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Abstract 

In this work we propose an adaptive Finite Element Method (FEM) formulation for 
the Deformable Image Registration problem (DIR) together with a residual-based a 
posteriori error estimator, whose efficiency and reliability are theoretically estab
lished. This estimator is used to guide Adaptive Mesh Refinement and coarsening 
(AMR). The nonlinear Euler–Lagrange equations associated with the minimisation of 
the relevant functional are solved with a pseudo time-stepping fixed-point scheme 
which is further accelerated using Anderson Acceleration (AA). The efficient 
implementation of these solvers relies on an efficient adaptive mesh data structure 
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based on forests-of-octrees endowed with space-filling-curves. Several numerical 
results illustrate the performance of the proposed methods applied to adaptive DIR 
in application-oriented problems.

1. Introduction

Image registration problems consist in finding an appropriate map
ping of a given template image so that it resembles another reference 
image. These images can originate from several different applications, and 
may represent physical parameters, locations, or even time. See (Sotiras 
et al., 2013) for a review in medical imaging. There are many ways of 
defining such a problem, including variational formulations (Christensen 
et al., 1996; Henn & Witsch, 2004), level-set methods, grid deformation 
methods (Lee & Gunzburger, 2010), learning processes (De Vos et al., 
2019) and Bayesian techniques (Deshpande & Bhatt, 2019), among others. 
All these approaches differ in how they measure image alignment, with 
such measure being referred to as similarity. Image registration is named 
deformable whenever the mapping between images is allowed to vary 
arbitrarily between pixels, which results in a highly nonlinear problem.

Image registration remains a challenging problem in computational imaging 
due to three inherent difficulties: its ill-posed nature, the selection of appro
priate similarity metrics, and the high computational demands of numerical 
optimisation. First, the problem’s ill-posedness necessitates regularisation stra
tegies, such as elastic potential energy constraints (Sotiras et al., 2013), to ensure 
physically plausible solutions. Second, defining effective similarity measures–
whether through energy-based criteria or intensity difference metrics like the 
L2 norm–requires careful consideration of image modality and noise char
acteristics. Third, solving the Euler–Lagrange equations derived from the 
energy minimisation framework imposes significant computational costs (Haber 
et al., 2007), particularly when capturing localised deformations. These 
deformations often exhibit high spatial gradients to resolve fine anatomical or 
structural details, further amplifying discretisation challenges.

Adaptive numerical methods naturally present a promising approach to 
address these issues. By dynamically refining computational grids or basis 
functions in regions of sharp deformation, adaptive techniques hold the pro
mise to achieve a remarkable trade-off among accuracy and computational 
efficiency. Recent advances in AMR demonstrate the potential of such stra
tegies to overcome traditional limitations in registration tasks, for which we 
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highlight (Barnafi et al., 2021; Haber et al., 2007, 2008; Pawar et al., 2016; 
Zhang et al., 2013). With this in mind, in this work we leverage hier
archically-adapted non-conforming forest-of-octrees meshes endowed with 
Morton (a.k.a., Z-shaped) space-filling-curves for storage and data parti
tioning; see, e.g., (Badia et al., 2020; Burstedde et al., 2011). These n-cube 
meshes (made of quadrilaterals or cubes in 2D and 3D, resp.) can be very 
efficiently handled (i.e. refined, coarsened, re-partitioned, etc.) using high- 
performance and low-memory footprint algorithms (Burstedde et al., 2011). 
However, they are non-conforming at the interfaces of cells with different 
refinement levels as they yield hanging vertices, edges and faces. In order to 
enforce the conformity (continuity) of Finite Element (FE) spaces built out of 
this kind of meshes, it is standard practice to equip the space with additional 
linear multi-point constraints. The structure and set up of such constraints is 
well-established knowledge, and thus not covered here; see (Badia et al., 2020) 
and references therein for further details.

In this work, we consider the DIR with an L2 similarity measure and a 
regularisation given by the (linear) elastic energy of the deformation with 
Robin and pure Neumann boundary conditions. (We note that nonlinear 
elasticity has also been considered as an alternative regularization term in 
other works, such as, e.g. (Genet et al., 2018).) This formulation was 
analysed in (Barnafi et al., 2018), and an efficient and reliable a-posterior 
error estimator was developed for it in (Barnafi et al., 2021) for the pure- 
Neumann case, where uniqueness was obtained by imposing orthogonality 
against the kernel of the regularisation operator. We extend that analysis to 
the case of Robin boundary conditions. This efficient and reliable a-posterior 
error estimator is used at a given solution of the DIR on a given mesh in 
order to automatically adapt it, and the process is repeated across several 
AMR iterations to successively improve the accuracy of the DIR solution.

As mentioned above, solving DIR is a challenging task. It is essentially a 
nonlinear inverse problem. A well-established strategy to solve it is by 
means of a pseudo-time formulation (Modersitzki, 2003), which is an 
IMEX approximation of a proximal point algorithm (Kaplan & 
Tichatschke, 1998). In this work, we leverage AA (Walker & Ni, 2011) to 
improve its robustness and efficiency in terms of the iteration count. 
Anderson acceleration is a method that considers a fixed-point iteration and 
yields another one with improved convergence, both in terms of the radius 
of convergence and the convergence rate (Toth & Kelley, 2015). This 
technique has already been successfully validated for proximal-point 
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algorithms in the context of inverse problems (Mai & Johansson, 2020), 
which is the method that most resembles the scheme we use.

The main contributions of this work are: (i) the extension of the effi
ciency and reliability proof of the existing a posteriori error indicator for 
DIR to Robin boundary conditions; (ii) the use of AA to accelerate the 
pseudo-time solution strategy commonly used in DIR; (iii) the use of the 
computed a posteriori error estimator to guide efficient AMR using octree- 
based meshes; and (iv) the combination of AA and AMR into a novel AA- 
AMR algorithm for solving DIR. These methodologies result in significant 
computational savings and increased accuracy, as shown in our numerical 
tests. Our software is implemented in the Julia programming language 
(Bezanson et al., 2017) using the FE tools provided by the Gridap eco
system of Julia packages (Verdugo & Badia, 2022; Badia et al., 2022; 
Martín, 2025).

