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Abstract

We propose and analyze new mixed finite element methods for the linear poroelasticity problem, which
models the coupled phenomena of fluid diffusion and solid deformation. The formulation is based on the
introduction of the vorticity and the strain tensor as auxiliary unknowns, which makes it possible to elim-
inate the fluid content from the system. The latter can then be recovered from the strain tensor and the
pressure. Then, by incorporating a multiple of the pressure gradient as an additional unknown, we arrive
at an operator equation showing a threefold saddle-point structure, which, in turn, is perturbed by a
term depending on the pressure variable. The well-posedness of the continuous formulation is established
through a suitable extension of the usual Babuska—Brezzi theory, which yields a new abstract result, along
with a recently developed approach to analyze perturbed saddle-point problems. The discrete analysis
follows a similar strategy, employing arbitrary finite element spaces satisfying suitable assumptions. In
particular, we provide concrete examples based on PEERS elements and derive the corresponding conver-
gence rates. Finally, several numerical experiments are presented, which confirm the theoretical results
and illustrate the good performance of the methods.

Keywords: Poroelasticity, fully mixed finite element methods, threefold saddle-point problems, error anal-
ysis.
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1 Introduction

Scope. The equations of Biot poroelasticity describe the mechanical behavior of a fluid-saturated porous
medium, where the coupling between fluid diffusion and solid deformation is taken into account. This model
finds wide use in various fields that span from geomechanics and petroleum engineering to biomechanics
and material science; see, e.g., [37, 38]. Numerical solutions of poroelasticity can be challenging, especially
when dealing with heterogeneous materials, complex geometries, and multiphysics, and partly due to the
presence of multiple scales and physical parameters (e.g., Lamé coefficients, storativity, permeability) as
well as discretization parameters.

While the primary form of the governing equations is based on the solid displacement and the fluid
pressure as main unknowns, it is well known that reformulations of the equations in fully mixed form can
provide significant advantages in terms of robustness with respect to material parameters and of local mass
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conservation, for example. In this context, several mixed finite element and polytopal methods have been
proposed in the literature; see, e.g., [7, 10, 13, 21, 24, 28, 32, 33, 39], which also include multiphysics cou-
plings with diffusion, temperature, or interfacial effects. Depending on the specific structure and choice of
the additional unknowns, many different methods can be derived, usually resulting in saddle-point formu-
lations (symmetric, non-symmetric, single, twofold, threefold, etc.). Their analysis — solution existence and
uniqueness, energy estimates, and error bounds — typically relies on the classical Babuska—Brezzi theory for
mixed problems [11], or on its extensions to more complex saddle-point structures [9, 27].

The present work aims to introduce and analyze new mixed finite element methods for linear poroelas-
ticity with mixed traction-loading boundary conditions, and based on a threefold saddle-point formulation.
The proposed approach is inspired by traditional mixed formulations with weakly imposed symmetry for
linear elasticity [3, 4, 16, 34]. Apart from solid displacement and fluid pressure, several other variables of
mathematical and physical interest form part of the resulting system. Indeed, we introduce the full Biot
stress, which, besides allowing the mixed boundary conditions to be incorporated more naturally, ensures
that the balance of linear momentum is satisfied exactly. In turn, the balance of angular momentum is
imposed weakly through the incorporation of the infinitesimal rotation tensor. In addition, we consider the
infinitesimal strain, the discharge flux, and an additional unknown defined on a function space associated
with the Neumann part of the boundary, which is related to the imposition of non-homogeneous boundary
conditions on the discharge velocity (Darcy flux). While these extra unknowns often lead to larger algebraic
systems, they also provide more accurate approximations of the corresponding physical quantities of interest,
especially when low-regularity solutions are considered and in the presence of multiphysics couplings.

We prove that the resulting threefold saddle-point formulation is well-posed by extending the classical
Babuska—Brezzi theory to this more complex setting, and by employing a recently developed framework
for the analysis of perturbed saddle-point problems [18]. The developments in this paper can be therefore
seen as a non-trivial extension of the abstract theory presented in [18] to the case of threefold saddle-point
problems, which can be of use for other general applications in continuum mechanics. The arguments of the
proofs involve kernel splittings and their identification/characterization when applied to the Biot equations.

At the discrete level it is possible to follow conforming or non-conforming schemes. In this work, we
restrict ourselves to the conforming case and develop the discrete analysis under a set of explicit and verifiable
assumptions on the finite element spaces involved. These hypotheses are formulated in a general manner, so
that the resulting Galerkin scheme is not tied to a specific discretization. Within this setting, the discrete
analysis follows a strategy that closely mirrors the proposed abstract continuous approach. Nevertheless, it
departs from the ideas cited above when addressing approximation properties and the verification of suitable
discrete inf-sup conditions.

We then particularize the abstract framework to PEERS elements combined with Raviart—Thomas and
discontinuous polynomial spaces, showing that they satisfy all the required conditions, and we remark that
other well-established mixed finite element families available in the literature also fit within the proposed
setting. The discrete analysis requires additional assumptions on the regularity of the discretization of the
Neumann sub-boundary, as well as on the compatibility between the finite element spaces for the Darcy
flux, their normal traces, and the discrete Lagrange multiplier space. Another technical issue is that the
discrete inf-sup conditions rely on auxiliary Poisson problems with mixed boundary conditions, which in
turn impose mild restrictions on the class of admissible domains. The practical impact of these restrictions is
investigated through numerical experiments, including a test on a domain that does not satisfy the required
regularity assumptions and nevertheless exhibits the expected convergence behavior.

Outline. In the remainder of this section we include notational convention and preliminary definitions of
spaces and operators needed for the functional setting. In Section 2 we recall the equations of poroelasticity in
steady form, introducing also the auxiliary unknowns. Section 3 is devoted to deriving the weak formulation,
stating and proving a new abstract result for threefold saddle-point problems, and using this theory for
establishing the well-posedness of the fully mixed Biot equations. In Section 4 we define the Galerkin



method, state regularity assumptions, and apply the new abstract theory to show existence and uniqueness
of discrete solution for generic finite element spaces that satisfy inf-sup stability, space compatibility, suitable
trace inequalities, and existence of adequate interpolation operators. There we also derive quasi-optimality
results, which we combine with specific properties of PEERS and Raviart—Thomas finite elements to derive
optimal convergence rates. We conclude in Section 6 with simple numerical tests in 2D and 3D that illustrate
the convergence properties of the proposed finite element schemes.

Preliminaries. Let © be a bounded domain in R™ with polyhedral boundary 0€2, and let ¥ and I" be two
disjoint open subsets of 9, such that 0Q = ¥ UT. We denote by v the outward unit normal vector on o).
In what follows, standard notation is adopted for Lebesgue spaces LP(€2) and Sobolev spaces W*P(Q2), with
s € R and p > 1, whose corresponding norms, either for the scalar, vectorial, or tensorial case, are denoted
by || [op: @ and | -||s . 0, respectively. In particular, given a non-negative integer m, W™2(Q) is also denoted
by H™ (), and the notations of its norm and seminorm are simplified to | - [0 and | - [ 0, respectively.
On the other hand, given any generic scalar functional space S, we let S and S be the corresponding vector
and tensor counterparts, whereas | - ||, with no subscripts, will be employed for the norm of any element
or operator whenever there is no confusion about the space to which they belong. Also, |- | denotes the
Euclidean norm in both R™ and R™*", and as usual, I stands for the identity tensor in R™*". In addition,
for normed vector spaces X and Y, with norms | - | x and | - [ly, respectively, we endow the product space
X x Y with the natural norm

Unless otherwise stated, the duality pairing between X and its topological dual X’ is denoted by [, -].
Furthermore, given a linear operator A : X — Y’, its transpose is the operator A* : Y — X’ characterized
by the relation [A(x),y] = [A*(y),z], for every (z,y) € X x Y. In this context, an operator A : X — X’
is said to be symmetric if A = A* and positive semi-definite if [A(z),z] = 0, for all z € X. Given a closed
subspace S of X, we define the operator Ilg : £(X, X’) — £(S,S") through the relation

(@ 9)|xxy = lzlx + lyly  V(z,y)e X xY.

Mg A(u),v] = [A(u),v] Vu,ve S, VAeL(X,X). (1.1)

Also, given any vector fields v = (v;)i—1,, and w = (w;)i=1,, we set the gradient and divergence as

ov; X Ovj
Vv = ( z) and div(v):= Y L,
0 ij=1n ; 0

whereas for any tensor fields 7 = (73;)i j=1,n and ¢ = ((ij)i,j=1,n, We let div(T) be the divergence operator
div acting along the rows of 7, and define the transpose, the trace, and the tensor inner product, respectively,

as
n

n
7= Tt 0(7) = Yom and 7= 3]Gy
i=1 6j=1

In addition, H'/2(0Q) is the space of traces of functions of H' (), H=1/2(Q) denotes its dual, and (-, Yaq
stands for the duality pairing between H=1/2(0Q) (resp H~Y2(69)) and H'/2(0Q) (resp. HY2(0Q)). Further-
more, HY/2(T') is the space of functions in H/2(0Q) when restricted to T. In turn, Ep o : HY2(T') — L2(0Q)
denotes the extension by zero on 0Q\T', and we define the Hilbert space

Hyp (D) = {v e HY2(D): Ero(v) e HV2(20)
which is endowed with the inner product

W, 0012000 = {Ero(¥), Ero(e)ipee  YY,p€ Hy (1) . (1.2)



Additionally, we denote by Haol/ 2(F) the dual of H(l)(/)2(F), and employ (-, )r to denote the duality pairing

between them. Throughout the paper | - |20 is the norm induced by (1.2) and | - || _1/2,00.r denotes the

norm of Haol/ 2(F). For further details, we refer to [22]. Next, we introduce the standard Hilbert spaces

H(div; Q) := {X eL2(Q): div(x) e L?(Q)} and
H(div; Q) := {T eL2(Q): div(r)e L?(Q)} :
which are endowed with their usual norms
2 : 2 \? :
Xl = (Ixl3a + ldiv0olge)  YxeH(divie), and
) . 5, \1/2 .
Irlave = (1730 + Idiv(m)3g) V7 eH(div: Q).

