IMA Journal of Numerical Analysis (2024) 44, 3520-3572
https://doi.org/10.1093/imanum/drad090
Advance Access publication on 18 December 2023

Divergence-conforming methods for transient double-diffusive flows: a priori
and a posteriori error analysis

RAIMUND BURGER
CPMA and Departamento de Ingenieria Matemdtica, Universidad de Concepcion, Casilla 160-C,
Concepcion, Chile

ARBAZ KHAN
Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee 247667, India

PauL E. MENDEZ
Research Centre on Mathematical Modelling (MODEMAT), Escuela Politécnica Nacional,
Quito, Ecuador

AND

RicarRDO RU1Z-BAIER*

School of Mathematics, Monash University, 9 Rainforest Walk, Melbourne, VIC 3800, Australia and
World-Class Research Center ‘Digital biodesign and personalized healthcare’, Sechenov First Moscow
State Medical University, Moscow, Russia and Universidad Adventista de Chile, Casilla 7-D,
Chilldn, Chile
*Corresponding author: ricardo.ruizbaier@monash.edu

[Received on 27 June 2021; revised on 21 September 2023]

The analysis of an H(div)-conforming method for a model of double-diffusive flow in porous media
introduced in Biirger, Méndez & Ruiz-Baier (2019, On H(div)-conforming methods for double-diffusion
equations in porous media. SIAM J. Numer. Anal., 57,1318-1343) is extended to the time-dependent
case. In addition, the efficiency and reliability of residual-based a posteriori error estimators for the
steady, semidiscrete and fully discrete problems are established. The resulting methods are applied to
simulate the sedimentation of small particles in salinity-driven flows. The method consists of Brezzi—
Douglas—Marini approximations for velocity and compatible piecewise discontinuous pressures, whereas
Lagrangian elements are used for concentration and salinity distribution. Numerical tests confirm the
properties of the proposed family of schemes and of the adaptive strategy guided by the a posteriori error
indicators.

Keywords: a priori and a posteriori error bounds; mixed H(div)-conforming methods; coupled Navier—
Stokes and double diffusion; sedimentation and salinity variations.

1. Introduction and problem formulation
1.1  Scope

A number of physical problems of relevance in industrial applications involve coupled incompressible
flow and double-diffusion transport. We are interested in numerical schemes for the approximation of
a class of coupled equations that arise as models of sedimentation of small particles under the effect of
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DIVERGENCE-CONFORMING METHODS FOR TRANSIENT DOUBLE-DIFFUSIVE FLOWS 3521

salinity of the ambient fluid. The governing model can be stated as follows (cf., e.g., Burns & Meiburg,
2015; Reali et al., 2017):

1
b +u-Vu=div(w(©Vu) — —vp+ g, (1.1a)
pm m

divu =0, (1.1b)
dstu-Vs= A (L1c)
u-Vs=—As, dc

S s =g As

I
e+ (= vpe) - Ve = ——Ac, (1.1d)

posed on a spatial domain 2 C R4 ,d=2ord=3,wheret e (0,1,,] is time, u is the fluid velocity, v
is the concentration-dependent viscosity, o, is the mean density of the fluid, p is pressure, p is density,
g is the gravity acceleration, s is the salinity concentration and c is the concentration of solid particles.
These equations state momentum (1.1a), mass (1.1b) conservation of the fluid and transport of the species
(I1.1c)—~(1.1d). The Schmidt number Sc = v,.¢/k; is the ratio between kinematic viscosity and diffusivity
(here assumed relatively small, e.g., Sc = O(10), so that concentration and salinity boundary layers are
fully resolved; see, e.g., Kadoch et al., 2012; Rasthofer & Gravemeier, 2018), where « is the diffusivity
of salinity, and v, is a reference viscosity in the absence of solid particles. Finally, T = «/k, is the
inverse of the diffusivity ratio, where «, is the diffusivity of solid particles, and e, is the upward-pointing
unit vector. We relate the densities through a linearized equation of state

p = pmlas + Bo),

where « and § are model constants that approximate the derivatives of the equation of state. Again,
as in the works by Burns & Meiburg (2015); Ruiz-Baier & Lunati (2016); Reali et al. (2017), the
solid particles are assumed to be mono-sized with radius r, and they settle at dimensionless velocity

2% (pp—Pm)g
=8 = 2 Pp~Pm)8
VP - (Vrefgl)l/3 ’ Where VSt 90m Vet

unbounded fluid). The coupling mechanisms between flow and transport are only due to advection for
concentration and salinity (where the advecting velocity for concentration, u — v,e,, is also divergence-
free), and through the concentration-dependent viscosity. Further details (including boundary and initial
conditions) are provided in later parts of the paper.

To put the paper further into the proper perspective, we mention that there exists an abundant body of
literature devoted to constructing accurate finite element and related schemes for double-diffusive flows.
Some recent contributions include variational multiscale stabilized schemes, least-squares methods,
divergence-conforming mixed methods, volume-averaging discretizations, spectral elements, vorticity-
based finite element formulations and similar methods applied to, e.g., flows with heat and mass transport
(Abedi & Aliabadi, 2003), reactive Boussinesq flows (Agouzal & Allali, 2003), nonlinear advection—
reaction—diffusion in the context of bioconvective flows (Lenarda ef al., 2017; Anaya et al., 2018), cross-
diffusion and boundary layer effects in double-diffusive Navier—Stokes—Brinkman equations (Dallmann
& Arndt, 2016; Biirger et al., 2019; Baird et al., 2021) and in Darcy—Brinkman equations (Yang &
Jiang, 2018), or phase change models (Zabaras & Samanta, 2004; Danaila ef al., 2014; Zimmerman &
Kowalski, 2017; Woodfield et al., 2019); where the list is far from exhaustive.

is the Stokes velocity (settling velocity of a single particle in an
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3522 R. BURGER ET AL.

The solvability analysis for the continuous and discrete problems usually follows energy and
fixed-point schemes as done for classical Boussinesq equations, and this is also the approach we
follow here. The discretization in space uses an interior penalty divergence-conforming method for
the flow equations (in this case, Brezzi—Douglas—Marini (BDM) elements of degree k > 1 for
the velocity and discontinuous elements of degree k — 1 for the pressure following Arnold ef al.,
2002; Konnod & Stenberg, 2011), combined with Lagrangian elements for the diffusive quantities.
The present formulation and its analysis stand as a natural extension of the formulation in Biirger
et al. (2019) to the transient case. As such, the proposed method also features exactly divergence-
free velocity approximations ensuring local conservativity, and the error estimates of velocity are
pressure-robust. The chosen time discretization is the backward differentiation formula of degree 2
(BDF2), which for k = 2 gives a method of order 2 in space and time. Existence of discrete
solutions is established by the Brouwer fixed-point theory similarly as in Biirger e al. (2019), and the
error analysis in the semidiscrete and fully discrete settings is adapted from the theory of Aldbaissy
et al. (2018) for the Boussinesq equations and that of Baird e al. (2021) for filtration in axisymmetric
domains.

In many applications where double-diffusion effects occur, complicated flow patterns exist in zones
far from boundary layers and sufficiently refined meshes are needed essentially in the whole spatial
domain. However, for salinity-driven settling of solid particles that result in mathematical models such
as (1.1), many of the flow features are clustered near zones of high gradients of concentration, which is
where the typical plumes are observed (Burns & Meiburg, 2015; Lenarda et al., 2017). This motivates
the use of adaptive mesh refinement guided by a posteriori error indicators. For instance, in the context
of phase change models, there are some results based on error-related metric change (Danaila et al.,
2014; Rakotondrandisa et al., 2020) and on goal-oriented adaptivity (Zimmerman & Kowalski, 2017).
Regarding the design and rigorous analysis of residual-based a posteriori error estimators for flow-
transport couplings, the literature is predominantly focused on the stationary case (see, e.g., Becker &
Braack, 2002; Allali, 2005; Zhang et al., 2011; Alvarez et al., 2016; Agroum, 2017; Alvarez et al., 2018;
Dib et al., 2019; Wilfrid, 2019; Allendes et al., 2020 and the references therein). Only a few results are
available for the time-dependent regime, from which we mention the adaptive mixed method for Richards
equation in porous media (Bernardi ez al., 2014), the remeshing scheme based on goal-oriented adaptivity
for solidification problems advanced in Belhamadia ez al. (2019), the collection of adaptive schemes
for reactive flow discussed in Braack & Richter (2007) and for heat transfer in Larson et al. (2008).
However, none of these theoretical frameworks directly handles divergence-conforming approximations
to (1.1).

The a posteriori error analysis we advance here is of residual type, and its analysis uses ideas from
the abstract results related to spatial estimators for discontinuous Galerkin schemes applied to parabolic
problems in Georgoulis et al. (2011). The approach hinges on a decomposition of the discrete solution
into a conforming and a nonconforming contribution, along with a reconstruction technique (see also
Memon et al., 2012). This has also been exploited for the construction of a posteriori estimators of
time-dependent Stokes and Navier—Stokes equations (Zhang & Li, 2017; Bénsch & Brenner, 2019). Our
a posteriori error analysis is divided into three parts. In the first part, we present the error estimator for
the steady coupled problem, under the assumption of L? distributed force and constant source terms.
In the second part, we extend the a posteriori error estimation to the semidiscrete method, and finally
we present the a posteriori error estimator for the unsteady coupled problem. For the sake of simplicity,
we restrict the latter part of the analysis to the backward Euler method. To the best of our knowledge,
the a posteriori error estimation advanced herein is the first comprehensive study targeted for transient
double-diffusive flows.
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1.2 Outline

The remainder of this paper is organized as follows. In what is left of this section, we outline the weak
formulation of (1.1), state preliminary results and notation to be used in throughout the manuscript and
announce the stability of the continuous problem. In Section 2, we introduce the divergence-conforming
method in fully discrete form, show existence of discrete solutions using fixed-point arguments and
rigorously establish a priori error estimates. Section 3 is devoted to the construction and analysis of
efficiency and reliability for a residual-based a posteriori error estimator tailored for the stationary
problem. In turn, these upper and lower bounds are used to establish properties of a second family of
estimators for the transient case, and addressed in Sections 4 and 5. In Section 6, we collect numerical
tests that verify the theoretical convergence rates predicted by the a priori error analysis, confirm the
robustness of the proposed a posteriori error estimators and illustrate the use of adaptive methods in the
simulation of double-diffusive flows.

1.3 Preliminaries

Let £2 be an open and bounded domain in RY, d = 2,3 with Lipschitz boundary I" = 92. We denote
by LP(£2) and W"P(£2) the usual Lebesgue and Sobolev spaces with respective norms ||| (2) and
I-Ilwrp () If p = 2, we write H'"(£2) in place of W"P(§2) and denote the corresponding norm by ||-||,.
(IIllg,¢ for HO(2) = L*(R2)). The space L(z)(.Q) denotes the restriction of L%(£2) to functions with zero
mean value over £2. For r > 0, we write the H"-seminorm as ||, o and we denote by (-, ), the usual
inner product in L?(£2). Spaces of vector-valued functions (in dimension d) are denoted in bold face,
ie, H(2) = [H’(.Q)]d, and we use the vector-valued Hilbert spaces

H(div; 2) := {w € L?(2) : divw e L*(22)},
H(div; £2) := {W € H(div; 2) : w-ny;o =0on 8[2},
Hy (div%; 2) := {w € Hy(div; 2) : divw = 0 in 2},
where n,, denotes the outward normal on d2; and we endow these spaces with the norm ||-||, o

defined by ||w||(2ﬁv’9 = ||W||%’_Q + ||div w||(2)’9. We denote by L°(0, t.,4; WP (£2)) the Banach space of
all L*-integrable functions from [0, z,,,4] into WP (£2), with norm

Tend /s
(/0 ||v(t)||§,vm,p(m dt) if1 <s < o0,

€8S SUP;e(0 1] IV lwmp(y 1f s = 00.

” v ”LS(Oatcnd;W’"’p(Q)) =

1.4 Additional assumptions and weak formulation

Asin, e.g., Dib et al. (2019), we assume that viscosity is a Lipschitz continuous and uniformly bounded
function of concentration, i.e.,

|v(cl) — v(cz)| <L,c; —¢c] and v; < v(c) < v,

for any ¢, ¢y, c, € R, and where L, v, v, are positive constants.

20z Jequieoaq €0 U0 1senb Aq L.EE09Y2/0ZSE/9/PF/PI0IE/RUlRWIWOD dNO"olWapEoR)/:SARY WO} POPEOJUMOQ
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For simplicity of notation in presenting the analysis, we restrict the weak form to the case of
homogeneous Dirichlet boundary conditions for velocity, concentration and salinity:

u=0 s=0, ¢c=0 on 452.

Let us define the following spaces:

V= {we L0,

end’

H)(£2)) 1 ,w € L*(0,1.,q; L2 (£2))},

end>

0" 1= L*(0, tepq; L§(£2)),
M' = {s e L*(0.,

end>

H(2)) 1 8,5 € L2(0, 100 L*(£2)) }.

