Ω), requiring a slightly more involved inf-sup condition, and to invoke a modified40

abstract result for saddle-point problems in Banach spaces. However, the specific structure of this perturbed saddle-point41

problem does not fall in the framework of [19, Theorems 3.1 and 3.4]. These results require the main diagonal block (in42

our case, the flux-flux bilinear form) to be coercive on the kernel of the off-diagonal operator, and this condition is not met43

in our case. On the other hand, the recent result in [17, Theorem 3.2] assumes that the main form is elliptic on the entire44

space, which is also not the case for our flux-flux bilinear form. Nevertheless, we observe that the present formulation45

possesses a dual structure: the perturbation block (the lower diagonal block) is induced by a bilinear form that is elliptic46

on the whole space. Therefore we introduce a new abstract stability result—symmetric to [17, Theorem 3.2]—which is47

tailored for the structure of the present problem.48

The proposed formulation for Biot–stress-assisted diffusion is robust and conservative, and at the same time has fewer49

unknowns than those used in [33]. Another important advantage of the analysis presented herein is that we are able to50

establish in a straightforward manner the uniqueness of the discrete solution. This is a difficult task as observed in previous51

works [27–29, 33]. There, the solvability analysis of the continuous fixed-point scheme relies on regularity assumptions52

on the exact solutions. In particular, in that Hilbert context it was possible to control (under small data assumptions) the53

diffusive flux in the L∞−norm. The same holds in Banach spaces (using a primal formulation for the diffusion equation),54

but in the L
2r

2−r−norm, where r is such that 2d/(d+ 1)− ε < r < 2 with ε > 0. In both situations, such bounds enabled55

the direct application of Banach’s Fixed Point Theorem. In contrast, at the discrete level, the additional regularity was not56

ensured; and as a result, we could not establish the Lipschitz continuity—and thus the contractivity—of the fixed-point57

operator in a direct way.58

In the present work, by formulating the problem in Banach spaces and introducing a suitable fixed-point operator, we59

obtain bounds in the associated norms that provide the necessary control on the data. Importantly, these bounds do not60

rely on additional regularity assumptions and apply both at the discrete and continuous levels, thus allowing the use of61

more natural smallness conditions and the application of Banach’s fixed-point theory.62

Outline. The remainder of the paper has been organised in the following manner. In the rest of this section we recall63

usual notational convention for the domain and the used functional spaces. We also state the governing equations of64

Biot–stress-assisted diffusion, giving also assumptions on the nonlinear diffusion coefficient and the rest of the model65

parameters. Section 2 contains the derivation of the weak formulation in double saddle-point structure, it specifies the66

splitting of kernels of suitable operators, and it examines the properties of all bilinear forms (including stability and67

boundedness). This section also addresses the unique solvability of the separate Biot and mixed diffusion problems, and68

proving an auxiliary abstract result for perturbed saddle-point problems in Banach spaces. In Section 3 we construct69

the virtual element discretisation of the coupled model problem, introducing the needed discrete spaces, polynomial70

interpolation and projection operators, appropriate stabilisation, and discrete operators. In Section 4 we show that the71

scheme is well-posed using a similar fixed-point argument as in the continuous case. A priori error estimates are presented72

in Section 5, and simple numerical tests are provided in Section 6, including the verification of optimal convergence,73

simulation of classical benchmark tests for poromechanics, and a specific application for stress-assisted diffusion.74

Recurrent notation. Let us consider a simply connected bounded and Lipschitz domain Ω ⊂ Rd, d ∈ {2, 3} occu-
pied by a poroelastic body. The domain boundary ∂Ω is partitioned into disjoint sub-boundaries where homogeneous
displacement and traction-type boundary conditions are imposed ∂Ω := ΓD ∪ ΓN, and it is assumed for sake of sim-
plicity that both sub-boundaries are non-empty |ΓD| · |ΓN| > 0. Throughout the text, given a normed space S, by
S and S we will denote the vector and tensor extensions Sd and Sd×d, respectively. We define the Hilbert spaces
H(div,Ω) =

{
w ∈ L2(Ω) : divw ∈ L2(Ω)

}
and HN(div,Ω) := {w ∈ H(div,Ω) : w · n = 0 on ΓN} with its norm

‖w‖2div,Ω := ‖w‖20,Ω + ‖divw‖20,Ω. We also define the Banach spaces H4(div,Ω) = {w ∈ L4(Ω) : divw ∈ L2(Ω)}
and H4

N(div,Ω) := {w ∈ H4(div,Ω) : w · n = 0 on ΓN}, both endowed with the norm ‖ξ‖4,div;Ω := ‖ξ‖0,4;Ω +
‖div ξ‖0,Ω. Next, we recall the definition of the tensorial Hilbert spaces H(div,Ω) = {τ ∈ L2(Ω) : div τ ∈ L2(Ω)},
H(curl,Ω) =

{
τ ∈ L2(Ω) : curl τ ∈ L2(Ω)

}
, with their usual norms ‖τ‖2div,Ω := ‖τ‖20,Ω + ‖div τ‖20,Ω, ‖τ‖

2
curl,Ω :=

‖τ‖20,Ω +‖curl τ‖20,Ω, where the divergence acts on the rows of τ , and the curl of a tensor is here understood as the tensor
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formed by the curl of the rows of τ . We also define the following tensor space

Hsym
N (div,Ω) :=

{
τ ∈ H(div,Ω) : τ = τ t, τn = 0 on ΓN

}
,

which is Hilbert with the H(div) norm. Also, given a domain O (in Rd or Rd−1) we denote the inner product in L2(O)75

(similarly for L2(O) and L2(O)) by (•, •)O. When O = Ω we simply write (•, •).76

Finally, throughout the paper, when comparing two quantities a and b, we use the notation a . b to indicate that there77

exists a constantM , independent of the mesh size h, such that a ≤Mb.78

Strong mixed form. Let us recall that the steady-state Biot system states momentum and mass balances

−divσ = f in Ω,
s0p+ α divu− div (κ∇p) = g in Ω,

respectively, where σ = 2µε(u) + (λdiv(u)−αp− βϕ)I is the poroelastic Cauchy stress tensor including a modulation
due to a diffusing quantity ϕ, α is the Biot–Willis parameter, β is the modulation intensity, s0 is the storativity coefficient,
κ is a symmetric and positive-definite tensor of permeability of the porous media (scaled by the fluid viscosity), i.e., there
exist two strictly positive real numbers κ1 and κ2 satisfying for a.e. x ∈ Ω and all ξ ∈ Rd such that |ξ| = 1

0 < κ1 ≤ κ(x)ξ · ξ ≤ κ2.

The coefficients λ, µ are the Lamé parameters of Hooke’s law, f : Ω→ Rd is the vector field of body loads and g : Ω→ R79

is a scalar source/sink of fluid, and ε(u) = 1
2(∇u+ (∇u)t) is the infinitesimal strain tensor.80

In addition to the mixed Biot equations, we also consider the presence of a solvent within the poroelastic domain. We81

denote its concentration by ϕ : Ω→ R and its movement in the body for given volumetric source ` is governed by82

ϕ− div(%(σ)∇ϕ) = ` in Ω, (1.1)

with mixed boundary condition ϕ = ϕD on ΓD and %(σ)∇ϕ · n = 0 on ΓN. The scalar function % : Rd×d → R is a83

stress-dependent diffusivity accounting for altered diffusion acting in the poroelastic domain and indicating a change in84

microstructure due to poroelastic stress generation. We assume that this term takes the form85

%(σ) = η0%0 + exp(−η1[trσ]2), (1.2)

where %0 > 0 is the base-line effective diffusion (in the absence of stress assistance) and η0, η1 are positive modulation
parameters (the treatment can also be modified to accommodate for anisotropy with a tensor-valued diffusivity). For sake
of the analysis, we require %−1(•) to be uniformly bounded away from zero and Lipschitz continuous with respect to
σ ∈ L2(Ω). More precisely, there exist positive constants %1, %2 and L%, such that

0 < %1 ≤ %−1(•) ≤ %2 <∞ and ‖%−1(σ)− %−1(τ )‖0,Ω ≤ L%‖σ − τ‖0,Ω, (1.3)

for all σ, τ ∈ L2(Ω). The material properties are described at each point by the compliance tensor (the inverse of the
fourth-order linear isotropic stiffness tensor C) C−1, which is identified as a symmetric, bounded, and uniformly positive
definite linear operator characterised by its action

Cε(u) = 2µε(u) + λ(divu)I, C−1 σ =
1

2µ

(
σ − λ

2µ+ dλ
tr(σ)I

)
,

and σ = Cε(u)− {αp+ βϕ}I to obtain C−1(σ + {αp+ βϕ}I) = ε(u).86

The problem is rewritten, considering the elasticity equations with strong symmetric stress imposition, which are
coupled with the fluid phase obeying Darcy’s law for filtration in porous media, and a mixed form associated with (1.1).
The unknowns are the effective poroelastic Cauchy stress tensor σ, the displacement vector u, the filtration flux vector z,
the fluid pressure p, the diffusive flux ζ, and the concentration ϕ such that

C−1 σ = ε(u)− αp+ βϕ

2µ+ dλ
I in Ω, (1.4a)

3



−divσ = f in Ω, (1.4b)
σ = σt in Ω, (1.4c)

κ−1z +∇p = 0 in Ω, (1.4d)
s0p+ α tr C−1[σ + (αp+ βϕ)I] + div z = g in Ω, (1.4e)

%(σ)−1ζ +∇ϕ = 0 in Ω, (1.4f)
ϕ+ div ζ = ` in Ω, (1.4g)

u = uD, p = pD, ϕ = ϕD on ΓD, (1.4h)
σn = 0, z · n = 0, ζ · n = 0 on ΓN, (1.4i)

(stating a rescaling of the stress constitutive relation, the balance of linear momentum, the balance of angular momentum,87

Darcy’s law, the balance of the total amount of fluid, the constitutive equation for the diffusive flux, the concentration88

balance, and the mixed-loading boundary conditions of homogeneous type, respectively).89

2 Weak formulation and continuous well-posedness analysis90

The functional structure of the coupled problem (1.4) is developed next. In particular, the ordering of the unknowns for91

the fluid part of the problem are reversed from their typical form. This section also contains the analysis of existence and92

uniqueness of weak solution by means of Banach’s fixed-point theorem, complemented by an abstract result required to93

establish the unique solvability of the diffusion sub-problem.94

2.1 Derivation and main properties95

We apply algebraic manipulations and multiply the strong form of the balance equations and constitutive relations by
suitable test functions, integrate by parts in the constitutive relations and in the diffusion term, and employ the boundary
conditions to obtain the weak formulation: for f ∈ L2(Ω), g, ` ∈ L2(Ω), uD ∈ H

1/2
00 (ΓD), and pD, ϕD ∈ H

1/2
00 (ΓD); find

(σ, p,u, z, ζ, ϕ) ∈ Hsym
N (div,Ω)× L2(Ω)× L2(Ω)×HN(div,Ω)×H4

N(div,Ω)× L2(Ω) such that

(C−1σ, τ ) +
( αp

2µ+ dλ
, tr τ

)
+ (div τ ,u) +

( βϕ

2µ+ dλ
, tr τ

)
= 〈uD, τn〉ΓD

∀τ ∈ Hsym
N (div,Ω), (2.1a)

(trσ,
αq

2µ+ dλ
) +

[
s0 +

dα2

2µ+ dλ

]
(p, q) + (q,div z) + α

( dβϕ

2µ+ dλ
, q
)

= (g, q) ∀q ∈ L2(Ω), (2.1b)

(divσ,v) = −(f ,v) ∀v ∈ L2(Ω), (2.1c)
(κ−1z,w)− (p,divw) = −〈pD,w · n〉ΓD

∀w ∈ HN(div,Ω), (2.1d)
(%(σ)−1ζ, ξ)− (ϕ,div ξ) = −〈ϕD, ξ · n〉ΓD

∀ξ ∈ H4
N(div,Ω), (2.1e)

−(ψ,div ζ)− (ϕ,ψ) = −(`, ψ) ∀ψ ∈ L2(Ω), (2.1f)

where the ordering of the unknowns obeys to the subsequent structure of the analysis. Indeed, we group the Biot function96

spaces as well as trial and test functions for stress-pressure and displacement-discharge flux as follows97

V := Hsym
N (div,Ω)× L2(Ω), Q := L2(Ω)×HN(div,Ω),

(endowed with the canonical graph norms of the product spaces) and98

~σ := (σ, p), ~τ := (τ , q) ∈ V, and ~u := (u, z), ~v := (v,w) ∈ Q,

respectively. Then, (2.1) consists in finding (~σ, ~u) ∈ V×Q and (ζ, ϕ) ∈ H4
N(div,Ω)× L2(Ω), such that

A(~σ, ~τ ) + B(~τ , ~u) +D(ϕ, ~τ ) = F (~τ ) ∀~τ ∈ V, (2.2a)
B(~σ, ~v)− C(~u, ~v) = G(~v) ∀~v ∈ Q, (2.2b)
aσ(ζ, ξ) + b(ξ, ϕ) = H(ξ) ∀ξ ∈ H4

N(div,Ω), (2.2c)
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b(ζ, ψ)− c(ϕ,ψ) = I(ψ) ∀ψ ∈ L2(Ω), (2.2d)

where the bilinear forms A : V× V→ R, B : V×Q→ R, C : Q×Q→ R, D : L2(Ω)× V→ R, b : H4
N(div,Ω)×

L2(Ω)→ R, c : L2(Ω)×L2(Ω)→ R, and (for a given σ̂ ∈ L2(Ω)) the bilinear form aσ̂ : H4
N(div,Ω)×H4

N(div,Ω)→ R,
are defined as

A(~σ, ~τ ) := (C−1σ, τ ) +
( αp

2µ+ dλ
, tr τ

)
+
( αq

2µ+ dλ
, trσ

)
+

[
s0 +

dα2

2µ+ dλ

]
(p, q),

B(~τ , ~v) := (v,div τ ) + (q,divw), C(~u, ~v) := (κ−1z,w), D(ψ, ~τ ) := (
βψ

2µ+ dλ
, tr τ + αdq),

aσ̂(ζ, ξ) := (%(σ̂)−1ζ, ξ), b(ξ, ψ) := −(ψ,div ξ), c(ϕ,ψ) := (ϕ,ψ).

Similarly, the linear functionals F : V→ R, G : Q→ R, H : H4
N(div,Ω)→ R, and I : L2(Ω)→ R are

F (~τ ) := 〈uD, τn〉ΓD
+ (g, q), G(~v) := −(f ,v)− 〈pD,w · n〉ΓD

,

H(ξ) := −〈ϕD, ξ · n〉ΓD
, I(ψ) := −(`, ψ).

