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Abstract
The results of a recent extension of the analysis of an𝐇(div)-conforming method
for a model of double-diffusive flow in porous media introduced in [Bürger,
Méndez, Ruiz-Baier, SINUM (2019), 57:1318–1343] to the time-dependent case are
summarized. These include the efficiency and reliability of residual-based a pos-
teriori error estimators for the steady, semi-discrete, and fully discrete problems.
The method consists of Brezzi–Douglas–Marini approximations for velocity and
compatible piecewise discontinuous pressures, whereas Lagrangian elements
are used for concentration and salinity. Novel numerical tests confirm the accu-
racy of the method and illustrate its application to a salinity-driven problem of
sedimentation.

1 INTRODUCTION AND PROBLEM FORMULATION

1.1 Scope

We are interested in numerical schemes for coupled equations that model the sedimentation of small particles under the
effect of salinity of the fluid. The governing model (e.g., [14, 26]) of coupled incompressible flow and double-diffusion
transport is

𝜕𝑡𝒖 + 𝒖 ⋅ 𝛁𝒖 = 𝐝𝐢𝐯
(
𝜈(𝑐)𝛁𝒖

)
− (1∕𝜌m)∇𝑝 + (𝜌∕𝜌m)𝒈, div 𝒖 = 0, (1.1a)

𝜕𝑡𝑠 + 𝒖 ⋅ ∇𝑠 = (1∕Sc)Δ𝑠, 𝜕𝑡𝑐 + (𝒖 − 𝑣p𝒆𝑧) ⋅ ∇𝑐 = (1∕(𝜏Sc))Δ𝑐, (1.1b)
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posed on a spatial domainΩ ⊂ ℝ𝑑, 𝑑 = 2 or 𝑑 = 3, where 𝑡 ∈ (0, 𝑡end] is time,𝒖 is the fluid velocity, 𝜈 is the concentration-
dependent viscosity, 𝜌m is the mean density of the fluid, 𝑝 is the fluid pressure, 𝜌 is density, 𝒈 is the gravity acceleration,
𝑠 is the salinity concentration, and 𝑐 is the concentration of solid particles. The Schmidt number Sc = 𝜈ref ∕𝜅s is assumed
relatively small, for example, Sc = (10). Finally, 𝜅s is the diffusivity of salinity, 𝜈ref is a reference viscosity in the absence
of solid particles, 𝜏 = 𝜅s∕𝜅c, where 𝜅c is the diffusivity of solid particles, and 𝒆𝑧 is the upward-pointing unit vector. A
linearized equation of state 𝜌 = 𝜌m(𝛼𝑠 + 𝛽𝑐) is assumed. The particles are assumed to settle at a constant dimensionless
velocity 𝑣p.

Recent finite element and related schemes for double-diffusive flows include refs. [6, 8, 13, 16, 17, 24, 28]. The solvabil-
ity analysis for the continuous and discrete problems usually follows energy and fixed-point arguments; this is also the
approach of ref. [12]. The discretization in space uses an interior penalty divergence-conforming method for the flow equa-
tions (here, Brezzi–Douglas–Marini (BDM) elements of degree 𝑘 ≥ 1 for 𝒖 and discontinuous elements of degree 𝑘 − 1

for 𝑝, cf. [7, 22]), combined with Lagrangian elements for 𝑠 and 𝑐. This treatment extends that of ref. [13] to the transient
case. The proposed method also features exactly divergence-free velocity approximations ensuring local conservativity
and energy stability, and the error estimates of velocity are pressure-robust. The chosen time discretization is the back-
ward differentiation formula of degree 2 (BDF2), which for 𝑘 = 2 gives a method of order 2 in space and time. Existence
of discrete solutions follows by a fixed-point argument (cf. [13]), and the error analysis adapted from refs. [2, 8]. We herein
summarize the analysis of ref. [12] and present two new numerical examples, namely one accuracy test and a simulation
of salinity-driven sedimentation.

For salinity-driven sedimentation many flow features (e.g., plumes) are clustered near high gradients of concentra-
tion [14, 24]. This motivates adaptive mesh refinement guided by a posteriori error indicators [17, 25]. Most literature
on residual-based a posteriori error estimators for flow-transport couplings is focused on the stationary case (e.g. [1,
3–5, 18, 27]). None of the (few) analyzes for the time-dependent case (e.g. [9, 10, 23]) applies to divergence-conforming
approximations to (1.1).

The a posteriori error analysis we advance here is of residual type. The approach hinges on a decomposition of the
discrete solution into a conforming and a non-conforming contribution, along with a reconstruction technique. The error
analysis is divided into three parts. In the first part, we present the error estimator for the steady coupled problem. In
second part, we extend the a posteriori error estimation to the semi-discrete method, and finally we present the a posteriori
error estimator for the unsteady coupled problem. For the sake of simplicity, we restrict the latter analysis to the backward
Euler method.

1.2 Preliminaries, additional assumptions, and weak formulation

Let Ω be an open and bounded domain in ℝ𝑑, 𝑑 = 2, 3 with Lipschitz boundary Γ = 𝜕Ω. We denote by 𝐿𝑝(Ω)

and 𝑊𝑟,𝑝(Ω) the usual Lebesgue and Sobolev spaces, write 𝐻𝑟(Ω) = 𝑊𝑟,2(Ω), and denote the corresponding norm
by ‖ ⋅ ‖𝑟,Ω (‖ ⋅ ‖0,Ω for 𝐻0(Ω) = 𝐿2(Ω)). The space 𝐿20(Ω) denotes the restriction of 𝐿2(Ω) to functions with zero
mean value over Ω. For 𝑟 ≥ 0, we write the 𝐻𝑟-seminorm as | ⋅ |𝑟,Ω and denote by (⋅, ⋅)Ω the usual inner product in
𝐿2(Ω). Spaces of vector-valued functions are denoted in bold face, that is, 𝑯𝑟(Ω) = [𝐻𝑟(Ω)]

𝑑, and we use the vector-
valued Hilbert spaces 𝑯(div;Ω) ∶= {𝒘 ∈ 𝑳2(Ω) ∶ div 𝒘 ∈ 𝐿2(Ω)}, 𝑯0(div;Ω) ∶= {𝒘 ∈ 𝑯(div;Ω) ∶ 𝒘 ⋅ 𝒏𝜕Ω = 0 on 𝜕Ω}

and 𝑯0(div
0;Ω) ∶= {𝒘 ∈ 𝑯0(div;Ω) ∶ div 𝒘 = 0 in Ω}, where 𝒏𝜕Ω is the outward normal on 𝜕Ω. We endow these spaces

with the norm ‖𝒘‖2
div,Ω

∶= ‖𝒘‖2
0,Ω

+ ‖ div 𝒘‖2
0,Ω

. We denote by 𝐿𝑠(0, 𝑡end;𝑊𝑚,𝑝(Ω)) the Banach space of all 𝐿𝑠-integrable
functions from [0, 𝑡end] into 𝑊𝑚,𝑝(Ω).

As in, for example [18], we assume that viscosity is a Lipschitz continuous and uniformly bounded function of 𝑐.
For simplicity of presentation we restrict the weak form to the homogeneous Dirichlet boundary conditions 𝒖 = 𝟎, 𝑠 =

0, and 𝑐 = 0 on 𝜕Ω. Furthermore, we define the spaces 𝑽𝑡 ∶= {𝒘 ∈ 𝑳2(0, 𝑡end;𝑯
1
0(Ω)) ∶ 𝜕𝑡𝒘 ∈ 𝐿2(0, 𝑡end𝑳

2(Ω))}, 𝑄𝑡 ∶=

𝐿2(0, 𝑡end; 𝐿
2
0(Ω)), and 𝑀𝑡 ∶= {𝑠 ∈ 𝐿2(0, 𝑡end;𝐻

1
0(Ω)) ∶ 𝜕𝑡𝑠 ∈ 𝐿2(0, 𝑡end; 𝐿

2(Ω))}. For ease of presentation we furthermore
assume that velocity, pressure, concentration and salinity solutions belong to𝑽𝑡,𝑄𝑡,𝑀𝑡, and𝑀𝑡, respectively. Testing each
equation in (1.1) against suitable functions and integrating by parts gives the followingweak formulation: Find (𝒖, 𝑝, 𝑠, 𝑐) ∈
𝑽𝑡 × 𝑄𝑡 × 𝑀𝑡 × 𝑀𝑡 such that 𝒖(⋅, 0) = 𝒖0 ∈ 𝑯0(div

