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Abstract

We propose and analyze new mixed finite element methods for the linear poroelasticity problem, which
models the coupled phenomena of fluid diffusion and solid deformation. The formulation is based on the
introduction of the vorticity and the strain tensor as auxiliary unknowns, which makes it possible to elim-
inate the fluid content from the system. The latter can then be recovered from the strain tensor and the
pressure. Then, by incorporating a multiple of the pressure gradient as an additional unknown, we arrive
at an operator equation showing a threefold saddle-point structure, which, in turn, is perturbed by a
term depending on the pressure variable. The well-posedness of the continuous formulation is established
through a suitable extension of the usual Babuška–Brezzi theory, which yields a new abstract result, along
with a recently developed approach to analyze perturbed saddle-point problems. The discrete analysis
follows a similar strategy, employing arbitrary finite element spaces satisfying suitable assumptions. In
particular, we provide concrete examples based on PEERS elements and derive the corresponding conver-
gence rates. Finally, several numerical experiments are presented, which confirm the theoretical results
and illustrate the good performance of the methods.

Keywords: Poroelasticity, fully mixed finite element methods, threefold saddle-point problems, error anal-
ysis.
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1 Introduction

Scope. The equations of Biot poroelasticity describe the mechanical behavior of a fluid-saturated porous
medium, where the coupling between fluid diffusion and solid deformation is taken into account. This model
finds wide use in various fields that span from geomechanics and petroleum engineering to biomechanics
and material science; see, e.g., [37, 38]. Numerical solutions of poroelasticity can be challenging, especially
when dealing with heterogeneous materials, complex geometries, and multiphysics, and partly due to the
presence of multiple scales and physical parameters (e.g., Lamé coefficients, storativity, permeability) as
well as discretization parameters.

While the primary form of the governing equations is based on the solid displacement and the fluid
pressure as main unknowns, it is well known that reformulations of the equations in fully mixed form can
provide significant advantages in terms of robustness with respect to material parameters and of local mass
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conservation, for example. In this context, several mixed finite element and polytopal methods have been
proposed in the literature; see, e.g., [7, 10, 13, 21, 24, 28, 32, 33, 39], which also include multiphysics cou-
plings with diffusion, temperature, or interfacial effects. Depending on the specific structure and choice of
the additional unknowns, many different methods can be derived, usually resulting in saddle-point formu-
lations (symmetric, non-symmetric, single, twofold, threefold, etc.). Their analysis – solution existence and
uniqueness, energy estimates, and error bounds – typically relies on the classical Babuška–Brezzi theory for
mixed problems [11], or on its extensions to more complex saddle-point structures [9, 27].

The present work aims to introduce and analyze new mixed finite element methods for linear poroelas-
ticity with mixed traction-loading boundary conditions, and based on a threefold saddle-point formulation.
The proposed approach is inspired by traditional mixed formulations with weakly imposed symmetry for
linear elasticity [3, 4, 16, 34]. Apart from solid displacement and fluid pressure, several other variables of
mathematical and physical interest form part of the resulting system. Indeed, we introduce the full Biot
stress, which, besides allowing the mixed boundary conditions to be incorporated more naturally, ensures
that the balance of linear momentum is satisfied exactly. In turn, the balance of angular momentum is
imposed weakly through the incorporation of the infinitesimal rotation tensor. In addition, we consider the
infinitesimal strain, the discharge flux, and an additional unknown defined on a function space associated
with the Neumann part of the boundary, which is related to the imposition of non-homogeneous boundary
conditions on the discharge velocity (Darcy flux). While these extra unknowns often lead to larger algebraic
systems, they also provide more accurate approximations of the corresponding physical quantities of interest,
especially when low-regularity solutions are considered and in the presence of multiphysics couplings.

We prove that the resulting threefold saddle-point formulation is well-posed by extending the classical
Babuška–Brezzi theory to this more complex setting, and by employing a recently developed framework
for the analysis of perturbed saddle-point problems [18]. The developments in this paper can be therefore
seen as a non-trivial extension of the abstract theory presented in [18] to the case of threefold saddle-point
problems, which can be of use for other general applications in continuum mechanics. The arguments of the
proofs involve kernel splittings and their identification/characterization when applied to the Biot equations.

At the discrete level it is possible to follow conforming or non-conforming schemes. In this work, we
restrict ourselves to the conforming case and develop the discrete analysis under a set of explicit and verifiable
assumptions on the finite element spaces involved. These hypotheses are formulated in a general manner, so
that the resulting Galerkin scheme is not tied to a specific discretization. Within this setting, the discrete
analysis follows a strategy that closely mirrors the proposed abstract continuous approach. Nevertheless, it
departs from the ideas cited above when addressing approximation properties and the verification of suitable
discrete inf-sup conditions.

We then particularize the abstract framework to PEERS elements combined with Raviart–Thomas and
discontinuous polynomial spaces, showing that they satisfy all the required conditions, and we remark that
other well-established mixed finite element families available in the literature also fit within the proposed
setting. The discrete analysis requires additional assumptions on the regularity of the discretization of the
Neumann sub-boundary, as well as on the compatibility between the finite element spaces for the Darcy
flux, their normal traces, and the discrete Lagrange multiplier space. Another technical issue is that the
discrete inf-sup conditions rely on auxiliary Poisson problems with mixed boundary conditions, which in
turn impose mild restrictions on the class of admissible domains. The practical impact of these restrictions is
investigated through numerical experiments, including a test on a domain that does not satisfy the required
regularity assumptions and nevertheless exhibits the expected convergence behavior.

Outline. In the remainder of this section we include notational convention and preliminary definitions of
spaces and operators needed for the functional setting. In Section 2 we recall the equations of poroelasticity in
steady form, introducing also the auxiliary unknowns. Section 3 is devoted to deriving the weak formulation,
stating and proving a new abstract result for threefold saddle-point problems, and using this theory for
establishing the well-posedness of the fully mixed Biot equations. In Section 4 we define the Galerkin
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method, state regularity assumptions, and apply the new abstract theory to show existence and uniqueness
of discrete solution for generic finite element spaces that satisfy inf-sup stability, space compatibility, suitable
trace inequalities, and existence of adequate interpolation operators. There we also derive quasi-optimality
results, which we combine with specific properties of PEERS and Raviart–Thomas finite elements to derive
optimal convergence rates. We conclude in Section 6 with simple numerical tests in 2D and 3D that illustrate
the convergence properties of the proposed finite element schemes.

Preliminaries. Let Ω be a bounded domain in Rn with polyhedral boundary BΩ, and let Σ and Γ be two
disjoint open subsets of BΩ, such that BΩ “ Σ Y Γ. We denote by ν the outward unit normal vector on BΩ.
In what follows, standard notation is adopted for Lebesgue spaces LppΩq and Sobolev spaces Ws,ppΩq, with
s P R and p ě 1, whose corresponding norms, either for the scalar, vectorial, or tensorial case, are denoted
by } ¨}0,p; Ω and } ¨}s,p; Ω, respectively. In particular, given a non-negative integer m, Wm,2pΩq is also denoted
by HmpΩq, and the notations of its norm and seminorm are simplified to } ¨ }m,Ω and | ¨ |m,Ω, respectively.
On the other hand, given any generic scalar functional space S, we let S and S be the corresponding vector
and tensor counterparts, whereas } ¨ }, with no subscripts, will be employed for the norm of any element
or operator whenever there is no confusion about the space to which they belong. Also, | ¨ | denotes the
Euclidean norm in both Rn and Rnˆn, and as usual, I stands for the identity tensor in Rnˆn. In addition,
for normed vector spaces X and Y , with norms } ¨ }X and } ¨ }Y , respectively, we endow the product space
X ˆ Y with the natural norm

}px, yq}XˆY :“ }x}X ` }y}Y @ px, yq P X ˆ Y .

Unless otherwise stated, the duality pairing between X and its topological dual X 1 is denoted by r¨, ¨s.
Furthermore, given a linear operator A : X Ñ Y 1, its transpose is the operator At : Y Ñ X 1 characterized
by the relation rApxq, ys “ rAtpyq, xs, for every px, yq P X ˆ Y . In this context, an operator A : X Ñ X 1

is said to be symmetric if A “ At and positive semi-definite if rApxq, xs ě 0, for all x P X. Given a closed
subspace S of X, we define the operator ΠS : LpX,X 1q Ñ LpS, S1q through the relation

rΠSApuq, vs “ rApuq, vs @u, v P S, @A P LpX,X 1q . (1.1)

Also, given any vector fields v “ pviqi“1,n and w “ pwiqi“1,n, we set the gradient and divergence as

∇v :“

ˆ

Bvi
Bxj

˙

i,j“1,n

and divpvq :“
n
ÿ

j“1

Bvj
Bxj

,

whereas for any tensor fields τ “ pτijqi,j“1,n and ζ “ pζijqi,j“1,n, we let divpτ q be the divergence operator
div acting along the rows of τ , and define the transpose, the trace, and the tensor inner product, respectively,
as

τ t :“ pτjiqi,j“1,n, trpτ q :“
n
ÿ

i“1

τii, and τ : ζ :“
n
ÿ

i,j“1

τij ζij .

In addition, H1{2pBΩq is the space of traces of functions of H1pΩq, H´1{2pBΩq denotes its dual, and x¨, ¨yBΩ

stands for the duality pairing between H´1{2pBΩq (resp H´1{2pBΩq) and H1{2pBΩq (resp. H1{2pBΩq). Further-
more, H1{2pΓq is the space of functions in H1{2pBΩq when restricted to Γ. In turn, EΓ,0 : H

1{2pΓq Ñ L2pBΩq

denotes the extension by zero on BΩzΓ, and we define the Hilbert space

H
1{2
00 pΓq :“

!

ψ P H1{2pΓq : EΓ,0pψq P H1{2pBΩq

)

,

which is endowed with the inner product

xψ,φy1{2,00;Γ :“ xEΓ,0pψq, EΓ,0pφqy1{2,BΩ @ψ,φ P H
1{2
00 pΓq . (1.2)
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Additionally, we denote by H
´1{2
00 pΓq the dual of H

1{2
00 pΓq, and employ x¨, ¨yΓ to denote the duality pairing

between them. Throughout the paper } ¨ }1{2,00;Γ is the norm induced by (1.2) and } ¨ }´1{2,00;Γ denotes the

norm of H
´1{2
00 pΓq. For further details, we refer to [22]. Next, we introduce the standard Hilbert spaces

Hpdiv; Ωq :“
!

χ P L2pΩq : divpχq P L2pΩq

)

and

Hpdiv; Ωq :“
!

τ P L2pΩq : divpτ q P L2pΩq

)

,

which are endowed with their usual norms

}χ}div;Ω :“
´

}χ}20,Ω ` }divpχq}20,Ω

¯1{2
@χ P Hpdiv; Ωq , and

}τ }div;Ω :“
´

}τ }20,Ω ` }divpτ q}20,Ω

¯1{2
@ τ P Hpdiv; Ωq .

Additionally, we recall the integration by parts formulas (cf. [22, Lemma 1.4])

xχ ¨ ν, wyBΩ “

ż

Ω
χ ¨ ∇w `

ż

Ω
w divpχq @w P H1pΩq , @χ P Hpdiv; Ωq , and

xτ ν,wyBΩ “

ż

Ω
τ : ∇w `

ż

Ω
w ¨ divpτ q @w P H1pΩq , @ τ P Hpdiv; Ωq .