We proceed to examine the properties of the bilinear forms and linear functionals. As an intermediate step we denote
by B and B∗ the operators induced by the bilinear form B(•, •); and by b and b∗ of the operators induced by the bilinear
form b(•, •). Their kernels admit the following characterisations:

V0 := ker(B) = {~τ ∈ V : B(~τ , ~v) = 0, ∀~v ∈ Q}
=: V01 × V02 ≡ {τ ∈ Hsym

N (div,Ω) : div τ = 0 in Ω} × {0}, (2.3a)
Q0 := ker(B∗) = {~v ∈ Q : B(~τ , ~v) = 0, ∀~τ ∈ V}

=: Q01 ×Q02 ≡ {0} × {w ∈ HN(div,Ω) : divw = 0 in Ω}. (2.3b)

The characterisation of V02 (and similarly for Q01) follows as in [18, Section 3.3]. It is possible to realise that ∇q = 099

in the distributional sense, which gives q ∈ H1(Ω). Moreover, integrating by parts (q,divw) in (2.3b), we arrive at100

〈w · n, q〉ΓD
= 0 for all w ∈ HN(div,Ω). Next, using the surjectivity of the normal trace from HN(div,Ω) onto101

H
−1/2
00 (ΓD) (cf. [25, Lemma 51.5]), yields q = 0 on ΓD, and hence q ∈ H1

D(Ω).102

In turn, the spaces V⊥01, V⊥02, Q⊥01 and Q⊥02 are characterised as follows:

V⊥01 ≡ {σ ∈ Hsym
N (div,Ω) : (σ, τ ) = 0, ∀τ ∈ V01}, V⊥02 ≡ L2(Ω),

Q⊥01 ≡ L2(Ω), Q⊥02 ≡ {z ∈ HN(div,Ω) : (z,w) = 0, ∀w ∈ Q02},

and hence V⊥0 = V⊥01 × V⊥02 and Q⊥0 = Q⊥01 ×Q⊥02 are closed subspaces of V and Q, respectively.103

For the diffusion block, the well-posedness analysis will rely on an abstract result (to be proven later in Theorem 2.5)104

for which the main bilinear form aσ̂(•, •) only needs to be positive semi-definite on the whole space H4
N(div,Ω) but the105

perturbed bilinear term, i.e., c(•, •) is required to be elliptic on the whole space L2(Ω). This new theoretical framework106

does not require a restriction to the kernel of b, and thus its characterisation is not necessary for the subsequent analysis.107

Lemma 2.1 (boundedness of the bilinear forms) The bilinear formsA(•, •),B(•, •),C(•, •),D(•, •), aσ̂(•, •), b(•, •),
and c(•, •) are bounded. That is:

|A(~σ, ~τ )| ≤ ‖A‖‖~σ‖V‖~τ‖V ∀~σ, ~τ ∈ V,
|B(~τ , ~v)| ≤ ‖B‖‖~τ‖V‖~v‖Q ∀~τ ∈ V,∀~v ∈ Q,

|C(~u, ~v)| ≤ ‖C‖‖~u‖Q‖~v‖Q ∀~u, ~v ∈ Q,

|D(ψ, ~τ )| ≤ ‖D‖‖ψ‖0,Ω‖~τ‖V ∀ψ ∈ L2(Ω), ∀~τ ∈ V,
|aσ̂(ζ, ξ)| ≤ ‖a‖‖ζ‖4,div;Ω‖ξ‖4,div;Ω ∀ζ, ξ ∈ H4

N(div,Ω),

|b(ξ, ψ)| ≤ ‖b‖‖ξ‖4,div;Ω‖ψ‖0,Ω ∀ξ ∈ H4
N(div,Ω), ∀ψ ∈ L2(Ω),

|c(ϕ,ψ)| ≤ ‖c‖‖ϕ‖0,Ω‖ψ‖0,Ω ∀ϕ,ψ ∈ L2(Ω),
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where the boundedness constants are given by

‖A‖ := max

{
1

2µ
+

λ

2µ(2µ+ dλ)
,
α
√
d

2µ+ dλ
, s0 +

dα2

2µ+ dλ

}
, ‖B‖ := 1, ‖C‖ :=

1

κ1
,

‖D‖ :=
β
√
d(1 + α)

2µ+ dλ
, ‖a‖ := %2C

2
emb, ‖b‖ := 1, ‖c‖ := 1,

and Cemb is the constant from the continuous embedding L4(Ω) ↪→ L2(Ω).108

Proof. The boundedness of the bilinear forms is a direct consequence of the Cauchy–Schwarz and Hölder inequalities,109

and thus further details are omitted. �110

Lemma 2.2 (symmetry and positive semi-definiteness of diagonal forms) The bilinear forms A(•, •) and C(•, •) are111

symmetric and positive semi-definite, and (for a given σ̂ ∈ L2(Ω)) also aσ̂(•, •) is positive semi-definite.112

Proof. It is clear that A(•, •) and C(•, •) are symmetric, whereas that C(•, •) is positive semi-definite. To prove that
A(•, •) is positive semi-definite, note that given ~τ ∈ V, we have

A(~τ , ~τ ) = (C−1τ , τ ) +
2α

2µ+ dλ
(q, tr τ ) +

[
s0 +

dα2

2µ+ dλ

]
‖q‖20,Ω.

Next, applying suitably Young’s inequality in the second term of the above equation with ε :=
2α

s0(2µ+ dλ) + 2dα2
and

recalling that

(C−1σ, τ ) =
1

2µ
(σd, τ d) +

1

d(2µ+ dλ)
(trσ, tr τ ) ∀σ, τ ∈ H(div,Ω),

readily yields

A(~τ , ~τ ) ≥ 1

2µ
‖τ d‖20,Ω +

s0

2
‖q‖20,Ω +

s0

d(s0(2µ+ dλ) + 2dα2)
‖ tr τ‖20,Ω ≥ 0 ∀~τ ∈ V, (2.4)

which shows the desired result. Finally, for a given σ̂ ∈ L2(Ω) since aσ̂(ζ, ζ) = (%(σ̂)−1ζ, ζ) ≥ %1‖ζ‖20,Ω ≥ 0, the form113

aσ̂(•, •) is positive semi-definite. �114

We proceed similarly to [26, Section 2.3] to show that A(•, •) is V0-elliptic. To do that, we recall the decomposition

H(div,Ω) = H0(div,Ω) ⊕ R I, with H0(div,Ω) :=

{
τ ∈ H(div,Ω) :

∫
Ω

tr τ = 0

}
.

We also recall two useful estimates, whose proofs can be found in [26, Lemma 2.3] and [26, Lemma 2.4]. Specifically,115

there exists C1 > 0, depending only on Ω, such that116

C1 ‖τ 0‖0,Ω ≤ ‖τ d‖0,Ω + ‖div τ‖0,Ω ∀ τ ∈ H(div,Ω), and (2.5)

there exists C2 > 0, depending only on ΓN and Ω, such that

C2 ‖τ‖div,Ω ≤ ‖τ 0‖div,Ω ∀ τ := τ 0 +mI ∈ HN(div,Ω), (2.6)

with τ 0 ∈ H0(div,Ω) andm ∈ R. Then, we have the following result.117

Lemma 2.3 (coercivity for the main diagonal forms) There exist constants αA, αc, αC > 0 such that

A(~τ , ~τ ) ≥ αA‖~τ‖2V ∀ ~τ ∈ V0 = ker(B), (2.7a)
c(ψ,ψ) ≥ αc‖ψ‖20,Ω ∀ψ ∈ L2(Ω), (2.7b)

C(~v, ~v) ≥ αC‖~v‖2Q ∀~v ∈ Q0. (2.7c)
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Proof. For (2.7a), we let ~τ = (τ , q) ∈ V01 × V02. This means, according to (2.4), (2.5) and (2.6), that

A(~τ , ~τ ) ≥ αA‖~τ‖2V,

with αA =
C1C2

4µ
. On the other hand, we observe that (2.7b) is trivially satisfied with αc = 1. Finally, given ~v ∈ Q0 (cf.

(2.3b)), we have

C(~v, ~v) ≥ 1

κ2
‖w‖20,Ω =

1

κ2

{
‖w‖20,Ω + ‖divw‖20,Ω + ‖v‖20,Ω

}
,

which shows (2.7c) with αC = 1
κ2
. �118

Lemma 2.4 (continuous inf-sup conditions) There exist positive constants βB, βb such that

sup
~τ∈V\{0}

B(~τ , ~v)

‖~τ‖V
≥ βB‖~v‖Q ∀~v ∈ [ker(B∗)]⊥, (2.8a)

sup
ψ∈L2(Ω)\{0}

b(ξ, ψ)

‖ψ‖0,Ω
≥ βb‖ξ‖4,div;Ω ∀ ξ ∈ H4

N(div,Ω). (2.8b)

Proof. To prove (2.8a), it suffices to establish the following two independent inf–sup conditions, which follow from the119

diagonal structure of B(•, •):120

sup
τ∈Hsym

N (div,Ω)\{0}

(v,div τ )

‖τ‖div,Ω
≥ β1‖v‖0,Ω ∀v ∈ Q⊥01, (2.9a)

121

sup
q∈L2(Ω)\{0}

(q,divw)

‖q‖0,Ω
≥ β2‖w‖div,Ω ∀w ∈ Q⊥02. (2.9b)

For (2.9a), we refer to [26, Lemma 2.2, eq. (14)], whereas (2.9b) holds by virtue of the existence of a constant β̂2 > 0,122

such that (see, e.g., [15, Lemma 3.2])123

sup
w∈HN(div,Ω)\{0}

(q,divw)

‖w‖div,Ω
≥ β̂2‖q‖0,Ω ∀ q ∈ V⊥02 = L2(Ω),

and the identity given by [8, eq. (4.3.18)], which also implies that β2 = β̂2. Thus, the required inequality (2.8a) is obtained124

with βB = β1+β2

4 .125

Regarding the inf-sup condition for the bilinear form b(•, •) (cf. (2.8b)) let us first define γ := |ξ|2ξ ∈ L4/3(Ω), and126

consider the problem of finding ψ̂ ∈W
1,4/3
0 (Ω) such that127

∇ψ̂ = γ in Ω, ψ̂ = 0 on ∂Ω.

Testing against∇ζ for any ζ ∈W1,4
0 (Ω) we have128 ∫

Ω
∇ψ̂ · ∇ζ =

∫
Ω
γ · ∇ζ ∀ζ ∈W1,4

0 (Ω). (2.10)

The bilinear form ã : W
1,4/3
0 (Ω)×W1,4

0 (Ω)→ R defined as ã(ψ, ζ) :=
∫

Ω∇ψ ·∇ζ is bounded using Hölder’s inequality129

|ã(ψ, ζ)| ≤ ‖∇ψ‖0,4/3;Ω‖∇ζ‖0,4;Ω ≤ ‖ψ‖1,4/3;Ω‖ζ‖1,4;Ω,

and it satisfies the inf-sup Banach–Nečas–Babuška condition: for a fixed ψ ∈W
1,4/3
0 (Ω),130

sup
ζ∈W1,4

0 (Ω)\{0}

ã(ψ, ζ)

‖ζ‖1,4;Ω
= sup

ζ∈W1,4
0 (Ω)\{0}

‖∇ψ‖0,4/3;Ω‖∇ζ‖0,4;Ω

‖ζ‖1,4;Ω
‖ & ‖ψ‖1,4/3;Ω,
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by duality between L4/3(Ω) and L4(Ω) and Poincaré inequality. In turn, the linear functional F̃ : W1,4
0 (Ω)→ R defined131

as F̃ (ζ) :=
∫

Ω γ · ∇ζ is bounded thanks to Hölder’s inequality132

|F̃ (ζ)| ≤ ‖γ‖0,4/3;Ω‖∇ζ‖0,4;Ω ≤ ‖γ‖0,4/3;Ω‖ζ‖1,4;Ω,

and so we obtain that there exists a unique ψ̂ ∈W
1,4/3
0 (Ω) satisfying (2.10). This is a standard consequence of the theory133

of elliptic operators in reflexive Banach spaces [25, Theorem 2.6]. The continuous dependence on data associated with134

this problem, in combination with the continuous embedding W1,4/3(Ω) ↪→ L2(Ω) (valid for Lipschitz domains in 2D135

and 3D), then gives136

‖ψ̂‖0,Ω . ‖ψ̂‖1,4/3;Ω . ‖γ‖0,4/3;Ω, (2.11)

where the hidden constant depends only on the norm of the continuous embedding and the Poincaré constant.137

Next, for any ξ ∈ H4
N(div,Ω) we choose ψ = ψ̂ and exploiting the fact that ψ̂ ∈W

1,4/3
0 (Ω), we invoke the integration

by parts formula to derive

sup
ψ∈L2(Ω)\{0}

1

2

b(ξ, ψ)

‖ψ‖0,Ω
≥ b(ξ, ψ̂)

2‖ψ̂‖0,Ω
=
−
∫

Ω div ξ ψ̂

2‖ψ̂‖0,Ω
=

∫
Ω∇ψ̂ · ξ
2‖ψ̂‖0,Ω

=

∫
Ω γ · ξ

2‖ψ̂‖0,Ω

&
‖γ‖0,4/3;Ω‖ξ‖0,4;Ω

‖γ‖0,4/3;Ω
= ‖ξ‖0,4;Ω, (2.12)

where in the second-last equality we have used (2.10) and in the last inequality we have used the definition of γ and (2.11).138

On the other hand, and again for any ξ ∈ H4
N(div,Ω), we can construct ψ̃ ≡ −div ξ ∈ L2(Ω). This straightforwardly

implies that

sup
ψ∈L2(Ω)\{0}

1

2

b(ξ, ψ)

‖ψ‖0,Ω
≥ b(ξ, ψ̃)

2‖ψ̃‖0,Ω
=
−
∫

Ω ψ̃ div ξ

2‖ψ̃‖0,Ω
=
‖div ξ‖20,Ω
2‖ div ξ‖0,Ω

=
1

2
‖ div ξ‖0,Ω. (2.13)

Finally, it suffices to add (2.12) with (2.13) to obtain the desired inf-sup condition, with constant βb > 0 depending only139

on the Poincaré and continuous embedding constants. �140

Remark 2.1 It is important to clarify that the unique solvability of the auxiliary problem (2.10) is understood in a weak141

sense and it only needs the Banach–Nečas–Babuška argument in combination with Poincaré’s inequality. Note that we142

are not claiming a classical solution of the Dirichlet Poisson problem with Ls
′
(Ω) control, which allows (from the sharp143

result in [35]) a solution integrability only up to W1,s(Ω) with 3
2 − ε < s < 3 + ε for d = 3 and 4

3 − ε < s < 4 + ε for144

d = 2.145

The strategy for the analysis of well-posedness of (2.2) is simply to decompose the problem into the poroelasticity equations146

(first two equations in that system) and the remaining diffusion equation in mixed form. We separate the analysis for each147

problem in the following sub-section.148

2.2 Unique solvability of decoupled Biot equations and mixed diffusion equations149

As announced in Section 1, the following result is a dual to [17, Theorem 3.2] and it provides the necessary framework to150

establish the well-posedness of the diffusion subproblem without requiring coercivity of aσ̂(•, •).151

Theorem 2.5 (Abstract result for Q-elliptic perturbed saddle-point problems) LetHandQbe reflexiveBanach spaces,152

and let a : H ×H → R, b : H ×Q → R, and c : Q ×Q → R be bounded bilinear forms with boundedness constants153

denoted by ‖a‖, ‖b‖, and ‖c‖, respectively. Assume that:154

i) a(•, •) is positive semi-definite, that is a(τ, τ) ≥ 0 for all τ ∈ H .155

ii) b(•, •) satisfies a transposed continuous inf-sup condition, that is, there exists a constant β̂ > 0 such that

sup
v∈Q\{0}

b(τ, v)

‖v‖Q
≥ β̂‖τ‖H ∀τ ∈ H.
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iii) c(•, •) is Q-elliptic, that is, there exists a constant γ > 0 such that

c(v, v) ≥ γ‖v‖2Q ∀v ∈ Q.