0;Ω), 𝑠(⋅, 0) = 0, 𝑐(⋅, 0) = 0 in Ω and

(𝜕𝑡𝒖, 𝒗)Ω + 𝑎1(𝑐; 𝒖, 𝒗) + 𝑐1(𝒖; 𝒖, 𝒗) + 𝑏(𝒗, 𝑝) = 𝐹(𝑠, 𝑐, 𝒗) ∀𝒗 ∈ 𝑯1
0(Ω), 𝑏(𝒖, 𝑞) = 0 ∀𝑞 ∈ 𝐿20(Ω),

(𝜕𝑡𝑠, 𝜑)Ω + 𝑎2(𝑠, 𝜑) + 𝑐2(𝒖; 𝑠, 𝜑) = 0, (𝜕𝑡𝑐, 𝜓)Ω +
1

𝜏
𝑎2(𝑐, 𝜓) + 𝑐2(𝒖 − 𝑣p𝒆𝑧; 𝑐, 𝜓) = 0 ∀𝜑, 𝜓 ∈ 𝐻1

0(Ω)
(1.2)
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for a.e. 𝑡 ∈ [0, 𝑡end], where for all 𝒖, 𝒗,𝒘 ∈ 𝑯1
0(Ω), 𝑞 ∈ 𝐿20(Ω), and 𝜑, 𝜓 ∈ 𝐻1

0(Ω), the variational forms are defined as

𝑎1(𝑐; 𝒖, 𝒗) ∶=
(
𝜈(𝑐)𝛁𝒖,𝛁𝒗

)
Ω
, 𝑐1(𝒘; 𝒖, 𝒗) ∶=

(
(𝒘 ⋅ 𝛁)𝒖, 𝒗

)
Ω
, 𝐹(𝑠, 𝑐, 𝒗)∶=

(
(𝛼𝑠 + 𝛽𝑐)𝒈, 𝒗

)
Ω
,

𝑏(𝒗, 𝑞) ∶= −(1∕𝜌m)(𝑞, div 𝒗)Ω, 𝑎2(𝜑, 𝜓) ∶= (1∕Sc)(∇𝜑,∇𝜓)Ω, 𝑐2(𝒗; 𝜑, 𝜓) ∶=
(
(𝒗 ⋅ ∇)𝜑, 𝜓

)
Ω
.

(1.3)

1.3 Stability of the continuous problem

The variational forms (1.3) are continuous for all 𝒖, 𝒗, ∈ 𝑯1
0(Ω), 𝑞 ∈ 𝐿20(Ω), and 𝜑, 𝜓 ∈ 𝐻1

0(Ω), that is, there exist con-
stants 𝐶𝑎 and 𝐶̂𝑎 such that |𝑎1(⋅, 𝒖, 𝒗)| ≤ 𝐶𝑎‖𝒖‖1,Ω‖𝒗‖1,Ω, |𝑎2(𝜑, 𝜓)| ≤ 𝐶̂𝑎‖𝜑‖1,Ω‖𝜓‖1,Ω and similar estimates for 𝑏, 𝑐1,
and 𝑐2. The Poincaré–Friedrichs inequality ‖𝜑‖0,Ω ≤ 𝐶𝑝|𝜑|1,Ω for all 𝜑 ∈ 𝐻1

0(Ω) implies the coercivity of 𝑎2 and also,
for a fixed concentration, that of 𝑎1. By the characterization of the kernel of 𝑏(⋅, ⋅), we can write 𝑿 ∶= {𝒗 ∈ 𝑯1

0(Ω) ∶

𝑏(𝒗, 𝑞) = 0 ∀𝑞 ∈ 𝐿20(Ω)} = {𝒗 ∈ 𝑯1
0(Ω) ∶ div 𝒗 = 0 in Ω}, and an integration by parts reveals that 𝑐1(𝒘; 𝒗, 𝒗) = 0 and

𝑐2(𝒘; 𝜑, 𝜑) = 0 for all 𝒘 ∈ 𝑿, 𝒗 ∈ 𝑯1(Ω), 𝜑 ∈ 𝐻1(Ω). It is well known that the bilinear form 𝑏(⋅, ⋅) satisfies the inf-sup
condition

sup
𝒗∈𝑯1

0
(Ω)∖{𝟎}

𝑏(𝒗, 𝑞)‖𝒗‖1,Ω ≥ 𝜁‖𝑞‖0,Ω for all 𝑞 ∈ 𝐿20(Ω).

For 𝒗 ∈ 𝑾1,∞(Ω) and 𝜑 ∈ 𝑊1,∞(Ω), one can show that there exists a constant 𝐶∞ > 0 with ‖𝒗‖1,Ω ≤ 𝐶∞‖𝒗‖𝑾1,∞(Ω) and‖𝜑‖1,Ω ≤ 𝐶∞‖𝜑‖𝑊1,∞(Ω). The previous results imply the following lemma (see [12, Lemma 1.1]).

Lemma 1.1 (Stability). If 𝒈 ∈ 𝐿∞(0, 𝑡end; 𝑳
∞(Ω)), 𝒖0 ∈ 𝑳2(Ω) and 𝑠0, 𝑐0 ∈ 𝐿2(Ω), then, for any solution 𝒖, 𝑠, 𝑐 of (1.2) and

for 𝑡 ∈ (0, 𝑡end], there exists a constant 𝛾 > 0 such that

‖𝒖‖𝐿2(0,𝑡;𝑯1(Ω)) + ‖𝑠‖𝐿2(0,𝑡;𝐻1(Ω)) + ‖𝑐‖𝐿2(0,𝑡;𝐻1(Ω)) ≤ 𝛾
(‖𝒖0‖0,Ω + ‖𝑠0‖0,Ω + ‖𝑐0‖0,Ω),

where 𝛾 might depend on 𝜂1, 𝜏, Sc, 𝜌, 𝜌m, 𝐶𝑝, ‖𝒈‖∞,Ω, 𝛼, 𝛽, and 𝑡.

2 FINITE ELEMENT DISCRETIZATION AND A PRIORI ERROR BOUNDS

2.1 Preliminaries and Galerkin method

We discretize Ω ⊂ ℝ𝑑 by a family ℎ of regular partitions into simplices 𝐾 (triangles in 2D or tetrahedra in 3D) of diame-
ter ℎ𝐾 . We label by 𝐾− and 𝐾+ the two elements adjacent to a facet 𝑒 (an edge in 2D or a face in 3D), while ℎ𝑒 stands for
the maximum diameter of 𝑒. Let ℎ denote the set of all facets and ℎ =  𝑖

ℎ
∪ 𝜕

ℎ
where  𝑖

ℎ
and 𝜕

ℎ
are the subset of inte-

rior facets and boundary facets, respectively. If 𝒗 and 𝑤 are smooth vector and scalar fields defined on ℎ, then (𝒗±,𝑤±)
denote the traces of (𝒗,𝑤) on 𝑒 that are the extensions from the interior of 𝐾+ and 𝐾−, respectively. Let 𝒏+𝑒 , 𝒏−𝑒 be the
outward unit normal vectors on the boundaries of two neighboring elements,𝐾+ and𝐾−, sharing 𝑒. We also use the nota-
tion (𝒘𝑒 ⋅ 𝒏𝑒)|𝑒 = (𝒘+ ⋅ 𝒏+𝑒 )|𝑒, {{𝒗}} ∶= (𝒗− + 𝒗+)∕2, {{𝑤}} ∶= (𝑤− + 𝑤+)∕2, [[𝒗]] ∶= (𝒗− − 𝒗+), and [[𝑤]] ∶= (𝑤− − 𝑤+). For
boundary jumps and averages, {{𝒗}} = [[𝒗]] = 𝒗 and {{𝑤}} = [[𝑤]] = 𝑤. Finally, ∇ℎ denotes the broken gradient operator.