For ease of the subsequent presentation, as in Schroeder et al. (2018), velocity, pressure, concentration
and salinity solutions will be assumed to belong to the spaces V’, Q', M! and M’, respectively. Testing
each equation in problem (1.1) against suitable functions and integrating by parts whenever adequate
gives the following weak formulation: find (u,p,s,c) € V! x Q' x M" x M" such that u(-,0) = u, €
Ho(diVO; £2),5(-,0) =0, c(-,0) =0in £ and for a.e. t € [0,7,,4],

Ou,v)o +ai(c;u,v) +ci(wsu,v) + b(v,p) = F(s,c,v) forallve Hé(.Q), (1.2a)
b(u,q) =0 forall g € L3(£2), (1.2b)
(3,5,9) o + ay(s,9) + c,(W;5,0) =0 forall ¢ € H)(£2), (1.2¢)
1
0,6,9) o + ?az(c, ¥) +cy(u— Vpe.:C, Y)=0 forally € H(l)(.Q), (1.2d)

where the variational forms a; : H}(£2) x H)(2) x H)(2) — R, a, : H)(2) x H)(2) - R,
b:H)(2) x L3(2) — R, c; : H)(£2) x H)(£2) x H)(£2) — R, ¢, : H)(2) x H}(2) x H}(2) — R,
F: H(l)(.Q)xH(l)(.Q) X H(l)(.Q) — R are defined as follows for all u,v,w € H(l)(s?), q € L%(Q) and
9. ¥ € H)(R):

aj(c;u,v) == (wE)Vu,Vv)o, ci(w;w,v) = ((W-VIu,v) o, F(s,c,v):= ((as+ Bo)g, V) o,

1 1
b(v,q) := —p—(q, divv)g, ay(e,¥) = o (Ve Vi, e ¥):= (V- V)¢, ¥)g.

m

1.5 Stability of the continuous problem

We begin by noting that the variational forms defined above are continuous for all u, v, € H(l)(.Q), q €
L3(£2) and ¢, € HL(£2):

la; )| < Cpllully o IVl e lay (@, )1 < Cullell o 1V o (1.3a)
1b(v. )| = Cy IVl o llgllo,e- (1.3b)

|Cl w;u,v)| < CC ”w”LQ ||u||1_(z ”V”],Q» |C2(u§§0a¢)| = CC ||u||19 ||§0||1_(2 ||W||1Q (1.3¢)
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We also recall (from Girault ef al., 2005, Chapter I, Lemma 3.1, for instance) the following Poincaré—
Friedrichs inequality:

lelloe < C,)leli o for all ¢ € H}(£2). (1.4)

Next, inequality (1.4) readily gives the coercivity of a, and also, for a fixed concentration, that of a,
i.e., there exist positive constants o, and &a such that

ay (v, v) > a, [vlig for all v € H)(£2), (1.52)
a9, 9) = &, loli g for all ¢ € Hy(£2). (1.5b)
Using the definition and characterization of the kernel of the bilinear form b(-, -), we can write
X:={veH)(2) : b(v,q) =0 YgeLj()}={veH)(2): divv=0 in 2},
and applying integration by parts we can readily observe that
ciw;v,v) =0 and c,(W;0,9) =0 forallwe X,ve H(2),¢ € H (2). (1.6)
It is well known that the bilinear form b(, -) satisfies the inf-sup condition (see, e.g., Temam, 2001):

b(v,q)
sup

verb@no) Ve

> Bliglye forallg e Li($2).

Finally, for v € W (£2) and @ € Wh(£2), one can show that there exists an embedding constant
C,, > 0 such that

IVl = Coo IVlwioo (o) and ol o < Cg ll@llwioo(g)-

LeEMMA 1.1 (Stability). If g € L*°(0,1,,4: L (£2)), u, € L%(2) and Sp,Co € L2(£2), then, for any

solution u, s, ¢ of (1.2) and for ¢ € (0, 7,41, there exists a constant ¥ > 0 such that

ol 20 mt 2y T IS120mt )y + lellz oty = ¥ ([ollo.q + Isollo.e + leolloo)-
where y might depend on 1y, 7, Sc, p, oy, Cp, ||g||oo,_Q, o and S.

Proof. We can take u € X and due to the inf-sup condition we can solve an equivalent reduced problem
where b(-, -) is removed from the variational form (1.2). Setting v = u and using (1.6), (1.5a), we have

d
2 2
Ed_t ||u||()_(2 +a, ||u||1_q =< ||g||oo,g C (”S”o,g + ”C”OQ) ||u||09
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3526 R.BURGER ET AL.
Now we use Young’s inequality with ¢ = «,/4 to get

Cligl2 o

d o
2 2 2 2
& ||u||()_Q + _2a ||“||1_Q =< (”S”og + ”C”OQ )

a

Integrating this inequality between 0 and ¢ yields, in particular

2 ! 2 2 c [ 2 c [ 2
02 o +a, [ TCDIE g de < OB g + — [ le-2I30 det = [ ls¢.2)13 dz.
0 o, Jo o, Jo
(1.7)

Analogously, applying (1.5b) and (1.6) to (1.2c) and (1.2d), after integrating from O to ¢ we find that

t
s, D112 o + 26, /O s, D13 ¢ dz < s, 01 o, (1.82)
2 ! 2 2
leC, D13 o + 24, /0 le(, I3 o dz < lleC, 0113 o (1.8b)
Finally, we derive the sought result from (1.7), (1.8a) and (1.8b). [l

A problem similar to (1.2) was studied by Agroum ef al. (2015). Assuming that F € L2(0,,,4;
H! (£2)), that the initial velocity u,, belongs to L2(.Q) and that the initial data for the coupled species (s
and ¢ in our context) belong to L?(£2), the authors showed existence of a solution by using the Galerkin
method and applying the Cauchy—Lipschitz theorem and proved its uniqueness in two dimensions. Such
analysis can be applied to (1.2) by noting that F is a Lipschitz-continuous function of ¢ and s, and
assuming the initial data belong to appropriate spaces. This is, however, not the focus of the paper and,

instead, we move on to the discrete analysis.

2. Finite element discretization and a priori error bounds
2.1 Preliminaries

We discretize in space by a family of regular partitions, denoted 7, of £2 C R into simplices K (triangles
in 2D or tetrahedra in 3D) of diameter hx. We label by K~ and K the two elements adjacent to a facet
(an edge in 2D or a face in 3D), while %, stands for the maximum diameter of the facet. Let £, denote
the set of all facets and £, = £ U E? where £} and & are the subset of interior facets and boundary
facets, respectively. If v and w are smooth vector and scalar fields defined on 7, then (Vi, wi) denote
the traces of (v, w) on e that are the extensions from the interior of K™ and K, respectively. Let nj, n,
be the outward unit normal vectors on the boundaries of two neighbouring elements sharing the facet e,
KT and K, respectively. We also use the notation (w,-mn,)|, = (wt - nj‘)| .- The average {-} and jump
[-1 operators are defined as

vi=0v 4+vhH/2, wh=mw +wh/2, [vl:=r —vh), [wl:=w —wh),

whereas for boundary jumps and averages we adopt the conventions {v} = [[v] = v, and {w} = [w] =
w. In addition, V, will denote the broken gradient operator.
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2.2 Galerkin method

For k > 1 and a mesh 7, on £2, let us consider the discrete spaces (see e.g., Brezzi et al., 1985)
V,, = {v, e Hdiv; 2) : v,|x € [PK)1Y VK € Tpi v, -myo =00n a2},

= {v, e L*(0,1

end’

V,) 1 8,v, € L2(0, 10,0 Vi) |,
Q) = {a) € L§(2) : g4l € P (K) VK € T, }, Q= L2 (0 tng: Q)
M, ={s, € C(2) : Llx e P(K) VYKeT,},  M,q:=M,NH;S),
Mo = {5 € L0 tengs Myg) : 3,8, € L2(0s tengs M)},
which, in particular, satisty divV, C Q,, (cf. Konno & Stenberg, 2011). Here P, (K) denotes the local
space spanned by polynomials of degree up to k and V, is the space of divergence-conforming BDM

elements. Associated with these finite-dimensional spaces, we state the following semidiscrete Galerkin
formulation for problem (1.2): find (wy, py, 5. ¢;) € Vi, x Q) x M} o x Mj, ; such that:

O, vy o + aﬁ’(ch;uh,vh) + c}l’(uh;uh,vh) + b(v;,,p,) = F(sy,cy,v,) forallv, €V,
b(uy,,q,) =0 forallg, € Q,,

2.1
@51 01) @ + ax (s 0p) + (g5, ) =0 forall g, € M, o, 2.

1
(atch, wh)g + ;02(011, '(/fh) + Cz(uh - Vpez; Chy '(/fh) =0 forall '(//h € Mh’o.

The discrete versions of the variational forms aﬁ‘ (-;-,-)and cﬁ’(-; -, -) are defined using a symmetric interior
penalty and an upwind approach, respectively (see, e.g., Arnold et al., 2002; Koénno & Stenberg, 2011):

aﬁl(ch;uh,vh) :=/ v(c,) V() : V,(v,)dx + 2/( v(ch)Vh(uh)n }} . [[Vh]]

eEgh

—frenvivm g - lu, ] + %V(Ch) [[w, ]I - [[Vh]]) ds, (2.2a)

(W, ay, v,) ::/(wh Viu, - Vhdx—i—Z/(w ‘n,) [w,]] - {v.}} a8
ee&;

+ 2 / We - m| [[u, ]l - [va]] . (2.2b)

eeS’

where a; > 0 is a jump penalization parameter.
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3528 R. BURGER ET AL.

We partition the interval [0, f, 4] into N subintervals [¢,_,,,] of length Az. We use the implicit BDF2
scheme where all first-order time derivatives are approximated using the centred operator

1 (/3 1
1y ~ +1 1
atuh(tfl+ )~ Zt (Euz 2llz + EuZ ) 2.3)

(similarly for 9,c) and for the ﬁrst time step a first-order backward Euler method is used from 0 to ¢!,
starting from the interpolates uh, sh of the initial data:
(W, = vy) o = Ar( = af (s wh vi)) — €] (s Wy, v) = b(Vyspp) + F (8¢5, v))  forall v, € Vi,
b(uj,gq,) =0 forall g, € Q,
(5h = S 0n) o = At( = ax (53 01) = 2 (Wyisin0y))  forall @, € My,

1
(c,ll - U)o = At (—;az (c}l, V) — cz(u}l — Ve c), wh)) forall ¢, € M, .
2.4)

In what follows, we define the difference operator
Dyn+1 = 3 I’H—l 4y + yn 1

for any quantity indexed by the time step n. For instance, (2.3) can be written as d,u,, (" ~ ZLA,DuZJrl .
The resulting set of nonlinear equations is solved by an iterative Newton—Raphson method with exact
Jacobian. Hence for 1 < n < N — 1, the complete discrete system is given by

1 2
2 (P Vi) g = A= di (e vy = gt v) b (v o) + F (5T L))
forall v, € V,,
bt g =0 forallg, € O,
1 2
g(DSZH"Ph)Q = §A’( —ay(spt . 0p) — o (Wit ) forall g, € My,
1 2 1
5(DCZ+1, I/fh)g = gAt (——a2 (Ch+ I!Ih) ( ntl Vpez, wh)) for all '(//h S Mh,O'

2.5)

2.3 Properties of the discrete problem

For the subsequent analysis, we introduce for r > 0 the broken H" space

H'(T,) :={ve L’(2) : vlg e H'(K), K € Ty}
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as well as the mesh-dependent broken norms

vIZ 7 = Z||Vh<V>||L2<K>+Z ||[[v]]||Lz(e),

KeTy, eegh

IVIT 77o= IIV||L2(9)+IIVII*T,1 forall veH'(T), VI3 7= IIVIIITh+ZhKIVIH2(K) for all ve H*(Ty),
KeTy

where the stronger norm |||l 7; is used to show continuity. By using the inverse estimate
Wi, x < Chi'|lwly g forallK € T, w € [P (K)]%,

it can be seen that this norm is equivalent to |||, 7, on 'V, (see, e.g., Arnold e7 al., 2002). We also define
the discrete kernel of the bilinear form b(-, -) as

X/’l = {Vh (S} V/’l . b(Vh,qh) =quh (S] Qh} = {Vh (S Vh . diVVh =01n9} (26)

Finally, adapting the argument used in Karakashian & Jureidini (1998, Proposition 4.5), we can state
the following version of the discrete Sobolev embedding: for r = 2,4 there exists a constant C,p > 0
such that

IVl @) < Comy IVll7;  forally e HY(T,). 2.7)

With these norms, we can establish continuity of the trilinear and bilinear forms constituting the
variational formulation. The proof follows from Arnold et al. (2002, Section 4).

LeEMmmA 2.1 The following properties hold:

@t (ou, )| < Cllullyr IVl 7 forallu € H*(T;), v € V),
ld} ¢, < C, llally 7 vl forallu,v € V,,
b(v. )| < Cy IVIl,7: llgllo.o forall v e H'(T;),q € L*(%2),

and for all w € H' (T) and ¢, ¥ € H'(£2), there holds
lea(Ws 0,9 < ClIwlly 7, el o 1V o (2.8)
Moreover, for y;,y, € HY (2),ue C! (T,) N H/ 0(£2) and v € V,, there holds
i (2w, v) = di ()| = Crip 11 = 1|y o Nllyios g, 11 75 2.9)

where the constant 6‘Lip > 0 is independent of & (cf. Biirger et al., 2019). Note that while the
coercivity of the form a,(-,-) in the discrete setting is readily implied by (1.5b), there also holds (cf.
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Konno & Stenberg, 2011, Lemma 3.2)

ai(v,v) = &, [VIT . forallv eV, (2.10)
provided that the stabilization parameter a;, > 0 in (2.2a) is sufficiently large and independent of the

mesh size.
Letw e HO(divo; £2), and let us introduce the jump seminorm

1
|uh|w,upw = Z/E |W€ : ne||[[uh]]|2 ds.

Je
1
ee&;

Then, due to the skew-symmetric form of the operators c’l' and ¢,, and the positivity of the nonlinear
upwind term of c‘l‘, we can write

2

EACATRIES |uh}w’upw >0 foralu, eV, (2.11a)

ey (W Yy, ¥y,) =0 forall Y, € M, (2.11b)

as well as the following relation (which is based on (2.7) and follows by the same method as in
Karakashian & Jureidini, 1998): for any w;, wy,u € H? (7,), there holds

It (wisu, v — [t wyu,v)| < C, ||wy — Wl 7 IVl 7, Il 7, forallveV,. (2.12)
‘We also have

Fr,¢,v) < C; (IWllo.0 + ¢l ) IVllgo  forallve V.