Then, for each pair (F,G) ∈ H ′ ×Q′, the problem: Find (σ, u) ∈ H ×Q such that

a(σ, τ) + b(τ, u) = F (τ) ∀τ ∈ H, (2.14a)
b(σ, v)− c(u, v) = G(v) ∀v ∈ Q, (2.14b)

has a unique solution. Moreover, there exists a positive constant C, depending only on ‖b‖, ‖c‖, γ and β̂, such that156

‖σ‖H + ‖u‖Q ≤ C{‖F‖H′ + ‖G‖Q′}. (2.15)

Proof. The proof is symmetric to that of [17, Theorem 3.2]. The argument is driven by the strong Q-ellipticity of the157

form c(•, •). To begin, we establish existence. Indeed, the Q-ellipticity of c(•, •) (hypothesis iii)) guarantees, by the158

Banach–Nečas–Babuška theorem, for each ζ ∈ H , the existence of a unique uζ ∈ Q such that159

c(uζ , v) = b(ζ, v) ∀ v ∈ Q, (2.16)

as well as a unique u0 ∈ Q such that160

c(u0, v) = G(v) ∀ v ∈ Q. (2.17)

The corresponding a priori estimates are given, respectively, by161

‖uζ‖Q ≤
‖b‖
γ
‖ζ‖H and ‖u0‖Q ≤

1

γ
‖G‖Q′ ∀ ζ ∈ H. (2.18)

Next, we use the transposed inf-sup condition ii) to obtain for each ζ ∈ H

β̂‖ζ‖H ≤ sup
v∈Q\{0}

b(ζ, v)

‖v‖Q
= sup

v∈Q\{0}

c(uζ , v)

‖v‖Q
≤ ‖c‖‖uζ‖Q. (2.19)

Noting from (2.16) that uζ depends on ζ, we define a new form Θ : H ×H → R by

Θ(ζ, τ) := a(ζ, τ) + b(τ, uζ) ∀ζ, τ ∈ H.

In what follows, we prove that Θ(•, •) is bilinear. Indeed, for ζ1, ζ2 ∈ H and scalars x, y ∈ R, we use the bilinearity of162

b(•, •) and c(•, •) to arrive at163

c(xuζ1 + yuζ2 , v) = xc(uζ1 , v) + yc(uζ2 , v) = xb(ζ1, v) + yb(ζ2, v) = b(xζ1 + yζ2, v) v ∈ Q.

By the uniqueness of the solution to (2.16), we must have uxζ1+yζ2 = xuζ1 + yuζ2 . Thus for the first argument, we have

Θ(xζ1 + yζ2, τ) = a(xζ1 + yζ2, τ) + b(τ, uxζ1+yζ2)

= xa(ζ1, τ) + ya(ζ2, τ) + b(τ, xuζ1 + yuζ2)

= xa(ζ1, τ) + ya(ζ2, τ) + xb(τ, uζ1) + yb(τ, uζ2)

= xΘ(ζ1, τ) + yΘ(ζ2, τ),

which proves the linearity in the first argument. The linearity in the second argument and the boundedness of Θ(•, •)164

follow directly from the properties of a(•, •) and b(•, •).165

We now demonstrate that Θ(•, •) is H-elliptic. From the definition of uζ in (2.16), we have the identity c(uζ , uζ) =
b(ζ, uζ), which, along with hypotheses i) and iii), yields

Θ(ζ, ζ) = a(ζ, ζ) + b(ζ, uζ) = a(ζ, ζ) + c(uζ , uζ) ≥ c(uζ , uζ) ≥ γ‖uζ‖2Q ≥ γ
(
β̂

‖c‖

)2

‖ζ‖2H .
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This proves thatΘ(•, •) is elliptic onH with a constantαΘ = γβ̂2

‖c‖2 > 0. Thus, applying again the Banach–Nečas–Babuška
theorem, we conclude that there exists a unique σ ∈ H such that Θ(σ, τ) = F (τ) + b(τ, u0) for all τ ∈ H , that is

a(σ, τ) + b(τ, uσ) = F (τ) + b(τ, u0) ∀τ ∈ H,

which can be rearranged as

a(σ, τ) + b(τ, uσ − u0) = F (τ) ∀τ ∈ H. (2.20)

Now, letting u = uσ − u0 ∈ Q, it follows from (2.16) and (2.17) that166

c(u, v) = c(uσ, v)− c(u0, v) = b(σ, v)−G(v),

that is167

b(σ, v)− c(u, v) = G(v) ∀v ∈ Q,

which, together with (2.20), shows that (σ, u) ∈ H ×Q is a solution to (2.14a).168

In turn, the a priori estimate for the solution is derived now. First, we establish the bound for σ. From the stability of169

the bilinear form Θ(•, •), we have170

‖σ‖H ≤
‖c‖2

γβ̂2
(‖F‖H′ + ‖b‖‖u0‖Q) .

The above together with the second inequality in (2.18), yields171

‖σ‖H ≤
‖c‖2

γβ̂2
‖F‖H′ +

‖b‖‖c‖2

γ2β̂2
‖G‖Q′ . (2.21)

Next, we establish the bound for u. Using the triangle inequality and the bounds for uσ and u0 in (2.18), we get172

‖u‖Q ≤
‖b‖
γ
‖σ‖H +

1

γ
‖G‖Q′ .

Substituting the estimate (2.21) into this inequality yields173

‖u‖Q ≤
‖b‖‖c‖2

γ2β̂2
‖F‖H′ +

(
‖b‖2‖c‖2

γ3β̂2
+

1

γ

)
‖G‖Q′ . (2.22)

Having proved the existence of a solution (σ, u), it only remains to show the uniqueness, for which we let (σ̃, ũ) ∈ H ×Q
be such that

a(σ̃, τ) + b(τ, ũ) = 0 ∀τ ∈ H,
b(σ̃, v)− c(ũ, v) = 0 ∀v ∈ Q.

Then, taking τ = σ̃ and v = ũ, and then subtracting the resulting equations and using i) and iii), we get

0 = a(σ̃, σ̃) + c(ũ, ũ) ≥ γ‖ũ‖2Q.

from which ũ = 0. In addition, it is clear from the second row of the homogeneous system and (2.16) that uσ̃ = ũ, which,174

invoking (2.19), yields σ̃ = 0, thus confirming the uniqueness of the solution.175

Finally, (2.21) and (2.22) imply (2.15) and complete the proof. �176

We are now in a position to establish the well-posedness of the decoupled subproblems. To this end, the analysis of the177

Biot equations is based on the classical theory for perturbed saddle-point problems from [8, Theorem 4.3.1], whereas the178

well-posedness of the mixed diffusion equations follows from Theorem 2.5.179

Firstly, let us assume that ϕ̂ ∈ L2(Ω) is prescribed. Then, we have the following result.180
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Theorem 2.6 (well-posedness of the Biot equations) There exists a unique (~σ, ~u) ∈ V×Q such that

A(~σ, ~τ ) + B(~τ , ~u) = −D(ϕ̂, ~τ ) + F (~τ ) ∀~τ ∈ V, (2.23a)
B(~σ, ~v)− C(~u, ~v) = G(~v) ∀~v ∈ Q, (2.23b)

and moreover181

‖(~σ, ~u)‖V×Q .
(1 + αd)β

2µ+ dλ
‖ϕ̂‖0,Ω + ‖f‖0,Ω + ‖uD‖1/2,00;ΓD

+ ‖g‖0,Ω + ‖pD‖1/2,00;ΓD
.

Proof. It follows from Lemma 2.2, and equations (2.7a), (2.7c), and (2.8a) of Lemmas 2.3 and 2.4 and a straightforward182

application of [8, Theorem 4.3.1]. �183

Similarly, for a prescribed σ̂ ∈ Hsym
N (div,Ω), we have the following result.184

Theorem 2.7 (well-posedness of the mixed perturbed diffusion equation) There exists a unique (ζ, ϕ) ∈ H4
N(div,Ω)×

L2(Ω) such that

aσ̂(ζ, ξ) + b(ξ, ϕ) = H(ξ) ∀ξ ∈ H4
N(div,Ω), (2.24a)

b(ζ, ψ)− c(ϕ,ψ) = I(ψ) ∀ψ ∈ L2(Ω), (2.24b)

and furthermore185

‖ζ‖4,div;Ω + ‖ϕ‖0,Ω . ‖`‖0,Ω + ‖ϕD‖1/2,00;ΓD
.

Proof. The well-posedness follows from the properties of the forms a(•, •), b(•, •), and cσ̂(•, •) established in Lemmas186

2.2, 2.3, and 2.4 in combination with Theorem 2.5. �187

2.3 Unique solvability of the coupled problem via fixed-point theory188

We define the following map189

J Biot : L2(Ω)→ V×Q, ϕ̂ 7→ J Biot(ϕ̂) = ((J Biot
1 (ϕ̂),J Biot

2 (ϕ̂)),J Biot
3 (ϕ̂)) := ((σ, p), ~u) = (~σ, ~u),

where (~σ, ~u) ∈ V×Q is the unique solution of the poroelasticity equations as stated in Theorem 2.6. In turn, we define190

the solution operator associated with the mixed diffusion equations as191

J diff : Hsym
N (div,Ω)→ H4

N(div,Ω)× L2(Ω), σ̂ 7→ J diff(σ̂) = (J diff
1 (σ̂),J diff

2 (σ̂)) := (ζ, ϕ),

where (ζ, ϕ) is the unique solution of the diffusion equations as stated in Theorem 2.7. These maps are well-defined and192

so it is the following one193

J : L2(Ω)→ L2(Ω), ϕ̂ 7→ J (ϕ̂) := J diff
2 (J Biot

1 (ϕ̂)). (2.25)

Finding a fixed point ϕ of J is therefore equivalent to solve (2.2). For this we use Banach fixed point theorem and start194

by considering, for a generic r > 0, the following closed ball195

W := {ϕ̂ ∈ L2(Ω) : ‖ϕ̂‖0,Ω ≤ r},

and proceed next to show that J maps it to itself and that J is Lipschitz continuous.196

Lemma 2.8 (ball mapping property) Under the small data assumption197

‖`‖0,Ω + ‖ϕD‖1/2,00;ΓD
≤ r, (2.26)

it follows that J
(
W
)
⊆W.198
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Proof. Given ϕ̂ ∈W, by (2.25), (2.26) and the estimate given by Theorem 2.7 we have

‖J (ϕ̂)‖0,Ω = ‖J diff
2 (J Biot

1 (ϕ̂))‖0,Ω . ‖`‖0,Ω + ‖ϕD‖1/2,00;ΓD
≤ r,

which means that J
(
W
)
⊆W. �199

We continue the analysis with the Lipschitz-continuity property of J . To this end, we recall that Theorems 2.6 and 2.7
establish the existence of positive constants CB and CD such that

sup
(~τ ,~v)∈V×Q

(~τ ,~v)6=0

A(~ζ, ~τ ) +B(~τ , ~w) +B(~ζ, ~v)− C(~w, ~v)

‖(~τ , ~v)‖V×Q
≥ CB‖(~ζ, ~w)‖V×Q ∀ (~ζ, ~w) ∈ V×Q, (2.27a)

sup
(ξ,ψ)∈H4

N
(div,Ω)×L2(Ω)

(ξ,ψ)6=0

aσ̂(ζ, ξ) + b(ξ, φ) + b(ζ, ψ)− c(φ, ψ)

‖(ξ, ψ)‖H4
N(div,Ω)×L2(Ω)

≥ CD‖(ζ, φ)‖H4
N(div,Ω)×L2(Ω) ∀ (ζ, φ) ∈ H4

N(div,Ω)× L2(Ω). (2.27b)

Lemma 2.9 (Lipschitz continuity) There exists a positive constant LJ such that200

‖J (ϕ1)− J (ϕ2)‖0,Ω ≤ LJ ‖ϕ1 − ϕ2‖0,Ω ∀ϕ1, ϕ2 ∈ L2(Ω). (2.28)

Proof. Given ϕ1, ϕ2 ∈ L2(Ω), we let J Biot(ϕ1) = (~σ1, ~u1) ∈ V×Q and J Biot(ϕ2) = (~σ2, ~u2) ∈ V×Q be the unique
solutions of (2.23). Then, applying the inf-sup condition (2.27a) with (~ζ, ~w) = (~σ1 − ~σ2, ~u1 − ~u2), it follows that

CB‖(~σ1 − ~σ2, ~u1 − ~u2)‖V×Q ≤ sup
(~τ ,~v)∈V×Q

(~τ ,~v) 6=0

A(~σ1 − ~σ2, ~τ ) +B(~τ , ~u1 − ~u2) +B(~σ1 − ~σ2, ~v)− C(~u1 − ~u2, ~v)

‖(~τ , ~v)‖V×Q

= sup
(~τ ,~v)∈V×Q

(~τ ,~v)6=0

D(ϕ1, ~τ )−D(ϕ2, ~τ )

‖(~τ , ~v)‖V×Q

≤ (1 + αd)β

2µ+ dλ
‖ϕ1 − ϕ2‖0,Ω.