Structure. The remainder of the work has been organised as follows. In 
Section 2, we formulate the DIR problem. In Section 3, we propose FEM 
discretisation for DIR and its related robust (in the sense of reliability and 
efficiency) a-posteriori error estimator driving the AMR process. In Section 
4, we show how we orchestrate the solution of the nonlinear problem with 
both AA and AMR. In Section 5 we provide several numerical tests to 
validate our approach. We conclude our work with some comments and 
an outlook for future work in Section 6.

2. Problem setting

Consider a domain d 2,3= , and two fields R: and 
T : referred to as reference and target (or template) images, where R 
(x) and T(x) denote the image intensity at point x. DIR consists in finding a 
transformation under which the template image resembles the reference 
(Modersitzki, 2003), that is to find a mapping of T onto R by means of a 
warping u such that 

x u x x xT R( ( )) ( ) .+ (1) 

This can be reformulated as a variational problem 

u uR Tinf [ ; , ] [ ],
u

+ (2) 
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where models the admissible deformations space, : is the 
aforementioned similarity measure which attains its minimum when (1) 
holds, is a regulariser, and α is a regularisation parameter that balances the 
effects of and . In this work we consider H ( )1= , the L2-norm of 
the error for the similarity, given by 

u x u x x xR T T R[ ; , ] ( ( ( )) ( )) d ,2= +

and as a regulariser we use the elastic deformation energy, defined in the 
following manner 

u u u xe e[ ]
1
2

( ): ( ) d .

Here u u ue( ) { ( ) }1
2

t= + is the infinitesimal strain tensor, i.e., the 

symmetric component of the displacement field gradient, and is the 
elasticity tensor for isotropic solids: 

tr( ) 2 .d d= + ×

Naturally, one may consider many other types of regularisations. See 
(Modersitzki, 2003) for a review. Assuming that (2) has at least one solution 
with sufficient regularity, the associated Euler–Lagrange equations deliver 
the following strong problem with Robin or Neumann boundary condi
tions (representing springs of stiffness κ ≥ 0): Find u in H1(Ω) such that 

u f

u n u

div e
e 0

( ( )) in ,
( ) on ,

u=
+ =

(3) 

where 

f x x u x x x u x xT R T( ) { ( ( )) ( )} ( ( )) .u = + + (4) 

For the analysis we assume that there are positive constants Lf and Mf such 
that the nonlinear load term fu is Lipschitz continuous and uniformly 
bounded: 

f x f x u x v x

f x x

L

M a e

( ) ( ) ( ) ( ) ,

( ) . .

u v

u

f

f

(5) 

Under the previous considerations, (2) becomes 
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{ }x u x x x u u x

u

T R

s

e emin ( ( )) ( ) d
1
2

( ): ( ) d

d ,

v H ( )

2

2

1
+ +

+

with first order conditions given by the primal variational formulation for 
the registration problem: Find u ∈ H1(Ω) such that 

u v v va F H( , ) ( ) ( ),u
1= (6) 

where a H H: ( ) ( )1 1× is the bilinear form defined by 

u v u v u v u va se e H( , ) ( ): ( ) d , ( ),1+ (7) 

and for every u ∈ H1(Ω), F H: ( )u
1 is the linear functional given by 

v f v vF H( ) ( ).u u
1 (8) 

The conditions (5) imply the Lipschitz continuity and uniform bounded
ness of Fu, that is 

u v

u v

F F L

F M H

,

, ( ),

u v

u

F

F

H

H

( ) 0,

( )
1

1

1

(9) 

respectively. We recall the results concerning the solvability of (6), as 
developed in (Barnafi et al., 2018, Section 3). For it, whenever κ = 0 we 
need to modify the solution space in order to guarantee uniqueness. We 
will denote with ker( )= as the space of rigid body modes, and thus 
consider the solution space given by 

V
H

H

( ) 0

( ) [ ] 0
.

1

1= >
=

l
moo
noo

With it, we define the following linear auxiliary problem: Given 
ζ ∈ H1(Ω), find u ∈ V such that 

u v v va F V( , ) ( ), .= (10) 

Theorem 1. Given ζ ∈ H1(Ω), problem (10) has a unique solution u ∈ V, 
and there exists Cp >  0 such that 

u C F .p H1, ( )1
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We now define the operator T V V: given by uT( ) = , where u is 
the unique solution to problem (10) and thus rewrite (6) as the fixed-point 
equation: Find u in V such that 

u uT( ) .= (11) 

The following result, also proven in Barnafi et al. (2018, Theorem 3), 
establishes the existence and uniqueness of solution to the fixed-point 
equation (11) whenever κ = 0.

Theorem 2. Under data assumptions (5), the operator T has at least one 
fixed point. Moreover, if αCpLF <  1, the fixed point is unique.

Throughout the manuscript, we will use V to write our problem in 
order to avoid technicalities regarding the implementation of rigid body 
modes whenever κ = 0. We enforce it in practice by means of an 
adequate Lagrange multiplier as in (Barnafi et al., 2018).

3. Adaptive discretisation scheme

Let Vh be a finite dimensional subspace of V built out of a suitable 
mesh partition h of Ω into quadrilateral or hexahedral elements, where h 
denotes the mesh size. The primal nonlinear discrete problem consists in 
finding uh ∈ Vh such that 

u v v va F V( , ) ( ) .uh h h h hh= (12) 

Analogously to the continuous case, we consider the auxiliary linear pro
blem: Given ζh ∈ Vh, find uh ∈ Vh such that 

u v v va F V( , ) ( ) ,h h h h hh
= (13) 

and also let Th: Vh → Vh be the discrete operator given by Th(ζh) = uh, 
where uh is the solution to problem (13). Considering the same data 
assumptions as in the continuous case, as well as the continuity and bound 
obtained before, we arrive at the following result proven in Barnafi et al. 
(2018, Theorem 5), adapted to include the terms arising from κ ≠ 0.

Theorem 3. Assume that data assumptions (5) hold. Then, the operator Th 

has at least one fixed point. Moreover, if αCpLF <  1, then such fixed point 
is unique.