Additionally, we recall the integration by parts formulas (cf. [22, Lemma 1.4])

(X -V, w0 =f X'Vw—i—f wdiv(x) Vwe HY(Q), VxeH(div;Q), and
e @ (1.3)

(Tv,w)og = J T:Vw +j w - div(T) VweH(Q), VreH(div;0).
Q Q

Finally, in what follows, we denote by 0 or 0 the null element of any vector space, and we use C' to represent
a generic constant independent of the discretization parameters, which may take different values in different
contexts.

2 The model problem

Consider a fully-saturated poroelastic medium composed of isotropic and homogeneous fluid and solid phases,
represented by €). Under suitable physical conditions, the medium is primarily influenced by a body force
f:Q — R"™, and the linear momentum conservation is expressed as

div(e) =—f in Q, (2.1)

where o is the Cauchy stress tensor, which, in turn, is symmetric due to the angular momentum conservation.
Furthermore, the effective stress principle relates o to the fluid pressure p : 2 — R and the solid displacement
u: ) — R"via

o=C(e(u)) —apl in Q, (2.2)

where C denotes the elasticity operator acting on the strain tensor e(u) = 1(Vu+ (Vu)*®), and o € [0,1] is
the Biot—Willis coefficient. Under the assumption of a linearized regime, the generalized Hooke’s law provides
a simplified relationship between stress and strain. In fact, denoting by A and p the Lamé coefficients, the
elasticity operator is given by

C(r) =2ut + Atr(7)I VT el?(Q).

On the other hand, it is known that the fluid content ¥ : ) — R, resulting from saturation and local volume
dilation, is given by
Y=cop—+adivu=cyp+ atre(u), (2.3)

where ¢g is the constrained specific storage coefficient (storativity). Under Darcy flow, given the resultant
flow g : Q@ — R and the intrinsic permeability relative to fluid viscosity of the flow in the medium &, there



holds 0¥ — div(k Vp) = g. Here, we note that under an appropriate semi-discrete transformation it is
sufficient to consider the stationary form

¥ —div(kVp) =g. (2.4)
We assume that there exist positive constants kg and k1 such that
ko < K HxX) < Ky for a.e. xe Q.

In order to reformulate the system given by (2.1), (2.2), (2.3), (2.4) and the symmetry of o in a mixed form,
we begin by denoting the vorticity tensor and the strain tensor by

N = %(Vu — (Vu)t) and & =e(u) in Q, (2.5)

respectively. It is worth noting that (2.5), together with (2.2), are equivalent to requiring that - is skew-
symmetric and

c=C&) —apl and Vu=v+€& in Q,

provided that the symmetry of o is already enforced. In addition, from (2.3), we realize that the fluid
content ¥ is completely determined by the pressure p and the strain €. So, by replacing this relation into
the flow equation (2.4), we get

cop +atr(§) —div(n) =g,

where we introduced n := k Vp as a further unknown. This enables us to eliminate ¥ from the system and
recover it afterwards from € and p, using (2.3). Therefore, as a result of the previous discussion, we are able
to rewrite the initial system as: find u, o, 1, p, €, 7 in suitable spaces to be specified below such that ~ is
skew-symmetric, € is symmetric, and

oc=C¢) —apl, Vu=~4+¢& in Q
—div(e) =f, o=0% n=xVp in Q (2.6)
cop+atr(§) —div(n) =g in Q.

Furthermore, the system is complemented by mixed boundary conditions, incorporating the given boundary
data up and gy,
u=up on I'), ov=0 on X,
(2.7)
p=0 on ¥, m-v=gy on I.

3 Weak formulation and its solvability analysis

3.1 Variational formulation

In this section, we derive the weak formulation of problem (2.6), together with the boundary conditions (2.7).
To this end, we first assume that u € H'(Q), and test the second equation in (2.6) against a tensor field
T € H(div; ), thus obtaining

JQVum':JQ'y:T—FJQ{:T V1 e H(div;Q), (3.1)

from which we deduce that all terms are well defined, provided that v and & are sought in I.2(Q2). Moreover,
motivated by the boundary conditions (2.7), we introduce the space

Hs: (div; ) := {reH(div;Q): Tv=0 on z},

5



and we require that up € H/2(T), so that the following relation holds:
(rv,uysn = {(Tv)|r,ulrysq = (Tv,up)r V1 e Hy(div; Q), (3.2)

where the last term 7 v is understood as a functional acting on H'/2(T"). In fact, while usually 7 v|r belongs

to Hj, 1/2( I'), the fact that it vanishes on ¥ guarantees that actually 7 v|r € H~Y2(I'), and hence here we
also use (-, dr to denote the duality pairing between H=1/2(I') and H'/2(I'). Then, by applying integration
by parts (cf. (1.3)) in (3.1) and then using (3.2), we arrive at

j EZT-}-J u-div(7)+j v :7T ={TVv,up)p V71 e Hy(div; Q). (3.3)
Q Q Q

Notice that this equation makes sense even if u € L?(€2) instead of H!(Q). Moreover, we claim that seeking
u in L2(Q) is equivalent to doing so in H!(Q2). Indeed, if (3.3) holds for u € L?(f2), then, by restricting
the test functions to compactly supported smooth tensor fields, we recover that Vu = & + ~ in L2(Q), so
u e H'(Q). In addition, testing the latter with 7 € H(div;(2), integrating by parts, and invoking (3.3), we
obtain u’F = up and (3.1). According to this equivalence, from now on we shall seek u € L(f). Arguing
similarly for the fifth equation in (2.6), this time using that p = 0 on ¥ (cf. (2.7)), we obtain

| x| pdivio = v Vxe Hivng),
which, after introducing the further unknown ¢ := p} r€ H(l)é2(F), reads

f KTImx o+ J pdiv(x) —{x - v,o)r =0 Vx € H(div; Q). (3.4)
Q Q

Here, we notice that, by a reasoning similar to the one made for (3.3), we may require that p € L2(Q2) and
n € L2(Q). In turn, the boundary condition for i (cf. (2.7)) is enforced as a weak constraint via

v, =gy Ve H)(TD). (3.5)

Next, we test the first equation in (2.6) against a tensor field p € L?(£2), thereby obtaining
—JO’ p—i—JC af ptr(p) =0 Vpel?(Q), (3.6)
Q

from which it follows that & must be sought in L2(€2). Certainly, the symmetry of the Cauchy stress tensor
(cf. (2.6)) could be enforced by restricting the trial space to symmetric tensors. Nevertheless, this choice is
not optimal from an implementation standpoint, so we instead enforce the symmetry as a weak constraint,
which is accomplished by imposing

f G 5-0 Voell (), (3.7)
Q

where

L2, (Q) := {aeLZ(Q): 5:-5*‘}.

skew

Now, observe that if o satisfies (3.7), then, by testing with L__(€2) in (3.6), we deduce that £ is symmetric.
In turn, the skew-symmetry of ~ is enforced by simply requiring that v € L% (€2). Next, we test the
momentum balance (cf. third equation of (2.6)) against a vector field v € L2(£2), formally obtaining

_Lv.div(g):Lf.v Vvel?(Q). (3.8)



We observe that the previous equation is well defined when f and div (o) belong to L2((2), the latter implying
that o € H(div;{2). Furthermore, we note that integration by parts is not necessary, since the symmetry
required for a saddle-point formulation is already satisfied (cf. (3.3)). Finally, we test the last equation
of (2.6) with a scalar field ¢ € L2(Q), obtaining

co Jﬂpq + antr(E) - quiV(n) = qu Vqel?(Q),

from which we observe that each term is well defined provided g € L(2) and div(n) € L2(Q2), which in turn
implies that n € H(div;2). In this way, adding (3.4) with (3.6), and suitably combining (3.3) with (3.5)
and (3.7) with (3.8), the system describing our problem is: find (n,€&) € H(div;Q) x L2(Q2), p € L2(Q),
(p,0) € HééQ(F) x Hx(div; ), and (u,~) € L2(Q) x L2 __ (), all of them such that

skew

Lﬁ‘ln'x + LpdiV(x) —{xX v, or — LU tp+ LC(E) tp— afgptr(p) =0

—antr(S) + quiV(n) — Co Jﬂpq = —qu

_Lg;T_fgu.div(q-)_Lfy;q-—@-u,wr = —{Tv,up)p — YN, V)r

—JQv-div(cr)—anzész'v

for all (x, p) € H(div; Q) x L2(Q), g € L2(Q), (¢, 7) € HYA(T) x Hy(div; Q), and (v,8) € L2(Q) x L2 ().

