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Abstract
A virtual element discretisation for the numerical approximation of the three-field
formulation of linear poroelasticity introduced in R. Oyarzúa and R. Ruiz-Baier,
(SIAM J. Numer. Anal. 54 2951–2973, 2016) is proposed. The treatment is extended
to include also the transient case. Appropriate poroelasticity projector operators are
introduced and they assist in deriving energy bounds for the time-dependent discrete
problem. Under standard assumptions on the computational domain, optimal a priori
error estimates are established. These estimates are valid independently of the values
assumed by the dilation modulus and the specific storage coefficient, implying that
the formulation is locking-free. Furthermore, the accuracy of the method is verified
numerically through a set of computational tests.

Keywords Biot equations · Virtual element method · Time-dependent problems ·
A priori error analysis
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1 Introduction

The equations of linear poroelasticity describe the interaction between intersti-
tial fluid flowing through deformable porous media. This problem, often referred
to as Biot’s consolidation problem, has a wide range of applications in diverse
areas including biomechanics, groundwater management, oil extraction, earthquake
engineering, and material sciences [7, 37, 38].
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A variety of numerical methods has been used to generate approximate solu-
tions to Biot’s consolidation problem. Modern examples include high-order finite
differences [25], conforming finite elements [43], mixed finite element methods [29],
nodal and local discontinuous Galerkin methods [30, 47], finite volume schemes [8],
and combined/hybrid discretisations [23, 24, 33]; we further point out [14] where the
authors present a polygonal discretisation based on hybrid high-order methods. These
schemes are constructed using different formulations of the governing equations
including primal and several types of mixed forms.

In this paper, we propose a virtual element method (VEM) using a three-field for-
mulation of the time-dependent poromechanics equations. We base the development
following the formulation proposed in [34, 35] and [45] for the stationary Biot system
and extend the discrete analysis to include the quasi-steady case.

Although the VEM is relatively recent, it has been already applied to a large
number of problems; for instance, Stokes, Brinkman, Cahn-Hilliard, plate bending,
Helmholtz, and parabolic problems have studied using VEM in [3, 5, 6, 11, 13, 18,
20, 22, 46, 50, 51], whereas a coupled VEM-finite volume formulation for the Biot
equations has been proposed in [23]. Recently, VEM has been also developed in [49]
with another three-field formulation (seen in [53]) for the Biot equation. Advantages
of VEM include the relaxation of computing basis functions (of particular useful-
ness when dealing with high-order approximations), and the flexibility of computing
solutions on general-shaped meshes (for instance, including non-convex elements).
In addition, one works locally on polygonal elements, without the need of passing
through a reference element; see, e.g., [1, 9, 10, 41]. In principle, this further simpli-
fies the implementation of the building blocks of the numerical method. We observe
that in complex simulations like phase change, fluid-structure interaction, and many
others the geometrical complexity of the domain is a relevant issue when PDEs have
to be solved on a good-quality mesh; hence, it can be convenient to use more general
polygonal/polyhedral meshes.

Here, we consider a pair of virtual elements for displacement and total pressure
which is stable. This pair, introduced in [5], can be regarded as a generalisation of
the Bernardi-Raugel finite elements (piecewise linear elements enriched with bub-
bles normal to the faces for the displacement components, and piecewise constant
approximations for total pressure; see, e.g., [27]). On the other hand, no compatibil-
ity between the spaces for total pressure and fluid pressure is needed. Therefore, for
the fluid pressure, we employ the enhanced virtual element space from [3, 10, 51],
which allows us to construct a suitable projector onto piecewise linear functions. All
this is restricted, for sake of simplicity, to the lowest-order 2D case, but one could
extend the analysis to higher polynomial degrees and the 3D case, for instance con-
sidering the discrete inf-sup stable pair from [11] for the Stokes problem. The main
difficulties in our analysis lie in the definition of an adequate projection operator that
allows treating the time-dependent problem. To handle this issue, we have combined
Stokes-like and elliptic operators that constitute the new map, here named poroelastic
projector. We derive stability for semi-discrete and fully discrete approximations and
establish the optimal convergence of the virtual element scheme in the natural norms.
These bounds turn to be robust with respect to the dilation modulus of the deformable
porous structure (which tends to infinity as the Poisson ratio approaches 0.5), and of
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the specific storage coefficient (reaching very small values in some regimes); there-
fore, the method is considered locking-free. A further advantage of the proposed
virtual discretisation is that it combines primal and mixed virtual element spaces. In
addition, this work can be seen as a stepping stone in the study of more complex cou-
pled problems including interface poroelastic phenomena and multiphysics (see, for
instance, [4, 26, 52]).

We have arranged the content of the paper as follows. Section 2 is devoted to the
definition of the linear poroelasticity problem, and it also contains the precise def-
inition of the continuous weak formulation using three fields, and presents a few
preliminary results needed in the semi-discrete analysis as well. In Section 3, we
introduce the virtual element approximation in semi-discrete form. We specify the
virtual element spaces, identify the degrees of freedom, and derive appropriate esti-
mates for the discrete bilinear forms. The a priori error analysis has been derived
in Section 4, with the help of the newly introduced poroelastic projection operator.
The implementation of the problem on different families of polygonal meshes is then
discussed in Section 5, where we confirm the theoretical rates of convergence and
produce some applicative tests to gain insight on the behaviour of the model problem.
A summary and concluding remarks are collected in Section 6.

2 Time-dependent linear poroelasticity using total pressure

2.1 Strong form of the governing equations

A deformable porous medium is assumed to occupy the domain Ω , where Ω is
an open and bounded set in R

2 (simply for sake of notational convenience) with
a Lipschitz continuous boundary ∂Ω . The medium is composed of a mixture of
incompressible grains forming a linearly elastic skeleton, as well as interstitial fluid.
The mathematical description of this interaction between deformation and flow can
be placed in the context of the classical Biot problem, written as follows (see for
instance, the exposition in [48]). In the absence of gravitational forces, and for a
given body load b(t) : Ω → R

2 and a volumetric source or sink �(t) : Ω → R, one
seeks, for each time t ∈ (0, tfinal], the vector of displacements of the porous skeleton,
u(t) : Ω → R

2, and the pore pressure of the fluid, p(t) : Ω → R, satisfying the
mass conservation of the fluid content and momentum balance equations:

∂t (c0p + α div u) − 1

η
div (κ(x)∇p) = �,

−div
(
λ(divu)I + 2με(u) − αpI

) = ρb in Ω × (0, tfinal],
where κ(x) is the hydraulic conductivity of the porous medium (the mobility matrix,
possibly anisotropic), ρ is the density of the solid material, η is the constant viscos-
ity of the interstitial fluid, c0 is the constrained specific storage coefficient (typically
small and representing the amount of fluid that can be injected during an increase
of pressure maintaining a constant bulk volume), α is the Biot-Willis consolida-
tion parameter (typically close to 1), and μ and λ are the shear and dilation moduli
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associated with the constitutive law of the solid structure. The total stress

σ = λ(div u)I + 2με(u) − αpI

includes a contribution from the effective mechanical stress of a Hookean elastic
material, σ eff = λ(div u)I + 2με(u), and the non-viscous fluid stress represented
only by the pressure scaled with α. As in [35, 45], we consider here the volumet-
ric part of the total stress ψ , hereafter called total pressure, as one of the primary
variables. This property allows us to rewrite the time-dependent problem as:

− div
(
2με(u) − ψI

) = ρb, (2.1)
(

c0 + α2

λ

)
∂tp − α

λ
∂tψ − 1

η
div(κ∇p) = �,

ψ − αp + λ div u = 0 in Ω × (0, tfinal],
which we endow with appropriate initial data:

p(0) = p0, u(0) = u0 in Ω × {0},
(which, in turn, can be used to set the initial condition for the total pressure ψ(0)),
and mixed-type boundary conditions in the following manner:

u = 0 and
κ

η
∇p · n = 0 on Γ × (0, tfinal], (2.2a)

(
2με(u) − ψ I

)
n = 0 and p = 0 on Σ × (0, tfinal], (2.2b)

where the boundary ∂Ω = Γ ∪ is disjointly split into Γ and Σ where we prescribe
clamped boundaries and zero fluid normal fluxes; and zero (total) traction together
with constant fluid pressure, respectively. Homogeneity of the boundary conditions
is only assumed to simplify the exposition of the analysis.

2.2 Weak formulation

In order to obtain a weak form (in space) for Eq. 2.1, we define the function spaces:

V := [H 1
Γ (Ω)]2, Q := H 1

Σ(Ω), Z := L2(Ω).

Multiplying (2.1) by adequate test functions, integrating by parts (in space) whenever
appropriate, and using the boundary conditions (2.2) lead to the following variational
problem: For a given t > 0, find u(t) ∈ V , p(t) ∈ Q and ψ(t) ∈ Z such that

a1(u, v) + b1(v, ψ) = Fv ∀v ∈ V , (2.3a)

ã2(∂tp, q) + a2(p, q) − b2(q, ∂tψ) = G(q) ∀q ∈ Q, (2.3b)

b1(u, φ) + b2(p, φ) − a3(ψ, φ) = 0 ∀φ ∈ Z, (2.3c)

where the bilinear forms a1 : V × V → R, a2 : Q × Q → R, a3 : Z × Z → R,
b1 : V ×Z → R, b2 : Q×Z → R, and linear functionals F : V → R, G : Q → R,
are given by the following expressions:

a1(u, v) := 2μ

∫

Ω

ε(u) : ε(v), b1(v, φ) := −
∫

Ω

φ div v,
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F(v) :=
∫

Ω

ρb · v, (2.4)

G(q) :=
∫

Ω

� q, ã2(p, q) :=
(

c0 + α2

λ

)∫

Ω

pq,

a2(p, q) := 1

η

∫

Ω

κ∇p · ∇q,

b2(p, φ) := α

λ

∫

Ω

pφ, a3(ψ, φ) := 1

λ

∫

Ω

ψφ.

2.3 Properties of the bilinear forms and linear functionals

We now list the continuity, coercivity, and inf-sup conditions for the variational forms
in Eq. 2.4. These are employed in [45] to derive the well-posedness of the stationary
form of Eq. 2.1.

First, we have the bounds:

a1(u, v) ≤ 2μ‖ε(u)‖0‖ε(v)‖0 ≤C‖u‖1‖v‖1 for all u, v ∈ V ,

b1(v, φ) ≤ ‖ div v‖0‖φ‖0 ≤C‖v‖1‖φ‖0 for all v ∈ V and φ ∈ Z,

a2(p, q) ≤ κmax

η
|p|1|q|1 ≤ κmax

η
‖p‖1‖q‖1 for all p, q ∈ Q,

b2(q, φ) ≤ α

λ
‖q‖0‖φ‖0, a3(ψ, φ)≤ 1

λ
‖ψ‖0‖φ‖0 for all q ∈ Q and ψ, φ ∈ Z,

F(v) ≤ ρ‖b‖0‖v‖1, G(q) ≤ ‖�‖0‖q‖0 for all v ∈ V and q ∈ Q,

along with the coercivity of the diagonal bilinear forms, i.e.,

a1(v, v) = 2μ‖ε(v)‖2
0 ≥ C‖v‖2

1 for all v ∈ V ,

a2(q, q) ≥ κmin

η
‖q‖2

1 for all q ∈ Q,

a3(φ, φ) = 1

λ
‖φ‖2

0 for all φ ∈ Z,

and the following inf-sup condition: there exists a constant β > 0 such that

sup
v( 
=0)∈V

b1(v, φ)

‖v‖1
≥ β‖φ‖0 for all φ ∈ Z.

