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Abstract. A stationary Navier—Stokes—Brinkman problem coupled to a system of advection-
diffusion equations serves as a model for so-called double-diffusive viscous flow in porous media in
which both heat and a solute within the fluid phase are subject to transport and diffusion. The solv-
ability analysis of these governing equations results as a combination of compactness arguments and
fixed-point theory. In addition an H (div)-conforming discretization is formulated by a modification
of existing methods for Brinkman flows. The well-posedness of the discrete Galerkin formulation is
also discussed, and convergence properties are derived rigorously. Computational tests confirm the
predicted rates of error decay and illustrate the applicability of the methods for the simulation of
bacterial bioconvection and thermohaline circulation problems.
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1. Introduction.

1.1. Scope. Double-diffusive flows arise in the flow of chemical pollutants in
saturated soil, subsurface drilling and petroleum extraction, crystal growth, chemical
and food processing, and numerous other applications [10, 22, 23, 30, 46, 36, 39, 41].
This class of models originates in combining heat and mass transfer interacting with
flow within porous structures. One of its particularities is the formation of boundary
layers due to coupled thermal and compositional mechanisms [14]. This occurs (at
least in the case known as augmenting flows) since mass transfer increases the effect
of buoyancy due to heat transfer. The difference in the diffusivities of the two fluid
components then contributes to redirecting the flow away from the vertical density
gradient [42]. Another characteristic phenomenon of double-diffusive flows is cross
diffusion [35, 39], where the flux of the solute is influenced by temperature gradients.
This so-called Soret effect usually coexists with the reciprocal phenomenon, known as
the Dufour effect.

It is the purpose of this work to propose a divergence-conforming finite element
method for the doubly-diffusive problem, considering temperature-dependent viscosity
and possible cross-diffusion terms subject to the restriction of maintaining the coerciv-
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ity of the diffusion operator. The formulation includes the Navier—Stokes/Brinkman
flow description, which makes this model suitable for the study of flow in saturated
porous media and interfaces between porous media and free flow. The numerical
scheme is based on H (div)-conforming Brezzi-Douglas—Marini (BDM) elements of
order k for the velocity, discontinuous elements of order k£ — 1 for the pressure, and
Lagrangian finite elements of order k for temperature and the concentration of a
solute. In particular this formulation produces exactly divergence-free velocity ap-
proximations, which are of particular importance in ensuring that solutions to the
flow equations remain locally conservative as well as energy stable (see, e.g., [15])
and, moreover, the error estimates of velocity could be derived in a pressure-robust
manner (see [26]). Another consequence of local conservation is that the coupled sys-
tems (in the present case, of temperature and reactive concentrations) can be written,
at the discrete level, in exact divergence form.

The governing equations are posed on an open and bounded spatial domain 2 C
R?, d = 2 or d = 3, with boundary conditions imposed on the boundary I' = 9 that is
assumed to be Lipschitz. The model adopts the form of the incompressible Brinkman-—
Navier—Stokes equations for the viscous flow of an incompressible Newtonian fluid in
a porous medium, where the velocity w and the pressure p are the unknowns, coupled
with a pair of advection-diffusion equations with cross diffusion that describe the
diffusion of heat and solute. Specifically, we assume that a given species (e.g., salt) has
a slight solubility within this fluid, and that S denotes its concentration (i.e., weight
of solute per unit weight of solution), while 7" is temperature, and y := (T, S)T. The
stationary behavior of this system can be expressed as follows:

K 'u+ (u-V)u—div(y(T)Vu) + Vp = F(y), divu=0 inQ,

1) —div(DVy) +div(u®y) =0 inQ, y=y°, u=0 onT,

where K (x) > 0 is the permeability matrix rescaled with viscosity, F(y) is a given
function modeling buoyancy, D is the 2 x 2 constant matrix of the thermal conduc-
tivity and solutal diffusivity coefficients (possibly with cross-diffusion terms), and v
is a temperature-dependent viscosity function. (Precise assumptions on the model
functions and problem data are stated in section 2.)

