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The sedimentation–consolidation and flow processes of a mixture of small particles 
dispersed in a viscous fluid at low Reynolds numbers can be described by a nonlinear 
transport equation for the solids concentration coupled with the Stokes problem written 
in terms of the mixture flow velocity and the pressure field. Here both the viscosity and 
the forcing term depend on the local solids concentration. A semi-discrete discontinuous 
finite volume element (DFVE) scheme is proposed for this model. The numerical method 
is constructed on a baseline finite element family of linear discontinuous elements for 
the approximation of velocity components and concentration field, whereas the pressure 
is approximated by piecewise constant elements. The unique solvability of both the 
nonlinear continuous problem and the semi-discrete DFVE scheme is discussed, and 
optimal convergence estimates in several spatial norms are derived. Properties of the model 
and the predicted space accuracy of the proposed formulation are illustrated by detailed 
numerical examples, including flows under gravity with changing direction, a secondary 
settling tank in an axisymmetric setting, and batch sedimentation in a tilted cylindrical 
vessel.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Scope

The numerical approximation of macroscopic descriptions of sedimentation processes at low Reynolds numbers is needed 
in a variety of natural phenomena and industrial processes including wastewater treatment [10,18], mineral process-
ing [50], and gravity currents [48]. The governing partial differential equations typically consist of a nonlinear advection–
reaction–diffusion equation for the scalar solids concentration coupled with the Stokes or Navier–Stokes equations with 
concentration-dependent viscosity. The following model can be regarded as a prototype problem of this kind. Consider an 
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incompressible mixture occupying the domain � ⊂ R
d , d = 2 or d = 3. Then the motion of the mixture and the evolution of 

the solids concentration can be described by the initial–boundary value problem

∂tφ − div(κ(φ)∇φ) + u · ∇φ = ∇ · f (φ) in � × (0, T ), (1.1a)

−div
(
μ(φ)ε(u) − p I

)− φg = 0 in � × (0, T ), (1.1b)

div u = 0 in � × (0, T ), (1.1c)

u = 0 on � × (0, T ), (1.1d)

φ = 0 on � × (0, T ), (1.1e)

φ(0) = φ0 on � × {0}. (1.1f)

The primal unknowns are the volume averaged flow velocity of the mixture u, the solids concentration φ, and the pressure 
field p. In addition, μ(φ)ε(u) − p I is the Cauchy stress tensor, ε(u) = 1

2 (∇u + ∇uT) is the infinitesimal rate of strain, 
μ = μ(φ) is the concentration-dependent viscosity, and g is the gravity acceleration. The material specific diffusion function 
κ = κ(φ) and the flux density vector f = f (φ) are motivated by a sedimentation–consolidation model [12] that has been 
studied extensively in the one-dimensional case. (Precise assumptions on the model ingredients are stated later.) Clearly, the 
main challenge for the numerical solution of (1.1) is to handle the coupling between the transport equation (1.1a) for φ with 
the flow model (1.1b), (1.1c) that defines u and p. Desirable properties of a numerical scheme for the approximate solution 
of this coupled transport-flow problem include mass conservativity, robustness under various ranges of model parameters 
and geometry configurations, and amenability to L2 error analysis. For the solution of (1.1) one must resort to a scheme that 
combines some of the aforementioned properties. It is the purpose of this paper to advance one such combined or hybrid 
method, namely the so-called discontinuous finite volume element (DFVE) method, for the discretization of (1.1).

This method was originally introduced for elliptic equations in [53] (see also [5,52]), and later extended to Stokes equa-
tions in [30,54]. It can be seen as a combination of discontinuous Galerkin (DG) approximations and finite volume element 
(FVE) methods, typically regarded as Petrov–Galerkin formulations involving different trial and test spaces (see a review in 
[17]). Advantages of DFVE formulations include local mass conservativity, flexibility for choosing accurate numerical fluxes, 
smaller dual control volumes (here called diamonds), and suitability for error analysis in the L2-norm. In the formulation 
advanced herein the transport equation (1.1a) is tested against scalar piecewise constant functions spanned by a basis asso-
ciated to a diamond dual grid, the momentum equation (1.1b) is tested against vectorial piecewise constants also defined on 
the diamond mesh, and the mass conservation equation (1.1c) is tested against piecewise constants defined on the primal 
mesh. Integration by parts on each diamond of the dual mesh yields a finite volume scheme (written in terms of fluxes 
across dual boundaries). Then, special properties of the lumping operator connecting discrete functions defined on primal 
and dual meshes allow us to rewrite the formulation completely in terms of volume integrals on the primal elements, except 
for the mass term accompanying the time derivative of φ and the right-hand sides of both (1.1a) and (1.1b). In particular, 
this implies that the quantities defined on the dual mesh will be accessed only through mass and right-hand side assembly, 
which are typically performed just once during the entire solution algorithm.

The analysis of equivalent continuous coupled formulations can be found in [36], where the Faedo–Galerkin method is 
employed to establish the weak solvability of the system. Here, the well-posedness analysis of the discrete problem is based 
on a cut-off of the velocity combined with the properties of the transfer operator between primal and dual meshes, and 
Picard’s Theorem. Next, classical tools consisting of energy-based methods, duality arguments, and elliptic projections are 
used to obtain error estimates in the natural norms for all fields.

1.2. Related work

Starting with the seminal work of Cai [13], an abundant body of recent literature is devoted to the analysis of FVE-based 
methods for the discretization of Stokes equations. Among these we point out that continuous approximations include, 
for instance, pressure-projection and multiscale stabilized methods [34,40,49], whereas nonconforming and discontinuous 
schemes include those analyzed e.g. in [16,17,30,54]. Some references address the analysis of continuous FVE methods 
for nonlinear elliptic [15,33] and parabolic problems [14]. DG methods have also been introduced for such problems; for 
instance, we refer to [25,39] and the references therein for an extensive survey on DG discretizations of nonlinear elliptic 
and parabolic problems. Nevertheless, and on the other hand, there are hardly any results available dealing with their DFVE 
counterparts.

Continuous FVE approximations (or similar concepts) have recently been introduced for coupled flow–transport prob-
lems. These include, for instance, Crank–Nicolson projection-stabilized methods applied to thermal convection [37], hybrid 
methods for general conservation laws [22], and edge-based stabilized methods simulating sedimentation–consolidation 
processes in Stokes and Navier–Stokes regimes [11,44]. However, fully discontinuous FVE methods have only been proposed 
and studied in the context of porous media flow, where the transport problem is usually less involved and the flow equa-
tions are governed by Darcy-like descriptions [27,28]. Even if the conservation property of FVE methods turns them more 
suitable for discretizing computational fluid dynamics problems, to our knowledge, not even the DFVE approximation of the 



448 R. Bürger et al. / Journal of Computational Physics 299 (2015) 446–471
nonlinear transport problem alone has been addressed in the literature. We focus our analysis on semi-discrete approxima-
tions (the numerical experiments will be based on a simple backward Euler time advancing scheme), but we stress that the 
main results could be readily extended to the fully discrete case.

1.3. Outline

We have arranged the remainder of this paper in the following manner. Section 2 contains some basic notation and we 
state the assumptions on the governing equations, present the concept of weak solution and comment on the solvability 
of the continuous problem. The DFVE scheme is introduced in Section 3, and we derive optimal error estimates in Sec-
tion 4. Section 5 contains several numerical results illustrating the behavior of the model, while showing the accuracy and 
robustness of the formulation.

2. Preliminaries and problem statement

2.1. Notation

By � ⊂R
d , d = 2, 3 we denote a given open bounded domain with polyhedral boundary �, and denote by ν the outward 

unit normal vector on �. Usual notation will be adopted for Lebesgue spaces L p(�) and Sobolev spaces Hs(�) with norm 
‖·‖s,� and adopt the convention H0(�) := L2(�). By M we will denote the vectorial counterpart of the generic scalar 
functional space M . For a time T > 0, standard Bochner spaces are denoted by L p(0, T ; Hm(�)). As usual, I stands for the 
d × d identity tensor, and for any τ = (τi j)i, j=1,...,d and any vector field v = (vi)i=1,...,d we denote

τ T = (τ ji), tr(τ ) =
d∑

i=1

τii, τ : ζ =
d∑

i, j=1

τi jζi j, div v =
d∑

i=1

∂i vi,

divτ =
⎛
⎝

∂1τ11 + · · · + ∂dτ1d
...

∂1τd1 + · · · + ∂dτdd

⎞
⎠ , ∇v =

⎡
⎣

∂1 v1 · · · ∂d v1
...

∂1 vd · · · ∂d vd

⎤
⎦ .

By Pk(L) we denote the space of polynomial functions of total degree s ≤ k defined on the generic domain L. In what 
follows, constants independent of the meshsize will be generically denoted by C .

2.2. Assumptions on the governing equations

We assume that the nonlinear viscosity function μ appearing in (1.1b) satisfies

μ,μ′ ∈ Lip(R+); ∃γ0,μmin,μmax > 0 : ∀s ∈R+ : μmin < μ(s) < μmax, |μ′(s)| ≤ γ0. (2.1)

Moreover, the flux f = f (φ) is assumed to be Lipschitz continuous, and the diffusion coefficient κ = κ(φ) is a nonlinear 
function satisfying

κ,κ ′ ∈ Lip(R+); ∃γ1, γ2, γ3 > 0 : ∀x ∈R : γ1 ≤ κ(x) ≤ γ2,
∣∣κ ′(x)

∣∣≤ γ3. (2.2)

In the context of sedimentation–consolidation models, the function f describes the effect of hindered settling aligned 
with gravity, and is usually given by f (φ) = fb(φ)k, where fb denotes the Kynch batch flux density function [9,32] and k
is the upwards-pointing unit vector. The function fb is given by

fb(φ) =
{−v∞φV (φ) for 0 ≤ φ ≤ φmax,

0 for φ < 0 or φ > φmax,

where v∞ is the Stokes velocity, that is, the settling velocity of a single particle in an unbounded fluid, φmax denotes a 
(nominal) maximum solids concentration, and V (φ) is the so-called hindered settling factor, which can for example be given 
by V (φ) = (1 − φ/φmax)

nRZ , where nRZ is a material-dependent exponent [41]. The function κ = κ(φ) models the combined 
effects of hydrodynamic self-diffusion (see [23,24] and references cited in these works) and sediment compressibility [12]. 
This function is given by

κ(φ) = D0 − fb(φ)σ ′
e(φ)

(ρs − ρf)gφ
,

where D0 > 0 is the constant of hydrodynamic self-diffusion [45], ρs and ρf are the (constant) solid and fluid mass den-
sities, respectively, and σ ′

e(φ) = dσe/dφ is the derivative of the so-called effective solid stress function σe = σe(φ), which 
characterizes sediment compressibility in the case that particles are flocculated. This function is an optional ingredient of 
the model, and we assume that σe ∈ C2(R) with σ ′

e ≥ 0. Furthermore, the forcing term φg , where g = gk and g is the 
acceleration of gravity, models that the mixture flow is driven by local fluctuations of φ, and therefore of the density of 
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the density of the mixture, besides possible inflow and outflow conditions. Finally, as in [11,44], we mention that a suitable 
choice of μ(φ) is

μ(φ) = (1 − φ/φ̃max)
−β, (2.3)

where the parameter φ̃max is a second (nominal) maximum concentration. If we set φ̃max > φmax, then (2.1) is indeed 
satisfied.