(1.3)

Finally, in what follows, we denote by 0 or 0 the null element of any vector space, and we use C to represent
a generic constant independent of the discretization parameters, which may take different values in different
contexts.

2 The model problem

Consider a fully-saturated poroelastic medium composed of isotropic and homogeneous fluid and solid phases,
represented by Ω. Under suitable physical conditions, the medium is primarily influenced by a body force
f : Ω Ñ Rn, and the linear momentum conservation is expressed as

divpσq “ ´f in Ω , (2.1)

where σ is the Cauchy stress tensor, which, in turn, is symmetric due to the angular momentum conservation.
Furthermore, the effective stress principle relates σ to the fluid pressure p : Ω Ñ R and the solid displacement
u : Ω Ñ Rn via

σ “ C
`

epuq
˘

´ αp I in Ω , (2.2)

where C denotes the elasticity operator acting on the strain tensor epuq “ 1
2p∇u ` p∇uq tq, and α P r0, 1s is

the Biot–Willis coefficient. Under the assumption of a linearized regime, the generalized Hooke’s law provides
a simplified relationship between stress and strain. In fact, denoting by λ and µ the Lamé coefficients, the
elasticity operator is given by

Cpτ q “ 2µ τ ` λ trpτ q I @ τ P L2pΩq.

On the other hand, it is known that the fluid content ϑ : Ω Ñ R, resulting from saturation and local volume
dilation, is given by

ϑ “ c0 p` α divu “ c0 p` α tr epuq , (2.3)

where c0 is the constrained specific storage coefficient (storativity). Under Darcy flow, given the resultant
flow g : Ω Ñ R and the intrinsic permeability relative to fluid viscosity of the flow in the medium κ, there
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holds Bt ϑ ´ divpκ∇pq “ g. Here, we note that under an appropriate semi-discrete transformation it is
sufficient to consider the stationary form

ϑ´ div
`

κ∇p
˘

“ g . (2.4)

We assume that there exist positive constants κ0 and κ1 such that

κ0 ď κ´1pxq ď κ1 for a.e. x P Ω .

In order to reformulate the system given by (2.1), (2.2), (2.3), (2.4) and the symmetry of σ in a mixed form,
we begin by denoting the vorticity tensor and the strain tensor by

γ “
1

2

`

∇u ´ p∇uqt
˘

and ξ “ epuq in Ω , (2.5)

respectively. It is worth noting that (2.5), together with (2.2), are equivalent to requiring that γ is skew-
symmetric and

σ “ Cpξq ´ αp I and ∇u “ γ ` ξ in Ω ,

provided that the symmetry of σ is already enforced. In addition, from (2.3), we realize that the fluid
content ϑ is completely determined by the pressure p and the strain ξ. So, by replacing this relation into
the flow equation (2.4), we get

c0 p` α trpξq ´ divpηq “ g ,

where we introduced η :“ κ∇p as a further unknown. This enables us to eliminate ϑ from the system and
recover it afterwards from ξ and p, using (2.3). Therefore, as a result of the previous discussion, we are able
to rewrite the initial system as: find u, σ, η, p, ξ, γ in suitable spaces to be specified below such that γ is
skew-symmetric, ξ is symmetric, and

σ “ Cpξq ´ αp I, ∇u “ γ ` ξ in Ω

´divpσq “ f , σ “ σt, η “ κ∇p in Ω

c0 p` α trpξq ´ divpηq “ g in Ω .

(2.6)

Furthermore, the system is complemented by mixed boundary conditions, incorporating the given boundary
data uD and gN,

u “ uD on Γ , σ ν “ 0 on Σ ,

p “ 0 on Σ , η ¨ ν “ gN on Γ .
(2.7)

3 Weak formulation and its solvability analysis

3.1 Variational formulation

In this section, we derive the weak formulation of problem (2.6), together with the boundary conditions (2.7).
To this end, we first assume that u P H1pΩq, and test the second equation in (2.6) against a tensor field
τ P Hpdiv; Ωq, thus obtaining

ż

Ω
∇u : τ “

ż

Ω
γ : τ `

ż

Ω
ξ : τ @ τ P Hpdiv; Ωq , (3.1)

from which we deduce that all terms are well defined, provided that γ and ξ are sought in L2pΩq. Moreover,
motivated by the boundary conditions (2.7), we introduce the space

HΣpdiv; Ωq :“
!

τ P Hpdiv; Ωq : τ ν “ 0 on Σ
)

,
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and we require that uD P H1{2pΓq, so that the following relation holds:

xτ ν,uyBΩ “ xpτ νq|Γ,u|ΓyBΩ “ xτ ν,uDyΓ @ τ P HΣpdiv; Ωq , (3.2)

where the last term τ ν is understood as a functional acting on H1{2pΓq. In fact, while usually τ ν|Γ belongs

to H
´1{2
00 pΓq, the fact that it vanishes on Σ guarantees that actually τ ν|Γ P H´1{2pΓq, and hence here we

also use x¨, ¨yΓ to denote the duality pairing between H´1{2pΓq and H1{2pΓq. Then, by applying integration
by parts (cf. (1.3)) in (3.1) and then using (3.2), we arrive at

ż

Ω
ξ : τ `

ż

Ω
u ¨ divpτ q `

ż

Ω
γ : τ “ xτ ν,uDyΓ @ τ P HΣpdiv; Ωq . (3.3)

Notice that this equation makes sense even if u P L2pΩq instead of H1pΩq. Moreover, we claim that seeking
u in L2pΩq is equivalent to doing so in H1pΩq. Indeed, if (3.3) holds for u P L2pΩq, then, by restricting
the test functions to compactly supported smooth tensor fields, we recover that ∇u “ ξ ` γ in L2pΩq, so
u P H1pΩq. In addition, testing the latter with τ P Hpdiv; Ωq, integrating by parts, and invoking (3.3), we
obtain u

∣∣
Γ

“ uD and (3.1). According to this equivalence, from now on we shall seek u P L2pΩq. Arguing
similarly for the fifth equation in (2.6), this time using that p “ 0 on Σ (cf. (2.7)), we obtain

ż

Ω
κ´1 η ¨ χ `

ż

Ω
p divpχq “ xχ ¨ ν, pyΓ @χ P Hpdiv; Ωq ,

which, after introducing the further unknown φ :“ p
∣∣
Γ

P H
1{2
00 pΓq, reads

ż

Ω
κ´1 η ¨ χ `

ż

Ω
p divpχq ´ xχ ¨ ν, φyΓ “ 0 @χ P Hpdiv; Ωq . (3.4)

Here, we notice that, by a reasoning similar to the one made for (3.3), we may require that p P L2pΩq and
η P L2pΩq. In turn, the boundary condition for η (cf. (2.7)) is enforced as a weak constraint via

xη ¨ ν, ψyΓ “ xgN, ψyΓ @ψ P H
1{2
00 pΓq . (3.5)

Next, we test the first equation in (2.6) against a tensor field ρ P L2pΩq, thereby obtaining

´

ż

Ω
σ : ρ `

ż

Ω
Cpξq : ρ ´ α

ż

Ω
p trpρq “ 0 @ρ P L2pΩq , (3.6)

from which it follows that σ must be sought in L2pΩq. Certainly, the symmetry of the Cauchy stress tensor
(cf. (2.6)) could be enforced by restricting the trial space to symmetric tensors. Nevertheless, this choice is
not optimal from an implementation standpoint, so we instead enforce the symmetry as a weak constraint,
which is accomplished by imposing

ż

Ω
σ : δ “ 0 @ δ P L2

skewpΩq , (3.7)

where
L2
skewpΩq :“

!

δ P L2pΩq : δ “ ´δt
)

.

Now, observe that if σ satisfies (3.7), then, by testing with L2
skewpΩq in (3.6), we deduce that ξ is symmetric.

In turn, the skew-symmetry of γ is enforced by simply requiring that γ P L2
skewpΩq. Next, we test the

momentum balance (cf. third equation of (2.6)) against a vector field v P L2pΩq, formally obtaining

´

ż

Ω
v ¨ divpσq “

ż

Ω
f ¨ v @v P L2pΩq . (3.8)
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We observe that the previous equation is well defined when f and divpσq belong to L2pΩq, the latter implying
that σ P Hpdiv; Ωq. Furthermore, we note that integration by parts is not necessary, since the symmetry
required for a saddle-point formulation is already satisfied (cf. (3.3)). Finally, we test the last equation
of (2.6) with a scalar field q P L2pΩq, obtaining

c0

ż

Ω
p q ` α

ż

Ω
q trpξq ´

ż

Ω
q divpηq “

ż

Ω
g q @ q P L2pΩq ,

from which we observe that each term is well defined provided g P L2pΩq and divpηq P L2pΩq, which in turn
implies that η P Hpdiv; Ωq. In this way, adding (3.4) with (3.6), and suitably combining (3.3) with (3.5)
and (3.7) with (3.8), the system describing our problem is: find pη, ξq P Hpdiv; Ωq ˆ L2pΩq, p P L2pΩq,

pφ,σq P H
1{2
00 pΓq ˆ HΣpdiv; Ωq, and pu,γq P L2pΩq ˆ L2

skewpΩq, all of them such that

ż

Ω
κ´1 η ¨ χ `

ż

Ω
p divpχq ´ xχ ¨ ν, φyΓ ´

ż

Ω
σ : ρ `

ż

Ω
Cpξq : ρ ´ α

ż

Ω
p trpρq “ 0

´α

ż

Ω
q trpξq `

ż

Ω
q divpηq ´ c0

ż

Ω
p q “ ´

ż

Ω
g q

´

ż

Ω
ξ : τ ´

ż

Ω
u ¨ divpτ q ´

ż

Ω
γ : τ ´ xη ¨ ν, ψyΓ “ ´ xτ ν,uDyΓ ´ xgN, ψyΓ

´

ż

Ω
v ¨ divpσq ´

ż

Ω
σ : δ “

ż

Ω
f ¨ v

for all pχ,ρq P Hpdiv; Ωq ˆ L2pΩq, q P L2pΩq, pψ, τ q P H
1{2
00 pΓq ˆ HΣpdiv; Ωq, and pv, δq P L2pΩq ˆ L2

skewpΩq.
This system can be rewritten in terms of linear operators, yielding the previously announced threefold
saddle-point structure. To this end, we define the spaces

H :“ H1 ˆ H2 , Q :“ L2pΩq , X :“ X1 ˆ X2 , and Y :“ Y1 ˆ Y2 ,

where
H1 :“ Hpdiv; Ωq , H2 :“ L2pΩq , X1 :“ H

1{2
00 pΓq ,

X2 :“ HΣpdiv; Ωq , Y1 :“ L2pΩq , Y2 :“ L2
skewpΩq ,

and set the following notation for trial and test functions, respectively

η⃗ :“ pη, ξq P H , φ⃗ :“ pφ,σq P X , u⃗ :“ pu,γq P Y ,

χ⃗ :“ pχ,ρq P H , ψ⃗ :“ pψ, τ q P X , v⃗ :“ pv, δq P Y ,

which allows us to rewrite our system as: find p η⃗ , p , φ⃗ , u⃗ q P H ˆ Q ˆ X ˆ Y such that