For 𝑘 ≥ 1 and a mesh ℎ on Ω, let us consider the finite-dimensional discrete spaces (see e.g. [11])

𝑽ℎ ∶=
{
𝒗ℎ ∈ 𝑯(div;Ω) ∶ 𝒗ℎ|𝐾 ∈ [𝑘(𝐾)]

d ∀𝐾 ∈ ℎ; 𝒗ℎ ⋅ 𝒏𝜕Ω = 0 on 𝜕Ω
}
,

𝑽𝑡
ℎ
∶=

{
𝒗ℎ ∈ 𝑳2(0, 𝑡end; 𝑽ℎ) ∶ 𝜕𝑡𝒗ℎ ∈ 𝑳2(0, 𝑡end; 𝑽ℎ)

}
,

ℎ ∶=
{
𝑞ℎ ∈ 𝐿20(Ω) ∶ 𝑞ℎ|𝐾 ∈ 𝑘−1(𝐾) ∀𝐾 ∈ ℎ}, 𝑡

ℎ
∶= 𝐿2(0, 𝑡end;ℎ),

ℎ ∶=
{
𝑠ℎ ∈ 𝐶(Ω̄) ∶ 𝑠ℎ|𝐾 ∈ 𝑘(𝐾) ∀𝐾 ∈ ℎ}, ℎ,0 ∶= ℎ ∩ 𝐻1

0(Ω),

𝑡
ℎ,0

∶=
{
𝑠ℎ ∈ 𝐿2(0, 𝑡end;ℎ,0) ∶ 𝜕𝑡𝑠ℎ ∈ 𝐿2(0, 𝑡end;ℎ,0)

}
,
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which, in particular, satisfy div 𝑽ℎ ⊂ ℎ (cf. [22]). Here 𝑘(𝐾) denotes the local space spanned by polynomials of degree
up to 𝑘 and𝑽ℎ is the space of divergence-conforming BDM elements. Associated with these spaces, we state the following
semi-discrete Galerkin formulation for problem (1.2): Find (𝒖ℎ, 𝑝ℎ, 𝑠ℎ, 𝑐ℎ) ∈ 𝑽𝑡

ℎ
×𝑡

ℎ
×𝑡

ℎ,0
×𝑡

ℎ,0
such that

(𝜕𝑡𝒖ℎ, 𝒗ℎ)Ω + 𝑎ℎ1 (𝑐ℎ; 𝒖ℎ, 𝒗ℎ) + 𝑐ℎ1 (𝒖ℎ; 𝒖ℎ, 𝒗ℎ) + 𝑏(𝒗ℎ, 𝑝ℎ) = 𝐹(𝑠ℎ, 𝑐ℎ, 𝒗ℎ) ∀𝒗ℎ ∈ 𝑽ℎ,

𝑏(𝒖ℎ, 𝑞ℎ) = 0 ∀𝑞ℎ ∈ ℎ, (𝜕𝑡𝑠ℎ, 𝜑ℎ)Ω + 𝑎2(𝑠ℎ, 𝜑ℎ) + 𝑐2(𝒖ℎ; 𝑠ℎ, 𝜑ℎ) = 0 ∀𝜑ℎ ∈ ℎ,0,

(𝜕𝑡𝑐ℎ, 𝜓ℎ)Ω + (1∕𝜏)𝑎2(𝑐ℎ, 𝜓ℎ) + 𝑐2(𝒖ℎ − 𝑣p𝒆𝑧; 𝑐ℎ, 𝜓ℎ) = 0 ∀𝜓ℎ ∈ ℎ,0.

(2.1)

The discrete versions of the variational forms 𝑎ℎ1 (⋅; ⋅, ⋅) and 𝑐ℎ1 (⋅; ⋅, ⋅) are defined using a symmetric interior penalty and an
upwind approach, respectively (see, e.g., [7, 22]), where 𝑎0 > 0 is a jump penalization parameter:

𝑎ℎ1 (𝑐ℎ; 𝒖ℎ, 𝒗ℎ) ∶= ∫
Ω

𝜈(𝑐ℎ)𝛁ℎ(𝒖ℎ) ∶ 𝛁ℎ(𝒗ℎ) d𝒙 +
∑
𝑒∈ℎ ∫𝑒

(
−{{𝜈(𝑐ℎ)𝛁ℎ(𝒖ℎ)𝒏𝑒}} ⋅ [[𝒗ℎ]]

− {{𝜈(𝑐ℎ)𝛁ℎ(𝒗ℎ)𝒏𝑒}} ⋅ [[𝒖ℎ]] +
𝑎0
ℎ𝑒
𝜈(𝑐ℎ)[[𝒖ℎ]] ⋅ [[𝒗ℎ]]

)
d𝑆, (2.2)

𝑐ℎ1 (𝒘ℎ; 𝒖ℎ, 𝒗ℎ) ∶= ∫
Ω

(𝒘ℎ ⋅ ∇)𝒖ℎ ⋅ 𝒗ℎ d𝒙 +
∑
𝑒∈ 𝑖

ℎ

∫
𝑒

(
(𝒘𝑒 ⋅ 𝒏𝑒)[[𝒖ℎ]] ⋅ {{𝒗ℎ}} +

1

2
|𝒘𝑒 ⋅ 𝒏𝑒|[[𝒖ℎ]] ⋅ [[𝒗ℎ]])d𝑆.

We partition the interval [0, 𝑡end] into𝑁 subintervals [𝑡𝑛−1, 𝑡𝑛] of length Δ𝑡. We use the implicit BDF2 scheme where all
first-order time derivatives are approximated using the centered operator

𝜕𝑡𝒖ℎ(𝑡
𝑛+1) ≈ (1∕(2Δ𝑡))𝒖𝑛+1

ℎ
, where 𝑦𝑛+1 ∶= 3𝑦𝑛+1 − 4𝑦𝑛 + 𝑦𝑛−1, (2.3)

and for the first time step a first-order backwardEulermethod is used (not detailed here; see [12, Section 2.2]). The resulting
set of nonlinear equations is solved by an iterative Newton–Raphson method with exact Jacobian. Hence for 1 ≤ 𝑛 ≤
𝑁 − 1, the complete discrete system is given by

1

3

(𝒖𝑛+1
ℎ

, 𝒗ℎ
)
Ω
=

2

3
Δ𝑡

(
−𝑎ℎ1 (𝑐

𝑛+1
ℎ

; 𝒖𝑛+1
ℎ

, 𝒗ℎ) − 𝑐ℎ1 (𝒖
𝑛+1
ℎ

; 𝒖𝑛+1
ℎ

, 𝒗ℎ) − 𝑏(𝒗ℎ, 𝑝
𝑛+1
ℎ

) + 𝐹(𝑠𝑛+1
ℎ

, 𝑐𝑛+1
ℎ

, 𝒗ℎ)
)

∀𝒗ℎ ∈ 𝑽ℎ,

𝑏(𝒖𝑛+1
ℎ

, 𝑞ℎ) = 0 ∀𝑞ℎ ∈ ℎ,

1

3

(𝑠𝑛+1
ℎ

, 𝜑ℎ
)
Ω
=

2

3
Δ𝑡

(
−𝑎2(𝑠

𝑛+1
ℎ

, 𝜑ℎ) − 𝑐2(𝒖
𝑛+1
ℎ

; 𝑠𝑛+1
ℎ

, 𝜑ℎ)
)

∀𝜑ℎ ∈ ℎ,0,

1

3

(𝑐𝑛+1
ℎ

, 𝜓ℎ
)
Ω
=

2

3
Δ𝑡

(
−
1

𝜏
𝑎2(𝑐

𝑛+1
ℎ

, 𝜓ℎ) − 𝑐2(𝒖
𝑛+1
ℎ

− 𝑣p𝒆𝑧; 𝑐
𝑛+1
ℎ

, 𝜓ℎ)

)
∀𝜓ℎ ∈ ℎ,0.

(2.4)

2.2 Properties of the discrete problem

We introduce for 𝑟 ≥ 0 the broken𝑯𝑟 space𝑯𝑟(ℎ) ∶= {𝒗 ∈ 𝑳2(Ω) ∶ 𝒗|𝐾 ∈ 𝑯𝑟(𝐾), 𝐾 ∈ ℎ} aswell as themesh-dependent
broken norms

‖𝒗‖2
∗,ℎ ∶=

∑
𝐾∈ℎ

‖𝛁ℎ(𝒗)‖2𝑳2(𝐾) + ∑
𝑒∈ℎ

1

ℎ𝑒
‖[[𝒗]]‖2

𝑳2(𝑒)
,

‖𝒗‖2
1,ℎ ∶= ‖𝒗‖2

𝑳2(Ω)
+ ‖𝒗‖2

∗,ℎ ∀𝒗 ∈ 𝑯1(ℎ), ‖𝒗‖2
2,ℎ ∶= ‖𝒗‖2

1,ℎ +
∑
𝐾∈ℎ

ℎ2𝐾|𝒗|2𝐻2(𝐾)
∀𝒗 ∈ 𝑯2(ℎ),
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BÜRGER et al. 5 of 12

where the stronger norm ‖ ⋅ ‖2,ℎ is used to show continuity. From the inverse estimate |𝒘|2,𝐾 ≤ 𝐶ℎ−1𝐾 |𝒘|1,𝐾 for all𝐾 ∈ ℎ,
𝒘 ∈ [𝑘(𝐾)]

𝑑 it can be seen that this norm is equivalent to ‖ ⋅ ‖1,ℎ on 𝑽ℎ (cf. [7]). Finally, adapting the argument of
[21, Proposition 4.5], we get the following version of the discrete Sobolev embedding: for 𝑟 = 2, 4 there exists a constant
𝐶emb > 0 with

‖𝒗‖𝑳𝑟(Ω) ≤ 𝐶emb‖𝒗‖1,ℎ ∀𝒗 ∈ 𝑯1(ℎ). (2.5)

With these norms, we can prove continuity of the trilinear and bilinear forms of the variational formulation, see [7,
Section 4].