2.3. Weak formulation

Multiplication by adequate test functions and integration by parts over � and using div u = 0 yields the following weak 
formulation to (1.1): For 0 < t < T , find (u(t), p(t), φ(t)) ∈ H1

0(�) × L2
0(�) × H1

0(�) such that

〈∂tφ,ϕ〉 + A(φ,ϕ;φ) + C(φ,ϕ; u) − 〈∇ · f (φ),ϕ〉 = 0 ∀ϕ ∈ H1
0(�),

Â(u, v;φ) − b(v, p) − d(φ, v) = 0 ∀v ∈ H1
0(�),

b(u,q) = 0 ∀q ∈ L2(�), (2.4)

and φ(0) = φ0 a.e. in �, where H1
0(�) := {v ∈ H1(�) : v|� = 0}, L2

0(�) := {q ∈ L2(�) : ∫
�

q dx = 0}, H1
�(�) := {s ∈ H1(�) :

s|� = 0} and the involved trilinear (uppercase letters) and bilinear (lowercase) forms are defined as

Â(u, v;φ) :=
∫
�

μ(φ)ε(u) : ε(v)dx, A(φ,ϕ;ψ) :=
∫
�

(κ(ψ)∇φ) · ∇ϕ dx,

b(v,q) :=
∫
�

q div v dx, C(φ,ϕ; v) = −
∫
�

(v · ∇ϕ)φ dx, d(φ, v) :=
∫
�

φg · v dx,

for all φ, ϕ, ψ ∈ H1
0(�), u, v ∈ H1

0(�), and q ∈ L2(�). These trilinear and bilinear forms satisfy the following stability prop-
erties:

Lemma 2.1. For any u, v, w ∈ H1(�), φ, ϕ ∈ H1(�) and q ∈ L2(�) there exist constants C, β > 0 such that

|A(φ,ϕ; ·)| ≤ C‖φ‖1,�‖ϕ‖1,�,

| Â(u, v; ·)| ≤ C‖u‖1,�‖v‖1,�,

|b(v,q)| ≤ C‖v‖1,�‖q‖0,�,

|d(φ, v)| ≤ C‖φ‖1,�‖v‖1,�,

|A(φ,φ; ·)| ≥ C‖φ‖2
1,�,

| Â(u, u; ·)| ≥ C‖u‖2
1,�,

sup
v∈H1

0(�)\{0}
b(v,q)

‖v‖1,�

≥ β‖q‖0,�.

The weak solvability of the nonlinear problem (1.1) was established in [36].

Lemma 2.2. Let 0 ≤ φ0 ≤ φmax , φ0 ∈ L∞(�), and assume that 
∫ φ

0 κ(s)ds ∈ L2(0, T ; H1(�)) for φ ∈ H1(�). Then there exists a 
unique solution to (2.4) satisfying φ ∈ L2(0, T ; H1(�)) ∩ C([0, T ]; L2(�)) and ∂tφ ∈ L2(0, T ; H1(�)).

3. Finite volume element discretization

3.1. A baseline FE discretization

Let Th be a regular, quasi-uniform triangulation of � formed by closed triangular (tetrahedral if d = 3) elements K with 
boundary ∂ K and diameter hK and by vertices s j , j = 1, . . . , Nh with meshsize h := maxK∈Th (hK ). Each face σ between 
two neighboring elements K and L has diameter hσ . The set of all faces in Th is denoted by Eh , and E�

h is its restriction to 
boundary faces. Let hσ denote the length of the edge e (area of the face in case of 3D). Then it is clear that

hσ ≤ hd−1
K ≤ hd−1. (3.1)

We define the following finite element spaces associated to the mesh Th:

Vh := {v ∈ L2(�) : v|K ∈ P1(K )d,∀K ∈ Th
}
, Qh := {q ∈ L2

0(�) : q|K ∈ P0(K ),∀K ∈ Th
}
,

Sh := {ϕ ∈ L2(�) : ϕ|K ∈ P1(K ),∀K ∈ Th
}
,

for the approximation of the velocity v , the pressure p and the concentration φ, respectively.
Let nK ,σ denote the outward vector of K ∈ Th normal to σ ⊂ ∂ K . For a scalar function q ∈ L2(�) we let �q�σ :=

q|∂ K nK ,σ +q|∂LnL,σ denote a vector jump across the face σ = K̄ ∩ L̄, and {q}σ denote its average value on σ . If σ ∈ E�
h , then 

we simply consider �q�σ = {q}σ = q|σ .
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3.2. Statement of the FVE method and technical results

We define a FVE discretization of the governing equations on � following [11,27,54]. To this end, we introduce a so-
called diamond mesh T �

h consisting of diamonds Dσ generated by barycentric subdivision, which means that each diamond 
Dσ ∈ T �

h is associated to the face σ ∈ Eh and constructed by joining the barycenters bK and bL of the elements K and L
sharing the interior face σ , with the vertices of σ .

The transfer between meshes represents a projection of the FE spaces for the approximation of velocity and concentration 
defined above, on the following finite-dimensional spaces:

V�

h := {v ∈ L2(�) : v|Dσ ∈ P0(Dσ )d ∀Dσ ∈ T �

h

}
,

S�

h := {ϕ ∈ L2(�) : ϕ|Dσ ∈ P0(Dσ )∀Dσ ∈ T �

h

}
.

Let V(h) := Vh + (H2(�) ∩ H1
0(�)) and S(h) := Sh + (H2(�) ∩ H1

0(�)). In order to connect V(h) to V�

h and S(h) to S�

h , 
respectively, we define the projection maps P� : V(h) → V�

h and R� : S(h) → S�

h as follows:

P�v|Dσ = 1

hσ

∫
σ

v|Dσ ds, R�ψ |Dσ = 1

hσ

∫
σ

ψ |Dσ ds, Dσ ∈ T �

h .

The construction of the dual mesh T �

h and an application of quadrature formulas enables us to state the following technical 
lemma, which formulates the properties of these operators (see proofs in e.g. [27,29]):

Lemma 3.1. Let vh ∈ Vh, ϕh, ψh ∈ Sh, with ψh also in H2(K ), and let K ∈ Th and σ ⊂ ∂ K . Then the following properties are satisfied:∫
σ

(
ϕh −R�ϕh

)
ds = 0,

∫
σ

(
vh −P�vh

)
ds = 0, (3.2)

∫
K

(
ϕh −R�ϕh

)
dx = 0,

∫
K

(
vh −P�vh

)
dx = 0, (3.3)

∥∥vh −P�vh
∥∥

0,K ≤ ChK |vh|1,K ,
∥∥ϕh −R�ϕh

∥∥
0,K ≤ ChK |ϕh|1,K , (3.4)

�ψh �σ = 0 ⇒ �R�ψh �σ = 0, � vh �σ = 0 ⇒ �P�vh �σ = 0, (3.5)

∫
σ

∣∣(ϕh −R�ϕh
)∣∣ds ≤ Ch‖ψ‖p,K ‖ϕh‖p′ ∀ψ ∈ H1

p(K ), ϕh ∈ Sh,
1

p
+ 1

p′ = 1, (3.6)

‖P�vh‖0,� = ‖vh‖0,�, ‖R�ϕh‖0,� = ‖ϕh‖0,�. (3.7)

Let ϕh ∈ Sh , vh ∈ Vh , qh ∈ Qh be suitable test functions. We proceed to multiply the concentration equation (1.1a) and 
the momentum equation (1.1b) by R�ϕh ∈ S�

h and P� vh ∈ V�

h , respectively, and integrating by parts the respective results 
over each diamond Dσ ∈ T �

h ; and to multiply the mass conservation equation by qh and integrating by parts the result 
over K ∈ Th . Adding the resulting local conservation equations we end up with a variational formulation written in the 
form:

Find (φ, u, p) such that

〈∂tφ,R�ϕh〉 −
∑

Dσ ∈T �

h

∫
∂ Dσ

[κ(φ)∇φ − φu] · nR�ϕh ds =
∑

Dσ ∈T �

h

∫
∂ Dσ

f (φ) · nR�ϕh ds ∀ϕh ∈ Sh,

−
∑

Dσ ∈T �

h

∫
∂ Dσ

μ(φ)ε(u)n ·P�vh ds +
∑

Dσ ∈T �

h

∫
∂ Dσ

pn ·P�vh ds = d(φ,P�vh) ∀vh ∈Vh,

b(u,qh) = 0 ∀qh ∈ Qh. (3.8)

Now let Dσ j ∈ T �

h , with j = 1, . . . , d + 1, be the d + 1 sub-elements (triangles if d = 2, or tetrahedra if d = 3) contained 
in element K of the primal mesh Th , as sketched in Fig. 1. It follows that
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Fig. 1. Left: Tetrahedral element K ∈ Th (solid lines) with barycenter bK , subdivided into four diamonds Dσ j (dashed lines), where Dσ1 is highlighted for 
sake of visualization. Right: Two-dimensional counterpart, including also the three midpoints m j of each edge σ j .