¨

˚

˚

˚

˝

A1 B t
1 B t

2

B1 ´D1

B2 B t
3

B3

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

η⃗

p

φ⃗

u⃗

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

F
G
H
I

˛

‹

‹

‹

‚

, (3.9)

where the linear operators A1 : H Ñ H1, B1 : H Ñ Q1, B2 : H Ñ X1, B3 : X Ñ Y1 and D1 : Q Ñ Q1 are
given by

rA1pη⃗q, χ⃗s :“

ż

Ω
κ´1 η ¨ χ `

ż

Ω
Cpξq : ρ , rB1pχ⃗q, qs :“

ż

Ω
q divpχq ´ α

ż

Ω
q trpρq ,

rB2pχ⃗q, ψ⃗s :“ ´

ż

Ω
ρ : τ ´ xχ ¨ ν, ψyΓ , rB3pψ⃗q, v⃗s :“ ´

ż

Ω
v ¨ divpτ q ´

ż

Ω
τ : δ ,

rD1prq, qs :“ c0

ż

Ω
r q ,
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whereas the linear functionals F P H1, G P Q1, H P X1 and I P Y1 are given by

rF , χ⃗s :“ 0 , rG, qs :“ ´

ż

Ω
g q , rH, ψ⃗ s :“ ´ xτ ν,uDyΓ ´ xgN, ψyΓ , and rI, v⃗s :“

ż

Ω
f ¨ v ,

respectively, for arbitrary inputs in their respective spaces. Furthermore, by applying the Cauchy–Schwarz
inequality and bearing in mind the continuity of the normal trace operators γν : Hpdiv; Ωq Ñ H´1{2pBΩq

and γν : Hpdiv; Ωq Ñ H´1{2pBΩq, we note that the foregoing operators and functionals satisfy the following
stability properties:

}A1} ď κ´1
1 ` 2µ` λ , }B1} ď 1 ` α , }B2} ď 1 ` }γν} , }B3} ď

?
2 , }D1} ď c0 ,

}F} “ 0 , }G} ď }g}0,Ω , }H} ď }gN}´1{2,00;Γ ` }γν} }uD}1{2,Γ and }I} ď }f}0,Ω .
(3.10)

3.2 A new abstract result

In this section, we establish an abstract result on the well-posedness of threefold saddle-point problems, which
slightly extends the structure of (3.9). We emphasize that, although our problem is posed in Hilbert spaces,
it is possible—without introducing unnecessary complications—to state the result in the broader setting of
reflexive Banach spaces, which ensures greater generality and reusability. Our approach to proving well-
posedness relies heavily on Babuška–Brezzi theory in combination with a recent result concerning perturbed
saddle-point problems in reflexive Banach spaces (cf. [18]). This strategy has also been frequently applied
in related contexts, namely, simple and twofold saddle-point problems, with or without perturbations (see,
for instance, [14, 8, 31, 24, 15]).

We let H, Q, X and Y be reflexive real Banach spaces, and let a : H Ñ H 1, b : H Ñ Q1, c : Q Ñ Q1,
B : H ˆQ Ñ X 1, and D : H ˆQˆX Ñ Y 1 be linear and bounded operators. We aim to establish sufficient
conditions to the well-posedness of the following problem: Given pF,G, I, Jq P H 1 ˆ Q1 ˆ X 1 ˆ Y 1, find
pu, σ, p, ψq P H ˆQˆX ˆ Y such that

¨

˚

˚

˝

a bt

b ´c
Bt

B

Dt

D

˛

‹

‹

‚

¨

˚

˚

˚

˝

u

σ

p

ψ

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

F

G

I

J

˛

‹

‹

‹

‚

. (3.11)

To that end, we begin by defining the linear and bounded operatorsA1 : HˆQ Ñ H 1ˆQ1, A2 : HˆQˆX Ñ

H 1 ˆQ1 ˆX 1, and A3 : H ˆQˆX ˆ Y Ñ H 1 ˆQ1 ˆX 1 ˆ Y 1, as

A1 :“

ˆ

a bt

b ´c

˙

, A2 :“

ˆ

A1 Bt

B

˙

, and A3 :“

ˆ

A2 Dt

D

˙

.

We then observe that studying the well-posedness of (3.11) reduces to analyzing the bijectivity of the
operator A3. In this context, we recall from Babuška–Brezzi theory (cf. [20, Theorem 49.12]) that A3 is an
isomorphism if and only if D is surjective and A2 defines an isomorphism from the kernel of D to its dual.
More precisely, defining

K :“
!

pv, τ, qq P H ˆQˆX : Dpv, τ, qq “ 0
)

, (3.12)

we have that A3 is an isomorphism if and only if (cf. (1.1)) ΠKA2 : K Ñ K1 is an isomorphism and D
satisfies the inf-sup condition

sup
0‰pv,τ,qqPHˆQˆX

rDpv, τ, qq, φs

}pv, τ, qq}
ě β3 }φ} @φ P Y , (3.13)

for some positive constant β3. Frequent use of the definition given by (1.1) is made in this section. Now,
looking at the definition of A2, one would like to apply the same result to establish equivalent conditions
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to the bijectivity of the operator. This is possible only if we have that K has a product structure. In fact,
assuming that K “ K1 ˆK2 ˆK3, where K1, K2 and K3 are subspaces of H, Q and X, respectively, we have
that ΠKA2 is an isomorphism if and only if ΠVA1 : V Ñ V 1 is an isomorphism, where

V :“
!

pv, τq P K1 ˆ K2 : rBpv, τq, qs “ 0 @ q P K3

)

, (3.14)

and there exists a positive constant β2 such that

sup
0‰pv,τqPK1ˆK2

rBpv, τq, qs

}pv, τq}
ě β2 }q} @ q P K3 . (3.15)

It only remains to translate the bijectivity condition of ΠVA1. Noting that the structure of A1 differs from
that of A2 and A3, due to the presence of a perturbation term, we cannot directly apply the previous result.
Instead, we rely on [18, Theorem 3.4], which provides sufficient conditions for the bijectivity of an operator
with this structure. In particular, we first observe that ΠVA1 : V Ñ V 1 is an isomorphism if and only if, for
each pF ,Gq P V 1, there exists a unique solution to the following problem: find pu, σq P V such that

apuq ` btpσq “ F ,

bpuq ´ cpσq “ G .

Now, notice that, in order to apply [18, Theorem 3.4], V must possess a product structure. We then suppose
that V “ V1 ˆ V2, where V1 and V2 are subspaces of K1 and K2, respectively, and define

W :“
!

v P V1 : rbpvq, τ s “ 0 @ τ P V2

)

. (3.16)

Thus, by collecting the conditions mentioned earlier (cf. (3.13) and (3.15)), and by employing [18, Theorem
3.4], we arrive at the following result.

Theorem 3.1. Let H, Q, X and Y be reflexive real Banach spaces, and let a : H Ñ H 1, b : H Ñ Q1,
c : Q Ñ Q1, B : H ˆQ Ñ X 1, and D : H ˆQˆX Ñ Y 1 be given linear and bounded operators. In addition,
let us suppose that the kernel K of D (cf. (3.12)) can be written as a product space K “ K1 ˆ K2 ˆ K3,
where K1, K2 and K3 are subspaces of H, Q and X, respectively. Define V as in (3.14) and suppose that
V “ V1 ˆV2, where V1 and V2 are subspaces of K1 and K2, respectively. Furthermore, define W as in (3.16),
and assume that the following conditions hold:

(i) There exists a positive constant β3 such that

sup
0‰pv,τ,qqPHˆQˆX

rDpv, τ, qq, φs

}pv, τ, qq}
ě β3 }φ} @φ P Y .

(ii) There exists a positive constant β2 such that

sup
0‰pv,τqPK1ˆK2

rBpv, τq, qs

}pv, τq}
ě β2 }q} @ q P K3 .

(iii) There exists a positive constant β1 such that

sup
0‰vPV1

rbpvq, qs

}v}
ě β1 }q} @ q P V2 .

(iv) There exists a positive constant α such that

sup
0‰τPW

rapvq, τ s

}τ}
ě α }v} @ v P W .
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(v) a and c are symmetric and positive semi-definite in V1.

Then, for each pF,G, I, Jq P H 1 ˆQ1 ˆX 1 ˆ Y 1, there exists a unique pu, σ, p, ψq P H ˆQˆX ˆ Y solution
to (3.11). Moreover, there exists a positive constant C, depending only on α, β1, β2, β3, }a}, }b}, }c}, }B},
and }D}, such that

}pu, σ, p, ψq}HˆQˆXˆY ď C }pF,G, I, Jq}H 1ˆQ1ˆX 1ˆY 1 . (3.17)

Proof. The existence and uniqueness of solution follows from the previous discussion. In turn, (3.17) can be
derived by using the a priori estimates given by [18, Theorem 3.4]. Alternatively, one can use the inf-sup
conditions and perform standard techniques to arrive at the same estimate.

We remark that in the previous discussion we could instead have considered [18, Theorem 3.1], which
covers a different spectrum of problems, namely, when the transpose map bt has nontrivial kernel inside V2.
This is not under the scope of this work, as our problem does not fall in this category.

3.3 Well-posedness of the continuous problem

In this section, we prove that (3.9) is well-posed by employing Theorem 3.1. For this purpose, we first define
K3 as the kernel space of B3, which is characterized by

K3 “ H
1{2
00 pΓq ˆ

!

τ P HΣpdiv; Ωq : τ P L2
sympΩq and divpτ q “ 0

)

, (3.18)

where
L2
sympΩq :“

!

τ P L2pΩq : τ t “ τ
)

.

In addition, we define the spaces

V :“
!

χ⃗ P H :
“

B2

`

χ⃗
˘

, ψ⃗
‰

“ 0 @ ψ⃗ P K3

)

and W :“
!

χ⃗ P V : rB1pχ⃗q, qs “ 0 @ q P Q
)

,

which, denoting by Kp2q

3 the second-component space of K3 (cf. (3.18)), can be characterized by

V “

!

χ⃗ :“ pχ,ρq P H : χ ¨ ν “ 0 on Γ and

ż

Ω
ρ : τ “ 0 @ τ P Kp2q

3

)

,

and W “

!

χ⃗ :“ pχ,ρq P V : divpχq “ α trpρq

)

.

(3.19)

With these definitions in place, we begin our analysis by verifying the hypotheses of Theorem 3.1. First,
observe that the splitting condition on K established in the previous section is trivially satisfied, as B3 acts
only in X. The following results establish the inf-sup conditions for B3, B2, and B1, respectively.

Lemma 3.2. There exists a positive constant β3, depending only on Ω, such that

sup
0‰ψ⃗PX

“

B3pψ⃗q, v⃗
‰

}ψ⃗}X
ě β3 }v⃗}Y @ v⃗ P Y.

Proof. It follows from a slightly modification of [22, Section 2.4.3.1].

Lemma 3.3. There exists a positive constant β2, depending only on Ω, such that

sup
0‰χ⃗PH

“

B2pχ⃗q, ψ⃗
‰

}χ⃗}H
ě β2 }ψ⃗}X @ ψ⃗ P K3 .
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Proof. Given ψ⃗ :“ pψ, τ q P K3, by the characterization given in (3.18), we have that }τ }0,Ω “ }τ }div; Ω.
Then, by choosing χ⃗ “ p0, τ q P Hpdiv; Ωq ˆ L2pΩq in the supremum, we obtain

sup
0‰χ⃗PH

“

B2pχ⃗q, ψ⃗
‰

}χ⃗}H
ě

}τ }20,Ω

}τ }div; Ω
“ }τ }div; Ω . (3.20)

Similarly, taking χ⃗ “ pχ, 0q in the supremum, with arbitrary χ P Hpdiv; Ωq, leads to

sup
0‰χ⃗PH

“

B2pχ⃗q, ψ⃗
‰

}χ⃗}H
ě sup

0‰χPHpdiv;Ωq

xχ ¨ ν, ψyΓ

}χ}div; Ω
. (3.21)

We focus on bounding the right-hand side. To do so, we consider the following variational problem: Find
z P H1

ΣpΩq :“
␣

w P H1pΩq : w “ 0 on Σ
(

such that
ż

Ω
∇z ¨ ∇w “

@

R´1
00 pψq, w

D

Γ
@w P H1

ΣpΩq , (3.22)

where R00 : H
´1{2
00 pΓq Ñ H

1{2
00 pΓq is the corresponding Riesz isomorphism. Since H1

ΣpΩq is a Hilbert space,
and owing to the well-known Poincaré inequality and the Lax–Milgram lemma, there exist a unique z P

H1
ΣpΩq solution to (3.22), and a positive constant C2 depending only on Ω, such that

|z|1,Ω ď C2 }ψ}1{2,00;Γ .