The bound above implies that

‖J Biot
1 (ϕ1)− J Biot

1 (ϕ2)‖4,div;Ω ≤
(1 + αd)β

CB(2µ+ dλ)
‖ϕ1 − ϕ2‖0,Ω. (2.29)

On the other hand, given σ1,σ2 ∈ Hsym
N (div,Ω), we let J diff(σ1) = (ζ1, ϕ1) ∈ H4

N(div,Ω)× L2(Ω) and J diff(σ2) =
(ζ2, ϕ2) ∈ H4

N(div,Ω)× L2(Ω) be the unique solutions of (2.24). This means

aσ1(ζ1, ξ)− aσ2(ζ2, ξ) + b(ξ, ϕ1 − ϕ2) = 0 ∀ξ ∈ HN(div,Ω),

b(ζ1 − ζ2, ψ) − c(ϕ1 − ϕ2, ψ) = 0 ∀ψ ∈ L2(Ω).

Then, by adding and subtracting the term aσ1(ζ2, ξ), it follows that

aσ1(ζ1 − ζ2, ξ) + b(ζ1 − ζ2, ψ) + b(ξ, ϕ1 − ϕ2)− c(ϕ1 − ϕ2, ψ) = aσ2(ζ2, ξ)− cσ1(ζ2, ξ).

Thus, from (2.27b) with σ̂ = σ1 and (ζ, φ) = (ζ1 − ζ2, ϕ1 − ϕ2), and the assumptions for %−1 (cf. (1.3)) we find that

‖ϕ1 − ϕ2‖0,Ω + ‖ζ1 − ζ2‖4,div;Ω ≤
1

CD
sup

(ξ,ψ)∈H4
N

(div,Ω)×L2(Ω)

(ξ,ψ)6=0

|aσ2(ζ2, ξ)− aσ1(ζ2, ξ)|
‖(ξ, ψ)‖H4

N(div,Ω)×L2(Ω)

≤ 1

CD
sup

(ξ,ψ)∈H4
N

(div,Ω)×L2(Ω)

(ξ,ψ)6=0

∫
Ω
|(%(σ2)−1 − %(σ1)−1)ζ2 · ξ|

‖(ξ, ψ)‖H4
N(div,Ω)×L2(Ω)
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≤ L%
CD
‖σ2 − σ1‖0,Ω‖ζ2‖0,4;Ω

≤ L%
CD

(‖`‖0,Ω + ‖ϕD‖1/2,00;ΓD
)‖σ2 − σ1‖0,Ω,

which implies that

‖J diff
2 (σ1)− J diff

2 (σ2)‖0,Ω ≤
L%
CD

(‖`‖0,Ω + ‖ϕD‖1/2,00;ΓD
)‖σ1 − σ2‖0,Ω. (2.30)

Then, the estimate in (2.28) follows from the definition of J (cf. (2.25)), the Lipschitz-continuity of J diff
2 (cf. (2.30)) and201

J Biot
1 (cf. (2.29)) with202

LJ :=
L%(1 + αd)β

CBCD(2µ+ dλ)
(‖`‖0,Ω + ‖ϕD‖1/2,00;ΓD

). (2.31)

�203

Owing to the above analysis, we now establish the main result of this section.204

Theorem 2.10 (well-posedness of the fully-coupled continuous problem) Suppose that ‖`‖0,Ω + ‖ϕD‖1/2,00;ΓD
≤ r

and LJ < 1 (cf. (2.31)). Then, the coupled problem (2.2) has a unique solution (~σ, ~u) ∈ V × Q and (ζ, ϕ) ∈
H4

N(div,Ω)× L2(Ω). Moreover, we have

‖(~σ, ~u, ζ, ϕ)‖V×Q×H4
N(div,Ω)×L2(Ω) .

(
(1 + αd)β

2µ+ dλ
+ 1

)(
‖`‖0,Ω + ‖ϕD‖1/2,00;ΓD

)
+ ‖f‖0,Ω + ‖g‖0,Ω

+ ‖uD‖1/2,00;ΓD
+ ‖pD‖1/2,00;ΓD

. (2.32)

Proof. Wefirst recall that Lemma 2.8 guarantees thatJ mapsW into itself. Then, bearing in mind the Lipschitz-continuity205

of J : W →W given by Lemma 2.9 along with the fact that LJ < 1, a direct application of the classical Banach fixed-206

point Theorem yields the existence of a unique fixed point ϕ ∈W of this operator, and hence a unique solution of (2.2).207

In addition, the a priori estimates provided by Theorem 2.6 and 2.7 yield (2.32), which completes the proof. �208

3 Virtual element discretisation209

This section introduces the VEM-based discrete formulation for the fully-coupled problem (2.1)-(2.2). We employ a VEM210

for both 2D/3D linear elasticity problems based on the Hellinger–Reissner variational principle (cf. (1.4a)-(1.4c)). The211

main advantage of this type of VE space is that it allows the symmetry of the discrete tensor to be enforced strongly.212

Moreover, its definition is unified in both 2D and 3D, taking into account that in 3D, facets correspond to the faces of the213

polyhedral element, while in 2D, they correspond to the edges of the polygonal element. On the other hand, the VEM214

employed here for mixed second order elliptic problems (corresponding to the equations (1.4d)-(1.4e) and (1.4f)-(1.4g))215

requires separate definitions in 2D and 3D. In addition, we introduce appropriate polynomial projection, interpolation and216

stabilisation operators to guarantee computability of the discrete formulation.217

We recall that the detailed construction, unisolvence in terms of the corresponding Degrees of Freedom (DoFs),218

additional properties of the VE spaces; as well with the properties of the polynomial spaces and the computability of the219

polynomial projection operators in terms of the (respective) DoFs presented in this section are provided in [2, 5, 6, 47].220

Assumptions on the mesh. Let Th be a collection of polygonal/polyhedral meshes on Ω and Fh be the set of all facets221

in 3D (edges in 2D). The diameter of a polygon/polyhedron K is represented by hK and the length/area of a facet f is222

represented by hf . The maximum diameter of elements in Th is represented by h. It is assumed that there exists a uniform223

positive constant η such that224

(A1) Every elementK has a star-shaped interior with respect to a ball with a radius greater than ηhK .225

(A2) Every facet f ∈ ∂K has a star-shaped interior with respect to a ball with a radius greater than ηhK .226

(A3) Every facet f ∈ ∂K satisfies the inequality hf ≥ ηhK .227
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Polynomial spaces. In this paper, we consider an arbitrary polynomial degree k ≥ 1. The space of polynomials of228

total degree at most k defined locally on K ∈ Th (or facet f ∈ Fh) is represented by Pk(K), and its vector and tensor229

counterparts are represented by Pk(K) and Pk(K), respectively. We also consider the standard notation P−1(K) = {0}.230

The spaces Gk(K) := ∇(Pk+1(K)) and G⊕k (K) denote the gradients of polynomials of degree ≤ k + 1 on K231

and the complement of the space Gk(K) in the vector polynomial space Pk(K) such that the direct sum Pk(K) =232

Gk(K)⊕G⊕k (K) holds, respectively. In particular, we select G⊕k (K) = x⊥Pk−1(K) (resp. G⊕k (K) := x∧ (Pk−1(K))233

where x⊥ = (x2,−x1)t in 2D (resp. x := (x1, x2, x3)t and ∧ the usual external product in 3D).234

Let xK = (x1,K , x2,K)t (resp. xK = (x1,K , x2,K , x3,K)t) denote the barycentre of K and let Mk(K) be the set of
vector scaled monomials as

Mk(K) :=

{(
x− xK
hK

)α
∈ Pk(K) : 0 ≤ |α| ≤ k

}
,

where α = (α1, α2)t (resp. α = (α1, α2, α3)t) is a non-negative multi-index with |α| = α1 + α2 and xα = xα1
1 xα2

2235

in 2D (resp. |α| = α1 + α2 + α3 and xα = xα1
1 xα2

2 xα3
3 in 3D), with analogous definition for the scalar and tensor236

version Mk and Mk. Notice that the polynomial decompositions presented before hold also in terms of the scaled237

monomial. For example, in the 2D case, we can take the sets Gk(K) and G⊕k (K) as M∇
k (K) := ∇Mk+1(K) \ {0}238

and M⊕
k (K) := m⊥Mk−1(K), with m⊥ := (

x2−x2,E

hK
,
x1,K−x1

hK
)t and m := x−xK

hK
, respectively; and providing the239

decomposition Mk(K) = M∇
k (K)⊕M⊕

k (K).240

The set of polynomials that solves locally the constitutive law in linear elasticity is defined as M̃k(K) := {m̃k ∈
Mk(K) : m̃k = Cε(mk+1) for some mk+1 ∈Mk+1(K)}. On the other hand, the set of scaled rigid body motions of an
elementK is given by

RBM(K) :=



{(
1
hE

0

)
,

(
0
1
hE

)
,

(
x2,E−x2

hE
x1−x1,E

hE

)}
in 2D,


1
hP

0

0

 ,

 0
1
hP

0

 ,

 0

0
1
hP

 ,


x2,P−x2

hP
x1−x1,P

hP

0

 ,

 0
x3,P−x3

hP
x2−x2,P

hP

 ,


x3−x3,P

hP

0
x1,P−x1

hP


 in 3D.

In this case, the polynomial decomposition Pk(K) = RBM(K)⊕ RBM⊥k (K), holds with

RBM⊥(K) :=

{
mk ∈Mk :

∫
K

mk ·mRBM = 0, ∀mRBM ∈ RBM(K)

}
.

3.1 VEM for Hellinger–Reissner linear elasticity241

The associated (conforming) VE space for H(div,Ω) in both 2D and 3D locally solves the constitutive law in linear
elasticity [2, 47] and its defined by

Sh,k(K) := {τ h ∈ H(div,K) : τ hn|f ∈ Pk(f), ∀f ∈ ∂K,
div τ h ∈ Pk(K), τ h = Cε(v∗) for some v∗ ∈ H1(K)}.

Notice that the polynomial space P̃k(K) := {p̃k ∈ Pk(K) : p̃k = Cε(pk+1) for some pk+1 ∈ Pk+1(K)} ⊆ Sh,k(K).
To define the global discrete spaces we patch together the local spaces in the following way

Sh,k := {τ h ∈ Hsym
N (div,Ω): τ h|K ∈ Sh,k(K), ∀K ∈ Th},

Uh,k := {vh ∈ L2(Ω): vh|K ∈ Pk(K), ∀K ∈ Th}.

The associated DoFs for τ h ∈ Sh,k(K) and vh ∈ Uh,k(K) := Pk(K) are given as follows

• 1

hf

∫
f
τ hn ·mk, ∀mk ∈Mk(f),

• 1

hK

∫
K

div τ h ·mRBM⊥ , ∀mRBM⊥ ∈ RBM⊥(K),

• 1

hK

∫
K
vh ·mk, ∀mk ∈Mk(K).
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3.2 VEM for perturbed mixed second-order elliptic problems242

The conforming VE approximation for the space H(div,Ω) in 2D is defined locally by solving a div-rot problem [6], as
follows

Vh,k
2D (K) := {ξh ∈ H(div,K) ∩H(rot,K) : ξh · n|f ∈ Pk(f), ∀f ⊂ ∂K,

div ξh ∈ Pk(K), rot ξh ∈ Pk−1(K)}.

Observe that Pk(K) ⊆ Vh,k
2D (K). In turn, the global discrete space is defined as

Vh,k
2D := {ξh ∈ HN(div,Ω): ξh|K ∈ Vh,k

2D (K), ∀K ∈ Th}.

We consider the following DoFs for ξh ∈ Vh,k
2D (K):

• The values of ξh · n at the k + 1 Gauss–Lobatto quadrature points of each edge ofK,

• 1

hK

∫
K
ξh ·m∇k−1, ∀m∇k−1 ∈M∇

k−1(K),

• 1

hK

∫
K
ξh ·m⊕k , ∀m⊕k ∈M⊕

k (K).

In contrast, the 3D version of the conforming VE approximation for the space H(div,Ω) locally solves a ∇(div)–
curl curl problem [5] and it is defined as

Vh,k+1
3D (K) := {ξh ∈ H(div,K) ∩H(curl,K) : ξh · n|f ∈ Pk+1(f), ∀f ∈ ∂K,

∇(div ξh) ∈ Gk−1(K), curl curl ξh ∈ Pk(K)}.

Note that Pk+1(K) ⊆ Vh,k+1
3D (K). Then, the discrete global spaces are defined by

Vh,k+1
3D := {ξh ∈ HN(div,Ω): ξh|K ∈ Vh,k+1

3D (K), ∀K ∈ Th}.

The set of DoFs for ξh ∈ Vh,k+1
3D (K) is provided next

• The values of ξh · n at the k + 2 quadrature points on each face ofK,

• 1

hK

∫
K
ξh ·m∇k−1, ∀m∇k−1 ∈M∇

k−1(K),

• 1

hK

∫
K
ξh ·m⊕k+1, ∀m⊕k+1 ∈M⊕

k+1(K).

Finally, the global discrete space for the space L2(Ω) is defined in general for 2D and 3D as

Qh,k := {ψh ∈ L2(Ω): ψh|K ∈ Pk(K), ∀K ∈ Th},

and, for a given ψh ∈ Qh,k(K) := Pk(K), the DoFs for the space above are defined by

• 1

hK

∫
K
ψhmk, ∀mk ∈ Mk(K).

3.3 Polynomial projection and interpolation operators243

For each elementK, we introduce the following local polynomial projection operators:244

• The C-energy projection is defined as �C,Kk : S̃(K)→ M̃k(K) by∫
K
C−1

(
τ − �C,Kk τ

)
: m̃k = 0, ∀τ ∈ S̃(K), ∀m̃k ∈ M̃k(K), (3.1)

where S̃(K) := {τ ∈ H(div,K) : τ = Cε(v) for some v ∈ H1(K)}.245
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• The L2 projection is defined by Π0,K
k : L2(K)→Mk(K) where∫

K

(
ξ −Π0,K

k ξ
)
·mk = 0, ∀ξ ∈ L2(K), ∀mk ∈Mk(K), (3.2)

with an analogous definition for scalar functions.246

The detailed proof of computability of these operators in terms of the respective DoFs can be found in [2, 5, 6, 47]. In247

addition, we state a result involving classical polynomial approximation theory [13]. The estimate is presented for scalar248

functions, but it also holds in general for vector and tensor functions.249

Proposition 3.1 (polynomial approximation) GivenK ∈ Th, assume that v ∈ Hs(K), with 1 ≤ s ≤ k+ 1. Then, there
exist vπ ∈ Pk(K) and a positive constant that depends only on η (cf. (A1)-(A3)) such that for 0 ≤ r ≤ s the following
estimate holds

|v − vπ|r,K . hs−rK |v|s,K .