Next, we define for each K h the a-posteriori error indicator 
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f u

u n

u n u

h

h

h

div e

e

e

: ( ( ))

[ ( ) ]

( ) ,

uK K h K

e K

e h e e

e K

e h e h e

2 2
0,
2

( ) ( )
0,
2

( ) ( )
0,
2

h

h

h

=

+

+ +

(14) 

where, according to (4), 

f x x u x x x u x xT R T K( ) { ( ( )) ( )} ( ( )) ,u K h hh
+ +

and introduce the global a-posteriori error estimator 

.
K

K
2

1/2

h

l
m
ooo
n
ooo

|
}
ooo
~
ooo

The following theorem constitutes the main result of this section.

Theorem 4. Let u ∈ V and uh ∈ Vh be the solutions of (6) and (12), 
respectively, and assume that αCpLF <  1/2. Then, there exist positive 
constants h0, Crel, Ceff independent of h such that for h ≤ h0 there holds 

u uC C .heff 1, rel (15) 

The reliability (upper bound in (15)) and the efficiency (lower bound in 
(15)) of Θ are established separately in the following two lemmas.

Lemma 1. Assume that αCpLF <  1/2. Then, there exist positive constants 
h0, Crel independent of h, such that for h ≤ h0 there holds 

u u C .h V rel

Proof. Let us first define 

w w w w u w w wF a V( ) ( ) ( , ) .uh h h h h h h

As a consequence of the ellipticity of a (c.f. (7)) with ellipticity constant ¯
(c.f. Brenner, 2008, Corollary 11.2.22), we obtain the following condition 

v
v w

w
v

a
H¯ sup

( , )
( ).

w
w 0
H V

1,
( )

1

1

In particular, for v ≔ u − uh ∈ H1(Ω), we notice from (6) and (12) that 
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a(u−uh,wh) = 0 ∀wh ∈ Vh, and hence we obtain u u wa ( , )h =
u u w w w wa ( , ) ( )h h h h= , which yields 

u u
w w

w
w V¯ sup

( )
.

w
w 0

h
h h

h h
H

1,
( ) 1,1 (16) 

From the definition of w w( )h h , integrating by parts on each K h, 
and adding and subtracting a suitable term, we can write 

{ }

{( ) }

{( ) } (

)

w w w w w w u w w

w w

w w w w f

w w

u w w

w w f w w

u w w

u n w w

w w u

f w w

u n w w

u n u w w

F F a

F

F F

F F

F F

e e

div e

e

div e

e

e

( ) ( ) ( ) ( , )

( )

( ) ( )

( )

( ): ( )

( ) ( )

( ( )) ( )

( ( ) ) ( ) ,

( ) ( ( ))

( )

[( ( ) )] ( )

( ( ) ) ( ).

u u

u

u u u

u u u

u u

u

h h h h h h

h

h h

h

K
K

h h

h h

K
K

h h

K
h e h

h

K
K

h

h

e
e

h e h

e
e

h e h h

( )

( )

h

h

h h

h

h h

h

h

h

h

h

h

= +

=

=

+

= +

+

l
moo
noo

|
}oo
~oo

(17) 

Then, choosing wh as the Clément interpolant of w, that is wh ≔ Ih(w), the 
approximation properties of Ih yield (Clément, 1975) 

w w w w w wc h c h, ,h K K K h e e e0, 1 1, ( ) 0, 2 1, ( ) (18) 

where K K K K( ) { : }h and e K K e( ) { : }h . 
In this way, applying the Cauchy–Schwarz inequality to each term (17), 
and making use of (18) together with the Lipschitz continuity of Fu (cf. 
(9)), we obtain 
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w w u u w

w w

c L h

C

( )

,

h h F K h K

K
K

K
K

e
e

1 1, 1, ( )

2

1/2

1, ( )
2

( )
1, ( )
2

1/2

h h h

+ +
l
m
ooo
n
ooo

|
}
ooo
~
ooo

l
m
ooo
n
ooo

|
}
ooo
~
ooo

where C is a constant depending on c1 and c2 and K
2 defined by (14). 

Additionally using the fact that the number of elements in □(K) and □(e) 
is bounded, we have 

w w w wC Cand ,
K

K
e

e1, ( )
2

1 1,
2

( )
1, ( )
2

2 1,
2

h h

where C1, C2 are positive constants, and using that αCpLF ≤ 1/2, it 
follows that h0 ≔ 1/(2c1αLF). Finally, substituting in (16) we 
conclude that 

u u C ,h 1, rel

where Crel is independent of h.                                         □
The efficiency bound requires using a localisation technique based on 

element-bubble and edge-bubble functions. Given K h and e K( ), 
we define ψK and ψe the typical element- and edge-bubble functions 
[Verfürth, 1999, eqs. (1.5)-(1.6)], which satisfy: . 

(i) ψK ∈ P3(K), ψK = 0 on ∂K, supp(ψK) ⊆ K, and 0 ≤ ψK ≤ 1 in K,
(ii) ψe ∈ P2(K), ψe = 0 on ∂K, supp(ψe) ⊆ ωe, and 0 ≤ ψe ≤ 1 in ωe,

where K e K{ : ( )}e h . Additional properties of ψK and ψe 

are collected in the following lemma (c.f. Verfürth (1994, Lemma 1.3), 
Verfürth (1996, Section 3.4) or Verfürth (1999, Section 4)).

Lemma 2. Given k {0}, there exist positive constants γ1, γ2, γ3, γ4 

and γ5, depending only on k and the shape regularity of the triangulations, 
such that for each K h and e K( ), there hold 

q q q P K

q h q q P K

p p p P e

p h p p P e

p h p p P e

( ),

( ),

( ),

( ),

( ).

K K K k

K K K K k

e e e k

e e e k

e e e k

1 0,
2 1/2

0,
2

1, 2
1

0,

3 0,
2 1/2

0,
2

1, 4
1/2

0,

0, 5
1/2

0,

e

e

(19) 
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The efficiency (lower bound in (15)) is established with the help of the 
following lemma whose proof is a slight modification of Verfürth (1999, 
Section 6).