We then define pχ :“ ∇z P L2pΩq, and observe from (3.22) that divppχq “ 0, which yields pχ P Hpdiv; Ωq, and

}pχ}div;Ω “ }pχ}0,Ω “ |z|1,Ω ď C2 }ψ}1{2,00;Γ . (3.23)

Moreover, it is also clear from (3.22) that pχ ¨ ν “ R´1
00 pψq on Γ, and hence, using (3.23) we can assert that

sup
0‰χPHpdiv;Ωq

xχ ¨ ν, ψyΓ

}χ}div;Ω
ě

xpχ ¨ ν, ψyΓ

}pχ}div;Ω
“

@

R´1
00 pψq, ψ

D

Γ

}pχ}div;Ω
“

}ψ}21{2,00;Γ

}pχ}div;Ω
ě C´1

2 }ψ}1{2,00;Γ , (3.24)

so that, replacing (3.24) in (3.21), and then adding it to (3.20), we arrive at the desired inf-sup condition
with β2 “ 1

2 p1 ` C´1
2 q.

Lemma 3.4. There exists a positive constant β1, depending only on Ω, such that

sup
0‰χ⃗PV

“

B1pχ⃗q, q
‰

}χ⃗}H
ě β1 }q}Q @ q P Q .

Proof. Given q P Q, we consider the following boundary value problem:

∆z “ q in Ω , z “ 0 on Σ , ∇z ¨ ν “ 0 on Γ ,

whose unique weak solution z P H1pΩq satisfies the estimate }z}1,Ω ď C1 }q}0,Ω (cf. [22, Chapter 2.4.2]),
for some positive constant C1 depending only on the domain Ω. Then, define rχ :“ ∇z, and note that
divprχq “ q P L2pΩq, which implies rχ P Hpdiv; Ωq. Moreover, since rχ ¨ν “ 0 on Γ, we deduce that prχ, 0q P V
(cf. (3.19)), and from the a priori estimate of our auxiliary problem, there holds

}rχ}2div;Ω “ |z|21,Ω ` }q}20,Ω ď pC2
1 ` 1q }q}20,Ω .

Hence, by taking χ⃗ “ prχ, 0q P V in the supremum, we obtain that

sup
0‰χ⃗PV

rB1pχ⃗q, qs

}χ⃗}H
ě

ż

Ω
q divprχq

}rχ}div;Ω
“

}q}20,Ω

}rχ}div;Ω
ě

1

pC2
1 ` 1q1{2

}q}0,Ω ,

which completes the proof with β1 “ p1 ` C2
1 q´1{2.
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Lemma 3.5. A1 and D1 are symmetric and positive semi-definite. Moreover, there exists a positive constant
α1, depending only on κ0, λ, α and µ, such that

rA1pχ⃗q, χ⃗s ě α1 }χ⃗}2H @ χ⃗ P W .

Proof. We first observe that A1 and D1 are symmetric and the latter is positive semi-definite. Thereby, we
focus on proving that A1 is coercive in W. In fact, given χ⃗ P H, we have

rA1pχ⃗q, χ⃗s “

ż

Ω
κ´1 |χ|2 `

ż

Ω

`

2µρ ` λ trpρq I
˘

: ρ ě κ0}χ}20,Ω ` 2µ}ρ}20,Ω ` λ }trpρq}20,Ω , (3.25)

which means that A1 is also positive semi-definite. Moreover, if χ⃗ P W, we have, in particular, that
divpχq “ α trpρq. Putting this into (3.25) yields

rA1pχ⃗q, χ⃗s ě κ0 }χ}20,Ω ` 2µ}ρ}20,Ω `
λ

α2
}divpχq}20,Ω ě mintκ0, λ α

´2, 2µu }χ⃗}2H ,

thereby proving the coercivity of A in W with α1 “ mintκ0, λ α
´2, 2µu.

Theorem 3.6. The problem (3.9) has a unique solution pη⃗, p, φ⃗, u⃗q P H ˆ Q ˆ X ˆ Y. Moreover, there
exists a positive constant C depending only on κ0, κ1, µ, λ, α, c0 and Ω, such that

}pη⃗, p, φ⃗, u⃗q} ď C
!

}g}0,Ω ` }gN}´1{2,00;Γ ` }uD}1{2,Γ ` }f}0,Ω

)

.

Proof. Owing to Lemmas 3.2, 3.3, 3.4, and 3.5, the assumptions of Theorem 3.1 are satisfied. Therefore, the
desired result follows, with the a priori estimate also stemming from the operators’ stability (cf. (3.10)).

4 The Galerkin scheme

We first let tThuhą0 be a regular family of triangulations of Ω made up of triangles K (when n “ 2) or
tetrahedra K (when n “ 3) of diameter hK , and set h :“ max thK : K P Thu. Given an integer k ě 0 and
a subset S of Rn, we denote by PkpSq the space of polynomials of total degree at most k defined on S,

and PkpSq its vector counterpart. We also let Hη
h , H

ξ
h, Qh, X

φ
h , X

σ
h , Y

u
h and Yγ

h be arbitrary finite element

subspaces of Hpdiv; Ωq, L2pΩq, L2pΩq, H
1{2
00 pΓq, HΣpdiv,Ωq, L2pΩq and L2

skewpΩq, respectively, all of them
endowed with the corresponding subspace topology. Similarly to the continuous case, we define

Hh :“ Hη
h ˆ Hξ

h , Xh :“ Xφh ˆ Xσ
h , and Yh :“ Yu

h ˆ Yγ
h ,

and introduce the notation

η⃗h :“ pηh, ξhq P Hh , φ⃗h :“ pφh,σhq P Xh , u⃗h :“ puh,γhq P Yh ,

χ⃗h :“ pχh,ρhq P Hh , ψ⃗h :“ pψh, τhq P Xh , v⃗h :“ pvh, δhq P Yh ,

which enables us to state the Galerkin scheme associated with the continuous problem (3.9). It consists in
finding p η⃗h , ph , φ⃗h , u⃗h q P Hh ˆ Qh ˆ Xh ˆ Yh such that

¨

˚

˚

˚

˝

A1,h B t
1,h B t

2,h

B1,h ´D1,h

B2,h B t
3,h

B3,h

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

η⃗h

ph

φ⃗h

u⃗h

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

Fh
Gh
Hh

Ih

˛

‹

‹

‹

‚

, (4.1)
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where all the operators and functionals appearing above are understood as the restrictions of their continuous
counterparts (see (3.9)) to the corresponding finite element subspaces. The discrete kernels associated with
B1 and B3 are defined, respectively, as

K1,h :“ kerpB1,hq “

"

χ⃗h P Hh :

ż

Ω
qh

`

divpχhq ´ α trpρhq
˘

“ 0 @ qh P Qh

*

and K3,h :“ kerpB3,hq “ Xφh ˆ Kp2q

3,h ,

(4.2)

where

Kp2q

3,h :“

"

τh P Xσ
h :

ż

Ω
vh ¨ divpτhq `

ż

Ω
δh : τh “ 0 @ pvh, δhq P Yh

*

.

In addition, similarly to the continuous case (cf. (3.19)), we introduce the spaces

Vh :“
!

χ⃗h P Hh : rB2,hpχ⃗hq, ψ⃗hs “ 0 @ ψ⃗h P K3,h

)

and Wh :“ K1,h X Vh . (4.3)

4.1 Discrete well-posedness

We begin this section by formulating suitable assumptions on the finite element spaces and on the discretiza-
tion of the domain, providing sufficient conditions to ensure the well-posedness of the Galerkin scheme (4.1).
To that end, we briefly review the conditions stated in Theorem 3.1, thereby motivating the need to impose
specific assumptions on the finite element spaces. The first of these is the inf-sup condition associated with
the operator B3,h, which, not involving the variable ψh P Xφh in its definition, coincides with the bilinear
form arising from the saddle-point formulation of the linear elasticity problem (see, for instance, [34]). Ac-
cordingly, the discrete spaces involved in this inf-sup condition—namely, Xh and Yh—must form a stable
pair for the linear elasticity problem, as we shall see in Section 5. This motivates the following assumption:

Assumption 4.1. There exists a positive constant β3,d, independent of h, such that

sup
0‰ψ⃗hPXh

rB3,hpψ⃗hq, v⃗hs

}ψ⃗h}Xh

ě β3,d }v⃗h}Yh
@ v⃗h P Yh . (4.4)

Now we aim to prove an inf-sup condition for the operator B2,h, which serves as the discrete counterpart
of Lemma 3.3. Namely, we seek to establish the existence of β2,d ą 0 such that

sup
0‰χ⃗hPHh

rB2,hpχ⃗hq, ψ⃗hs

}χ⃗h}Hh

ě β2,d }ψ⃗h}Xh
@ ψ⃗h P K3,h . (4.5)

To this end, we follow closely the approach of [6, Lemmas 3.2 and 3.3]. In order to retain the generality
of the framework, we introduce a set of natural assumptions on the finite element subspaces, together with
some auxiliary constructions. As a first step, we define an auxiliary space that will serve as a discretization

of H
´1{2
00 pΓq:

H
´1{2
h :“

!

µh P L2pΓq : µh|K XΓ P P0pK X Γq @K P Th , K X Γ ‰ ∅
)

. (4.6)

Certainly, it can be proved that H
´1{2
h is a subspace of Hs00pΓq for all ´1{2 ď s ă 1{2, and this fact

will be used in the subsequent analysis. In addition, we consider an independent simplicial discretization
␣

rΓ1, . . . , rΓm
(

of Γ, parametrized by rh :“ max
1ďjďm

|rΓj |, which enables us to approximate the space H
1{2
00 pΓq in

terms of rh rather than h. Accordingly, we now denote by Xφ
rh
the approximation space for φ, and denote

by Xh :“ Xφ
rh

ˆ Xσ
h the associated product space, where h :“ ph,rhq is used to indicate dependence on both

discretization parameters.
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Assumption 4.2 (Regularity of the discretizations of Γ).

1. The family of triangulations
␣

Th
(

hą0
is uniformly regular near Γ. That is, there exists a positive

constant C, independent of h, such that |K X Γ| ě C hn´1, for all K P Th that intersect Γ.

2. rΓ is uniformly regular. Namely, there exists C ą 0, independent of rh, such that |rΓj | ě C rhn´1, for all
j P t1, . . . ,mu.