Finally,~we recall from Koénno & Stenberg (2011) the following discrete inf-sup condition for b(, -),
where S is independent of h:

b(vy. qp)

>Bla forallg, € Q,. 2.13)
vieVi0) [Vl lanllo.c n €

LTh

2.4  Stability

As an auxiliary technical tool, we will also require the following algebraic relation: for any real numbers
at! ", a" ! and defining Aa" := "' — 24" + a"', we have

2(3an+l _4an +al’l—l’an+l) — |an+l|2 + |2an+l _ al’llz + |Aa"|2 _ |an|2 _ |2al’l _an—l|2. (214)

THEOREM 2.2 Let (uf ' pit! it 1) € V) x Q, x M, o x M, be a solution of problem (2.5),
with initial data (u}l, s}l, c}l) and (ug, She cg). Then the following bounds are satisfied, where C;, C, and
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C; are constants that are independent of /# and of Ar:

[ 5. + 205 — wilg g + > |av, log + ZNH“’“IM + ZMHJ .
j=1 j=1

2
= (Ishllog + 125k = sfl5.0 + ekl + 12k = Xl + 1wk o + 120} — w5 0)-

n n
2 j i1 12 2 2
55 0.0 + 12557 = sillo o + 2 145400 + 2= 41157 17 o = Ca(lIsklo.g + 125 = hl0.0).
j=1 j=1

n n
2 i 12 j 2 2 2
[t o0 + 126" = cillo.o + 2 I Adilo.0 + 2 At 1 o < Gllehlog + 1261 = hll6.0)-
j=1 j=1
(2.15)

n+1 n+1 .

Proof. First we take v, = 4u;" " and g, = 4p," " in the first and second equations of (2.5), respectively,
and apply (2.14), (2.10) and (2 11a) to deduce the estimate

H“ p ”09 + ”2“n+1 uy “0:2 + H Auj ”09 + 44w, ”“ZH H1 T +4At|un+l u;

upw

= 4Ath(||SZJrl ||o,.(2 + ”CZH ”0,.(2) ”“ZH “0,9 + ”“Z “0,.(2 + ”2“2 - “Z_l ”0,(2'

Using Young’s inequality with ¢ = &,/2 and summing over n, we can assert that

5. + 205 uh||0.(2+2”A“l”09+2a ZAtII ’+1||17+Z4At| e
j=1 j=1

c
= &_Z arllloe + 5 ZA’||C'||09+H“;,HOQ+||2uh )0 o (2.16)
i 5

Similarly in the third equation of (2.5), we take ¢;, = 4s”+

(2.14) to arrive at the inequality

and use property (2.11b) and relation

2 2 2 2 12
HSZH ”09 + ”an+1 = ) ||0.Q + ”ASZ “0,(2 + 4"‘2At||SZJrl ”1.(2 = ”sz “09 + ||2SZ = Sh 1“0,9'
Hence, summing over n, we get
2 - 12 - i+12 2 2
55 0.0 + 12657 = sillo 0 + 2 45410 0 + 480 >~ At 5 o = Isklo.q + 125k = 26,0
Jj=1 j=1

We proceed in the same way taking v;, = 4cZJrl in the fourth equation of (2.5) to get the third result.
Finally, we can assert the first result by substituting the bounds for ¢, and s;, into (2.16). ]
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Note that, in contrast to the linear case, the stability result and the existence of a discrete solution do
not guarantee, in general, uniqueness of solution.

2.5 Solvability

. . . A c?
THEOREM 2.3 (Existence of a discrete solution). Assume that min{&,,, &,/t} > % Then problem (2.5),
with initial data (u,ll, s,ll, c}l) and (ug, sg, 02) (where (u}ll, s}l, c,11) is obtained from (ug, sg, cg) by a backward
Euler method), admits a (not necessarily unique) solution

n+l _n+l n+1 n+1
( P 55y )evthhXMhOXMhO

The proof of Theorem 2.3 is conducted using a fixed-point argument that employs Brouwer’s fixed-
point theorem in the following form (given by Girault & Raviart, 1986, Corollary 1.1, Chapter IV):

THEOREM 2.4 (Brouwer’s fixed-point theorem). Let H be a finite-dimensional Hilbert space with scalar
product (-, -) and corresponding norm ||-||. Let @ : H — H be a continuous mapping for which there
exists & > 0 such that (@ (u), )y > 0 for all u € H with ||ul]|yz = n. Then there exists u € H such that
®(u) = 0 and [lull; < .

Proof of Theorem 2.3. To simplify the proof, we introduce the constants

Coi=Ci(Iskllog + 125k = o + lehllo +12¢h = Rl o + NudlG.c + 12} — wdll ).

C = Clsilog + 125 =6} Cor=Gllehlog + 26k - lls)-

We proceed by induction on n > 1. We define the mapping
D Vh X Qh X Mh’o X Mh’o — Vh X Q/’l X Mh’o X Mh’o, (217)

using the relation

@@+ P ), 00 )
Du"Jrl v
%+ al( ntl, “Z“, )+C1( n+l, “Z'H, v,)+b(vy, PZH) —b(u n+l’qh) F(SZH CZH’Vh)
(D 0,) o (D, ) ay(G" )
+ hzT +ar (53 0n) + (W5 ) + tht o ! h
+Cz(“z+1 Vplsr € wh)

Note that this map is well-defined and continuous on 'V, x Q, x M, 5 x M, (. On the other hand, if
we take

(n-H n+1 n-‘rl’ Z-‘rl)

(Vi Qs O W) = Py 55,

s
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and employ (2.11a), (2.11b) and (2.10), we obtain

(¢( n+l,PZ+l, ”+1,CZ+1) ( n+l,PZ+l, n+l’Cz+1))Q
1 2
= ol = o g i o g+ Gl [ e
- Cf(lls”+1 log + lei™ o) 1w o,
st 5 o g I o+ s 1 o= o 4k b o bl o+ 2l
2At 0,2 11°h 0(2 h 1,2 2At h h 0,211%h 0,2 T h 1,2°

. N - . A A %
Next, we use (2.15) and Young’s inequality with € = &,. Under the assumption that min{e,,, &, /7} > &—f,

a
we deduce that

(@( n+1’pz+l n+1 CZJrl) ( n+1’p2+1 n+1 CZJF]))Q
4 2 5 5
= % | g+ e 2~ s Gl g~ 5l
5

el o

Then, setting

&a A 5 5 5
—a , C =2 C,—C.,—C.},
] max[zm " 2AL S 241 C]

1/2

we proceed to apply the inequality a + b < V2(a? + b*)'/2, valid for all a, b € R, to obtain

(4)( n+l,PZ+l n+l Z+l) ( n+l,PZ+l n+l’ Z+l))(2

> Ce(luit o + 5 log + e o) = G-l o0 + s o + e lo.0) "

Hence, the right-hand side is non-negative on a sphere of radius r := C,/Cg. Consequently, by Theorem
2.4, there exists a solution to the fixed-point problem <1>(u”+1, pZH 4] ”+1) = 0, where the fixed-
point map (2.17) is the solution operator for the fully discrete problem (2.5). (]

2.6 A priori error estimates

The analysis in this section follows from standard arguments applicable to the approximation and error
bounds for isolated solutions. For this, we require to assume the uniqueness of discrete solution.

Let us denote by Z,, : H*(£2) — M, the nodal interpolator with respect to a unisolvent set of
Lagrangian interpolation nodes associated with M,,. Furthermore, [T}, u denotes the BDM projection of
u, and £, p is the L?-projection of p onto Q,,. Under usual assumptions, the following approximation
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properties hold (see Konno & Stenberg, 2011):
Ju—myul, 7 < CH Ml 00 e =Thel, o < CH llelisr 00

Is = Zys o < CHlIslirrgs P = Laplog < CH Il g (2.18)

The following development follows the structure adopted in Aldbaissy et al. (2018). We begin with
a property of the discrete bilinear forms and the continuous variational formulation.

LEMMA 2.5 Assume that u € L?(0,7,,4; H*(2)), 8,u € L?(0,1,,4; L*(£2)), p € Q' and s,c € M". Then

end>
fora.e. t € [0,1,,4], we have
Qu,v)o + a}f (c;u,v) + c}f (w;w,v) + b(v,p) = F(s,c,v) forallveV,, (2.19a)
b(u,g) =0 forallqge Q,, (2.19b)
08, 9) o + ay(s,9) + ¢ (u;5,90) =0 forallp € M, (2.19¢)
0,6,9) g + %az(c, V) +om—vesc,y) =0 forally € M. (2.19d)

Proof. Since we have assumed that u € H?(£2), integration by parts yields the required result. See also
Arnold et al. (2002). The third and fourth equations are a straightforward consequence of properties of
the continuous weak form. O

Si{lce for the following theorems we will assume the exact ¢ and s belong to HZ(.Q), we have ¢, s
€ C(£2). Now we decompose the errors as follows:

u—w,=E,+§ =@-Iw+Ulu-w), p—p,=E, +§ =@p—Lyp)+(Lyp—pps
s=s,=E+&=6-1L,9)+Ty,s—5y), c—c,=E . +& =(—TIyc)+ (Tyc—cp).

Assuming that ug = IT,u(0), s2 = 7;,5(0) and 02 = 7, ¢(0), we also use the notation E} = (u(t,) —
IT,u(t,)) and & = (1, u(t,) — u}), and similar notation for other variables. Since for the first time
iteration of system (2.1) we adopt a backward Euler scheme, a dedicated error estimate is required for
this step.

For simplicity of notation, in what follows, we write down u’ instead of o,u, u” instead of d,u, and
SO on.

THEOREM 2.6 Let us assume that

v’ € C%0, 1,,0: L*(£2)),

"e L™ (0, t,q: HX(2) NH(2) N C'(2)), ifk=1,
L% (0, tq: HM 1 (2) NHY(2)), ifk>2,

end>

PEL® (0, teyqs HA(2)), €W (0, t.q; HT (2) N HY(£2)), ce W™ (0,1

end’ end> end>

H (2)nH} (2)),
(2.20)
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N

4C, o 4CLipV2

and also that |lu|; OrtenasW2(2)) < M, with0 < M < min [ ] Then there exist positive

constants C ,i, C Sl, C Ll,, independently of 4 and At, such that

1
At &1 7, + Atl&d [y e < Culh* 1A,

el +s

,upw —

1
A1, &} o < Clan® + (A,

1 2
e g+

1 1 .
6100 + 5,6l 6.0 = CL™ + 1A,

The proof of this result is postponed to Appendix A.

THEOREM 2.7 Let (u,p, s, c) be the unique solution of (1.2) under the assumptions of Section 1.5, and
(wy,, py,. 8, ¢;,) be a solution of (2.5). Suppose, in addition to (2.20), that

ue We® (0,2

e HFTL(2) NH) (22)), v € L%(0, 1,00 HY(£2)), u® € £2(0,7,,: L*(£2)),

end’

«/_
and |lul|; Ortepa:H (2)) < M for a sufficiently small constant 0 < M < min [ ra C* PToY;; . Then there

. 16M2C in2 Ao
exist constants C, 0 < y; = L™ — 2% independent of /1 and At, such that, forallm + 1 < N,

g

n+1
SUpw

& I + 283" - ||OQ+Z||A% ||09+ZM |é”‘*‘||17,,+ZAf|€’”1

n=1 n=1

< cant + 12+ padert ]

n=1

For a detailed proof, see Appendix B.

Note that, differently from the robust error analysis in, e.g., Han & Hou (2021) or in Schroeder et al.
(2018), Theorems 2.6 and 2.7 require a smallness assumption on the velocity solution of the continuous
problem. The assumption is needed due to the coupling through the viscosity with the balance equation
of concentration. If such dependency is removed, for instance when a constant viscosity value is used,
the smallness assumption is no longer required.

THEOREM 2.8 Let (u,p,s,c) be the solution of (1.2) under the assumptions of Section 1.5, and
(wy,, py,» 5, ¢;,) be a solution of (2.5). Assuming, in addition to (2.20), that

s € L®(0, tengs H(2)), 5P € L2(0, 10; L*(£2)),

20z Jequieoaq €0 U0 1senb Aq L.EE09Y2/0ZSE/9/PF/PI0IE/RUlRWIWOD dNO"olWapEoR)/:SARY WO} POPEOJUMOQ



3536 R. BURGER ET AL.

B si
3a, L®(0,tena;H' (£2))°

then there exist constants C, 0 < y, = independent of & and At, such that

forallm+1<N

m m
& o + 26! = &0 + 20148 [ + 22 Ad & 1 g

n=1 n=1

m
< cqant + ¥+ > par|gpt! ||T,Th'

n=1

The proof is found in Appendix C.