The solvability of the continuous problem is not the focus here, and we refer to
[48] for the corresponding well-posedness and regularity results.

3 Virtual element approximation

3.1 Discrete spaces and degrees of freedom

In this section, we construct a VEM associated with Eq. 2.3. We start denoting by
{Th}h a sequence of partitions of the domain Ω into general polygons K (open and
simply connected sets whose boundary ∂K is a non-intersecting poly-line consisting



    2 Page 6 of 37 Adv Comput Math            (2021) 47:2 

of a finite number of straight line segments) having diameter hK , and defined as mesh
size h := maxK∈Th

hK . By Nv
K we denote the number of vertices in the polygon K ,

Ne
K stands for the number of edges on ∂K , and e is a generic edge of Th. For all

e ∈ ∂K , we denote by ne
K the unit normal pointing outwards K and by te

K the unit
tangent vector along e on K , and Vi represents the ith vertex of the polygon K .

As in [9], we need to assume regularity of the polygonal meshes in the following
sense: there exists CT > 0 such that, for every h and every K ∈ Th, the ratio between
the shortest edge and hK is larger than CT ; and K ∈ Th is star-shaped with respect
to every point within a ball of radius CT hK .

Denoting by Pk(K) the space of polynomials of degree up to k, defined locally
on K ∈ Th, we proceed to characterise the scalar energy projection operator Π∇

K :
H 1(K) → P1(K) by the relations:

(∇(Π∇
Kq − q), ∇r)0,K = 0, P 0

K(Π∇
Kq − q) = 0, (3.1)

valid for all q ∈ H 1(K) and r ∈ P1(K), and where (·, ·)0,K denotes the L2-product
on K , and

P 0
K(q) :=

∫

∂K

q ds.

If we now denote by Mk(K) the space of monomials of degree up to k, defined
locally on K ∈ Th, we can define, on each polygon K ∈ Th, the local virtual element
spaces for displacement, fluid pressure, and total pressure, as:

V h(K) :=
{

vh ∈ [H 1(K)]2 : vh|∂K ∈ B(∂K),

{
−Δvh − ∇s = 0 in K,

div vh ∈ P0(K)

for some s ∈ L2
0(K)

}

,

Qh(K) := {qh ∈ H 1(K) ∩ C0(∂K) : qh|e ∈ P1(e), ∀e ∈ ∂K,

Δqh|K ∈ P1(K), (�∇
Kqh − qh, mα)0,K = 0 ∀mα ∈ M1(K)},

Zh := P0(K), (3.2)

where we define

B(∂K) := {vh ∈ [C0(∂K)]2 : vh|e · te
K ∈ P1(e), vh|e · ne

K ∈ P2(e), ∀e ∈ ∂K}.
It is clear from the above definitions that the dimension of V h(K) is 3Ne

K , the
dimension of Qh(K) is Nv

K , and that of Zh(K) is 1. Note that the virtual element
space of degree k = 1, introduced in [1], has been utilised here for the approximation
of fluid pressure. This facilitates the computation of the L2-projection onto the space
of polynomials of degree up to 1 (which are required in order to define the zero-
order discrete bilinear form on Qh(K)). Next, and in order to take advantage of the
features of VEM discretisations (for instance, estimation of the terms of the discrete
formulation without explicit computation of basis functions), we need to specify the
degrees of freedom associated with Eq. 3.2. These entities will consist of discrete
functionals of the type (taking as an example the space for total pressure):

(Di) : Zh|K → R; Zh|K � φ → Di(φ),
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and we start with the degrees of freedom for the local displacement space V h(K):

– (Dv1) The values of a discrete displacement vh at vertices of the element;
– (Dv2) The normal displacement vh · ne

K at the mid-point of each edge e ∈ ∂K .

Then, we precise the degrees of freedom for the local fluid pressure space Qh(K):

– (Dq ) The values of qh at vertices of the polygonal element.

And, similarly, the degree of freedom for the local total pressure space Zh(K):

– (Dz) The value of φh over K .

It has been proven elsewhere (see, e.g., [1, 5, 9]) that these degrees of freedom are
unisolvent in their respective spaces. We also define global counterparts of the local
virtual element spaces as follows:

V h := {vh ∈ V : vh|K ∈ V h(K) ∀K ∈ Th},
Qh := {qh ∈ Q : qh|K ∈ Qh(K) ∀K ∈ Th},
Zh := {φh ∈ Z : φh|K ∈ Zh(K) ∀K ∈ Th}.

In addition, we denote by NV the number of degrees of freedom for V h, by NQ

the number of degrees of freedom for Qh, and by dofr (s) the rth degree of a given
function s.

3.2 Projection operators

Besides (3.1), we need to define other projectors. Regarding restricted quantities, and
in particular, bilinear forms restricted locally to a single element, we will use the
notation BK(·, ·) = B(·, ·)|K for a generic bilinear form B(·, ·). Then, we can define
the energy projection Πε

K : V h(K) → [P1(K)]2 such that

aK
1 (Πε

Kv − v, r) = 0 for all v ∈ V h(K) and r ∈ [P1(K)]2,

mK(Πε
Kv − v, r) = 0 for all r ∈ ker(aK

1 (·, ·)),

where

mK(v, r) := 1

Nv
K

Nv
K∑

i=1

v(Vi) · r(Vi).

Then, using the degree of freedom (Dv1), we can readily compute the bilinear form
mK(v, r) for all r ∈ ker(aK

1 (·, ·)) and v ∈ V h(K).
Next, for all v ∈ V h(K) let us consider the localised form:

aK
1 (v, r) =

∫

K

ε(v) : ε(r) = −
∫

K

v · div(ε(r)
) +

∫

∂K

v · (
ε(r)ne

K

)
ds.
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One readily sees that div(ε(r)) = 0 and ε(r) is constant for all r ∈ [P1(K)]2.
Therefore, the other term can be simply rewritten as [12]:
∫

∂K

v ·(ε(r)ne
K

)
ds =

∑

e∈∂K

{
(
ε(r)ne

K · te
K

) ∫

e

(v · te
K)+(

ε(r)ne
K · ne

K

) ∫

e

(v · ne
K)

}
.

(3.3)
We can compute the first term on the right-hand side of Eq. 3.3 using the degree of
freedom (Dv1) in conjunction with the trapezoidal rule, whereas for the second term
it suffices to use the degrees of freedom (Dv1) and (Dv2) together with a Gauss-
Lobatto quadrature. Thus, �ε

K is computable on V h(K).
We now define the L2-projection on the scalar space as �0

K : L2(K) → P1(K)

such that:
(Π0

Kq − q, r)0,K = 0, q ∈ L2(K), r ∈ P1(K),

and we can clearly verify that Π0
Kqh = Π∇

Kqh, ∀qh ∈ Qh.
Finally, we consider the L2-projection onto the piecewise constant functions,

Π
0,0
K : L2(K) → P0(K) and Π

0,0
K : [L2(K)]2 → [P0(K)]2, for scalar and vector

fields, respectively. We observe that the latter is fully computable on the virtual space
V h(K) [13].

3.3 Discrete bilinear forms and formulations

For all uh, vh ∈ V h(K), and ph, qh ∈ Qh(K), we now define the local discrete
bilinear forms:

ah
1 (uh, vh)|K := aK

1 (Πε
Kuh, Π

ε
Kvh) + SK

1

(
(I − Πε

K)uh, (I − Πε
K)vh

)
,

ah
2 (ph, qh)|K := aK

2 (Π∇
Kph, Π

∇
Kqh) + SK

2

(
(I − Π∇

K)ph, (I − Π∇
K)qh

)
,

ãh
2 (ph, qh)|K := ãK

2 (Π0
Kph, Π

0
Kqh) + SK

0

(
(I − Π0

K)ph, (I − Π0
K)qh

)
,

where the stabilisation of the bilinear forms SK
1 (·, ·), SK

2 (·, ·), SK
0 (·, ·) acting on the

kernel of their respective operators Πε
K, Π∇

K , Π0
K , is defined as:

SK
1 (uh, vh) := σK

1

NV∑

l=1

dofl(uh)dofl(vh), uh, vh ∈ ker(Πε
K);

SK
2 (ph, qh) := σK

2

NQ∑

l=1

dofl(ph)dofl(qh), ph, qh ∈ ker(Π∇
K);

SK
0 (ph, qh) := σK

0 area(K)

NQ∑

l=1

dofl(ph)dofl(qh), ph, qh ∈ ker(Π0
K),

respectively, where σK
1 , σK

2 , and σK
0 are positive multiplicative factors to take into

account the magnitude of the physical parameters (independent of a mesh size). For
example, in our numerical tests, presented in Section ref sec:results , we have chosen
σK

1 , σK
2 and σK

0 as the mean values of the eigenvalues of the matrices generated from
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the bilnear forms aK
1 (Πε

Kuh, Π
ε
Kvh), aK

2 (Π0
Kph, Π

0
Kqh) and (̃a)2(Π

∇
Kph, Π

∇
Kqh),

respectively (see also [11]).
Note that for all vh ∈ V h(K), qh ∈ Qh(K), these stabilising terms satisfy the

following relations (see, e.g., [5, 12]):

α∗aK
1 (vh, vh) ≤ SK

1 (vh, vh) ≤ α∗aK
1 (vh, vh),

ζ∗aK
2 (qh, qh) ≤ SK

2 (qh, qh) ≤ ζ ∗aK
2 (qh, qh),

ζ̃∗ãK
2 (qh, qh) ≤ SK

0 (qh, qh) ≤ ζ̃ ∗ãK
2 (qh, qh), (3.4)

where α∗, α∗, ζ∗, ζ ∗, ζ̃∗, ζ̃ ∗ are positive constants independent of K and hK . Now,
for all uh, vh ∈ V h, ph, qh ∈ Qh, the global discrete bilinear forms are specified as:

ah
1 (uh, vh) :=

∑

K∈Th

ah
1 (uh, vh)|K, ah

2 (ph, qh) :=
∑

K∈Th

ah
2 (ph, qh)|K,

ãh
2 (ph, qh) :=

∑

K∈Th

ãh
2 (ph, qh)|K, b1(vh, φh) :=

∑

K∈Th

bK
1 (vh, φh),

a3(ψh, φh) :=
∑

K∈Th

aK
3 (ψh, φh), b2(qh, φh) :=

∑

K∈Th

bK
2 (qh, φh).