1.2. Related work. To put the paper further into the proper perspective, we
mention that in many heat and mass transfer processes, the Soret and Dufour effects
can be neglected as their contributions can be orders of magnitude smaller than those
described by terms arising from Fourier’s or Fick’s law. However, these effects can be
significant when species are introduced at a surface in a fluid domain and have different
densities in comparison to the surrounding fluid. These mechanisms are important
as well in applications related to the transport of moisture in fibrous insulations or
grain storage insulations and the dispersion of contaminants through water saturated
soil, biochemical contaminants transport in environmental problems, and underground
disposal of nuclear waste and crystal growth processes [10].

With respect to the well-posedness of (1.1) (under suitable assumptions), we
first restrict the discussion to classical Boussinesq-type equations. The solvability
of the associated PDEs goes back to Lorca and Boldrini [33, 34]. These works in-
clude existence, regularity, and conditions for uniqueness addressing both stationary
and nonstationary cases. These results hold for temperature-dependent viscosity and
thermal conductivity. Related to the context of our specific problem, the analysis of
solutions to doubly-diffusive problems has been addressed, e.g., in [23, 32].
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On the other hand, a diversity of numerical methods is available for classical
Boussinesq equations as well as for their generalizations to temperature-dependent
coefficients. We mention for instance the stabilized finite elements (using projection-
based techniques) proposed and rigorously analyzed in [3, 14], the mixed formulations
analyzed in [2, 6, 7, 16], and also the stability of splitting schemes (for discontinuous
Galerkin, spectral, and vorticity-based finite element formulations) and some more
applicative examples have been explored in [1, 5, 13, 30, 31, 36, 40, 41, 44]. Mixed-
primal and fully mixed schemes using H (div)-conforming velocity approximations
have been studied in [37, 38].

The main differences between the available well-posedness results and analysis
of H(div)-conforming methods for classical Boussinesq equations and the doubly-
diffusive equations (1.1) are, of course, caused by the vector-valued nature of the
quantities (the components of y) that diffuse in (1.1) while in the classical Boussinesq
formulation there is only one scalar diffusive quantity (for instance, solely tempera-
ture). Some of the arguments related to the well-posedness analysis of the continuous
problem, in particular those related to handling nonhomogenous Dirichlet data by a
lifting argument [33, 37], carry over almost verbatim from the scalar to the vectorial
case. However, the bilinear form associated with the term —div(DVy) must be co-
ercive so that stability is ensured. This requirement, in turn, imposes restrictions on
the choice of the diffusion matrix D; this matrix must be positive definite (though not
necessarily symmetric). These properties are essential for the proof of existence of a
discrete solution, as we will elaborate in section 4. In other words, the well-posedness
of the variational formulations of (1.1) and the associated H (div)-conforming method
depend on the proper choice of the entries of D.

Other contributions to this area include the finite volume discretizations for ther-
mal and solutal buoyancy within Darcy—Brinkman flows introduced in [22], the error
analysis for spectral methods applied to bioconvection in [18], or the vorticity-based
Brinkman and nonlinear advection-reaction-diffusion systems analyzed via fixed-point
and compactness arguments in [8], that also includes a mixed-primal scheme featur-
ing divergence-free discrete velocities. Penalty Petrov—Galerkin methods were used for
the solution of double-diffusion convective problems in [25]. In [42] the authors intro-
duce least-squares schemes specifically tailored for Rayleigh-Bénard convective flows,
and the averaging finite element method has been employed in [45] for solidification
problems having the same structure as the models we examine here.