Lemma 2.1. The following properties hold: |𝑎ℎ1 (⋅, 𝒖, 𝒗)| ≤ 𝐶‖𝒖‖2,ℎ‖𝒗‖1,ℎ for all 𝒖 ∈ 𝑯2(ℎ), 𝒗 ∈ 𝑽ℎ, |𝑎ℎ1 (⋅, 𝒖, 𝒗)| ≤
𝐶̃𝑎‖𝒖‖1,ℎ‖𝒗‖1,ℎ for all 𝒖, 𝒗 ∈ 𝑽ℎ, and |𝑏(𝒗, 𝑞)| ≤ 𝐶̃𝑏‖𝒗‖1,ℎ‖𝑞‖0,Ω for all 𝒗 ∈ 𝑯1(ℎ), 𝑞 ∈ 𝐿2(Ω). Moreover, for all 𝒘 ∈

𝑯1(ℎ) and 𝜑, 𝜓 ∈ 𝐻1(Ω), there holds |𝑐2(𝒘; 𝜑, 𝜓)| ≤ 𝐶̃‖𝒘‖1,ℎ‖𝜑‖1,Ω‖𝜓‖1,Ω.
Moreover, for 𝛾1, 𝛾2 ∈ 𝐻1(Ω), 𝒖 ∈ 𝑪1(ℎ) ∩ 𝑯1

0(Ω) and 𝒗 ∈ 𝑽ℎ, there holds

|𝑎ℎ1 (𝛾1; 𝒖, 𝒗) − 𝑎ℎ1 (𝛾2; 𝒖, 𝒗)| ≤ 𝐶̃Lip‖𝛾1 − 𝛾2‖1,Ω‖𝒖‖𝑾1,∞(ℎ)‖𝒗‖1,ℎ , (2.6)

where the constant 𝐶̃Lip > 0 is independent of ℎ (cf. [13]).
Let 𝒘 ∈ 𝑯0(div

0
;Ω) and let us introduce the jump seminorm

|𝒖ℎ|𝒘,upw ∶=
∑
𝑒∈ 𝑖

ℎ

∫
𝑒

1

2
|𝒘𝑒 ⋅ 𝒏𝑒||[[𝒖ℎ]]|2 d𝑆.

Then, due to the skew-symmetric form of the operators 𝑐ℎ1 and 𝑐2, and the positivity of the nonlinear upwind term of 𝑐ℎ1 ,
𝑐ℎ1 (𝒘; 𝒖ℎ, 𝒖ℎ) = |𝒖ℎ|2𝒘,upw ≥ 0 for all 𝒖ℎ ∈ 𝑽ℎ and 𝑐2(𝒘; 𝜓ℎ, 𝜓ℎ) = 0 for all 𝜓ℎ ∈ ℎ. Moreover, we have the following
relation, which is based on (2.5) and follows by the same method as in ref. [21]: for any 𝒘1,𝒘2, 𝒖 ∈ 𝑯2(ℎ) there holds

|𝑐ℎ1 (𝒘1; 𝒖, 𝒗)| − |𝑐ℎ1 (𝒘2; 𝒖, 𝒗)| ≤ 𝐶̃𝑐‖𝒘1 − 𝒘2‖1,ℎ‖𝒗‖1,ℎ‖𝒖‖1,ℎ ∀𝒗 ∈ 𝑽ℎ. (2.7)

We also have 𝐹(𝜓, 𝜙, 𝒗) ≤ 𝐶𝑓(‖𝜓‖0,Ω + ‖𝜙‖0,Ω)‖𝒗‖0,Ω for all 𝒗 ∈ 𝑽ℎ.
Finally, we recall from ref. [22] the following discrete inf-sup condition for 𝑏(⋅, ⋅), where 𝜁 is independent of ℎ:

sup
𝒗ℎ∈𝑽ℎ∖{𝟎}

𝑏(𝒗ℎ, 𝑞ℎ)‖𝒗ℎ‖1,ℎ ≥ 𝜁‖𝑞ℎ‖0,Ω ∀𝑞ℎ ∈ ℎ. (2.8)

2.3 Stability and solvability (existence of a discrete solution)

Applying the previous estimates we may prove the following theorem (see ref. [12] for details).

Theorem 2.2. If (𝒖𝑛+1
ℎ

, 𝑝𝑛+1
ℎ

, 𝑠𝑛+1
ℎ

, 𝑐𝑛+1
ℎ

) ∈ 𝑽ℎ ×ℎ × (ℎ,0)
2 is a solution of (2.4) with initial data (𝒖1

ℎ
, 𝑠1
ℎ
, 𝑐1

ℎ
) and

(𝒖0
ℎ
, 𝑠0
ℎ
, 𝑐0

ℎ
), then the following bounds (plus an analogous inequality for 𝑐ℎ) hold, where 𝐶1, 𝐶2 are independent of ℎ and Δ𝑡:

‖𝒖𝑛+1
ℎ

‖2
0,Ω

+ ‖2𝒖𝑛+1
ℎ

− 𝒖𝑛
ℎ
‖2
0,Ω

+

𝑛∑
𝑗=1

‖Λ𝒖𝑗
ℎ
‖2
0,Ω

+

𝑛∑
𝑗=1

Δ𝑡‖𝒖𝑗+1
ℎ

‖2
1,ℎ +

𝑛∑
𝑗=1

Δ𝑡|𝒖𝑗
ℎ
|2
𝒖
𝑗
ℎ
,upw

≤ 𝐶1
(‖𝑠1

ℎ
‖2
0,Ω

+ ‖2𝑠1
ℎ
− 𝑠0

ℎ
‖2
0,Ω

+ ‖𝑐1
ℎ
‖2
0,Ω

+ ‖2𝑐1
ℎ
− 𝑐0

ℎ
‖2
0,Ω

+ ‖𝒖1
ℎ
‖2
0,Ω

+ ‖2𝒖1
ℎ
− 𝒖0

ℎ
‖2
0,Ω

)
,

‖𝑠𝑛+1
ℎ

‖2
0,Ω

+ ‖2𝑠𝑛+1
ℎ

− 𝑠𝑛
ℎ
‖2
0,Ω

+

𝑛∑
𝑗=1

‖Λ𝑠𝑗
ℎ
‖2
0,Ω

+

𝑛∑
𝑗=1

Δ𝑡‖𝑠𝑗+1
ℎ

‖2
1,Ω

≤ 𝐶2
(‖𝑠1

ℎ
‖2
0,Ω

+ ‖2𝑠1
ℎ
− 𝑠0

ℎ
‖2
0,Ω

)
.

(2.9)
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6 of 12

Note that, in contrast to the linear case, the stability result and the existence of a discrete solution do not guarantee, in
general, uniqueness of solution.

Theorem 2.3 (Existence of a discrete solution). Assume that min{𝛼̂𝑎, 𝛼̂𝑎∕𝜏} > 𝐶2
𝑓
∕(2𝛼̃𝑎). Then problem (2.4), with initial

data (𝒖1
ℎ
, 𝑠1
ℎ
, 𝑐1

ℎ
) and (𝒖0

ℎ
, 𝑠0
ℎ
, 𝑐0

ℎ
) (where (𝒖1

ℎ
, 𝑠1
ℎ
, 𝑐1

ℎ
) is obtained from (𝒖0

ℎ
, 𝑠0
ℎ
, 𝑐0

ℎ
) by a backward Euler method), admits a (not

necessarily unique) solution (𝒖𝑛+1
ℎ

, 𝑝𝑛+1
ℎ

, 𝑠𝑛+1
ℎ

, 𝑐𝑛+1
ℎ

) ∈ 𝑽ℎ ×ℎ ×ℎ,0 ×ℎ,0.