Next, the nature of the space defined in Section 3.1 allow us to define locally the Fortin–like interpolation operator
Fk,K : H1(K)→ Sh,k(K) through the associated DoFs in a unified way for an elementK (cf. [11]). Whereas, following
Section 3.2, the Fortin–like interpolation operators Fk,K

2D : H1(K)→ Vh,k
2D (K) and Fk+1,K

3D : H1(K)→ Vh,k+1
3D (K) are

defined by their associated DoFs, taking into account that the elementK refers to a polygon in 2D and a polyhedral in 3D.
See, e.g., [6, Section 3.2] and [7, Section 4.1] for their respective constructions. Moreover, the associated commutative
property holds for each operator as follows: for eachK ∈ Th, we have

div(Fk,Kτ ) = Π0,K
k (div τ ), div(Fk,K

2D ξ) = Π0,K
k (div ξ), div(Fk+1,K

3D ξ) = Π0,K
k (div ξ). (3.3)

Proposition 3.2 (Hellinger–Reissner VEM interpolation estimates) Given K ∈ Th, assume that τ ∈ H(div,K) ∩
Hs(K), with 1 ≤ s ≤ k + 1. Then, there exists a positive constant that depends only on η (cf. (A1)-(A3)) such that, for
0 ≤ r ≤ s, the following estimate holds

|τ − Fk,Kτ |r,K . hs−rK |τ |s,K .

Proposition 3.3 (mixed VEM interpolation estimates) GivenK ∈ Th and 1 ≤ s ≤ k+ 1, there exist positive constants
that depend only on η (cf. (A1)-(A3)) such that for 0 ≤ r ≤ s the following estimates hold

‖ξ − Fk,K
2D ξ‖0,l;K . h

s−r
K |ξ|s,l;K , ‖ξ − Fk+1,K

3D ξ‖0,l;K . h
s−r
K |ξ|l,s;K ∀ξ ∈Ws,l(K).

Remark 3.1 Typically, one also requires an interpolation property for the divergence part of the flux (or stress) space to250

obtain error estimates (see, for example, [30–32] for mixed VEM in the Lp context). Such a property calls for additional251

regularity for the divergence part, for example (using the notation from Proposition 3.3 in the 2D case)252

‖ div(ξ − Fk,K
2D ξ)‖0,K . hs−rK | div ξ|s,K ∀ξ ∈W1,1(K) such that div ξ ∈ Hs(K).

Here we proceed differently and derive estimates involving the divergence by simply using the commutativity property253

(3.3) and applying Proposition 3.1. This avoids the assumption of more regularity for the divergence, but rather asking it254

for the concentration.255

3.4 Discrete problem256

Without losing generality we denote by Vh,k the global discrete spaces defined in Section 3.2, i.e., Vh,k = Vh,k
2D (resp.257

Vh,k = Vh,k+1
3D ) for polygonal elements (resp. polyhedral elements), we also introduce the discrete product spaces258

Vh,k := Sh,k × Qh,k and Qh,k := Uh,k × Vh,k, and note that the space Ṽh,k := Vh,k ∩H4
N(div,Ω) consists of the259

discrete space Vh,k equipped with the norm ‖·‖4,div;Ω. For brevity, (and wherever needed) the polynomial projections of260

σh ∈ Sh,k, zh ∈ Vh,k and ζh ∈ Ṽh,k are denoted by σ�
h := �C,Kk σh, zΠ

h := Π0,K

k
zh and ζΠ

h := Π0,K

k
ζh, respectively,261
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where the projection Π0,K

k
refers to Π0,K

k in the two dimensional setting (resp. Π0,K
k+1 in the three dimensional setting).262

We recall that the computability of the discrete formulation (introduced below) follows directly from the computability of263

the projection operators discussed in Section 3.3.264

Given ~σh := (σh, ph), ~τ h := (τ h, qh) ∈ Vh,k, ~uh := (uh, zh), ~vh := (vh,wh) ∈ Qh,k, and a fixed polynomial
σ̂�
h ∈ M̃k(K), the computable discrete bilinear formsAh : Vh,k×Vh,k → R,B : Vh,k×Qh,k → R,Ch : Qh,k×Qh,k →

R, Dh : Qh,k × Vh,k → R, ah,σ̂�
h

: Ṽh,k × Ṽh,k → R, b : Qh,k × Ṽh,k → R, and c : Qh,k ×Qh,k → R, are defined as

Ah(~σh, ~τ h) =
∑
K∈Th

AKh (~σh, ~τ h)

:=
∑
K∈Th

[
(C−1(�C,Kk σh),�C,Kk τ h)K + SC,K1 ((1− �C,Kk )σh, (1− �C,Kk )τh)

+
( αph

2µ+ dλ
, tr(�C,Kk τ h)

)
K

+
( αqh

2µ+ dλ
, tr(�C,Kk σh)

)
K

+
[
s0 +

dα2

2µ+ dλ

]
(ph, qh)K

]
,

B(~τ h, ~vh) =
∑
K∈Th

BK(~τ h, ~vh) :=
∑
K∈Th

[
(vh,div τ h)K + (qh, divwh)K

]
,

Ch(~uh, ~vh) =
∑
K∈Th

CKh (~uh, ~vh)

:=
∑
K∈Th

[
(κ−1(Π0,K

k
zh),Π0,K

k
wh)K + S0,K

2 ((1−Π0,K

k
)zh, (1−Π0,K

k
)wh)

]
,

Dh(ψh, ~τ h) =
∑
K∈Th

Dh(ψh, ~τ h) :=
∑
K∈Th

(
βψh

2µ+ dλ
, tr(�C,Kk τ h) + αdqh)K ,

ah,σ̂�
h
(ζh, ξh) =

∑
K∈Th

aK
h,σ̂�

h
(ζh, ξh)

:=
∑
K∈Th

[
(%(σ̂�

h)−1(Π0,K

k
ζh),Π0,K

k
ξh)K + S

0,σ�
h ,K

3 ((1−Π0,K

k
)ζh, (1−Π0,K

k
)ξh)

]
,

b(ξh, ψh) =
∑
K∈Th

bK(ξh, ψh) := −
∑
K∈Th

(div ξh, ψh)K ,

c(ϕh, ψh) =
∑
K∈Th

cK(ϕh, ψh) :=
∑
K∈Th

(ϕh, ψh)K .

The stabilisation terms SC,K1 : Vh,k × Vh,k → R, S0,K
2 : Qh,k ×Qh,k → R, and S0,K

3 : Ṽh,k × Ṽh,k → R are assumed
to be any positive semi-definite inner products satisfying the following condition: for each K ∈ Th, there exist positive
constants Cs1 , Cs2 , Cs3 (independent of h andK) such that

C−1
s1 (C−1τ h, τ h)K ≤ SC,K1 (τ h, τ h) ≤ Cs1(C−1τ h, τ h)K ∀τ h ∈ ker(�C,Kk ), (3.4a)

C−1
s2 (κ−1wh,wh)K ≤ S0,K

2 (wh,wh) ≤ Cs2(κ−1wh,wh)K ∀wh ∈ ker(Π0,K

k
), (3.4b)

C−1
s3 (%(σ̂�

h)−1ξh, ξh)K ≤ S0,K
3 (ξh, ξh) ≤ Cs3(%(σ̂�

h)−1ξh, ξh)K ∀ξh ∈ ker(Π0,K

k
). (3.4c)

Finally, the computable linear functionals F : Vh,k → R, G : Qh,k → R, H : Ṽh,k → R, and Ih : Qk,k → R are given
by

F (~τ h) =
∑
K∈Th

FK(~τ h) :=
∑
K∈Th

[ ∑
F∈∂K∩ΓD

〈uD, τ hn〉F + (g, qh)K

]
,

G(~vh) =
∑
K∈Th

GK(~vh) := −
∑
K∈Th

[
(f ,vh)K +

∑
F∈∂K∩ΓD

〈pD,wh · n〉F
]
,

H(ξh) =
∑
K∈Th

HK(ξh) := −
∑
K∈Th

∑
F∈∂K∩ΓD

〈ϕD, ξh · n〉F ,

17



I(ψh) =
∑
K∈Th

IK(ψh) := −
∑
K∈Th

(`, ψh)K .

The discrete version of (2.2) is defined next: find (~σh, ~uh) ∈ Vh,k ×Qh,k and (ϕh, ζh) ∈ Qh,k × Ṽh,k, such that

Ah(~σh, ~τ h) + B(~τ h, ~uh) +Dh(ϕh, ~τ h) = F (~τ h) ∀~τ h ∈ Vh,k, (3.5a)

B(~σh, ~vh)− Ch(~uh, ~vh) = G(~vh) ∀~vh ∈ Qh,k, (3.5b)

ah,σ�
h
(ζh, ξh) + b(ξh, ϕh) = H(ξh) ∀ξh ∈ Ṽh,k, (3.5c)

b(ζh, ψh)− c(ϕh, ψh) = I(ψh) ∀ψh ∈ Qh,k. (3.5d)

4 Discrete well-posedness analysis265

This section extends the results shown in Section 2 to the VEM formulation proposed in (3.5). Following the analysis for266

the continuous problem, we employ a discrete fixed-point argument to state the well-posedness of the fully-coupled discrete267

problem. We recall that, thanks to stabilisation, the discrete operators inherit the properties presented in Section 2.1.268

4.1 Properties of the discrete operators269

Note that, for eachK ∈ Th, given ~τ h ∈ Vh,k and ~vh ∈ Qh,k, we have that div τ h ∈ Pk(K), divwh ∈ Pk(K) (see also
the definition of the 2D (resp. 3D) VEM space in Section 3.2 (resp. [5, Theorem 8.2])), qh ∈ Pk(K), and vh ∈ Pk(K).
Hence, the the following characterisations hold:

Vh0 := ker(B|Vh,k) = {~τ h ∈ Vh,k : B(~τ h, ~vh) = 0, ∀~vh ∈ Qh,k}
= Vh01 × Vh02 ≡ {τ h ∈ Sh,k : div τ h|K = 0, ∀K ∈ Th} × {0}, (4.1a)

Qh
0 := ker(B∗|Qh,k) = {~vh ∈ Qh,k : B(~τ h, ~vh) = 0, ∀~τ h ∈ Vh,k}

= Qh
01 ×Qh

02 ≡ {0} × {wh ∈ Vh,k : divwh|K = 0, ∀K ∈ Th}. (4.1b)

On the other hand, the orthogonal spaces (Vh0)⊥ = (Vh01)⊥×(Vh02)⊥ and (Qh
0)⊥ = (Qh

01)⊥×(Qh
02)⊥ are closed subspaces

of Vh,k and Qh,k, where

(Vh01)⊥ ≡ {σh ∈ Sh,k : (σh, τ h)K = 0, ∀τ h ∈ Vh01, ∀K ∈ Th}, (Vh02)⊥ ≡ Qh,k,

(Qh
01)⊥ ≡ Qh,k, and (Qh

02)⊥ ≡ {zh ∈ Vh,k : (zh,wh)K = 0, ∀wh ∈ Qh
02, ∀K ∈ Th}.

In what follows, we prove some key properties of the discrete bilinear forms.270

Lemma 4.1 (symmetry and positive semi-definiteness of discrete diagonal forms) The bilinear forms Ah(•, •) and271

Ch(•, •) are symmetric and positive semi-definite; and (for a given σ̂�
h := �C,Kk σ̂h) ah,σ̂�

h
(•, •) is positive semi-definite.272

Proof. The proof reduces to employ the arguments in Lemma 2.2 together with the properties of the stabilisation operators
in (3.4). Indeed, we can extend (2.4) for all ~τ h ∈ Vh,k as follows

Ah(~τ h, ~τ h) ≥ 1

2µ
‖(�C,Kk τ h)d‖20,Ω + SC,K1 ((1− �C,Kk )τ h, (1− �C,Kk )τ h)

+
s0

2
‖qh‖20,Ω +

s0

d(s0(2µ+ dλ) + 2dα2)
‖ tr(�C,Kk τ h)‖20,Ω ≥ 0. (4.2)

In addition, for a given σ̂�
h , we have

ah,σ̂�
h
(ξh, ξh) ≥ %1‖Π0,K

k
ξh‖20,Ω + S0,K

3 ((1−Π0,K

k
)ξh, (1−Π0,K

k
)ξh) ≥ 0,

thanks to the positive semi-definitess of SC,K1 (•, •) and S0,K
3 (•, •). �273
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Lemma 4.2 (coercivity for the main discrete diagonal forms) There exist constants αA, αa > 0 such that

Ah(~τ h, ~τ h) ≥ αA‖~τ h‖2V ∀ ~τ h ∈ Vh0 , (4.3a)

c(ψh, ψh) ≥ αc‖ψh‖20,Ω ∀ψh ∈ Qh,k. (4.3b)

Proof. Note that (4.2) and (3.4a) imply that for all ~τ h ∈ Vh0

Ah(~τ h, ~τ h) ≥ min{ 1

2µ
,C−1

s1 }‖τ
d
h‖20,Ω +

s0

2
‖qh‖20,Ω + min{ s0

d(s0(2µ+ dλ) + 2dα2)
, C−1

s1 }‖ tr τ h‖20,Ω. (4.4)

Thus, applying (2.5) and (2.6) to τ h, there exist C1, C2 > 0 such that Ah(~τ h, ~τ h) ≥ αA ‖~τ h‖2div,Ω, where αA =274

C1,C2

4µ min{1, C−1
s1 }. Finally, in a similar manner to Lemma 2.3, we obtain that (4.3b) holds with αc = 1. �275

Lemma 4.3 (discrete inf-sup conditions) There exist positive constants βB, βb such that

sup
~τh∈Vh,k\{0}

B(~τ h, ~vh)

‖~τ h‖V
≥ βB‖~vh‖Q ∀~vh ∈ [ker(B∗h)]⊥, (4.5a)

sup
ψh∈Qh,k\{0}

b(ξh, ψh)

‖ψh‖0,Ω
≥ βb‖ξh‖4,div;Ω ∀ ξh ∈ Ṽh,k. (4.5b)