∑
Dσ ∈T �

h

∫
∂ Dσ

[κ(φ)∇φ − φu] · nR�ϕh ds =
∑

K∈Th

d+1∑
j=1

∫
∂ Dσ j

[κ(φ)∇φ − φu] · nR�ϕh ds

=
∑

K∈Th

d+1∑
j=1

∫
s j+1bK s j

(
κ(φ)∇φ − φu

) · nR�ϕh ds

+
∑

K∈Th

∫
∂ K

(
κ(φ)(∇φ) − φu · n

)
R�ϕh ds

where sd+2 = s1. Similarly, we can assert that

∑
Dσ ∈T �

h

∫
∂ Dσ

μ(φ)ε(u)n ·P�vh ds =
∑

K∈Th

d+1∑
j=1

∫
s j+1bK s j

μ(φ)ε(u)n ·P�vh ds +
∑

K∈Th

∫
∂ K

μ(φ)ε(u)n ·P�vh ds,

∑
Dσ ∈T �

h

∫
∂ Dσ

pn ·P�vh ds =
∑

K∈Th

d+1∑
j=1

∫
s j+1bK s j

pn ·P�vh ds +
∑

K∈Th

∫
∂ K

pn ·P�vh ds,

∑
Dσ ∈T �

h

∫
∂ Dσ

f (φ) · nR�ϕh ds =
∑

K∈Th

d+1∑
j=1

∫
s j+1bK s j

f (φ) · nR�ϕh ds +
∑

K∈Th

∫
∂ K

f (φ) · nR�ϕh ds.

Let us next define the following forms for all ψh, ϕh, χh ∈ Sh , wh, vh ∈ Vh and rh, qh ∈Qh:

A1
h(ψh,ϕh;χh, vh) := −

∑
K∈Th

d+1∑
j=1

∫
s j+1bK s j

(
κ(χh)∇ψh − ψh vh

) · nR�ϕh ds,

Â1
h(wh, vh;ψh) := −

∑
K∈Th

d+1∑
j=1

∫
s j+1bK s j

μ(ψh)ε(wh)n ·P�vh ds,

c1
h(vh, rh) :=

∑
K∈Th

d+1∑
j=1

∫
s j+1bK s j

rhn ·P�vh ds,

l1h(ψh;ϕh) :=
∑

K∈Th

d+1∑
j=1

∫
s b s

f (ψh) · nR�ϕh ds.
j+1 K j
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Regularity assumptions on the exact solutions to the continuous problem imply, in particular, that

�κ(φ)(∇φ · n)�σ = 0, �μ(φ)ε(u)n�σ = 0, �φ(u · n)�σ = 0, and � p�σ = 0.

Then, using definitions of sums and averages and integration by parts, we can rewrite the integrals initially defined on 
the elements boundary ∂ K , in terms of �·�σ and {·}σ . This derivation yields the following semi-discrete DFVE formulation 
associated to the weak formulation (3.8): For all 0 < t < T , find (φh(t), uh(t), ph(t)) ∈ Sh ×Vh ×Qh such that

〈∂tφh,R�ϕh〉 +Ah
(
φh(t),ϕh;φh(t), uh(t)

)= lh
(
φh(t);ϕh

) ∀ϕh ∈ Sh, (3.9)

Âh
(
uh(t), vh;φh(t)

)+ ch
(

vh, ph(t)
)= d

(
φh(t),P�vh

) ∀vh ∈Vh, (3.10)

bh
(
uh(t),qh

)= 0 ∀qh ∈ Qh, (3.11)

where we define

Ah(ψh,ϕh;χh, wh) := A1
h(ψh,ϕh;χh, wh) −

∑
σ∈Eh

∫
σ

{(κ(χh)∇ψh − ψh wh) · n}σ · �R�ϕh �σ ds

−
∑
σ∈Eh

∫
σ

{κ(χh)(∇ϕh · n)}σ · �R�ψh �σ ds +
∑
σ∈Eh

∫
σ

αc

hδ
σ

�ψh �σ · �ϕh �σ ds,

Âh(wh, vh;ψh) := Â1
h(wh, vh;ψh) −

∑
σ∈Eh

∫
σ

{μ(ψh)ε(wh)n}σ · �P�vh �σ ds

−
∑
σ∈Eh

∫
σ

{μ(ψh)ε(vh)n}σ · �P�wh �σ ds +
∑
σ∈Eh

∫
σ

αd

hδ
σ

� wh �σ · � vh �σ ds,

lh(ψh;ϕh) := l1h(ψh;ϕh) +
∑
σ∈Eh

∫
σ

{ f (ψh) · n}σ �ϕh �σ ds,

ch(vh, rh) := c1
h(vh, rh) +

∑
σ∈Eh

∫
σ

{rh}σ � vh �σ ds,

bh(wh,qh) := b(wh,qh) −
∑
σ∈Eh

∫
σ

{qh}σ � wh �σ ds.

Here, αc and αd are nonnegative penalty parameters that will be specified later and δ depends on the dimension d. We 
set δ = (d − 1)−1, as usually done in case of DG methods. For our future analysis we also define the following natural 
mesh-dependent norms for all ψh ∈ S(h) and vh ∈V(h):

‖|ψh‖|2h :=
∑

K∈Th

‖∇ψh‖2
0,K +

∑
σ∈Eh

h−δ
σ

∥∥�ψh �σ

∥∥2
0,σ

, ‖|ψh‖|2 := ‖|ψh‖|2h +
∑

K∈Th

h2
K |ψh|22,K ,

‖vh‖2
h :=

∑
K∈Th

|vh|21,K +
∑
σ∈Eh

h−δ
σ

∥∥� vh �σ

∥∥2
0,σ

, ‖vh‖2
1,h := ‖vh‖2

h +
∑

K∈Th

h2
K |vh|22,K .

The standard inverse inequality implies that there exists C > 0 such that

‖|ϕh‖| ≤ C‖|ϕh‖|h ∀ϕh ∈ Sh, ‖vh‖1,h ≤ C‖vh‖h ∀vh ∈Vh. (3.12)

A simple application of the Gauss divergence theorem provides the following result.

Lemma 3.2. The following relations hold for all ψh, ϕh, χh ∈ Sh, wh, vh ∈ Vh, and qh ∈Qh.

−A(ψh,ϕh;χh) =
∑

K∈Th

d+1∑
j=1

∫
s j+1bK s j

(κ(χh)∇ψh) · nR�ϕh ds

+
∑

K∈Th

∫
∂ K

(κ(χh)∇ψh) · n(R�ϕh − ϕh)ds

+
∑

K∈Th

∫
K

∇ · (κ(χh)∇ψh)(ϕh −R�ϕh)dx, (3.13)

Â1
h(wh, vh;ψh) = Â(wh, vh;ψh) +

∑
K∈Th

∫
∂ K

μ(ψh)(P�vh − vh)ε(wh) : n ds

+
∑

K∈T

∫
∇ · (μ(ψh)ε(wh)) · (vh −P�vh)dx, (3.14)
h K
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c1
h(vh,qh) = −b(vh,qh). (3.15)

Proof. Relations (3.13) and (3.14) follow as in [53, p. 1067], whereas (3.15) can be established using [54, p. 189]. �
4. Solvability and convergence analysis

In this section and also in subsequent sections, we assume that u(t) ∈ L∞(�) and make use of the Lipschitz continu-
ity and boundedness assumptions (given in (2.1) and (2.2)) on viscosity μ = μ(φ), flux function f = f (φ) and diffusion 
coefficient κ = κ(φ). We also use the following well known inverse inequalities ∀vh ∈ Vh:

‖vh‖1,K ≤ Ch−1
K ‖vh‖0,K , ‖vh‖∞,K ≤ Ch−d/2

K ‖vh‖0,K , ‖∇vh‖∞,K ≤ h−d/2
K ‖∇vh‖0,K , (4.1)

‖vh‖0,σ ≤ Ch−1/2
K ‖vh‖0,K , ‖(∇vh)nK ,σ ‖0,σ ≤ Ch−1/2

K ‖∇vh‖0,K . (4.2)

The scalar version of the inequalities stated in (4.1) and (4.2) is given in [19] and Lemma 2.1 of [42], respectively. In 
addition, we will also frequently use the following well-established trace inequalities (cf. [1, Th. 3.10]):

‖v‖2
0,σ ≤ C

(
h−1

K ‖v‖2
0,K + hK |v|21,K

) ∀v ∈ H 1(K ),∥∥(∇v)nK ,σ

∥∥2
0,σ

≤ C
(
h−1

K |v|21,K + hK |v|22,K

) ∀v ∈ H 2(K ), (4.3)

for σ ⊂ ∂ K , where C > 0 depends also on the minimum angle of K ∈ Th .

4.1. Solvability

Let us define the following “cut-off” operator N for the velocity (see [47]):

N (u)(x) := min
{|u(x)|, N

} u(x)

|u(x)| ,

where N is a fixed positive number and |u(x)| = (
∑d

i=1 ui(x)2)1/2. The map N is uniformly bounded and uniformly Lipschitz 
continuous (see [47, p. 331]), i.e.,∥∥N (u) −N (v)

∥∥∞,�
≤ ‖u − v‖∞,�. (4.4)

For now on let us denote N (uh)(x) as uN
h . It is still left to precisely define this “cut-off” operator, but for the moment it 

suffices to note that in the subsequent analysis we will require the computed velocity uh to be uniformly bounded, which 
can be guaranteed by the definition of N .

For a fixed φh , an application of (3.13), (3.2), (3.3) helps us to show that the bilinear form Âh(·, ·;φh) is coercive with 
respect to ‖·‖h , i.e., there exists a positive constant α independent of the mesh size h such that for αd large enough and h
small enough

Âh(vh, vh;φh) ≥ α‖vh‖2
h. (4.5)

For a detailed proof and restrictions on the penalty parameter αd , we refer to [54, Lemma 3.5]; see also [29]. Moreover, the 
choice of finite element spaces Vh and Qh yields the inf-sup condition [54]

sup
vh∈Vh

bh(vh,qh)

‖vh‖h
≥ β1‖qh‖0,�, (4.6)

where β1 > 0 is independent of h. Hence, using (3.15) and the Babuška–Brezzi theory for saddle point problems we can 
assert that, for a given φh , there exists a unique solution to the flow equations (3.10), (3.11). In particular, the existence of 
uh implies that of uN

h . To prove the existence and uniqueness of φh (and also in view of the error analysis to be presented 
later on), it is convenient to recast (3.9) employing the definition of Ah(·, ·; ·, ·) in the following manner:

Find φh ∈ Sh such that

〈∂tφh,R�ϕh〉 + Bh(φh,ϕh;χh) = −
∑

K∈Th

d+1∑
j=1

∫
s j+1bK s j

uN
h · nφhR�ϕh ds

−
∑
σ∈Eh

∫
σ

{uN
h · nφh}σ · �R�ϕh �σ ds + lh(φh;ϕh) ∀ϕh ∈ Sh, (4.7)

where
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Bh(ψh,ϕh;χh) := −
∑

K∈Th

d+1∑
j=1

∫
s j+1bK s j

(κ(χh)∇ψh) · nR�ϕh ds +
∑
σ∈Eh

∫
σ

αc

hδ
σ

�ψh �σ · �ϕh �σ ds

−
∑
σ∈Eh

∫
σ

{(κ(χh)∇ψh) · n}σ · �R�ϕh �σ ds −
∑
σ∈Eh

∫
σ

{κ(χh)(∇ϕh · n)}σ · �R�ψh �σ ds.