Lemma 3. There exist constants η1, η2, η3 >  0 and Ceff >  0, independent 
of h, but depending on γi for i ∈ {1, …, 5} from Lemma 2, such that for 
each K h there holds 

f u u u

u n u u u u

u n u u

h

h h

h

div e

e

e

( ( )) ,

[ ( ) ] ,

( ) ,

uK h K h K

e h e e h

K

K h K

e h e e h K

0, 1 0,

1/2
0, 2 0, 0,

1/2
0, 3 0,

h

e

e

+
l
m
ooo
n
ooo

|
}
ooo
~
ooo

where K e K{ : ( )}e h . Further, it holds that 

u uC .heff 1,

Proof. Using the properties of bubble functions, and letting 
u f uR div e( ) ( ( ))uK h hh

we have 

{ }

u u

u f f

u u u

u f f u

u u

u f f

u u u

R R

R

R

R

R

R

h
R

div e e

e

e

e e

( ) ( )
1

( ) }

1
( ){ ( ( ) ( ))},

1
( )

1
( ( )

( )) ( ( )),

( )

( ) ( ) ( ) ,

{ u u

u u

u u

K h K K K h K

K
K K h

K
K K h h

K
K K h

K
h

K K h

K h K K

K
h K K h K

0,
2

1
1 1/2

0,
2

1

1

1 1

1
0, 0,

2

1
0, 0,

h

h

h

=

= +

+

where, for the last inequality we used the inverse inequality. Next, we have 

u f f u uh R h e e( ) ( ) ( ) ,u uK K h K K K h K0, 1
1

0, 1
1

2 0,h
+

now, using (5) and grouping terms, we conclude with η1 >  0 independent 
of h, that 

f u u uh div e( ( )) .uK h K h K0, 1 0,h

We omit further details and repeated arguments used for the remaining 
inequalities.                                                                       □
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4. Solution strategy

In this section we present how we propose to solve (3), which is 
mainly based on an accelerated proximal-point algorithm formulated in an 
infinite-dimensional setting. The proximal point method (Rockafellar, 1976) 
consists in adding a convex term to the original problem, so that given a 
solution uk, we can rewrite the minimisation problem as 

u u u uR T
t

inf [ ; , ] [ ]
1

,
u

k
V+ + (20) 

where the pseudo-timestep Δt is a regularisation parameter, and we denote 
the solution as uk+1. This scheme can be shown to converge under typically 
mild hypotheses (Kaplan & Tichatschke, 1998), and its related Euler– 
Lagrange equations are given by 

u u u f
t

div
1

( ) ( ( )) ,u
k k k1 1

k 1=+ + + (21) 

where is the operator induced by the inner product defining the norm in 
V. This can possibly induce a modification in the boundary conditions that 
is proportional to the velocity term u ut ( )k k1 1+ . This problem is still 
highly nonlinear because of the nonlinear term f uk 1+ , and so a common 
strategy is to treat it explicitly (Modersitzki, 2003), which yields the fol
lowing semi-implicit (or IMEX) problem: 

u u u f
t t

div
1

( ( ))
1

.u
k k k1 1

k= ++ + (22) 

This formulation has been shown to be stable under the timestep 
condition Δt ≈ 1/α (Barnafi et al., 2018). We now describe all the 
numerical choices that yield an efficient solution strategy of problem 
(3), based on the iterated solution of (22). The use of a semi-implicit 
formulation yields a simpler problem to solve at each instant, but in turn 
it implies a CFL condition relating the pseudo-timestep and the spatial 
discretisation in order to have stability. Such a stability condition has not 
been established rigorously for this type of problem to the best of the 
authors knowledge.

The proximal operator. We consider two options for the operator 
. On the one hand, an L2-norm in the regularised formulation (20), 

which results in I= the identity operator. On the other hand, an 
H1-norm which results in I= + , which gives rise to Sobolev 
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gradient stabilisation in the context of Levemberg–Marquardt methods 
(Kazemi & Renka, 2012). We then note that (22) written in terms of the 
increment δuk+1 results in 

u u f
t

div div
1

( ( )) ,u
k k1

k= ++i
k
jjj y

{
zzz

where the right-hand side u fdiv ( ( )) u
k

k+ is the residual of the original 
problem (3). This shows that this method can also be interpreted as a 
Levemberg–Marquardt type of algorithm (Nocedal & Wright, 1999). The 
stabilisation matrix in this case is the operator , and the gradient ∇u fu is 
neglected from the complete Jacobian, given by 

I I I I

u u

u u u u

d d

T T T R Tdiv H

( ) ( ( ))

( ( ) ( ) ( ( ) ) ( )),

f

2 2

u u

= + =
+ + + + + +

where HT stands for the Hessian of T and I is the identity function.

Discrete spaces. The left-hand side operator in (22) consists in a linear 
elasticity operator plus an identity, so we can use H1-conforming FEs. In 
particular, we consider a vector-valued Lagrangian FE space. For a quad
rilateral (d = 2) or hexahaedral (d = 3) discretization h of Ω, this space is 
given by 

v vQ C K K{ ( , ): ( ) },h
k d

K k
d

h=

where k
d

k k= … , and k is the space of d-variate tensor- 
product polynomials of partial degree at most k with respect to each 
variable, for each of the d components of the vector-valued field.

Solvers in use. To solve the linear system arising from (22), we use an 
efficient sparse LU factorisation, which we compute once and then reuse it 
throughout all time iterations.

4.1 Time acceleration
Note that we can rewrite (22) as 

u uG F( ) ( ),k k1 =+ (23) 

and, as G is invertible, the solution can be characterised as a fixed point of 
the operator T = G−1∘F. This motivates using AA as a fixed-point accel
eration algorithm. The acceleration of time iterations to compute steady 
state computations has already been successfully used in nonlinear 
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poroelasticity (Barnafi et al., 2024) using AA, so we adopt the same 
strategy. AA of depth m consists in the following: consider a fixed-point 
iteration function g, whose iterations are given by xk+1 = g(xk). Then, at 
each iteration k: 

1. Define the matrix Fk = [fk−m, …, fk], where fℓ = g(xℓ) − xℓ.
2. Determine α = (α0, …, αk) that solves 

Fmin .k
1

2

j j=

3. Compute the accelerated update

x g x( ).k

i

k

i
k m i1

0

=+

=

+ (24) 

We will denote, for each iterate uk, as AAm(uk) the accelerated solution 
obtained with (24), where the fixed-point map g is given by our solution 
map G−1∘F.