In addition, we observe that:

b2(ph, φh) = α

λ

∑

K∈Th

∫

K

phφh = α

λ

∑

K∈Th

∫

K

�0
Kphφh. (3.5)

On the other hand, the discrete linear functionals, defined on each element K , are

Fh(vh)|K := ρ

∫

K

bh(·, t) · vh, vh ∈ V h;

Gh(qh)|K :=
∫

K

�h(·, t)qh, qh ∈ Qh,

where the discrete load and volumetric source are given by:

bh(·, t)|K := Π
0,0
K b(·, t), �h(·, t)|K := �0

K�(·, t).
In view of Eq. 3.4, the discrete bilinear forms ah

1 (·, ·), ãh
2 (·, ·) and ah

2 (·, ·) are coercive
and bounded in the following manner [5, 9, 51]:

ah
1 (uh, uh) ≥ min{1, α∗} 2μ ‖ε(uh)‖2

0 for all uh ∈ V h,

ah
2 (qh, qh) ≥ min{1, ζ∗} κmin

η
‖∇qh‖2

0 for all qh ∈ Qh,

ãh
2 (qh, qh) ≥ min{1, ζ̃∗}

(
c0 + α2

λ

)
‖qh‖2

0 for all qh ∈ Qh,

ah
1 (uh, vh) ≤ max{1, α∗} 2μ ‖ε(uh)‖0‖ε(vh)‖0 for all uh, vh ∈ V h,

ah
2 (ph, qh) ≤ max{1, ζ ∗} κmax

η
‖∇ph‖0‖∇qh‖0 for all ph, qh ∈ Qh,

ãh
2 (ph, qh) ≤ max{1, ζ̃ ∗}

(
c0 + α2

λ

)
‖ph‖0‖qh‖0 for all ph, qh ∈ Qh.
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Moreover, by using definitions of the operators Π
0,0
K and Π0

K , we may deduce that
the following bounds hold for the linear functionals:

Fh(vh) ≤ ρ‖b‖0‖vh‖0 for all vh ∈ V h,

Gh(qh) ≤ ‖�‖0‖qh‖0 for all qh ∈ Qh.

We also recall that the bilinear form b1(·, ·) satisfies the following discrete inf-sup
condition on V h × Zh: there exists β̃ > 0, independent of h, such that (see [5]):

sup
vh(
=0)∈V h

b1(vh, φh)

‖vh‖1
≥ β̃‖φh‖0 for all φh ∈ Zh. (3.6)

The semi-discrete virtual element formulation is now defined as follows: For
all t > 0, given uh(0), ph(0), ψh(0), find uh ∈ L2((0, tfinal], V h), ph ∈
L2((0, tfinal], Qh), ψh ∈ L2((0, tfinal], Zh) with ∂tph ∈ L2((0, tfinal], Qh), ∂tψh ∈
L2((0, tfinal], Zh) such that:

ah
1 (uh, vh) + b1(vh, ψh) = Fh(vh) ∀vh ∈ V h, (3.7a)

ãh
2 (∂tph, qh) + ah

2 (ph, qh) − b2(qh, ∂tψh) = Gh(qh) ∀qh ∈ Qh, (3.7b)

b1(uh, φh) + b2(ph, φh) − a3(ψh, φh) = 0 ∀φh ∈ Zh. (3.7c)

The following result will be used for proving the stability and establishing the error
estimates for the semi-discrete scheme without employing Gronwall’s inequality. For
a detailed proof, we refer to [37, Lemma 3.2].

Lemma 3.1 Let X(t) be a continuous function, and consider the non-negative
functions F(t) and D(t) satisfying, for constants C0 ≥ 1 and C1 > 0, the bound

X2(t) ≤ C0X
2(0) + C1X(0) + D(t) +

∫ t

0
F(s)X(s) ds, ∀ t ∈ [0, tfinal].

Then, for each t ∈ [0, tfinal], there holds:

X(t) � X(0) + max

{
C1 +

∫ t

0
F(s) ds, D(t)1/2

}
. (3.8)

Note that squaring both sides of Eq. 3.8 and using Cauchy–Schwarz inequality,
we can rewrite Eq. 3.8 in the following manner:

X(t)2 � X(0)2 + max

{
C2

1 +
∫ t

0
F(s)2 ds, D(t)

}
. (3.9)

Now, we establish the stability of Eq. 3.7.

Theorem 3.1 (Stability of the semi-discrete problem) Let (uh(t), ph(t), ψh(t)) be
a solution of Eq. 3.7 for each t ∈ (0, tfinal]. Then, there exists a constant C > 0
independent of c0, λ, and h, such that

μ ‖ε(uh(t))‖2
0 + c0‖ph(t)‖2

0 + ‖ψh(t)‖2
0 + κmin

η

∫ t

0
‖∇ph(s)‖2

0 ds (3.10)
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≤ C

(
μ‖ε(uh(0))‖2

0 +
(

c0 + α2

λ

)
‖ph(0)‖2

0 + 1

λ
‖ψh(0)‖2

0 +
∫ t

0
‖∂tb(s)‖2

0 ds

+ sup
t∈[0,tfinal]

‖b(t)‖2
0 +

∫ t

0
‖�(s)‖2

0 ds

)
.

Proof. Following [37], we can differentiate (3.7c) with respect to time and choose
as test function φh = −ψh. We get

−b1(∂tuh, ψh) − b2(∂tph, ψh) + a3(∂tψh, ψh) = 0.

Then, we take qh = ph in Eq. 3.7b, vh = ∂tuh in Eq. 3.7a and add the result to
the previous relation to obtain:

ah
1 (uh, ∂tuh) + b1(∂tuh, ψh) + ãh

2 (∂tph, ph) + ah
2 (ph, ph) − b2(ph, ∂tψh)

−b1(∂tuh, ψh) − b2(∂tph, ψh) + a3(∂tψh, ψh) = Fh(∂tuh) + Gh(ph).

Using the stability of the bilinear forms ah
1 (·, ·), ah

2 (·, ·), and SK
0 (·, ·) as well as the

definition of the discrete bilinear forms b1(·, ·) (cf. (3.5) and ãh
2 (·, ·), we readily have:

μ

2

d

dt
‖ε(uh)‖2

0 + c0

2

d

dt
‖ph‖2

0 + κmin

η
‖∇ph‖2

0 + 1

λ
‖ψh‖2

0,K

+
∑

K

(
α2

λ

((
∂t (Π

0
Kph), Π

0
Kph

)

0,K
+ SK

0

(
(I − Π0

K)∂tph, (I − Π0
K)ph

))

−α

λ

(
(Π0

Kph, ∂tψh)0,K +
(
∂t (Π

0
Kph), ψh

)

0,K

))

� Fh(∂tuh) + Gh(ph). (3.11)

Rearranging terms on the left-hand side gives:

μ

2

d

dt
‖ε(uh)‖2

0 + κmin

η
‖∇ph‖2

0 + c0

2

d

dt
‖ph‖2

0

+1

λ

∑

K

((
∂t (α�0

Kph − ψh), (α�0
Kph − ψh)

)
0,K

+α2

2

d

dt
SK

0

(
(I − �0

K)ph, (I − �0
K)ph

))
� Fh(∂tuh) + Gh(ph),

and after exploiting the stability of SK
0 (·, ·) and integrating from 0 to t , we arrive at:

μ‖ε(uh(t))‖2
0 + c0‖ph(t)‖2

0 + α2

λ

∑

K

‖(I − Π0
K)ph(t)‖2

0,K

+1

λ

∑

K

‖(αΠ0
Kph − ψh)(t)‖2

0,K + κmin

η

∫ t

0
‖∇ph(s)‖2

0 ds

≤ μ‖ε(uh(0))‖2
0 + c0‖ph(0)‖2

0
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+α2

λ

∑

K

‖(I − Π0
K)ph(0)‖2

0,K + 1

λ

∑

K

‖(αΠ0
Kph − ψh)(0)‖2

0,K

+C

(
ρ

∫ t

0

∑

K

(
b(s), Π

0,0
K ∂tuh(s)

)
0,K

ds

︸ ︷︷ ︸
=:T1

+
∫ t

0

∑

K

(
�(s), Π0

Kph(s)
)

0,K
ds

︸ ︷︷ ︸
=:T2

)
.

Then, integrating by parts (with respect to time) and applying the Korn, Poincaré,
and Young inequalities imply that

T1 = ρ
∑

K

((
b(t), Π

0,0
K uh(t)

)
0,K

− (
b(0), Π

0,0
K uh(0)

)
0,K

)

−ρ

∫ t

0

∑

K

(
∂tb(s), Π

0,0
K uh(s)

)
0,K

ds

≤ μ‖ε(uh(t))‖2
0 + C1ρ

(
ρ

μ
‖b(t)‖2

0 + ‖b(0)‖0‖ε(uh(0))‖0

+
∫ t

0
‖∂tb(s)‖0‖ε(uh(s))‖0 ds

)
.

In turn, the bound for T2 follows from the Cauchy-Schwarz, Poincaré, and Young
inequalities in the following manner:

T2 =
∫ t

0

∑

K

(�(s), Π0
Kph(s))0,K ds

≤
∫ t

0
‖�(s)‖0‖ph(s)‖0 ds ≤ C2

η

κmin

∫ t

0
‖�(s)‖2

0 ds + κmin

2η

∫ t

0
‖∇ph(s)‖2

0 ds.

Thus, we achieve:

μ‖ε(uh(t))‖2
0 + c0‖ph(t)‖2

0 + α2

λ

∑

K

‖(I − Π0
K)ph(t)‖2

0,K

+1

λ

∑

K

‖(α�0
Kph − ψh)(t)‖2

0,K + κmin

2η

∫ t

0
‖∇ph(s)‖2

0 ds

≤ μ‖ε(uh(0))‖2
0 + c0‖ph(0)‖2

0 + α2

λ

∑

K

‖(I − Π0
K)ph(0)‖2

0,K

+1

λ

∑

K

‖(αΠ0
Kph − ψh)(0)‖2

0,K + C

(∫ t

0
‖�(s)‖2

0 ds +
(
‖b(t)‖2

0

+‖b(0)‖0‖ε(uh(0))‖0 +
∫ t

0
‖∂tb(s)‖0‖ε(uh(s))‖0 ds

))
. (3.12)

Let X2(t) denote the lower bound in the inequality (3.12) and choose C0 = 1,
C1 = C‖b(0)‖0, F(t) = C‖∂tb(t)‖0, and D(t) = C(‖b(t)‖2

0 + ∫ t

0 ‖�(s)‖2
0 ds) in
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Lemma 3.1. Then, Eq. 3.9 enables us to write:

μ‖ε(uh(t))‖2
0 + c0‖ph(t)‖2

0 + α2

λ

∑

K

‖(I − Π0
K)ph(t)‖2

0,K

+1

λ

∑

K

‖(αΠ0
Kph − ψh)(t)‖2

0,K + κmin

2η

∫ t

0
‖∇ph(s)‖2

0 ds

� μ‖ε(uh(0))‖2
0 + c0‖ph(0)‖2

0 + α2

λ

∑

K

‖(I − Π0
K)ph(0)‖2

0,K

+1

λ

∑

K

‖(αΠ0
Kph − ψh)(0)‖2

0,K + ‖b(t)‖2
0 + ‖b(0)‖2

0

+
∫ t

0
(‖�(s)‖2

0 + ‖∂tb(s)‖2
0) ds. (3.13)

On the other hand, the discrete inf-sup condition (3.6) along with Eq. 3.7a gives:

‖ψh‖0 ≤ sup
vh(
=0)∈V h

1

‖vh‖1

(
Fh(vh) − ah

1 (uh, vh)
)≤C

(‖b‖0 + ‖ε(uh)‖0
)
. (3.14)

And then note that inequality (3.13) together with Eq. 3.14 concludes the proof of
Eq. 3.10. Moreover, we observe from Eq. 3.12 that the generic constant C appearing
in Eq. 3.10 is independent of c0, λ. Therefore, the proved stability remains valid even
with c0 → 0, λ → ∞. �

The energy estimates (3.10) help us in obtaining the following result.