Under this assumption, the auxiliary space H
´1{2
h satisfies an approximation property (see, for instance,

[5]): there exists a positive constant C, independent of h, such that for all s P p´1{2, 1{2s and for all

µ P Hs00pΓq, there exists pµh P H
´1{2
h such that

}µ´ pµh}´1{2,00;Γ ď C hs`1{2 }µ}s,00,Γ . (4.7)

In turn, inverse inequalities for both Xφ
rh
and H

´1{2
h will play a key role in the forthcoming analysis. The

one for H
´1{2
h is valid under Assumption 4.2. Indeed, as mentioned in [36, Remark 4.4.4, (b)], whose

corresponding proof actually follows from the more general results provided in [19, Theorems 4.2 and 4.6],
there exists a positive constant rC, independent of h, such that for all the indexes pt, sq P

␣

0
(

ˆ r0, 1{2q Y

r´1, 0s ˆ
␣

0
(

there holds

}µh}s,00;Γ ď rC ht´s }µh}t,00;Γ @µh P H
´1{2
h .

In particular, taking s P r0, 1{2q and t “ 0, we obtain

}µh}s,00,Γ ď rC h´s }µh}0,Γ @µh P H
´1{2
h ,

whereas s “ 0 and t P r´1, 0s yield

}µh}0,Γ ď rC ht }µh}t,00;Γ @µh P H
´1{2
h ,

so that, combining the foregoing inequalities, we deduce the existence of a positive constant C, independent
of h, such that for all the indexes pt, sq such that ´1 ď t ď 0 ď s ă 1{2, there holds

}µh}s,00;Γ ď C ht´s }µh}t,00;Γ @µh P H
´1{2
h . (4.8)

We shall assume an inverse inequality for the subspace Xφ
rh
. Nevertheless, it is worth mentioning that, in

practice, this inequality can be derived from the choice of Xφ
rh
, together with the regularity of the triangulation

(cf. Assumption 4.2). We will refer again to this point in Section 5 for a specific choice of spaces.

Assumption 4.3 (Inverse inequality for Xφ
rh
). There exists a positive constant C, independent of rh, such

that for all 0 ď s ď t ď 1, there holds

}ψ
rh
}t,00;Γ ď C rhs´t }ψ

rh
}s,00;Γ @ψ

rh
P Xφ

rh
. (4.9)

We now impose an additional regularity assumption on the boundary discretization, specifically on the
space Xφ

rh
.

Assumption 4.4. Xφ
rh

Ă H1
00pΓq.

Next, we introduce two additional assumptions, which guarantee the existence of a mixed finite element
interpolation operator, also referred to as the equilibrium interpolation operator. In what follows, Ph and
Ξh denote the standard L2-orthogonal projections onto Qh and onto the normal trace of functions in Hη

h ,
respectively.
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Assumption 4.5. divpHη
hq Ă Qh.

Assumption 4.6 (Existence of an equilibrium interpolation operator). For all δ ą 1{2, Hη
h admits an

operator Eh : HδpΩq X Hpdiv; Ωq Ñ Hη
h such that

divpEhpζqq “ Phpdivpζqq in Ω , and Ehpζq ¨ ν “ Ξhpζ ¨ νq on BΩ ,

for all ζ P HδpΩq X Hpdiv; Ωq. Moreover, assume that there exists a positive constant Ceq, independent of
h, such that

}ζ ´ Ehpζq}0,Ω ď Ceq h
δ }ζ}δ,Ω @ ζ P HδpΩq X Hpdiv; Ωq .

We now introduce an additional assumption concerning the interaction between the finite element spaces

and the auxiliary space H
´1{2
h .

Assumption 4.7. H
´1{2
h is contained in the restriction to Γ of the normal traces of functions in Hη

h .

This assumption, in particular, implies that Ξhpµhq “ µh on Γ for all µh P H
´1{2
h . We are now ready to

establish the first of three steps in the proof of (4.5).

Lemma 4.1. Assume that Ω is convex. Then, there exists a positive constant C1, independent of h and rh,
such that

sup
0‰χhPHη

h

@

χh ¨ ν, ψ
rh

D

Γ

}χh}div;Ω
ě C1 sup

0‰µhPH
´1{2
h

@

µh, ψrh

D

Γ

}µh}´1{2,00;Γ
@ψ

rh
P Xφ

rh
. (4.10)

Proof. Given µh P H
´1{2
h , µh ‰ 0, we consider the mixed boundary value problem of finding z such that

´∆z “ 0 in Ω , z “ 0 on Σ , ∇z ¨ ν “ µh on Γ .

Recalling that, for every ´1{2 ď s ă 1{2, H
´1{2
h Ă Hs00pΓq (cf. (4.6)), it follows that µh P Hs00pΓq. Then, by

standard elliptic regularity theory (see, for instance, [25, 26]), the weak solution z to this problem belongs
to H1`δpΩq and satisfies, for some positive constant C, independent of h and µh,

}z}1`δ,Ω ď C }µh}´1{2`δ,00,Γ , (4.11)

for every δ P r0, sδs, where sδ :“ mint1, π{p2ωqu with ω the largest interior angle of Ω. Observe that, since Ω is
convex, there holds sδ ą 1{2. Thus, by taking a fixed δ P p1{2, sδq, and putting rχ :“ ∇z P HδpΩq XHpdiv; Ωq,
we obtain divprχq “ 0 in Ω, rχ ¨ν “ µh on Γ, and }rχ}δ,Ω ď C}µh}´1{2`δ,00,Γ. In turn, using (4.11) with δ “ 0,

}rχ}div;Ω “ }rχ}0,Ω ď }z}1,Ω ď C }µh}´1{2,00,Γ . (4.12)

Moreover, by Assumption 4.6 along with Assumption 4.7, we find that

divpEhprχqq “ 0 in Ω , Ehprχq ¨ ν “ µh on Γ and }rχ ´ Ehprχq}0,Ω ď Ceq h
δ }rχ}δ,Ω ,

which, together with (4.11) and (4.12), yields

}Ehprχq}div; Ω ď }rχ ´ Ehprχq}0,Ω ` }rχ}0,Ω ď C Ceq h
δ }µh}´1{2`δ,00,Γ ` C }µh}´1{2,00;Γ .

Owing to the inverse inequality (4.8) with t “ ´1{2 and s “ δ ´ 1{2 into this estimate, we find that

}Ehprχq}div; Ω ď
1

C1
}µh}´1{2,00;Γ ,

where C1 :“ pC maxtCeqCinv, 1uq´1. Finally, bearing in mind that Ehprχq ¨ν “ µh on Γ, we take Ehprχq P Hη
h

in the supremum on the left-hand side of (4.10), leading to

sup
0‰χhPHη

h

@

χh ¨ ν, ψ
rh

D

Γ

}χh}div;Ω
ě

xµh, ψrh
yΓ

}Ehprχq}div; Ω
ě C1

xµh, ψrh
yΓ

}µh}´1{2,00;Γ
@µh P H

´1{2
h zt0u ,

and for all ψ
rh

P Xφ
rh
. Hence, taking the supremum over H

´1{2
h , we conclude (4.10).
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Having established this result, we are now in a position to present the next one, which constitutes the
main part of the effort in proving the desired inf-sup condition.

Lemma 4.2. There exist C0, C2 ą 0, independent of h and rh, such that if h ď C0
rh, then

sup
0‰µhPH

´1{2
h

@

µh, ψrh

D

Γ

∥µh∥´1{2,00;Γ
ě C2 ∥ψ

rh
∥1{2,00;Γ @ψ

rh
P Xφ

rh
. (4.13)

Proof. Given ψ
rh

P Xφ
rh
, denote by z the unique solution of the problem

´∆z ` z “ 0 in Ω , z “ 0 on Σ , and z “ ψ
rh

on Γ . (4.14)

Then, bearing in mind that EΓ,0pψ
rh
q P H1pBΩq by Assumption 4.4, a classical result on elliptic regularity

(see, for instance, [25, 26]) guarantees that z belongs to H1`δpΩq and satisfies

}z}1`δ,Ω ď C }ψ
rh
}1{2`δ,00,Γ , (4.15)

for some C ą 0 and for all δ P r0, 1{2s. In turn, since z solves (4.14), partial integration yields

}z}21,Ω “

ż

Ω

␣

z∆z ` |∇z|2
(

“
@

∇z ¨ ν, EΓ,0pψ
rh
q
D

BΩ
“
@

∇z ¨ ν, ψ
rh

D

Γ
,

where we used that z “ EΓ,0pψ
rh
q on BΩ, by construction. Now, according to the continuity of the canonical

trace operator and the definition of the norm in H
1{2
00 pΩq, there holds

}ψ
rh
}1{2,00;Γ “ }EΓ,0pψ

rh
q}1{2,BΩ ď }z}1,Ω .

We have thus proved that
@

∇z ¨ ν, ψ
rh

D

Γ
ě }ψ

rh
}21{2,00;Γ . (4.16)

Fix δ P r0, 1{2q. Since z P H1`δpΩq and the canonical trace operator is continuous from H1´δpΩq to

H1{2´δpBΩq (see, for instance, [35, Theorem 3.37]), one can verify that p∇z ¨ νq|Γ P H
´1{2`δ
00 pΓq and

}∇z ¨ ν}´1{2`δ,00,Γ ď Cν }z}1`δ,Ω , (4.17)

for some positive constant Cν , depending only on Ω and δ. In turn, by the approximation property of our

auxiliary space (cf. (4.7)), there exists pµh P H
´1{2
h such that

}∇z ¨ ν ´ pµh}´1{2,00;Γ ď C hδ }∇z ¨ ν}´1{2`δ,00,Γ ď C Cν h
δ }z}1`δ,Ω ď C2Cν h

δ }ψ
rh
}1{2`δ,00;Γ ,

where the last two inequalities come from (4.17) and (4.15), respectively. Furthermore, using the inverse
inequality (4.9) with t “ 1{2 ` δ and s “ 1{2, we get

}∇z ¨ ν ´ pµh}´1{2,00;Γ ď sC ph{rhqδ }ψ
rh
}1{2,00;Γ . (4.18)

In particular, by applying the triangle inequality together with (4.17) and (4.15) with δ “ 0, we obtain

}pµh}´1{2,00;Γ ď sC ph{rhqδ }ψ
rh
}1{2,00;Γ ` CνC }ψ

rh
}1{2,00;Γ ď pC }ψ

rh
}1{2,00;Γ,

for h ď rh and pC “ max sC,CνC. We now use this to bound the supremum in (4.13) with the particular
choice µh “ pµh, arriving at

sup
0‰µhPH

´1{2
h

@

µh, ψrh

D

Γ

∥µh∥´1{2,00;Γ
ě

@

pµh, ψrh

D

Γ

}pµh}´1{2,00;Γ
ě

pC´1

}ψ
rh
}1{2,00;Γ

´

@

∇z ¨ ν, ψ
rh

D

Γ
´
@

∇z ¨ ν ´ pµh, ψrh

D

Γ

¯

ě pC´1
`

1 ´ sC ph{rhqδ
˘

}ψ
rh
}1{2,00;Γ,

where the last inequality follows from (4.16) and (4.18). In this way, recalling that h ď rh, it suffices to
require h ď C0

rh, with C0 :“ mint1, p2 sCq´1{δu, in order to ensure a positive constant on the right-hand side.
This concludes the proof with C2 “ pC´1{2.
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To finally prove the inf-sup condition for B2,h, we require one last assumption.

Assumption 4.8. div
`

Xσ
h

˘

Ă Yu
h and Kp2q

3,h Ă Hξ
h.