The proof of Theorem 2.3 is conducted in ref. [12] using a fixed-point argument that employs Brouwer’s fixed-point
theorem in the form given by ref. [20, Corollary 1.1, Chapter IV].

2.4 A priori error estimates

The results summarized in this section follow from standard arguments applicable to the approximation and error
bounds for isolated solutions. For this we require to assume the uniqueness of discrete solution. Let us then denote by
ℎ ∶ 𝐻2(Ω) → ℎ the nodal interpolator with respect to a unisolvent set of Lagrangian interpolation nodes associated
with ℎ. Furthermore, Πℎ𝒖 denotes the BDM projection of 𝒖, and ℎ𝑝 is the 𝐿2-projection of 𝑝 onto ℎ. Under usual
assumptions, the following approximation properties hold (see ref. [22]):

‖𝒖 − Πℎ𝒖‖1,ℎ ≤ 𝐶∗ℎ𝑘‖𝒖‖𝑘+1,Ω, ‖𝑐 − ℎ𝑐‖1,Ω ≤ 𝐶∗ℎ𝑘‖𝑐‖𝑘+1,Ω,
‖𝑠 − ℎ𝑠‖1,Ω ≤ 𝐶∗ℎ𝑘‖𝑠‖𝑘+1,Ω, ‖𝑝 − ℎ𝑝‖0,Ω ≤ 𝐶∗ℎ𝑘‖𝑝‖𝑘,Ω. (2.10)

The following development follows the structure adopted in ref. [2]. We begin with a property of the discrete bilinear
forms and the continuous variational formulation.

Lemma 2.4. Assume that 𝒖 ∈ 𝑳2(0, 𝑡end;𝑯
2(Ω)), 𝜕𝑡𝒖 ∈ 𝑳2(0, 𝑡end; 𝑳

2(Ω)), 𝑝 ∈ 𝑄𝑡 and 𝑠, 𝑐 ∈ 𝑀𝑡 . Then for a.e 𝑡 ∈ [0, 𝑡end],
we have

(𝜕𝑡𝒖, 𝒗)Ω + 𝑎ℎ1 (𝑐; 𝒖, 𝒗) + 𝑐ℎ1 (𝒖; 𝒖, 𝒗) + 𝑏(𝒗, 𝑝) = 𝐹(𝑠, 𝑐,𝒗) ∀𝒗 ∈ 𝑽ℎ, 𝑏(𝒖, 𝑞) = 0 ∀𝑞 ∈ ℎ,

(𝜕𝑡𝑠, 𝜑)Ω + 𝑎2(𝑠, 𝜑) + 𝑐2(𝒖; 𝑠, 𝜑) = 0, (𝜕𝑡𝑐, 𝜓)Ω +
1

𝜏
𝑎2(𝑐, 𝜓) + 𝑐2(𝒖 − 𝑣p𝒆𝑧; 𝑐, 𝜓) = 0 ∀𝜑, 𝜓 ∈ ℎ,0.

Proof. Since we have assumed that 𝒖 ∈ 𝑯2(Ω), integration by parts yields the required result. See also ref. [7]. The third
and fourth equations are a straightforward consequence of properties of the continuous weak form. □

Since for the following theorems we will assume the exact 𝑐 and 𝑠 belong to 𝐻2(Ω), we have 𝑐, 𝑠 ∈ 𝐶(Ω̄). Now we
decompose the errors as follows:

𝒖 − 𝒖ℎ = 𝐸𝒖 + 𝜉𝒖 = (𝒖 − Πℎ𝒖) + (Πℎ𝒖 − 𝒖ℎ), 𝑝 − 𝑝ℎ = 𝐸𝑝 + 𝜉𝑝 = (𝑝 − ℎ𝑝) + (ℎ𝑝 − 𝑝ℎ),

𝑠 − 𝑠ℎ = 𝐸𝑠 + 𝜉𝑠 = (𝑠 − ℎ𝑠) + (ℎ𝑠 − 𝑠ℎ), 𝑐 − 𝑐ℎ = 𝐸𝑐 + 𝜉𝑐 = (𝑐 − ℎ𝑐) + (ℎ𝑐 − 𝑐ℎ).

Assuming that 𝒖0
ℎ
= Πℎ𝒖(0), 𝑠0ℎ = ℎ𝑠(0) and 𝑐0

ℎ
= ℎ𝑐(0), we also use the notation 𝐸𝑛

𝒖 = (𝒖(𝑡𝑛) − Πℎ𝒖(𝑡𝑛)) and 𝜉𝑛𝒖 =

(Πℎ𝒖(𝑡𝑛) − 𝒖𝑛
ℎ
), and similar notation for other variables. Since for the first time iteration of system (2.1) we adopt a

backward Euler scheme, a dedicated error estimate is required for this step.
For brevity, in the following two theorems we do not precisely state the regularity assumptions on 𝒖 and its time

derivatives, 𝑝, 𝑠, and 𝑐, but refer to Theorems 2.4 and 2.5 in ref. [12] for details.

Theorem 2.5. Let (𝒖, 𝑝, 𝑠, 𝑐) be the unique solution of (1.2) under the assumptions of Section 1.3, and (𝒖ℎ, 𝑝ℎ, 𝑠ℎ, 𝑐ℎ) be a
solution of (2.4). There exist positive constants 𝐶1

𝑢, 𝐶1
𝑠 , 𝐶1

𝑐 , independently of ℎ and Δ𝑡, such that, for 𝜙 = 𝑐, 𝑠,

‖𝜉1𝒖‖20,Ω
4

+
Δ𝑡

2
𝛼̃𝑎‖𝜉𝒖‖21,ℎ + Δ𝑡|𝜉1𝒖|2𝒖1

ℎ
,upw

≤ 𝐶1
𝑢(ℎ

2𝑘 + Δ𝑡4),
‖𝜉1

𝜙
‖2
0,Ω

4
+
Δ𝑡

2
𝛼̂𝑎‖𝜉𝜙‖21,Ω ≤ 𝐶1

𝜙
(ℎ2𝑘 + Δ𝑡4).
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BÜRGER et al. 7 of 12

Theorem 2.6. Under certain additional regularity assumptions on 𝒖 and its time derivatives of up to third-order there exist
constants 𝐶, 𝛾1 > 0, independent of ℎ and Δ𝑡, such that, for all𝑚 + 1 ≤ 𝑁,

‖𝜉𝑚+1
𝒖 ‖2

0,Ω
+ ‖2𝜉𝑚+1

𝒖 − 𝜉𝑚𝒖 ‖2
0,Ω

+

𝑚∑
𝑛=1

‖Λ𝜉𝑛𝒖‖20,Ω +

𝑚∑
𝑛=1

Δ𝑡𝛼̃𝑎‖𝜉𝑛+1𝒖 ‖2
1,ℎ +

𝑚∑
𝑛=1

Δ𝑡|𝜉𝑛+1𝒖 |2
𝒖𝑛+1
ℎ

,upw

≤ 𝐶(Δ𝑡4 + ℎ2𝑘) +

𝑚∑
𝑛=1

𝛾1Δ𝑡‖𝜉𝑛+1𝑐 ‖2
1,Ω

.

Note that Theorems 2.5 and 2.6 require a smallness assumption on the velocity solution of the continuous problem. The
assumption is needed due to the coupling through the viscosity with the balance equation of concentration. If such depen-
dency is removed, for instance when a constant viscosity value is used, the smallness assumption is no longer required.
Theorems similar to Theorem2.6 also hold for 𝜉𝑠 and 𝜉𝑐 in place of 𝜉𝑢 but are notwritten out here, see ref. [12, Theorems 2.6,
Theorem 2.7].