4.2 The adaptive solver
The steps in our adaptive solver are summarized in Algorithm 1. The 
algorithm leverages non-conforming forest-of-octrees meshes; see, e.g., 
(Badia et al., 2020). Forest-of-octrees meshes can be seen as a two-level 
decomposition of the computational domain (typically an square or cube in 
the case of DIR) referred to as macro and micro level, respectively. The 
macro level is a suitable conforming partition h of into quadrilateral (d = 2) 
or hexahedral cells (d = 3). This mesh, which may be generated using for 
instance an unstructured mesh generator, is referred to as the coarse mesh. 
At the micro level, each of the cells of h becomes the root of an adaptive 
octree with cells that can be recursively and dynamically refined or coar
sened using the so-called 1: 2d uniform partition rule. If a cell is marked for 
refinement, then it is split into 2d children cells by subdividing all parent 
cell edges. If all children cells of a parent cell are marked for coarsening, 
then they are collapsed into the parent cell. The union of all leaf cells in this 
hierarchy forms the decomposition of the domain at the micro level.
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Algorithm 1. AA-AMR solution strategy (α, m, Nref
0 , Nref, θcoarsen, 

θrefine). 

One important consideration is that AMR with forest-of-octrees 
allows for coarsening only if there is an initial mesh hierarchy to be 
coarsened. Because of this, we consider for all problems an initial coarse 
mesh h with only one coarse element (where the images fit), and 
perform some initial uniform refinements that give us such initial 
hierarchy. This is relevant as images have in many cases a dark back
ground where accuracy is not important, and thus we expect our error 
estimator to detect this and coarsen such areas. Because of these con
siderations, our proposed algorithm consists in the following steps: (i) 
build an initial mesh by uniformly refining a single-element coarse 
mesh, (ii) on each mesh solve DIR (3) using scheme (21), (iii) after 
computing a solution for a given mesh, a θrefine percentage of elements 
are refined and a θcoarsen percentage of elements are coarsened, and (iv) 
stop after a given number of mesh adaptations has been performed. We 
stress that this approach resembles the octree-based approach from 
Haber et al. (2007, Sect. 3), but with the following key differences: (i) 
we use a FEM formulation (instead of finite differences), (ii) we guide 
adaptivity using a theoretically derived residual-based error indicator, 
and (iii) we combine AMR with AA to speed-up the convergence of 
the pseudo-time formulation at each mesh level in the hierarchy.

Given that our target problem is (3), the algorithm performns adaptivity 
only after the pseudo-time simulation based on (22) has reached a sta
tionary state. We acknowledge that further optimisation can be obtained by 
performing adaptivity instead every fixed number of timesteps, but as the 
number of timesteps is highly unpredictable, we preferred not to pursuit 
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this strategy. In addition, the use of AA for the pseudo-time iterations 
would be otherwise incompatible with adaptivity due to the change of 
dimensions between different adaptivity steps.

5. Numerical tests

In this section we present numerical examples to illustrate the per
formance of the proposed adaptive DIR solver. The realisation of this 
solver is conducted using the tools provided by the open source scientific 
software packages in the Gridap ecosystem (Badia et al., 2022; Verdugo & 
Badia, 2022). The sparse linear systems were solved using UMFPACK, as 
provided by Julia. We used the GridapP4est.jl (Martín, 2025) Julia 
package in order to handle forest-of-octrees meshes (including facet inte
gration on non-conforming interfaces as per required by the computation 
of the a posteriori error estimator) and FE space constraints. This package, 
built upon the p4est meshing engine (Burstedde et al., 2011), is endowed 
with Morton space-filling curves, and it provides high-performance and 
low-memory footprint algorithms to handle forest-of-octrees. All numer
ical tests were performed on a supercomputer node equipped with Intel 
Xeon Platinum 8274 CPU cores, with Julia 1.10.4 and IEEE double 
precision. We used -O3 as the optimisation flag for the Julia compiler.

For simplicity, we will test our algorithm in two brain images, obtained 
from the BrainWeb Database (Cocosco, 1997; Collins et al., 1998; Kwan 
et al., 1996,1999) and both of 129 × 129 pixels, and on a standard 
benchmark test known as the OC images, which we stored as 600 × 400 
pixels images. We show both image pairs in Fig. 1. The brain test does not 
require large deformations to take place, but is nonetheless a challenging 
problem as brain images have regions with large contrasts, mainly near the 
cortex. The OC test is instead much more challenging, as the registration 
we look for require very large deformations and is guided only through the 
discrete gradient of a field that is fundamentally discontinuous. Unless 
otherwise stated, all images will be pre-processed with a Gaussian kernel 
using a variance parameter of σ = 1 to avoid having discontinuous deri
vatives, and then interpolated globally using linear B-Splines (De Boor, 
1978), so that we can compute the gradient of the template image as 
required by the ∇T term.

A fundamental issue that we do not address in detail in this work is that 
whenever we use elements that have more than one image pixel inside, 
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there could be additional numerical integration errors involved in our 
computations, in particular for those terms involving images. In pre
liminary studies we have observed this to have a non-negligible influence 
on the performance of the solvers, and thus we show a sensitivity analysis 
regarding this issue in Section 5.5 using first order Lagrangian FE. In the 
experiments, we chose a quadrature order of 6 for all integrals involving 
images (see the aforementioned section for a formal definition of quad
rature order, and the particular kind of quadratures that we used in this 
work). We envision that the use of adaptive integration rules for n-cubes 
(such as, e.g., (Genz & Malik, 1980; Johnson, 2018)) for terms involving 
images may lead to a better trade-off among integration accuracy and 
computational effort (see also (Bull & Freeman, 1995)). Because of this 
issue, we have performed all of our tests using only first order elements, as 
higher order approximations would require further tuning the quadrature 
rules.

