Tree-based adaptive finite
element methods for
deformable image registration

Nicolas A. Barnafi*”, Alberto F. Martin®, and Ricardo Ruiz-Baier®"
"Facultad de Ciencias Bioldgicas, Instituto de Ingenieria Matemitica y Computacional, Pontificia Universidad
Catolica de Chile, Santiago, Chile

Center for Mathematical Modeling, Santiago, Chile

“School of Computing, Australian National University, Acton, ACT, Australia

9School of Mathematics, Monash University, Melbourne, VIC, Australia

“Universidad Adventista de Chile, Chillan, Chile

*Corresponding author. e-mail address: ricardo.ruizbaier@monash.edu

Contents
1. Introduction 2
2. Problem setting 4
3. Adaptive discretisation scheme 7
4. Solution strategy 12
4.1 Time acceleration 14
4.2 The adaptive solver 14
5. Numerical tests 16
5.1 Convergence verification against manufactured solutions 18
5.2 Anderson acceleration for DIR 20
5.3 Adaptivity performance on brain images 23
5.4 Adaptivity performance on OC images 24
5.5 Quadrature sensitivity 26
6. Conclusions and future perspectives 28
Funding 30
References 31

Abstract

In this work we propose an adaptive Finite Element Method (FEM) formulation for
the Deformable Image Registration problem (DIR) together with a residual-based a
posteriori error estimator, whose efficiency and reliability are theoretically estab-
lished. This estimator is used to guide Adaptive Mesh Refinement and coarsening
(AMR). The nonlinear Euler-Lagrange equations associated with the minimisation of
the relevant functional are solved with a pseudo time-stepping fixed-point scheme
which is further accelerated using Anderson Acceleration (AA). The efficient
implementation of these solvers relies on an efficient adaptive mesh data structure
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based on forests-of-octrees endowed with space-filling-curves. Several numerical
results illustrate the performance of the proposed methods applied to adaptive DIR
in application-oriented problem:s.

1. Introduction

Image registration problems consist in finding an appropriate map-
ping of a given template image so that it resembles another reference
image. These images can originate from several different applications, and
may represent physical parameters, locations, or even time. See (Sotiras
et al.,, 2013) for a review in medical imaging. There are many ways of
defining such a problem, including variational formulations (Christensen
et al., 1996; Henn & Witsch, 2004), level-set methods, grid deformation
methods (Lee & Gunzburger, 2010), learning processes (De Vos et al.,
2019) and Bayesian techniques (Deshpande & Bhatt, 2019), among others.
All these approaches differ in how they measure image alignment, with
such measure being referred to as similarity. Image registration is named
deformable whenever the mapping between images is allowed to vary
arbitrarily between pixels, which results in a highly nonlinear problem.

Image registration remains a challenging problem in computational imaging
due to three inherent difficulties: its ill-posed nature, the selection of appro-
priate similarity metrics, and the high computational demands of numerical
optimisation. First, the problem’s ill-posedness necessitates regularisation stra-
tegies, such as elastic potential energy constraints (Sotiras et al., 2013), to ensure
physically plausible solutions. Second, defining effective similarity measures—
whether through energy-based criteria or intensity difference metrics like the
L* norm—requires careful consideration of image modality and noise char-
acteristics. Third, solving the Euler—Lagrange equations derived from the
energy minimisation framework imposes significant computational costs (Haber
et al., 2007), particularly when capturing localised deformations. These
deformations often exhibit high spatial gradients to resolve fine anatomical or
structural details, further amplifying discretisation challenges.

Adaptive numerical methods naturally present a promising approach to
address these issues. By dynamically refining computational grids or basis
functions in regions of sharp deformation, adaptive techniques hold the pro-
mise to achieve a remarkable trade-off among accuracy and computational
efficiency. Recent advances in AMR demonstrate the potential of such stra-
tegies to overcome traditional limitations in registration tasks, for which we
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highlight (Barafi et al., 2021; Haber et al., 2007, 2008; Pawar et al., 2016;
Zhang et al., 2013). With this in mind, in this work we leverage hier-
archically-adapted non-conforming forest-of-octrees meshes endowed with
Morton (a.k.a., Z-shaped) space-filling-curves for storage and data parti-
tioning; see, e.g., (Badia et al., 2020; Burstedde et al., 2011). These n-cube
meshes (made of quadrilaterals or cubes in 2D and 3D, resp.) can be very
efficiently handled (i.e. refined, coarsened, re-partitioned, etc.) using high-
performance and low-memory footprint algorithms (Burstedde et al., 2011).
However, they are non-conforming at the interfaces of cells with different
refinement levels as they yield hanging vertices, edges and faces. In order to
enforce the conformity (continuity) of Finite Element (FE) spaces built out of
this kind of meshes, it is standard practice to equip the space with additional
linear multi-point constraints. The structure and set up of such constraints is
well-established knowledge, and thus not covered here; see (Badia et al., 2020)
and references therein for further details.

In this work, we consider the DIR with an L? similarity measure and a
regularisation given by the (linear) elastic energy of the deformation with
Robin and pure Neumann boundary conditions. (We note that nonlinear
elasticity has also been considered as an alternative regularization term in
other works, such as, e.g. (Genet et al,, 2018).) This formulation was
analysed in (Barnafi et al., 2018), and an efficient and reliable a-posterior
error estimator was developed for it in (Barnafi et al., 2021) for the pure-
Neumann case, where uniqueness was obtained by imposing orthogonality
against the kernel of the regularisation operator. We extend that analysis to
the case of Robin boundary conditions. This efficient and reliable a-posterior
error estimator is used at a given solution of the DIR on a given mesh in
order to automatically adapt it, and the process is repeated across several
AMR iterations to successively improve the accuracy of the DIR solution.

As mentioned above, solving DIR is a challenging task. It is essentially a
nonlinear inverse problem. A well-established strategy to solve it is by
means of a pseudo-time formulation (Modersitzki, 2003), which is an
IMEX approximation of a proximal point algorithm (Kaplan &
Tichatschke, 1998). In this work, we leverage AA (Walker & Ni, 2011) to
improve its robustness and efficiency in terms of the iteration count.
Anderson acceleration is a method that considers a fixed-point iteration and
yields another one with improved convergence, both in terms of the radius
of convergence and the convergence rate (Toth & Kelley, 2015). This
technique has already been successfully validated for proximal-point
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algorithms in the context of inverse problems (Mai & Johansson, 2020),
which is the method that most resembles the scheme we use.