Theorem 2.7. Under the same assumptions of Theorem 2.6 (and its versions for 𝜉𝑠 and 𝜉𝑐) there exist positive constants 𝛾𝑢,
𝛾𝑠 and 𝛾𝑐 independent of Δ𝑡 and ℎ, such that, for a sufficiently small Δ𝑡 and all𝑚 + 1 ≤ 𝑁, there hold

(‖𝜉𝑚+1
𝒖 ‖2

0,Ω
+ ‖2𝜉𝑚+1

𝒖 − 𝜉𝑚𝒖 ‖2
0,Ω

+

𝑚∑
𝑛=1

(‖Λ𝜉𝑛𝒖‖20,Ω + Δ𝑡𝛼̃𝑎‖𝜉𝑛+1𝒖 ‖2
1,ℎ + Δ𝑡|𝜉𝑛+1𝒖 |2

𝒖𝑛+1
ℎ

,upw

))1∕2

≤ 𝛾𝑢(Δ𝑡
2 + ℎ𝑘),

(‖𝜉𝑚+1
𝑠 ‖2

0,Ω
+ ‖2𝜉𝑚+1

𝑠 − 𝜉𝑚𝑠 ‖2
0,Ω

+

𝑚∑
𝑛=1

(‖Λ𝜉𝑛𝑠 ‖20,Ω + Δ𝑡𝛼̂𝑎‖𝜉𝑛+1𝑠 ‖2
1,Ω

))1∕2

≤ 𝛾𝑠(Δ𝑡
2 + ℎ𝑘),

and the same inequality with 𝑠 replaced by 𝑐. Moreover, if 𝑝 ∈ 𝐿∞(0, 𝑡end;𝐻
2(Ω)), we have

( 𝑚∑
𝑛=1

Δ𝑡‖𝑝(𝑡𝑛+1) − 𝑝𝑛+1
ℎ

‖2
0,Ω

)1∕2

≤ 𝛾̂𝑝(Δ𝑡
2 + ℎ𝑘).

3 A POSTERIORI ERROR ANALYSIS

We next proceed to derive and analyze a posteriori error estimators. We split the presentation into three cases of increasing
complexity, starting with an estimator focusing on the steady coupled problem. To outline the three steps (of increasing
complexity) of the a posteriori error analysis in ref.[12], we first consider the following coupled problem in weak form that
is a stationary version of (1.2): find (𝒖, 𝑝, 𝑠, 𝑐) ∈ 𝑯1

0 × 𝐿20 × 𝐻1
0 × 𝐻1

0 such that

𝑎1(𝑐, 𝒖, 𝒗) + 𝑐1(𝒖; 𝒖, 𝒗) + 𝑏(𝒗, 𝑝) = (𝒇, 𝒗)0,Ω, 𝑏(𝒖, 𝑞) = 0,

𝑎2(𝑠, 𝜙) + 𝑐2(𝒖; 𝑠, 𝜙) = (𝑓1, 𝜙)0,Ω, (1∕𝜏)𝑎2(𝑐, 𝜓) + 𝑐2(𝒖 − 𝑣𝑝𝒆𝑧; 𝑐, 𝜓) = (𝑓2, 𝜓)0,Ω

(3.1)

for all 𝒗 ∈ 𝑯1
0(Ω), 𝑞 ∈ 𝐿20(Ω), 𝜙 ∈ 𝐻1

0(Ω), and 𝜓 ∈ 𝐻1
0(Ω), respectively, where (𝛼𝑠 + 𝛽𝑐)𝒈 = (𝜌∕𝜌m)𝒈 = 𝒇 ∈ 𝑳2(Ω), and

𝑓1, 𝑓2 are taken as constant. The discrete counterpart of this problem can be formulated as follows: find (𝒖ℎ, 𝑝ℎ, 𝑠ℎ, 𝑐ℎ) ∈
𝑽ℎ ×ℎ ×ℎ,0 ×ℎ,0 such that for all 𝒗 ∈ 𝑽ℎ, 𝑞 ∈ ℎ, 𝜙 ∈ ℎ,0 and 𝜓 ∈ ℎ,0, respectively,

𝑎1(𝑐ℎ, 𝒖ℎ, 𝒗) + 𝑐1(𝒖ℎ; 𝒖ℎ, 𝒗) + 𝑏(𝒗, 𝑝) = (𝒇ℎ, 𝒗)0,Ω, 𝑏(𝒖ℎ, 𝑞) = 0,

𝑎2(𝑠ℎ, 𝜙) + 𝑐2(𝒖ℎ; 𝑠ℎ, 𝜙) = (𝑓1, 𝜙)0,Ω, (1∕𝜏)𝑎2(𝑐ℎ, 𝜓) + 𝑐2(𝒖ℎ − 𝑣𝑝𝒆𝑧; 𝑐ℎ, 𝜓) = (𝑓2, 𝜓)0,Ω.
(3.2)

The a posteriori error estimator is based in the computation of the following element-wise and facet-wise residuals:

𝑹𝐾 ∶= {𝒇ℎ + 𝐝𝐢𝐯(𝜈(𝑐ℎ)𝛁𝒖ℎ) − 𝒖ℎ ⋅ 𝛁𝒖ℎ − (𝜌m)
−1∇𝑝ℎ}|𝐾,
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8 of 12

𝑅1,𝐾 ∶= {𝑓1 + Sc−1Δ𝑠ℎ − 𝒖ℎ ⋅ ∇𝑠ℎ}|𝐾, 𝑅2,𝐾 ∶= {𝑓2 + (𝜏Sc)−1Δ𝑐ℎ − (𝒖ℎ − 𝑣𝑝𝒆𝑧) ⋅ ∇𝑐ℎ}|𝐾, (3.3)

𝑹𝑒 ∶=
1

2
[[
𝑝ℎ
𝜌m

𝑰 − 𝜈(𝑐ℎ)𝛁𝒖ℎ)𝒏]], 𝑅1,𝑒 ∶=
1

2Sc
[[(∇𝑠ℎ) ⋅ 𝒏]], 𝑅2,𝑒 ∶= [[((𝜏Sc)−1∇𝑐ℎ) ⋅ 𝒏]] for 𝑒 ∈ ℎ ⧵ Γ

and 𝑹𝑒 = 𝑅1,𝑒 = 𝑅2,𝑒 ∶= 0 for 𝑒 ∈ Γ. The corresponding element-wise error estimator is then

Ψ2
𝐾 ∶= Ψ2

𝑅𝐾
+ Ψ2

𝑒𝐾
+ Ψ2

𝐽𝐾
, where Ψ2

𝑅𝐾
∶= ℎ2𝐾

(‖𝑹𝐾‖20,𝐾 + ‖𝑅1,𝐾‖20,𝐾 + ‖𝑅2,𝐾‖20,𝐾),
Ψ2
𝑒𝐾

∶=
∑
𝑒∈𝜕𝐾

ℎ𝑒
(‖𝑹𝑒‖20,𝑒 + ‖𝑅1,𝑒‖20,𝑒 + ‖𝑅2,𝑒‖20,𝑒), Ψ2

𝐽𝐾
∶=

∑
𝑒∈𝜕𝐾

1

ℎ𝑒
‖[[𝒖ℎ]]‖20,𝑒.

These quantities define the global a posteriori error estimator Ψ ∶= (
∑

𝐾∈ℎ Ψ
2
𝐾)

1∕2 for the nonlinear coupled steady
problem (3.2), for which one can eventually prove that it is reliable and efficient [12]:

Theorem 3.1 (Reliability). Let (𝒖, 𝑝, 𝑠, 𝑐) be the unique solution to (3.1) and (𝒖ℎ, 𝑝ℎ, 𝑠ℎ, 𝑐ℎ) a solution to (3.2). Let|||(𝒗, 𝑞, 𝜙, 𝜓)|||2 ∶= ‖𝒗‖2
1,ℎ + ‖𝑞‖2

0,Ω
+ ‖𝜙‖2

1,Ω
+ ‖𝜓‖2

1,Ω
. If ‖𝒖‖1,∞ < 𝑀, ‖𝑠‖∞ < 𝑀 and ‖𝑐‖∞ < 𝑀 for sufficiently small𝑀,

then |||(𝒖 − 𝒖ℎ, 𝑝 − 𝑝ℎ, 𝑠 − 𝑠ℎ, 𝑐 − 𝑐ℎ)||| ≤ 𝐶(Ψ + ‖𝒇 − 𝒇ℎ‖0,Ω), where 𝐶 > 0 is a constant independent of ℎ.

Theorem 3.2 (Efficiency). Let (𝒖, 𝑝, 𝑠, 𝑐) be the unique solution to (3.1) and (𝒖ℎ, 𝑝ℎ, 𝑠ℎ, 𝑐ℎ) a solution of problem (3.2). Then
there exists a constant 𝐶 > 0 that is independent of ℎ such that

Ψ ≤ 𝐶

(|||(𝒖 − 𝑢ℎ, 𝑝 − 𝑝ℎ, 𝑠 − 𝑠ℎ, 𝑐 − 𝑐ℎ)||| +
( ∑
𝐾∈ℎ

ℎ2𝐾‖𝒇 − 𝒇ℎ‖20,𝐾
)1∕2)

.