THEOREM 2.9 Let (u,p,s,c) be the solution of (1.2) under the assumptions of Section 1.5, and
(wy,, py,, 5y, ¢;,) be a solution of (2.5). If, in addition to (2.20), we have

¢ € L%(0, fng;

H(2)), P eL*(0,

end’

L*(%2)).

then there exist constants C, y; > 0 that are independent of & and At, such that forallm +1 <N

m m
e log + 1262+ = €2lo g + 201481 [5.0 + 2 A€ g

n=1 n=1

m
< cLan* + 1+ pyAdgrt

n=1
Proof. It follows along the same lines of the proof of Theorem 2.8, with constant y; given by
_Bc
V3 = 307” ”C”LOQ(O,tend;Hl(.Q))'
O

THEOREM 2.10 Under the same assumptions of Theorems 2.7 to 2.9, there exist positive constants y,,,
v, and y,. independent of At and A, such that, for a sufficiently small Af and all m + 1 < N, there hold

m 1/2
A PP A P ( KA oA TP !f.;ﬂ,upw)) =vu(AT+HD,

n=1

m

172
o P e U oy (VY +Ar&ane:+l||i9)) < A + ),

n=1

i N e N N

m 12
e+ 3. + gt — 603 + 3 (JA8213 o + At a2 ||ig)) < AP 4 1,

n=1
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Proof. From Theorems 2.7 and 2.9, since y; < 6‘“25‘“, we have the estimate

m m .
Z At gt ”?7;1 < c((an* + n*) + Z At%‘ Bas “?7;’

n=1 n=1

which, after substitution back into Theorem 2.9, yields

> argr ], < caan® +n2). 2.21)

n=1

The first bound follows by combining (2.21) and Theorem 2.7, whereas the second and third bounds
follow directly from the first bound in combination with Theorems 2.8 and 2.9. O

LeEmMA 2.11 Under the same assumptions of Theorem 2.10, and p € L*(0, t,,4; HZ(Q)), we have

m 12
(Z At|pGt,) — P+ ||§,Q) < 7, (AP + hb).
n=1

Proof. Owing to the inf-sup condition (2.13), there exists w;, € Xfl‘ such that

b(“’h’ﬁhl’" PZH) = ”ﬁhpn _PhH”og’

I
Iwill, 7 = EHEhP”“ A (2.22)

From (2.5) and Lemma 2.5, proceeding as in the proof of Theorem 2.7, we obtain

Ath (W, L), Pt — PZH)

2At
+ At (T wy) — @,y u, ), wy))
+ At( ( n+1 n+1 h) - F(s(tn+l)’c(tn+l)’wh)) + Atb(wh”/‘:hpn+1 _p(tn+1))
[At]
N_

+C C*hkAtllullLoo(O tongsHH (2)) [will, 7 + ChpMAt”g"“Hm Iwill,

=—Ar(u’<rn+1> L pu, wh) + At(a] (et wy) = @l e, )i u,40). W)
2

” @ ”L2 (tn—15tn 1 L2 (R2)) “/_”Wh”rrh + Ath”énJrl ||o.rz ||wh||177,

+ Cip MM o [Whll, 7 + ArCC.CCM|E | o Wil 7
+2A1C*C Il oo (0,peng:mt (29) 10 220 0,10 4+ (2)) Iwall, 7 + ALC| 5! lo.o IWall, 7
+ AtC*thk 111 20 (0,40mast1" (2)) [w, | vt AtC*thk llell oo (0,renactt (2) [w, | LT

+ CAH Pl 20 gty Wil -
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Summing over 1 < n < mforall m 4+ 1 < N and using (2.22) and triangle inequality, we obtain

12

AP+ (zmnsﬂﬂnm)
12

(Zmuwum) ,

n=1

m 12
(Z At|p(t,41) _PZH ”59) =
n=1

= O

and the desired result readily follows from Theorem 2.10. O

We next proceed to derive and analyse a posteriori error estimators. We split the presentation into
three cases of increasing complexity, starting with an estimator focusing on the steady coupled problem.

3. A posteriori error estimation for the stationary double-diffusive flow problem
3.1 Defining the estimator

Let us consider the following nonlinear coupled problem in weak form, associated with a steady
counterpart of (1.2). Find (u, p,s,c) € H}(2) x L3(£2) x H}(£2) x H}(£2) such that

ay(c.u,v) +c;@;u,v) + b(v,p) = (f.v) o forallv € H)(£2), (3.1a)
b(u,q) =0 forall g € L3(2), (3.1b)

ay(s,$) + ¢, ;5. 8) = (f1.¢)gp forall ¢ € Hj(L2), (3.1¢)
%az(c, V) + ey —vyeie ) = (fr. V) forally € Hy(2), (3.1d)

where (as + Bo)g = (p/p)g=f € L%(£2), and f], f, are taken as constant.
Let us also consider its discrete counterpart: find (u,, p,, sy, ¢;) € V, x Q, x M, g x M, o such
that

ay(cp,up,v) + cy(uysuy,v) +b(v,p) = (f},v)g o forallveV,, (3.2a)
b(u,,q) =0 forallge Q,, (3.2b)

ay(sp, @) + ey (uy; 5, 9) = (f, o forallgp € M, (3.2¢)
%az(ch, V) +oy(uy, —vesc, ¥) = (h.v)yo forally € M, (3.2d)

where an assumption similar to that of the continuous case is used, namely f, = (as;, + Bc¢;,)g, and
f1./> constants. Note that, since the dependence of the buoyancy term on the concentration and salinity
is linear, the difference f* — f;, could be treated as data oscillation. See Remark 3.6 below.
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Note also that the well-posedness of the continuous weak formulation (3.1) and discrete weak
formulation (3.2) follow as in Biirger et al. (2019) and Tushar et al. (2023), for data as assumed above.
In particular, Theorem 3.2 of Biirger ez al. (2019) ensures the uniqueness of the solution if [lul, o, < M,
Islloc < M and |[c||, < M for a sufficiently small M. In turn, Theorem 3.9 of Tushar et al. (2023)
proves the uniqueness of the solution with minimum regularity assumptions.

For each K € 7, and each e € &, we define element-wise and facet-wise residuals as follows:

Ry = {fh +div(v(c,)Vuy) —uy, - Vu,, — (,om)_leh}|K, (3.3a)
Ry g = {f; + Sc™' As, —uy, - Vs, }Ig. (3.3b)
Ryg = 1{fs + (tSc) ' Ac;, — (wy, — v,e) - Vo g (3.3¢)
R % [((om)~ P X = vi(c,) Vuyn]] foree &\ T, (3.3d)
€’ 0 foree I', '
R, e %[[(Scflvsh) .n]] foree §\ T, (3.3¢)
Le 0 foree I',
R 1 [(zSe)~'Ve,) -n]] foree &\ T, (3.30
zer 0 foree I ’
Then we introduce the element-wise error estimator W2 := lIII%K + lI/e2K + lIIfK with contributions
defined as
Vi = i (IRglGx + IRy k + IR2k113.)
Vo = D h(IR G + IR lIF e + 1Ry N5e)
ecdK
2 . —1 2
Vi = Z h, ” H”h]] H(),e’
ecdK
so a global a posteriori error estimator for the nonlinear coupled and steady problem (3.2) is
1/2
o= > g | . (3.4)

KeTy

3.2 Reliability

Let us introduce the space

X(Ty) = {v € Hy(div’, 22) : v € H'(K) VK € T}

20z Jequieoaq €0 U0 1senb Aq L.EE09Y2/0ZSE/9/PF/PI0IE/RUlRWIWOD dNO"olWapEoR)/:SARY WO} POPEOJUMOQ



3540 R. BURGER ET AL.

Then, for a fixed (@,&) € X(T;) x H)(£2), we define the bilinear form A" (., ) as

A" (@, p,s5,0), (v, q, ¢, V) = @@ u,v) + i@ u,v) + b, p) + bw, q) + a(s, )

+ oy (u; s, @) + %az(c, ¥) 4+ cy(u — v, C, V),

forall (w,p,s,c), v,q,¢,¥) € V, x @, x M, x M,, where

@ u,v) —/ V@V, @) : Vh(v)dx—i—Z/—v(c) Ml - [v] dS.

ee&y

Note that a}I’(E, u,v) = &}1’(2’, u,v) + K, (c,u,v), where

K, (@G u,v) = Z /—{{v(E)Vh(u)ne}} 1= {r@V,0n,} - [u] ds,

ec& "€

and we point out that Ag") ((u,p,s,c), (v,q, ¢, ¥)) is well-defined also for every (u, p, s, ¢), (v,q, ¢, V) €
H)(2) x L3(2) x H}(2) x H(£2).

THEOREM 3.1 (Global inf-sup stability). Let the pair (&, ¢) € X (T,) x H(l) (£2) satisfy [lull, 7, < M, for
a sufficiently small M > 0 depending on C, and C,. For any (u,p,s,c) € H(l)(.Q) X L(Z)(.Q) X H(% (£2) x
H)(£2), there exists (v, g, ¢, ¥) € H}(2) x L3(2) x H}(£2) x H}(£2) with [|(v,¢q,¢. )l < 1 such
that

A" (@, p,s,0), v, q,,9)) = Cll@, p,s, o)l

where the norm on the product space is defined as

I, q. . )1 := IWI] 7 + lgll5.0 + 1611 o + V117 -

Proof. For any (u,p,s,c) € H)(22) x L3(2) x H}(2) x H}(£2), there holds

AT (w,p,5,0), 0, =p,s,€)) = a llull} o +@,lsl} o + 2 ||c||1 o

Applying the inf-sup condition, we get that for any p € L%(.Q), there exists v € H(l)(.Q) such that
bv,p) > ,8||p||a_(2 and |[v|l; o < lIpllo> where B > 0O is the inf-sup constant depending only on £2.
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Then, we have

A @, p,'s,¢;v,0,0,0) = a, (& u,v) + ¢, (@;u,v) + b, p)
> BlIplG.o — lay@uv)| — |oy G u,v)|
> Blplg.e — Callull oIVl o — Cellall 7 lull; oIVl o
> Blplg.e — 2C lull oIVl o

> Blplls.e — 2C,lully o lpllo.o
> (ﬁ — é) IplIg. — €C2llul} o
where € > 0. Now, we introduce a § > 0 such that
A;,ﬁ’a ((u,p,s,c), w+8v, —p,s,c)) = A(ﬁ’a (u,p,s,c,u,—p,s,c) + SA(W) (u,p,s,c,v,0,0,0)

1
= (Ol _8€C2)||u||1 _Q+5 (,3 - —) ||P||0_Q +Ol||5||1 2 + = ||C||1 2
Choosing e =2/ and § = aa/(2eC2), we obtain

B
A @, p,s,c,u 4 8v, —p,s,c) > “||u||19+ SIplG o +alsli g + - ||c||m

. B .
me[?a 5 ‘C (||u||1g+||P||09+||5||1_Q+||C||1_Q)

Finally, using the triangle inequality, we can assert that

ll @+ 8v, —p.s. Ol = llu+ vl o + Ipllg.0 + sl + llcliq
< 2(lullf o +8%IVli2) + Pl + sl o + llellf o

< max{2, (1 + 28D} (lul} o + P13 .o + sl o + lell} o).

This concludes the proof. (]

LetV ; be the discontinuous RT/BDM space. Now we define the conforming space Vj, = vhﬂH(l) (£2).
Finally, we decompose the H(div)-conforming velocity approximation uniquely into #;, = uj+u;, where
uj € Vi anduy € (Vj, )1, and we note that u, =u, —u; €V,

LeEmMA 3.2 There holds
172

lwill, 7 = €| 22 Wi
KeT,
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Proof. It follows straightforwardly from the decomposition u;, = uj, + u;, and from the facet residual.
O

LEmMMA 3.3 If [lull; o < M, |Islloc < M and |[c|,, < M for sufficiently small M, then the following
estimate holds:

C
Slienereell= [ ¢=fo-vart [ fi-o-wpass [ fo-opart [ pw-vpa
2 2 2 2

+ K, (u;,,vy,)
1/2

— A;luh’ch) @y, Pps Sps sV = Vi @5 0 — O b — ) + (1+ O)C, Z l]’ﬁ( ’
KeTy,

where

e =u—-u, & :=p—p, =s5s—3, € :=c—c,

Moreover, v;,, ¢;, and v, denote in this case the Clément interpolations of v € H(l)(.Q), P, € H(l) (£2) and
¥, € H}(£2), respectively.
Proof. Using u;, = uj, + uj, e = u — uj, and the triangle inequality implies

1/2

.. e | < [l[(et.e”. €. e) | + [up ], 7, < Il (eloe” e[ +C [ D0 w5 )
KeTy,

where (e", e?, ¢%, e¢) € H)(2) x L3(22) x H}(£2) x H}(£2). Then, Theorem 3.1 gives

(et e) | = AL (et 2v..6.)

< AP (@ o e ey, q, h,0) + AMN (] 0,0,0;v, g, ¢, W)
1/2

S ./4;lelvz,ch)(eu’ep7 eS, eC;v, q, ¢, Iﬁ) + Cr Z lIIJzK ,
KeT,

with [[|(v, g, ¢, ¥)||| < 1. Owing to the relation

AN w,p,s, 39,6, 9) = A @, p, 5, ¢;v, 4,0, %) — a;(c;u,¥) + a; (e u,¥)

—ci(eu,v) — cy (s s,9) — cp (e, 9),
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we then have

1/2

clle. et e = cllet. e + ¢, | 3w
KeTy

< .A;,"’C)(u,p, $,63v,q, 0, %) —ay(c;u,v) + a (cpu,v) —c;(€“;5u,v) — c, ("5, 9)
1/2

—ey(@se ) — AN Wy psy v 0.0 + A+ OC, [ D Wl ]
KeTh

while using the properties

|ay(c;u,v) — aj(cpiuv)| < Cllle = cpll gl oIVl o < CMIE o,

ci(eu,y) < M|l 7, cyless, ) < CsMIIelly 7, ca(ese, ) < CuM el 7,

yields the bound

CH|(euvep7 es7 EC)||| = A](,lu,C) (u’P, s, 0,4, ¢7 ‘/f) - A](/luh,Ch) (uhaph’shach;v7 q, ¢7 lﬁ)
172

+A+OC | D Wi | — (€ +C+Cy+CoM||(e", ¢, e’ e) ||
KeT,

Moreover, we have

C C
E|||(eu’ep’ed’ec)||| SLf.v®+4fl¢w+éf2wﬁ_Al(fluh’Ch)(uh’ph’sh’Ch;V’q’¢’W)
1/2

+a+oc | 2| - (3.5)

KeTy,

and we readily see that after stating the discrete problem as
aff(ch;uh,vh) + cill(uh;uh,vh) + by, p,) — /th -v,dx =0 forallv, eV,
ay(sp, @) + oy sy, &) — /Qfl(ph dx=0 forallg, € M,,,
%az(ch, V) + oy, —vyescp ¥y) — /szwh dx=0 forally, € M,,

and employing (3.5), the sought results follow. ]
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LemMa 3.4 For (v,q,5,¢) € H{(22) x L}(2) x H}(22) x H\(£2), there are v;, € V,,, 5, € M, and
¢, € My, such that

/ (f—fh>~vdx+/fh-<v—vh>dx+/f1<¢—¢h>dx+/f2<w—wh>dx
22 22 2 2

— AN @, P Sy V=V @ S — s W — V) <C (FHIF—Frllo.0) 10, 05,0l

(3.6)

Proof. Using integration by parts gives

/(f—fh)-vdx+/fh~(v—vh)dx+/f1(¢—¢h)dx+/f2(w—wh)dx
2 2 2 2

— A @ D S €V = V@) — BV — Y) = Ty + - + T,
3.7

where we define the terms

1
T, = Z/ (fh—i—dlv(v(ch)Vuh)—uh Vuh——Vph) (v—vh)dx+/(f —f) - vdx,

KeTy

T, := Z/ ((—phI—v(ch)Vuh) )-(v—vh)dS,

KeTy

Iy := Z/K uy, -y (wy —uj) - (v = v,) dS,

KeTy in\I”

T, = Z/ (f1+ As), —u,, - Vsh) (¢ — ¢y,) dx + Z/ 5o Vo k(@ — ¢, dS,

KeTy, KeTy

Ty = Z/ (f2+—Ach (U, v,&°) - Vch) (Y —,) dx + Z/ —vCh n, (Y — ) dS.