The main contributions of this work are: (i) the extension of the effi-
ciency and reliability proof of the existing a posteriori error indicator for
DIR to Robin boundary conditions; (ii) the use of AA to accelerate the
pseudo-time solution strategy commonly used in DIR; (iii) the use of the
computed a posteriori error estimator to guide efficient AMR using octree-
based meshes; and (iv) the combination of AA and AMR into a novel AA-
AMR algorithm for solving DIR. These methodologies result in significant
computational savings and increased accuracy, as shown in our numerical
tests. Our software is implemented in the Julia programming language
(Bezanson et al., 2017) using the FE tools provided by the Gridap eco-
system of Julia packages (Verdugo & Badia, 2022; Badia et al., 2022;
Martin, 2025).

Structure. The remainder of the work has been organised as follows. In
Section 2, we formulate the DIR problem. In Section 3, we propose FEM
discretisation for DIR and its related robust (in the sense of reliability and
efficiency) a-posteriori error estimator driving the AMR process. In Section
4, we show how we orchestrate the solution of the nonlinear problem with
both AA and AMR. In Section 5 we provide several numerical tests to
validate our approach. We conclude our work with some comments and
an outlook for future work in Section 6.

2. Problem setting

Consider a domain Q € R=23 and two fields R: Q - R and
T: 0 = R referred to as reference and target (or template) images, where R
(x) and T(x) denote the image intensity at point x. DIR consists in finding a
transformation under which the template image resembles the reference
(Modersitzki, 2003), that is to find a mapping of T onto R by means of a
warping # such that

T(x +ulx))~R(x) VxeA. (1)
This can be reformulated as a variational problem

inf aD[u; R, T] + S[u], 2)
ueVy
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where V models the admissible deformations space, D: V — R is the
aforementioned similarity measure which attains its minimum when (1)
holds, 8 is a regulariser, and a is a regularisation parameter that balances the
effects of D and S. In this work we consider V = H'(Q), the L*-norm of
the error for the similarity, given by

Du: R, T] = / (T (x + u(x)) — R (x))? dx,
QO

and as a regulariser we use the elastic deformation energy, defined in the
following manner

Slu] := %/K;Ce(u): e(u) dx.

1 . e . .
Here e(u) = E{Vu + (Vu)'} is the infinitesimal strain tensor, i.e., the
symmetric component of the displacement field gradient, and C is the
elasticity tensor for isotropic solids:

Ct=Atr(o)l +2ur V7 € R™

Naturally, one may consider many other types of regularisations. See
(Modersitzki, 2003) for a review. Assuming that (2) has at least one solution
with sufficient regularity, the associated Euler—Lagrange equations deliver
the following strong problem with Robin or Neumann boundary condi-
tions (representing springs of stiffness x> 0): Find # in H'(Q) such that

—div(Ce(u)) = af, in Q,

)
Ce(w)n + ku =0 on 0Q,

where

S, x)={Tx+uk) —Rx}VT(x+ukx) Vxel 4)

For the analysis we assume that there are positive constants Lyand M;such

that the nonlinear load term f, is Lipschitz continuous and uniformly
bounded:

If, ) = f, )| < Lylu(x) — v(x)],
[f, )| < My Vx € Qa.e.

®)

Under the previous considerations, (2) becomes
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verrﬁ%) {a[)|T(x+ u(x)) — R(x)]> dx + %‘/QCe(u): e(u) dx }
+K/aQ lu|>ds,

with first order conditions given by the primal variational formulation for
the registration problem: Find # € H'(Q) such that

a(m, v) = aF,(v) Vv e H\(Q), (6)
where a: H'(Q) X H'(Q) - R is the bilinear form defined by
a(u, v) = fCe(u): e(v) + K/ u-vds Vu,v € H(Q), ()
o 20
and for every u € H'(Q), E;: H'(Q) — R is the linear functional given by
E () = — ffu " Vv € H'(Q). ®)
Q

The conditions (5) imply the Lipschitz continuity and uniform bounded-
ness of F,, that is
|E — Ella < Lellw — vlloq,

)
| B llex oy < M Vu, v € H(Q),

respectively. We recall the results concerning the solvability of (6), as
developed in (Barnafi et al., 2018, Section 3). For it, whenever k =0 we
need to modify the solution space in order to guarantee uniqueness. We
will denote with RM = ker(S) as the space of rigid body modes, and thus
consider the solution space given by

H'(Q) k>0
V= .
{Hl(Q) NRMIE =0

With it, we define the following linear auxiliary problem: Given
& e H'(Q), find # € V such that
a(u, v) = aFg(v), ve€EV. (10)

Theorem 1. Given & € H'(Q)), problem (10) has a unique solution u € V,
and there exists C,> 0 such that

lull.o < aCy |l Fy [l oy -
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We now define the operator T.-V->V given by T (&) = u, where u is
the unique solution to problem (10) and thus rewrite (6) as the fixed-point
equation: Find # in 'V such that

Tu) = u. (11)

The following result, also proven in Barnafi et al. (2018, Theorem 3),
establishes the existence and uniqueness of solution to the fixed-point
equation (11) whenever k = 0.

Theorem 2. Under data assumptions (5), the operator T has at least one
fixed point. Moreover, if C,Lp< 1, the fixed point is unique.

Throughout the manuscript, we will use V to write our problem in
order to avoid technicalities regarding the implementation of rigid body
modes RM whenever k =0. We enforce it in practice by means of an
adequate Lagrange multiplier as in (Barnafi et al., 2018).