Let us now turn to the transient problem, forwhichwe utilize the following semi-discrete formulation, where 𝜕𝑡𝒖ℎ, 𝜕𝑡𝑠ℎ,
and 𝜕𝑡𝑐ℎ appear on the right-hand sides as in the so-called elliptic reconstruction approach (cf. [15]): find (𝒖̃ℎ, 𝑝̃ℎ, 𝑐ℎ, 𝑠ℎ)

∈ 𝐶0,1(0, 𝑡end; 𝑽ℎ) × 𝐶0,0(0, 𝑡end;ℎ) ×𝐶
0,1(0, 𝑡end;ℎ,0) ×𝐶

0,1(0, 𝑡end;ℎ,0) such that

𝑎1(𝑐ℎ, 𝒖̃ℎ, 𝒗) + 𝑐1(𝒖ℎ; 𝒖̃ℎ, 𝒗) + 𝑏(𝒗, 𝑝̃) = (𝒇̃, 𝒗) ∀𝒗 ∈ 𝑽ℎ, 𝑏(𝒖̃ℎ, 𝑞) = 0 ∀𝑞 ∈ ℎ, (3.4)

𝑎2(𝑠ℎ, 𝜙) + 𝑐2(𝒖ℎ; 𝑠ℎ, 𝜙) = (𝑓1, 𝜙), (1∕𝜏)𝑎2(𝑐ℎ, 𝜓) + 𝑐2(𝒖ℎ − 𝑣𝑝𝒆𝑧; 𝑐ℎ, 𝜓) = (𝑓2, 𝜓) ∀𝜙, 𝜓 ∈ ℎ,0,

where 𝒇̃ = (𝛼𝑠ℎ + 𝛽𝑐ℎ)𝐠 − 𝜕𝑡𝒖ℎ ∈ 𝑳2(Ω), 𝑓1 = −𝜕𝑡𝑠ℎ ∈ 𝐿2(Ω), 𝑓2 = −𝜕𝑡𝑐ℎ ∈ 𝐿2(Ω).

By (2.1), (𝒖ℎ, 𝑝ℎ, 𝑐ℎ, 𝑠ℎ) is also a discrete solution of (3.4) for each 𝑡 ∈ (0, 𝑡end]. But, since the discrete weak formulation
(3.4) is well-posed, we also conclude that (𝒖̃ℎ, 𝑝̃ℎ, 𝑐ℎ, 𝑠ℎ) = (𝒖ℎ, 𝑝ℎ, 𝑐ℎ, 𝑠ℎ) for each 𝑡 ∈ (0, 𝑡end]. We may now define the
following semi-discrete error indicator:

Θ2 ∶= ‖𝑒𝒖(0)‖20,Ω + ‖𝑒𝑐(0)‖20,Ω + ‖𝑒𝑠(0)‖20,Ω + ∫
𝑡end

0

Ψ2 d𝑡 + ∫
𝑡end

0

Θ2
2 d𝑡 + max

0≤𝑡≤𝑇 Θ
2
3,

Θ2
2 ∶=

∑
𝑒∈ℎ

ℎ𝑒‖[[𝜕𝑡𝒖ℎ]]‖20,𝑒, Θ2
3 ∶=

∑
𝑒∈ℎ

ℎ𝑒‖[[𝒖ℎ]]‖20,𝑒, (3.5)

where Ψ is the global a posteriori error estimator for the steady problem (3.3) and we now replace 𝒇 and 𝑓1, 𝑓2 by 𝒇̃ as
given in (3.4). For this a posteriori error estimator we can establish the following reliability result.

Theorem 3.3 (Reliability). Let (𝒖, 𝑝, 𝑠, 𝑐) and (𝒖ℎ, 𝑝ℎ, 𝑠ℎ, 𝑐ℎ) be the solutions to (1.2) and (3.4), respectively. If 𝒖, 𝑠 and 𝑐

satisfy the bounds

‖𝒖‖𝐿∞(0,𝑡end;𝑊1,∞(Ω)) < 𝑀, ‖𝑠‖𝐿∞(0,𝑡end;𝐿∞(Ω)) < 𝑀, ‖𝑐‖𝐿∞(0,𝑡end;𝐿∞(Ω)) < 𝑀 (3.6)
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BÜRGER et al. 9 of 12

for sufficiently small𝑀, then there exists 𝐶 > 0, independent of ℎ, such that

(‖𝑒𝒖‖2⋆ + ‖𝑒𝑠‖2⋆ + ‖𝑒𝑐‖2⋆)1∕2 ≤ 𝐶,  ∶=

(
Θ2+∫

𝑡end

0

‖𝒇 − 𝒇ℎ‖20,Ω d𝑡
)1∕2

,

‖𝜕𝑡𝑒𝒖 + ∇(𝑝 − 𝑝ℎ)‖𝐿2(0,𝑡end;𝑯−1) + ‖𝜕𝑡𝑒𝑠‖𝐿2(0,𝑡end;𝐻−1) + ‖𝜕𝑡𝑒𝑐‖𝐿2(0,𝑡end;𝐻−1) ≤ 𝐶,
where we define ‖𝒗‖2⋆ ∶= ‖𝒗‖2

𝐿∞(0,𝑡end;𝐿2(Ω))
+ ∫ 𝑡end

0
‖𝒗‖2

1,ℎ d𝑡 and ‖𝜙‖2⋆ ∶= ‖𝜙‖2
𝐿∞(0,𝑡end;𝐿2(Ω))

+ ∫ 𝑡end
0

‖𝜙‖2
1,Ω

d𝑡.

Finally, the result for the a posteriori error analysis for the fully discrete problem, but limited to the simpler case of
backward Euler time discretization, can be formulated as follows. For each time step 𝑘 (1 ≤ 𝑘 ≤ 𝑁), we define a global in
space time indicator Ξ𝑘 by Ξ𝑘 ∶= (Ξ2

𝑘,1
+ Ξ2

𝑘,2
+ Ξ2

𝑘,3
)1∕2, where

Ξ2
𝑘,1

∶= 𝜏̃𝑘

(‖𝒖𝑘
ℎ
− 𝐼𝑘𝒖𝑘−1

ℎ
‖2
1,ℎ,𝑘 + ℎ𝑒𝜏̃

−2
𝑘
‖[[𝐼𝑘𝒖𝑛−1

ℎ
− 𝒖𝑛−1

ℎ
]]‖20,𝑒 + ℎ𝑒𝜏̃

−2
𝑘
‖[[𝒖𝑛

ℎ
− 𝐼𝑘𝒖𝑛−1

ℎ
]]‖20,𝑒),

Ξ2
𝑘,2

∶= 𝜏̃𝑘‖𝑠𝑘ℎ − 𝑠𝑘−1
ℎ

‖21, Ξ2
𝑘,3

∶= 𝜏̃𝑘‖𝑐𝑘ℎ − 𝑐𝑘−1
ℎ

‖21,
where 𝐼𝑘 is generic data transfer operator which depends on the specific implementation [19]. We may now define the
cumulative time and spatial error indicators

Ξ2 ∶=

𝑁∑
𝑘=1

Ξ2
𝑘
, Υ2 ∶=

𝑁∑
𝑘=1

𝜏̃𝑘
(
Υ2
𝑘
(𝒖𝑘

ℎ
, 𝑝𝑘

ℎ
, 𝑠𝑘
ℎ
, 𝑐𝑘

ℎ
) + Υ2

𝑘
(𝐼𝑘𝒖𝑘−1

ℎ
, 𝐼𝑘𝑝𝑝

𝑘−1
ℎ

, 𝑠𝑘−1
ℎ

, 𝑐𝑘−1
ℎ

)
)
, (3.7)

terms Υ2
𝑘

are constructed with the a posteriori error estimator contributions defined as in the steady case (3.3), but at a
given time step 𝑘. That is, Υ2

𝑘
(𝒖𝑘

ℎ
, 𝑝𝑘

ℎ
, 𝑠𝑘
ℎ
, 𝑐𝑘

ℎ
) = Υ2

𝐾,𝑘
+ Υ2

𝑒,𝑘
+ Υ2

𝐽,𝑘
with

Υ2
𝐾,𝑘

∶= ℎ2𝐾
(‖𝑹𝑘

𝐾‖20,𝐾 + ‖𝑅𝑘1,𝐾‖20,𝐾 + ‖𝑅𝑘2,𝐾‖20,𝐾), Υ2
𝑒,𝑘

∶=
∑
𝑒∈𝜕𝐾

ℎ𝑒
(‖𝑹𝑘

𝑒‖20,𝑒 + ‖𝑅𝑘1,𝑒‖20,𝑒 + ‖𝑅𝑘2,𝑒‖20,𝑒),
Υ2
𝐽,𝑘

∶=
∑
𝑒∈𝜕𝐾

ℎ−1𝑒 ‖[[𝒖𝑘
ℎ
]]‖20, 𝑒;

the residual terms are not written out here; they are similar to the stationary case but include time differences.