KeTy KeTy

Applying the Cauchy—Schwarz inequality to 7 implies

1/2 172
Ty < | D hklIRglG« Do =wllik |+ W =FalogVloe
KeTy, KeTy
1/2
<[ D] mIRglGk | ClIVYloo + If —Fulloolvlloe-

KeTh
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Next, we rewrite T, in terms of a sum over interior facets and apply again the Cauchy—Schwarz inequality.
Then

I,= Z / I:[((Pm)_lphl - v(ch)Vuh)n]] (v —v,)dS

ec& ¢
1/2 1/2
2 -1 2
<> rIR,Ig, > My = w5,
eESh eeé'h
1/2
, _
<[ D rIR MG, | ClVllgge-
ec&y,

Therefore, owing to the Cauchy—Schwarz inequality, it follows that
1/2

ClVvlig.o-

7y < | 2 1[wdl.

ee&y

Proceeding in a similar fashion, we are able to establish the following bounds for 7, and T:

12 1727
Ty< || D mxlRikllog |+ [ D] RellR G, CIVoloq
KeTy, eck)y
1/2 127
Ts < || D0 mkllRokllog | + | D BllRy I, ClIVY llg.0-
KeTy, ec&y,

Finally, (3.6) results as a combination of the bounds derived for T, T, T3, T, and T, together with (3.7).
O

THEOREM 3.5 Let (u,p, s, c) be the unique solution to (3.1) and (u,, p,,, s;,, ;) a solution to (3.2). Let
¥ be the a posteriori error estimator defined in (3.4). If |lull; o, < M, |Islloc < M and [[c|, < M for
sufficiently small M, then the following estimate holds:

’H(u —Up, D — PpyS — Sy, € — Ch)|H < CW +If —fallo.g)
where C > 0 is a constant independent of &.

Proof. 1t suffices to apply Lemmas 3.3 and 3.4. (|

REMARK 3.6 Assume that the errors ||s — s, [l o and [|c — ¢, [l o converge with optimal rate O(h*+1/2).
Using the triangle inequality, we readily see that

If _fh”(),_Q < C(ls — Sh”(),_o + llc — Ch”o,g),
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where Cis a positive constant. Itis then clear that the term |[f —f, || ;, decays with optimal rate O(H+1/2y,
Furthermore, if the energy error |||-||| converges with optimal rate O(K"), then WF=f7ll 0.2 will be a higher-
order term. We remark that similar types of conditions are encountered, for instance, in the a posteriori
analysis for eigenvalue problems. See, e.g., Gedicke & Khan (2020, Lemma 5).

3.3 Efficiency

For each K € T, we can define the standard polynomial bubble function bg. Then, for any polynomial
function v on K, the following results hold:

1/2 —
I1bgvllox < Clvliox- Wllox < Cllbg*Vlio k- IV (x)llox < Ch'IVllo 4 (3.8)

where C is a positive constant, independent of K and v, see Verfiirth (1996, Section 3.4).

REMARK 3.7 Another assumption that is incorporated to simplify the presentation is that the viscosity
v(c) is polynomial. Note however, that we can still prove efficiency of the estimator without using such
a simplification. For this, it suffices to define v, : c € H LK) - v,(c) € P as

1 1
MOl = /K v(e) dx + [E /K (Vv(c»] - (x —xp) dr,

where x, is the centre of the element K with |x — xy| < hg. For more details, we refer to Dib et al.
(2019).

Lemma 3.8 Let (u,p,s,c) € H(l)(.Q) X L%(.Q) X Hé(Q) X Hé(Q) be the weak solution to (3.1). Then,
the following estimates hold, where C is a positive constant:

h[(”RK”(),K <C (||C - Ch||1,1( + [lu — ”h”l,K + llp _Ph”o,]{ + h[(”f _fh”o,](),
helRy gllox < C (s = splly g + llu —uylly g ).

hK“Rz,K”(),K =< C(”C - Ch||1,1( + |lu — "h”l,K)'

Moreover, it also follows that
Wy < Cf||@ = wpp = ppos = sy = )| -
Proof. For each K € T, we define W, = bxR. Then, using (3.8), we have
1 2 12y 112
G IRelR s = [0 Rl = [ Ry Wy v

1
= / (fh + div (v(ch)Vuh) — (uy, - Vu, — p—Vph) Wydx =T, +T,,
K

m
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where

1= [ ((006) = vl u+ v(@) V= ) : VW, = = (p = py) aiv W, ) a

m
K
T, = / (@ —up) - Vyu+ (u,- V)@ —up)) - W, dx.
K
Using the Cauchy—Schwarz inequality and (3.8), we obtain
T, <C (||C —cplly g + lluw —uylly x + lp — pyllox + Axllf _fh”o,K) hlzl IRk o5
Ty < Cylluw — uyly xhic IR llo -

and combining these bounds leads to the first stated result. The other two bounds follow similarly. [J

Let e denote an interior facet that is shared by two elements K and K'. Let w, be the patch that is the
union of K and K’. Next, we define the facet bubble function ¢, on e with the property that it is positive
in the interior of the patch w, and zero on the boundary of the patch. From Verfiirth (1996), the following
results hold:

gl < Clled*qlly. (3.92)
I.qlox < Ch Nl IV lox < Ch; Y *lgllg, — forallK € w,. (3.9b)

LeEmMA 3.9 The following estimates hold:

ho IR G, < C D (lw—wyll ¢ + lle = eyl ¢ + 2 = pullgx + B —Fulldx)-

Kew,

2 2 2
ho IRy M5 < € D7 (Il —wylif x + lls — 53,1 &)

Kew,

2 2 2
hellRylige < € D (Il —uyllii g + lle = ¢l x).

Kew,

Moreover, we also have

W2 <C O D (1@ =y p — pjos — spoc — Ik + HEIF —Fill5x)-
ecdK Kew,

Proof. Let e be an interior facet and let us define a rescaling of the facet bubble function in the form
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Using (3.9) gives
R, < C([(ow) ™ Pl = v(c)) V]|, 9,),

< C([[tow) ™' Pl = vep) Va, ]| = [(o) "' pL = v() Va]], B,), (3.10)

Using integration by parts on each element of patch w, implies

1
([ow) " ppl=v(c,) Var, ] ?,), = Z /K (div (v(cy) Vay,) — div (v(c) V) + p—V(p —ph)) -9, dx

Kew,

_|_/ (pi(p —p)I+v(c,)Vu, — v(c)Vu) : Vi, dx.
K

m

Note that (u, p, 5, ¢) solves the underlying problem, so we then have

1
([[(pm)*lphl—v(chwuh]],0e)e = Z /K (f+ div (v(c,)Vuy,) —u;, - Vuy, — p—Vph) ¥, dx

Kew,

+Z/(u-Vu—uh-Vuh)-ﬂedx
K

Kew,
+ Z/(ml—(v(c)—u(ch)) Vuh—v(c)V(u—uh)):Vz?edx
Kew, K Pm

Next, applying the Cauchy—Schwarz inequality together with Lemma 3.8 and (3.9) gives

1/2 1/2
Ty < € | D hkIRgligx + g If —fallox > 8,15«
Kew, Kew,
172
2
=¢ Z |||(” —Up,p— PpsS — S, € — Ch)m]( hi/ZHRe”o,e’
Kew,
12
T, <G| D lu—wullix] RZIR, o,
Kew,
172
2 1/2
T3 <Gy Z |||(" —Up, P = Pp>S — Sp, € — Ch)”|1< he/ IR llo.e-
Kew,

Combining the bounds of Ty, T, and T5 with (3.10) and (3.11) implies the first stated result. Similarly,
we can prove the other two bounds. g
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THEOREM 3.10 Let (u,p, s, c) be the unique solution to (3.1) and (u,, p;,, sp,, ;) a solution of problem
(3.2). Let ¥ be defined as in (3.4). Then, there exists a constant C > 0 that is independent of 4 such that

1/2
W < C||@—wpp—ppos —spe =l + | D mkIf —Fillix
KeTy
Proof. Combining Lemmas 3.8 and 3.9 implies the stated result. ([

4. A posteriori error bound for the semidiscrete method

Fort € (0,1,,4], let us consider the problem: find (&, p, ¢, 5) € H(])(.Q) X L%(.Q) X H(l) (£2) x H(l)(.Q) such
that

a, (¢, it,v) + ¢, (uy;@,v) + b, p) = (f,v)  forallv e H)(£2), (4.1a)
b(it,q) =0 for all ¢ € L3(£2), (4.1b)
ay (3, 9) + ¢y (33, 0) = (f;, ¢)  forall g € HA(82), (4.1¢c)
%az(ﬁ, V) + ¢y — vye e Y) = (fa)  forall € Hy(R2), (4.1d)
where
f=(as, + Beyg —ou;, € LX), f,=—0s,€L*(R2), f,=—0c,cl*2). (4.2)

The time derivatives of the semidiscrete velocity, salinity and concentration are considered on the right-
hand sides as in the so-called elliptic reconstruction approach from, e.g., Cangiani et al. (2014) and
Cangiani et al. (2020). Also, for each t € (0,1,,4], we write the discrete weak formulation: find
(@, Pys s 5) € COL(0, 13 Vi) X COO(0, 143 Q) X CO1(0, 193 My, 0) X €10, 143 M, ) such that

end>
a,(cy, uy,,v) + cy(uys iy, v) +b(v,p) = (f, v) forallv eV, (4.3a)
b(i,,q) =0 forallg € Q,, (4.3b)
ay(5p, @) + (w3 5y, ) = (fy, ¢) forall g € M, (4.3¢)
%az(Z‘h, V) + ey(uy, — v, 8, ) = () forally € M, q, (4.3d)

where (4.2) remains in effect.

REMARK 4.1 For given uy, s;, and c;,, the well-posedness of the continuous weak formulation (4.1) and
of the discrete weak formulation (4.3) follow from Biirger ez al. (2019), for each ¢ € (0, 7,41, and using
the data (4.2).

20z Jequieoaq €0 U0 1senb Aq L.EE09Y2/0ZSE/9/PF/PI0IE/RUlRWIWOD dNO"olWapEoR)/:SARY WO} POPEOJUMOQ



3550 R. BURGER ET AL.

REMARK 4.2 From (2.1), we have that (u;,p,,cy,s;) is also a discrete solution of (4.3) for each
t € (0,,4]- But, since the discrete weak formulation (4.3) is well-posed, we also conclude that
(iih’ﬁh’ Eh’ Eh) = (uh,ph,ch, Sh) foreacht e (O, tend]'

LEmMMA 4.3 Foreacht € (0,74

] and for all (v, g, ¢, ) € H)(£2) x L3(22) x H}(22) x H}(£2), we have

(0,64, ¥)+ ay(c, py,¥) + ¢ (W5 py, V) + b, p — P) = a;(cp, &, v) — a;(c,,v) — ¢ (ey; u, )+ — [, v)
for all v € H)(£2),
bu—it,q) =0 for all ¢ € L3(£2),
(3,65 ¢) + ar(py, ) + €2 (W5 py, ) = —C3(e,35,¢)  forall ¢ € Hy(2),

1
(a,ec, 1//) + ;az(,oc, ¥) +cy(u — Vpess Pes Y) = —cyle,;c,y) forally e H(l)(.Q),

wheree, =u —u,, e,=s—s,,e,=c—c,, py,=u—u,p,=s—sand p, =c—c.

Next, we introduce the semidiscrete error indicator ® as
2 2 2 2 fend 2 fend 2 2
0% = lle,Mllg.e + le.O)lIg.e + le; 05 o + / widr+ / Oy dr + max O3,  (4.4)
0 0 <t<

where

07 = X |l dlo,- 03 =3 he w5, -

ec&), ec&y

whereas ¥ is the global a posteriori error estimator for the steady problem with element and facet residual
contributions defined in (3.3). In this case, we now replace f and f|, f, by (4.2).

THEOREM 4.4 Let (u,p,s,c) and (uy, py, s, c;,) be the solutions to (1.2) and (4.3), respectively. Let @
be the a posteriori error estimator defined in (4.4). If u, s and c satisfy the bounds

el o0 (uengswio @)y < Mo ISl 0uepaizoy <M and leli oo gz <M. (4.5)
for sufficiently small M, then there exists C > 0, independent of /4, such that

1/2

1/2 Tend
(eall2 + lleg2 + llecl12) sC(@2+/0 nf—fhllﬁ,gdt) ,

l9,e, +V(p _ph)”LZ(O,tend;H’l(.Q)) + ”ates”Lz(O,tend;H’l(.Q)) + ”8tec”L2(0,tend;H*1(.Q))
172

tend
<C (@2+/0 W = fllg.c2 dr) :
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where we define

Tend

Tend
W12 = 110 0tz + / VIR 7, A 1013 = 110170 0002020 T /O 17 o dr.

The proof is detailed in Appendix D.