3. Adaptive discretisation scheme

Let V), be a finite dimensional subspace of V built out of a suitable
mesh partition 7, of Q into quadrilateral or hexahedral elements, where h
denotes the mesh size. The primal nonlinear discrete problem consists in
finding u;, € V), such that

a(uh’ Vh) = (XEM (vh) Vvh € ‘Ih- (12)

Analogously to the continuous case, we consider the auxiliary linear pro-
blem: Given &, € V,, find u;, € V,, such that

a(w, v,) = akbg (v,) Vv, €V, (13)

and also let Tj: V;, = V,, be the discrete operator given by T,(&,) = u,
where u;, is the solution to problem (13). Considering the same data
assumptions as in the continuous case, as well as the continuity and bound
obtained before, we arrive at the following result proven in Barnafi et al.
(2018, Theorem 5), adapted to include the terms arising from « = 0.

Theorem 3. Assume that data assumptions (5) hold. Then, the operator T},
has at least one fixed point. Moreover, if aC,L; < 1, then such fixed point
is unique.

Next, we define for each K € 7, the a-posteriori error indicator
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@2 = hK”af div (Ce () II5.«
+ Y hllCen]IR,
e€E(K)NE,(QY)

+ Z he ”Ce(uh)ne + Kuy, “(2),(’ >
eeE(K)NE, D)

(14)

where, according to (4),

S lk () = AT (x +my(x)) = Rx)}VT (x + m(x)) Vx €K,

and introduce the global a-posteriori error estimator

2 Ok

KeT,

1/2

The following theorem constitutes the main result of this section.

Theorem 4. Let # € V and u;, € V), be the solutions of (6) and (12),
respectively, and assume that aC,Lp< 1/2. Then, there exist positive
constants hy, C.., Cer independent of h such that for h < hy there holds

Ceff® S ”u - uh”l,Q S Crel®~ (15)

The reliability (upper bound in (15)) and the efficiency (lower bound in
(15)) of ® are established separately in the following two lemmas.

Lemma 1. Assume that aC,Lp < 1/2. Then, there exist positive constants
ho, C.e1 independent of h, such that for h < h there holds

”u - uh”V < Crel 0.

Proof. Let us first define
Riu(w — wy) := ab,(w — wy,) — a(w, w — wy) Vw, €V
As a consequence of the ellipticity of a (c.f. (7)) with ellipticity constant &
(c.f. Brenner, 2008, Corollary 11.2.22), we obtain the following condition
allvllio < sup av. w) Vv € H'(Q).

wer (@ |lwl|lv
w#0

In particular, for v :== u — u, € H'(Q), we notice from (6) and (12) that
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alu—u,w,) = 0 Vw, € V,, and hence we obtain a(u — uy,, w) =
a(w — wy, w— wy) = Ry,(w — wy), which yields
i} Ri(w — wy,)
allu —wllig < sup ———=  Vw, €V, (16)
weH' () ||W||1,Q

w#0

From the definition of R;,(w — wy,), integrating by parts on each K € 7,

and adding and subtracting a suitable term, we can write

Riy(w — wy) =ak, (w—w,) + ab,(w — w;,) — a(w, w— w)

- aEdh (w - w/'l)
=a{Rw—w) = Fw-w)}-af [

: (w - w]’l)

- X [ Cetm):e(w—w)

KeT,

=a{(K - E,)w—w,)} —a/;)j;h-(w—wh)

_ Z {—Ldiv(Ce(uh))'(W— wy,)

KeT,

+ /()K (Ce(m)ne)-(w — wh)},

(17)

=a{(E - K )w—wh)}+z / (div(Ce (uy))

KeT,,
— C(f;‘h)'(w - wh)
-y / [(Ce(w)n.)]-(w — wy)

€&, (Q)

- Z / (Ce (uh) n, + Kuh)‘(w - w/7)~

e, "~ ¢

Then, choosing wy, as the Clément interpolant of w, that is w), := I,,(w), the

approximation properties of I, yield (Clément, 1975)

lw — wyllo.x < ahk llwlhoer), lw — wyllo.. < ahe lwllige, (18)

where [J(K) := U{K' € T;: K' n K# @} and [J(¢) == U{K' € T} K' N ¢ # @}.
In this way, applying the Cauchy—Schwarz inequality to each term (17),
and making use of (18) together with the Lipschitz continuity of F, (cf.

(9)), we obtain
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Ru(w — wy) < agLlphg llu — wlli o lwll o)

1/2 1/2
+c{z @;} {2 Il e + X lwlfoe |

KeT, KeT, e€&,(Q)

where C is a constant depending on ¢ and ¢, and ®% defined by (14).
Additionally using the fact that the number of elements in (J(K) and C(e)
is bounded, we have

2 2 2 2
> wlige < Cillwlf, — and >l gy < Caliwli g,
KeT;, c€8,(Q)

where C,, C, are positive constants, and using that aC,Lr<1/2, it
follows that hy := 1/(2ciaLp). Finally, substituting in (16) we
conclude that

|l — w o < Ca ©,

where C, is independent of /. N

The efficiency bound requires using a localisation technique based on
element-bubble and edge-bubble functions. Given K € 7, and e € E(K),
we define Wy and y, the typical element- and edge-bubble functions
[Verfiirth, 1999, egs. (1.5)-(1.6)], which satisty: .

(i) ywk € P3(K), yx =0 on dK, supp(yx) CK, and O<yr<1in K,
(ii) y, € P5(K), w, =0 on 9JK, supp(y,) C@,, and 0<y, <1 in w,,

where @, := U{K' € T}: e € E(K’)}. Additional properties of yx and y,
are collected in the following lemma (c.f. Verfurth (1994, Lemma 1.3),
Verftirth (1996, Section 3.4) or Verfiirth (1999, Section 4)).

Lemma 2. Given k € N U {0}, there exist positive constants y1, ¥2, ¥3, ¥4
and ¥s, depending only on k and the shape regularity of the triangulations,
such that for each K € 7}, and e € E(K), there hold

nllalx < lwe?all « Vq € P (K),
lvalhx < wh' llalx Vg € Pe(K),
v llpll. < w2l Vp € Py(e), (19)
Iyl < vh 2 liplo.  Vp € Pele),

IA

Iy pllo, o, J’shel/z lIpllo,e Vp € Py (e).
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The efficiency (lower bound in (15)) is established with the help of the
following lemma whose proof is a slight modification of Verfiirth (1999,
Section 6).