Proof. We start by recalling from [1, Proposition 5.6] the following discrete inf-sup condition

sup
τ∈Sh,k\{0}

(vh,div τ h)

‖τ h‖div,Ω
≥ β1‖vh‖0,Ω ∀vh ∈ (Qh

01)⊥. (4.6)

Similarly to [8, Proposition 5.4.2], given that divwh ∈ Pk(K) for all K ∈ Th, wh ∈ (Qh
02)⊥ ⊆ HN(div,Ω), and the

definition of Π0,K
k in (3.2), we have that

sup
qh∈Qh,k\{0}

(qh,divwh)

‖qh‖0,Ω
≥ sup

q∈L2(Ω)\{0}

(Π0
kq,divwh)

‖Π0
kq‖0,Ω

≥ sup
q∈L2(Ω)\{0}

(q,divwh)

Cπ‖q‖0,Ω
≥ β2‖wh‖div,Ω, (4.7)

where in the last inequality we have used the continuous inf-sup condition (2.9b). Here β2 = β2

Cπ
, Π0

kq := Π0,K
k q|K for

all K ∈ Th, and Cπ being the associated continuity constant of Π0
k in the L2-norm. Therefore, the bounds in (4.6)-(4.7)

yields (4.5a) with βB = β1+β2
4 . Much in the same way, (3.2) and the continuous inf-sup condition (2.8b) lead to

sup
ψh∈Qh,k\{0}

−(ψh, div ξh)

‖ψh‖0,Ω
≥ sup

ψ∈L2(Ω)\{0}

−(Π0
kψ,div ξh)

‖Π0
kψ‖0,Ω

≥ sup
ψ∈L2(Ω)\{0}

−(ψ,div ξh)

Cπ‖ψ‖0,Ω
≥ βb‖ξh‖4,div;Ω,

for all ξh ∈ Ṽh,k ⊆ H4
N(div,Ω). Thus, (4.5b) holds with βb = βb

Cπ
. �276

4.2 Unique solvability of the discrete coupled problem277

We follow the analysis in Section 2.2-2.3 to derive the unique solvability of the discrete problem (3.5). Given two278

computable prescribed functions ϕ̂h ∈ Qh,k and σ̂�
h ∈ Sh,k, the following results imply the well-posedness of the279

decoupled equations corresponding to the discrete Biot equations (3.5a)-(3.5b) and the discrete mixed perturbed diffusion280

equation (3.5c)-(3.5d). The proof follows as in the continuous case by employing Lemmas 4.1-4.3, and the discrete281

versions of [8, Theorem 4.3.1] and Theorem 2.5.282

Theorem 4.4 (well-posedness of the discrete Biot equations) There exists a unique (~σh, ~uh) ∈ Vh,k ×Qh,k such that

Ah(~σh, ~τ h) + B(~τ h, ~uh) = −Dh(ϕ̂h, ~τ h) + F (~τ h) ∀~τ h ∈ Vh,k, (4.8a)

B(~σh, ~vh)− Ch(~uh, ~vh) = G(~vh) ∀~vh ∈ Qh,k. (4.8b)

Moreover,283

‖(~σh, ~uh)‖V×Q .
(1 + αd)β

2µ+ dλ
‖ϕ̂h‖0,Ω + ‖f‖0,Ω + ‖uD‖1/2,00;ΓD

+ ‖g‖0,Ω + ‖pD‖1/2,00;ΓD
.
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Theorem 4.5 (well-posedness of the discrete mixed perturbed diffusion equation) There exists a unique (ζh, ϕh) ∈
Ṽk,k ×Qh,k such that

ah,σ̂�
h
(ζh, ξh) + b(ξh, φh) = H(ξh) ∀ξh ∈ Ṽh,k, (4.9a)

b(ζh, ψh)− c(ϕh, ψh) = I(ψh) ∀ψh ∈ Qh,k. (4.9b)

Moreover ,284

‖ζh‖4,div;Ω + ‖ϕh‖0,Ω . ‖`‖0,Ω + ‖ϕD‖1/2,00;ΓD
.

Next, we define the following discrete maps

J Biot
h : Qh,k(Ω)→ Vh,k ×Qh,k,

ϕ̂h 7→ J Biot
h (ϕ̂h) = ((J Biot

1h (ϕ̂h),J Biot
2h (ϕ̂h)),J Biot

3h (ϕ̂)) := ((σh, ph), ~uh) = (~σh, ~uh),

where (~σh, ~uh) ∈ Vh,k ×Qh,k is given by Theorem 4.4; and

J diff
h : Sh,k → Ṽh,k ×Qh,k,

σ̂h 7→ J diff
h (σ̂h) = (J diff

1h (σ̂h),J diff
2h (σ̂h)) := (ζh, ϕh),

with (ζh, ϕh) provided by Theorem 4.5. These maps are well-defined, along with the discrete solution operator defined
next

Jh : Qh,k → Qh,k,

ϕ̂h 7→ Jh(ϕ̂h) := J diff
2h (J Biot

1h (ϕ̂h)). (4.10)

In what follows, we show well-posedness of the fully-coupled discrete problem (3.5) through the equivalent fixed-point285

formulation Jh(ϕh) = ϕh. First, we define the discrete closed ball for some r > 0286

Wh := {ϕ̂h ∈ Qh,k : ‖ϕ̂h‖0,Ω ≤ r}.

Next, we prove that Jh maps Wh into itself and show the Lipschitz continuity of Jh.287

Lemma 4.6 (discrete ball mapping property) Under the small data assumption in (2.26), it follows thatJ
(
Wh

)
⊆Wh.288

Proof. Given ϕ̂h ∈Wh, the definition (4.10), (2.26) and the estimate given by Theorem 4.5 provide that

‖Jh(ϕ̂h)‖0,Ω = ‖J diff
2h (J Biot

1h (ϕ̂h))‖0,Ω . ‖`‖0,Ω + ‖ϕD‖1/2,00;ΓD
≤ r.

�289

Lemma 4.7 (discrete Lipschitz continuity) There exists a positive constant LJh such that290

‖Jh(ϕ1h)− Jh(ϕ2h)‖0,Ω ≤ LJh‖ϕ1h − ϕ2h‖0,Ω ∀ϕ1h, ϕ2h ∈ Qh,k. (4.11)

Proof. Given ϕ1h, ϕ2h ∈ Qh,k, we let J Biot
h (ϕ1h) = (~σ1h, ~u1h) ∈ Vh,k × Qh,k and J Biot

h (ϕ2h) = (~σ2h, ~u2h) ∈
Vh,k ×Qh,k be the unique solutions of (4.8). Then, applying the discrete version of the inf-sup condition (2.27a) with
(~ζh, ~wh) = (~σ1h − ~σ2h, ~u1h − ~u2h), imply that CB‖(~ζh, ~wh)‖Vh,k×Qh,k is bounded by

sup
(~τh,~vh)∈(Vh,k×Qh,k)\{(0,0)}

Ah(~σ1h − ~σ2h, ~τ h) +B(~τ h, ~u1h − ~u2h) +B(~σ1h − ~σ2h, ~vh)− Ch(~u1h − ~u2h, ~vh)

‖(~τ h, ~vh)‖V×Q

= sup
(~τh,~vh)∈(Vh,k×Qh,k)\{(0,0)}

Dh(ϕ1h, ~τ h)−Dh(ϕ2h, ~τ h)

‖(~τ h, ~vh)‖V×Q
≤ (1 + αd)β

2µ+ dλ
‖ϕ1h − ϕ2h‖0,Ω.

Thus,

‖J Biot
1h (ϕ1h)− J Biot

1h (ϕ2h)‖4,div;Ω ≤
(1 + αd)β

CB(2µ+ dλ)
‖ϕ1h − ϕ2h‖0,Ω. (4.12)
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Similarly, let σ1h,σ2h ∈ Sh,k, such that J diff(σ1h) = (ϕ1h, ζ1h) ∈ Qh,k × Ṽh,k and J diff(σ2h) = (ϕ2h, ζ2h) ∈
Qh,k × Ṽh,k be the unique solutions of (4.9). Equivalently, we have

ah,σ�
1h

(ζ1h, ξh) + ah,σ�
2h

(ζ2h, ξh) + bh(ξh, ϕ1h − ϕ2h) = 0 ∀ψh ∈ Qh,k,

bh(ζ1h − ζ2h, ψh)− ch(ϕ1h − ϕ2h, ψh) = 0 ∀ξh ∈ Ṽh,k,

and from here we add and subtract the term aσΠ
1h

(ζ2h, ξh) to obtain

ah,σ�
1h

(ζ1h − ζ2h, ξh) + b(ζ1h − ζ2h, ψh) + b(ξh, ϕ1h − ϕ2h)− c(ϕ1h − ϕ2h, ψ) = aσ�
1h

(ζ2h, ξh)− aσ�
2h

(ζ2h, ξh).

Then, the discrete version of (2.27b) with σ̂ = σ�
1h and (ζ, φ) = (ζ1h − ζ2h, ϕ1h − ϕ2h), together with the assumptions

on %−1(•) (cf. (1.3)), allow us to readily see that

CD(‖ζ1h − ζ2h‖4,div;Ω + ‖ϕ1h − ϕ2h‖0,Ω) ≤ sup
(ξh,ψh)∈(Ṽh,k×Qh,k)\{(0,0)}

|aσ�
1h

(ζ2h, ξh)− aσ�
2h

(ζ2h, ξh)|
‖(ξh, ψh)‖L2(Ω)×H4

N(div,Ω)

≤ sup
(ξh,ψh)∈(Ṽh,k×Qh,k)\{(0,0)}

∫
Ω
|(%(σ�

2h)−1 − %(σ�
1h)−1)ζ2h · ξh|

‖(ξh, ψh)‖L2(Ω)×H4
N(div,Ω)

≤ L%‖σ�
2h − σ�

1h‖0,Ω‖ζ2h‖0,4;Ω

≤ L%Cπ(‖`‖0,Ω + ‖ϕD‖1/2,00;ΓD
)‖σ2h − σ1h‖0,Ω,

where Cπ is the continuity constant of the projection operator �C,Kk in the L2-norm, which implies that

‖J diff
2h (σ1h)− J diff

2h (σ2h)‖0,Ω ≤
L%Cπ

CD

(‖`‖0,Ω + ‖ϕD‖1/2,00;ΓD
)‖σ1h − σ2h‖0,Ω. (4.13)

Then, the estimate (4.11) follows from the definition of Jh (4.10), the Lipschitz-continuity of J diff
2h (4.13) and that of291

J Biot
1h (4.12), with292

LJh :=
L%Cπ(1 + αd)β

CBCD(2µ+ dλ)
(‖`‖0,Ω + ‖ϕD‖1/2,00;ΓD

). (4.14)

�293

We are ready to state the main result of this section which is a consequence of Lemmas 4.6-4.7 together with the Banach294

fixed-point theorem.295

Theorem 4.8 (well-posedness of the fully-coupled discrete problem) Suppose that ‖`‖0,Ω + ‖ϕD‖1/2,00;ΓD
≤ r and

LJh < 1 (cf. (4.14)). Then, the coupled problem (3.5) has a unique solution (~σh, ~uh) ∈ Vh,k ×Qh,k and (ζh, ϕh) ∈
Ṽh,k ×Qh,k. Moreover, and similarly to the continuous case, we have

‖(~σh, ~uh, ζh, ϕh)‖V×Q×H4
N(div,Ω)×L2(Ω) .

(
(1 + αd)β

2µ+ dλ
+ 1

)(
‖`‖0,Ω + ‖ϕD‖1/2,00;ΓD

)
+ ‖f‖0,Ω + ‖g‖0,Ω

+ ‖uD‖1/2,00;ΓD
+ ‖pD‖1/2,00;ΓD

. (4.15)

5 A priori error analysis296

This section is devoted to deriving the optimal a priori error estimate. The first step is to establish the Strang-type297

inequalities which are formulated in the theorem below.298

Theorem 5.1 (quasi-optimality) In addition to the assumptions of Theorems 2.10 and 4.8, let (~σ, ~u, ζ, ϕ) ∈ V ×Q ×
H4

N(div,Ω) × L2(Ω) and (~σh, ~uh, ζh, ϕh) ∈ Vh,k × Qh,k × Ṽh,k × Qh,k be the unique solutions to (2.2) and (3.5),
respectively. Under these conditions, the following error estimates hold:

‖(~σ − ~σh, ~u− ~uh)‖V×Q . ‖~σ − ~σ�
h‖V + ‖~σ − ~σF

h‖V + ‖~u− ~uΠ
h ‖V + ‖~u− ~uF

h ‖Q
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+
(1 + αd)β

2µ+ dλ
‖ϕ− ϕh‖0,Ω, (5.1)

‖(ζ − ζh, ϕ− ϕh)‖H4
N(div,Ω)×L2(Ω) . ‖ζ − Fk,K

d ζ‖4,div;Ω + ‖ζ −Π0,K

k
ζ‖4,div;Ω + ‖ϕ−Π0,K

k ϕ‖0,Ω
+ L%(‖`‖0,Ω + ‖ϕD‖1/2,00;ΓD

)‖σ − σ�
h‖V, (5.2)

where ~σF
h := (Fk,Kσ,Π0,K

k p), ~σ�
h := (σ�

h , ph), ~uF
h := (Π0,K

k u,Fk,K
d z), ~uΠ

h := (uh,Π
0,K

k
z), and byFk,K

d we represent299

the Fortin operators either Fk,K
2D or Fk+1,K

3D , depending on the spatial dimension under consideration.300

Proof. We proceed in a similar way as in [37], noting from (2.2) and (3.5) that (~σh − ~σF
h, ~uh − ~u

F
h ) ∈ Vh,k ×Qh,k is the

unique solution to

Ah(~σh − ~σF
h, ~τ h) + B(~τ h, ~uh − ~uF

h ) = F̃1(~τ h) ∀~τ h ∈ Vh,k,

B(~σh − ~σF
h, ~vh)− Ch(~uh − ~uF

h , ~vh) = G̃1(~vh) ∀~vh ∈ Qh,k,

where

F̃1(~τ h) := A(~σ, ~τ h)−Ah(~σF
h, ~τ h) +B(~τ h, ~u− ~uF

h ) +Dh(ϕ− ϕh, ~τ h),

G̃1(~vh) := B(~σ − ~σF
h, ~vh)− C(~u, ~vh) + Ch(~uF

h , ~vh).