Lemma 4.3. Assume that Ω is convex. Then, there exists a positive constant β2,d, independent of h and rh,

such that for all h ď C0
rh there holds

sup
0‰χ⃗hPHh

rB2,hpχ⃗hq, ψ⃗hs

}χ⃗h}Hh

ě β2,d }ψ⃗h}Xh
@ ψ⃗h P K3,h . (4.19)

Proof. Given ψ⃗h “ pψ
rh
, τhq P K3,h, by the definition of this kernel (cf. (4.2)), we have that

ż

Ω
vh ¨ divpτhq “ 0 @vh P Yu

h ,

which, by the first inclusion in Assumption 4.8, implies that divpτhq “ 0. Furthermore, by the second

inclusion in the same assumption we have that τh P Hξ
h, and hence we are able to take χ⃗h “ p0, τhq P Hh in

the supremum on the left-hand side of (4.19), thus arriving at

sup
0‰χ⃗hPHh

rB2,hpχ⃗hq, ψ⃗hs

}χ⃗h}Hh

ě }τh}div;Ω . (4.20)

In turn, we bound the same supremum by choosing χ⃗h “ pχh, 0q, with arbitrary χh P Hη
h , and apply

Lemmas 4.1 and 4.2 to obtain

sup
0‰χ⃗hPHh

rB2,hpχ⃗hq, ψ⃗hs

}χ⃗h}Hh

ě sup
0‰χhPHη

h

@

χh ¨ ν, ψ
rh

D

Γ

∥χh∥Hη
h

ě C1C2 ∥ψ
rh
∥1{2,00;Γ . (4.21)

Thus, by summing both (4.20) and (4.21), we obtain the discrete inf-sup condition (4.19), with constant
β2,d :“

1
2 mint1, C1C2u.

Next, we establish the inf-sup condition for B1,h, which corresponds to the discrete counterpart of
Lemma 3.4. Notice that no additional assumptions beyond those already established are required.

Lemma 4.4. Suppose that Ω is convex. Then, there exists a positive constant β1,d such that

sup
0‰χ⃗hPVh

rB1,hpχ⃗hq, qhs

}χ⃗h}Hh

ě β1,d }qh}Qh
@ qh P Qh . (4.22)

Proof. Let qh P Qh Ă L2pΩq, and consider qh ‰ 0, as otherwise the inequality holds trivially. Then, we
consider the following boundary value problem: Find z such that

´∆z “ qh in Ω, z “ 0 on Σ, and ∇z ¨ ν “ 0 on Γ,

whose weak solution, by standard elliptic regularity theory (see, for instance, [25, 26]), belongs to H1`δpΩq

and satisfies }z}1`δ,Ω ď C }qh}0,Ω for every δ P r0, sδs, where sδ :“ π{p2ωq with ω the largest interior angle of
Ω. Notice that sδ ą 1{2 as Ω is convex. Then, fixing δ P p1{2, sδq, and noting that divp∇zq “ ´qh in L2pΩq,
we deduce that ∇z P HδpΩq X Hpdiv; Ωq. Thus, we may define rχh :“ Ehp∇zq P Hη

h (cf. Assumption 4.6).
Furthermore, rχh ¨ ν “ Ξhp∇z ¨ νq “ 0 on Γ, which implies that

@

rχh ¨ ν, ψh
D

Γ
“ 0 for all ψh P Xφh , so that

prχh, 0q P Vh. In turn,

}rχh}2div;Ω “ }rχh}20,Ω ` }divprχhq}20,Ω “ }rχh}20,Ω ` }qh}20,Ω . (4.23)
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Now, employing Assumption 4.6, the a priori estimate of the auxiliary problem, and assuming that h ď 1
without loss of generality, we write

}rχh}0,Ω “ }Ehp∇zq}0,Ω ď }Ehp∇zq ´ ∇z}0,Ω ` }∇z}0,Ω ď Ceq h
δ }∇z}δ,Ω ` }∇z}0,Ω

ď Ceq h
δ }z}1`δ,Ω ` }z}1,Ω ď pCeq ` 1qC }qh}0,Ω .

Using this into (4.23), we find that }rχh}div;Ω ď pC }qh}0,Ω, where pC :“
`

pCeq ` 1q2C2 ` 1
˘1{2

. Finally,
bounding the supremum in (4.22) with χ⃗h “ prχh, 0q P Vh, we obtain

sup
0‰χ⃗hPVh

rB1,hpχ⃗hq, qhs

}χ⃗h}Hh

ě

ˇ

ˇ

ˇ

ˇ

ż

Ω
qh divprχhq

ˇ

ˇ

ˇ

ˇ

}rχh}div;Ω
ě

}qh}20,Ω

pC }qh}0,Ω
“ pC´1 }qh}0,Ω ,

which proves (4.22) with β1,d “ pC´1, as desired.

In order to establish the discrete counterpart of Lemma 3.5, we first note that the symmetry and positive
semi-definiteness of A1,h and D1,h are inherited from those of A1 and D1, respectively. However, the
coercivity of A1,h does not follow directly from the continuous case, as Wh is not necessarily contained in
W (cf. (3.19) and (4.3)). Nevertheless, under Assumption 4.5, we are still able to establish it.

Lemma 4.5. There exists a positive constant α1,d such that

rA1,hpχ⃗hq, χ⃗hs ě α1,d }χ⃗h}Qh
@ χ⃗h P Wh .

Proof. Let χ⃗h P Wh. As in the continuous case, algebraic manipulations yield (cf. (3.25))

rA1,hpχ⃗hq, χ⃗hs ě κ0 }χh}20,Ω ` 2µ }ρh}20,Ω ` λ }trpρhq}20,Ω . (4.24)

Since χ⃗h P Wh Ă K1,h (cf. (4.2)) and noting that divpχhq P Qh by Assumption 4.5, there holds

}divpχhq}20,Ω “ α

ż

Ω
divpχhq trpρhq .

Hence, by the Cauchy–Schwarz inequality, we obtain that }divpχhq}0,Ω ď α }trpρhq}0,Ω. Therefore, (4.24)
becomes

rA1,hpχ⃗hq, χ⃗hs ě κ0 }χh}20,Ω ` 2µ }ρh}20,Ω `
λ

α2
}divpχhq}20,Ω

ě mintκ0, λ α
´2, 2µu

`

}χh}2div;Ω ` }ρh}20,Ω

˘

,

which allows us to conclude the desired result, with α1,d “ mintκ0, λ α
´2, 2µu.

Theorem 4.6. Suppose that Assumptions 4.1 through 4.8 hold, and that Ω is convex. Then, the problem
(4.1) has a unique solution p η⃗h , ph , φ⃗h , u⃗h q P Hh ˆQh ˆXh ˆYh and there exists a positive constant Cd,
depending only on β1,d, β2,d, β3,d, κ0, κ1, µ, λ, α, c0, and Ω, such that

}p η⃗h , ph , φ⃗h , u⃗h q} ď Cd

!

}g}0,Ω ` }gN}´1{2,00;Γ ` }uD}1{2,Γ ` }f}0,Ω

)

.

Proof. Under Assumption 4.1, and using Lemmas 4.3, 4.4, and 4.5, together with the observation that A1,h

and D1,h are symmetric and positive semi-definite, we conclude that the hypotheses of Theorem 3.1 are
satisfied. Therefore, applying this result in the discrete setting completes the proof.
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4.2 A priori error analysis

Now we aim to derive a Céa-type estimate associated with the Galerkin scheme (4.1). As usual, given a
subspace U of an arbitrary Banach space pV, } ¨ }V q, we set

distpv, Uq :“ inf
uPU

}v ´ u}V @ v P V .

In addition, let us denote the solutions of (3.9) and (4.1) (cf. Theorems 3.6 and 4.6) as

Θ :“ pη⃗, p, φ⃗, u⃗q P H ˆ Q ˆ X ˆ Y and Θh :“ pη⃗h, ph, φ⃗h, u⃗hq P Hh ˆ Qh ˆ Xh ˆ Yh , (4.25)

respectively. The following result establishes the desired Céa estimate associated with (4.1).

Theorem 4.7. Suppose that the assumptions of Theorem 4.6 hold. Then, there exists a positive constant
CCea, depending only on κ0, κ1, µ, λ, α, c0, β1,d, β2,d, β3,d, and Ω, such that

}Θ ´ Θh} ď CCea dist
`

Θ , Hh ˆ Qh ˆ Xh ˆ Yh

˘

. (4.26)

Proof. It follows from standard arguments concerning Céa estimates in the context of Galerkin schemes.
Specifically, we subtract the discrete system (4.1) from the continuous one (3.9), and apply the inf-sup
conditions (4.4), (4.19), and (4.22), together with the coercivity property of A1,h (cf. Lemma 4.5). Further
details are omitted and can be found, for instance, in [20, Lemma 26.14] or [22, Section 2.5].

5 Specific finite element spaces

In this section, we provide specific examples for the choice of the spaces Hη
h , H

ξ
h, Qh, X

φ
rh
, Xσ

h , Y
u
h , and

Yγ
h which satisfy Assumptions 4.1 through 4.8, and we establish the corresponding rates of convergence.

Certainly, Assumption 4.2 must be assumed since it concerns the mesh discretization rather than the finite
element spaces. In this way, we first introduce preliminary notations. For a nonnegative integer k and
K P Th, we let PkpKq be the space of polynomials of total degree at most k defined on K. Its vector
and tensorial counterparts are denoted by PkpKq :“ rPkpKqsn and PkpKq :“ rPkpKqsnˆn, respectively. In
addition, we let RTkpKq :“ PkpKq ` PkpKqx be the local Raviart–Thomas space of order k defined on K,
where x stands for a generic vector in Rn. We denote by RTkpKq the space of tensor-valued functions whose
rows lie in RTkpKq. Furthermore, we let bK be the bubble function on K, which is given by the product of
its n` 1 barycentric coordinates. The local bubble space of order k is then given by

BkpKq :“

#

curl pbK PkpKqq if n “ 2 ,

curl pbK PkpKqq if n “ 3 ,

where the curl operators are defined as curl pvq :“
`

Bv
Bx2

,´ Bv
Bx1

˘

for v : K Ñ R (if n “ 2), and curl pvq :“

∇ ˆ v for v : K Ñ R3 (if n “ 3). Finally, BkpKq denotes the space of tensor-valued functions whose rows
belong to BkpKq.

As mentioned earlier in Section 4, Assumption 4.1 corresponds to the inf-sup condition associated with
the classical bilinear form arising in the saddle-point formulation of the linear elasticity problem with weakly
imposed symmetry. Accordingly, it is natural to consider stable finite element spaces for linear elasticity as
a choice for the spaces involved in this inf-sup. More precisely, we define

Xσ
h :“

!

τh P HΣpdiv,Ωq : τh|K P RTkpKq ‘ BkpKq @K P Th
)

,

Yu
h :“

!

vh P L2pΩq : vh|K P PkpKq @K P Th
)

,

Yγ
h :“

!

δh P rCpΩqsnˆn X L2
skewpΩq : δh|K P Pk`1pKq @K P Th

)

.

(5.1)
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Observe that pXσ
h ,Y

u
h ,Y

γ
hq corresponds to the PEERSk`1 element. Under this choice, Assumption 4.1 is

satisfied. Indeed, in [34, Theorem 4.5], the authors establish this inf-sup condition for the triple associated
with the BDMSk`1 element, and further remark in Section 5 of the same article that the corresponding anal-
ysis remains valid for PEERSk`1. We also emphasize that other combinations of stable finite element spaces
for linear elasticity with reduced symmetry could be employed to fulfill Assumption 4.1. Examples include
the Amara–Thomas element [2], Arnold–Falk–Winther [4], and Cockburn–Gopalakrishnan–Guzmán [16]
families. However, to keep the exposition focused, in the remaining of this work, we restrict ourselves to the
PEERSk`1 element.