This system can be rewritten in terms of linear operators, yielding the previously announced threefold
saddle-point structure. To this end, we define the spaces

H:=H, xH,, Q:=L%Q), X:=X;xXy, and Y :=Y; x Yy,

where

H, = H(div;Q), H,:=L2Q), X;:=HXT),
X? = HE(diV, Q) ) Yl = LZ(Q) ) YQ = ]L’gkew(Q) )
and set the following notation for trial and test functions, respectively
ni=m§eH, ¢g=(p0)eX, d=(u9y)eY,
X:=0peH, Y:=@T1)eX, Vi=(v,0)€Y,

which allows us to rewrite our system as: find (77, p, @, d) € H x Q x X x Y such that

A Bf By 7 F

By =D, p{_| ¢ (3.9)

B, B || ¢ x| '
Bs it 7z

where the linear operators A1 : H - H', Bi - H - Q. By :H - X', B3: X - Y and D; : Q —» Q' are
given by

i) X i= | x| C©:p, BiRal = [ adivio —a | at(e).
(Bo0).0) = = | pir—Gevae B0 )i — | vediv(n) = [ 728,

D= ro

N



whereas the linear functionals F € H', G € Q', H € X’ and Z € Y’ are given by

[F,x]:=0, [Q,q]:z—fggq, [H,J]:=—<Tu,uD>F—<gN,¢>F, and [I,V]:zJQfVV,

respectively, for arbitrary inputs in their respective spaces. Furthermore, by applying the Cauchy—Schwarz
inequality and bearing in mind the continuity of the normal trace operators -, : H(div; Q) — H~Y2(0Q)
and 7, : H(div; Q) — H~/2(0Q), we note that the foregoing operators and functionals satisfy the following
stability properties:

JA < /Tt 420+ A, B <1+a, [Bof <1+ wl, [Bs]<v2, |Dif<c,

(3.10)
IFl=0, [G]<lg

oo, [HI < lgnll-1/2000 + |70l |luplipr  and [Z] < [flog -

3.2 A new abstract result

In this section, we establish an abstract result on the well-posedness of threefold saddle-point problems, which
slightly extends the structure of (3.9). We emphasize that, although our problem is posed in Hilbert spaces,
it is possible—without introducing unnecessary complications—to state the result in the broader setting of
reflexive Banach spaces, which ensures greater generality and reusability. Our approach to proving well-
posedness relies heavily on Babuska—Brezzi theory in combination with a recent result concerning perturbed
saddle-point problems in reflexive Banach spaces (cf. [18]). This strategy has also been frequently applied
in related contexts, namely, simple and twofold saddle-point problems, with or without perturbations (see,
for instance, [14, 8, 31, 24, 15]).

We let H, Q, X and Y be reflexive real Banach spaces, andleta: H - H , b: H - Q',c: Q — @,
B:HxQ — X',and D: Hx Q x X — Y’ be linear and bounded operators. We aim to establish sufficient
conditions to the well-posedness of the following problem: Given (F,G,I,J) € H' x @' x X' x Y’, find
(u,0,p,9) € H x Q x X xY such that

albt | g ) Z
b| —c D* o
= > 171 7 (3.11)
D | Y 7

To that end, we begin by defining the linear and bounded operators A1 : HxQ — H'xQ', As: HxQx X —
HxQ xX' and A3 : HxQxXxY - H xQ' x X' xY', as

[ a|b® [ A |B? [ Ay |D®
Al.—(b —C)’ AQ.—(B ), and A3.—(D >

We then observe that studying the well-posedness of (3.11) reduces to analyzing the bijectivity of the
operator As. In this context, we recall from Babuska—Brezzi theory (cf. [20, Theorem 49.12]) that As is an
isomorphism if and only if D is surjective and Ay defines an isomorphism from the kernel of D to its dual.
More precisely, defining

K:= {(U,T,(])EH xQxX: D(v,r1,4q) 20}, (3.12)

we have that Ag is an isomorphism if and only if (cf. (1.1)) HxAs : K — K’ is an isomorphism and D
satisfies the inf-sup condition

wp  [Dra).gl

> Blel  VeeY, (3.13)
0#(v,7,q)eHXxQx X H (Uv T, Q) H

for some positive constant 3. Frequent use of the definition given by (1.1) is made in this section. Now,
looking at the definition of As, one would like to apply the same result to establish equivalent conditions



to the bijectivity of the operator. This is possible only if we have that I has a product structure. In fact,
assuming that I = K1 x Ko x K3, where K1, Ko and K3 are subspaces of H, () and X, respectively, we have
that IIxcAs is an isomorphism if and only if IT)yA; : V — V' is an isomorphism, where

V= {(m)e/cl xKa: [B(v,7),q] =0 vqe/cg}, (3.14)
and there exists a positive constant 9 such that

wp B

=Ml Vaeks. (3.15)
0£(wnekixkz  1(0,7)]

It only remains to translate the bijectivity condition of IIy)A;. Noting that the structure of A; differs from
that of As and Aj, due to the presence of a perturbation term, we cannot directly apply the previous result.
Instead, we rely on [18, Theorem 3.4], which provides sufficient conditions for the bijectivity of an operator
with this structure. In particular, we first observe that IIyA; : V — V' is an isomorphism if and only if, for
each (F,G) € V', there exists a unique solution to the following problem: find (u, o) € V such that

a(u) +b*(o) = F,
b(u) —c(oc) = G.

Now, notice that, in order to apply [18, Theorem 3.4], V must possess a product structure. We then suppose
that ¥V = V1 x Vs, where V; and Vs are subspaces of K1 and Ko, respectively, and define

W= {v eVi: [b(v),7]=0 Vr7e Vg}. (3.16)

Thus, by collecting the conditions mentioned earlier (cf. (3.13) and (3.15)), and by employing [18, Theorem
3.4], we arrive at the following result.

Theorem 3.1. Let H, Q, X and Y be reflexive real Banach spaces, and let a : H — H', b : H — @',
c:Q—->Q ,B:HxQ—X',andD: HxQxX — Y’ be given linear and bounded operators. In addition,
let us suppose that the kernel KK of D (cf. (3.12)) can be written as a product space K = K; x Ko x K3,
where K1, Ko and KCs are subspaces of H, Q and X, respectively. Define V as in (3.14) and suppose that
V =V x Vo, where V| and Vo are subspaces of K1 and Ko, respectively. Furthermore, define W as in (3.16),
and assume that the following conditions hold:

(i) There exists a positive constant 33 such that

wp D9l

= Bslel  VeeY.
0#(v,7,q)eHXxQx X H (Ua T, Q) ”

(i) There exists a positive constant By such that

sup [B(v,7),4q]

= B2 ||q| VgeKs.
0£(wr)ekixks (0T

(iii) There exists a positive constant 1 such that

b(v),
qup POl g0 waen.
oS el

(iv) There exists a positive constant o such that

wp [2(0).7]

= o VoeW.
ozrew ||



(v) a and c are symmetric and positive semi-definite in Vi .

Then, for each (F,G,1,J) e H x Q' x X' x Y, there exists a unique (u,o,p,9) € H x Q x X xY solution
to (3.11). Moreover, there exists a positive constant C, depending only on «, 1, B2, B3, |al, [|b], [lc/, |B,
and |D|, such that

[Cus 0,0, ) [x@xxxy < CI(F G L T) [rcgrxxrsye - (3.17)

Proof. The existence and uniqueness of solution follows from the previous discussion. In turn, (3.17) can be
derived by using the a priori estimates given by [18, Theorem 3.4]. Alternatively, one can use the inf-sup
conditions and perform standard techniques to arrive at the same estimate. O

We remark that in the previous discussion we could instead have considered [18, Theorem 3.1, which
covers a different spectrum of problems, namely, when the transpose map b*® has nontrivial kernel inside Vs.
This is not under the scope of this work, as our problem does not fall in this category.

3.3 Well-posedness of the continuous problem

In this section, we prove that (3.9) is well-posed by employing Theorem 3.1. For this purpose, we first define
K3 as the kernel space of Bs, which is characterized by

Ks = HééQ(F) X {T e Hy(div; Q) : 7eL2 () and div(r) = O} , (3.18)

sym

where
L2n(Q) = {Tel?(@) : r* =7},

sym

In addition, we define the spaces
V:={>Z’€H: [B2(%),%]=0 WEEICS} and Wi:{YGVZ [B1(X),q] =0 VqEQ},

(2)

which, denoting by K4~ the second-component space of K3 (cf. (3.18)), can be characterized by

Vz{i:z(x,p)eH: x-v=0 on I' and fﬂp:rzo VTEK&Z)},
(3.19)

and W = {;z = (up)eV: div(x) = atr(p)}.

With these definitions in place, we begin our analysis by verifying the hypotheses of Theorem 3.1. First,
observe that the splitting condition on I established in the previous section is trivially satisfied, as B3 acts
only in X. The following results establish the inf-sup conditions for Bs, By, and B, respectively.

Lemma 3.2. There exists a positive constant B3, depending only on 2, such that

[63(1;)7‘7]

= > B3|y  VveY.
oxdex  [¥lx
Proof. 1t follows from a slightly modification of [22, Section 2.4.3.1]. O

Lemma 3.3. There exists a positive constant B2, depending only on §2, such that

By (X), % . .
swp L2XY] g ek,
o-xeH | X[m

10



Proof. Given v := (¢, 7) € K3, by the characterization given in (3.18), we have that ITlo.0 = [IT]div;0-
Then, by choosing X = (0, 7) € H(div; Q) x L2(Q) in the supremum, we obtain

BQ(Y)?J HTgQ
(B0, e 1o (3.20)
0#xeH X[ HTHdiv;Q

Similarly, taking x¥ = (x,0) in the supremum, with arbitrary x € H(div; ), leads to
[Ba2(X), ] X -v,¥r

= sup

s . (3.21)
o-xeH | XIlE 04xeH(divi2) X ]div;

We focus on bounding the right-hand side. To do so, we consider the following variational problem: Find
zeH,(Q) :={weH'(Q): w=0 on ¥} such that

f Vz-Vw =Ry (¥),wy,  YweHg(Q), (3.22)
Q
where R : Haol/ 2(F) — H(l)é2 (') is the corresponding Riesz isomorphism. Since HL(Q) is a Hilbert space,

and owing to the well-known Poincaré inequality and the Lax—Milgram lemma, there exist a unique z €
HL(Q) solution to (3.22), and a positive constant Cy depending only on €2, such that

1z[1,0 < C2[Y]l/2,001r -
We then define X := Vz € L2(Q2), and observe from (3.22) that div(X) = 0, which yields X € H(div; ), and
IXlaive = IXloe = |zle < Ca2f¢]1/2,00r- (3.23)

Moreover, it is also clear from (3.22) that X - v = Ry, (1) on T', and hence, using (3.23) we can assert that

sup X -v,Y)r - X-v,¥r _ <R501(1/1)71/1>F _ WH%/z,oo;r

0exeH(dive) IXlave — IX[dive IXlave  IXlaive

> Cy Y001 s (3.24)
so that, replacing (3.24) in (3.21), and then adding it to (3.20), we arrive at the desired inf-sup condition
with By = 1 (1 + Cy ). O
Lemma 3.4. There exists a positive constant 81, depending only on §2, such that

[Bl ()2)7 Q:I

o =filldle VeeQ.
oxxev  IX[|m

Proof. Given q € Q, we consider the following boundary value problem:
Az=q in Q, z=0 on ¥, Vz-vr=0 on I,

whose unique weak solution 2z € H(Q2) satisfies the estimate |z]l1.0 < Ci|gloq (cf. [22, Chapter 2.4.2]),
for some positive constant C7 depending only on the domain 2. Then, define X := Vz, and note that
div(x) = ¢ € L2(2), which implies X € H(div; ). Moreover, since X -v = 0 on I, we deduce that (x,0) € V
(cf. (3.19)), and from the a priori estimate of our auxiliary problem, there holds

IX1Givie = 12lE 0 + lalf.o < (CF + 1) lalfq-

Hence, by taking X = (X,0) € V in the supremum, we obtain that

— d‘ X
[B1(X), 4] Lq v(x) _ lalo.0 ! l4llo.0
A N T .