Corollary 1 (Solvability of the discrete problem) The problem (3.7) has a unique
solution in V h × Qh × Zh for each t ∈ (0, tfinal].

Proof. Let uh(t) := ∑NV

i=1 Ui(t)ξi , ph(t) := ∑NQ

j=1 Pj (t)χj , ψh(t) := ∑NZ

l=1 Zl

(t)�l where ξi(1 ≤ i ≤ NV ), χj (1 ≤ j ≤ NQ), �l(1 ≤ l ≤ NZ , where NZ

coincides with the number of elements in Th) are the basis functions for the spaces
V h, Qh, Zh respectively. Then, Eq. 3.7 can be written as the following system of
first-order differential equations:

⎛

⎝
0 0 0
0 Ã2 −B2
0 0 0

⎞

⎠

︸ ︷︷ ︸
=:A

⎛

⎝
U̇ (t)

Ṗ (t)

Ż(t)

⎞

⎠ +
⎛

⎝
A1 0 B1
0 A2 0

B1 B2 −A3

⎞

⎠

︸ ︷︷ ︸
=:B

⎛

⎝
U(t)

P (t)

Z(t)

⎞

⎠ =
⎛

⎝
F (t)

G(t)

0

⎞

⎠ . (3.15)

In view of the classical theory of linear systems of differential equations, (3.15)
possesses a unique solution if the matrix A + B is invertible (see also [53]). To
achieve this, we first rewrite the following problem corresponding to the matrix
A + B: For (Lh

1, Lh
2, Lh

3) ∈ V ′
h × Q′

h × Z′
h, find uh ∈ V h, ph ∈ Qh, qh ∈ Zh such

that

ah
1 (uh, vh) + b1(vh, ψh) = Lh

1(vh) ∀vh ∈ V h, (3.16a)

ãh
2 (ph, qh) + ah

2 (ph, qh) − b2(qh, ψh) = Lh
2(qh) ∀qh ∈ Qh, (3.16b)

b1(uh, φh) + b2(ph, φh) − a3(ψh, φh) = Lh
3(φh) ∀φh ∈ Zh. (3.16c)
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Now, the unique solvability of Eq. 3.16 (and the invertibility of the matrix A + B)
can be established by showing that the homogenous counterpart of system (3.16) has
only the trivial solution. Setting to zero the functionals defining the right-hand side
of Eq. 3.16, i.e., Lh

1(vh) = Lh
2(qh) = Lh

3(φh) = 0, and choosing vh = uh, φh =
ψh, qh = ph in Eq. 3.16, we readily obtain the following bounds by proceeding in
the similar fashion (using the coercivity of ah

1 (·, ·), ah
2 (·, ·), Young’s inequality and

definition of ãh
2 (·, ·), b2(·, ·), ah

3 (·, ·)) as in the proof of Eq. 3.10:

μ‖ε(uh)‖2
0 + κmin

η
‖∇ph‖2

0 ≤ 0,

and hence an application of the Poincaré and Korn inequalities together with the
inf-sup condition of b1(·, ·) yields uh = 0, ph = 0 and ψh = 0. �

Next, we discretise in time using the backward Euler method with the constant
step size Δt = tfinal/N and denote any function f at t = tn by f n. The fully discrete
scheme reads:

Given u0
h, p0

h, ψ0
h , and for tn = nΔt , n = 1, . . . , N , find un

h ∈ V h,

pn
h ∈ Qh and ψn

h ∈ Zh such that for all vh ∈ V h, qh ∈ Qh and φh ∈ Zh

ah
1 (un

h, vh) + b1(vh, ψ
n
h ) = Fh,n(vh), (3.17a)

ãh
2

(
pn

h, qh

) + Δtah
2 (pn

h, qh) − b2
(
qh, ψ

n
h

) = ΔtGh,n(qh)

+ãh
2

(
pn−1

h , qh

)
− b2

(
qh, ψ

n−1
h

)
, (3.17b)

b1(u
n
h, φh) + b2(p

n
h, φh) − a3(ψ

n
h , φh) = 0, (3.17c)

where for all vh ∈ V h and qh ∈ Qh we define

Fh,n(vh)|K := ρ

∫

K

bh(t
n) · vh, Gh,n(qh)|K :=

∫

K

�h(t
n)qh.

With the aim of showing the stability and convergence of the fully discrete scheme,
we provide first the following auxiliary result. A proof, sketched below, follows
similarly as in [36, Lemma 3.2].

Lemma 3.2 Let Xn, 1 ≤ n ≤ N be a finite sequence of functions with non-negative
constants C0, C1 and finite sequences Dn and Gn such that

X2
n ≤ C0X

2
0 + C1X0 + Dn +

n∑

j=1

GjXj for all 1 ≤ n ≤ N .

Then, there holds

X2
n � X2

0 + max

⎧
⎨

⎩
C2

1 +
n∑

j=1

G2
j , Dn

⎫
⎬

⎭
for all 1 ≤ n ≤ N . (3.18)

Proof. It is sufficient to show that the relation holds for n, which is the smallest
integer such that Xn = max1≤i≤N Xi . There can be two possibilities, namely either
(i) C1X0 + ∑n

j=1 GjXj ≤ Dn, or (ii) Dn > C1X0 + ∑n
j=1 GjXj . In case (i),
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the bound (3.18) trivially holds. In case (ii), using the upper bound Xn and Young’s
inequality yields:

X2
n ≤ C0X

2
0 + 2

⎛

⎝C1X0 +
n∑

j=1

GjXj

⎞

⎠ �

⎛

⎝C0X0 + 2

⎛

⎝C1 +
n∑

j=1

Gj

⎞

⎠

⎞

⎠ Xn

≤ 1

2

⎛

⎝C0X0 + 2

⎛

⎝C1 +
n∑

j=1

Gj

⎞

⎠

⎞

⎠

2

+ 1

2
X2

n.

Now taking the common term of X2
n together and squaring the remaining terms on

the right-hand side completes the proof. �

Theorem 3.2 (Stability of the fully discrete problem) The unique solution to prob-
lem (3.17) depends continuously on data. More precisely, there exists a constant C

independent of c0, λ, h, and Δt such that

μ‖ε(un
h)‖2

0 + c0‖pn
h‖2

0 + ‖ψn
h‖2

0 + (Δt)
κmin

η

n∑

j=1

‖∇p
j
h‖2

0

≤ C

(
μ‖ε(u0

h)‖2
0 +

(
c0 + α2

λ

)
‖p0

h‖2
0 + 1

λ
‖ψ0

h‖2
0 + max

0≤j≤n
‖bj‖2

0

+ (Δt)

n∑

j=1

(
‖∂tb

j‖2
0 + ‖�j‖2

0

)
+ (Δt)2

∫ T

0
‖∂ttb(s)‖2

0 ds

)
, (3.19)

with bk := b(·, tk) and �k := �(·, tk), for k = 1, . . . , n.

Proof. Taking vh = un
h − un−1

h in Eq. 3.17a gives

ah
1 (un

h, u
n
h − un−1

h ) + b1(u
n
h − un−1

h , ψn
h ) = Fh,n(un

h − un−1
h ). (3.20)

A use of Eq. 3.7c for the timestep n, n−1 and setting φh = −ψn
h , (3.17c) becomes

− b1(u
n
h − un−1

h , ψn
h ) − b2(p

n
h − pn−1

h , ψn
h ) + a3(ψ

n
h − ψn−1

h , ψn
h ) = 0. (3.21)

Adding Eqs. 3.21 and 3.20 readily gives

ah
1 (un

h, u
n
h − un−1

h ) + a3(ψ
n
h − ψn−1

h , ψn
h ) − b2(p

n
h − pn−1

h , ψn
h )

= Fh,n(un
h − un−1

h ), (3.22)

and choosing qh = pn
h in Eq. 3.17b implies the relation

ãh
2 (pn

h − pn−1
h , pn

h) + Δt ah
2 (pn

h, pn
h) − b2(p

n
h, ψn

h − ψn−1
h ) = Δt Gh,n(pn

h). (3.23)

Next, we proceed to adding Eqs. 3.22 and (3.23), to get

ah
1 (un

h, u
n
h − un−1

h ) + Δt ah
2 (pn

h, pn
h) + a3(ψ

n
h − ψn−1

h , ψn
h )

+ãh
2 (pn

h − pn−1
h , pn

h) − b2(p
n
h − pn−1

h , ψn
h ) − b2(p

n
h, ψn

h − ψn−1
h )

= Fh,n(un
h − un−1

h ) + Δt Gh,n(pn
h).
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Repeating a similar argument as the one used to obtain (3.11), together with the
inequality:

(f n
h − f n−1

h , f n
h ) ≥ 1

2

(‖f n
h ‖2

0 − ‖f n−1
h ‖2

0

)
, (3.24)

for any discrete function f
j
h , j = 1, . . . , n, we arrive at

μ

2
(‖ε(un

h)‖2
0 − ‖ε(un−1

h )‖2
0) + (Δt)

κmin

η
‖∇pn

h‖2
0

+1

2

∑

K

c0(‖Π0
Kpn

h‖2
0,K − ‖Π0

Kpn−1
h ‖2

0,K)

+1

2

(
c0 + α2

λ

) ∑

K

(‖(I − Π0
K)pn

h‖2
0,K − ‖(I − �0

K)pn−1
h ‖2

0,K)

+ 1

2λ

∑

K

(‖αΠ0
Kpn

h − ψn
h‖2

0,K − ‖αΠ0
Kpn−1

h − ψn−1
h ‖2

0,K)

� (Δt)(ρ(bn
h, Δtu

n
h)0,Ω + (�n

h, p
n
h)0,Ω),

where we have denoted Δtfh(tn) := fh(tn)−fh(tn−1)

Δt
for any time-space discrete

function fh. Summing over n, we obtain:
μ

2
(‖ε(un

h)‖2
0 − ‖ε(u0

h)‖2
0) + (Δt)

κmin

η

n∑

j=1

‖∇p
j
h‖2

0

+1

2

∑

K

c0(‖Π0
Kpn

h‖2
0,K − ‖Π0

Kp0
h‖2

0,K)

+1

2

(
c0 + α2

λ

) ∑

K

(‖(I − Π0
K)pn

h‖2
0,K − ‖(I − Π0

K)p0
h‖2

0,K)

+ 1

2λ

∑

K

(‖αΠ0
Kpn

h − ψn
h‖2

0,K − ‖αΠ0
Kp0

h − ψ0
h‖2

0,K)

� ρ(Δt)

n∑

j=1

(b
j
h, Δtu

j
h)0,Ω

︸ ︷︷ ︸
=:J1

+ (Δt)

n∑

j=1

(�
j
h, p

j
h)0,Ω

︸ ︷︷ ︸
=:J2

.