1.3. Outline of the paper. The remainder of this paper is organized as follows.
In section 2 we introduce some recurrent notation and definitions of functional spaces
(section 2.1), specify the assumptions on the model coefficients and problem data and
state the problem in variational form (section 2.2), and establish auxiliary properties
of the bilinear and trilinear forms involved (section 2.3). Section 3, which follows
closely the analysis of [37], is devoted to the well-posedness analysis of the continuous
problem (1.1). The basic idea consists in utilizing the correspondence of solutions
(u,p,y) of the variational formulation of (1.1) with solutions (u,y) of a problem in
which the pressure does not appear. The main results of section 3 are Theorems 3.1
and 3.2, stating the existence and uniqueness, respectively, of a variational solution of
(1.1) under appropriate assumptions. The H (div)-conforming method for (1.1) is then
introduced and analyzed in section 4, which is at the core of this paper. Specifically, in
section 4.1 the method is formulated (based on an appropriate choice of the underlying
discrete spaces), and in section 4.2 discrete stability properties of the bilinear and
trilinear forms at discrete level are provided. These properties allow us then, in
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section 4.3, to establish existence of a discrete solution. This follows from the main
result of that section, Theorem 4.1, which is based on a fixed-point argument. Finally,
in section 4.4 we conduct an a priori error analysis and, in particular, establish orders
of convergence (in terms of the mesh size) of the discrete solution to the continuous
one. In section 5 we present results of three different numerical experiments, namely,
an accuracy test for a two-dimensional manufactured solution that confirms that the
experimentally observed orders of convergence are consistent with those predicted in
section 4.4 (Example 1, section 5.1), an illustration of the Soret and Dufour effects in
a two-dimensional porous cavity setup that validates the method against benchmark
data from literature (Example 2, section 5.2), and simulations of a nonstationary
problem on a three-dimensional domain describing bioconvection of oxytactic bacteria
that evaluates the extension of the proposed methods to nonlinear cross-diffusion and
reaction terms in the diffusion-advection equations.

2. The model problem.

2.1. Preliminaries. Let § be an open and bounded domain in R?, d = 2, 3 with
Lipschitz boundary T' = 9. We denote by LP(2) and WP () the usual Lebesgue
and Sobolev spaces with respective norms [|-[| (o) and [|-|lwrr ). If p =2 we write
H"(Q) in place of W™P(Q), and denote the corresponding norm by [|-||l~q, (||-llo.0
for H°(Q) = L2(€2)). The space LZ(Q) denotes the restriction of Ly(f2) to functions
with zero mean value over Q. For r > 0, we write the H"-seminorm as ||, o and we
denote by (-,)q the usual inner product in L?(€). Spaces of vector-valued functions
(in dimension d) are denoted in bold face, i.e., H"(€) = [H"(2)]%, and we use the
vector-valued Hilbert spaces

H(div;Q) = {w € L*(Q) : divw € L*(Q)},
H(div; Q) = {'w € H(div; Q) : w-npq =0 on 89},
H(div’; Q) := {w € Ho(div; Q) : divew = 0 in Q},
where ngq denotes the outward normal on 992; and we endow these spaces with the
norm [[wlf3;, o = [[wf o + l|divew| o.

2.2. Assumptions and weak form of the governing equations. We assume
boundary data regularity yP = (T°, SP) € [H'/?(T")]?, as well as Lipschitz continuity
and uniform boundedness of the kinematic (temperature dependent) viscosity, i.e.,

(2.1) ’V(Tl) — V(T2)| <|Ty =T and vy <v(T) <o,

where 7,11, V5 are positive constants. Moreover, we assume Lipschitz continuity of
the function F(y) defining the buoyancy term, i.e., there exist v, Cr > 0 such that

(2.2) |F(y,) — F(y,)| <rly, — 9ol and |F(y)| < Crlyl.

The dxd permeability matrix K is assumed symmetric and uniformly positive definite,
hence, its inverse satisfies vT K ~(x)v > a;|v|? for all v € R? and € Q for a
constant oy > 0. We also require D to be positive definite, i.e., sTDs > az|s|? for
all s € R? for a constant ay > 0.
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The variational formulation of problem (1.1) is obtained by testing against suit-
able functions and integrating by parts, and can be formulated as follows:
Find (u,p,y) € Hy(Q) x LE(Q) x [H'(Q)]? satisfying y = y° on T’ and
a(y; w,v) + c(u;uw,v) + b(v,p) = d(y,v) for all v € HS(Q),
b(u,q) =0 forall g € L3(Q),
ay(y, 8) + cy(u;y,s) =0 for all s € [Hg(Q)]?,

(2.3)

where the involved forms are defined as
a(s;u,v) = (K 'u,v)q + (v(8)Vu, Vo), c(w;u,v) = ((w-V)u,v)

b(v,q) = (¢, divwv)g, d(s,v) = (F(s),v),,
ay(y,S) = (DVy,VS)Q, cy(v;yNS) = (('U V)y7S)Q

Q’

for all u,v,w € H'(Q), ¢ € L*(Q), and y, s € [H*(Q)]?, where v(s) is understood as
the kinematic viscosity depending only on the first component of the vector s.