Lemma 3. There exist constants #1, #2, #3 > 0 and C.g> 0, independent
of h, but depending on y; for i € {1, ..., 5} from Lemma 2, such that for
each K € 7, there holds

hi llaf, — div(Ce(m,))llo.x <m lluw — wllox,

hgn” [Ce(ull)'nc] ”O,e < n ”u - ull”O,wf + 2 hK”u - uh”O,K s
Kew,

hg /2 ”Ce (uh)'ne ”0,6 < 5 ”u — W ”O K>

where @, = U{K' € T}: e € E(K')}. Further, it holds that
Cer® < [l — w1 0.
Proof. Using the properties of bubble functions, and letting
Ry () = af, — div(Ce(m,)) we have
”RK(ulz)”%,K < 7’1_1 ”W11</2RK(uh)”(2),K
1
=~ [ apcRemtf, - )
nJK
1 .
- —f Wi Ric (w) {div (Ce (w;) — Ce(u)) },
-~ f ayic Ric () {fy, —fi} + — / (Ce ()

— Ce (M))V (WKRK (“/1))7
< %nRK ) lo.xc UF, = £, lho.x
1

2 ||Ce (m,) — Ce () llo, x 11 Rk (1) 1Mo,k »
hhk

where, for the last inequality we used the inverse inequality. Next, we have

h || Rk () llo,x < ahK}’]_l”f,;h =L ok + 7/1_1}’2”09(’%) — Ce()|lo,x

now, using (5) and grouping terms, we conclude with 71 > 0 independent
of h, that

i llaf, — div(Ce ) ok < Il — myllox

We omit further details and repeated arguments used for the remaining
inequalities. O
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5 4. Solution strategy

In this section we present how we propose to solve (3), which is
mainly based on an accelerated proximal-point algorithm formulated in an
infinite-dimensional setting. The proximal point method (Rockafellar, 1976)
consists in adding a convex term to the original problem, so that given a
solution #*, we can rewrite the minimisation problem as

inf aDu; R, T] + S[u] + i||u — ¥y, (20)
uevV At

where the pseudo-timestep At is a regularisation parameter, and we denote
the solution as #*"". This scheme can be shown to converge under typically
mild hypotheses (Kaplan & Tichatschke, 1998), and its related Euler—
Lagrange equations are given by

1

ZL(uk“ — k) — div (Ce (W) = af 1, (21)
t

where L is the operator induced by the inner product defining the norm in

V. This can possibly induce a modification in the boundary conditions that

is proportional to the velocity term At~ (uk*! — u*). This problem is still
highly nonlinear because of the nonlinear term f 1, and so a common

strategy is to treat it explicitly (Modersitzki, 2003), which yields the fol-
lowing semi-implicit (or IMEX) problem:

1 k+1 : k+1yy — 1 k
At.l:u div (Ce (u**t1)) = At.[:u + af . (22)
This formulation has been shown to be stable under the timestep
condition Af=1/a (Barnafi et al., 2018). We now describe all the
numerical choices that yield an efficient solution strategy of problem
(3), based on the iterated solution of (22). The use of a semi-implicit
formulation yields a simpler problem to solve at each instant, but in turn
it implies a CFL condition relating the pseudo-timestep and the spatial
discretisation in order to have stability. Such a stability condition has not
been established rigorously for this type of problem to the best of the
authors knowledge.

The proximal operator. We consider two options for the operator
L. On the one hand, an L*-norm in the regularised formulation (20),
which results in £ =T the identity operator. On the other hand, an
H'-norm which results in £ = —A + I, which gives rise to Sobolev
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gradient stabilisation in the context of Levemberg—Marquardt methods

(Kazemi & Renka, 2012). We then note that (22) written in terms of the

k+1

increment on results in

(Aitl: — div Ce)éu"’“ = div (Ce (")) + af

where the right-hand side div (Ce (u*)) + af  is the residual of the original
problem (3). This shows that this method can also be interpreted as a
Levemberg—Marquardt type of algorithm (Nocedal & Wright, 1999). The
stabilisation matrix in this case is the operator L, and the gradient V,f, is
neglected from the complete Jacobian, given by

Tw) = d>S + a (D)) =
—divCe + a (VT (Il +u) @ VT (I+u) + (T(+u)—RHT (I + u)),
VS,

where HT stands for the Hessian of T and | is the identity function.

Discrete spaces. The left-hand side operator in (22) consists in a linear
elasticity operator plus an identity, so we can use H'-conforming FEs. In
particular, we consider a vector-valued Lagrangian FE space. For a quad-
rilateral (d = 2) or hexahaedral (d = 3) discretization 7, of Q, this space is
given by

Qi ={re COQ,RY: v[x € QLK) VKe T},

where Qz =Q,® ... ®Qy, and Qy is the space of d-variate tensor-
product polynomials of partial degree at most k with respect to each
variable, for each of the d components of the vector-valued field.

Solvers in use. To solve the linear system arising from (22), we use an
efficient sparse LU factorisation, which we compute once and then reuse it
throughout all time iterations.

4.1 Time acceleration

Note that we can rewrite (22) as
G Wk = F @b, (23)

and, as G is invertible, the solution can be characterised as a fixed point of
the operator T'= G~ 'oF. This motivates using AA as a fixed-point accel-
eration algorithm. The acceleration of time iterations to compute steady
state  computations has already been successfully used in nonlinear



14 Nicolds A. Barnafi, Alberto F. Martin and Ricardo Ruiz-Baier

poroelasticity (Barnafi et al., 2024) using AA, so we adopt the same
strategy. AA of depth m consists in the following: consider a fixed-point
iteration function g, whose iterations are given by x*"' = ¢(x*). Then, at
each iteration k:

1. Define the matrix Fj, = [fi_p ..., fil, where f; = o(x") — x".
2. Determine a = (@, ..., o) that solves

min ||Fya|.
10{,:1

3. Compute the accelerated update

k
k1 = Z ;g (k=Y. (24)
i=0

We will denote, for each iterate u*, as AA,,(u") the accelerated solution
obtained with (24), where the fixed-point map ¢ is given by our solution
map G 'oF.