5. A posteriori error analysis for the fully discrete method

In this section, we develop an a posteriori error estimator for the fully discrete problem and focus the
presentation on the simpler case of a time discretization by the backward Euler method. For each time
step k (1 < k < N), we define the (global in space) time indicator & as

AL T PR || L | PR R el || 7S s [ PO

B =R A T

g = fkuslfz - SIZ

and I¥ is a generic data transfer operator, which depends on the specific implementation. For more details,
see Georgoulis et al. (2011).
Here it will be convenient to use the auxiliary norm

””]f(z”?’rhk = Z “Vh”hHOK + Z

Ke’ﬁ,k ee&,

Next we define the cumulative time and spatial error indicators as

N N
o35 1 Y AR ) + R AT, G
k=1 k=1

@
[r]

where the terms Tk2 are constructed with the a posteriori error estimator contributions defined as in the
steady case (3.3), but at a given time step k. That is,

12 (s P S ) = Tlgk + Tzk + Tjk’
with
2 2 k2 k|2 ko2
Ty = hi(|Rk o4 + 1R klox + [R5k [0 4)-

2 ke (REG, + IR o, + 1R o) 7= 20 n [Tt

ecdK ecoK

=
2
I
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>

1 1
Rk = ’——(ul}‘l - Ikufl_l) + pig +div(v(c,)Vu,) —u,, - Vu, — p—Vph}
K

m m

k k—1 1 —1
Sy —§ 1 > [ (Sc™Vs,) - fi e&EN\T,
RII,K ::{——h — h +—Ash—uh-Vsh] . Rl{e:: IZ[[( ¢ sh) n]] ore h\
K

T Sc 0 foree I',
k_ k-1
RéKzz —u—i—LAch—(uh—ve)-Vch ,
’ 7 7Sc Pz K

0 foree I'.

For each time step k, we can split again the H(div)-conforming discrete solution uﬁ into a conforming

part ”]};c and a nonconfoming part % such that u’h‘ = u";l,c + u];,’,. For each t € (t;_y, ], we introduce a
linear interpolant u,,(7) in terms of 7 as

th—t, . t—t
u,(t) = —kf Iku’,‘l Ty ku';l,

k Tk

where {;, [, |} is the standard linear interpolation basis defined on [#*, 1], Similarly, we may introduce
uy (1) and u;, (7). Then, setting e, =u —u;, ., we have e" =u —u;, = e —u, . Fort € (f_,.1),
we define

1 _
du=(r) = f—(uk —uf

k

)

and forall € (r,_;,1,), we consider the problem of finding (@&, 7*, 5, &) € H}(£2) x L3(2)x H}(2) x
H}(£2) such that

(8,u),(D,v) + a; (cp, @, v) + ¢ (wys@*,v) + b, p*) = (F,v)  forallv € H)(£2), (5.2a)
b ,q) =0 for all ¢ € L3(£2), (5.2b)

(3,50, 0) + ay G5, ) + 3 ()55, 0) = 0 for all ¢ € H}(£2), (5.2¢)

B,cp V) + %az(ék, ¥) + ¢y, —vye: ) =0 for all ¥ € H)(£2), (5.2d)

where f* = (ask + pck)g e L2(2).
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LEMMA 5.1 If u, s and c satisfy the bounds (4.5), then the following estimates hold:

1 u uc
Sl e [0, a3y +a [ a0l a3 lE6li,

17
gt /0 lec]? , dr

. | 1 1
<CE+ T+ 0%) + 2 e O + 510G + 51O ¢
1

k+1~k 2 798 2
(lu@) — 1, g0 — leF @)5.0)
1

n

N =

+

3
~
Il

(||8te’§ +Vp _ph)”Lz(tk,l,tk;H’l(Q)) + ” 8tesf ”Lz(tk_l,tk;H*l(.Q)) + ” Bteg ”Lz(tk_l,tk;H*l(.Q)) )

k=1

1 1
< CE@ + 72400 + 5 [0 o+ 5 [0+ 5 15O,

1

(JJuczo) _Ik+luthOS2 He';"(tn)%ﬂ),
1

n

+

1 —
i

where ©2 = 37_, [* tk F - fk||og dr.
The proof is postponed to Appendix E.

THEOREM 5.2 Let (u,p,s,c) be the solution of (1.2), and (u,py, s, c;,) the corresponding discrete
solution. Let =, 1" be the a posteriori error estimators defined in (5.1). If u, s and c satisfy the bounds
(4.5), then the following reliability estimate holds:

fend 2 c2 512 12
(L7 T+ 1 o+ et o Do)

1/2

1 N—1
SC(E2+TZ+5|>ezf<o>n39 SO g5 14O g+, ~14+! hrnmcﬂ) :
k=1

N
Z (” atel; +Vip _ph) ||L2(tk_,,tk;H*1(.Q)) + ” at"’sf “Lz(tk_l,tk;H*I(.Q)) + ” 3te§ ”Lz(tk_],tk;H*l(.Q)))
k=1

N—1 1/2
—~ Loyow o2 Ly 2 1 2
= C("Z"'Tz‘*‘z “"1; (O)“o,.(z‘*'i Hebf(o)”o,.o‘*j l€%(0) ”0,9‘*‘2 ”“hr_lk+1 p ”0 (z"'@z) :

Proof. Using uj = uj .+ uj . along with the identity in Georgoulis ez al. (2011, (5.59)~(5.60)) that in
our context reads

et =1 G = et @0l o = Juh, = 1wk, [ o + (uh, — 1w e ),

we can invoke Lemma 5.1 and reuse the strategy applied in Theorem 4.4 to complete the proof. (]
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6. Numerical tests

We now present computational examples illustrating the properties of the numerical schemes. All
numerical routines have been realized using the open-source finite element libraries FEniCS (Alnes
et al., 2015) (for examples 1, 2 and 3), and FreeFem++ (Hecht, 2012) (for example 4).

6.1 Example 1: accuracy verification against smooth solutions

A known analytical solution example is used to verify theoretical convergence rates of the scheme,
focusing on the polynomial degree k = 2. We choose 7.,y = 2 and £2 = (0, 1)2. We take the parameter
values v = exp(—c), p = p(as+ Bc),a =1, =1, p, =158 = 0,-DT, Sc=1,7 = 0.5,
v, = 1, ay = 50. Following the approach of manufactured solutions, we prescribe boundary data and
additional external forces and adequate source terms so that the closed-form solutions to (1.1) are given
by the smooth functions

(sin(7rx))?(sin(ry))? cos(rry) sin(r)

— A A
“(x’y’t)_( —1/3 sin(27x) (sin(ry))? sin(r) ) PGy, 1) = (" =y sin(®),

1 1
c(x,y,1) = 5(1 + cos(mw/4(xy))) exp(—1), s(x,y,1) = 5(1 + sin(wr /2(xy))) exp(—1).

As u is prescribed everywhere on 952, for sake of uniqueness, we impose p € L%(.Q) through a real
Lagrange multiplier approach. To verify the a priori error estimates, we introduce the discrete norms

1/2 1/2

N
and lxlllox := (Arz | Hi,g)

n=1

N
lulllg 7, = (ArZ [t ||?,Th)
n=1

The corresponding individual errors and convergence rates are computed as

eu=llu—wlloz: e =Illp=rilloo: e =lls=sulllos: ec=lle=culll,-

rate = log(e(,/2.)llog(& /&) 7", & = {n, A}, (6.1)

where e, e denote errors generated on two consecutive pairs of mesh size and time step (A, A7), and
(h, Ar), respectively. Choosing At = +/2h and using scheme (2.5), the results in Table 1 confirm that the
rates of convergence are optimal, coinciding with the theoretical bounds anticipated in Theorem 2.10.

6.2  Example 2: adaptive mesh refinement for the stationary problem

The classical strategy due to Dorfler (1994) is employed for the adaptive algorithm based on the steps
of solving, estimating, marking and refining. Estimation is performed by computing the error indicators
and using them to select/mark elements that contribute the most to the error (Larson et al., 2008). The
marking is done following the bulk criterion of selecting sufficiently many elements so that they represent
a given fraction of the total estimated error. That is, one refines all elements K € 7, for which

Vi = Vinio MAX ¥,
K ratloLe’ﬁ, L
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TABLE 1 Example 1. Experimental errors and convergence rates for the approximate solutionswy, p;, s;,
and c;,, where the polynomial degree k = 2 is used. The £°°-norm of the vector formed by the divergence
of the discrete velocity computed at time t,,; for each discretization is shown in the last column

1/h ey rate e, rate e, rate e, rate Hdivuh HOO’_Q

V2 1.3970 - 5.0910 - 0.03723 - 0.02511 - 2.19e—11
242 05651 1306 1.9920 1.354 0.01098 1.762 0.00679  1.887 4.08e—12
42 01719 1717 0.6402 1.637 0.00298 1.882 0.00171  1.990 1.00e—12
842 00456 1914 0.1695 1917 0.00080 1.904 0.00046 1.903 5.20e—13
16v/2 00115 1994 0.0412 2.039 0.00021 1941 0.00012 1.962 2.23e—13

where 0 < y,,4, < 1 is a user-defined constant (that we tune in order to generate a similar number of
degrees of freedom, or comparable errors, as those obtained under uniform refinement). The algorithm
aims for equidistribution of the local error indicator on the updated mesh.

In the adaptive case, instead of (6.1), the convergence rates (for the spatial errors) are computed as

rate = —2log(e,/¢,)[log(DoF/DoF)] ™!,

where DoF and DoF are the number of degrees of freedom associated with each refinement level. The
robustness of the global estimators is measured using the effectivity index (ratio between the total error
and the indicator)

{2 +e2+er+e2)?

v

We start with verifying the robustness of the a posteriori error estimator ¥ and construct closed-
form solutions to the stationary counterpart of the coupled problem (1.1). We consider concentration-
dependent viscosity, model parameter values and stabilization constant as

efE(W) =

1
v(c):E(1+exp(—l/4c)), o=1, p,=15 g=(@©0,-1", Sc=1,

=05 v,=1 «=05 B=05 gqgy=5

The considered exact solutions are defined on the L-shaped domain £2 = (—1,1)%\ (0, 1)?

2 + sin(xy)
(x —0.02)2 + (y — 0.02)2°

cos(mx) sin(wy)
— sin(wx) cos(y)

u(x,y) = ( ) , px,y) =

s(x,y) = exp(—=150(x — 0.01)> — 150(y — 0.01)?), c(x,y) = %) + 25((xc_os()(71[;2) jin((yjij)o 2y’

These solutions exhibit a generic singularity towards the reentrant corner, and therefore one expects
that the error decay is suboptimal when applying uniform mesh refinement. After solving the coupled
stationary problem on sequences of uniformly and adaptively refined meshes and using the lowest-order
scheme with k = 1, the aforementioned behaviour is indeed observed in Table 2, where the first part of
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TABLE 2 Example 2. Experimental errors and convergence rates for the approximate solutions w,, p;,
s;, and c;, of the stationary problem under uniform and adaptive mesh refinement following the estimator
W, using the lowest-order scheme with k = 1. For the adaptive case, we employ y,,;, = 1 -107*

DoF h e

uw Trate e, rate e; rate e, rate ||divuh||oo’9 eff(¥) iter

Error history under uniform mesh refinement

79 1 26.85 - 2840 - 1.829 - 13724 - 2.22e—12  0.329 5
275 0.5 19.57 0.396 152.9 0.893 1.736 0.075 0.9903 0.499 3.65¢e—13  0.257 7
1027 0.25 29.59 —0.622 86.54 0.821 1.188 0.547 0.7004 0.441 1.07e—13 0.111 6
3971 0.125 12.53 0.924 72.47 0.256 0.642 0.886 0.4834 0.535 3.21e—14 0.104 7
15619 0.0625 7.561 0.805 53.41 0.440 0.457 0.491 0.2863 0.756 3.39e—14  0.171 7
Error history under adaptive mesh refinement
79 1 26.85 - 2840 - 2829 - 13724 - 2.22e—12  0.329 4
275 0.5 15.92 0.824 154.8 0.973 1.725 0.937 0.9617 0.573 3.67e—13 0.261 3
943 0.5 10.78 1.172 90.23 0.878 0.822 0.863 0.6793 1.064 2.18¢e—13  0.260 4
1601 0.5 7.398 2.499 7435 0.732 0.641 1.428 0.4398 1.642 2.28e—13 0.261 4
2363 0.5 2.139 2.265 53.35 1.706 0.461 1.569 0.2683 2.539 2.15e—13  0.257 3
4253 0.2877 3.420 1.394 29.41 2.027 0.235 2.295 0.1541 1.888 1.05e—13  0.258 4
11662 0.25 1.012 1.267 17.58 1.019 0.118 1.368 0.0873 1.126 1.07e—13  0.258 5
38174 0.1416 0.557 1.006 9.388 1.058 0.059 1.156 0.0464 1.063 9.0le—13  0.261 4

the table shows deterioration of the convergence due to the high gradients of the exact solutions on the
nonconvex domain. The results shown in the bottom block of the table confirm that as more degrees of
freedom are added, a restored error reduction rate is observed due to adaptive mesh refinement guided by
the a posteriori error estimator ¥. The second-last column of the table also indicates that the effectivity
index oscillates under uniform refinement, while it is much more steady in the adaptive case. We tabulate
as well the Newton—Raphson iteration count (needed to reach the relative residual tolerance of 1e-6),
and this number is also systematically smaller for the adaptive case (about four steps in all instances)
than for the uniform refinement case (up to seven nonlinear steps for certain refinement levels). As an
example, we plot in Fig. 1 solutions on relative coarse meshes and display meshes generated with the
adaptive algorithm, indicating significant refinement near the reentrant corner. Let us also remark that the
boundary conditions for velocity have been imposed (here and in all other tests) essentially for the normal
component, while the tangent component is fixed through Nitsche’s penalization. For this example, we
use a constant dyjepe = 10°.