2.3. Stability properties. First, note that due to (2.1)—(2.2), the following
continuity properties hold for all u,v,€ H'(Q), ¢ € L*(Q), and y, s € [H'(Q)]?:

(2.4a) la(-, u,v)| < max{vs, [ Koo }( 2)
< Callulluolvlh.e,

(2.4b) |ay(y, s)| <,

(2.4c) ,

(2.4d) |d

In addition, and due to the Lipschitz continuity of v (stated in (2.1)) and Holder’s
inequality, the following property holds for all y,,y, € [H*(Q)]? and u € W1>(Q):

(2.5) la(yy;u, v) — a(yq; w, v)| < ollullwre@)lly; —

On the other hand, standard Sobolev embeddings indicate that for r > 1 if d = 2
or r € [1,6] if d = 3, there exists C > 0 depending only upon || and r such
that [|w|zrq) < Cf|lwl1,q for all w € H'(Q). Then taking w,v,w € H'(Q) and
y, s € [H'(Q)]?, and applying this inequality along with Holder’s inequality with
= —|— i %, gives the following bounds:

= Cy|wllrellullrelvle,
= Cyllwll,ellyllellsllizs @)z

= Cuollwlellylielslie.

| c(w;u,v) | <CrCr.
(2.6) ’cy w; Y, S ‘ < Cg

’cywy, ‘ CeCs

Next, Poincaré’s inequality together with the properties stated in section 2.2 im-
plies that the bilinear forms a(-; -, ) (for a fixed temperature) and ay (-, -) are coercive,
that is,

(2.72) a(-;v,v) > min{ry, a1 }(| 5a) = aalvlliq foralwve H(Q),
(2.7b) ay(s,s) > a2|s|iQ > daHsHiQ for all s € [H(Q))%.
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Using the definition and characterization of the kernel X of b(-, -), namely,
X ={ve H)Q):bv,q) =0V € L)} = {v € H{(Q) : divo = 0in Q},
and using integration by parts we can readily observe that

(2.8)  c(w;v,v) =0 and cy(w;s,s) =0 for all w € X, v € H'(Q),s € [H ()]

Remark 1. Note that (2.7a) together with (2.8) implies the H(Q)-ellipticity of
the bilinear form a(y, -, ) +c(w, -,-) : Hy(Q) x H(Q) — R for any given y € [H'()]?
and w € X.

Moreover, the bilinear form b(-, -) satisfies an inf-sup condition:

b(v,q)
sup
veEHL(Q)\{0} [v][1,0

> Bllglloe for all g € Lg(Q)

(see [43] for this well-known property). Finally, for v € W'*(Q) and s €
[H1(Q) N L>(2)]? there exists an embedding constant C, > 0 such that

(2.9) [ulli0 < Coollullwre) and |sllrs@)2 < Coollsll[zee ()2

3. Well-posedness analysis of the continuous problem. We start by stat-
ing a well-known equivalence result (see [12, Chapter II, Theorem 1.1], [20, Chapter
I, section 4]), adapted to the context of our problem.

LEMMA 3.1. If (u,p,y) € Hy(Q) x L3(Q) x [H(Q)]? solves (2.3), then (u,y) €
X x [HY(2))? satisfies y|r = y° and
a(y;u,v) + c(u;u,v) —d(y,v) =0 forallve X,

3-1) ay(y, 8) + cy(u;y,8) =0 for all s € [Hy(Q))>.

Conversely, if (u,y) € X x [HY(Q)]? is a solution of the reduced problem (3.1), then
there exists p € L(Q) such that (u,p,y) is a solution of (2.3).

In order to deal with the nonhomogeneous Dirichlet data appearing in the thermal
energy and concentration equation, we utilize a lifting argument adapted from [37].
We write y as y = y, + y;, where y, € [H}(2)]? and y, is such that

(3.2) y, € [H'(Q))* with y,|r = y".
LeMMA 3.2. If sP € [HY?(T)]?, then for anye >0 and 1 <r < 6 ifd = 3 or any
r>1if d =2, there exists an extension sy € [H'(Q)]* of sP with ||s1]/jL-@y2 < e.