Using the equality:
n∑

j=1

(f
j
h − f

j−1
h , g

j
h) = (f n

h , gn
h) − (f 0

h , g0
h) −

n∑

j=1

(f
j−1
h , g

j
h − g

j−1
h ), (3.25)

for any discrete functions f
j
h , g

j
h , j = 1, . . . , n, along with Taylor expansion,

Cauchy–Schwarz, Korn’s inequality, and generalised Young’s inequality gives:

J1 = ρ
(
(bn

h, u
n
h)0,Ω − (b0

h, u
0
h)0,Ω −

n∑

j=1

(b
j
h − b

j−1
h , u

j−1
h )0,Ω

)

= ρ
(
(bn

h, u
n
h)0,Ω − (b0

h, u
0
h)0,Ω − Δt

n∑

j=1

(∂tb
j
h, u

j−1
h )0,Ω
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+
n∑

j=1

( ∫ tj

tj−1

(s − tj−1)∂ttbh(s) ds, u
j−1
h

)

0,Ω

)

≤ μ‖ε(u0
h)‖2

0 + μ

4
‖ε(un

h)‖2
0 + C(ρ, μ) max

0≤j≤n
‖bj‖2

0

+C(ρ)(Δt)

n∑

j=1

(
‖∂tb

j‖0 +
(
(Δt)

∫ tj

tj−1

‖∂ttb(s)‖2
0 ds

)1/2)‖ε(u
j−1
h )‖0.

Another application of Young’s inequality yields:

J2 ≤ C2(η, κmin)(Δt)

n∑

j=1

‖�j‖2
0 + (Δt)

κmin

2η

n∑

j=1

‖pj
h‖2

0.

The bounds obtained for J1, J2, �0
K and use of Lemma 3.2 imply

μ‖ε(un
h)‖2

0 + c0‖pn
h‖2

0 + (Δt)
κmin

η

n∑

j=1

‖∇p
j
h‖2

0 (3.26)

+
(α2

λ

) ∑

K

‖(I − Π0
K)pn

h‖2
0,K + 1

λ

∑

K

‖αΠ0
Kpn

h − ψn
h‖2

0,K

� μ‖ε(u0
h)‖2

0 +
(
c0 + α2

λ

)
‖p0

h‖2
0 + 1

λ
‖ψ0

h‖2
0 + max

0≤j≤n
‖bj‖2

0

+(Δt)

n∑

j=1

‖�j‖2
0 (3.27)

+(Δt)2
( n∑

j=1

‖∂tb
j‖2

0 + (Δt)

∫ T

0
‖∂ttb(s)‖2

0 ds
)

.

An application of Eq. 3.6 together with Eq. 3.17a yields

‖ψn
h‖0 ≤ C(‖bn‖0 + ‖ε(un

h)‖0). (3.28)

Finally, the bound (3.26) together with Eq. 3.28 concludes (3.19). �
It is worth pointing out that the proof is particularly delicate since the stabilisa-

tion term requires a careful treatment in order to guarantee that the bounds remain
independent of the stability constants of the bilinear form ã2(·, ·).

Corollary 2 (Solvability of the fully discrete problem) The problem (3.17) has a
unique solution in V h × Qh × Zh.

Proof. It is sufficient to show that the homogeneous linear system corresponding
to Eq. 3.17 has only a trivial solution, since V h, Qh, and Zh are finite-dimensional
spaces, and this can easily be shown by proceeding analogously to the proof of
Corollary 1. �
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4 A priori error estimates

For the sake of error analysis, we require additional regularity: In particular, for any
t > 0, we consider that the displacement is u(t) ∈ [H 2(Ω)]2, the fluid pressure
p(t) ∈ H 2(Ω), and the total pressure ψ(t) ∈ H 1(Ω). Furthermore, our subsequent
analysis also requires the following regularity in time: ∂tu ∈ L2(0, T ; [H 2(Ω)]2),
∂tp ∈ L2(0, T ; H 2(Ω)), ∂tψ ∈ L2(0, T ; H 1(Ω)), ∂ttu ∈ L2(0, T ; [L2(Ω)]2), and
∂ttp, ∂ttψ ∈ L2(0, T ; L2(Ω)).

We start by recalling an estimate for the interpolant uI ∈ V h of u and pI ∈ Qh

of p (see [5, 21, 22, 42]).

Lemma 4.1 There exist interpolants uI ∈ V h and pI ∈ Qh of u and p, respectively,
such that

‖u − uI‖0 + h|u − uI |1 ≤ Ch2|u|2, ‖p − pI‖0 + h|p − pI |1 ≤ Ch2|p|2.

We now introduce the poroelastic projection operator: given (u, p, ψ) ∈ V ×Q×
Z, find Ih := (Ih

uu, I h
pp, Ih

ψψ) ∈ V h × Qh × Zh such that

ah
1 (Ih

uu, vh) + b1(vh, I
h
ψψ) = a1(u, vh) + b1(vh, ψ) for all vh ∈ V h, (4.1a)

b1(I
h
uu, φh) = b1(u, φh) for all φh ∈ Zh, (4.1b)

ah
2 (Ih

pp, qh) = a2(p, qh) for all qh ∈ Qh, (4.1c)

and we remark that Ih is defined by the combination of the saddle-point problem
(4.1a), (4.1b), and the elliptic problem (4.1c); and hence, it is well-defined.

Theorem 4.1 (Estimates for the poroelastic projection) Let (u, p, ψ) and
(Ih

uu, I h
pp, Ih

ψψ) be the unique solutions of Eqs. 3.7a– 3.7c and Eqs. 4.1a, 4.1b,
respectively. Then, the following estimates hold:

‖u − Ih
uu‖1 + ‖ψ − Ih

ψψ‖0 ≤ Ch(|u|2 + |ψ |1), (4.2a)

‖p − Ih
pp‖0 + h‖p − Ih

pp‖1 ≤ Ch2|p|2. (4.2b)

Proof. The estimates available for discretisations of Stokes [5] and elliptic prob-
lems [10] conclude the statement. �

Remark 4.1 Note that repeating the same arguments exploited in this and in the
subsequent sections, it is possible to derive error estimates of order hs . It suffices
to assume that u(t) ∈ [H 1+s(Ω)]2, p(t) ∈ H 1+s(Ω), and ψ(t) ∈ Hs(Ω), for
0 < s ≤ 1.

Theorem 4.2 (Semi-discrete energy error estimates) Let the triplets (u(t), p(t),

ψ(t)) ∈ V × Q × Z and (uh(t), ph(t), ψh(t)) ∈ V h × Qh × Zh be the unique
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solutions to problems (2.3a)–(2.3c) and Eqs. 3.7a– 3.7c, respectively. Then, the
following bounds hold, with constants C > 0 independent of h, λ, and c0,

μ‖ε((u − uh)(t))‖2
0 + ‖(ψ − ψh)(t)‖2

0 + κmin

η

∫ t

0
‖∇(p − ph)(s)‖2

0 ds ≤ C h2.

Proof. Invoking the Scott-Dupont Theory (see [19]) for the polynomial approxi-
mation: there exists a constant C > 0 such that for every s with 0 ≤ s ≤ 1 and for
every u ∈ H 1+s(K), there exists uπ ∈ Pk(K), k = 0, 1, such that

‖u − uπ‖0,K + hK |u − uπ |1,K ≤ Ch1+s
K |u|1+s,K for all K ∈ Th. (4.3)

We can then write the displacement and total pressure error in terms of the poro-
elastic projector as follows:

(u − uh)(t) = (u − Ih
uu)(t) + (Ih

uu − uh)(t) := eI
u(t) + eA

u (t),

(ψ − ψh)(t) = (ψ − Ih
ψψ)(t) + (Ih

ψψ − ψh)(t) := eI
ψ(t) + eA

ψ(t).

Then, a combination of Eqs. 4.1a, 3.7a, and 2.3a gives

ah
1 (eA

u , vh)+b1(vh, e
A
ψ) = (a1(u, vh)−ah

1 (uh, vh))+b1(vh, ψ−ψh) = (F−Fh)(vh),

and taking as test function vh = ∂t e
A
u , we can write the relation:

ah
1 (eA

u , ∂t e
A
u ) + b1(∂t e

A
u , eA

ψ) = (F − Fh)(∂t e
A
u ). (4.4)

Now, we write the pressure error in terms of the poroelastic projector as follows:

(p − ph)(t) = (p − Ih
pp)(t) + (Ih

pp − ph)(t) := eI
p(t) + eA

p (t).

Using Eqs. 4.1c, 3.7b, and 2.3b, we obtain:

ãh
2 (∂t e

A
p , qh) + ah

2 (eA
p , qh) − b2(qh, ∂t e

A
ψ)

= ãh
2 (∂t I

h
pp, qh) + a2(p, qh) − b2(qh, ∂t I

h
ψψ) − Gh(qh)

= (ãh
2 (∂t I

h
pp, qh) − ã2(∂tp, qh)) + b2(qh, ∂t e

I
ψ) + (G − Gh)(qh).

We can take qh = eA
p , which leads to

ãh
2 (∂t e

A
p , eA

p ) + ah
2 (eA

p , eA
p ) − b2(e

A
p , ∂t e

A
ψ)

= (ãh
2 (∂t I

h
pp, eA

p ) − ã2(∂tp, eA
p )) + b2(e

A
p , ∂t e

I
ψ) + (G − Gh)(eA

p ). (4.5)

Next we use Eqs. 4.1b, 3.7c, and 2.3c, and this implies

b1(e
A
u , φh) + b2(e

A
p , φh) − a3(e

A
ψ, φh)

= b1(I
h
uu, φh) + b2(I

h
pp, φh) − a3(I

h
ψψ, φh)

= b1(u, φh) + b2(I
h
pp, φh) − a3(I

h
ψψ, φh) = −b2(e

I
p, φh) + a3(e

I
ψ , φh).

Differentiating the above equation with respect to time and taking φh = −eA
ψ , we

can assert that

−b1(∂t e
A
u , eA

ψ)−b2(∂t e
A
p , eA

ψ)+a3(∂t e
A
ψ, eA

ψ) = b2(∂t e
I
p, eA

ψ)−a3(∂t e
I
ψ , eA

ψ). (4.6)
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Then, we simply add Eqs. 4.4, 4.5, and 4.6, to obtain

ah
1 (eA

u , ∂t e
A
u ) + ãh

2 (∂t e
A
p , eA

p ) + ah
2 (eA

p , eA
p )

+a3(∂t e
A
ψ, eA

ψ) − b2(e
A
p , ∂t e

A
ψ) − b2(∂t e

A
p , eA

ψ)

= (F − Fh)(∂t e
A
u ) + (ãh

2 (∂t I
h
pp, eA

p ) − ã2(∂tp, eA
p ))

+b2(e
A
p , ∂t e

I
ψ) + (G − Gh)(eA

p ) + b2(∂t e
I
p, eA

ψ) − a3(∂t e
I
ψ , eA

ψ). (4.7)

Regarding the left-hand side of Eq. 4.7, repeating arguments to obtain alike to
Eq. 3.11. That is,

ah
1 (eA

u , ∂t e
A
u ) + ãh

2 (∂t e
A
p , eA

p ) + ah
2 (eA

p , eA
p ) + a3(∂t e

A
ψ, eA

ψ) − b2(e
A
p , ∂t e

A
ψ)

−b2(∂t e
A
p , eA

ψ)

≥ 1

2

d

dt
ah

1 (eA
u , eA

u ) + c0

2

d

dt
‖eA

p ‖2
0 + ah

2 (eA
p , eA

p )

+1

λ

∑

K

(
α2(∂t (Π

0
KeA

p ), �0
KeA

p

)
0,K

+ α2SK
0

(
(I − Π0

K)∂t e
A
p , (I − Π0

K)eA
p

)

+(∂t e
A
ψ, eA

ψ)0,K − α(Π0
KeA

p , ∂t e
A
ψ)0,K − α(Π0

K∂te
A
p , eA

ψ)0,K

)

≥ C

(
μ

d

dt
‖ε(eA

u )‖2
0 + c0

d

dt
‖eA

p ‖2
0 + 2κmin

η
‖∇eA

p ‖2
0

+1

λ

∑

K

(
α2 d

dt
‖(I − Π0

K)eA
p ‖2

0,K + d

dt
‖αΠ0

KeA
p − eA

ψ‖2
0,K

))
.