To obtain an a priori bound of φh which will be used for the well-posedness of the system (3.9)–(3.11), below we show that 
Bh(·, ·; ·) is coercive and bounded within the ball B M = {ψh ∈ Sh : ‖∇ψh‖∞ ≤ M}.

Lemma 4.1. There exist generic positive constants β and C independent of h, but which may depend on the penalty parameter αc , such 
that

Bh(χh,χh;χh) ≥ β‖|χh‖|2h ∀χh ∈ B M ,∣∣Bh(ψh,ϕh;χh)
∣∣≤ C‖|ψh‖|h‖|ϕh‖|h ∀ψh,ϕh ∈ Sh ∀χh ∈ B M . (4.8)

Proof. Define

E(ψh,ϕh;χh) := −
∑

K∈Th

d+1∑
j=1

∫
s j+1bK s j

(κ(χh)∇ψh) · nR�ϕh ds − A(ψh,ϕh;χh).

Now, using relation (3.13) we deduce that

E(ψh,ϕh;χh) =
∑

K∈Th

∫
∂ K

(κ(χh)∇ψh) · n(R�ϕh − ϕh)ds

+
∑

K∈Th

∫
K

∇ · (κ(χh)∇ψh)(ϕh −R�ϕh)dx =: T1 + T2. (4.9)

An application of (3.6), (2.2) and using the fact that ψh and χh are linear on each triangle yields∣∣∣∣∣∣
∫
∂ K

κ(χh)∇ψh · n(ϕh −R�ϕh)ds

∣∣∣∣∣∣≤ Ch
∥∥∇(κ(χh)∇ψh)

∥∥
0,K ‖∇ϕh‖0,K

≤ Cγ3h‖∇χh · ∇ψh‖0,K ‖∇ϕh‖0,K .

Using the Hölder inequality, the fact that χh ∈ B M , and summation over all triangles, we obtain that

|T1| ≤ Ch‖|ψh‖|h‖|ϕh‖|h. (4.10)

For T2, first we note that∫
K

∇ · (κ(χh)∇ψh)(ϕh −R�ϕh)dx ≤ ∥∥∇ · (κ(χh)∇ψh)
∥∥

0,K ‖ϕh −R�ϕh‖0,K .

Now, by using (3.3), (2.2) and the fact ψh is linear on each K , we obtain

|T2| ≤ Ch‖|ψh‖|h‖|ϕh‖|h. (4.11)

Combining the estimates obtained in (4.10) and (4.11) and inserting them in (4.9), we obtain∣∣E(ψh,ϕh;χh)
∣∣≤ Ch‖|ψh‖|h‖|ϕh‖|h ∀ϕh,ψh ∈ Sh,χh ∈ B M . (4.12)

Now using (4.12) and following the proof lines of Lemmas 2.3 and 2.4 in [29], we complete the rest of the proof. �
Using the trace inequality (4.3) and properties of R� , for u(t) ∈ L∞(�), the following bound has been derived in 

[27, p. 1364]:

∑
K∈Th

d+1∑
j=1

∫
s b s

u · nψhR�ϕh ds ≤ C‖|ϕh‖|h
(‖ψh‖0,� + h‖|ψh‖|h

) ∀ψh ∈ S(h),∀ϕh ∈ Sh. (4.13)
j+1 K j
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Since uN
h is also uniformly bounded, (4.13) also holds for uN

h . An application of the Cauchy–Schwarz inequality and the trace 
inequality along with the fact that uN

h is uniformly bounded yields∫
σ

{uN
h · nψh}σ · �R�ϕh �σ ds ≤ Chδ/2

σ

(
h−1/2

K ‖ψh‖0,K + h1/2
K ‖∇ψh‖0,K

) 1

hδ/2
σ

‖�R�ϕh �σ ‖0,σ .

Now, again a repeated application of the Cauchy–Schwarz inequality together with definitions of R� enable us to write

1

hδ/2
σ

‖�R�ϕh �σ ‖0,σ = 1

hδ/2
σ

⎛
⎝∫

σ

�R�ϕh �
2
σ ds

⎞
⎠

1/2

= 1

h(δ−1)/2
σ

�R�ϕh �σ = 1

h(δ+1)/2
σ

∫
σ

�ϕh �σ ds

≤ 1

h(δ+1)/2
σ

⎛
⎝∫

σ

�ϕh �2
σ ds

⎞
⎠

1/2⎛
⎝∫

σ

ds

⎞
⎠

1/2

=
⎛
⎝ 1

hδ
σ

∫
σ

�ϕh �2
σ ds

⎞
⎠

1/2

. (4.14)

Hence,

∫
σ

{uN
h · nψh}σ · �R�ϕh �σ ds ≤ Chδ/2

σ h−1/2
K

(‖ψh‖0,K + hK ‖∇(φ − φh)‖0,K
)
⎛
⎝ 1

hδ
σ

∫
σ

�ϕh �2
σ ds

⎞
⎠

1/2

.

Using (3.1), summing over all edges and using the definition of the norm ‖ | · ‖ |h , we have for all ψh, ϕh ∈ Sh:

∑
σ∈Eh

∫
σ

{uN
h · nψh}σ · �R�ϕh �σ ds ≤ C

(‖ψh‖0,� + h‖|ψh‖|h
)‖|ϕh‖|h. (4.15)

In a similar way, using the Cauchy–Schwarz inequality and the trace inequality (4.3) and the same arguments used in (4.13)
and (4.15), we obtain the following estimate∣∣lh(ψh;ϕh)

∣∣≤ C
(‖ψh‖0,� + h‖|ψh‖|h

)‖|ϕh‖|h ∀ψh ∈ S(h),∀ϕh ∈ Sh. (4.16)

Now, existence and uniqueness of φh can be shown as follows. Substituting uN
h in (4.7) gives a system of nonlinear differ-

ential equations in φh . Picard’s theorem guarantees the existence and uniqueness of φh in some small interval (0, th). To 
continue the solution an a priori bound for φh is required, which can be derived easily by employing the inequalities (4.13), 
(4.15), (4.16) and (4.8); for more details, see [27]. Therefore, existence and uniqueness of φh is ensured in a ball B M .

4.2. Error estimates for velocity and pressure

For a given φ, we define the projection operators (ũh, p̃h) : (0, T ) −→Vh ×Qh as follows:

Âh(ũh, vh;φ) + ch(vh, p̃h) = d(φ,P�vh) ∀vh ∈Vh, (4.17)

bh(ũh,qh) = 0 ∀qh ∈ Qh. (4.18)

In order to make use of some technical results which were established for d = 2 and also for the sake of clarity in the 
presentation, we present our analysis for d = 2 and this analysis can be extended to the case for d = 3. In this connection, 
the following estimates for (ũh, p̃h) ∈Vh ×Qh can be derived by imitating the analysis of [17] (see also [54]):

‖u − ũh‖0,� ≤ Ch2(‖u‖2,� + ‖p‖1,� + ‖φg‖1,�

)
, (4.19)∥∥u − ũh

∥∥
h + ‖p − p̃h‖0,� ≤ Ch

(‖u‖2,� + ‖p‖1,�

)
. (4.20)

For our subsequent analysis, we need that ũh is bounded in the following sense:

‖∇ · ũh‖∞,K + ‖∇ · ũh‖∞,∂ K ≤ C ∀K ∈ Th. (4.21)

Here, the constant C is independent of h but may depend on the bounds of ‖u‖2,� . For the establishment of (4.21), 
quasi-uniformity of the mesh, (4.19), inverse inequalities (4.1), (4.2) and continuous interpolant approximations properties 
are used. For details on a scalar version of this result, see [4, Theorem 4.7].

The following lemma provides the error estimates for velocity and pressure in terms of concentration.

Lemma 4.2. There exists a constant C independent of h, but which may depend on the bound of ũh, such that

‖u − uh‖0,� ≤ C
[

h2(‖u‖2,� + ‖p‖1,� + ‖φg‖1,�

)+ ‖φ − φh‖0,� + h‖|φ − φh‖|h
]
,

‖u − uh‖h + ‖p − p̃h‖0,� ≤ C
[
h
(‖u‖2,� + ‖p‖1,�

)+ ‖φ − φh‖0,� + h‖|φ − φh‖|h
]
.
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Proof. Write u − uh = u − ũh + ũh − uh and p − ph = p − p̃h + p̃h − ph . Since estimates for u − ũh and p − p̃h are given 
in (4.19) and (4.20), we proceed to find estimates for ũh − uh and p̃h − ph . Subtracting (3.10) from (4.17) and (3.11) from 
(4.18), respectively, we get for all vh ∈Vh and qh ∈Qh

Âh(ũh, vh;φ) − Âh(uh, vh;φh) + ch(vh, p̃h) − ch(vh, ph) = d(φ,P�vh) − d(φh,P�vh), (4.22)

bh(ũh − uh,qh) = 0. (4.23)

We rewrite (4.22) as follows:

Âh(ũh − uh, vh;φh) + ch(vh, p̃h − ph) = Âh(ũh, vh;φh) − Âh(ũh, vh;φ)

+ d(φ,P�vh) − d(φh,P�vh) ∀vh ∈Vh. (4.24)

By using the definition of Âh(·, ·; ·), (3.14) and the fact that ũh is linear on K , we can write

Âh(ũh, vh;φh) − Âh(ũh, vh;φ)

= [ Â(ũh, vh;φh) − Â(ũh, vh;φ)] +
∑

K∈Th

∫
∂ K

(μ(φh) − μ(φ))(P�vh − vh)ε(ũh) · n ds

+
∑
σ∈Eh

∫
σ

{(μ(φh) − μ(φ))ε(ũh)n}σ · �P�vh �σ ds +
∑
σ∈Eh

∫
σ

{(μ(φh) − μ(φ))ε(vh)n}σ · �P�ũh �σ ds

+
∑

K∈Th

∫
K

(∇ · μ(φh) − ∇ · μ(φ))ε(ũh) · (vh −P�vh)dx

=: J1 + J2 + J3 + J4 + J5. (4.25)

Employing the definition of Â(·, ·; ·), (4.21), the Lipschitz continuity of μ and the Cauchy–Schwarz inequality, we have the 
following bound for J1:

| J1| ≤ C‖φ − φh‖0,�‖vh‖h.