4.2 The adaptive solver

The steps in our adaptive solver are summarized in Algorithm 1. The
algorithm leverages non-conforming forest-of-octrees meshes; see, e.g.,
(Badia et al., 2020). Forest-of-octrees meshes can be seen as a two-level
decomposition of the computational domain (typically an square or cube in
the case of DIR) referred to as macro and micro level, respectively. The
macro level is a suitable conforming partition C, of into quadrilateral (d = 2)
or hexahedral cells (d = 3). This mesh, which may be generated using for
instance an unstructured mesh generator, is referred to as the coarse mesh.
At the micro level, each of the cells of C, becomes the root of an adaptive
octree with cells that can be recursively and dynamically refined or coar-
sened using the so-called 1: 2 uniform partition rule. If a cell is marked for
refinement, then it is split into 27 children cells by subdividing all parent
cell edges. If all children cells of a parent cell are marked for coarsening,
then they are collapsed into the parent cell. The union of all leaf cells in this
hierarchy forms the decomposition of the domain at the micro level.
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Algorithm 1. AA-AMR solution strategy (o, m, N, O N, Ocomrccn

ref»

erefine)'

1: Refine a one-element mesh N?ef times to get initial mesh MO
2: Initialise solution vector u in MO

3: for kin 1,..., Nyesr do

4: Interpolate solution u to current mesh u® = Ik 1u

5. while Solution not converged do

6: Set @**! the solution of (4.2) given u
7 Set uFt1 = AA,,(@*+1) the accelerated solution

8: end while

9:  Set solution w as the last iteration

10:  Compute error estimate (3.3)

11:  Refine Orefine fraction of elements with largest estimator in MEL

12:  Coarsen Ocoarsen fraction of elements with smallest estimator in M*—1
13:  Set new mesh M* and adapt discrete spaces

14: end for

15: return u

k

One important consideration is that AMR with forest-of-octrees
allows for coarsening only if there is an initial mesh hierarchy to be
coarsened. Because of this, we consider for all problems an initial coarse
mesh C, with only one coarse element (where the images fit), and
perform some initial uniform refinements that give us such initial
hierarchy. This is relevant as images have in many cases a dark back-
ground where accuracy is not important, and thus we expect our error
estimator to detect this and coarsen such areas. Because of these con-
siderations, our proposed algorithm consists in the following steps: (i)
build an initial mesh by uniformly refining a single-element coarse
mesh, (ii) on each mesh solve DIR (3) using scheme (21), (iii) after
computing a solution for a given mesh, a 0,.4,. percentage of elements
are refined and a 6., percentage of elements are coarsened, and (iv)
stop after a given number of mesh adaptations has been performed. We
stress that this approach resembles the octree-based approach from
Haber et al. (2007, Sect. 3), but with the following key differences: (i)
we use 2 FEM formulation (instead of finite differences), (i1) we guide
adaptivity using a theoretically derived residual-based error indicator,
and (ii1) we combine AMR with AA to speed-up the convergence of
the pseudo-time formulation at each mesh level in the hierarchy.

Given that our target problem is (3), the algorithm performns adaptivity
only after the pseudo-time simulation based on (22) has reached a sta-
tionary state. We acknowledge that further optimisation can be obtained by
performing adaptivity instead every fixed number of timesteps, but as the
number of timesteps is highly unpredictable, we preferred not to pursuit
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this strategy. In addition, the use of AA for the pseudo-time iterations
would be otherwise incompatible with adaptivity due to the change of
dimensions between different adaptivity steps.

5. Numerical tests

In this section we present numerical examples to illustrate the per-
formance of the proposed adaptive DIR solver. The realisation of this
solver is conducted using the tools provided by the open source scientific
software packages in the Gridap ecosystem (Badia et al., 2022; Verdugo &
Badia, 2022). The sparse linear systems were solved using UMFPACK, as
provided by Julia. We used the GridapP4est.jl (Martin, 2025) Julia
package in order to handle forest-of-octrees meshes (including facet inte-
gration on non-conforming interfaces as per required by the computation
of the a posteriori error estimator) and FE space constraints. This package,
built upon the p4est meshing engine (Burstedde et al., 2011), is endowed
with Morton space-filling curves, and it provides high-performance and
low-memory footprint algorithms to handle forest-of-octrees. All numer-
ical tests were performed on a supercomputer node equipped with Intel
Xeon Platinum 8274 CPU cores, with Julia 1.10.4 and IEEE double
precision. We used -03 as the optimisation flag for the Julia compiler.

For simplicity, we will test our algorithm in two brain images, obtained
from the BrainWeb Database (Cocosco, 1997; Collins et al., 1998; Kwan
et al,, 1996,1999) and both of 129 X 129 pixels, and on a standard
benchmark test known as the OC images, which we stored as 600 X 400
pixels images. We show both image pairs in Fig. 1. The brain test does not
require large deformations to take place, but is nonetheless a challenging
problem as brain images have regions with large contrasts, mainly near the
cortex. The OC test is instead much more challenging, as the registration
we look for require very large deformations and is guided only through the
discrete gradient of a field that is fundamentally discontinuous. Unless
otherwise stated, all images will be pre-processed with a Gaussian kernel
using a variance parameter of 6 =1 to avoid having discontinuous deri-
vatives, and then interpolated globally using linear B-Splines (De Boor,
1978), so that we can compute the gradient of the template image as
required by the VT term.