6.3  Example 3: robustness of the estimator for the transient problem

Next, we turn to the numerical verification of robustness of the a posteriori error estimator for the fully
discrete approximations of the time-dependent coupled problem. We consider now the time interval
(0,0.01] and choose At = 0.002. The closed-form solutions on the unit square domain are as follows:

cos(mx) sin(y)
— sin(x) cos(ry)

u(x,y,?) = sin(?) ( ) . pxy, 1) = cos(t)(x* —yh),

1 1
c(x,y, 1) = 5(1 + cos(mw/4(xy))) exp(—=1), s(x,y,1) = 5(1 + sin(w /2(xy))) exp(—1).
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1.7e+03
1.1e+01 1000

500
7.91 200

- =100
-5.27 =50
|uh (:L‘,y)| i Dy (x,y) 20

E2.64 Em
J 5
4.3e-02

g 1.3e+00

9.2¢-01 E8.2e—01
Eo.71 H0.6
2048 ) “0.384
sy (2,y) 2 \ e, (w,y) -
t0-24 ‘ 0.168
2.9e-02 ﬁ -4.86-02

FiG. 1. Example 2. Approximate velocity magnitude (after 3 refinement steps), pressure (after 4 refinement steps), concentration
s (after 5 refinement steps) and distribution of ¢ after 6 steps of adaptive refinement.

Cumulative errors up to #5,,, are computed as

N 12 N 12
E,:=| At> Juj —u@) ||f77’ . E, =4t o —p@ ||(2m ’
n=1 n=1
y 12 N 12
E =AY |sp— st ||T_Q o Eo=\ Ay |- C(ln)“ig ’
n=1 n=1

and the resulting error history, after six steps of uniform mesh refinement, is collected in Table 3. Here
we have used the lowest-order scheme with k£ = 1. To be consistent with the development in Section 5,
the numerical verification in this set of tests was carried out using a backward Euler time discretization.
The a posteriori error estimator (5.1) is computed and the effectivity index is also tabulated, showing
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TABLE 3 Example 3. Experimental errors and convergence rates for the approximate solutions of the
transient problem under uniform mesh refinement following the estimator T, and using the lowest-order
scheme with k = 1

DoF h E, rate E, rate E; rate E, rate eff(7)
59 0.7071 0.00228 0.02080 0.01811 0.00711 0.0859

195 0.3536 0.00081 1.504 0.01191 0.843 0.00989 0.872 0.00303 1.227 0.0970
707 0.1768 0.00034 1.217 0.00621 0.940 0.00486 1.025 0.00149 1.022 0.0973
2691 0.0884 0.00015 1.119 0.00313 0.984 0.00241 1.009 0.00074 1.008 0.0967
10499  0.0442 7.70e-05 1.053 0.00157 0.996 0.00120 1.004 0.00031 1.003 0.0961
41475 0.0221 3.78e-05 1.025 0.00078 0.999 0.00060 1.002 0.00018 1.001 0.0972
164867 0.0110 1.87e-05 1.012 0.00039 0.999 0.00030 1.001 9.26e-05 1.000 0.0966

1.3e-06 4.066.0e8.0e-1.0 1.4e+00

o
- — '\\/,.——* - '*\\l

-7.6e+02 -4.0e20e+20.0 2.9e+02

Pn (w,y) e

0.0e+00 4.0e-6.0e-1 1.0e+00

Sh (xvy) | ﬁ - Ch ($,y)

-1.7e-05 4.0e-6.0e-1 1.0e+00
|

FiG. 2. Example 4. Samples of adapted meshes at times t = 60, 1200 (top panels), and approximate solutions shown at time
t = 1500 (bottom rows), and computed with a method using k = 2.
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that the estimator is robust (and confirming the theoretical reliability bound as well as giving a heuristic
indication of its efficiency). Note that in this case, since the mesh refinement is uniform, the auxiliary
interpolation of the solutions at the last time step on the current mesh is not necessary. The average
number of Newton—Raphson iterations required for convergence was 3.2.

6.4 Example 4: adaptive simulation of exothermic flows

To conclude this section, and to include an illustrative simulation exemplifying that the H(div)-
conforming scheme along with the a posteriori error estimator perform well for an applicative problem,
we address the computation of exothermic flows that develop fingering instabilities. The problem
configuration is adapted as a simplification of the problem solved in Lenarda et al. (2017) (see also
Lee & Kim, 2015; Ruiz-Baier & Lunati, 2016), where the fields c, s represent solutal concentration
and temperature, respectively. The model assumes an additional drag term due to porosity so that
the momentum equation is of Navier—Stokes—Brinkman type. The domain is the rectangular region
2 = (0,L) x (0,H), and the initial solutal and temperature profiles are imposed as

0 otherwise, 0 otherwise,

Oy [0.999 +0001,, H—esysHo o [0.999 +0.001¢, ifH—e<y<H,
where ¢, ¢, are random fields uniformly distributed on [0, 1]. The geometric and model constants are
H = 1000, L = 2000, At = 20, 1,4 = 1500,v = 1+0.25¢,,k =1,1/Sc =8, 1/(zSc) = 2.5, p,, = 1,
v, =0,a =5, B = —1. The polynomial degree for this example is k = 2.

Boundary conditions are of mixed type for solutal and temperature distribution. Both fields are
prescribed to 0 and 1 on the bottom and top of the domain, respectively; while on the vertical walls,
we impose zero-flux boundary conditions. The velocity is of slip type on the whole boundary, and
therefore a zero-mean condition for the pressure is considered using a real Lagrange multiplier. The
solution algorithm, differently from the previous tests, is based on an inner fixed-point iteration between
an Oseen and a transport system, rather than an exact Newton—Raphson method. An initial coarse mesh
of 5300 elements is constructed, and an adaptive mesh refinement (only one iteration) guided by the
estimator (5.1) is applied at the end of each time step, and the algorithm does allow for mesh coarsening.
Figure 2 shows snapshots of adapted meshes at different times and also samples of solute concentration,
temperature distribution, velocity and pressure at the final time.
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Appendix A. Proof of Theorem 2.6

Proof of Theorem 2.6. As in the continuous case, using the discrete kernel (2.6) and relying on the
inf-sup condition (2.13), we can continue with an equivalent discrete problem without pressure.

Taking into account the assumed regularity for u, u’ and u”, we have for all x, and y (x) € (0, 1) such
that

1
u(0) = u(A7) — And' (A1) + E[At]zu”(Aty),
then u satisfies the error equation

Jupw —

62100 + Adalal; 7 + AtlEd o) up < (T u(AD = u(An) +u) —u(0).5)
+ At(d} (ch: T, u(An, £)) — dl (' u(An. &)))
— At(ct(ujsu), &) =l (u(An;u(an, &)
+ At(F(sh b £1) — F(s(AD, c(A), £))),

which results after choosing &) as test function in the first equation of the reduced form of Lemma
2.5 and system (2.1), performing a Euler scheme step, subtracting both equations and adding
:I:afl‘ (c}l; I, u(At), E&). Now, invoking the approximation estimates (2.18), Young’s inequality and the
stability properties, we get
Ly 112 | 12 2% 2 2 2
&loe+ g adl& ) 7 + A&l iy = P A(IuADIE ) o+ 10O IF o+ Ie(ADIE, 1 0)
% )
4 2 ip 12
+ ClA1] ”uN ”LOO(O,tend;Lz(Q)) + & At“Ec ”19
a
212 212
+ A & [ g + A& o-
(A.1)
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Next, we choose ’g‘sl as test function in (2.19¢) and system (2.1); we follow the same steps as before,
adding to the sum of both equations the term +a,(Z, s', £!) to obtain

1 1
218100 + 54, E! ] o = CAR (Im(ADIE, ) @ + Is(ADIE,1 0 + IsO)F 1 o)

2

4c
crant Is” ||L°°(O g l2@) T 3 At ”S||L°°(0 fena:H' (82)) | ”1 T

(A.2)

In the same way, choosing s} as test function in (2.19d) and in (2.1), we arrive at

< CAt* (I[u(An) 7110 + 1Dy 0 + IOz 10 +vp)

1 )
JE Lo + 5,

4
HL°°(0 fend;L2(£2)) + == At ||c”LOO(O fend:H' (2)) Hé ”1 N
(A.3)

+ crant ||’

Now, from (A.1), we deduce that

2 2
L1p

16 4C? 4C2
A&l 7, = co + ran’) + Ael] o + A= |El ] + Al g o (A
a

a

We insert the previous identity into (A.3) and consider M and At sufficiently small such that the terms
multiplying ||é§c ||f o can be absorbed into the left-hand side of the inequality, to get

1 1
76 l5e + g4, &l o < Clo + ran®) + Az—!ls s (A5)

Substituting this result back into (A.4) and then into (A.2), get us the second estimate. The first estimate
follows by directly substituting (A.5) into (A.1). O

Appendix B. Proof of Theorem 2.7

Proof of Theorem 2.7. We appeal to the reduced form of the problem again, taking solutions living in
the discrete and continuous kernels, u, € X;, and u € X. Then we choose as test function v, = £*! in
the first equation of (2.5) and insert the terms

I (D“(tn+1)>§3+l)g I (o, “(fn+1)"§3+1)9
2At ’ 2At

h( n+l. n+1
s :l:al(ch s I, ), &y )Q

Hence, we get

1 1 1 1 1
B (e &) o (DE"+ it g n (Du(t,, . &0) g +ah( ntl, gl n+1)
At 2Af 2Af ! uwooeu

+al(ch+l Ihyu(t, ), 5”“) "‘Cl(“ZJrl “ZH lrlH_l) ZF(SZH’CZH’ 3+1)~

(B.1)
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We consider (2.19a) (see Lemma 2.5)att =1, ; andv = SS’“. Inserting the term +(Du(z, ), El’l""l)g/
(2Art), we readily deduce the identity

(Du(t,y ), 607) Lo
2At

+dl (" hu,), 87 4 (ult,y s ult,, ), 60 = F(s(,p1), ety ), &07Y).
(B.2)

We can then subtract (B.2) from (B.1) and multiply both sides by 4A¢, yielding I} +1, +--- +1; =0,
with

Il (D§n+] llil+l)g’ —4Ata1( n+l n+l’ l:H*l)Q’

w’N

= 4 At (u (tn+1) ! Du(thrl) EU+1) >
2

I = Z(DEn+1’53+1)Q, I = 4At(a}11(cn+1;un+l’sn+l) a}f(chH m, sy 53+1)),
= 44r(c (u(t,, iu(,, ). E1) — it g,
= AAUF(s(tyy 1), ety ) EIFY) — F(siHL L g

For the first term, using (2.14), we can assert that

~o>

= lat g + 1280 —&llog + 1485 o0 — 88160 — 1260 — &7 o 0
Using the ellipticity stated in (2.10), we readily get
b = 400 6 |2
On the other hand, Taylor’s formula with integral remainder allows us to write

1 (A2, 4
u'(t,, ) — 2_AtD“(’n+1) = ﬁ ““( )HLZ(tn—l,zn+l;L2(:z))’

and then, by combining Cauchy—Schwarz and Young’s inequality, we obtain the bound

[an?

Ate
I < 24, H @ “L2 (ti—1tar 1312 (£2)) +— HénH”

LTn*

Now we insert £4 AtEy(t, ) into the fourth term, which leads to

/ n+1 DE”+1 n+1
Iy = _4At(Eu(tn+1)’$u ) (E (tn+1) A » &y ) .
2

Proceeding as before, and using (2.18) on the first term of I, we get

C Ate 2
1] < hzk ” HL°°(O,tend;Hk(Q)) + = HSnH ”177,

[An*C

Ate
253 H @ ||L2 (Ostenas L2 (£2)) + _3”51’11+] ”?

T
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Again, we insert +a(Z, ¢ u(t,, ), &01!) and xal(c)* u(tn+1), £8F1). Then, by virtue of (2.18),
(2.9), Lemma 2.1 and Young’s inequality, we 1mmed1ately have

M2C* At 8C2. M?

8C2 ok 2 &4 n+1 Lip At n+1 2
e e 0 gt sy + 5 A& ||1,Th+—|| e

L1p
5| <
€4

8C2C* At

e &
]l PP el e 0 ity + 5 AE 17

Adding and subtracting suitable terms within /¢ yields

Ig = 4A1(c] (U(ty4 )30, ), 50) — €] (wGp)s Ty w60
+ (Wt ) T uy L g0t — (T, ud, s w0t

1 1. !
+ (M ut, s Myw L gty — e (ot up gt

+Cl(uh+l Hh n+1’$lrll+l) cql(uerl uz+l’%.lrll+1)).