In order to bound J2, first we note that by using Cauchy–Schwarz inequality, (4.21), the trace inequality (4.3), and (3.4)∣∣∣∣∣∣
∫
∂ K

(μ(φh) − μ(φ))(P�vh − vh)ε(ũh) : n ds

∣∣∣∣∣∣
≤ C

(
h−1/2

K ‖φ − φh‖0,K + h1/2
K ‖∇(φ − φh)‖0,K

)
h−1/2

K ‖P�vh − vh‖0,K

≤ C
(‖φ − φh‖0,K + hK ‖∇(φ − φh)‖0,K

)|vh|1,K .

Summing over all triangles and using definitions of the mesh dependent norms ‖·‖h and ‖ | · ‖ |h , we get

| J2| ≤ C
(‖φ − φh‖0,� + h‖|φ − φh‖|h

)‖vh‖h.

Similarly, to bound J3 again an application of Cauchy–Schwarz inequality, (4.21), and the trace inequality (4.3) yield∣∣∣∣∣∣
∫
σ

{(μ(φh) − μ(φ))ε(ũh)n}σ · �P�vh �σ ds

∣∣∣∣∣∣
≤ Ch1/2

σ

(
h−1/2

K ‖φ − φh‖0,K + h1/2
K ‖∇(φ − φh)‖0,K

) 1

h1/2
σ

‖�P�vh �σ ‖0,σ .

Repeating the same arguments used in the derivation of (4.14) and definition of P� , we have the following inequality 
∀vh ∈ V(h) for d = 2, i.e., δ = 1:

1

h1/2
σ

‖�P�vh �σ ‖0,σ ≤
⎛
⎝ 1

hσ

∫
σ

� vh �2
σ ds

⎞
⎠

1/2

. (4.26)

Using (4.26), we obtain
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∣∣∣∣∣∣
∫
σ

{(μ(φh) − μ(φ))ε(ũh)n}σ · �P�vh �σ ds

∣∣∣∣∣∣

≤ C
(‖φ − φh‖0,K + hK ‖∇(φ − φh)‖0,K

)⎛⎝ 1

hσ

∫
σ

� vh �2
σ ds

⎞
⎠

1/2

.

Now summing over all the edges and using definitions of ‖·‖h and ‖ | · ‖ |h , we have

| J3| ≤ C
(‖φ − φh‖0,� + h‖|φ − φh‖|h

)‖vh‖h. (4.27)

To bound J4, first we note that (3.5) implies �P�ũh �σ = �P�(ũh − u)�σ . Now, a repeated application of the trace inequal-
ity (4.3), the one dimensional version (for d = 2, the edge σ can be considered as a one-dimensional object) of inverse 
inequality (4.1) and (4.26) together with fact that vh is linear and P�(·) is constant on triangle K yields∫

σ

{(μ(φh) − μ(φ))ε(vh)n}σ · �P�ũh �σ ds ≤ ‖ε(vh)‖∞,σ ‖φ − φh‖0,σ ‖�P�(ũh − u)�σ ‖0,σ

≤ C‖ε(vh)‖0,σ

(
h−1/2

K ‖φ − φh‖0,K + h1/2
K ‖∇(φ − φh)‖0,K

) 1

h1/2
σ

‖�P�(ũh − u)�σ ‖0,σ

≤ Ch−1
K ‖ε(vh)‖0,K (‖φ − φh‖0,K + hK ‖∇(φ − φh)‖0,K )

⎛
⎝ 1

hσ

∫
σ

�P�(ũh − u)�
2
σ ds

⎞
⎠

1/2

.

Summing over all edges and using the definitions of ‖·‖h and ‖ | · ‖ |h together with (4.20), we may write

| J4| ≤ C
(‖φ − φh‖0,� + h‖|φ − φh‖|h

)‖vh‖h. (4.28)

For J5, first we note that

∇ · μ(φh) − ∇ · μ(φ) = μ′(φh)(∇φh − ∇φ) + ∇φ
(
μ′(φh) − μ′(φ)

)
.

Now using the Lipschitz continuity and boundedness of μ′ and similar arguments used in the bound for J1, the following 
bound for J5 can be obtained easily:

| J5| ≤ Ch
(‖φ − φh‖0,� + ‖|φ − φh‖|h

)‖vh‖h.

Combining all derived bounds for J1, . . . , J5 in (4.25), we have∣∣ Âh(ũh, vh;φh) − Âh(ũh, vh;φ)
∣∣≤ C

(‖φ − φh‖0,� + h‖|φ − φh‖|h
)‖vh‖h. (4.29)

For all vh ∈Vh , the following has been shown in Lemma 4.3 of [54]

‖vh‖2
0,� ≤ C

⎡
⎣∑

K∈Th

|vh|21,K +
∑
σ∈Eh

�P�vh �
2
σ +

∑
K∈Th

h2
K |vh|22,K

⎤
⎦ .

As a consequence of the bound �P� vh �
2
σ ≤ 1

hσ

∫
σ � vh �2

σ ∀vh ∈Vh (see (4.26)), an application of (3.12) yields

‖vh‖0,� ≤ C‖vh‖h ∀vh ∈ Vh. (4.30)

Hence, in view of the definition of d(·,P�·) together with (3.7) and (4.30), we obtain∣∣d(φ,P�vh) − d(φh,P�vh)
∣∣≤ C‖φ − φh‖0,�‖vh‖h. (4.31)

Now, choosing vh = ũh − uh in (4.24) and using (3.15), (4.23), and (4.5), i.e., the coercivity of Âh together with (4.29) and 
(4.31), we obtain the following bound for ũh − uh:∥∥ũh − uh

∥∥
h ≤ C

(‖φ − φh‖0,� + h‖|φ − φh‖|h
)
. (4.32)

In order to find a bound for p̃h − ph , we again choose vh = ũh − uh in (4.24) and employ (4.29), (4.31), (4.5) and (3.15) to 
obtain

bh(ũh − uh, p̃h − ph) ≤ C
(‖φ − φh‖0,� + h‖|φ − φh‖|h

)∥∥ũh − uh
∥∥

h.

By an application of the inf-sup condition given in (4.6) and using (4.32), we arrive at

‖p̃h − ph‖0,� ≤ C
(‖φ − φh‖0,� + h‖|φ − φh‖|h

)
.

The L2-norm estimate of ũh − uh follows from ‖vh‖0,� ≤ C‖vh‖h for all vh ∈Vh , and after employing (4.19) and (4.20), we 
obtain the desired result. �
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4.3. Error estimates for the concentration field

We decompose the error in φ − φh as

φ − φh = η + θ, η := φ − Rhφ, θ := Rhφ − φh, (4.33)

where Rh : H1(�) −→ Sh is the elliptic projection defined as

Bh(φ − Rhφ,ϕh;φ) = 0 ∀ϕh ∈ Sh. (4.34)

Here, the bilinear form Bh(·, ·; ·) is same as defined in Section 4.1. Now first we derive error estimates for the projection 
operator Rh in ‖ | · ‖ |h and ‖ · ‖0,� norms. We would like to mention that the arguments used for deriving these estimates 
are quite standard, therefore, for the sake of completeness, we provide the outlines of the proof of the following lemma 
which deals with an estimate of φ − Rhφ in ‖ | · ‖ |h and ‖ · ‖0,� norms:

Lemma 4.3. There exists a positive constant C independent of h such that

‖|φ − Rhφ‖|h ≤ Ch‖φ‖2,�, (4.35)

‖φ − Rhφ‖0,� ≤ C(φ, f , u) h2. (4.36)

Proof. Let us write φ − Rhφ = φ − Ihφ + Ihφ − Rhφ, where Ihφ denotes the interpolant of φ which satisfies the following 
approximation properties:

|φ − Ihφ|s,K ≤ Ch2−s
K ‖φ‖2,K ∀K ∈ Th and s = 0,1. (4.37)

For a given φ, using (3.13), trace inequalities (4.3), Cauchy–Schwarz inequality, we see that Bh(·, ·; φ) is bounded in the 
following sense (for details, see Lemma 2.4 in [29]):

|Bh(ψ,ϕ;φ)| ≤ ‖|ψ‖|‖|ϕ‖| ∀ψ,ϕ ∈ S(h). (4.38)

From the definition of ‖ | · ‖ | and (4.37), we obtain

‖|φ − Ihφ‖| ≤ Ch‖φ‖2,�.

Now using (4.38) and (4.8) together with the definition of Rh , we have

β‖|Ihφ − Rhφ‖|2h ≤ Bh(Ihφ − Rhφ, Ihφ − Rhφ;φ) = Bh(Ihφ − φ, Ihφ − Rhφ;φ)

≤ C‖|φ − Ihφ‖|‖|Ihφ − Rhφ‖|h,
and hence,

‖|Ihφ − Rhφ‖|h ≤ C‖|φ − Ihφ‖|. (4.39)

Now, (4.35) follows after using (4.37) and (4.39). For deriving the L2-norm estimates, we first define the following form:

A1(ψh,ϕh;χh) := A(ψh,ϕh;χh) −
∑
σ∈Eh

∫
σ

{(κ(χh)∇ψh) · n}σ · �ϕh �σ ds

−
∑
σ∈Eh

∫
σ

{κ(χh)(∇ϕh · n)}σ · �ψh �σ ds +
∑
σ∈Eh

∫
σ

αc

hσ
�ψh �σ · �ϕh �σ ds.