A fundamental issue that we do not address in detail in this work is that
whenever we use elements that have more than one image pixel inside,
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(A) Brain reference (B) Brain target

(C) OC reference (D) OC target

Fig. 1 Reference (left) and target (right) images used in the brain (top) and OC
(bottom) tests.

there could be additional numerical integration errors involved in our
computations, in particular for those terms involving images. In pre-
liminary studies we have observed this to have a non-negligible influence
on the performance of the solvers, and thus we show a sensitivity analysis
regarding this issue in Section 5.5 using first order Lagrangian FE. In the
experiments, we chose a quadrature order of 6 for all integrals involving
images (see the aforementioned section for a formal definition of quad-
rature order, and the particular kind of quadratures that we used in this
work). We envision that the use of adaptive integration rules for n-cubes
(such as, e.g., (Genz & Malik, 1980; Johnson, 2018)) for terms involving
images may lead to a better trade-off among integration accuracy and
computational effort (see also (Bull & Freeman, 1995)). Because of this
issue, we have performed all of our tests using only first order elements, as
higher order approximations would require further tuning the quadrature
rules.
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5.1 Convergence verification against manufactured solutions

In order to confirm the accuracy of the proposed schemes we perform two
simple tests of convergence with exact solutions. We consider the unit
square domain Q = (0, 1), use synthetic images

R(x) = |x — (0.2, 0.2¢P, T (x)=|x — (0.8, 0.8),

and use the following smooth and non-smooth displacement solution

1 [—Sin(ﬂx) + %cos(ﬂx)]sin (y) + %

Uex = >
10 [—cos (mx) + %sin (ﬂx)]cos(r[y)
q _ P (cos (BO)
ne Mo = 10 \sin(BO) |
respectively. For the non-smooth case r = /x> + y?, = atan2(y, x) are

the polar coordinates and f =% is a regularity index that yields

u € H'?(Q), and therefore we expect (under uniform refinement) a
suboptimal convergence of O(F’). We consider the parameters

At=a=E=l,y=%

for the non-smooth case we consider the pure-traction boundary condition
(setting the boundary stiffness parameter k = 0). Note that the exact solutions
above do not induce zero traction boundary conditions for planar elasticity, so
we need to also manufacture an exact traction imposed weakly in the for-
mulation. Similarly, the manufactured solution may have a component of rigid
body motions and so we also include on the right-hand side a contribution
taking into account this part of the kernel. Likewise, an additional contribution
is required as manufactured load on the right-hand side of the momentum

2
,and f = 5- For the smooth case we take ¥ = 0.5 and

equation, as well as in the element contribution to the volume error estimator
and in the edge/boundary contribution (since the manufactured normal stress
is non-homogeneous). In particular, this gives an estimator of the form

1 .
Ok = Ml —fis + o — &fy, — diviCe(m)) If

+ ) hll[(Ce(m) — 6e)ne + & (w, — ue) 5,
eeEK)NE,(QY)

2
+ Z he II (Ce(“h> - O-ex> n, + K(“h - “ex) IIO,ea
eeEK)NE, ()

with f = —div 6. and g, = a{T(x + u) — R} VT(x + n.).
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The numerical results of the uniform refinement tests are reported
in Tables 1 and 2 for the smooth and non-smooth solutions, respec-
tively. We construct six levels of uniform mesh refinement of the
domain, on which we compute approximate solutions and the asso-
ciated errors in the norm |v|; o = |le(@)]|go. Convergence rates are
calculated as usual:

rate = log(e/e) [log(h/ﬁ?)]’1 ,

where e and ¢ denote errors produced on two consecutive meshes of

sizes h and h, respectively. For the smooth case we see optimal con-
vergence of order O(h*"") and bounded effectivity indexes indepen-

Table 1 Convergence tests against smooth manufactured solutions. Error history of
the method for two polynomial degrees and effectivity index associated with the a
posteriori error estimator on uniform mesh refinement.

Degrees of h |u — upl1,0 rate eff (O)
freedom

(DoFs)

Uniform mesh refinement, with k=1

21 0.7071 6.48e-02 * 0.234
53 0.3536 3.29e-02 0.977 0.231
165 0.1768 1.66e-02 0.991 0.214
581 0.0884 8.30e-03 0.997 0.206
2181 0.0442 4.15e-03 0.999 0.202
8453 0.0221 2.08e-03 1.000 0.200

Uniform mesh refinement, with k=2

53 0.7071 1.32e-02 * 0.062
165 0.3536 3.34e-03 1.985 0.063
581 0.1768 8.39¢e-04 1.995 0.063
2181 0.0884 2.10e-04 1.996 0.064
8453 0.0442 5.33e—05 1.979 0.065

33285 0.0221 1.51e-05 1.946 0.077
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Table 2 Convergence tests. Error history of the method for two polynomial degrees,
using a non-smooth manufactured solution, and effectivity index associated with the
a posteriori error estimator on uniform and adaptive mesh refinement.

DoFs h |u = upl1,0 rate eff (O)

Uniform mesh refinement, with k=1

21 0.7071 1.30e-02 * 0.178
53 0.3536 8.60e-03 0.599 0.215
165 0.1768 5.61e-03 0.616 0.228
581 0.0884 3.63e-03 0.628 0.233
2181 0.0442 2.34e-03 0.634 0.237
8453 0.0221 1.50e-03 0.638 0.240
33285 0.0110 9.65¢e-04 0.640 0.244

Adaptive mesh refinement, with k=1

53 0.7071 8.60e-03 * 0.215
71 0.3536 6.20e-03 2.240 0.229
97 0.1768 4.65e-03 1.848 0.234
137 0.0884 3.64e-03 1.408 0.237
187 0.0442 2.87e-03 1.530 0.242
259 0.0221 2.37e-03 1.180 0.239
367 0.0110 1.88e-03 1.334 0.227
511 0.0055 1.55e-03 1.156 0.221

Uniform mesh refinement, with k=2

53 0.7071 6.09e-03 * 0.111
165 0.3536 4.13e-03 0.558 0.184
581 0.1768 2.80e-03 0.563 0.246
2181 0.0884 1.88e-03 0.571 0.284

8453 0.0442 1.26e-03 0.580 0.308
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33285 0.0221 8.39¢e-04 0.588 0.327

132101 0.0110 5.56e-04 0.594 0.345

Adaptive mesh refinement, with k=2

165 0.7071 4.13e-03 * 0.184
231 0.3536 2.83e-03 2.253 0.235
327 0.1768 1.96e-03 2.100 0.259
477 0.0884 1.37e-03 1.927 0.267
699 0.0442 9.34e-04 1.987 0.269
963 0.0221 6.53e-04 2.231 0.293
1373 0.0110 4.32e-04 2.335 0.294
1981 0.0055 2.77e-04 2.423 0.284

dently of the refinement level. For the non-smooth case we observe the
expected sub-optimal convergence under a uniform mesh refinement.