By exploiting the continuous dependence on data established in Theorem 4.4, we can deduce that301

‖(~σh − ~σF
h, ~uh − ~u

F
h )‖V×Q . ‖F̃1‖V′ + ‖G̃1‖Q′ . (5.3)

Now, noting that Ah(~σ�
h , ~τ h) = A(~σ�

h , ~τ h), by applying the continuity of the bilinear forms A(•, •), Ah(•, •), B(•, •),
D(•, •), C(•, •), and Ch(•, •), as well as using the triangle inequality, it is possible to deduce that

|A(~σ, ~τ h)−Ah(~σF
h, ~τ h)| . (‖~σ − ~σ�

h‖V + ‖~σ�
h − ~σ

F
h‖V)‖τ h‖V . (‖~σ − ~σ�

h‖V + ‖~σ − ~σF
h‖V)‖τ h‖V, (5.4a)

|B(~τ h, ~u− ~uF
h )| . ‖~u− ~uF

h ‖Q‖τ h‖V, (5.4b)

|Dh(ϕ− ϕh, ~τ h)| . (1 + αd)β

2µ+ dλ
‖ϕ− ϕh‖0,Ω‖τ h‖V, (5.4c)

|B(~σ − ~σF
h, ~vh)| . ‖~σ − ~σF

h‖V‖vh‖Q, (5.4d)

|Ch(~uF
h , ~vh)− C(~u, ~vh)| . (‖~u− ~uΠ

h ‖Q + ‖~uF
h − ~u

Π
h ‖Q)‖vh‖Q . ‖(~u− ~uΠ

h ‖Q + ‖~u− ~uF
h ‖Q)‖vh‖Q. (5.4e)

Upon substitution of (5.4) into (5.3), and invoking the triangle inequality, the result (5.1) follows. Conversely, for the
diffusivity problem, it follows once more from (2.2) and (3.5) that (ζh−Fk,K

d ζ, ϕh−Π0,K
k ϕ) ∈ Ṽh,k ×Qh,k constitutes

the unique solution of

ah,σ�
h
(ζh − Fk,K

d ζ, ξh) + b(ξh, ϕh −Π0,K
k ϕ) = F̃2(ξh) ∀ξh ∈ Ṽh,k, (5.5a)

b(ζh − Fk,K
d ζ, ψh)− c(ϕh −Π0,K

k ϕ,ψh) = G̃2(ψh) ∀ψh ∈ Qh,k, (5.5b)

where

F̃2(ξh) := aσ(ζ, ξh)− ah,σ�
h
(Fk,K

d ζ, ξh) + b(ξh, ϕ−Π0,K
k ϕ),

G̃2(ψh) := b(ζ − Fk,K
d ζ, ψh)− c(ϕ−Π0,K

k ϕ,ψh).

The continuous dependence on data shows302

‖(ζh − Fk,K
d ζ, ϕh −Π0,K

k ϕ)‖H4
N(div,Ω)×L2(Ω) . ‖F̃2‖H4

N(div,Ω)′ + ‖G̃2‖L2(Ω)′ . (5.6)

After adding and subtracting suitable terms, applying the continuity of the bilinear forms aσ(•, •), ah,σh(•, •), b(•, •),
and c(•, •), and invoking the triangle inequality, we can deduce that

|aσ(ζ, ξh)− ah,σ�
h
(Fk,K

d ζ, ξh)| . (‖ζ − Fk,K
d ζ‖4,div;Ω + ‖ζ −Π0,K

k
ζ‖4,div;Ω)‖ξh‖4,div;Ω
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+ L%(‖`‖0,Ω + ‖ϕD‖1/2,00;ΓD
)‖σ − σ�

h‖V‖ξh‖4,div;Ω, (5.7a)

|b(ξh, ϕ−Π0,K
k ϕ)| . ‖ϕ−Π0,K

k ϕ‖0,Ω‖ξh‖4,div;Ω, (5.7b)

|b(ζ − Fk,K
d ζ, ψh)| . ‖ζ − Fk,K

d ζ‖4,div;Ω‖ψh‖0,Ω, (5.7c)

|c(ϕ−Π0,K
k ϕ,ψh)| . ‖ϕ−Π0,K

k ϕ‖0,Ω‖ψh‖0,Ω. (5.7d)

Finally, proceeding as in the previous case, the substitution of (5.7) into (5.6), combined with the triangle inequality, yields303

the estimate (5.2). �304

Theorem 5.2 (convergence rates) In addition to the hypotheses of Theorem 5.1, assume that

(1 + αd)β

2µ+ dλ
+ L%(‖`‖0,Ω + ‖ϕD‖1/2,00;ΓD

) <
1

2
.

Additionally, suppose that there exist s ∈ [1, k+ 1] and s ∈ [1, k+ 1] such that σ ∈ Hs(Ω), p ∈ Hs(Ω),u ∈ Hs(Ω), z ∈
Hs(Ω), ζ ∈ Hs(Ω) and ϕ ∈ Hs(Ω). Then, there holds

eh . h
min{s,s} (‖σ‖s,Ω + ‖p‖s,Ω + ‖u‖s,Ω + ‖z‖s,Ω + ‖ζ‖s,Ω + ‖ϕ‖s,Ω) , (5.8)

where eh := ‖~σ − ~σh‖V + ‖~u− ~uh‖Q + ‖ζ − ζh‖4,div;Ω + ‖ϕ− ϕh‖0,Ω.305

Proof. The proof relies on estimates (5.1) and (5.2), in conjunction with the smallness assumption and the approximation306

properties of the spaces stated in Propositions 3.1, 3.2, 3.3, and in [13]. �307

6 Numerical results308

In this section we illustrate the accuracy and performance of the proposed scheme (cf. Section 3) through several numerical309

experiments. We show the optimal behaviour of the method under different polytopal meshes. Finally, we simulate an310

application-oriented problem.311

We define the total computable error via the local polynomial approximation of the discrete solutions as ē2
h :=

ē2
σ�
h

+ ē2
uh

+ ē2
zΠ
h

+ ē2
ph

+ ē2
ζΠ
h

+ ē2
ϕh
, with

ē2
σ�
h

:= ‖σ − �C,Kk σh‖20,Ω + ‖divσ − divσh‖20,Ω, ē2
uh

:= ‖u− uh‖20,Ω,

ē2
zΠ
h

:= ‖z −Π0,K

k
zh‖20,Ω + ‖div z − div zh‖20,Ω, ē2

ph
:= ‖p− ph‖20,Ω,

ē2
ζΠ
h

:= ‖ζ −Π0,K

k
ζh‖24,0;Ω + ‖ div ζ − div ζh‖20,Ω, ē2

ϕh
:= ‖ϕ− ϕh‖20,Ω.

The experimental rate of convergence r(·) applied to the total error ēh (or to any of its components) in the refinement312

1 ≤ j is computed from the formula r(ēh)j+1 = log(ēj+1
h /ējh)/ log(hj+1/hj), where hj denotes the mesh size in the313

refinement j. The fixed-point algorithm has stopping criterion driven based on the `2-norm of the increments (i.e., the314

difference between the DoFs at the iteration i and i − 1 of the fixed-point algorithm) with a tolerance of 5 × 10−6. We315

stress that these experiments were implemented in the library VEM++ [21].316

Finally, following [2, 47], we define the stabilisation term SC,K1 (σh, τ h) := (hK tr(C)/2)
∫
∂K σhn · τ hn, while317

S0,K
2 (·, ·) and S0,σ�

h ,K
3 (·, ·) are given by a scaled DOFI-DOFI stabilisation (see [37]), with respective scaling factors given318

by
∥∥∫

K κ
−1
∥∥
F
and |

∫
K %
−1(σ�

h)|, where ‖·‖F denotes the Frobenius norm of the matrix.319

6.1 Convergence rates under uniform refinement: 2D case320

For this test, the modulation parameter is prescribed as η1 = 10−3 (cf. (1.2)), whereas all remaining model parameters
are fixed to unity. The smooth manufactured solutions are defined as follows

u(x1, x2) =
(
cos(4πx1) cos(4πx2) + e−x1 , sin(4πx1) sin(4πx2) + e−x2

)t
,
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(a) Quadrilateral (b) Distorted (c) Hexahedral (d) Triangular

Figure 6.1: Example 1. Variety of 2D meshes used in the uniform refinement convergence test.

p(x1, x2) = cos(2πx1) cos(2πx2) + ex2 , ϕ(x1, x2) = sin(2πx1) sin(2πx2) + ex1 ,

in the unit square domain Ω = (0, 1)2 with the polygonal discretisations depicted in Figure 6.1, the boundary conditions321

are defined in the following sets: ΓN = {(x1, x2) ∈ ∂Ω : x1 = 0 or x2 = 0} and ΓD = ∂Ω \ ΓN. In particular, the322

right-hand sides functions (f , g and `) and the stress-dependent diffusivity (cf. (1.2)) are sufficiently smooth, as they are323

derived from the prescribed manufactured solutions. We recall that the polynomial order in two dimensions is given by k324

for both the Hellinger–Reissner VEM space and the mixed VEM space.325

The error history is reported in Table 1. Here, we observe optimal rate of convergenceO(hk) (k = 1, 2) as predicted by326

Corollary 5.2 for all the meshes listed in Figure 6.1. Moreover, we provided in detail the computable error for the variables327

of interest, obtaining their expected optimal convergence rates. The number of iterations required by the fixed-point328

algorithm to convergence are displayed in the last column. Snapshots of the variables of interest are shown in Figure 6.2329

for the Hexahedral mesh (see Figure 6.1(c)) in the last refinement step with polynomial degree k = 2.330

Finally, Table 2 illustrates the performance of the scheme under large variations of the physical parameters. The test331

considers nearly incompressible materials (λ = 106), very small storativity (s0 = 10−8), and weak Biot–Willis coupling332

(α = 10−6). The mesh is fixed to the Hexahedral case (cf. Figure 6.1(c)) and we set the polynomial degree k = 1.333

Once again, we observe the expected optimal convergence rates, confirming the robustness of the method in these extreme334

settings.335

6.2 Convergence rates under uniform refinement: 3D case336

We extend Example 6.1 by consider the unit cube domain Ω = (0, 1)3 discretised using the polyhedral meshes illustrated
in Figure 6.3, the sub-boundaries are defined by the sets ΓN = {(x1, x2, x3) ∈ ∂Ω : x1 = 0 or x2 = 0 or x3 = 0} and
ΓD = ∂Ω \ ΓN. We set unity model parameters and define the manufactured solutions by

u(x1, x2, x3) = (cos(4πx2) cos(4πx3) + ex1 , sin(4πx1) sin(4πx3) + ex2 , cos(4πx3)sin(4πx1) + ex3)t ,

p(x1, x2, x3) = sin(2πx2) sin(2πx3) + ex1 , ϕ(x1, x2, x3) = cos(2πx1) cos(2πx2) + ex3 ,

where the polynomial order in this case is given by k for the Hellinger–Reissner and k+ 1 for the mixed VEM spaces. One337

more time, all the model parameters are fixed to unity except for the modulation parameter which now given by η1 = 10−5.338

In three dimensions, the computational cost increases substantially, even in the lowest-case order k = 1; for example,339

the Hellinger–Reissner subsystem alone yields a linear system of dimension 542,925×542,925, with 100,405,246 nonzero340

entries in the last refinement step of the Voronoi mesh (cf. Figure 6.3(c)). Such system sizes would normally pose a341

considerable challenge, both in terms of memory requirements and solution time. However, VEM++ exploits parallelisation342

through MPI and its interface with PETSc-MUMPS (see [4,42]), which allows distributed assembly and the efficient solution343

of large-scale sparse systems. For this study, computations were performed on the NCI Gadi HPC cluster using the344

hugemem queue (1,5 TB of RAM per node with 48 CPUs), with 16 CPUs for the first two refinements, 32 CPUs for the345

third, and 64 CPUs for the final refinement, demonstrating both the scalability of the implementation and its robustness in346

handling high-dimensional three-dimensional problems.347
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Figure 6.2: Example 1. Snapshots of the variables of interest for the Hexahedral mesh in the last refinement step with
k = 2. The parameters are set to unity, except for η1 = 10−3.

(a) Cubical (b) Octahedral (c) Voronoi (d) Nonahedral

Figure 6.3: Example 2. Cross-section of a variety of 3D meshes used in the uniform refinement convergence test.

We summarise the error history in Table 3. One more time, the prediction provided by Corollary 5.2 holds for all the348

meshes listed in Figure 6.3, we observe optimal rate of convergence O(h2). Snapshots of the variables of interest are349

shown in Figure 6.4 for the Voronoi mesh with 4,000 elements (last refinement step).350

6.3 Sleep-driven molecular clearance within brain tissue351

Neurodegenerative diseases such as Alzheimer’s and dementia are linked to the accumulation of proteins (functional352

molecules) and metabolites (intermediate or residual products of metabolism) within brain tissue. To mitigate this, the353

brain enhances its clearance mechanisms during sleep. Studies indicate that sleep deprivation impairs molecular clearance,354

and this effect cannot be compensated for by an extra night’s sleep [24]. Moreover, it has been shown that the cortical355
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5.00e-02 8.65e+00 1.93 8.61e+00 1.93 7.61e-02 2.79 4.15e-01 2.00 4.85e-03 1.99 7.46e-01 1.96 4.88e-03 2.00 3
2.50e-02 2.19e+00 1.99 2.17e+00 1.99 1.14e-02 2.74 1.00e-01 2.05 1.22e-03 2.00 1.97e-01 1.92 1.22e-03 2.00 3
1.25e-02 5.48e-01 2.00 5.45e-01 2.00 2.06e-03 2.46 2.45e-02 2.03 3.04e-04 2.00 5.59e-02 1.82 3.05e-04 2.00 4

D
is
to
rte

d 1.03e-01 4.07e+01 * 4.04e+01 * 9.22e-01 * 1.97e+00 * 2.42e-02 * 3.74e+00 * 2.54e-02 * 3
5.07e-02 1.03e+01 1.93 1.03e+01 1.93 1.15e-01 2.93 4.64e-01 2.04 5.70e-03 2.04 8.95e-01 2.01 5.99e-03 2.04 3
2.66e-02 2.79e+00 2.02 2.78e+00 2.02 1.81e-02 2.87 1.23e-01 2.06 1.53e-03 2.03 2.38e-01 2.05 1.59e-03 2.06 3
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ra
l 1.03e-01 3.18e+01 * 3.16e+01 * 7.09e-01 * 1.49e+00 * 1.81e-02 * 2.83e+00 * 1.90e-02 * 3