Then first we find the error between Bh(·, ·; φ) and A1(·, ·; φ). The error on elements (K ) as well as on the boundary 
integrals (∂ K ) can be computed by following the analysis of [15] and error on the edges (σ ) by using the same arguments 
used in Lemma 3.1 of [29]. Then standard duality arguments can be used to derived optimal error estimates in ‖φ − Rhφ‖0,�

given in (4.36). For detailed proof, we refer to Theorem 4.4 in [15], Lemma 4.4 in [27] and also see [29]. �
The quasi-uniformity of the mesh implies that there exists a constant C independent of h such that

‖∇Rhφ‖∞,K ≤ C, ‖∇Rhφ‖∞,∂ K ≤ C, ‖Rhφ‖∞,K ≤ C, ‖Rhφ‖∞,∂ K ≤ C (4.40)

(see Theorem 4.7 in [4] and also [39]). Now we provide appropriate estimates for θ (see (4.33)).

Lemma 4.4. There exists a constant C independent of h such that

‖θ‖2
0,� + β∗

T∫
0

‖|θ‖|2h dτ

≤ C

t∫
0

(
h4(‖u‖2

2,� + ‖p‖2
1,� + ‖φg‖2

1,�) + h2‖|η‖|2h + ‖η‖2
0,� + ‖∂tη‖2

0,�

)
dτ .
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Proof. First we note that φ and u = uN (where we take N large enough in the definition of N such that |u(x)| ≤ N) satisfy

〈∂tφ,R�ϕh〉 + Bh(φ,ϕh;φ) = −
∑

K∈Th

d+1∑
j=1

∫
s j+1bK s j

uN · nφR�ϕh ds

−
∑
σ∈Eh

∫
σ

{uN · nφ}σ · �R�ϕh �σ ds + lh(φ;ϕh) ∀ϕh ∈ Sh. (4.41)

Subtracting (4.7) from (4.41), we obtain the following error equation in terms of η and θ :

〈∂tθ,R�ϕh〉 + Bh(θ,ϕh;φh)

= [−Bh(φ,ϕh;φ) − Bh(η,ϕh;φh) + Bh(φ,ϕh;φh)] +
∑

K∈Th

d+1∑
j=1

∫
s j+1bK s j

(uN
h − uN) · nφR�ϕh ds

+
∑

K∈Th

d+1∑
j=1

∫
s j+1bK s j

(φh − φ)uN
h · nR�ϕh ds +

∑
σ∈Eh

∫
σ

{(uN
h − uN) · nφ}σ · �R�ϕh �σ ds

+
∑
σ∈Eh

∫
σ

{(φh − φ)n · uN
h }σ · �R�ϕh �σ ds − 〈∂tη,R�ϕh〉 + lh(φ − φh;ϕh)

=: I1 + I2 + I3 + I4 + I5 + I6 + I7. (4.42)

Now we estimate I1, . . . , I7 one by one. By using (4.34), we have

Bh(φ,ϕh;φh) − Bh(φ,ϕh;φ) − Bh(η,ϕh;φh) = Bh(Rhφ,ϕh;φh) − Bh(Rhφ,ϕh;φ),

and hence by using the definition of Bh(·, ·; ·), we have

Bh(Rhφ,ϕh;φh) − Bh(Rhφ,ϕh;φ) =
∑

K∈Th

d+1∑
j=1

∫
s j+1bK s j

(κ(φ) − κ(φh))∇(Rhφ) · nR�ϕh ds

+
∑
σ∈Eh

∫
σ

{[(κ(φ) − κ(φh))∇(Rhφ)] · n}σ · �R�ϕh �σ ds

+
∑
σ∈Eh

∫
σ

{(κ(φ) − κ(φh))∇ϕh · n}σ · �R�(Rhφ)�σ ds

= : T1 + T2 + T3.

Using (3.13), we rewrite T1 as

T1 = [A(Rhφ,ϕh;φh) − A(Rhφ,ϕh;φ))] +
∑

K∈Th

∫
∂ K

(κ(φh) − κ(φ))∇(Rhφ) · n(R�ϕh − ϕh)ds

+
∑

K∈Th

∫
K

∇[(κ(φh) − κ(φ))∇(Rhφ)](ϕh −R�ϕh)dx =: T 1
1 + T 2

1 + T 3
1 .

Employing the definition of A(·, ·; ·) together with Cauchy–Schwarz inequality and (4.40), we obtain

|T 1
1 | ≤ C‖φ − φh‖0,�‖|φh‖|h.

Again, an application of (4.40) together with trace inequality (4.3) and (3.4) yields∫
∂ K

(κ(φh) − κ(φ))∇(Rhφ) · n(R�ϕh − ϕh)ds

≤ C
(

h−1/2
K ‖φ − φh‖0,K + h1/2

K ‖|∇(φ − φh)‖0,K

)

×
(

h−1/2
K ‖R�ϕh − ϕh‖0,K + h1/2

K ‖∇(R�ϕh − ϕh)‖0,K

)

≤ C
(‖φ − φh‖0,K + hK ‖|∇(φ − φh)‖0,K

)‖∇ϕh‖0,K .
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Then, summation over all triangles gives

|T 2
1 | ≤ C

(‖φ − φh‖0,� + h‖|φ − φh‖|h
)‖|ϕh‖|h.

To estimate T 3
1 , we argue as follows: Since Rhφ is linear on each triangle, we note that

∇ · [(κ(φh) − κ(φ))∇Rhφ] = (∇κ(φh) − ∇κ(φ)) · ∇(Rhφ) = (κ ′(φh)∇φh − κ ′(φ)∇φ) · ∇(Rhφ)

= [κ ′(φh)(∇φh − ∇φ) + ∇φ(κ ′(φh) − κ ′(φ))] · ∇(Rhφ),

and therefore, by assuming that κ ′ is Lipschitz continuous and using Cauchy–Schwarz inequality, (3.4), (4.40), (2.2), we have

|T 3
1 | ≤ C(γ3)h

(‖φ − φh‖0,� + ‖|φ − φh‖|h
)‖|ϕh‖|h.

Combining the estimates of T 1
1 , T 2

1 and T 3
1 , we obtain the following bound for T1:

|T1| ≤ C
(‖φ − φh‖0,� + h‖|φ − φh‖|h

)‖|ϕh‖|h.
For T2, we use the same arguments used in the bound for J3 given in (4.27) and (4.40) to obtain

|T2| ≤ C
(‖φ − φh‖0,� + h‖|φ − φh‖|h

)‖|ϕh‖|h.
To bound T3, first we note that from (3.5), we have �R�(Rhφ)�σ = �R�(Rhφ − φ)�σ . Now following the same techniques 
used in the accomplishment of (4.28), where (4.35) is used in place of (4.20), we immediately conclude that

|T3| ≤ C
(‖φ − φh‖0,� + h‖|φ − φh‖|h

)‖|ϕh‖|h,
and hence,

|I1| ≤ C
(‖φ − φh‖0,� + h‖|φ − φh‖|h

)‖|ϕh‖|h.
Using (4.4) and the uniform boundedness of uN

h , we have from (4.13)

|I2|, |I3| ≤ C
(‖u − uh‖0,� + h‖u − uh‖h

)‖|ϕh‖|h.
Again using the same techniques which were used to bound J3 together with (4.4) and uN

h ∈ L∞(�), we easily obtain the 
following bounds for I4 and I5

|I4|, |I5| ≤ C
(‖u − uh‖0,� + h‖u − uh‖h

)‖|ϕh‖|h.
An application of the Cauchy–Schwarz inequality together with L2 stability of R� , i.e., (3.7) yields

|I6| ≤ C‖∂tη‖0,�‖ϕh‖0,�.

With the help of (4.16) and the assumption that f is Lipschitz continuous, we have

|I7| ≤ C
(‖φ − φh‖ + h‖|φ − φh‖|h

)‖|ϕh‖|h.
Choosing ϕh = θ , substituting all the estimates of I1, . . . , I7 into (4.42) and using Lemma 4.2 together with (4.8), Young’s 
inequality (ab ≤ ξ

2 a2 + 1
2ξ

b2 for all a, b ∈ R and ξ > 0), and classical “kick-back” arguments (i.e. adding an existing term 
multiplied by a small constant, only to be conveniently eliminated afterwards), we arrive at

〈∂tθ,R�θ〉 + (β − ξ)‖|θ‖|2h
≤ C

(
‖θ‖2

0,� + h4(‖u‖2
2,� + ‖p‖2

1,� + ‖φg‖2
1,�

)+ h2‖|η‖|2h + ‖η‖2
0,� + ‖∂tη‖2

0,�

)
. (4.43)

Let us define the norm ‖|ϕh‖|1 := (ϕh,R�ϕh). Note that R� satisfy the following properties, see [27, pp. 1365]:

(ϕh,R�ψh) = (ψh,R�ϕh) ∀ϕh,ψh ∈ Sh. (4.44)

Moreover, ‖ | · ‖ |1 and ‖ · ‖0,� are equivalent, i.e., there exist C1 > 0 and C2 > 0 independent of h such that

C1‖ψh‖0,� ≤ ‖|ψh‖|1 ≤ C2‖ψh‖0,� ∀ψh ∈ Sh. (4.45)

Employing (4.44), we obtain from (4.43)

1

2

d

dt
〈θ,R�θ〉 + β∗‖|θ‖|2h ≤ C

(
‖θ‖2

0,� + ‖u − uh‖2
0,� + h2‖u − uh‖2

h + h2‖|η‖|2h + ‖η‖2
0,� + ‖∂tη‖2

0,�

)
.