We can bound from below the last term using (2.11a). In addition, we define
Ig = 4A1(c} (u(ty i )sulty ), 80) = o] (WG ), T w6
+ (i, ), T L) = (T, ). Ty w60
+ My at,y ), Tyu gn ) — Mt gt ).
The bounds (2.12) and (2.18) imply that

7B

| < 4AiC, (||u(tn+1)||17h|| gt o + | 1T, uc

ES gl

h h

1 00l )

2CH*C? €71 il |2
=" e 2T | gn+1
54Ar( ol L PRSI M I

2k 2
wm*ce? 2

8_8 n+1
£g “u”L"o(O,l‘end;Hl(Q)) o 0 w2 T g & ”LTh

2k
<aar (2L, e o T2
= e L2 (Outena:HT1 (62)) 171 L (0.1ena:H' (€2)

&7 || en+1
S lat iy + e ||u||Lm(O,dHl(m) S

€ ¥
e g+ CCMIE )
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where C* is a positive constant coming from (2.18). We also have

2c2 20?2
|17|<4At( (18 e+ 15 0) + 5 (16 o + 1877 5 0)

& 2 &
S0+ 1 )
2¢;
< 4At( o (||5n+1 ”o:z + C I N @ Hk+'(fz))
2C?
+s_f (”"35+1 lo.0 ++C** ”C”Lw(o,tcnd;Hk“(9)2))
10

& &
1R+ S )

Hence, by choosing ¢; = 3a,/5 fori = 1,..., 10, collecting the above estimates and summing over
l<n<mforallm+1 <N, we get

m
e I + 1280+ — &l + 2 1480150 = 3l

n=1

" 2CL1 2 At
+ > A, gt} + Zm|g{;+1| vt oy < CULALTH + 1) | oM G dt

Z &+ g

where
~ ~ 2 .
M < min fx_“, Ve, /a, = 16M~CLip2 - aa(xa‘
4C.C* 4C1;,V2 a, 2
Finally, Theorem 2.6 yields the assertion of the theorem. U

Appendix C. Proof of Theorem 2.8

Proof of Theorem 2.8. Proceeding similarly as for Theorem 2.7, we choose as test function ¢, = ES”‘H
in the second equation of (2.5) and insert suitable additional terms to obtain the following identity
(analogous to (B.1)):

(D%-nJrl’ %-nJrl) (DE"+1, i_—n+l)
_ K 2A; 2 s ZA; 2 _az(gg}’l-Fl,é:;’l-i-l) +

(Ds(t, .60
2At (C.1)

+(12(Ih S(tn+1),€;l+1) +c ( Z-‘rl SZ+1,§;1+1) 0.
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From (2.19b), focusing on ¢ = ¢, |, using ¢ = g1 and proceeding as in the derivation of (B.2), we
obtain

(Ds(ty), &)
2At

L (S,(th) Ds(t,,1) én+1) ‘ (C.2)
2

= + aZ(S(tn+l)’ é;l-H) + C2(u(tn+l); s(tn+l)’ 5;1+1)

2At

Next, we subtract (C.2) from (C.1) and multiply both sides by 4 A¢. This yields 1 (++ 26 = 0, where

jl = Z(Dgsnﬂ’fswrl)

5 Ds(t
Q° 12 = 4Ata (é:l’l+l %-n+l) 13 — AAL (S/(ln_'_l) _ S( n.l,_[) §n+1) ’
2

2At $

I, := Z(DE','H,E?—H)Q’ Is :=4Am2(E§l+1"§sn+l)’

Is = 44t (cy (s i 8 — ey (it )i s, ) E07)).

For 1 s 12 and 13, we use (2.14), (1.5b) and Taylor expansion along with Young’s inequality, respectively,
to obtain

5 2 2 2 2 12
=6 oo + 267" = &'l o + 46 o o = 186700 — 1267 = & 00
5 . 2 [At] Ats
L = 48, |5 1 oo 1l < ||S(3) 22601 a2y + 516 e
Inserting +4 AtE(t,, ;) into 1, and using (2.18) leads to the bound
A C 2 Ate 2 [Af*C Ats
gl < 2—82h2k 5 Vi ouaitircany + 5216 g + 263 s 122 o semizziry + 5 g I

Employing again (2.18) in combination with (1.3a), we have

8C Ats4 ||§

ol S

In order to derive a bound for }6, we proceed as for the bound on /5 in the proof of Theorem 2.7; namely,

IIs| <

2k
h ” ”Loo(()tnd Hk-H(_Q)) + —

adding and subtracting suitable terms in the definition of }6’ defining 76 in this case by
16 — 16 + 48 6‘2( n+1$n+l,§xn+l)’

and applying (2.11b), (2.8) (2.18) and Young’s inequality to the result, we get

. 2C2C
| §4At(—5||s::+1 15 75 1507 0 i 20y + o ||%‘ e

21K C2C? 5 €6 1lon
e 6 || en+1
+ & ||u||L°°(0,tend;H1(Q)) ”S”LOO(O,tend;Hk“(Q)) + ] & ”19

2h2k62c*2 5
+————|uf

2 &7 1 ent1)2
&7 L2 (0,tena ;s H 1 (£2)) ”S||L°°(O,tend;H1(Q)) + 3 ||§s ”19)
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In this manner, and after choosing ¢; = 6 o/7fori=1,...,7, we can collect the above estimates and
sumover 1 <n <m,forallm+ 1 <N, to get

m m
&7 fog + 126" — 87150 + 2148 o + 2 Ard |6 [ o = 318 15

n=1 n=1

4 4 12k S 12 28C;C* 2
n+ . C
< CAAT + W+ par Y |6 |1, where y, = 25 1912 0t (20)

n=1 a

And this step concludes the proof. 0

Appendix D. Proof of Theorem 4.4

Proof of Theorem 4.4. Choosingv =e;,,q=p —p, ¢ = e, and Y = e, in Lemma 4.3 gives
(3 5) + (60 Py €5) + €1 (15 900 ) = ay et ) =y (e ) = (e ) + —F )
(06, €,) + ay(pg. ) + ¢y (s py, e) = —cy(e,3 5, ¢)),

1 -
(d,e.e.)+ —(pese) T U—vyei pee) = —¢p(eyi s ep)-
Moreover, there also holds

(060 65) + 1 (e )y (1550 5) = (3t )t e ) — (e €5) 1 076
+ay (c,05.¢;) +c; (u;65,¢5) + (f —frnes) .

(8tes’ es) + a (es’ es) + ) (u; €5 es) =0 (eu; 3‘, es) + a (Hs’ es) + C2(u; gs’ es)’

1 - 1
(8tec, ec) +;a2(ec, e.)+c,(u — Vpess e e.) = —cy(e,;c,e.) + ;az(Gc, e.) + cy(u — Vpess 0.,e),

where 0, = & — uj. Using the Cauchy—Schwarz inequality, we have

d, . : X . .
i llog +eulealis < (@16l 7 + Ml 5) el 7 0 = Fullog il

+CoMle g el 7 + CM e H?’ﬁ, + 19,2y,

0,92 ”ei ||o,.(2’

d
2 ~ 2 '
Slellbg + @l o = (Callesll o + Miluy, 1y 73) leglh g + CsMlleyll g el o

d
2 ~ 2 -
d_t”ec”(),.o +a,lleli e < (Collblly o +Mluy,, Il o) lel e + CiMlle.ll; o lew ng
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Let us now suppose that E. := |leg (Tl = el oo 0,1:22 (52))> for some T, € [0,,,4]. Then using
Poincaré—Friedrichs’s inequality, Young’s inequality and then combining the three equations implies

d 2 2 d 2 2 d 2 2
3 leuloo+leulliz +3 leclog + Nl + S leloe + llesli o
2
<C (H@ﬁ 17+ 16,015 o +1011T o+ 19,5, 115 +M||uh,r||%,Th+|tf—f,,||%,g)-

Integrating with respect to t on [0, 7,41 and [0, T}] yields

leG )2+ lleeI2 + lleg? < [5O3 o + e (O3 ¢ + lle, O3 ¢

Tend
2
+C ( /0 (legl 7, + 16,0 ¢ + 1613 ) e+ /0

fend fend
+M/ |Iuh,,||i771 dt+/ WV = fullg2 dt)v
0 0

Tend 5
10,1, 15,2 dt

and we moreover have

leg 12+ llecll+ llegll? < lle, (0115, + lle (0I5 o + lleg (5.

fend
tc (/0 (1613 7+ 16,13 o +16.113 ) dr+ /0

Tend
+/O f = £4ll5. dt), (D.1)

Tend 5 2
11y, 13 2 di-+ a2

and as a result we can combine Theorem 3.5 and (D.1) to readily obtain the first stated result.
On the other hand, integrating by parts in Lemma 4.3 yields

(8teu + V(p _ph)7v) = —a; (C’ pu’v) —C (u;puvv) - b(v’ph _ﬁ) + a (Ch’ ﬁ’v)_’_(f _fh’v)

—ay(c,u,v) —c(e,;u,v) forallv e H(l)(.Q),
(365, 9) = —ay (g ) — (U3 g §) — C3(e,35.¢)  forall g € HY(£2),

1
(3,60 %) = —;az(pc, ¥) — ¢y —v,e.; o ) — cy(e,: T )  forall r € Hy(2).

We apply Young’s inequality and the definition of the dual norm. Then, we integrate in time the resulting
expression. Finally, the second result is a consequence of Theorem 3.5 and (D.1). U
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Appendix E. Proof of Lemma 5.1
Proof of Lemma 5.1. Combining (1.2) and (5.2) implies

(9, (e’rf),v)+a1(c,u—ftk,v) + ¢; @, u—i*,v) + b, p—pk)
+a,(c,il*,v) — a,(c,, @, v) e (@—u,, 7", v)—(f —f,v) =0 forallv e H)(£2), (E.1a)

bu—i*,q) =0 forallge L3(2), (E.1b)
(3,620, ) — as(s — §,¢) + ey (s — . ¢) = ¢ (u—u 5 ¢) forall ¢ € H(2), (E.lc)
[ 4 ’ 2 ’ 2\ 4 2 h»° > 0 ) -
c 1 ~k . ~k .~k 1
(€5 v) = —ar(c =& 9) + 5 (u —vesc—¢ ,w) = ¢, (u —u, ¢ ,w) for all ¥ € HL(£2).
(E.1d)
Moreover, we have
(9,€%.v)+ay (c.ef,v)+c| (u.ef,v) +bv,p - = @ty ,..v) — aj (c, i*,v) +a, (ch,ﬁk,v)

—cy(u—upu*v) —a (e, — i v)
— ¢y (w. ity — @*,v)+(f —f5. ),
b(e%,q) =0,
(3,3 (1).¢) — ay (€. 8) + 3 (w6} ) = e (u — w35, ¢) — ay(s, — 5. 9)
+ oy (s s, — 55, 9),

C 1 C c ~
(Ohee¥) = —ap (€ V) + o u —vyessef, ¥) = cpfu = u: 8, )

1 - ~
G F ) +ey(w—veic, — L y).

. _  Uc _ _ k s _c . .
Choosing v = €3, g = p — p", ¢ = ez, ¥ = e and then combining the first two equations, we have

+oy (e —wyuef) +ay ey, — 5 €5) + oy (i, — i, €5)—(F —fF.e5) = 0,

(3he3.€1) +ay (€.€3) + ¢ (i€t e) — ea(u —wy: 5. 3) + ay(s, — 5. e}) — o (s, — 5 0,
.. 1 .. .. e ke
(a,e;,e;) + ;az (e‘f,e‘f) + cz(u - vpez;e‘f,e‘f) — cz(u — uh;ck,e‘f) + ;az(ch - ck,e‘f

—c,(u—vye;c, —Ek,e§ =0.
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These identities readily allow us to derive the bounds

1y g2

24 1 o + %

2 o < (Win, o + Mllc = cylly g + (1 + 20 sy, — ], o)
+M ”egr ”?.Q +“f_fk||0,9 ”e'rfc “0,9’

1d 2

sl g +aulesll o = (Miu—wll g + 005 =3, o) et o

e P Ly (P P IR ) ) O |

And owing to Young’s inequality, we obtain

o lelg Loty el T e el + 5 l€lie +eaallele
=G (Hfthc — 3+ s =5 o + lew = 2[5 o + 18,4, 18 2+ —F4113.)
=2C, (liye — 17, + sy = 5213 0 + lleg — 110
iy =+ 52 = g + 20 = 120) + €0 (10, B 0+ — 1R ).
(E2)
where C; = max{ 2(14+2M)%, 5 (1 + M2 5 (1 +M)2} = ¢ M—2M2 a, = &,/2 and

_ & 3M?
a; =3¢ 5—- Moreover, we have

1 uc Uc
e g e [ Il g a3 Il g +as [ a0l a3l o
ray [l ga
<1 e 2 . tk ~ ~k\ 12 N
= 5l g r2i (X [ {1 @ =+t e o
k=1 -

Tk
i Z/ {||,~,hc — gl g+ [sh =57 o + ey — Efll%,.(z} df)

k=17 k=1

1nfl 5
5 3 (Juo — 1413 — e} )

k=1

n

+C Z (/ { 18,4y, 113 o + If —f"llé,g] dt).
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In light of the definition of u;, s; and c;, we get

2 2 2
[ (19 =+ 1962 = )+ V(e = )13 )
k—1

=5 (IV@ = a DBy + IV =S DR +IVE = F Do) €3

Then we can apply triangle inequality, which gives
~ k_ k=12 k_ k—=1p2 k_ k—1)2
7 (I =R g+ 15 = ST+ I - R )
2, = k k|2 k_ k|2 k_ k|2
=12+ 5 (Jut —af ]+ |5 = k1 o+ [* =kl T )

T (it P Pl Pl 17 IR

Combining the results with Theorem 3.5 implies that

Ly, 2 u
Ll g e [Tl ars el e [ Il @ ) el

17 5
ray [ el o

1
<CE>+T72+60%) + = ||e"C(0) oo + || 050 + 5 1€:@ o
.
5 2 (lu) =1 = 16l o) -
k=1

It is then possible to apply integration by parts in (E.1a), which yields
(8te'§+V(p—ph),v) = —a,(c,u — ik vy — cy(wu— ik vy — b(v,ph —[71‘)
—a (c — ch,ﬁk,v) - (u — uh,ﬁk,v)—f—(f —fk,v) forallv € H(l)(.Q),
(9,€3(1), ) = ay(s — §,0) — cr(uss — 55, ) + ey (u— u,; 55, ?) for all ¢ € H)(£2),

(BeT,W)——az(c ) —cy(u—vyec— )ty (u—uy; &, y) forall y € Hy(£2).

Next, we invoke Young’s inequality and the definition of the dual norm. Then, we integrate the whole
expression in time between #;,_; and ¢, foreachk = 1,2, ..., n and sum the expression for each k. Finally,
it suffices to use (E.2), (E.3), (E.4) and (E.5) to establish the second bound in the Lemma. O

20z Jequieoaq €0 U0 1senb Aq L.EE09Y2/0ZSE/9/PF/PI0IE/RUlRWIWOD dNO"olWapEoR)/:SARY WO} POPEOJUMOQ



	 Divergence-conforming methods for transient double-diffusive flows: a priori and a posteriori error analysis
	 1.Introduction and problem formulation
	 2.Finite element discretization and a priori error bounds
	 3.A posteriori error estimation for the stationary double-diffusive flow problem
	 4.A posteriori error bound for the semidiscrete method
	 5.A posteriori error analysis for the fully discrete method
	 6.Numerical tests