Then integrating (4.7) in time and consistency of the bilinear term ã2(·, ·) implies
the bound:

μ‖ε(eA
u (t))‖2

0 + c0‖eA
p (t)‖2

0 + κmin

η

∫ t

0
‖∇eA

p (s)‖2
0 ds

+1

λ

∑

K

(
α2‖(I − Π0

K)eA
p (t)‖2

0,K + ‖(αΠ0
KeA

p − eA
ψ)(t)‖2

0,K

)

� μ‖ε(eA
u (0))‖2

0 + c0‖eA
p (0)‖2

0

+1

λ

∑

K

(
α2‖(I − Π0

K)eA
p (0)‖2

0,K + ‖(αΠ0
KeA

p − eA
ψ)(0)‖2

0,K

)

+ ρ

∫ t

0

(
(b − bh)(s), ∂t e

A
u (s)

)
0,Ω

ds

︸ ︷︷ ︸
=:D1

+
∫ t

0

(
(� − �h)(s), eA

p (s)
)

0,Ω
ds

︸ ︷︷ ︸
=:D2

+
∫ t

0

∑

K

(
ã

h,K
2

(
∂t (I

h
pp − pπ)(s), eA

p (s)
) − ãK

2

(
∂t (p − pπ)(s), eA

p (s)
))

ds

︸ ︷︷ ︸
=:D3
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+
∫ t

0

(
b2

(
eA
p (s), ∂t e

I
ψ(s)

) + b2
(
∂t e

I
p(s), eA

ψ(s)
) − a3

(
∂t e

I
ψ(s), eA

ψ(s)
))

ds

︸ ︷︷ ︸
=:D4

.

Then we can integrate by parts (also in time), use Cauchy-Schwarz inequality and
Young’s inequality to arrive at

D1 = ρ

(
(
(b − bh)(t), eA

u (t)
)

0,Ω
− (

(b − bh)(0), eA
u (0)

)
0,Ω

−
∫ t

0

(
∂t (b − bh)(s), eA

u (s)
)

0,Ω
ds

)

≤ μ

2
‖ε(eA

u (t))‖2
0 + C1(ρ, μ)h

×
(

h|b(t)|21 + |b(0)|1‖eA
u (0)‖0 +

∫ t

0
|∂tb(s)|1‖eA

u (s)‖0 ds

)
,

where we have used standard error estimate for the L2-projection Π
0,0
K onto

piecewise constant functions. Using also Cauchy-Schwarz inequality, standard error
estimates for Π0

K on the term D2, Young’s and Poincaré inequalities readily give:

D2 ≤ Ch

∫ t

0
|�(s)|1‖eA

p (s)‖0 ds ≤ C2h
2
∫ t

0
|�(s)|21 ds + κmin

6η

∫ t

0
‖∇eA

p (s)‖2
0 ds.

On the other hand, considering the polynomial approximation pπ (cf.(4.3)) of p,
utilising the triangle inequality, Young’s and Poincaré inequalities yield:

D3 ≤ C

(
c0 + α2

λ

)∫ t

0

∑

K

(
‖∂t (I

h
pp − pπ)(s)‖0,K + ‖∂t (p − pπ)(s)‖0,K

)

‖eA
p (s)‖0,K ds

≤ Ch2
(

c0 + α2

λ

)∫ t

0
|∂tp(s)|2‖eA

p (s)‖0 ds

≤ C3h
4
(

c0 + α2

λ

)2∫ t

0
|∂tp(s)|22 ds + κmin

6η

∫ t

0
‖∇eA

p (s)‖2
0 ds.

Also,

D4 =
∫ t

0

(
b2

(
eA
p (s), ∂t e

I
ψ(s)

) + b2
(
∂t e

I
p(s), eA

ψ(s)
) − a3

(
∂t e

I
ψ(s), eA

ψ(s)
))

ds

≤ 1

λ

∫ t

0

(
α‖eA

p (s)‖0‖∂t e
I
ψ(s)‖0 + (

α‖∂t e
I
p(s)‖0 + ‖∂t e

I
ψ(s)‖0

)‖eA
ψ(s)‖0

)
ds

≤ C

λ
h

∫ t

0

(
α‖eA

p (s)‖0(|∂tψ(s)|1 + |∂tu(s)|2)

+(αh|∂tp(s)|2 + |∂tψ(s)|1 + |∂tu(s)|2)‖eA
ψ(s)‖0

)
ds.
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Using Eq. 3.6 and a combination of Eqs. 4.1a, 3.7a, and 2.3a, we get

‖eA
ψ(t)‖0 ≤ sup

vh∈V h

b1(vh, e
A
ψ(t))

‖vh‖1
≤ C

(

ρ
∑

K

‖(b − bh)(t)‖0,K + μ‖ε(eA
u (t))‖0

)

≤ C
(
ρ h|b(t)|1 + μ‖ε(eA

u (t))‖0
)
. (4.8)

Then, the bound of D4 with the help of Young’s and Poincaré inequality becomes

D4 ≤ C6

λ
h

∫ t

0

(
(αh|∂tp(s)|2 + |∂tψ(s)|1 + |∂tu(s)|2)(ρh|b(s)|1 + μ‖ε(eA

u (t))‖0)

+α2 h

λ
(|∂tψ(s)|1 + |∂tu(s)|2)2

)
ds + κmin

6η

∫ t

0
‖∇eA

p (s)‖2
0 ds.

Combining the bounds of all Di, i = 1, 2, 3, 4 and proceeding similar fashion as
we obtained the bounds in Eq. 3.13 (using Lemma 3.1 and Eq. 3.9), eventually allows
us to conclude that

μ‖ε(eA
u (t))‖2

0 + c0‖eA
p (t)‖2

0 + κmin

η

∫ t

0
‖∇eA

p (s)‖2
0 ds

≤ μ‖ε(eA
u (0))‖2

0 +
(
c0 + α2

λ

)
‖eA

p (0)‖2
0 + 1

λ
‖eA

ψ(0)‖2
0

+C h2
(

sup
t∈[0,tfinal]

|b(t)|21 +
∫ t

0

(
|b(s)|21 + |∂tb(s)|21 + |�(s)|21

+
(1

λ

)2(|∂tψ(s)|21 + |∂tu(s)|22
) +

(
c0 + α2

λ

)2
h2|∂tp(s)|22

)
ds

)
.

Then choosing uh(0) := uI (0), ψh(0) := Π0,0ψ(0), ph(0) := pI (0) and apply-
ing the triangle inequality together with Eq. 4.8 complete the rest of the proof.
�

Following a similar structure to the proof of Theorem 4.2, we can establish
error estimates for the fully discrete problem. Details on the proof are postponed to
Appendix A.

Theorem 4.3 (Fully discrete error estimates) Let (u(t), p(t), ψ(t)) ∈ V × Q × Z

and (un
h, p

n
h, ψn

h ) ∈ V h × Qh × Zh be the unique solutions to problems
Eqs. 2.3a–2.3c and Eqs. 3.17a–3.17c, respectively. Then, the following estimates

hold for any n = 1, . . . , N , with constants C independent of h, Δt, λ and c0:

μ‖ε(u(tn) − un
h)‖2

0 + ‖ψ(tn) − ψn
h‖2

0 + (Δt)
κmin

η
‖∇(p(tn) − pn

h)‖2
0

≤ C (h2 + Δt2). (4.9)

Remark 4.2 It is well known that an application of Grownwall’s lemma implies an
exponential dependency of the generic constant (appearing on the right-hand side)
on the final time, and the resulting bounds are therefore not very useful for large
time intervals. We stress that by following the approach used in [36, 37] we are
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able to establish convergence and stability for the semi- and fully discrete schemes
circumventing the use of Gronwall’s inequality. A different approach, employed in,
e.g., [17] in the context of poroelasticity problems, is to integrate in time the mass
conservation equation.

5 Numerical results

In this section, numerical tests are conducted to computationally reconfirm the con-
vergence rates of the proposed virtual element scheme and present one test of
applicative interest in poromechanics. All numerical results are produced by an
in-house MATLAB code, using sparse factorisation as linear solver.

5.1 Verification of spatial convergence

First, we consider a steady version of the poroelasticity equations. An exact solution
of the problem on the square domain (0, 1)2 is given by the smooth functions:

u(x, y) =
(− cos(2πx) sin(2πy) + sin(2πy) + sin2(πx) sin2(πy)

sin(2πx) cos(2πy) − sin(2πx)

)
,

p(x, y) = sin2(πx) sin2(πy), ψ(x, y) = αp − λ div u.

The body load f and the fluid source � are computed by evaluating these closed-
form solutions and the problem is completely characterised after specifying the
model constants:

ν = 0.3, Ec = 100, κ = 1, α = 1, c0 = 1, η = 0.1,

λ = Ecν

(1 + ν)(1 − 2ν)
, μ = Ec

(2 + 2ν)
.

On a sequence of successively refined grids (we have employed for this particu-
lar case, uniform triangular meshes as depicted in Fig. 1a), we compute errors and
convergence rates according to the mesh size and tabulating also the total number

Fig. 1 Samples of triangular (a), distorted quadrilateral (b), and hexagonal (c) meshes employed for the
numerical tests in this section
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of degrees of freedom (Ndof). The experimental error decay (with respect to mesh
refinement) is measured using individual relative norms defined as follows:

e1(u) :=
(∑

K∈Th
|u − Πε

Kuh|21,K

)1/2

|u|1,Ω

, e0(u) :=
(∑

K∈Th
‖u − Πε

Kuh‖2
0,K

)1/2

‖u‖0,Ω

,

e1(p) :=
(∑

K∈Th
|p − Π∇

Kph|21,K

)1/2

|p|1,Ω

, e0(p) :=
(∑

K∈Th
‖p − Π∇

Kph‖2
0,K

)1/2

‖p‖0,Ω

,

e0(ψ) :=
(∑

K∈Th
‖ψ − ψh‖2

0,K

)1/2

‖ψ‖0,Ω

,

and Table 1 shows the convergence history, exhibiting optimal error decay.