5.07e-02 7.79e+00 1.98 7.75e+00 1.98 8.71e-02 2.95 3.48e-01 2.04 4.32e-03 2.02 6.63e-01 2.04 4.44e-03 2.05 3
2.66e-02 2.07e+00 2.05 2.06e+00 2.05 1.35e-02 2.88 9.16e-02 2.07 1.15e-03 2.05 1.74e-01 2.07 1.16e-03 2.07 3
1.32e-02 5.11e-01 2.01 5.09e-01 2.01 2.16e-03 2.63 2.27e-02 2.00 2.84e-04 2.00 4.28e-02 2.01 2.86e-04 2.01 3
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ul
ar 4.36e-02 8.51e+00 * 8.47e+00 * 6.32e-02 * 3.96e-01 * 4.44e-03 * 7.12e-01 * 4.74e-03 * 3

2.55e-02 2.92e+00 1.99 2.91e+00 1.99 1.48e-02 2.70 1.42e-01 1.90 1.58e-03 1.92 2.44e-01 1.99 1.61e-03 2.00 3
1.79e-02 1.46e+00 1.96 1.45e+00 1.96 6.15e-03 2.47 7.18e-02 1.93 7.97e-04 1.93 1.22e-01 1.94 8.08e-04 1.95 3
1.39e-02 8.82e-01 1.98 8.78e-01 1.98 3.38e-03 2.37 4.36e-02 1.97 4.82e-04 1.99 7.33e-02 2.02 4.85e-04 2.02 3
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5.00e-02 8.71e-01 2.94 8.70e-01 2.94 1.47e-02 3.92 2.40e-02 3.05 2.45e-04 2.99 4.20e-02 2.98 2.72e-04 2.99 3
2.50e-02 1.10e-01 2.99 1.10e-01 2.99 9.68e-04 3.92 2.70e-03 3.15 3.07e-05 3.00 5.25e-03 3.00 3.41e-05 3.00 3
1.25e-02 1.38e-02 3.00 1.38e-02 3.00 7.12e-05 3.77 3.18e-04 3.09 3.84e-06 3.00 6.56e-04 3.00 4.27e-06 3.00 4
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d 1.03e-01 9.66e+00 * 9.63e+00 * 4.39e-01 * 2.70e-01 * 2.87e-03 * 4.73e-01 * 3.16e-03 * 3
5.07e-02 1.20e+00 2.94 1.20e+00 2.94 2.64e-02 3.96 3.34e-02 2.94 3.35e-04 3.03 5.62e-02 3.00 3.70e-04 3.02 3
2.66e-02 1.67e-01 3.05 1.67e-01 3.05 1.98e-03 4.01 4.71e-03 3.03 4.62e-05 3.07 7.78e-03 3.06 5.11e-05 3.07 3
1.32e-02 2.05e-02 3.01 2.04e-02 3.01 1.31e-04 3.89 5.88e-04 2.98 5.64e-06 3.01 9.53e-04 3.01 6.25e-06 3.01 3

H
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l 1.03e-01 5.91e+00 * 5.89e+00 * 2.68e-01 * 1.58e-01 * 1.71e-03 * 2.80e-01 * 1.84e-03 * 3

5.07e-02 7.02e-01 3.00 7.01e-01 3.00 1.52e-02 4.04 1.88e-02 3.00 1.98e-04 3.04 3.20e-02 3.05 2.09e-04 3.06 3
2.66e-02 9.53e-02 3.09 9.52e-02 3.09 1.11e-03 4.06 2.54e-03 3.10 2.66e-05 3.11 4.36e-03 3.09 2.84e-05 3.09 3
1.32e-02 1.17e-02 3.01 1.17e-02 3.01 7.39e-05 3.88 3.15e-04 3.00 3.25e-06 3.01 5.28e-04 3.02 3.45e-06 3.02 4

Tr
ia
ng

ul
ar 4.36e-02 8.58e-01 * 8.56e-01 * 1.29e-02 * 3.27e-02 * 2.54e-04 * 5.41e-02 * 3.42e-04 * 3

2.55e-02 1.71e-01 3.00 1.71e-01 3.00 1.57e-03 3.91 6.21e-03 3.09 4.86e-05 3.07 1.03e-02 3.08 6.50e-05 3.09 3
1.79e-02 6.39e-02 2.78 6.37e-02 2.78 4.19e-04 3.71 2.27e-03 2.83 1.77e-05 2.85 3.79e-03 2.82 2.39e-05 2.82 3
1.39e-02 2.93e-02 3.08 2.93e-02 3.08 1.62e-04 3.75 1.05e-03 3.06 8.27e-06 3.01 1.72e-03 3.12 1.08e-05 3.13 4

Table 1: Example 1. Convergence history and fixed-point iteration count for a variety of 2D meshes with polynomial
degrees k = 1, 2. The parameters are set to unity, except for η1 = 10−3.
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λ
=

10
6 1.03e-01 7.52e+02 * 7.22e+02 * 2.11e+02 * 1.43e+00 * 1.81e-02 * 1.50e+00 * 1.90e-02 * 1

5.07e-02 1.61e+02 2.17 1.59e+02 2.13 2.30e+01 3.12 3.43e-01 2.01 4.32e-03 2.02 3.53e-01 2.04 4.44e-03 2.05 1
2.66e-02 4.29e+01 2.05 4.27e+01 2.04 3.19e+00 3.06 9.12e-02 2.05 1.15e-03 2.05 9.26e-02 2.07 1.16e-03 2.07 1
1.32e-02 1.04e+01 2.03 1.04e+01 2.03 3.85e-01 3.03 2.26e-02 2.00 2.84e-04 2.00 2.28e-02 2.01 2.86e-04 2.01 1

s 0
=

10
−

8 1.03e-01 3.18e+01 * 3.16e+01 * 7.09e-01 * 1.49e+00 * 1.81e-02 * 2.83e+00 * 1.90e-02 * 3
5.07e-02 7.79e+00 1.98 7.75e+00 1.98 8.71e-02 2.95 3.48e-01 2.04 4.32e-03 2.02 6.63e-01 2.04 4.44e-03 2.05 3
2.66e-02 2.07e+00 2.05 2.06e+00 2.05 1.35e-02 2.88 9.16e-02 2.07 1.15e-03 2.05 1.74e-01 2.07 1.16e-03 2.07 3
1.32e-02 5.11e-01 2.01 5.09e-01 2.01 2.16e-03 2.63 2.27e-02 2.00 2.84e-04 2.00 4.28e-02 2.01 2.86e-04 2.01 3

α
=

10
−

6 1.03e-01 3.18e+01 * 3.16e+01 * 7.08e-01 * 1.43e+00 * 1.81e-02 * 2.91e+00 * 1.90e-02 * 3
5.07e-02 7.79e+00 1.98 7.75e+00 1.98 8.70e-02 2.95 3.43e-01 2.01 4.32e-03 2.02 6.83e-01 2.04 4.44e-03 2.05 3
2.66e-02 2.07e+00 2.05 2.06e+00 2.05 1.35e-02 2.88 9.12e-02 2.05 1.15e-03 2.05 1.79e-01 2.07 1.16e-03 2.07 3
1.32e-02 5.11e-01 2.01 5.09e-01 2.01 2.16e-03 2.63 2.26e-02 2.00 2.84e-04 2.00 4.41e-02 2.01 2.86e-04 2.01 3

Table 2: Example 1. Convergence history and fixed-point iteration counts are shown for the Hexahedral mesh with
polynomial degree k = 1 and extreme values for the parameters λ, s0, and α. In each test, the remaining parameters are
set to unity, except η1 = 10−3.

interstitial space in mice (the narrow, irregularly shaped region between neurons and blood vessels in the cerebral cortex)356

increases by more than 60% during sleep, resulting in more efficient clearance [48].357

Experimentally, MRI scans can visualise the distribution of the fluorescent cerebrospinal fluid (CSF) tracer Gadobutrol358

within brain tissue under various conditions, including sleep and awake states [24] (see Figure 6.5). In this example,359
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Figure 6.4: Example 2. Snapshots of the variables of interest for the Voronoi mesh in the last refinement step with k = 1.
The modulation parameter is set to η1 = 10−5, while the remaining parameters are set to unity.

Th h ēh r(ēh) ēσ�
h

r(ēσ�
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1.08e-01 1.63e+01 1.94 1.62e+01 1.93 5.44e-02 2.29 6.01e-01 1.98 7.56e-03 1.98 1.19e+00 1.99 7.57e-03 1.99 2
8.66e-02 1.05e+01 1.96 1.05e+01 1.96 3.40e-02 2.11 3.85e-01 1.99 4.85e-03 1.99 7.65e-01 1.99 4.85e-03 1.99 2

O
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ra
l 2.08e-01 5.81e+01 * 5.79e+01 * 2.88e-01 * 2.22e+00 * 2.78e-02 * 4.39e+00 * 2.79e-02 * 2

1.04e-01 1.53e+01 1.93 1.52e+01 1.93 5.07e-02 2.50 5.67e-01 1.97 7.08e-03 1.98 1.12e+00 1.98 7.08e-03 1.98 2
8.33e-02 9.85e+00 1.96 9.82e+00 1.96 3.18e-02 2.09 3.66e-01 1.96 4.54e-03 1.99 7.16e-01 1.99 4.54e-03 1.99 3
6.94e-02 6.87e+00 1.97 6.85e+00 1.97 2.19e-02 2.04 2.56e-01 1.96 3.16e-03 1.99 4.98e-01 1.99 3.16e-03 1.99 2

Vo
ro
no
i 3.59e-01 1.43e+02 * 1.42e+02 * 1.50e+00 * 6.94e+00 * 8.81e-02 * 1.33e+01 * 8.53e-02 * 2

1.80e-01 4.39e+01 1.70 4.38e+01 1.70 1.91e-01 2.98 1.63e+00 2.09 2.04e-02 2.11 3.21e+00 2.05 2.04e-02 2.07 2
8.98e-02 1.12e+01 1.97 1.11e+01 1.97 3.71e-02 2.36 4.33e-01 1.91 5.16e-03 1.98 8.13e-01 1.98 5.16e-03 1.98 2
7.19e-02 7.21e+00 1.97 7.18e+00 1.97 2.35e-02 2.05 2.85e-01 1.87 3.31e-03 1.99 5.21e-01 2.00 3.31e-03 1.99 4

N
on
ah
ed
ra
l 3.46e-01 1.27e+02 * 1.27e+02 * 1.41e+00 * 5.54e+00 * 7.01e-02 * 1.08e+01 * 6.99e-02 * 2

1.73e-01 3.64e+01 1.81 3.63e+01 1.80 1.59e-01 3.15 1.42e+00 1.97 1.77e-02 1.99 2.66e+00 2.03 1.69e-02 2.05 2
1.37e-01 2.32e+01 1.95 2.32e+01 1.95 8.70e-02 2.60 8.90e-01 2.01 1.10e-02 2.04 1.68e+00 1.98 1.07e-02 1.98 2
1.09e-01 1.48e+01 1.97 1.47e+01 1.97 5.12e-02 2.29 5.67e-01 1.95 6.90e-03 2.03 1.07e+00 1.97 6.78e-03 1.97 2

Table 3: Example 2. Convergence history and fixed-point iteration count for a variety of 3D meshes for the lowest-case
order k = 1. We considered unit parameters except for η1 = 10−5.

we focus on the mathematical modelling of this process by tracking the concentration of the CSF tracer under sleep and360

awake states in coronal slices of the brain. The mesh originally introduced in [9] provides the geometry of the coronal361

slice boundary. We extend this geometry by including the left, right, and bottom ventricles, and employ the capabilities of362

PolyMesher [43] to discretise the domain with 19,999 Voronoi cells.363

Following [33], we neglect convection and assume that stress-dependent diffusion is the dominant transport mechanism.364

This assumption is supported by experimental data indicating that transport within brain tissue occurs 5− 26% faster than365
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Figure 6.5: Example 3. Two-dimensional schematic illustration of molecular clearance in brain tissue of a fluorescent CSF
tracer. The experimental setup is shown at the top middle. The MRI scans for the sleep and awake states are shown on the
left and right pannels. The bottom middle panels show the expected CSF tracer concentration computational simulations
in a polytopal mesh of a coronal slice of the brain with 1,999 Voronoi cells.

predicted by Fickian diffusion [45]. The expansion of the cortical interstitial space during sleep leads to an increase in the366

volume fraction of brain tissue [48]. This can be measured as a porosity of φ = 0.14 in the awake state and φ = 0.23 in367

the sleep state.368

We imposed a compression condition σn = −(p0π/2)n on the brain cortex and clamped the brain tissue along the369

three ventricles. In addition, a ventricular pressure of pD = p0 is prescribed, while no filtration flux is imposed in the370

cortex. The initial concentration of the CSF tracer Gadobutrol is assumed to be uniformly distributed within the brain371

cortex, with a value of ϕ0 = 6.05 × 10−4g/mm3. We adimensionalise the concentration using this quantity and set the372

boundary condition ϕD = 1; no CSF tracer flux is allowed through the ventricles. Finally, we assume that no external373

forces act in the simulation; that is, the right-hand sides f , g, and ` are set to zero.374

The stress-assisted diffusion coefficient is modified from (1.2) and now takes the form

%(σ) =
%0

ϕ0φ

(
1 + exp(−η[trσ]2)

)
,

where %0 = 5.30 × 10−2mm3/s and η = 2.00 × 10−1. The coupling parameters are set to α = 1, β = 0.35. Relevant
parameters associated with the brain transport problem including mechanical properties of brain tissue are given next
(see [14, 20, 46]):

E = 8.00× 102g/mm s2, ν = 0.495, λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
,

κ0 = 1.43× 10−5g mm/s3, κ = κ0I, s0 = 2.00× 10−8mm s2/g.

We report snapshots of the approximated variables of interest ϕh, uh, σ�
h , and z

Π
h for the lowest order VEM scheme375

(cf. Section 3) in Figure 6.6. The sleep state is displayed in the left column, and the awake state in the middle column.376
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Figure 6.6: Example 3. Snapshots of the variables of interest for the sleep-driven metabolite clearance within brain tissue
simulation. The geometry of the human brain is discretised with 19,999 Voronoi cells and the polynomial degree for the
VEM scheme is set to k = 1.

The right column illustrates the difference between the two states. The simulation results indicate that the CSF tracer377

concentration is approximately 13% higher in the awake state, particularly in the region adjacent to the ventricles. The378
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computational results reproduce the experimentally observed differences in CSF tracer concentration clearance between379

the awake and sleep states, indicating that stress-dependent diffusion can play a key role in this process.380
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