(A) (B)

(C) (D)

Fig. 1 Reference (left) and target (right) images used in the brain (top) and OC 
(bottom) tests. 
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5.1 Convergence verification against manufactured solutions
In order to confirm the accuracy of the proposed schemes we perform two 
simple tests of convergence with exact solutions. We consider the unit 
square domain Ω = (0, 1)2, use synthetic images 

x x x xR T( ) (0.2, 0.2) , ( ) (0.8, 0.8) ,t 2 t 2= =

and use the following smooth and non-smooth displacement solution 

u

u

x x y
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respectively. For the non-smooth case r x y2 2= + , θ = atan2(y, x) are 

the polar coordinates and 2
3

= is a regularity index that yields 

u ∈ H1+β(Ω), and therefore we expect (under uniform refinement) a 
suboptimal convergence of O(hβ). We consider the parameters 

Δt = α = E = 1, 1
4

= , and 2
3

= . For the smooth case we take κ = 0.5 and 

for the non-smooth case we consider the pure-traction boundary condition 
(setting the boundary stiffness parameter κ = 0). Note that the exact solutions 
above do not induce zero traction boundary conditions for planar elasticity, so 
we need to also manufacture an exact traction imposed weakly in the for
mulation. Similarly, the manufactured solution may have a component of rigid 
body motions and so we also include on the right-hand side a contribution 
taking into account this part of the kernel. Likewise, an additional contribution 
is required as manufactured load on the right-hand side of the momentum 
equation, as well as in the element contribution to the volume error estimator 
and in the edge/boundary contribution (since the manufactured normal stress 
is non-homogeneous). In particular, this gives an estimator of the form 

u f g f u

u n u u

u n u u

h
t

h

h

div e
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with f divex ex= and gex = α{T(x + uex) − R} ∇T(x + uex).
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The numerical results of the uniform refinement tests are reported 
in Tables 1 and 2 for the smooth and non-smooth solutions, respec
tively. We construct six levels of uniform mesh refinement of the 
domain, on which we compute approximate solutions and the asso
ciated errors in the norm ∣v∣1,Ω = ∥ε(v)∥0,Ω. Convergence rates are 
calculated as usual: 

e e h hrate log( / )[log( / )] ,1=

where e and e denote errors produced on two consecutive meshes of 

sizes h and h , respectively. For the smooth case we see optimal con
vergence of order O(hk+1) and bounded effectivity indexes indepen

Table 1 Convergence tests against smooth manufactured solutions. Error history of 
the method for two polynomial degrees and effectivity index associated with the a 
posteriori error estimator on uniform mesh refinement. 
Degrees of 
freedom 
(DoFs)

h ∣u − uh∣1,Ω rate eff (Θ)

Uniform mesh refinement, with k = 1

21 0.7071 6.48e-02 ∗ 0.234

53 0.3536 3.29e-02 0.977 0.231

165 0.1768 1.66e-02 0.991 0.214

581 0.0884 8.30e-03 0.997 0.206

2181 0.0442 4.15e-03 0.999 0.202

8453 0.0221 2.08e-03 1.000 0.200

Uniform mesh refinement, with k = 2

53 0.7071 1.32e-02 ∗ 0.062

165 0.3536 3.34e-03 1.985 0.063

581 0.1768 8.39e-04 1.995 0.063

2181 0.0884 2.10e-04 1.996 0.064

8453 0.0442 5.33e−05 1.979 0.065

33285 0.0221 1.51e-05 1.946 0.077
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Table 2 Convergence tests. Error history of the method for two polynomial degrees, 
using a non-smooth manufactured solution, and effectivity index associated with the 
a posteriori error estimator on uniform and adaptive mesh refinement. 
DoFs h ∣u − uh∣1,Ω rate eff (Θ)

Uniform mesh refinement, with k = 1

21 0.7071 1.30e-02 ∗ 0.178

53 0.3536 8.60e-03 0.599 0.215

165 0.1768 5.61e-03 0.616 0.228

581 0.0884 3.63e-03 0.628 0.233

2181 0.0442 2.34e-03 0.634 0.237

8453 0.0221 1.50e-03 0.638 0.240

33285 0.0110 9.65e-04 0.640 0.244

Adaptive mesh refinement, with k = 1

53 0.7071 8.60e-03 ∗ 0.215

71 0.3536 6.20e-03 2.240 0.229

97 0.1768 4.65e-03 1.848 0.234

137 0.0884 3.64e-03 1.408 0.237

187 0.0442 2.87e-03 1.530 0.242

259 0.0221 2.37e-03 1.180 0.239

367 0.0110 1.88e-03 1.334 0.227

511 0.0055 1.55e-03 1.156 0.221

Uniform mesh refinement, with k = 2

53 0.7071 6.09e-03 ∗ 0.111

165 0.3536 4.13e-03 0.558 0.184

581 0.1768 2.80e-03 0.563 0.246

2181 0.0884 1.88e-03 0.571 0.284

8453 0.0442 1.26e-03 0.580 0.308
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dently of the refinement level. For the non-smooth case we observe the 
expected sub-optimal convergence under a uniform mesh refinement.

On the other hand, the numerical results for the adaptive mesh 
refinement case are reported in Table 2. We take (for the two polynomial 
degrees tested here) the same refinement fraction of 15 %. For the 
experimental convergence rates of the adaptive case we use the alternative 
form 

e erate 2 log( / )[log(DoFs/DoFs)] .1=

One can see in Table 2 that the optimal convergence is attained under 
adaptive mesh refinement guided by the a posteriori error estimator. Again, 
the effectivity index remains bounded in all cases. Also, we can readily see 
that the same level of energy error is reached with the adaptive case using 
roughly 10 % of the number of DoFs required in the uniform mesh 
refinement. This is consistent in both first and second order schemes.

To exemplify the performance of the method in the non-smooth 
solution regime, we plot in Fig. 2 the approximate solution (displacement 
magnitude warped) in a coarse adapted mesh, the synthetic images (in the 
undeformed mesh), as well as depictions of the adapted meshes after several 
steps of refinement, which indicate the expected agglomeration of elements 
near the origin (where the singularity is).