Theorem 3.4 (Reliability estimate). Let (𝒖, 𝑝, 𝑠, 𝑐) be the solution of (1.2), and (𝒖ℎ, 𝑝ℎ, 𝑠ℎ, 𝑐ℎ) the corresponding discrete
solution. If 𝒖, 𝑠 and 𝑐 satisfy the bounds (3.6), then the following reliability estimate holds:

(
∫

𝑡end

0

[‖𝒆𝒖𝜏 ‖21,ℎ + ‖𝑒𝑐𝜏‖21,Ω + ‖𝑒𝑠𝜏‖21,Ω] d𝑡)1∕2

+

𝑁∑
𝑘=1

(‖𝜕𝑡𝒆𝒖𝜏̃ + ∇(𝑝 − 𝑝ℎ)‖𝐿2(𝑡𝑘−1,𝑡𝑘;𝑯−1(Ω)) + ‖𝜕𝑡𝑒𝑠𝜏̃‖𝐿2(𝑡𝑘−1,𝑡𝑘;𝐻−1(Ω)) + ‖𝜕𝑡𝑒𝑐𝜏̃‖𝐿2(𝑡𝑘−1,𝑡𝑘;𝐻−1(Ω))

)

≤ 𝐶

(
Ξ2 + Υ2 +

1

2
‖𝒆𝒖𝑐𝜏̃ (0)‖2

0,Ω
+
1

2
‖𝑒𝑠𝜏̃(0)‖20,Ω +

1

2
‖𝑒𝑡𝜏̃(0)‖20,Ω +

𝑁−1∑
𝑘=1

‖𝑢𝑘
ℎ,𝑟

− 𝐼𝑘+1𝑢𝑘
ℎ,𝑟

‖2
0,Ω

+Θ2

)1∕2

.

4 NUMERICAL TESTS

In Example 1, a known analytical solution is used to verify theoretical convergence rates of the scheme. We focus on
the lowest-order method with 𝑘 = 1 and choose 𝑡end = 1 and Ω = (0, 1)2. We take the parameter values 𝜈 = exp(−𝑐),
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10 of 12

TABLE 1 Example 1. Experimental errors and convergence rates for 𝒖ℎ, 𝑝ℎ, 𝑠ℎ and 𝑐ℎ for the lowest-order method (𝑘 = 1).

DoFs 𝒉 𝚫𝒕 𝒆𝒖 rate 𝒆𝒑 rate 𝒆𝒔 rate 𝒆𝒄 rate

59 0.7071 0.5000 1.15e+01 — 1.36e+02 — 8.46e-02 — 1.71e-01 —
195 0.3536 0.2500 5.14e+00 1.16 5.73e+01 1.25 5.44e-02 0.64 1.17e-01 0.54
707 0.1768 0.1250 2.16e+00 1.25 2.09e+01 1.46 3.08e-02 0.82 6.75e-02 0.80
2691 0.0884 0.0625 9.50e-01 1.19 8.00e+00 1.38 1.63e-02 0.92 3.60e-02 0.90
10499 0.0442 0.0312 4.37e-01 1.12 3.28e+00 1.29 8.38e-03 0.96 1.86e-02 0.95
41475 0.0221 0.0156 2.08e-01 1.07 1.42e+00 1.21 4.24e-03 0.98 9.45e-03 0.98

F IGURE 1 Simulation of salinity 𝑠 and particle concentration 𝑐 at times 𝑡 = 0 (initial datum), 𝑡 = 3, 5, and 7.

𝜌 = 𝜌m(𝛼𝑠 + 𝛽𝑐), 𝛼 = 1, 𝛽 = 1, 𝜌m = 1.5, 𝒈 = (0, −1)𝑇 , Sc = 1, 𝜏 = 0.5, 𝑣𝑝 = 1, and 𝑎0 = 50. Following the approach of
manufactured solutions, we prescribe boundary data and additional external forces and adequate source terms so that the
closed-form solutions to (1.1) are given by the smooth functions

𝑢(𝑥, 𝑦, 𝑡) = (cos(𝜋𝑥) sin(𝜋𝑦) sin(𝑡), − sin(𝜋𝑥) cos(𝜋𝑦) sin(𝑡))T, 𝑝(𝑥, 𝑦, 𝑡) = cos(𝑥 + 𝑦) sin(𝑥 − 𝑦) sin(𝑡),

𝑐(𝑥, 𝑦, 𝑡) = (0.5 + 0.5 cos(𝜋(𝑥 + 𝑦)∕2)) exp(−𝑡), 𝑠(𝑥, 𝑦, 𝑡) = (0.5 + 0.5 sin(𝜋(𝑥 − 𝑦)∕2)) exp(−𝑡).

As 𝒖 is prescribed everywhere on 𝜕Ω, for sake of uniqueness we impose 𝑝 ∈ 𝐿20(Ω) through a real Lagrange multiplier
approach. To verify the a priori error estimates, we introduce the discrete norms

|||𝒖|||0,ℎ ∶= (
Δ𝑡(‖𝒖1

ℎ
‖2
1,ℎ +⋯+ ‖𝒖𝑁

ℎ
‖2
1,ℎ )

)1∕2
, |||𝜒|||0,𝑘 ∶= (

Δ𝑡(‖𝜒1
ℎ
‖2
𝑘,Ω

+⋯+ ‖𝜒𝑁
ℎ
‖2
𝑘,Ω

)
)1∕2

.

The corresponding individual errors and convergence rates are 𝑒𝒖 = |||𝒖 − 𝒖ℎ|||0,ℎ , 𝑒𝑝 = |||𝑝 − 𝑝ℎ|||0,0, 𝑒𝑠 = |||𝑠 − 𝑠ℎ|||0,1,
𝑒𝑐 = |||𝑐 − 𝑐ℎ|||0,1 and rate = log(𝑒(⋅)∕𝑒(⋅))[log(𝜉∕𝜉̃)]

−1, 𝜉 = {ℎ, Δ𝑡}, where 𝑒, 𝑒 denote errors generated on two consecutive
pairs of mesh size and time step (ℎ, Δ𝑡), and (ℎ̃, Δ̃𝑡), respectively. ForΔ𝑡 =

√
2ℎ and the scheme (2.4), the results in Table 1

confirm that the rates of convergence are optimal, coinciding with the theoretical bounds anticipated in Theorem 2.7.
In Example 2we illustrate themodel and the proposedmethod by simulating salinity-driven flowmotivated by the treat-

ments in refs. [14, 26]. We consider a rectangular domain of dimensions 𝐿𝑥 = 40 and 𝐿𝑦 = 300 and the initial solid-particle
concentration profile 𝑠(𝑥, 𝑦) = 𝐴0 exp(−𝑦

2∕𝜎2) + 𝐴1 sin(𝑥)with initial amplitudes 𝐴0 and 𝐴1 and width 𝜎 (see Figure 1).
For the velocity field, we use a non-slip boundary condition on all four walls and choose Δ𝑡 = 0.1. Since simulations at
low density ratios are costly because of the large Reynolds numbers of fingering convection (cf. [26]), we choose an initial
density ratio 𝑅0 = 𝛼𝑠0,𝑧∕𝛽𝑐0,𝑧 ≈ 4 and simulate a tall, thin domain. Apart from the specifications above, we set𝐴0 = 2.86,
𝐴1 = 0.5, 𝜎 = 0.35, 𝜈 = 10−3 kg∕m3, 𝑔 = 9.8m∕s2, Sc = 7.0, 𝜏 = 25, 𝑣p = 0.04m∕s, 𝛼 = −2.0, and 𝛽 = 0.5. According to
[26] a linear fingering instability occurs provided 1 < 𝑅0 < 𝜏, hence the instability shown in Figures 1 and 2 is expected.
For this test an adaptive refinement is applied guided by the estimators in (3.7).
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F IGURE 2 Simulated norm of velocity ‖𝒖‖ and pressure 𝑝 on the whole computational domain (left) and line integral convolution plots
of the simulated velocity field 𝒖 at 𝑡 = 2, 3, 5, and 7 (right).
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