5.2 Convergence with respect to the time-advancing scheme

Regarding the convergence of the time discretisation, we fix a relatively fine hexag-
onal mesh and construct successively refined partitions of the time interval (0, 1]. As
in [52], and in order to avoid mixing errors coming from the spatial discretisation,
we modify the exact solutions to be:

u(x, y, t) = 100 sin(t)

(
x
λ

+ y,

x + y
λ

)
, p(x, y, t) = sin(t)(x + y),

ψ(x, y, t) = αp − λ div u,

and we use them to compute loads, sources, initial data, boundary values, and
boundary fluxes. The model parameters assume the values:

κ = 0.1, α = 1, c0 = 0, η = 1, λ = 1 × 103 μ = 1. (5.1)

The boundary definition is � = [{0}× (0, 1)]∪ [(0, 1)×{0}] (bottom and left edges)
and  = ∂Ω \ �.

We recall that cumulative errors up to tfinal associated with solid displacement, and
a generic pressure v (representing either fluid or total pressure), are defined as:

E0(u) =
(

Δt
N∑

n=1

(
∑

K∈Th

‖u(tn) − Πε
Kun

h‖2
0,K

))1/2

,

E0(v) =
(

Δt
N∑

n=1

(
∑

K∈Th

‖v(tn) − Π∇
Kvn

h‖2
0,K

))1/2

, (5.2)

respectively. From Table 2, we can readily observe that these errors decay with a rate
of O(Δt).
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Table 2 Convergence of the time discretisation for solid displacement, fluid pressure, and total pressure,
using successive partitions of the time interval and a fixed hexagonal mesh

Δt E0(u) r E0(p) r E0(ψ) r

.0.5 0.002897 – 0.462768 – 0.398059 –

0.25 0.001362 1.09 0.218179 1.08 0.187834 1.08

0.125 6.5173 · 10−4 1.06 0.104546 1.06 0.090044 1.06

0.0625 3.1756 · 10−4 1.04 0.050955 1.04 0.043910 1.04

0.03125 1.5664 · 10−4 1.02 0.025123 1.02 0.021683 1.02

0.015625 7.7950 · 10−5 1.01 0.012469 1.01 0.010826 1.00

5.3 Verification of simultaneous space-time convergence for poroelasticity

Now, we consider exact solid displacement and fluid pressure solving problem (2.1)
on the square domain Ω = (0, 1)2 and on the time interval (0, 1], given as

u(x, y, t) =
(

− exp(−t) sin(2πy)(1 − cos(2πx)) + exp(−t)
μ+λ

sin(πx) sin(πy)

exp(−t) sin(2πx)(1 − cos(2πy)) + exp(−t)
μ+λ

sin(πx) sin(πy)

)

,

p(x, y, t) = exp(−t) sin(πx) sin(πy), ψ(x, y, t) = αp − λ div u,

which satisfies div u → 0 as λ → ∞ (see similar tests in [24, 54]). The load
functions, boundary values, and initial data can be obtained from these closed-form
solutions, and alternatively to the dilation modulus and permeability specified in
Eq. 5.1, we here choose larger values λ = 1 × 104, and κ = 1.

In addition to the errors in Eq. 5.2, for displacement and for fluid pressure, we will
also compute:

E1(u) =
(

Δt

N∑

n=1

( ∑

K∈Th

|u(tn) − Πε
Kun

h|21,K

))1/2

,

E1(p) =
(

Δt

N∑

n=1

( ∑

K∈Th

|p(tn) − Π∇
Kpn

h|21,K

))1/2

.

We consider here pure Dirichlet boundary conditions for both displacement and
fluid pressure. A backward Euler time discretisation is used, and in this case we are
using successive refinements of the hexagonal partition of the domain as shown in
Fig. 1c, simultaneously with a successive refinement of the time step. The cumulative
errors are again computed until the final time t = 1, and the results are collected
in Table 3. They show once more optimal convergence rates for the scheme in its
lowest-order form.

Note from this and the previous test, that a zero-constrained specific storage
coefficient does not hinder the convergence properties.
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5.4 Gradual compression of a poroelastic block

Finally, we carry out a test involving the compression of a block occupying the region
Ω = (0, 1)2 by applying a sinusoidal-in-time traction on a small region on the top of
the box (see a similar test in [45]). The model parameters in this case are:

ν = 0.49995, Ec = 3 × 104, κ = 1 × 10−4, α = 1, c0 = 1 × 10−3,

η = 1, λ = Ecν

(1 + ν)(1 − 2ν)
, μ = Ec

(2 + 2ν)
.

For this test, we have employed a mesh conformed by distorted quadrilaterals
exemplified in Fig. 1b. The boundary conditions are of homogeneous Dirichlet type
for fluid pressure on the whole boundary, and of mixed type for displacement, and the
boundary is split as ∂Ω := �1 ∪�2 ∪�3. A traction h(t) = (0, −1.5×104 sin(πt))T

is applied on a segment of the top edge of the boundary �1 = (0.25, 0.75) × {1},
on the remainder of the top edge �2 = [0, 1] × {1}\�1, we impose zero traction,
and the body is clamped on the remainder of the boundary �3 = ∂Ω\(�1 ∪ �2). No
boundary conditions are prescribed for the total pressure. Initially, the system is at
rest u(0) = 0, ψ(0) = 0, p(0) = 0, and we employ a backward Euler discretisation
of the time interval (0, 0.5] with a constant timestep Δt = 0.1. The numerical results

Fig. 2 Compression of a poroelastic block after t = 0.5 adimensional units. Approximate displacement
components (a,b), displacement vectors on the undeformed domain (c), displacement magnitude (d), fluid
pressure (e), and total pressure (f), depicted on the deformed domain
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obtained at the final time are depicted in Fig. 2, where the profiles for fluid and total
pressure present no spurious oscillations.

6 Summary and concluding remarks

We have constructed and analysed a new virtual element method for the Biot equa-
tions of linear poroelasticity. The finite-dimensional formulation is based on the
virtual element spaces introduced in [5], which can be regarded as low-order and
stable virtual elements, hence being computationally competitive compared to other
existing stable pairs for incompressible flow problems. Both the discrete formulation
and its analysis are novel, and they constitute the first fully VEM discretisation for
poroelasticity problems. Optimal and Lamé-robust error estimates were established
for solid displacement, fluid pressure, and total pressure, in natural norms without
weighting. This was achieved with the help of appropriate poroelastic projection
operators. Numerical experiments have been performed using different polygonal
meshes, and they put into evidence not only computational verification of the conver-
gence of the scheme (where rates of error decay in space and in time are in excellent
agreement with the theoretically derived error bounds) but also its performance in
simple poromechanical tests.

Natural extensions of this work include the development and analysis of higher-
order versions of the virtual discretisations advanced here, the efficient implementa-
tion and application to 3D problems, and the coupling with other phenomena such as
diffusion of solutes in poroelastic structures [52], interface elasticity-poroelasticity
problems [4], multilayer poromechanics [44], or multiple-network consolidation
models [37].

Regarding the time discretisation, we have adopted an implicit and monolithic
approach, as one enjoys unconditional stability. However, for large-scale 3D prob-
lems, perhaps a more efficient strategy would consist in using operator splittings,
where smaller and better conditioned sub-systems are solved iteratively (see, e.g.,
the monograph [28] and the references therein). For Biot’s consolidation problem
and related linear and nonlinear poromechanical systems, the literature contains sev-
eral advanced techniques based on distinct block separations such as undrained split
(where the solid motion is resolved for a given fluid pressure) followed by an update,
or the converse fixed-stress approach (where the total volumetric stress is considered
given during an elliptic pressure solve) [2, 15, 16, 31, 32, 39, 40]. For the three-field
formulation written in terms of total pressure, even if this latter splitting would be
quite convenient, still the updating of the solid sub-model would involve the solu-
tion of a saddle-point system for displacement and total pressure. In any case, if the
fixed-point maps defining the operator splitting method are contractive then the sta-
bility and convergence of the iterative process would make the resulting approach an
appealing method.

Acknowledgements We thank the valuable comments by two anonymous reviewers, whose suggestions
led to numerous improvements to the manuscript.
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Appendix 1: Proof of Theorem 4.3

As in the semi-discrete case, we split the individual errors as

u(tn) − un
h = (u(tn) − Ih

uu(tn)) + (Ih
uu(tn) − un

h) := E
I,n
u + E

A,n
u ,

ψ(tn) − ψn
h = (ψ(tn) − Ih

ψψ(tn)) + (Ih
ψψ(tn) − ψn

h ) := E
I,n
ψ + E

A,n
ψ ,

p(tn) − pn
h = (p(tn) − Ih

pp(tn)) + (Ih
pp(tn) − pn

h) := E
I,n
p + E

A,n
p .

Then, from estimate (4.2a) and following the steps of the proof of Theorem 4.2,
we get the bounds:

‖EI,n
u ‖1 ≤ Ch(|u(tn)|2 + |ψ(tn)|1) ≤ Ch(|u(0)|2 + |ψ(0)|1

+‖∂tu‖L1(0,tn;[H 2(Ω)]2) + ‖∂tψ‖L1(0,tn;H 1(Ω))), (A.1a)

‖EI,n
ψ ‖0 ≤ Ch(|u(0)|2 + |ψ(0)|1 + ‖∂tu‖L1(0,tn;[H 2(Ω)]2)

+‖∂tψ‖L1(0,tn;H 1(Ω))), (A.1b)

‖EI,n
p ‖1 ≤ Ch(|p(0)|2 + ‖∂tp‖L1(0,tn;H 2(Ω))). (A.1c)

From Eqs. 4.1a, 3.17a, and 2.3a, we readily get:

ah
1 (EA,n

u , vh) + b1(vh, E
A,n
ψ ) = Fn(vh) − Fh,n(vh). (A.2)

We then use Eqs. 4.1b and 3.21, and proceed to differentiate (2.3c) with respect to
time. This implies

b1(E
A,n
u − EA,n−1

u , φh) + b2(E
A,n
p − EA,n−1

p , φh) − a3(E
A,n
ψ − E

A,n−1
ψ , φh)

= b1((u(tn) − u(tn−1)) − (Δt)∂tu(tn), φh) + b2((I
h
pp(tn) − Ih

pp(tn−1))

−(Δt)∂tp(tn), φh)

−a3((I
h
ψψ(tn) − Ih

ψψ(tn−1)) − (Δt)∂tψ(tn), φh). (A.3)

After choosing vh = E
A,n
u − E

A,n−1
u in Eq. A.2 and φh = −E

A,n
ψ in Eq. A.3 and

adding the outcomes, we readily get:

ah
1 (EA,n

u , EA,n
u −EA,n−1

u ) + a3(E
A,n
ψ −E

A,n−1
ψ , E

A,n
ψ )−b2(E

A,n
p −EA,n−1

p , E
A,n
ψ )

= ρ(b(tn)−bn
h, E

A,n
u −EA,n−1

u )0,Ω −b1((u(tn) − u(tn−1)) − (Δt)∂tu(tn), E
A,n
ψ )

−b2((I
h
pp(tn) − Ih

pp(tn−1)) − (Δt)∂tp(tn), E
A,n
ψ )

+a3((I
h
ψψ(tn) − Ih

ψψ(tn−1)) − (Δt)∂tψ(tn), E
A,n
ψ ). (A.4)
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Next, and as a consequence of using Eqs. 4.1c, 3.7b, and 2.3b with qh = E
A,n
p ,

we are left with

ãh
2 (EA,n

p − EA,n−1
p , EA,n

p ) + Δtah
2 (EA,n

p , EA,n
p ) − b2(E

A,n
p , E

A,n
ψ − E

A,n−1
ψ )

= Δt(�(tn) − �n
h, E

A,n
p )0,Ω + ãh

2 (Ih
pp(tn) − Ih

pp(tn−1), E
A,n
p ) (A.5)

−ã2((Δt)∂tp(tn), E
A,n
p ) + b2(E

A,n
p , (Δt)∂tψ − (Ih

ψψ(tn)) − Ih
ψψ(tn−1)).