Next, let us define the remaining finite element subspaces:

Hη
h :“

!

χh P Hpdiv; Ωq : χh|K P RTkpKq @K P Th
)

,

Hξ
h :“

!

ρh P L2pΩq : ρh|K P PkpKq ‘ BkpKq @K P Th
)

,

Qh :“
!

qh P L2pΩq : qh|K P PkpKq @K P Th
)

,

Xφ
rh
:“

!

ψ
rh

P H
1{2
00 pΓq : ψ

rh
|
rΓj

P Pk`1prΓjq @ j P t1, . . . ,mu

)

.

(5.2)

We recall from [6, eq. 3.12] that, in the special case k “ 0, Xφ
rh

Ă H1
00pΓq, and the inverse inequality

(4.9) holds. This result can be extended to the case k ě 1, so that Assumptions 4.3 and 4.4 are satisfied.
The corresponding proof for s, t P

␣

0, 1
(

is provided in [36, Theorem 4.4.3], whereas the extension to the
whole range 0 ď s ď t ď 1 follows from the more general result given by [19, Theorem 4.1]. In turn, since
divpRTkpKqq Ď PkpKq for each K P Th, Assumption 4.5 holds as well.

Now, we consider Eh as the usual Raviart–Thomas interpolation operator (see, for instance, [22, Chapter
3.4]), which can be defined from the space HδpΩq X Hpdiv; Ωq with δ ą 1{2, since the moments of the
Raviart–Thomas space are well-defined as linear and bounded functionals in Hδp pKq X Hpdiv; pKq, where
pK is the reference element associated to the mesh. This can be viewed from a slight modification of the
analysis made in [23, Lemma C.1]. In this way, Assumption 4.6 is also satisfied.

On the other hand, since the normal traces of functions in Hη
h are contained in the space of piecewise

polynomials of order k defined on BΩ, it follows that Assumption 4.7 holds.

Next, by noticing that divpBkpKqq “ 0, it follows that divpXσ
h q Ă Yu

h , which means that the first
inclusion of Assumption 4.8 is fulfilled. In order to establish the second inclusion of this assumption, we

notice that, for τh P Kp2q

3,h Ă Hσ
h , there holds

ż

Ω
vh ¨ divpτhq “ 0 @vh P Yu

h .

Then, by exploiting again that the bubble functions are divergence-free, this identity means that the Raviart–
Thomas component of τh is divergence-free as well. In this way, from the proof of [22, Theorem 3.3], we
obtain that the Raviart–Thomas component belongs to PkpKq in each element K P Th. In addition, since

the bubble component of τh remains unaltered, we need to incorporate it in the definition of Hξ
h in order to

guarantee that τh belongs to this subspace, thus proving that the second inclusion in Assumption 4.8 does
hold. The above explains the rather unusual definition of Hξ

h (cf. (5.2)).

As a result of the previous discussion, we conclude that this choice of finite element spaces yields a stable
Galerkin scheme.

Now we aim to obtain the rates of convergence of our Galerkin scheme (4.1) with the specific finite element

subspaces defined previously. To this end, approximation properties of the finite element subspaces Hη
h , H

ξ
h,

Qh, X
φ
rh
, Xσ

h , Y
u
h , and Yγ

h are presented below, which follow from interpolation estimates for Sobolev spaces

and the approximation properties of the relevant orthogonal projectors and the interpolation operators (see,
for instance, [11], [12], [17], [22]).
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(APη
h) There exists a positive constant C, independent of h, such that for each ℓ P p0, k ` 1s and for each

χ P HℓpΩq, with divpχq P HℓpΩq, there holds

distpχ,Hη
hq ď C hℓ

!

}χ}ℓ,Ω ` }divpχq}ℓ,Ω

)

.

(APξ
h) There exists a positive constant C, independent of h, such that for each ℓ P r0, k ` 1s and for each

ρ P HℓpΩq, there holds

distpρ,Hξ
hq ď C hℓ }ρ}ℓ,Ω .

(APp
h) There exists a positive constant C, independent of h, such that for each ℓ P r0, k ` 1s and for each

q P HℓpΩq, there holds
distpq,Qhq ď C hℓ }q}ℓ,Ω .

(APφ
h) There exists a positive constant C, independent of rh, such that for each ℓ P p0, k ` 1s and for each

ψ P H
1{2`ℓ
00 pΓq, there holds

distpψ,Xφ
rh

q ď C rhℓ }ψ}1{2`ℓ,00,Γ .

(APσ
h ) There exists a positive constant C, independent of h, such that for each ℓ P p0, k ` 1s and for each

τ P HℓpΩq X HΣpdiv; Ωq, with divpτ q P HℓpΩq, there holds

distpτ ,Xσ
h q ď C hℓ

!

}τ }ℓ,Ω ` }divpτ q}ℓ,Ω

)

.

(APu
h) There exists a positive constant C, independent of h, such that for each ℓ P r0, k ` 1s and for each

v P HℓpΩq, there holds
distpv,Yu

h q ď C hℓ }v}ℓ,Ω .

(APγ
h) There exists a positive constant C, independent of h, such that for each ℓ P r0, k ` 1s and for each

η P HℓpΩq X L2
skewpΩq, there holds

distpη,Yγ
hq ď C hℓ }η}ℓ,Ω .

Theorem 5.1. In addition to the hypotheses of Theorem 4.6, assume that there exists ℓ P p0, k`1s such that

η P HℓpΩq, divpηq P HℓpΩq, ξ P HℓpΩq, p P HℓpΩq, φ P H
1{2`ℓ
00 pΓq, σ P HℓpΩq, divpσq P HℓpΩq, u P HℓpΩq,

and γ P HℓpΩq. Furthermore, let Θ and Θh be the continuous and discrete solutions, respectively, as

in (4.25). Then, there exists C ą 0, independent of h and rh, such that for all h ď C0
rh, there holds

}Θ ´ Θh} ď C ΨℓpΘq
`

hℓ ` rhℓ
˘

,

where

ΨℓpΘq :“ }η}ℓ,Ω ` }divpηq}ℓ,Ω ` }ξ}ℓ,Ω ` }p}ℓ,Ω ` }σ}ℓ,Ω ` }divpσq}ℓ,Ω ` }u}ℓ,Ω ` }γ}ℓ,Ω ` }φ}1{2`ℓ,00,Γ .

Proof. The result follows from a straightforward application of the Céa estimate (4.26) along with the
foregoing approximation properties. We omit further details.

We end this section by stressing that the convexity of Ω guaranteeing the stability and convergence of
our mixed finite element method is forced by the corresponding elliptic regularity result for the Poisson
equation with mixed boundary conditions (cf. [25], [26]), as required in the proofs of Lemmas 4.1, 4.3, and
4.4, and Theorem 4.6. Nevertheless, in the following section we illustrate that even for nonconvex domains
we obtain the theoretical rates of convergence predicted by Theorem 5.1, which, on one hand, confirms
that numerical essays are usually more generous than the abstract theory, and, on the other hand, suggests
that perhaps only technical difficulties stop us of proving the well-posedness of the Galerkin scheme in an
arbitrary region. In turn, needless to say, the convexity assumption is certainly not needed when either
Dirichlet or Neumann boundary conditions are considered since in this case a regularity δ ą 1{2 is ensured
for any Lipschitz-continuous domain with largest interior angle ω ă 2π (cf. [26]).
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6 Numerical results

In this section, we illustrate the performance of the mixed finite element method (4.1) using the specific
choices of discrete spaces introduced in (5.1) and (5.2). The implementation was carried out with the open-
source finite element library FEniCS [1] and, in particular, with the specialized module FEniCSii [29], which
is required to handle mixed-dimensional, non-conforming meshes and is also instrumental in the numerical

realization of the H
1{2
00 pΓq norm. The first two examples are devoted to corroborating the convergence rates

predicted by Theorem 5.1, both on the unit square and on a nonconvex domain. The third example examines
the method’s performance in a three-dimensional setting.

As usual, we introduce the following notation to denote the associated errors to each unknown in (4.1):

epηq :“ }η ´ ηh}div; Ω , epξq :“ }ξ ´ ξh}0,Ω , eppq :“ }p´ ph}0,Ω , epφq :“ }φ´ φ
rh
}1{2,00,Γ ,

epσq :“ }σ ´ σh}div; Ω , epuq :“ }u ´ uh}0,Ω , and epγq :“ }γ ´ γh}0,Ω .

Furthermore, we recall that the experimental rates of convergence are computed as

rp˛q :“
log

`

ep˛q{e1p˛q
˘

log
`

h{h1
˘ for ˛ P tη, ξ, p,σ,u,γu , and rpφq :“

logpepφq{e1pφqq

logprh{rh1q
,

where h and h1 (resp. rh and rh1) are consecutive mesh sizes with respective errors e and e1. In order

to compute epφq, we employ the characterization of H
1{2
00 pΓq in terms of the spectral decomposition of the

Laplacian operator (see, for instance, [30]). More precisely, let S : H1
0pΓq Ñ H1

0pΓq be the linear and bounded
operator uniquely determined by the relation

pSpuq, vq1,Γ “ pu, vq0,Γ @u, v P H1
0pΓq ,

where p¨, ¨q1,Γ and p¨, ¨q0,Γ denote the inner products of H1
0pΓq and L2pΓq, respectively. Then, one can define

a basis tziu
8
i“1 of eigenfunctions of S with a non-increasing sequence of positive eigenvalues λi, and for any

u “
ř8
i“1 ci zi there holds

}u}21{2,00,Γ “

8
ÿ

i“1

c2i λ
1{2
i ,

so that H
1{2
00 pΓq becomes the closure of the span of the basis tziu

8
i“1 with respect to this norm. Naturally, for

the practical computation of }u}21{2,00,Γ one employs a discrete approximation of the aforementioned spectral
decomposition.

Example 1: Convergence against smooth exact solutions in a 2D domain

In this test, we analyze the convergence with respect to the spatial discretization using a manufactured
solution. The computational domain is the square Ω :“ p0, 1q2, which is meshed by successively refined
regular triangles. In addition, the boundary BΩ is partitioned into two parts, Γ and Σ, where Γ corresponds
to the left and bottom sides of the square, whereas Σ denotes the union of the top and right sides. We take
the physical adimensional parameters as

µ “ λ “ 1 c0 “ α “ 0.1 , and κpx, yq :“ exppxyq , (6.1)

and adjust the source terms f and g so that the following manufactured solutions coincide to the prescribed
analytical solutions (cf. (2.6)),

u “ 0.05

ˆ

cos
`

1.5πpx` yq
˘

sin
`

1.5πpx´ yq
˘

˙

and p “ sinpπxq sinpπyq .
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The system is complemented with suitable non-homogeneous boundary conditions, which generalize (2.7).
The analysis made in the previous sections can be adapted to handle this framework by employing a lifting
technique and adding some terms to the right-hand side of the weak formulation (3.9). As requested by the
constraint h ď C0

rh introduced in Lemma 4.2, the boundary mesh for the Lagrange multiplier associated
with the pressure is constructed one level lower than a conforming mesh to the boundary of the bulk mesh.
That is, we construct the former with 2j`1`2 segments per side and the latter with 2j`1 segments per side,
giving rh « 2h. Tables 6.1 and 6.2 show the convergence history of the method, with k P t0, 1u, and confirm
the optimal rates of convergence predicted by Theorem 5.1. In addition, Figure 6.1 shows the solutions
obtained by the mixed scheme with k “ 1 and mesh-sizes h “ 0.021 and rh “ 0.043, thus using 436,790 DOF.