We proceed to choose φh(0) = Rhφ(0), which implies that θ(0) = 0. Now, an application of Gronwall’s inequity together 
with (4.45) enables us to write

‖θ‖2
0,� + β∗

T∫
0

‖|θ‖|2hdτ ≤ C

T∫
0

(
h4(‖u‖2

2,� + ‖p‖2
1,� + ‖φg‖2

1,�

)+ h2‖|η‖|2h + ‖η‖2
0,� + ‖∂tη‖2

0,�

)
dτ ,

which completes the proof. �
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Table 1
Example 1: Convergence test against an analytical solution employing DFVE approximations of concentration, velocity and pressure computed on a sequence 
of uniformly refined triangulations of the unit square.

h e0(φ) rate eh(φ) rate e0(u) rate eh(u) rate e0(p) rate

0.28284 0.000417 – 0.01468 – 0.005051 – 0.08445 – 0.09067 –
0.14142 9.985e−5 2.0643 0.00751 0.9657 0.001362 1.8900 0.04345 0.9586 0.04526 1.0021
0.07071 2.443e−5 2.0311 0.00379 0.9866 0.000352 1.9493 0.02202 0.9805 0.02259 1.0026
0.03535 6.124e−6 1.9988 0.00190 0.9950 8.971e−5 1.9760 0.01108 0.9906 0.01128 1.0014
0.01767 1.742e−6 1.9967 0.00095 1.0002 2.260e−5 1.9883 0.00555 0.9954 0.00564 1.0006
0.00883 4.385e−7 1.9682 0.00047 1.0075 5.676e−6 1.9939 0.00278 0.9977 0.00281 1.0002
0.00441 1.097e−7 1.9578 0.00023 1.0093 1.423e−6 1.9955 0.00139 0.9988 0.00140 1.0000
0.00220 2.562e−8 1.9305 0.00012 1.0010 3.671e−7 1.9920 0.00070 0.9995 0.00070 1.0000

Theorem 4.5 (Error estimates). Let (φh(t), uh(t), ph(t)) ∈ Sh ×Vh ×Qh be the unique solution of (3.9)–(3.11) and (φ(t), u(t), p(t))
the unique solution of (2.4) for a fixed time t < T . Then, under the assumption that φh(0) = Rhφ(0), there exists C > 0 such that

‖φ(t) − φh(t)‖0,� ≤ C(φ,φt, f , u, p, g) h2, (4.46)
T∫

0

‖|φ − φh‖|hdτ ≤ C(φ,φt, f , u, p, g) h, (4.47)

‖u(t) − uh(t)‖0,� ≤ C(φ,φt, f , u, p, g) h2, (4.48)

‖u(t) − uh(t)‖h + ‖p(t) − ph(t)‖0,� ≤ C(φ,φt, f , u, p, g) h. (4.49)

Proof. (4.46) and (4.47) follow by combining the estimates given in (4.35), (4.36) and Lemma 4.4 whereas (4.48) and (4.49)
directly follow from (4.46), (4.47) and Lemma 4.2. �
5. Numerical examples

We now present a series of numerical tests confirming the convergence rates predicted in Section 4 and simulating some 
interesting scenarios from the applicative viewpoint. For consistence with the analysis in the previous sections, we do not 
address here the convergence of the time discretization and we simply employ a first order backward Euler formula with a 
fixed time step. The resulting system of nonlinear equations (the fully discrete counterpart of (3.9)–(3.11)) is solved via the 
Newton–Raphson method with a tolerance of 10−8 for the energy norm of the residual, and, given the moderate size of the 
associated linear systems, these are solved with the unsymmetric-pattern multi-frontal direct solver for sparse systems, a 
routine which is part of the UMFPACK library. The specific form of the linearized problem is postponed to Appendix A. The 
penalty parameters are set as αc = 10−6, αd = 103.

5.1. Example 1: experimental order of convergence against a manufactured exact solution

In Example 1 the ingredients of (1.1) are chosen in such a way that an exact solution is known. To this end, we choose 
κ(φ) = φ3(1 − φ/2)2, μ(φ) = (1 − φ/2)−2, and consider the non-homogeneous problem resulting from adding a non-zero 
datum j to the right-hand side of (1.1b). The spatial domain is � = (0, 1)2, and the source terms f (which replaces ∇ · f (φ)) 
and j are constructed so that its solution is given by the smooth functions

u(x, y, t) =
(

sin(πx) cos(π y) sin(t)
− cos(πx) sin(π y) sin(t)

)
, p(x, y, t) = (x2 + y2 − 2/3) cos(t),

φ(x, y, t) = sin(πx) sin(π y) sin(t).

Dirichlet boundary and initial conditions are chosen according to these solutions. We first apply the proposed FVE method 
on meshes obtained by successive subdivision of � into quasi-uniform triangulations Th of meshsizes h = 1

5 2−k , with 0 ≤
k ≤ 6. The system is evolved with a fixed time step �t = 0.01 until T = 1 and the approximate solutions obtained on the 
refinement level k = 6 are displayed in Fig. 2.

Individual errors in different norms are defined as

e0(u) =
∥∥∥u(tNT ) − uh(t

NT )

∥∥∥
0,�

, eh(u) =
∥∥∥u(tNT ) − uh(t

NT )

∥∥∥
h
,

e0(p) =
∥∥∥p(tNT ) − ph(t

NT )

∥∥∥
0,�

, eh(φ) = ‖|φ(tNT ) − φh(t
NT )‖|h, e0(φ) =

∥∥∥φ(tNT ) − φh(t
NT )

∥∥∥
0,�

.

As expected, we observe in Table 1 a convergence of approximate order h2 for e0(u(t)) and e0(φ(t)), and order h for the 
other spatial errors in their respective norms. An experimental convergence of order �t (not shown here) has also been 
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Fig. 2. Example 1: Contour plots of the discontinuous finite volume element approximations of velocity components (top panels), and concentration and 
pressure fields (bottom panels) at the time instant t = 1.

Fig. 3. Example 2: Spreading of a gravity current [45]. (a) Initial state (not to scale). (b) Once the concentration values in the lower half of the vessel are 
larger than εφ , the vessel is tilted. (c) Tilted vessel, (d) gravity current.

observed for all variables in the �∞(0, t; L2(�))-norm. An average iteration count (through all refinement levels and time 
steps) of six Newton steps to achieve the imposed tolerance has been evidenced.
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Fig. 4. Example 2: Contour plots of the discontinuous finite volume element approximations of (a), (c), (e), (g) concentrations and (b), (d), (f), (h) pressures 
at time instants (a), (b) t = 1000 s (before tilting at T ∗ = 1500), (c), (d) t = 4000, (e), (f) t = 8000 and (g), (h) t = 20 000.

5.2. Example 2: spreading of a suspension gravity current

In this test we are interested in recovering the flow patterns of an experiment carried out in [45]. It consists in a scenario 
where a rectangular vessel is initially placed vertically, and two separate zones with clear liquid and average concentration 
are present, and an inflow velocity of normal u · n = uin is imposed at the inlet, located at the bottom of the domain 
(see the sketch provided in Fig. 3). Next, the system evolves and from t > 0 to t = T ∗ three separate zones of clear liquid, 
suspension at intermediate concentration, and packed sediment are present, and the inflow velocity is still imposed at the 
inlet. Suddenly, at t = T ∗ (which corresponds to a time when a jamming concentration εφ = 0.475 is attained at the bottom 
of the vessel), the inflow is stopped and the gravity direction is switched −90 degrees, and from t = T ∗ to t = T , one 
observes the resulting mixing patterns.

The domain is a rectangle of width W = 50 and height H = 500, and the initial distribution of the concentration is 
φ0 = 0.4(H − y)2/H2. Zero-flux boundary conditions are considered for φ everywhere and no-slip data for u on the top, 
left, and right boundaries. For this problem we do not consider the effect of sediment compression and so we take κ = D0. 
Instead of φg , in this case the forcing term acting on the momentum equation is considered as

(ρs − ρf)φ

(1 − φ)ρf + φρs
g,

and the remaining (adimensional) model parameters are chosen as follows: β = 5, φ̃max = 0.6, uin = 1.58 × 10−3, D0 =
10−3, T ∗ = 1500, ρf = 2500, g = 1.0, �ρ = 1300. A mesh of 51108 primal cells and 25 555 vertices and a timestep of 
�t = 0.05 are employed in the simulations. Fig. 4 shows the concentration profiles and pressure distribution during a 



464 R. Bürger et al. / Journal of Computational Physics 299 (2015) 446–471
Fig. 5. Example 2: Contour plots of the discontinuous finite volume element approximations of the velocity components (a), (c), (e), (g) u1 (in x-direction, 
aligned with the vessel width) and (b), (d), (f), (h) u2 (in y-direction, aligned with the vessel height) at time instants (a), (b) t = 1000 (before tilting at 
T ∗ = 1500), (c), (d) t = 4000, (e), (f) t = 8000 and (g), (h) t = 20 000.

transient simulation (for visualization purposes the tank is rendered already tilted), whereas Fig. 5 depicts contour plots of 
the associated velocity components.

5.3. Example 3: simulation of an axisymmetric secondary settling tank

We now simulate the sedimentation of a zeolites suspension taking place in a secondary clarifier located in the Eind-
hoven WWTP [6]. Since the vessel and the expected flow patterns are intrinsically axisymmetric, we can restrict the study 
to a half cross-section of the tank. The axisymmetric domain is presented in Fig. 6, along with its dimensions and different 
parts of its boundary. Such a configuration requires some modifications to the continuous and discrete formulations of the 
model problem, in particular, all differential operators, infinite and finite-dimensional functional spaces need to be accom-
modated to the axisymmetric case. A summary of these ingredients is collected in Appendix B (cf., e.g., [11] for details).

The meridional domain � sketched in Fig. 6 was discretized using an unstructured primal mesh of 96 772 triangular ele-
ments and 48 387 vertices. A fixed timestep of �t = 3 s was employed and the system was evolved until T = 120 000 s. 
The suspension fed through �in with velocity uin = (0, 0.17)T has a concentration of φin = 0.08. The material is re-
moved with a constant velocity uout = (0, −0.0000015)T through �out, and a constant pressure profile is imposed at the 
overflow �ofl. In all remaining parts of the boundary we impose zero-flux boundary conditions for the concentration 
and, except for the symmetry axis, we set no-slip velocities everywhere on ∂�. Other functions and parameters are set 
as σe(φ) = (σ0α/φα

c )φα−1, σ0 = 0.22 Pa, α = 5, β = 2.5, ρf = 998.2 kg/m3, ρs = 1750 kg/m3, φc = 0.014, φ̃max = 0.95, 
v∞ = 0.0028935 m/s, g = 9.8 m/s2, and D0 = 0.0028935 m2/s.
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Fig. 6. Example 3: Secondary settling tank [6]. The device has a feed inlet, a radial underflow for the discharge of sediment, and a peripheral overflow. 
The variables prescribed on the portions �in, �out and �ofl of the boundary of the (r, z)-domain � ⊂ R

2 are indicated. The device has a radial length and 
height of 26 m and 4 m, respectively. The inlet, �in, is a horizontal disk of radius 0.6 m. The underflow opening corresponds to the zone from r = 1.05 m
to r = 4.1 m of the conical bottom. The overflow channel corresponds to the annulus between r = 25.8 m and r = 26 m at z = 4 m. The skirt baffle is a 
thin solid wall reaching from z = 2.3 m to z = 4 m at r = 4.1 m.