Xlavie [ Xlavie ~ (CF + 1)

which completes the proof with 51 = (1 + 012)*1/2. O
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Lemma 3.5. A; and Dy are symmetric and positive semi-definite. Moreover, there exists a positive constant
ay, depending only on kg, A\, a and u, such that

[A1(X),X] = a1 [X|[fz  VXeW.

Proof. We first observe that A; and Dy are symmetric and the latter is positive semi-definite. Thereby, we
focus on proving that A; is coercive in W. In fact, given ¥ € H, we have

[A1(X), X] = L R X + L (2np +Atr(p) ) : p = rolxlF o + 2ulplE 0 + Atr(p) G0, (3.25)

which means that Ay is also positive semi-definite. Moreover, if ¥ € W, we have, in particular, that
div(x) = atr(p). Putting this into (3.25) yields

A : - .
b0+ 5 [div(xX)[5.0 > minfro, o™, 2} X[

[A1(X), X] = ro x50 + 26pl

thereby proving the coercivity of A in W with a1 = min{xg, A a2, 2u}. O

Theorem 3.6. The problem (3.9) has a unique solution (77,p,Z,d) € H x Q x X x Y. Moreover, there
exists a positive constant C' depending only on ko, K1, b, A\, &, cg and 2, such that

[(17,p, 4, 0)| <C {HQHO,Q + [gnl=1/2,00,0 + [upl1/2,0 + HfHO,Q} .

Proof. Owing to Lemmas 3.2, 3.3, 3.4, and 3.5, the assumptions of Theorem 3.1 are satisfied. Therefore, the
desired result follows, with the a priori estimate also stemming from the operators’ stability (cf. (3.10)). O

4 The Galerkin scheme

We first let {7n},-, be a regular family of triangulations of Q made up of triangles K (when n = 2) or
tetrahedra K (when n = 3) of diameter hx, and set h := max {hx : K € Tp}. Given an integer k¥ > 0 and
a subset S of R", we denote by P(S) the space of polynomials of total degree at most k defined on S,
and P} (9) its vector counterpart. We also let HY, Hi, Qn, Xf, X7, Y} and YZ be arbitrary finite element

subspaces of H(div; Q), L2(€), L2(Q), HiX(T), Hy(div, ), L2(Q) and L2

skew
endowed with the corresponding subspace topology. Similarly to the continuous case, we define

(€2), respectively, all of them

Hj, =H! xH;, X,:=X{xX7, and Y,:=Y!xY],
and introduce the notation

M = (M, &) € Hy, Gh = (pn,on) € Xy, Uy = (up,vn) € Yy,
Xn = (xn,pn) € Hy, Uy = (U, 1) € Xy, Vi = (Vh,0n) € Yy,

which enables us to state the Galerkin scheme associated with the continuous problem (3.9). It consists in
ﬁnding (ﬁh , Ph s (ﬁh, ﬁh) € Hh X Qh X Xh X Yh such that

AL Blt,h BZt,h uis Fn

Bin —Dip Ph | _ Gn (4.1)

Bap, B3, Bh Hy |’ '
Bs uy, T

12



where all the operators and functionals appearing above are understood as the restrictions of their continuous
counterparts (see (3.9)) to the corresponding finite element subspaces. The discrete kernels associated with
B1 and B3 are defined, respectively, as

]Cl,h = ker(BLh) = {)Zh e H;, : JQ qhn (diV(Xh) — atr(ph)) =0 Yaqp € Qh}

(4.2)
and Ksp = ker(Bsp) = X x Ké?,)z,
where
IC:(f})L = {Th e X7 f vy, - div(7y) +J On =0 Y(vp,0p)€ Yh} .
’ Q Q
In addition, similarly to the continuous case (cf. (3.19)), we introduce the spaces
Vi = {)2;1 eHy : [Bon(Xn),Un] =0 Vi e ’C3,h} and Wy :=Kipn V. (4.3)

4.1 Discrete well-posedness

We begin this section by formulating suitable assumptions on the finite element spaces and on the discretiza-
tion of the domain, providing sufficient conditions to ensure the well-posedness of the Galerkin scheme (4.1).
To that end, we briefly review the conditions stated in Theorem 3.1, thereby motivating the need to impose
specific assumptions on the finite element spaces. The first of these is the inf-sup condition associated with
the operator Bs;, which, not involving the variable ¢, € X} in its definition, coincides with the bilinear
form arising from the saddle-point formulation of the linear elasticity problem (see, for instance, [34]). Ac-
cordingly, the discrete spaces involved in this inf-sup condition—namely, X; and Y;,—must form a stable
pair for the linear elasticity problem, as we shall see in Section 5. This motivates the following assumption:

ASSUMPTION 4.1. There exists a positive constant (3 4, independent of h, such that

(B 1 (n), V4]

0£PReXy ||1/)h ”Xh

= ,337(1 |vh"Yh Vv, eYy. (4.4)

Now we aim to prove an inf-sup condition for the operator By j, which serves as the discrete counterpart
of Lemma 3.3. Namely, we seek to establish the existence of 33 4 > 0 such that

[Bo,n(Xn), U]

= nllx,  YneKs. (4.5)
0#xneH), HXhHHh

> B2.4

To this end, we follow closely the approach of [6, Lemmas 3.2 and 3.3]. In order to retain the generality
of the framework, we introduce a set of natural assumptions on the finite element subspaces, together with
some auxiliary constructions. As a first step, we define an auxiliary space that will serve as a discretization

of Hy/*(T'):
H, % = {Mh eL*(T) : pnlkar€Po(KnT) VEKeT,, KnT # Q}' (4.6)

Certainly, it can be proved that H;l/ ? is a subspace of H§y(T") for all —1/2 < s < 1/2, and this fact

will be used in the subsequent analysis. In addition, we consider an independent simplicial discretization

{Iy,...,I'n} of T, parametrized by h := max |I';|, which enables us to approximate the space Hé{f(l“) in
m

NYES

terms of h rather than h. Accordingly, we now denote by Xg the approximation space for ¢, and denote

by Xj, := X% x X7 the associated product space, where h := (h, TL) is used to indicate dependence on both
discretization parameters.

13



ASSUMPTION 4.2 (Regularity of the discretizations of T').

1. The family of triangulations {E} o 18 uniformly regular near I'. That is, there exists a positive
constant C, independent of h, such that |K nT| = Ch"~!, for all K € T}, that intersect I

2. T is uniformly regular. Namely, there exists C > 0, independent of FL, such that |f‘j| > C’ﬁ”_l, for all
jed{l,...,m}.

Under this assumption, the auxiliary space H, /2 satisfies an approximation property (see, for instance,
h
[5]): there exists a positive constant C, independent of h, such that for all s € (—1/2,1/2] and for all

p € Hio(T), there exists iy, € H;lp such that
It = Bl 1p000 < CA™FY2 g0 (4.7)

In turn, inverse inequalities for both X‘L}j and H;l/ 2 will play a key role in the forthcoming analysis. The

one for H;l/ % is valid under Assumption 4.2. Indeed, as mentioned in [36, Remark 4.4.4, (b)], whose
corresponding proof actually follows from the more general results provided in [19, Theorems 4.2 and 4.6],
there exists a positive constant C, independent of h, such that for all the indexes (t,s) € {0} x [0,1/2) U
[—1,0] x {0} there holds

—1/2
too,r V€ Hy 2,

lnllsoor < CR |l
In particular, taking s € [0,1/2) and ¢ = 0, we obtain

N, — —1/2
soor < Ch™|unlor Ve H,'?,

1n

whereas s = 0 and ¢ € [—1,0] yield

1/2

lor < Ch |unleoor — VpneH, /2,

|1n

so that, combining the foregoing inequalities, we deduce the existence of a positive constant C, independent
of h, such that for all the indexes (t,s) such that —1 <t < 0 < s < 1/2, there holds

toor V€ H,Zl/z- (4.8)

linlls0or < C R |

We shall assume an inverse inequality for the subspace X% . Nevertheless, it is worth mentioning that, in
practice, this inequality can be derived from the choice of Xg, together with the regularity of the triangulation
(cf. Assumption 4.2). We will refer again to this point in Section 5 for a specific choice of spaces.

AssSUMPTION 4.3 (Inverse inequality for X7). There exists a positive constant C, independent of 71, such
that for all 0 < s <t < 1, there holds

|95 e000 < Cht Y5 ls.000 Vb € X% : (4.9)

We now impose an additional regularity assumption on the boundary discretization, specifically on the
space Xg )

ASSUMPTION 4.4. X < Hgo(T').

Next, we introduce two additional assumptions, which guarantee the existence of a mixed finite element
interpolation operator, also referred to as the equilibrium interpolation operator. In what follows, P, and
=5, denote the standard L2-orthogonal projections onto Qp and onto the normal trace of functions in HZ,
respectively.