33285 0.0221 8.39e-04 0.588 0.327

132101 0.0110 5.56e-04 0.594 0.345

Adaptive mesh refinement, with k = 2

165 0.7071 4.13e-03 ∗ 0.184

231 0.3536 2.83e-03 2.253 0.235

327 0.1768 1.96e-03 2.100 0.259

477 0.0884 1.37e-03 1.927 0.267

699 0.0442 9.34e-04 1.987 0.269

963 0.0221 6.53e-04 2.231 0.293

1373 0.0110 4.32e-04 2.335 0.294

1981 0.0055 2.77e-04 2.423 0.284
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5.2 Anderson acceleration for DIR
In this section we study the performance of the time acceleration method 
through AA described in Section 4.1. We do this for both the brain and 
OC images, to evaluate the technique under small and large deformations.

We show the similarity measure, total number of iterations and elapsed 
time for the brain images registration in Table 3. For this test, we used α = 104 

Fig. 2 Convergence test against a singular solution. Approximate displacement 
magnitude (warped), synthetic reference and target images all on the final adapted 
mesh (top row), and sample of adaptively refined meshes guided by the a posteriori 
error estimator Θ after 3,5,7 refinement steps (bottom row). 

Table 3 Acceleration test, brain images: Similarity measure, iteration count and elapsed 
time required for convergence for varying AA depth, given by the parameter m. 
Scheme Similarity Iterations Elapsed time (s)

No accel 0.0412 2289 3520.81

AA(2) 0.0412 382 651.43

AA(5) 0.0412 581 997.12

AA(10) 0.0412 203 332.04

AA(20) 0.0412 99 157.61

22                                               Nicolás A. Barnafi, Alberto F. Martín and Ricardo Ruiz-Baier 



and Δt = 10−5. The mesh resolution was set such that there is a single pixel 
image per each cell. To avoid ambiguities regarding convergence, we used the 
relative Euclidean vector norm of the stationary residual as a convergence 
criterion, with a tolerance of 10−4. We highlight that better results were 
obtained using an L2 stabilisation in the pseudo-time terms from (21), i.e. 

I= the identity operator. In this case, AA is extremely convenient, as it 
provides a significant reduction in the number of iterations that increases as the 
depth parameter m increases, except for the case m = 5, which is still more 
convenient than the non-accelerated strategy. We registered the results until a 
wider depth was not convenient anymore, as iterations started increasing again, 
which typically happens because the conditioning of the related least squares 
problem starts deteriorating. For the largest depth parameter, using AA can 
yield time accelerations up to a factor of 22 with respect to a non-accelerated 
approach.

For the OC images test we consider two cases for the values of α given 
by 104 and 105, and as the images have a sharp discontinuity, we considered 
σ = 4. We set the size of the pseudo time-step to Δt = 10−2 and Δt = 10−3, 
respectively. The mesh resolution was set in order to have 4 × 4 image 
pixels per each cell. As with the brain, we used the relative Euclidean 
vector norm of the stationary residual as a convergence criterion for this 
test, but with a tolerance of 10−2. For this problem, solutions are obtained 
using I= from (21), as using only the identity yielded diverging 
iterations in our preliminary tests. This benchmark requires far larger 
deformations to obtain a satisfactory registration, which we depict by 
showing the warped target images next to the reference image for both 
values of α in Fig. 3. For the smaller α case, we show the results in 
Table 4A, where the results obtained are very similar to those of the brain. 
Acceleration is very convenient as it drastically reduces the number of 
iterations with minimal overhead per iteration. This yields elapsed time 
reductions of up to a factor of 3.7. In spite of this, we note that, as shown in 
Table 4B, acceleration is ineffective when larger displacements are 
involved, so that all accelerated iterations achieved the maximum number 
of iterations allowed (10, 000).

5.3 Adaptivity performance on brain images
Starting from a mesh of one element, we considered 4 initial uniform 
refinements, and perform 5 adaptive mesh refinements with refine and 
coarse parameters given by θrefinement = 0.4 and θcoarsen = 0.2 
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respectively. We considered a tolerance of 10−4 for the velocity u u

t

k k1+
in 

the reference (non-adapted) case, and a tolerance of 10−2 for all the 
adaptive cases. We performed all tests using AA with a depth parameter of 

(A) (B) (C)

Fig. 3 OC test solutions for small and large similarity parameter (104 and 105 respectively). 

Table 4 Acceleration test, OC images: Similarity measure, iteration count and elapsed 
time required for convergence for varying AA depth, given by the parameter m. 
Scheme Similarity Iterations Time (s)

No accel 0.263 113 78.43

AA(2) 0.263 39 28.58

AA(5) 0.263 37 27.03

AA(10) 0.264 28 21.02

AA(20) 0.264 28 21.93

(A) Small α

Scheme Similarity Iterations Time (s)

Scheme Similarity Iterations time (s)

No accel 0.0846 8927 6123

AA(2) – – –

AA(5) – – –

AA(10) – – –

AA(20) – – –

(B) Large α
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m = 10. We have seen that considering an equally precise solution in all 
levels of the adaptive solver leads to over-solving, and thus the resulting 
scheme that we consider resembles an inexact-Newton procedure. To 
obtain a solution with better similarity than the one in Table 3 we used 
α = 105, and set Δt = 10−6 as larger timesteps resulted in non-convergence 
(in the form of oscillating iterations).

In Fig. 4 we show the evolution of the meshes obtained from our 
algorithm, and compare the solution obtained with a reference mesh of 
one-element-per-pixel in Fig. 5. The solutions are indistinguishable to the 
eye, so we provide further comparison information in Table 5, where we 
show the final number of DoFs, similarity, total iterations, and required 
elapsed time. While the AMR solution requires a larger total number of 
iterations, most of these are performed on coarser meshes where iterations 
are much faster. This results in the overall solution time being accelerated 
by a factor of 13.62. This faster solution yielded a mildly lower similarity 
measure, and this was additionally achieved with less DoFs. We stress that 
this test does not converge with the parameter values at hand if AA is not 
used.