Fig. 7. Example 3: Contour plots of the discontinuous finite volume element approximations of (a), (c), (e), (g) concentration and (b), (d), (f), (h) pressure at 
time instants (a), (b) t = 100 s, (c), (d) t = 5000 s, (e), (f) t = 50 000 s and (g), (h) t = 100 000 s.

Snapshots of the approximate solutions computed on the axisymmetric domain are presented in Figs. 7 and 8. For 
visualization purposes, we also depict a rotational extrusion of 330 degrees at the final time 120 000 s in Fig. 9.

5.4. Example 4: settling in an inclined cylinder

The settling rate of solid particles within a tilted vessel is known to be accelerated with respect to that in vertical 
walls. In our last example we study this phenomenon, commonly known as the Boycott effect [7], where we also test our 
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Fig. 8. Example 3: Contour plots of the discontinuous finite volume element approximations of the velocity components (a), (c), (e), (g) u1 (in radial 
direction) and (b), (d), (f), (h) u2 (in vertical direction) at time instants (a), (b) t = 100 s, (c), (d) t = 5000 s, (e), (f) t = 50 000 s and (g), (h) t = 100 000 s.

three-dimensional DFVE implementation. The material behavior and model parameters are assumed as in Example 3, but 
we take again adimensional units. The computational domain consists of a tilted cylinder of height 8 and radius 2, forming 
an angle of 45◦ with the y-axis. The concentration-dependent viscosity is given by (2.3) with φ̃max = 0.85 and β = 2. An 
unstructured mesh of 48 361 vertices and 267 297 tetrahedral primal elements has been generated to discretize the domain. 
We employ a timestep of �t = 0.01 and evolve the system until T = 16. We study the elementary batch-sedimentation 
case, therefore no-flux boundary conditions for the concentration, and no-slip velocities are set on the whole boundary (see 
also [43]). Three snapshots of the approximate solutions are displayed in Fig. 10.

6. Concluding remarks

We have presented the numerical analysis of a DFVE method for the numerical approximation of a coupled PDE system 
governing the sedimentation–consolidation process of solid–liquid suspensions. The proposed numerical scheme was formu-
lated on the basis of a discontinuous piecewise linear approximation of velocity and concentration, and piecewise constant 
pressure approximation. In general, DFVE methods also possess local conservation properties (hold for classical and mixed 
finite volume methods) on the dual elements, which are desirable while seeking numerical approximations of the problems 
following physically conservation laws including mass, momentum, etc. In addition, the size of the dual elements used in 
these methods is almost half of the size of dual elements used by classical and mixed finite volume methods. The solvability 
of the nonlinear discrete problem was discussed and a priori error estimates for concentration, velocity and pressure in dif-
ferent norms have been established rigorously. A comprehensive set of numerical tests in two and three spatial dimensions 
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Fig. 9. Example 3: Rotational extrusion of the discontinuous finite volume element approximations of (a) concentration, (b) pressure, (c) radial and (d) ver-
tical velocity components, and zoomed views of the inlet region (e), (f), (g), (h) at time t = 120 000 s.

illustrates the robustness of the proposed method. The applicability of this scheme to the transport–flow coupling arising 
in other two-phase flow models, such as those of granular-like behavior that are based on similar equations [3,26], is yet to 
be tested.

It should be noticed, however, that a proof of consistency with continuity (CWC) (exact mass conservation at the dis-
crete level for the concentration equation) is currently not available for the present scheme. Possible remedies include 
combination with semi-Lagrangian transport schemes, or the so-called explicit flux modification (cf. [35,46]). Mass-lumping 
flux-correction strategies targeted for CWC enforcement could be also incorporated without much effort (see e.g. [31]). 
Moreover, monotonicity properties (essential in avoiding spurious oscillations and non-physical concentrations) are not 
discussed within our theoretical analysis, but our computational experiments along with coercivity and discrete inf-sup 
conditions satisfied by the formulation may indicate that this property holds. A few contributions have dealt with the con-
struction of monotone finite element methods, under mesh regularity assumptions [8,51] (see also [21] and the references 
therein). Similar studies could be applied in our case if we perform an operator splitting and study the monotonicity of 
the DFVE scheme for the concentration equation following the analysis for a continuous FVE approximation of a parabolic 
problem presented in [20]. Nevertheless, monotonicity of the fully coupled scheme remains a difficult task in view of all 
involved nonlinearities and will be part of a forthcoming study. In that case, upwind or more sophisticate numerical fluxes 
should be applied (our current choice obeys primarily to permit straightforward error estimation).
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Appendix A. Newton linearization

We apply a first-order backward Euler time stepping. For a fixed time t = tn < T , we denote by (δφk
h, δuk

h, δpk
h) an incre-

ment of the state (φk, uk , pk) for k = 1, . . . , kmax. This increment is the solution of the following linearization of (3.9)–(3.11):
h h h
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1

�t
〈δφk

h,R�ϕh〉 +A(δφk
h,ϕh, φ

k
h) +

∫
�

κ ′(φk
h)δφk

h∇φk
h · ∇ϕh dx + C(φk

h,ϕh, δuk
h) + C(δφk

h,ϕh, uk
h)

= − 1

�t
〈φk

h,R�ϕh〉 −A(φk
h,ϕh, φ

k
h) − C(φk

h,ϕh, uk
h) + 〈 f ,ϕh〉 + 1

�t
〈φn−1

h ,R�ϕh〉,

Â(δuk
h, vh;φk

h) +
∫
�

μ′(φk
h)δφk

hε(uk
h) : ε(vh)dx − b(δpk

h, vh) − d(δφk
h,P�vh)

= − Â(uk
h, vh;φk

h) + b(pk
h, vh) + d(φk

h,P�vh) + 〈 j, vh〉,
b(qh, δuk

h) + b(qh, uk
h) = 0, (A.1)

for all (ϕh, vh, qh) ∈ Sh ×Vh ×Qh , associated to homogeneous Dirichlet boundary conditions for the increment of velocity 
and concentration. The state at step k is assumed to satisfy the nonhomogeneous boundary datum imposed with the initial 
condition, and the overall loop is summarized in Algorithm 1.

Algorithm 1 Solution algorithm.

1: Construct primal and dual meshes, set initial conditions φ0
h , Newton tolerance ε , and global time step �t

2: for n = 1, . . . , N do
3: set initial guess φk=0

h ← φn−1
h , uk=0

h ← un−1
h , pk=0

h ← 0

4: reset the norm of the increment εk=0
R ← 2ε

5: for k = 1, . . . , kmax do
6: given the values (φk

h, uk
h, pk

h), find the increments (δφk
h, δuk

h, δpk
h) by solving (A.1)

7: Compute the energy norm of the increment

εk
R ← (∥∥∥δφk

h

∥∥∥2

1,�
+
∥∥∥|δuk

h

∥∥∥|2h +
∥∥∥δpk

h

∥∥∥2

0,�

)1/2

8: Update the value of the approximation

φn
h ← δφk

h + φk
h, un

h ← δuk
h + uk

h, pn
h ← δpk

h + pk
h

9: if εk
R < ε or k ≥ kmax then

10: break
11: else
12: continue
13: end if
14: end for
15: end for

Appendix B. Axisymmetric formulation for the sedimentation problem

Let d = 3. Under the assumption of cylindrical symmetry (with respect to the symmetry axis �s = {r = 0}, cf. Fig. 6) of 
all the flow patterns, the expected concentration profiles, and the domain, the three-dimensional problem (1.1) in Cartesian 
coordinates (x, y, z, t) can be recast as the following two-dimensional system written in cylindrical coordinates (r, z, t):

For all t > 0, find u(t) ∈ V 1
1,�s

(�) × H1
1,�(�), p(t) ∈ L2

1,0(�) and φ(t) ∈ H1
1(�) such that

∂tφ − diva(κ(φ)∇aφ) + u · ∇aφ = ∇a · f (φ) in � × (0, T ),

−diva
(
μ(φ)εa(u) − p I

)− φg = 0 in � × (0, T ),

diva u = 0 in � × (0, T ),

u = u� on � × (0, T ),

φ = φ� on � × (0, T ),

φ(0) = φ0 on � × {0}.
Here the involved modified spaces are defined as follows (see details in e.g. [2,11,38]):

V 1
1 (�) := H1

1(�) ∩ L2−1(�), V 1
1,�s

(�) := {w ∈ V 1
1 (�) : w = 0 on �s

}
,

L2
1,0(�) :=

⎧⎨
⎩q ∈ L2

1(�) :
∫
�

q r dr dz = 0

⎫⎬
⎭ ,

where Lp
α(�) denotes the space of measurable functions v on � such that
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‖v‖p
L p
α(�)

:=
∫
�

|v|prα dr dz < ∞,

Hm
α (�) is the space of functions in Lp

α(�) with derivatives up to order m also in Lp
α(�), and Hm

α,�(�) denotes its restriction 
to functions with null trace on a part of the boundary �. The modified differential operators are defined as

∇a v :=
[

∂r vr ∂r vz

∂z vr ∂z vz

]
, diva v := ∂z vz + 1

r
∂r(rvr), εa(v) := 1

2

(∇a v + ∇a vT), ∇as =
(

∂r s
∂zs

)
.

Moreover, all volume integrals in the definition of the DFVE formulation (3.9)–(3.11) have been replaced by their weighted 
counterparts, and the discrete spaces have been replaced by

Va
h := {v ∈ V 1

1 (�) × V 1
1,�s

(�) : v|K ∈ P1(K )d,∀K ∈ Th
}
,

Qa
h := {q ∈ L2

1,0(�) : q|K ∈ P0(K ),∀K ∈ Th
}
,

Sa
h := {ϕ ∈ L2

1(�) : ϕ|K ∈ P1(K ),∀K ∈ Th
}
.
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