14



AsSUMPTION 4.5. div(H}') < Q.

ASSUMPTION 4.6 (Existence of an equilibrium interpolation operator). For all § > 1/2, HZ admits an
operator &, : H°(Q) n H(div; Q) — H} such that

div(En(€)) = Pr(div(¢)) in Q, and &) -v=Zx((-v) on 090,

for all ¢ € H?(Q) n H(div; Q). Moreover, assume that there exists a positive constant Ceq, independent of
h, such that
0.0 < Ceqh’ [€

I¢ — &) s ¥¢eH(Q) nH(div; Q).

We now introduce an additional assumption concerning the interaction between the finite element spaces

and the auxiliary space H;l/ 2,

ASSUMPTION 4.7. H;l/ 2 is contained in the restriction to I' of the normal traces of functions in H;’

This assumption, in particular, implies that Zp(up) = pp on I' for all uy, € H;l/ 2. We are now ready to
establish the first of three steps in the proof of (4.5).

Lemma 4.1. Assume that € is convex. Then, there exists a positive constant C1, independent of h and %,

such that
sup {xn - v, @ZJ;L>F {pns ¢E>r

> Oy /L
0 # xneH)! HXthiv;Q 0¢“heH;1/2 ”Nh“—l/Q,OO;F

Vb € Xf. (4.10)
Proof. Given puy, € H,:l/ 2, wy # 0, we consider the mixed boundary value problem of finding z such that
—Az=0 in Q, z=0 on X, Vz-v=u, on I.

Recalling that, for every —1/2 < s < 1/2, H;l/Q < Hgo(I') (cf. (4.6)), it follows that up € Hfy(I"). Then, by
standard elliptic regularity theory (see, for instance, [25, 26]), the weak solution z to this problem belongs
to H'*9(Q) and satisfies, for some positive constant C, independent of h and sy,

HZHHMZ <C Hﬂh|\71/2+5,00,1‘7 (4.11)

for every 6 € [0, 5], where § := min{1,7/(2w)} with w the largest interior angle of 2. Observe that, since (2 is
convex, there holds § > 1/2. Thus, by taking a fixed ¢ € (1/2,), and putting ¥ := Vz € H*(Q) n H(div; Q),
we obtain div(x) = 0in Q, X-v = pp on I, and [ X|s0 < Clunl-1/24+500,r- In turn, using (4.11) with ¢ = 0,

1.0 < C|pnll=1/2,00,r - (4.12)
Moreover, by Assumption 4.6 along with Assumption 4.7, we find that

div(&p(x)) =0 in Q, &X) v=wpm on I and [X—Eu(X)
which, together with (4.11) and (4.12), yields

IXllaive = [Xlo.2 < 12|

00 < Ceq B0 |X

6,25

[€r(X)aiv;ie < X — En(X) 0.0 + [Xlog < C Ceq b’ [unl-1/24500,0 + C l1nl-1/2.00.0
Owing to the inverse inequality (4.8) with ¢ = —1/2 and s = § — 1/2 into this estimate, we find that

1
En(X)|aiv:0 < = _ T,
1€R(X) [l aiv; 2 c, 2 1/2,00;T

where C; := (C max{Ceq Ciny,1})"!. Finally, bearing in mind that &,(X) v = uj, on T, we take &,(X) € H}
in the supremum on the left-hand side of (4.10), leading to

<Xh'V,¢7l>F> L, Y5 r o (e, Y3 r

= Ul
HMhH—l/Q,oo;r

sup ¥ € Hy VA\(0},

oexnert?  IXnlavie € (X)laivse

and for all ¥ € Xg . Hence, taking the supremum over H,:l/ 2, we conclude (4.10). O
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Having established this result, we are now in a position to present the next one, which constitutes the
main part of the effort in proving the desired inf-sup condition.

Lemma 4.2. There exist Cy,Cy > 0, independent of h and 7L, such that if h < Cy 7L, then

<Mh7 ?l)“>
sSup || || h/D = 02 waLHI/Q,OO;F V¢E € X% . (413)
0+ pneH;, /2 Fhll-1/2,00,0

Proof. Given 15 € X% , denote by z the unique solution of the problem
—Az+2z=0 in Q, z=0 on X, and z=1; on T. (4.14)

Then, bearing in mind that Ero(¢;) € H(09) by Assumption 4.4, a classical result on elliptic regularity
(see, for instance, [25, 26]) guarantees that z belongs to H!™(Q) and satisfies

[2ls.0 < Cl¥gli/2+600.r (4.15)

for some C' > 0 and for all 6 € [0,1/2]. In turn, since z solves (4.14), partial integration yields

2[5 0 = L {282+ |V2"} = (V2 v, EroWy)) 0 = (V2 v, ¥)r

where we used that z = Er o(1;) on 0, by construction. Now, according to the continuity of the canonical

trace operator and the definition of the norm in Hé{f(Q), there holds

195111 /2,000 = [ Er0(5) 12,00 < [2]1.0-
We have thus proved that
<VZ : V;¢;§>F = Wz”%p,oo;r- (4.16)
Fix 6 € [0,1/2). Since z € H'*9(Q) and the canonical trace operator is continuous from H'=%(Q) to
H'/279(0Q) (see, for instance, [35, Theorem 3.37]), one can verify that (Vz - v)|r € Hy, 1/2+5( I') and
IVz-v|_124500r < Cu|2]1450 (4.17)
for some positive constant C,,, depending only on 2 and . In turn, by the approximation property of our
auxiliary space (cf. (4.7)), there exists i € H_l/2 such that
IVz-v— | - 1/2,00:T = <Ch’ IVz-v|_ 1246000 < CCy h? lzl1+60 < C2Cy 1 \|¢;LH1/2+5,00;F,

where the last two inequalities come from (4.17) and (4.15), respectively. Furthermore, using the inverse
inequality (4.9) with ¢ = 1/2 + 6 and s = 1/2, we get

IVz-v — fin]—1/2000 < C (h/h)° 145111 /2,00: - (4.18)
In particular, by applying the triangle inequality together with (4.17) and (4.15) with § = 0, we obtain

|7k =1 /2,000 < C (h/n)° 19511 /2,000 + CoC [¥5 112,00, < C||¢h||1/200F,

for h < h and C = maxC,C,C. We now use this to bound the supremum in (4.13) with the particular
choice up = fip, arriving at
<Hhv¢~> <ﬁhv¢~> 6’_1 ~
sup 2 Tl 2 (<V2vatie = (T2 v = sty )

0#upet, /2 lnll=12,000 — lAnl=1/2,000 ~ %3 ]1/2,000
A— = (1 NS
> O (1= C (/D)) [ %51 2.00,

where the last inequality follows from (4.16) and (4.18). In this way, recalling that h < h, it suffices to
require h < Cy h, with Cp := min{1, (20) 1/0} "in order to ensure a positive constant on the right-hand side.
This concludes the proof with Cy = Cc-1 /2. O
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To finally prove the inf-sup condition for Bs j, we require one last assumption.
ASSUMPTION 4.8. div(X?) < Y} and lCéQ,)l c HE.

Lemma 4.3. Assume that Q2 is convex. Then, there exists a positive constant 24, independent of h and TL,
such that for all h < Co h there holds

(B 2h(Xh) U]
sup ——————— = ffaq
0#xXreH]),

Vo €Ky, . (4.19)

Proof. Given Jﬁ = (5, Th) € K3 p, by the definition of this kernel (cf. (4.2)), we have that

J vy -div(T,) =0 Vv,e Y},
Q

which, by the first inclusion in Assumption 4.8, implies that div(7,) = 0. Furthermore, by the second
inclusion in the same assumption we have that 7, € Hi, and hence we are able to take X, = (0,7,) € Hy in
the supremum on the left-hand side of (4.19), thus arriving at

M > |74 divicr - (4.20)

07’5)_('hEHh

In turn, we bound the same supremum by choosing X, = (xn,0), with arbitrary x, € H}!, and apply
Lemmas 4.1 and 4.2 to obtain

Ban(n) vl o v by

=

= = C1 Ca |95 ]11/2,00,r - (4.21)
0#xreH,, ”Xh“Hh 0#xneH]! ”XhHHZ

Thus, by summing both (4.20) and (4.21), we obtain the discrete inf-sup condition (4.19), with constant
52@ = %min{l,Cng}. O

Next, we establish the inf-sup condition for Bjj, which corresponds to the discrete counterpart of
Lemma 3.4. Notice that no additional assumptions beyond those already established are required.

Lemma 4.4. Suppose that Q) is convex. Then, there exists a positive constant $14 such that

[B1,1(Xn), an]

> > Pralanlan  Yan € Qn- (4.22)
0£gnevn  IXnlm,

Proof. Let q, € Q, < L2(f2), and consider g, # 0, as otherwise the inequality holds trivially. Then, we
consider the following boundary value problem: Find z such that

—Az=gqp, in z=0 on Y, and Vz-r=0 on I,

whose weak solution, by standard elliptic regularity theory (see, for instance, [25, 26]), belongs to H'*%(Q)
and satisfies [2]1450 < [0, 6], where 0 := 7/(2w) with w the largest interior angle of
Q. Notice that § > 1/2 as Q is convex. Then, fixing § € (1/2,4), and noting that div(Vz) = —q, in L2(Q),

we deduce that Vz € HO(Q) n H(div; Q). Thus, we may define Xy, := &,(Vz) € H}! (cf. Assumption 4.6).
Furthermore, X, - v = Z,(Vz-v) = 0 on I', which implies that <)Zh ‘U, ¢h>r = 0 for all ¢, € X7, so that
(Xh,0) € Vi In turn,

iv(Xn)[50 = (4.23)

“)zh“aiv;ﬂ =
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Now, employing Assumption 4.6, the a priori estimate of the auxiliary problem, and assuming that h < 1
without loss of generality, we write

[Xnlo0 = 1E(V2)lo0 < [E(V2) = Vzlon + V2o < Ceqh [ V250 + [ V2o

< Ceq h(S HZH1+(5,Q + ”Z|

1,Q < (Ceq + 1) C HQhHO,Q .

