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We consider a multiphysics model for the flow of Newtonian fluid coupled with
Biot consolidation equations through an interface Σ (see, e.g., [3]). Let t ∈ (0, tend]
and take a bounded connected Lipschitz spatial domain Ω ⊂ R

d, d = 2, 3:

−div[2µfǫ(u)− pF I] = ρfg; divu = 0 in ΩF × (0, tend],

−div[2µsǫ(d)− ϕI] = ρsf ; ϕ− αpP + λdiv d = 0 in ΩP × (0, tend],(1)
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We consider mixed boundary conditions on both subdomains and the transmission
conditions on Σ are (where Tn, Tt denote normal and tangential trace operators)
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1
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d− κ

µf

∇pP ); Tn(2µfǫ(u)− pF I) = Tn(2µsǫ(d)− ϕI),

−TnTn(2µfǫ(u)− pF I) = pP ; −TnTt(2µfǫ(u)− pF I) =
γµf√
κ
Tt(u− 1

∆t
d).

The stability and well-posedness of the semi-discrete problem are derived, and
we also obtain the following result (see [5]).

Theorem 1. For each f ∈ H1(0, tend;L
2(ΩP )) and pP,0 ∈ H1

⋆ (Ωp), there exist

initial data u0 ∈ H1
⋆(ΩF ), pF,0 ∈ L2(ΩF ), d0 ∈ H1

⋆(ΩP ), and ϕ0 ∈ L2(ΩP )
such that the weak formulation of (1) complemented with the initial conditions

pP (0) = pP,0, d(0) = d0, and ϕ(0) = ϕ0, has a unique solution.

A new mixed-primal finite element scheme is proposed solving for the pairs
fluid velocity - pressure and displacement - total poroelastic pressure using Stokes-
stable elements. Optimal convergence rates are established, which are robust with
respect to λ (see Figure 1). Upon time-discretisation, we are left with the Biot–
Stokes equations written in the operator form A(u,d, pF , ϕ, pP )

t = F , where
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A main challenge for these equations is the construction of solvers that scale
properly for nearly incompressible solids where λ tends to infinity, as well as in
the case of nearly incompressible fluids, for which C0 approaches zero, or the
nearly impermeable regime where κ is very small. These scenarios entail not only
a complication at the practical and implementation level, but also a difficulty
inherent to the functional setting of the abstract formulation [4].
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Figure 1. Interfacial flow in the eye, between trabecular mesh-
work and anterior chamber. Experimental error history and sam-
ple of axisymmetric numerical solution.

The problem defined by (2) can be shown to be well-posed using the usual
space H and its natural metric (for instance, following the analysis performed
in Theorem 1). Alternatively, consider the weighted product space Hǫ, where ǫ

encodes the weighting parameters κ, α, γ, µf , µs, C0, λ. Let us group the variables
as ~u = (u,d) and ~p = (pF , ϕ, pP ) and introduce the weighted norm
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which hinges on a fractional norm of the restriction of the Biot pressure to Σ. The
space Hǫ is such that contains all (~u, ~p) that are bounded in this norm (see [1]).

Theorem 2. The problem defined by the solution operator (2) is well-posed in the

space Hǫ equipped with the norm (3).

A natural block-diagonal preconditioner for the Biot-Stokes problem is therefore
the Riesz map with respect to the inner product in Hǫ
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where µ−1 := (2µs)
−1 + (2µf )

−1. This preconditioner yields robustness with
respect to a wide range of material parameters, as reported in Figure 2.

Several open problems and challenges arise as an extension to the results in
[1, 5]. For example, the efficient realisation of the preconditioners using algebraic
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Figure 2. Performance of the Biot-Stokes preconditioner (4) set-
ting µs, γ to 1 and C0 = 0 and using TH1 elements.

or geometric multigrid, setting up appropriate scalable solvers that maintain ro-
bustness with respect to the timestep, extending the current analysis of robust
preconditioners to formulations based on four-field Biot equations (including both
total pressure and Darcy flux), and generalising the model to the regime of large
deformations and the incorporation of remodelling mechanisms better describing
the consolidation of the interface and choking phenomena in eye poromechanics.
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