On the other hand, the numerical results for the adaptive mesh
refinement case are reported in Table 2. We take (for the two polynomial
degrees tested here) the same refinement fraction of 15%. For the
experimental convergence rates of the adaptive case we use the alternative
form

rate = —2log(e/e) [log(DoFs/li)Fs)]_l .

One can see in Table 2 that the optimal convergence is attained under
adaptive mesh refinement guided by the a posteriori error estimator. Again,
the effectivity index remains bounded in all cases. Also, we can readily see
that the same level of energy error is reached with the adaptive case using
roughly 10% of the number of DoFs required in the uniform mesh
refinement. This is consistent in both first and second order schemes.

To exemplify the performance of the method in the non-smooth
solution regime, we plot in Fig. 2 the approximate solution (displacement
magnitude warped) in a coarse adapted mesh, the synthetic images (in the
undeformed mesh), as well as depictions of the adapted meshes after several
steps of refinement, which indicate the expected agglomeration of elements

near the origin (where the singularity is).
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R(z)
31604 05 136400
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Fig. 2 Convergence test against a singular solution. Approximate displacement
magnitude (warped), synthetic reference and target images all on the final adapted

mesh (top row), and sample of adaptively refined meshes guided by the a posteriori
error estimator @ after 3,5,7 refinement steps (bottom row).

Table 3 Acceleration test, brain images: Similarity measure, iteration count and elapsed
time required for convergence for varying AA depth, given by the parameter m.

Scheme Similarity Iterations Elapsed time (s)
No accel 0.0412 2289 3520.81

AA(2) 0.0412 382 651.43

AA(5) 0.0412 581 997.12

AA(10) 0.0412 203 332.04

AA(20) 0.0412 99 157.61

5.2 Anderson acceleration for DIR

In this section we study the performance of the time acceleration method
through AA described in Section 4.1. We do this for both the brain and
OC images, to evaluate the technique under small and large deformations.

We show the similarity measure, total number of iterations and elapsed
time for the brain images registration in Table 3. For this test, we used a = 10"
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and Ar=10"". The mesh resolution was set such that there is a single pixel
image per each cell. To avoid ambiguities regarding convergence, we used the
relative Euclidean vector norm of the stationary residual as a convergence
criterion, with a tolerance of 10”*. We highlight that better results were
obtained using an L? stabilisation in the pseudo-time terms from (21), i.e.
L =1 the identity operator. In this case, AA is extremely convenient, as it
provides a significant reduction in the number of iterations that increases as the
depth parameter m increases, except for the case m =5, which is still more
convenient than the non-accelerated strategy. We registered the results until a
wider depth was not convenient anymore, as iterations started increasing again,
which typically happens because the conditioning of the related least squares
problem starts deteriorating. For the largest depth parameter, using AA can
yield time accelerations up to a factor of 22 with respect to a non-accelerated
approach.

For the OC images test we consider two cases for the values of @ given
by 10* and 10°, and as the images have a sharp discontinuity, we considered
o =4. We set the size of the pseudo time-step to At=10">and Ar=10"",
respectively. The mesh resolution was set in order to have 4 X 4 image
pixels per each cell. As with the brain, we used the relative Euclidean
vector norm of the stationary residual as a convergence criterion for this
test, but with a tolerance of 10~ 2. For this problem, solutions are obtained
using £ =1— A from (21), as using only the identity yielded diverging
iterations in our preliminary tests. This benchmark requires far larger
deformations to obtain a satisfactory registration, which we depict by
showing the warped target images next to the reference image for both
values of @ in Fig. 3. For the smaller a case, we show the results in
Table 4A, where the results obtained are very similar to those of the brain.
Acceleration is very convenient as it drastically reduces the number of
iterations with minimal overhead per iteration. This yields elapsed time
reductions of up to a factor of 3.7. In spite of this, we note that, as shown in
Table 4B, acceleration is ineffective when larger displacements are
involved, so that all accelerated iterations achieved the maximum number
of iterations allowed (10, 000).

5.3 Adaptivity performance on brain images

Starting from a mesh of one element, we considered 4 initial uniform
refinements, and perform 5 adaptive mesh refinements with refine and
coarse parameters given by @.crinement =04 and O.cqrsen =0.2
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(A) Reference

(B) Small

Fig. 3 OC test solutions for small and large similarity parameter (10* and 10° respectively).

Table 4 Acceleration test, OC images: Similarity measure, iteration count and elapsed
time required for convergence for varying AA depth, given by the parameter m.

Scheme Similarity Iterations Time (s)
No accel 0.263 113 78.43
AAQ2) 0.263 39 28.58
AA(5) 0.263 37 27.03
AA(10) 0.264 28 21.02
AA(20) 0.264 28 21.93
(A) Small o
Scheme Similarity Iterations Time (s)
Scheme Similarity [terations time (s)
No accel 0.0846 8927 6123
AAQ2) - _ _
AA(5) - _ _
AA(10) - - -
AA(20) - - -
(B) Large a
respectively. We considered a tolerance of 10~ * for the velocity Wi

the reference (non-adapted) case, and a tolerance of 1072 for all the

adaptive cases. We performed all tests using AA with a depth parameter of
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Fig. 4 Brain AMR test: evolution of AMR solution through all adaptive steps from left
to right. In the top row we show the evolution of the adapted grid, and on the bottom
row we show the evolution of the solution.

m =10. We have seen that considering an equally precise solution in all
levels of the adaptive solver leads to over-solving, and thus the resulting
scheme that we consider resembles an inexact-Newton procedure. To
obtain a solution with better similarity than the one in Table 3 we used
a =10, and set Ar=10"° as larger timesteps resulted in non-convergence
(in the form of oscillating iterations).

In Fig. 4 we show the evolution of the meshes obtained from our
algorithm, and compare the solution obtained with a reference mesh of
one-element-per-pixel in Fig. 5. The solutions are indistinguishable to the
eye, so we provide further comparison information in Table 5, where we
show the final number of DoFs, similarity, total iterations, and required
elapsed time. While the AMR solution requires a larger total number of
iterations, most of these are performed on coarser meshes where iterations
are much faster. This results in the overall solution time being accelerated
by a factor of 13.62. This faster solution yielded a mildly lower similarity
measure, and this was additionally achieved with less DoFs. We stress that
this test does not converge with the parameter values at hand if AA is not
used.