Using this into (4.23), we find that [Xnlan:e < Canlog, where C = ((Ceq + 1)2C2 + 1)*. Finally,
bounding the supremum in (4.22) with X, = (X, 0) € V5, we obtain

. div(x
[B1,1(Xn)» an] JQ an div(xn) lanl§ A1
sup = = = Z = =C HQh|0,Q7
0£XKEV, 1Xn ], HXthiv;Q Clanlon
which proves (4.22) with 814 = C1, as desired. O

In order to establish the discrete counterpart of Lemma 3.5, we first note that the symmetry and positive
semi-definiteness of A;j and Djj, are inherited from those of A; and D, respectively. However, the
coercivity of A; ; does not follow directly from the continuous case, as Wj, is not necessarily contained in
W (cf. (3.19) and (4.3)). Nevertheless, under Assumption 4.5, we are still able to establish it.

Lemma 4.5. There exists a positive constant o 4 such that

[A1n(XR), Xn] = a1a |Xn]q, VY xXneW.

Proof. Let X1, € Wh. As in the continuous case, algebraic manipulations yield (cf. (3.25))

6.0+ Mte(on)fq - (4.24)

Since X, € Wy, < Ky, (cf. (4.2)) and noting that div(xy) € Qp by Assumption 4.5, there holds

[ALL(XR), Xn] = ko |xnl5.0 + 21 on]

Idiv(xa) |3 = o f div(xs) tr(pn)
Q

Hence, by the Cauchy-Schwarz inequality, we obtain that |div(xs)|o,0 < o |tr(pn)]o,q. Therefore, (4.24)
becomes

AL
(2),9 + 2 Hle(Xh)H(Q),Q
379)7

which allows us to conclude the desired result, with o 4 = min{xo, Aa~2 2u}. ]

[A1n(Xn): Xn] = ko Ixal§.a + 21l on

> min{ro, Ao %, 20} (|Ixnldive + lon

Theorem 4.6. Suppose that Assumptions 4.1 through 4.8 hold, and that ) is convex. Then, the problem
(4.1) has a unique solution (1, pr, Pn, Un ) € Hp x Qp x Xp, x Y}, and there exists a positive constant Cq,
depending only on B1a, B2a, B34, Ko, K1, K, A, &, co, and §2, such that

O,Q} .

Proof. Under Assumption 4.1, and using Lemmas 4.3, 4.4, and 4.5, together with the observation that A;
and D; ), are symmetric and positive semi-definite, we conclude that the hypotheses of Theorem 3.1 are
satisfied. Therefore, applying this result in the discrete setting completes the proof. O

(s s B )| < Ca{lglo + lon -y z00m + up iy + |
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4.2 A priori error analysis

Now we aim to derive a Céa-type estimate associated with the Galerkin scheme (4.1). As usual, given a
subspace U of an arbitrary Banach space (V| - |y), we set

dist(v,U) := inf |v — u|y VoeV.
uelU
In addition, let us denote the solutions of (3.9) and (4.1) (cf. Theorems 3.6 and 4.6) as
@ = (ﬁ,p,@,ﬁ)EHXQXXXY and @@ = (ﬁh,ph,gﬁﬁ,ﬁh)EHhXQhXXEXYh, (4.25)

respectively. The following result establishes the desired Céa estimate associated with (4.1).

Theorem 4.7. Suppose that the assumptions of Theorem 4.6 hold. Then, there exists a positive constant
Ctea, depending only on ko, k1, 1, A, a, co, Bra, Boa, Baa, and Q, such that

H@ — @@H < CCea dist (@, Hh X Qh X X@ X Yh) (426)

Proof. Tt follows from standard arguments concerning Céa estimates in the context of Galerkin schemes.
Specifically, we subtract the discrete system (4.1) from the continuous one (3.9), and apply the inf-sup
conditions (4.4), (4.19), and (4.22), together with the coercivity property of A; 5 (cf. Lemma 4.5). Further
details are omitted and can be found, for instance, in [20, Lemma 26.14] or [22, Section 2.5]. O

5 Specific finite element spaces

In this section, we provide specific examples for the choice of the spaces HZ, H,gl, Qn, Xg, X7, Y}, and

YZ which satisfy Assumptions 4.1 through 4.8, and we establish the corresponding rates of convergence.
Certainly, Assumption 4.2 must be assumed since it concerns the mesh discretization rather than the finite
element spaces. In this way, we first introduce preliminary notations. For a nonnegative integer k and
K € Ty, we let Pi(K) be the space of polynomials of total degree at most k defined on K. Its vector
and tensorial counterparts are denoted by Py (K) := [Pr(K)]|" and Py (K) := [Py (K)]™*", respectively. In
addition, we let RTy(K) := P (K) + Py (K) x be the local Raviart-Thomas space of order k defined on K,
where x stands for a generic vector in R". We denote by RTy(K) the space of tensor-valued functions whose
rows lie in RT(K). Furthermore, we let bx be the bubble function on K, which is given by the product of
its n 4+ 1 barycentric coordinates. The local bubble space of order k is then given by

1(bg Pr(K)) ifn=2
By (K) i= | L (b PRlR)) i =2,
curl (bg Pr(K)) ifn =3,
where the curl operators are defined as curl (v) := (6‘37”2, —%’1) forv: K — R (if n = 2), and curl(v) :=

V x v for v: K — R3? (if n = 3). Finally, Bx(K) denotes the space of tensor-valued functions whose rows
belong to By (K).

As mentioned earlier in Section 4, Assumption 4.1 corresponds to the inf-sup condition associated with
the classical bilinear form arising in the saddle-point formulation of the linear elasticity problem with weakly
imposed symmetry. Accordingly, it is natural to consider stable finite element spaces for linear elasticity as
a choice for the spaces involved in this inf-sup. More precisely, we define

X9 = {TheHg(div,Q): Tl € RTH(K) ® By, (K) VKen},
YU = {vheL2(Q); vali € Py(K) VKen}, (5.1)

Y = {8 € [C@)™" ALy () 5 Sulx € Pa(K) VE € Taf.
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Observe that (Xg,Y}f,YZ) corresponds to the PEERS; 1 element. Under this choice, Assumption 4.1 is
satisfied. Indeed, in [34, Theorem 4.5|, the authors establish this inf-sup condition for the triple associated
with the BDMSj 1 element, and further remark in Section 5 of the same article that the corresponding anal-
ysis remains valid for PEERSy, 1. We also emphasize that other combinations of stable finite element spaces
for linear elasticity with reduced symmetry could be employed to fulfill Assumption 4.1. Examples include
the Amara—Thomas element [2], Arnold—Falk—Winther [4], and Cockburn—Gopalakrishnan-Guzmdan [16]
families. However, to keep the exposition focused, in the remaining of this work, we restrict ourselves to the
PEERSy, 1 element.

Next, let us define the remaining finite element subspaces:
HY = {Xh ceH(div;Q):  xnlx € RTH(E) VEKe n} ,
HE = {pneL%Q): ik e Pu(K) @By(K) VKT,
Q= {m e LXQ): alxePi(K)  VEKeT},

X¢ = {wﬁeﬂééz(r); il € Pra(Ty)  Vje {1,...,m}}.

We recall from [6, eq. 3.12] that, in the special case k = 0, Xg < H}y(T), and the inverse inequality
(4.9) holds. This result can be extended to the case k > 1, so that Assumptions 4.3 and 4.4 are satisfied.
The corresponding proof for s, t € {0, 1} is provided in [36, Theorem 4.4.3], whereas the extension to the
whole range 0 < s <t < 1 follows from the more general result given by [19, Theorem 4.1]. In turn, since
div(RTy(K)) < Pi(K) for each K € Tp, Assumption 4.5 holds as well.

Now, we consider &, as the usual Raviart—-Thomas interpolation operator (see, for instance, [22, Chapter
3.4]), which can be defined from the space H(Q) n H(div;Q) with 6 > 1/2, since the moments of the
Raviart-Thomas space are well-defined as linear and bounded functionals in H‘;(I? ) N H(div; K ), where
K is the reference element associated to the mesh. This can be viewed from a slight modification of the
analysis made in [23, Lemma C.1]. In this way, Assumption 4.6 is also satisfied.

On the other hand, since the normal traces of functions in H;’ are contained in the space of piecewise
polynomials of order k defined on 052, it follows that Assumption 4.7 holds.

Next, by noticing that div(By(K)) = 0, it follows that div(X{) < Y}!, which means that the first
inclusion of Assumption 4.8 is fulfilled. In order to establish the second inclusion of this assumption, we

notice that, for 1, € IC:(SQ})L < HY, there holds
f vy, - div(7,) =0 Vv,e Y.
Q

Then, by exploiting again that the bubble functions are divergence-free, this identity means that the Raviart—
Thomas component of 73, is divergence-free as well. In this way, from the proof of [22, Theorem 3.3], we
obtain that the Raviart—-Thomas component belongs to Py(K) in each element K € Tp,. In addition, since
the bubble component of 73, remains unaltered, we need to incorporate it in the definition of H,ﬁl in order to
guarantee that 73, belongs to this subspace, thus proving that the second inclusion in Assumption 4.8 does
hold. The above explains the rather unusual definition of H,gl (cf. (5.2)).

As a result of the previous discussion, we conclude that this choice of finite element spaces yields a stable
Galerkin scheme.

Now we aim to obtain the rates of convergence of our Galerkin scheme (4.1) with the specific finite element
subspaces defined previously. To this end, approximation properties of the finite element subspaces HZ, Hi,
Qn, X%, X7, Y}, and Y] are presented below, which follow from interpolation estimates for Sobolev spaces
and the approximation properties of the relevant orthogonal projectors and the interpolation operators (see,
for instance, [11], [12], [17], [22]).
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(APZ) There exists a positive constant C, independent of h, such that for each ¢ € (0,k + 1] and for each
x € HY(Q), with div(x) € HY(Q), there holds
Z,Q} .