If we then add the resulting (A.4)–(A.5) and repeat the same arguments used in
deriving (3.11), we can assert that

a3(E
A,n
ψ − E

A,n−1
ψ , E

A,n
ψ ) − b2(E

A,n
p − EA,n−1

p , E
A,n
ψ )

−b2(E
A,n
p , E

A,n
ψ − E

A,n−1
ψ ) + ãh

2 (EA,n
p − EA,n−1

p , EA,n
p )

= (Δt)

(
c0(ΔtE

A,n
p , EA,n

p )0,Ω + 1

λ

∑

K

(
α2(Δt (I −Π0

K)EA,n
p , (I −Π0

K)EA,n
p )0,K

−(δt (αΠ0
KEA,n

p − E
A,n
ψ ), αΠ0

KEA,n
p − E

A,n
ψ )0,K

)
)

,

The left-hand side can be bounded by using the inequality (3.24) and then
summing over n we get:

μ‖ε(EA,n
u )‖2

0 + c0‖EA,n
p ‖2

0 + (Δt)
κmin

η

n∑

j=1

‖∇E
A,j
p ‖2

0

+(1/λ)
∑

K

(
α2‖(I − Π0

K)EA,n
p ‖2

0,K + ‖αΠ0
KEA,n

p − E
A,n
ψ ‖2

0,K

)

≤ μ‖ε(EA,0
u )‖2

0 + c0‖EA,0
p ‖2

0 + (1/λ)
∑

K

×
(

α2‖(I − Π0
K)EA,0

p ‖2
0,K + ‖αΠ0

KEA,0
p − E

A,0
ψ ‖2

0,K

)

+
n∑

j=1

ρ(b(tj ) − b
j
h, E

A,j
u − E

A,j−1
u )0,Ω

︸ ︷︷ ︸
=:L1

+
n∑

j=1

Δt(�(tj ) − �
j
h, E

A,j
p )0,Ω

︸ ︷︷ ︸
=:L2

−
n∑

j=1

b1((u(tj ) − u(tj−1)) − (Δt)∂tu(tj ), E
A,j
ψ )

︸ ︷︷ ︸
=:L3

−
n∑

j=1

b2((I
h
pp(tj ) − Ih

pp(tj−1)) − (Δt)∂tp(tj ), E
A,j
ψ )

︸ ︷︷ ︸
=:L4
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+
n∑

j=1

a3((I
h
ψψ(tj ) − Ih

ψψ(tj−1)) − (Δt)∂tψ(tj ), E
A,j
ψ )

︸ ︷︷ ︸
:=L5

+
n∑

j=1

(ãh
2 (Ih

pp(tj ) − Ih
pp(tj−1), E

A,j
p ) − ã2((Δt)∂tp(tj ), E

A,j
p ))

︸ ︷︷ ︸
:=L6

+
n∑

j=1

b2(E
A,j
p , (Δt)∂tψ − (Ih

ψψ(tj ) − Ih
ψψ(tj−1))

︸ ︷︷ ︸
:=L7

.

We bound the term L1 with the help of formula (3.25), the estimates of projec-
tion Π

0,0
K , applying Taylor expansion, and using generalised Young’s inequality. This

gives

L1 = ρ(((b − bh)(tn), E
A,n
u )0,Ω − ((b − bh)(0), EA,0

u )0,Ω

−
n∑

j=1

(Δt)(Δt (b − bh)(tj ), E
A,j−1
u )0,Ω))

≤ μ

2
‖ε(EA,n

u )‖2
0 + C1

(ρ

μ
h|b(0)|1 μ‖ε(EA,0

u )‖0 + ρ2

μ
h2 max

1≤j≤n
|b(tj )|21

+(Δt) h

n∑

j=1

ρ

μ

⎛

⎝|∂tb
j |1 +

(

Δt

∫ tj

tj−1

|∂ttb(s)|21 ds

)1/2
⎞

⎠ μ‖ε(E
A,j−1
u )‖0

)
.

Then, the estimate satisfied by the projection Π0
K along with Poincaré and Young’s

inequalities yields:

L2 ≤ C2

n∑

j=1

(Δt)h|�(tj )|1‖∇E
A,j
p ‖0 ≤ C2

n∑

j=1

(Δt)
η

κmin
h2|�(tj )|21

+(Δt)
κmin

6η

n∑

j=1

‖∇E
A,j
p ‖2

0.

The discrete inf-sup condition (3.6) implies that

‖EA,j
ψ ‖0 ≤ C(h|b(tj )|1 + ‖ε(E

A,j
u )‖0). (A.6)

Applying an expansion in Taylor series, together with Eq. A.6, the Cauchy-
Schwarz, and Young inequalities, enables us to write

L3 ≤ C
n∑

j=1

(
(Δt)3

∫ tj
tj−1

‖∂ttu(s)‖2
0 ds

)1/2
(h|b(tj )|1 + ‖ε(E

A,j
u )‖0).
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Then, after using the estimates of the projection Ih
p (4.2b), (A.6), and applying

again Cauchy-Schwarz inequality, we get

L4 ≤ C
α

λ

n∑

j=1

(
‖Ih

p (p(tj ) − p(tj−1)) − (p(tj ) − p(tj−1))‖0 + ‖(p(tj ) − p(tj−1))

−(Δt)∂tp(tj )‖0

)
‖EA,j

ψ ‖0

≤ C
α

λ

n∑

j=1

⎛

⎝h2

(

(Δt)

∫ tj

tj−1

|∂tp(s)|22 ds

)1/2

+
(

(Δt)3
∫ tj

tj−1

‖∂ttp(s)‖2
0 ds

)1/2
⎞

⎠

×‖EA,j
ψ ‖0

≤ C
α

λ

n∑

j=1

⎛

⎝h2

(

(Δt)

∫ tj

tj−1

|∂tp(s)|22 ds

)1/2

+
(

(Δt)3
∫ tj

tj−1

‖∂ttp(s)‖2
0 ds

)1/2
⎞

⎠

×
(
ρh|b(tj )|1 + ‖ε(E

A,j
u )‖0

)
.

The stability of a3(·, ·) and the proof for the bound of L4 gives

L5 ≤ C(1/λ)

n∑

j=1

‖(Ih
ψψ(tj ) − Ih

ψψ(tj−1))

−(Δt)∂tψ(tj )‖0(ρh|b(tj )|1 + ‖ε(E
A,j
u )‖0)

≤ C(1/λ)

n∑

j=1

⎛

⎝h2

(

(Δt)

∫ tj

tj−1

(|∂tu(s)|22 + |∂tψ(s)|21) ds

)1/2

+
(

(Δt)3
∫ tj

tj−1

‖∂ttψ(s)‖2
0ds

)1/2
⎞

⎠

×(ρh|b(tj )|1 + ‖ε(E
A,j
u )‖0).

The polynomial approximation pπ for fluid pressure, consistency of the bilinear
form ãh

2 (·, ·), stability of the bilinear forms ã2(·, ·), ãh
2 (·, ·), and the Cauchy-Schwarz,

Poincaré and Young’s inequalities gives

L6 =
n∑

j=1

(
ãh

2 ((Ih
pp(tj ) − Ih

pp(tj−1)) − (pπ(tj ) − pπ(tj−1)), E
A,j
p )

+ã2((pπ(tj ) − pπ(tj−1)) − (p(tj ) − p(tj−1)), E
A,j
p ) + ã2((p(tj )

−p(tj−1)) − (Δt)∂tp(tj ), E
A,j
p )

)

≤ C
(
c0 + α2

λ

) n∑

j=1

(
h2

(
(Δt)

∫ tj

tj−1

|∂tp(s)|22 ds
)1/2
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+
(
(Δt)3

∫ tj

tj−1

‖∂ttp(s)‖2
0 ds

)1/2
)

‖∇E
A,j
p ‖0

≤ C
(
c0 + α2

λ

)2(
h4‖∂tp‖2

L2(0,tn;H 2(Ω))
+ (Δt)2‖∂ttp‖2

L2(0,tn;L2(Ω))

)

+Δt
κmin

6η

n∑

j=1

‖∇E
A,j
p ‖2

0.

The continuity of b2(·, ·), the bound derived for the term L5 and using the Young’s
inequality, gives

L7 ≤ α

λ

n∑

j=1

‖(Δt)∂tψ(tj ) − (Ih
ψψ(tj ) − Ih

ψψ(tj−1))‖0‖EA,j
p ‖0

≤ C
(α

λ

)2
(

h2(‖∂tψ‖2
L2(0,tn;H 1(Ω))

+ ‖∂tu‖2
L2(0,tn;[H 2(Ω)]2)

)

+(Δt)2‖∂ttψ‖2
L2(0,tn;L2(Ω))

)

+(Δt)
κmin

6η

n∑

j=1

‖∇E
A,j
p ‖2

0.

In turn, putting together the bounds obtained for all Li’s, i = 1, . . . , 7, using the
Young’s inequality and Lemma 3.2 concludes that

μ‖ε(EA,n
u )‖2

0 + c0‖EA,n
p ‖2

0 + (Δt)
κmin

η

n∑

j=1

‖∇E
A,j
p ‖2

0

≤ C

(
μ‖ε(EA,0

u )‖2
0 + (c0 + α2/λ)‖EA,0

p ‖2
0 + (1/λ)‖EA,0

ψ ‖2
0

+
(

1 + Δt
)
h2 max

0≤j≤n
|b(tj )|21

+h2Δt

n∑

j=1

(|b(tj )|21 + (Δt)|∂tb|21 + |�(tj )|21) + (Δt)2h2‖∂ttb‖L2(0,tn;[H 1(Ω)]2)

+(Δt)2((c0 + α2/λ)2‖∂ttp‖2
L2(0,tn;L2(Ω))

+ ‖∂ttu‖2
L2(0,tn;[L2(Ω)]2)

+α2

λ2
‖∂ttψ‖2

L2(0,tn;L2(Ω))

)

+h2(α2

λ2
‖∂tψ‖2

L2(0,tn;H 1(Ω))
+ α2

λ2
‖∂tu‖2

L2(0,tn;[H 2(Ω)]2)

+(c0 + α2/λ)2h2‖∂tp‖2
L2(0,tn;H 2(Ω))

))
.

And finally, the desired result (4.9) holds after choosing u0
h := uI (0), ψ0

h :=
Π0,0ψ(0), p0

h := pI (0) and applying triangle’s inequality together with Eqs. A.1a–
A.1c, and A.6.
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