5.4 Adaptivity performance on OC images
The setup of the experiments for the OC images in this section is almost 
equivalent to that of the brain images, with the following differences. 
First, we considered a tolerance of 10−2 for the residual in the reference 
(non-adapted) case, and a tolerance of 10−1 for all the adaptive cases. 
Second, we used α = 108 to obtain a more accurate solution than the one in 

Fig. 4 Brain AMR test: evolution of AMR solution through all adaptive steps from left 
to right. In the top row we show the evolution of the adapted grid, and on the bottom 
row we show the evolution of the solution. 
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(A) (B)

(C) (D)

Fig. 5 Brain AMR test: comparison of AMR and classic solutions (bottom left and 
bottom right respectively) in comparison to original images (top row). 

Table 5 Brain AMR test: solution metrics, given by (A) total degrees of freedom (DoFs), 
(B) final similarity, (C) iterations, where we display the iterations incurred by the 
adaptive solver in each level, and (D) the overall elapsed time. 
Strategy DoFs Similarity Iterations Elapsed  

time  
(seconds)

Classic 33,803 0.0263 927 1649.94

Adaptive 24,843 0.0260 (616, 321, 76, 43, 27, 24) 1107 121.14
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Table 4a and 4b, and set Δt = 10−6, which yields convergence (without 
AA). Third, we did not use AA, as it did not yield to a convergent fixed- 
point iteration scheme for the values of α and Δt at hand.

In Fig. 6 we show the evolution of the meshes obtained from our 
algorithm, and compare the solution obtained with a reference mesh of 
four-pixels-per-element in Fig. 7. The solutions are almost indistinguish
able to the eye, so we provide further comparison information in Table 6

Fig. 6 OC AMR test: evolution of AMR solution through all adaptive steps from left to 
right. In the top row we show the evolution of the adapted grid, and on the bottom 
row we show the evolution of the solution. 

(A) (B)

(C) (D)

Fig. 7 OC AMR test: comparison of AMR and classic solutions (bottom left and bottom 
right respectively) in comparison to original images (top row). 
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(see description of Table 5 above for a description of the different fields in 
the table). We highlight that the overall solution time was accelerated by a 
factor of 2.09. This faster solution yielded a lower similarity measure, and 
this was achieved with less DoFs.

5.5 Quadrature sensitivity
Image functions are highly nonlinear, which makes the computation of 
integrals that depend on them highly prone to numerical integration 
(quadrature) errors. It is difficult to obtain analytic results that can give 
sharp estimates for this, so instead we tried the following approach: 
depending of the pixels-per-element that one can have, we compute the 
quadrature order (i.e. maximum polynomial degree that is integrated 
exactly (Ern & Guermond, 2004)) that provides minimal variations of the 
residual. Naturally, one would expect that the larger the number of pixels- 
per-element, the larger the required quadrature order to commit 
approximately the same amount of numerical integration error. To test 
this, we considered as the ground truth the residual vector 

x x x v xW q T R T[ ( )] ( ( ) ( )) ( ) d ,i i q=

where vi is a basis function of the considered FE space, and we denote with 
dxq the numerical integration performed with a quadrature of order q. 
With it, the error will be denoted with 

e q
W q W q

W q
( )

( ) ( )

( )
.truth

truth

=

We consider the ground truth integration value to be qtruth = 201. In 
this setting, we computed the error for various numbers of pixels-per- 
element, and display the errors for different Gaussian smoothing levels and 

Table 6 OC AMR test: solution metrics, given by (A) total degrees of freedom (dofs), 
(B) final similarity, (C) iterations, where we display the iterations incurred by the 
adaptive solver in each level in gray, and (D) the overall elapsed time. 
Strategy DoFs Similarity Iterations Elapsed time 

(seconds)

Classic 30,505 0.0196 1478 1003.88

Adaptive 23,953 0.0156 (21, 124, 549, 217, 
662, 295) 1868

478.57
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the brain images in Fig. 8. We use standard tensor-product Gauss-Legendre 
quadratures for the experiment. Integration error is thus significant, and it 
becomes much more relevant when no smoothing is used. Considering 
that with AMR we have coarser elements where there are no complex 
feature of the images, we have found that a good compromise is con
sidering q = 6. Still, this will be addressed more effectively in future work.

6. Conclusions and future perspectives

In this work, we have extended the a-posteriori error analysis of DIR 
with linear elastic regularisation to the case of Robin boundary conditions. 
We have formulated an efficient strategy for leveraging octree-based 
adaptivity that supports both coarsening and refinement, and have tested 
our strategy on realistic brain images and on the challenging OC 

(A) (B)

(C) (D)

Fig. 8 Integration error for 5 × 5, 10 × 10, 20 × 20, and 50 × 50 pixels per element 
considering odd quadrature orders ranging from 1 to 51. From top to bottom, and left 
to right, we consider this setting using a Gaussian smoothing of 0, 1, 5, and 10 with 
the brain images. 
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benchmark. The DIR problem is highly nonlinear, and so we solve it with 
an IMEX formulation of a proximal-point algorithm, and further proposed 
to accelerate this algorithm with AA. We have observed that acceleration 
can be very convenient computationally, as it significantly reduced the 
elapsed time of the brain test. Still, the methodology is highly problem 
dependent, as it was ineffective for the OC test when using larger values of 
α. Putting everything together, we were able to significantly reduce the 
computational time required to solve DIR. The proposed AMR approach 
is able to provide better resolution on difficult domain regions and instead 
relax it where not required, which results in better solutions obtained with 
fewer DoFs and in less time.

We will focus our future work on developing black-box nonlinear 
solvers for the DIR problem, so that we do not need to compute a pseudo- 
time step for convergence. We will provide a deeper analysis of the 
interplay between mesh size and solver performance, as the sensitivity of 
proximal-point algorithms with respect to mesh-size remains understudied, 
even more so in DIR. Then, we will leverage such robust solvers to 
develop an automated computation of the similarity parameter α, and 
extend our software to the 3D case. Our long term goal is that of devel
oping an open source software that provides a robust and efficient solution 
of DIR without the requirement of intense parameter tuning.
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