5.4 Adaptivity performance on OC images

The setup of the experiments for the OC images in this section is almost
equivalent to that of the brain images, with the following differences.
First, we considered a tolerance of 10”2 for the residual in the reference
(non-adapted) case, and a tolerance of 107" for all the adaptive cases.
Second, we used a = 10® to obtain a more accurate solution than the one in
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(A) R B) T
(C) To (I +1u) AMR (D) T o (I 4+ 1) classic

Fig. 5 Brain AMR test: comparison of AMR and classic solutions (bottom left and
bottom right respectively) in comparison to original images (top row).

Table 5 Brain AMR test: solution metrics, given by (A) total degrees of freedom (DoFs),
(B) final similarity, (C) iterations, where we display the iterations incurred by the
adaptive solver in each level, and (D) the overall elapsed time.

Strategy  DoFs Similarity Iterations Elapsed
time
(seconds)

Classic 33,803 0.0263 927 1649.94

Adaptive 24,843 0.0260 (616, 321, 76, 43, 27, 24) 1107 121.14
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Fig. 6 OC AMR test: evolution of AMR solution through all adaptive steps from left to
right. In the top row we show the evolution of the adapted grid, and on the bottom
row we show the evolution of the solution.

A R ®B)T

(C) T o (I+u) AMR (D) T o (I 4 4) classic

Fig. 7 OC AMR test: comparison of AMR and classic solutions (bottom left and bottom
right respectively) in comparison to original images (top row).

Table 4a and 4b, and set At=10"°, which yields convergence (without
AA). Third, we did not use AA, as it did not yield to a convergent fixed-
point iteration scheme for the values of @ and At at hand.

In Fig. 6 we show the evolution of the meshes obtained from our
algorithm, and compare the solution obtained with a reference mesh of
four-pixels-per-element in Fig. 7. The solutions are almost indistinguish-
able to the eye, so we provide further comparison information in Table 6
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Table 6 OC AMR test: solution metrics, given by (A) total degrees of freedom (dofs),
(B) final similarity, (C) iterations, where we display the iterations incurred by the
adaptive solver in each level in gray, and (D) the overall elapsed time.

Strategy DoFs Similarity  Iterations Elapsed time
(seconds)

Classic 30,505  0.0196 1478 1003.88

Adaptive 23,953  0.0156 (21, 124, 549, 217, 478.57

662, 295) 1868

(see description of Table 5 above for a description of the different fields in
the table). We highlight that the overall solution time was accelerated by a
factor of 2.09. This faster solution yielded a lower similarity measure, and
this was achieved with less DoFs.

5.5 Quadrature sensitivity

Image functions are highly nonlinear, which makes the computation of
integrals that depend on them highly prone to numerical integration
(quadrature) errors. It is difficult to obtain analytic results that can give
sharp estimates for this, so instead we tried the following approach:
depending of the pixels-per-element that one can have, we compute the
quadrature order (i.e. maximum polynomial degree that is integrated
exactly (Ern & Guermond, 2004)) that provides minimal variations of the
residual. Naturally, one would expect that the larger the number of pixels-
per-element, the larger the required quadrature order to commit
approximately the same amount of numerical integration error. To test
this, we considered as the ground truth the residual vector

W@l = [ (T® - R@)VT @ dx,

Q

where v; is a basis function of the considered FE space, and we denote with
dx, the numerical integration performed with a quadrature of order 4.
With it, the error will be denoted with

W @) — W (g
| w (qtruth) | -

e(q)

We consider the ground truth integration value to be guuq, =201, In
this setting, we computed the error for various numbers of pixels-per-
element, and display the errors for different Gaussian smoothing levels and
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10°

g :
| =
1072
1072
0 10 20 30 40 50 0 10 20 30 40 50
Order Order
(A)o=0 B)o=1
A
0 10 20 30 40 50 0 10 20 30 40 50
Order Order
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Fig. 8 Integration error for 5x5, 10x 10, 20 x 20, and 50 x 50 pixels per element
considering odd quadrature orders ranging from 1 to 51. From top to bottom, and left
to right, we consider this setting using a Gaussian smoothing of 0, 1, 5, and 10 with
the brain images.

the brain images in Fig. 8. We use standard tensor-product Gauss-Legendre
quadratures for the experiment. Integration error is thus significant, and it
becomes much more relevant when no smoothing is used. Considering
that with AMR we have coarser elements where there are no complex
feature of the images, we have found that a good compromise is con-
sidering g = 6. Still, this will be addressed more eftectively in future work.

6. Conclusions and future perspectives

In this work, we have extended the a-posteriori error analysis of DIR
with linear elastic regularisation to the case of Robin boundary conditions.
We have formulated an efficient strategy for leveraging octree-based
adaptivity that supports both coarsening and refinement, and have tested
our strategy on realistic brain images and on the challenging OC
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benchmark. The DIR problem is highly nonlinear, and so we solve it with
an IMEX formulation of a proximal-point algorithm, and further proposed
to accelerate this algorithm with AA. We have observed that acceleration
can be very convenient computationally, as it significantly reduced the
elapsed time of the brain test. Still, the methodology is highly problem
dependent, as it was ineffective for the OC test when using larger values of
a. Putting everything together, we were able to significantly reduce the
computational time required to solve DIR. The proposed AMR approach
is able to provide better resolution on difficult domain regions and instead
relax it where not required, which results in better solutions obtained with
fewer DoFs and in less time.

We will focus our future work on developing black-box nonlinear
solvers for the DIR problem, so that we do not need to compute a pseudo-
time step for convergence. We will provide a deeper analysis of the
interplay between mesh size and solver performance, as the sensitivity of
proximal-point algorithms with respect to mesh-size remains understudied,
even more so in DIR. Then, we will leverage such robust solvers to
develop an automated computation of the similarity parameter a, and
extend our software to the 3D case. Our long term goal is that of devel-
oping an open source software that provides a robust and efficient solution
of DIR without the requirement of intense parameter tuning.
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