Discretization with k “ 0 for η, ξ, p and φ

DOF h rh epηq rpηq epξq rpξq eppq rppq epφq rpφq

550 0.354 0.707 4.11e+00 – 1.50e-01 – 1.78e-01 – 9.91e-03 –
1208 0.236 0.471 2.80e+00 0.95 1.04e-01 0.90 1.20e-01 0.97 5.99e-03 1.24
3292 0.141 0.283 1.70e+00 0.98 6.38e-02 0.95 7.24e-02 0.99 3.20e-03 1.23

10532 0.079 0.157 9.48e-01 0.99 3.59e-02 0.98 4.03e-02 1.00 1.34e-03 1.48
37300 0.042 0.083 5.03e-01 1.00 1.92e-02 0.99 2.13e-02 1.00 4.45e-04 1.73
139988 0.021 0.043 2.59e-01 1.00 9.90e-03 0.99 1.09e-02 1.00 1.29e-04 1.86

Discretization with k “ 0 for σ, u, and γ
DOF h epσq rpσq epuq rpuq epγq rpγq

550 0.354 2.24e+00 – 2.98e-02 – 1.07e-01 –
1208 0.236 1.53e+00 0.95 1.96e-02 1.03 6.33e-02 1.30
3292 0.141 9.25e-01 0.98 1.17e-02 1.02 3.32e-02 1.26
10532 0.079 5.16e-01 0.99 6.45e-03 1.01 1.65e-02 1.18
37300 0.042 2.74e-01 1.00 3.41e-03 1.00 8.20e-03 1.10

139988 0.021 1.41e-01 1.00 1.76e-03 1.00 4.10e-03 1.04

Table 6.1: [Example 1, k “ 0] Number of degrees of freedom, meshsizes, errors, and rates of convergence.

Discretization with k “ 1 for η, ξ, p and φ

DOF h rh epηq rpηq epξq rpξq eppq rppq epφq rpφq

1674 0.354 0.707 5.84e-01 – 3.18e-02 – 1.96e-02 – 2.58e-03 –
3710 0.236 0.471 2.62e-01 1.98 1.47e-02 1.90 8.78e-03 1.98 5.25e-04 3.92

10182 0.141 0.283 9.48e-02 1.99 5.46e-03 1.94 3.18e-03 1.99 1.25e-04 2.80
32726 0.079 0.157 2.93e-02 2.00 1.72e-03 1.97 9.82e-04 2.00 1.21e-05 3.98
116214 0.042 0.083 8.22e-03 2.00 4.85e-04 1.99 2.75e-04 2.00 1.70e-06 3.08
436790 0.021 0.043 2.18e-03 2.00 1.29e-04 2.00 7.31e-05 2.00 2.85e-07 2.69

Discretization with k “ 1 for σ, u, and γ
DOF h epσq rpσq epuq rpuq epγq rpγq

1674 0.354 4.73e-01 – 6.40e-03 – 3.22e-02 –
3710 0.236 2.17e-01 1.92 3.32e-03 1.62 1.68e-02 1.60
10182 0.141 7.96e-02 1.97 1.29e-03 1.85 6.83e-03 1.76
32726 0.079 2.48e-02 1.99 4.08e-04 1.96 2.33e-03 1.83

116214 0.042 6.96e-03 2.00 1.15e-04 1.99 6.95e-04 1.90
436790 0.021 1.85e-03 2.00 3.06e-05 2.00 1.89e-04 1.96

Table 6.2: [Example 1, k “ 1] Number of degrees of freedom, meshsizes, errors, and rates of convergence.
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Figure 6.1: [Example 1] Computed solutions of the mixed scheme. The velocity field (center bottom) is
displayed using line integral convolution (LIC).

Example 2: Convergence against smooth exact solutions in a nonconvex domain

We now consider the two-dimensional nonconvex domain Ω depicted in the first part of Figure 6.2. We use
the same parameters as in the previous example (cf. (6.1)), while the manufactured solutions are given by

u “ 0.05

ˆ

cos
`

1.5πpx` yq
˘

sin
`

1.5πpx´ yq
˘

˙

and p “ py ´ 2xq2 y cospπxyq .

The boundary mesh is constructed in a similar manner as before. Furthermore, to obtain better convergence
rates for φ, we introduce the additional term ´ε pφ

rh
, ψ

rh
qΓ in the third row of the left-hand side of (4.1).

This term acts as a perturbation and helps the algebraic system become more stable. In our case, we set
ε “ 10´12. In this context, and as anticipated at the end of Section 5, Tables 6.3 and 6.4 show that optimal
convergence rates are achieved in most of the experiments. This observation suggests that Theorem 5.1 may
be extended to a broader class of domains. Nevertheless, for the finest meshes we observe a deterioration in
the convergence order, which is likely attributable to the non-convexity of the domain. Figure 6.2 depicts the
numerical solutions obtained with the mixed scheme for k “ 1, h “ 0.005 and rh “ 0.012, using 785,594 DOF.

Example 3: Convergence against smooth exact solutions in a 3D domain

In the final example, we consider the unit cube Ω “ p0, 1q3. The parameters µ, λ, c0, and α are chosen as
in (6.1), while the permeability κ is defined by

κpx, y, zq :“ expp´xyzq .

In addition, the source terms f and g are defined in such a way that the manufactured solutions presented
below coincide with the prescribed analytical solutions (cf. (2.6)). The corresponding velocity and pressure
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Discretization with k “ 0 for η, ξ, p and φ

DOF h rh epηq rpηq epξq rpξq eppq rppq epφq rpφq

1002 0.147 0.280 6.16e-01 – 4.85e-02 – 1.57e-02 – 2.42e-02 –
4050 0.079 0.149 3.12e-01 1.10 2.53e-02 1.05 8.03e-03 1.08 8.66e-03 1.63

15682 0.041 0.079 1.51e-01 1.09 1.32e-02 0.97 3.70e-03 1.16 4.18e-03 1.14
62562 0.020 0.042 7.85e-02 0.94 6.84e-03 0.95 1.86e-03 0.99 2.04e-03 1.15
251714 0.010 0.024 4.07e-02 0.95 3.67e-03 0.91 9.32e-04 1.01 1.03e-03 1.20
999426 0.005 0.012 2.15e-02 0.92 2.06e-03 0.83 4.68e-04 1.00 5.14e-04 1.02

Discretization with k “ 0 for σ, u, and γ
DOF h epσq rpσq epuq rpuq epγq rpγq

1002 0.147 5.49e-01 – 6.95e-03 – 5.74e-02 –
4050 0.079 2.84e-01 1.07 3.45e-03 1.13 2.43e-02 1.38
15682 0.041 1.43e-01 1.02 1.77e-03 0.99 1.20e-02 1.06
62562 0.020 7.12e-02 1.01 8.49e-04 1.06 6.16e-03 0.96

251714 0.010 3.61e-02 0.99 4.18e-04 1.03 3.21e-03 0.95
999426 0.005 1.86e-02 0.95 2.05e-04 1.03 1.80e-03 0.83

Table 6.3: [Example 2, k “ 0] Number of degrees of freedom, meshsizes, errors, and rates of convergence.

Discretization with k “ 1 for η, ξ, p and φ

DOF h rh epηq rpηq epξq rpξq eppq rppq epφq rpφq

3064 0.147 0.280 6.55e-02 – 3.60e-03 – 2.31e-03 – 5.73e-03 –
12526 0.079 0.149 1.75e-02 2.13 9.31e-04 2.18 5.73e-04 2.25 1.74e-03 1.89
48750 0.041 0.079 4.54e-03 2.02 2.30e-04 2.09 1.41e-04 2.09 5.13e-04 1.92

194998 0.020 0.042 1.20e-03 1.92 5.64e-05 2.03 3.48e-05 2.02 1.25e-04 2.27
785594 0.010 0.024 3.12e-04 1.96 1.42e-05 2.00 8.62e-06 2.03 3.24e-05 2.36
3121186 0.005 0.012 8.17e-05 1.93 3.60e-06 1.98 2.16e-06 2.00 1.16e-05 1.51

Discretization with k “ 1 for σ, u, and γ
DOF h epσq rpσq epuq rpuq epγq rpγq

3064 0.147 4.44e-02 – 6.97e-04 – 4.19e-03 –
12526 0.079 1.09e-02 2.26 1.74e-04 2.24 1.07e-03 2.21
48750 0.041 2.74e-03 2.06 4.31e-05 2.08 2.62e-04 2.10
194998 0.020 6.85e-04 2.00 1.08e-05 2.00 6.73e-05 1.96
785594 0.010 1.69e-04 2.04 2.67e-06 2.03 1.67e-05 2.03
3121186 0.005 4.25e-05 1.99 6.71e-07 1.99 4.28e-06 1.96

Table 6.4: [Example 2, k “ 1] Number of degrees of freedom, meshsizes, errors, and rates of convergence.

fields are defined by

u “ 0.1

¨

˝

sinpxq cospyq cospzq ` 0.5x2

´2 cospxq sinpyq cospzq ` 0.5 y2

cospxq cospyq sinpzq ` 0.5 z2

˛

‚ and p “ sinpπxq sinpπyq sinpπzq .

The independent boundary mesh is constructed as in the first example, now in the three-dimensional setting.
The convergence history is reported in Table 6.5, where optimal convergence rates are observed for most
variables, in agreement with the predictions of Theorem 5.1 for k “ 0. For one of the variables, however, the
optimal rate is not fully attained on the meshes considered. This behavior is likely due to a pre-asymptotic
effect, since the mesh refinements required to enter the asymptotic regime would be computationally pro-
hibitive. In addition, the numerical solutions are depicted in Figure 6.3 for mesh sizes h “ 0.108 and
rh “ 0.192, using 979,618 degrees of freedom.

25



Figure 6.2: [Example 2] Nonconvex domain under consideration (top left). The black portion of the boundary
represents Γ, while the remaining part corresponds to Σ. The mesh shown has size h “ 0.041. Computed
solutions of the mixed scheme (remaining panels). The pressure flux and the velocity fields are displayed
using line integral convolution (LIC), colored by their respective magnitudes.

Discretization with k “ 0 for η, ξ, p and φ

DOF h rh epηq rpηq epξq rpξq eppq rppq epφq rpφq

2068 0.866 0.866 5.63e+00 0.00 4.83e-02 0.00 2.28e-01 0.00 3.09e+01 0.00
15772 0.433 0.577 3.09e+00 0.86 2.83e-02 0.77 1.14e-01 0.99 2.33e-02 17.73
123622 0.217 0.346 1.59e+00 0.96 1.59e-02 0.83 5.85e-02 0.97 4.04e-03 3.43
979618 0.108 0.192 7.98e-01 0.99 8.98e-03 0.82 2.95e-02 0.99 1.23e-03 2.02

Discretization with k “ 0 for σ, u, and γ
DOF h epσq rpσq epuq rpuq epγq rpγq

2068 0.866 2.28e-01 0.00 2.38e-02 0.00 6.14e-02 0.00
15772 0.433 1.26e-01 0.86 1.16e-02 1.04 2.48e-02 1.31

123622 0.217 6.67e-02 0.92 5.77e-03 1.01 1.08e-02 1.20
979618 0.108 3.54e-02 0.91 2.88e-03 1.00 5.09e-03 1.09

Table 6.5: [Example 3, k “ 0] Number of degrees of freedom, meshsizes, errors, and rates of convergence.
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