(AP'}EL) There exists a positive constant C, independent of h, such that for each ¢ € [0,k + 1] and for each
p € H(Q), there holds

dist(x Hy)) < Ch* {Ixlea + [div(x)]

dist(p,H,%) <Chp

00 -
(AP?) There exists a positive constant C, independent of h, such that for each ¢ € [0,k + 1] and for each
q € HY(Q), there holds

dist(g, Qn) < Ch* |glea.
(APY) There exists a positive constant C, independent of h, such that for each £ € (0,k + 1] and for each
) e H(1)62+£(F), there holds

dist (1, X%) < CR |y 1/24£,00,T -

(APY{) There exists a positive constant C, independent of h, such that for each ¢ € (0,k + 1] and for each
T € HY(Q) n Hy(div; Q), with div(r) € HY(Q), there holds

dist(7,X7) < Ch {|7]eq + |div(T)of

(AP}) There exists a positive constant C, independent of h, such that for each ¢ € [0,k + 1] and for each
v € H(Q), there holds
dist(v, YP) < C b |[v]eq -

(APZ) There exists a positive constant C, independent of h, such that for each ¢ € [0,k + 1] and for each
neHY(Q) n L2 __(Q), there holds

skew

dist(n, Y7) < Ch* |neq -

Theorem 5.1. In addition to the hypotheses of Theorem 4.6, assume that there exists £ € (0, k+ 1] such that
n e HY(Q), div(n) € HY(Q), € € HY(Q), p e HY(Q), ¢ € HYTT(T), o € HY(Q), div(o) € HY(Q), u e H(Q),
and v € HYQ). Furthermore, let © and Oy, be the continuous and discrete solutions, respectively, as
in (4.25). Then, there exists C > 0, independent of h and %, such that for all h < Cy %, there holds

|6 — 04 < C Wy (O) (h + 1Y),
where

Vy(0) := nlleo + [div(n)|eo + €

co +[plea +lolea +ldivio)leo + [uleo +[vleo + [eli/2e00.r -

Proof. The result follows from a straightforward application of the Céa estimate (4.26) along with the
foregoing approximation properties. We omit further details. 0

We end this section by stressing that the convexity of {2 guaranteeing the stability and convergence of
our mixed finite element method is forced by the corresponding elliptic regularity result for the Poisson
equation with mixed boundary conditions (cf. [25], [26]), as required in the proofs of Lemmas 4.1, 4.3, and
4.4, and Theorem 4.6. Nevertheless, in the following section we illustrate that even for nonconvex domains
we obtain the theoretical rates of convergence predicted by Theorem 5.1, which, on one hand, confirms
that numerical essays are usually more generous than the abstract theory, and, on the other hand, suggests
that perhaps only technical difficulties stop us of proving the well-posedness of the Galerkin scheme in an
arbitrary region. In turn, needless to say, the convexity assumption is certainly not needed when either
Dirichlet or Neumann boundary conditions are considered since in this case a regularity § > 1/2 is ensured
for any Lipschitz-continuous domain with largest interior angle w < 27 (cf. [26]).
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6 Numerical results

In this section, we illustrate the performance of the mixed finite element method (4.1) using the specific
choices of discrete spaces introduced in (5.1) and (5.2). The implementation was carried out with the open-
source finite element library FEniCS [1] and, in particular, with the specialized module FEniCS;; [29], which
is required to handle mixed-dimensional, non-conforming meshes and is also instrumental in the numerical
realization of the H(l)(/f (') norm. The first two examples are devoted to corroborating the convergence rates
predicted by Theorem 5.1, both on the unit square and on a nonconvex domain. The third example examines

the method’s performance in a three-dimensional setting.

As usual, we introduce the following notation to denote the associated errors to each unknown in (4.1):

e(n) = —nnlaivia, e&) =& —E&nloa, e :=Ip—prloa, elp):=|p— <P;LH1/2,00,F,

e(o) :=|o —onldgivia, e(u):=|u—upfon, and e(y):=|v—vnlon-

Furthermore, we recall that the experimental rates of convergence are computed as

_ log (e(0)/€'(<))

o) (¥)

_ log(e(p)/¢f
log (h/h/) for o € {777 £apa o, u7’7} ’ and I‘(QD) T 10g(FL/7L/)

)

where h and B (resp. h and &') are consecutive mesh sizes with respective errors e and ¢’. In order
to compute e(p), we employ the characterization of H(l)é2 (T") in terms of the spectral decomposition of the
Laplacian operator (see, for instance, [30]). More precisely, let S : H{(I') — H}(I') be the linear and bounded

operator uniquely determined by the relation
(S(u),v)1r = (u,v)or Vu,veHy(I),

where (-, )1 and (-, -)or denote the inner products of Hj(I') and L?(T"), respectively. Then, one can define
a basis {z;}, of eigenfunctions of S with a non-increasing sequence of positive eigenvalues \;, and for any
U= 23021 ¢; z; there holds

o0

1/2

Huﬁ/zoor = Z C’L2 >‘i/ )
i=1

so that Hé{f(l“) becomes the closure of the span of the basis {z;}7°; with respect to this norm. Naturally, for
the practical computation of HuH% /2,00, OD€ employs a discrete approximation of the aforementioned spectral
decomposition.

Example 1: Convergence against smooth exact solutions in a 2D domain

In this test, we analyze the convergence with respect to the spatial discretization using a manufactured
solution. The computational domain is the square € := (0,1)2, which is meshed by successively refined
regular triangles. In addition, the boundary 0f) is partitioned into two parts, I' and X, where I' corresponds
to the left and bottom sides of the square, whereas 3 denotes the union of the top and right sides. We take
the physical adimensional parameters as

pu=A=1 ¢=a=01, and k(z,y):=exp(zry), (6.1)

and adjust the source terms f and g so that the following manufactured solutions coincide to the prescribed
analytical solutions (cf. (2.6)),

u= cos (1.57r(a: + y)) an = sin(mwx) sin(w
=005 < sin (L.5m(z — y)) ) d p=sin(rz) sin(ry).
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The system is complemented with suitable non-homogeneous boundary conditions, which generalize (2.7).
The analysis made in the previous sections can be adapted to handle this framework by employing a lifting
technique and adding some terms to the right-hand side of the weak formulation (3.9). As requested by the
constraint h < C()}NZ introduced in Lemma 4.2, the boundary mesh for the Lagrange multiplier associated
with the pressure is constructed one level lower than a conforming mesh to the boundary of the bulk mesh.
That is, we construct the former with 2771 +2 segments per side and the latter with 27 + 1 segments per side,
giving h ~ 2h. Tables 6.1 and 6.2 show the convergence history of the method, with k € {0, 1}, and confirm
the optimal rates of convergence predicted by Theorem 5.1. In addition, Figure 6.1 shows the solutions
obtained by the mixed scheme with £ = 1 and mesh-sizes h = 0.021 and h= 0.043, thus using 436,790 DOF.

Discretization with kK = 0 for n, €, p and ¢

DOF| A [ h [ em) ] e@ @] e ] elp) 1(p)
5501 0.354 | 0.707 || 4.11e+00 — 1.50e-01 — [1.78e-01 — [9.91e-03 -
1208 | 0.236 | 0.471 || 2.80e+00 0.95 | 1.04e-01 0.90 | 1.20e-01 0.97 | 5.99¢-03 1.24
32921 0.141 | 0.283 || 1.70e+00 0.98 | 6.38e-02 0.95 | 7.24e-02 0.99 | 3.20e-03 1.23
10532 1 0.079 | 0.157 || 9.48¢e-01 0.99 | 3.59e-02 0.98 | 4.03e-02 1.00 | 1.34e-03 1.48
37300 | 0.042 | 0.083 || 5.03e-01 1.00 | 1.92e¢-02 0.99 | 2.13e-02 1.00 | 4.45e-04 1.73
139988 | 0.021 | 0.043 || 2.59¢-01 1.00 | 9.90e-03 0.99 | 1.09¢-02 1.00 | 1.29¢-04 1.86

Discretization with k£ = 0 for o, u, and ~v

DOF \ h H e(o) r(o) \ e(u) r(u) \ e(v) r(v)

550 | 0.354 || 2.24e+00 — |[2.98¢-02 — |1.07e-01 -
1208 | 0.236 || 1.53e-+00 0.95 | 1.96e-02 1.03 | 6.33e-02 1.30
3292 | 0.141 || 9.25e-01 0.98 | 1.17e-02 1.02 | 3.32¢-02 1.26
10532 | 0.079 || 5.16e-01 0.99 | 6.45e-03 1.01 | 1.65e-02 1.18
37300 | 0.042 || 2.74e-01 1.00 | 3.41e-03 1.00 | 8.20e-03 1.10
139988 | 0.021 || 1.41e-01 1.00 | 1.76e-03 1.00 | 4.10e-03 1.04

Table 6.1: [Example 1, k = 0] Number of degrees of freedom, meshsizes, errors, and rates of convergence.

Discretization with k =1 for n, €, p and ¢

DOF| h | [ etm) ] e© (@] el )] ely)
1674 1 0.354 | 0.707 || 5.84e-01 — 1 3.18e-02 - 1.96e-02 — 2.58e-03 -
37101 0.236 | 0.471 || 2.62e-01 1.98 | 1.47e-02 1.90 | 8.78¢-03 1.98 | 5.25e¢-04 3.92
10182 | 0.141 | 0.283 || 9.48e-02 1.99 | 5.46e-03 1.94 | 3.18e-03 1.99 | 1.25e-04 2.80
32726 | 0.079 | 0.157 || 2.93e-02 2.00 | 1.72e-03 1.97 | 9.82e-04 2.00 | 1.21e-05 3.98
116214 | 0.042 | 0.083 || 8.22e-03 2.00 | 4.85e-04 1.99 | 2.75e-04 2.00 | 1.70e-06 3.08
436790 | 0.021 | 0.043 || 2.18e-03 2.00 | 1.29¢-04 2.00 | 7.31e-05 2.00 | 2.85e-07 2.69

—
PAN
S

N

Discretization with k£ = 1 for o, u, and v

DOF \ h H e(o) (o) \ e(u) r(u) \ e(v) r(v)

1674 0.354 || 4.73e-01  — |6.40e-03 — |3.22e-02 —
3710 | 0.236 || 2.17e-01 1.92 | 3.32¢-03 1.62 | 1.68e-02 1.60
10182 | 0.141 || 7.96e-02 1.97 | 1.29¢-03 1.85 | 6.83e-03 1.76
32726 | 0.079 || 2.48¢-02 1.99 | 4.08e-04 1.96 | 2.33¢-03 1.83
116214 | 0.042 || 6.96e-03 2.00 | 1.15e-04 1.99 | 6.95¢-04 1.90
436790 | 0.021 || 1.85e-03 2.00 | 3.06e-05 2.00 | 1.89¢-04 1.96

Table 6.2: [Example 1, k = 1] Number of degrees of freedom, meshsizes, errors, and rates of convergence.
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Figure 6.1: [Example 1] Computed solutions of the mixed scheme. The velocity field (center bottom) is
displayed using line integral convolution (LIC).

Example 2: Convergence against smooth exact solutions in a nonconvex domain

We now consider the two-dimensional nonconvex domain €2 depicted in the first part of Figure 6.2. We use
the same parameters as in the previous example (cf. (6.1)), while the manufactured solutions are given by

u— cos(1.57r(33+y)) an — (0 —22)2 4 cos(nr
=005 ( sin(1.57r(a:—y)) ) d p=(y—22)7y cos(mzy).

The boundary mesh is constructed in a similar manner as before. Furthermore, to obtain better convergence
rates for ¢, we introduce the additional term —e (@E,wﬁ)[‘ in the third row of the left-hand side of (4.1).
This term acts as a perturbation and helps the algebraic system become more stable. In our case, we set
e = 10712, In this context, and as anticipated at the end of Section 5, Tables 6.3 and 6.4 show that optimal
convergence rates are achieved in most of the experiments. This observation suggests that Theorem 5.1 may
be extended to a broader class of domains. Nevertheless, for the finest meshes we observe a deterioration in
the convergence order, which is likely attributable to the non-convexity of the domain. Figure 6.2 depicts the
numerical solutions obtained with the mixed scheme for kK = 1, h = 0.005 and h= 0.012, using 785,594 DOF.

Example 3: Convergence against smooth exact solutions in a 3D domain

In the final example, we consider the unit cube € = (0,1)3. The parameters p, A, co, and « are chosen as
in (6.1), while the permeability « is defined by

Rz, 1, 2) i= exp(—ayz)

In addition, the source terms f and g are defined in such a way that the manufactured solutions presented
below coincide with the prescribed analytical solutions (cf. (2.6)). The corresponding velocity and pressure
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Discretization with k = 0 for n, €, p and ¢

DOF| A | h [ etm) )] e© ()] e )] el
1002 | 0.147 | 0.280 || 6.16e-01  — |4.85e-02 — 1.57e-02 — |2.42e-02 -
4050 [ 0.079 [ 0.149 || 3.12e-01 1.10 | 2.53e-02 1.05 | 8.03e-03 1.08 | 8.66e-03 1.63
15682 | 0.041 | 0.079 || 1.51e-01 1.09 | 1.32e-02 0.97 | 3.70e-03 1.16 | 4.18¢-03 1.14
62562 | 0.020 | 0.042 || 7.85e-02 0.94 | 6.84e-03 0.95| 1.86e-03 0.99 | 2.04e-03 1.15
251714 | 0.010 | 0.024 || 4.07e-02 0.95 | 3.67e-03 0.91 | 9.32e-04 1.01 | 1.03e-03 1.20
999426 | 0.005 | 0.012 || 2.15e-02 0.92 | 2.06e-03 0.83 | 4.68e-04 1.00 | 5.14e-04 1.02

._s
—~
S

>

Discretization with k£ = 0 for o, u, and v

DOF \ h H e(o) r(o) \ e(u) r(u) \ e(y) r(v)

1002 | 0.147 || 5.49e-01 — |6.95e-03 — |5.74e-02 —
4050 | 0.079 || 2.84e-01 1.07 | 3.45e-03 1.13 | 2.43e-02 1.38
15682 | 0.041 || 1.43e-01 1.02 | 1.77e-03 0.99 | 1.20e-02 1.06
62562 | 0.020 || 7.12e-02 1.01 | 8.49¢-04 1.06 | 6.16e-03 0.96
251714 |1 0.010 || 3.61e-02 0.99 | 4.18e-04 1.03 | 3.21e-03 0.95
999426 | 0.005 || 1.86e-02 0.95 | 2.05e-04 1.03 | 1.80e-03 0.83

Table 6.3: [Example 2, k = 0] Number of degrees of freedom, meshsizes, errors, and rates of convergence.

Discretization with k =1 for g, &, p and ¢

OF| A [ A [ em) )] e ] el )] elp) 1y
3064 [ 0.147 [ 0.280 [[ 6.556-02 — [3.60e-03 — |2.31e-03 — |5.736.03 —
12526 | 0.079 | 0.149 || 1.75e-02 2.13 | 9.31e-04 2.18 | 5.73e-04 2.25 | 1.74e-03 1.89
48750 | 0.041 | 0.079 || 4.54e-03 2.02 | 2.30e-04 2.09 | 1.41e-04 2.09 | 5.13e-04 1.92
194998 | 0.020 | 0.042 || 1.20e-03 1.92 | 5.64e-05 2.03 | 3.48¢-05 2.02 | 1.256-04 2.27
785594 | 0.010 | 0.024 | 3.12e-04 1.96 | 1.42e-05 2.00 | 8.62¢-06 2.03 | 3.24e-05 2.36
3121186 | 0.005 | 0.012 || 8.17¢-05 1.93 | 3.60e-06 1.98 | 2.16e-06 2.00 | 1.16e-05 1.51

Discretization with k£ = 1 for o, u, and v

DOF \ h H e(o) r(o) \ e(u) r(u) \ e(y) r(v)

3064 | 0.147 || 4.44e-02 — |6.97e-04 — |4.19e-03 -
12526 | 0.079 || 1.09e-02 2.26 | 1.74e-04 2.24 | 1.07e-03 2.21
48750 | 0.041 || 2.74e-03 2.06 | 4.31e-05 2.08 | 2.62¢-04 2.10
194998 | 0.020 || 6.85e-04 2.00 | 1.08e-05 2.00 | 6.73e-05 1.96
785594 | 0.010 || 1.69e-04 2.04 | 2.67e-06 2.03 | 1.67e-05 2.03
3121186 | 0.005 || 4.25e-05 1.99 | 6.71e-07 1.99 | 4.28¢-06 1.96

Table 6.4: [Example 2, k = 1] Number of degrees of freedom, meshsizes, errors, and rates of convergence.

fields are defined by

sin(x) cos(y) cos(z) + 0.5 22
u=0.1 | -2 cos(r) sin(y) cos(z) +0.5y> | and p = sin(rx) sin(ry) sin(nz).
cos(x) cos(y) sin(z) + 0.5 22

The independent boundary mesh is constructed as in the first example, now in the three-dimensional setting.
The convergence history is reported in Table 6.5, where optimal convergence rates are observed for most
variables, in agreement with the predictions of Theorem 5.1 for k£ = 0. For one of the variables, however, the
optimal rate is not fully attained on the meshes considered. This behavior is likely due to a pre-asymptotic
effect, since the mesh refinements required to enter the asymptotic regime would be computationally pro-
hibitive. In addition, the numerical solutions are depicted in Figure 6.3 for mesh sizes h = 0.108 and
h= 0.192, using 979,618 degrees of freedom.
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Figure 6.2: [Example 2] Nonconvex domain under consideration (top left). The black portion of the boundary
represents ', while the remaining part corresponds to . The mesh shown has size h = 0.041. Computed
solutions of the mixed scheme (remaining panels). The pressure flux and the velocity fields are displayed
using line integral convolution (LIC), colored by their respective magnitudes.

Discretization with k = 0 for n, €, p and ¢

DOF| h | h || em) x| e (@] e )| elv) 1y
2068 [ 0.866 | 0.866 [[ 5.63e-+00 0.00 | 4.83¢-02 0.00 | 2.28¢-01 0.0 [ 3.09e+01 0.0
15772 | 0.433 | 0.577 || 3.09e+00 0.86 | 2.83¢-02 0.77 | 1.14e-01 0.99 | 2.33¢-02 17.73
123622 | 0.217 | 0.346 || 1.59e+00 0.96 | 1.59¢-02 0.83 | 5.85¢-02 0.97 | 4.04e-03  3.43
979618 | 0.108 | 0.192 || 7.98¢-01 0.9 | 8.98¢-03 0.82 | 2.95¢-02 0.99 | 1.23¢-03  2.02

—

Discretization with & = 0 for o, u, and ~
DOF[ h || elo) o) ew) t(w] e(y) (V)
2068 | 0.866 || 2.28e-01  0.00 | 2.38e-02 0.00 | 6.14e-02 0.00
157721 0.433 || 1.26e-01 0.86 | 1.16e-02 1.04 | 2.48e-02 1.31
123622 | 0.217 || 6.67e-02 0.92 | 5.77e-03 1.01 | 1.08e-02 1.20
979618 | 0.108 || 3.54e-02 0.91 | 2.88e-03 1.00 | 5.09¢-03 1.09

Table 6.5: [Example 3, k = 0] Number of degrees of freedom, meshsizes, errors, and rates of convergence.
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