Proof. Tt follows similarly as for its scalar counterpart, proven in [33, Lemma
4.1]. d

~ LemMmA 3.3. Let (u,y) be a solution to (3.1). Then there exist positive constants
Cu, Cy such that ||lull1.o < Cullyil1.0 and [lyllie < Cyllylla-

Proof. If one takes v = u and s = y, in (3.1), then we can assert that

a(yy + y;u,u) + c(u;u,u) — d(y,u) =0,
ay(Yo + Y1, Yo) + cy (W Yo + Y1,Y0) = 0.
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Using Remark 1, conditions (2.2), (2.4d), and Holder’s inequality, yields the estimate

(3-3) aallul? o < Cr(llyo

Similarly as above, from (2.7b), (2.8), (2.4b), and (2.6) we can derive the relation

Lo+ lyile) lullie.

(3-4) dallyollf o < Callyalelyollie + Collulliallyllize @z lyolle-
Then, substituting (3.4) back into (3.3), we obtain

CF CA(a + da év
ull1,0 < aa(&anylnl,ﬂ 3. ||u||1,9||y1||[L3(Q)]2)7
which in turn implies that
C, Cr(Cy + du)
fulla (1= Sl s ) < S0 0e) 1y
aa aa a
In view of Lemma 3.2, we may assume that Sa Y1llizs)z < 1/2. Then we have
2Cr éa + Gy
(35) fufl 0 < 2R Cat0ady, g o

Inserting (3.5) into (3.4), we are then left with

Ca 2OUCF CA’a + @a
& ”yl”lQ + ( — )

a a-ta

C, Cp(C,+ay,
<(+’*C”)mmn 0

T\ Qg Qg

lYoli,0 < lyy llizs @z llye e

THEOREM 3.1. Assume that the conditions of section 2.2 hold. Then there is
a lifting y, € [H'(Q)]? of yP € [HY2(T)]? satisfying (3.2) and such that problem
(3.1) has a solution (u,y = yo +y,) € H(Q) x [H (Q)]?. Furthermore, there exist
constants Cy,Cy > 0 only depending on the stability constants of section 2.3 such
that [lull1.0 < Cully: 1.0 and [lyollie < Cyllyilla-

Proof. The result follows as an adequate modification of the proof in [33, section
4], after applying Lemma 3.3 and Brouwer’s fixed-point theorem. ]

The assumption of additional regularity (justified for velocity in, e.g., [43, sec-
tion 1.3], and for temperature and concentration in, e.g., [17, 29, 34]), along with a
smallness condition allows us to establish uniqueness of solution, stated as follows.

THEOREM 3.2. Let (u,y) € [X N Wl’OO(Q)] x [HY(Q) N L>(Q)]? be a solution
of the reduced problem (3.1), and assume that
(3.6) max { ||u|lyw1.0 o), |Yll[pe @2, vp ) < M
for a sufficiently small constant M > 0. Then such solution is unique.

Proof. Let (u,y), (&,y) be two solutions of problem (3.1), both satisfying as-

sumption (3.6). Subtracting the corresponding variational formulations, we have

(3.7a) a(y,u,v) —a(y,a,v) + c(u,u,v) — c(a, a,v) (d(y, v) — d(g, v)) =0,

v J—
(3.7b) ay(ya s) — ay(ga s) + Cy(u§y: s) — Cy(ﬂ§i’~la 5)=0
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for all v € X, s € [H}(Q)]?. One next notices that in (3.7) one can write

a(y,u,v) — a(y,a,v) = a(y,u — 4,v) + a(y, 4, v) — a(y, @, v),

c(u,u,v) — (@, a,v) = c(u,u — 4,v) + c(u, @,v) — c(@, @, v),
cy(w;y, 8) — cy(U; 9, 8) = cy(us;y — 9, 8) + cy(u; Y, 8) — ¢y (U; 9, 8),
and then we can choose as test function v = u — @ € X, and exploit (2.8) to obtain

a(y,u—a,u—a)+ (a(y,@,u—a) —a(y,a,u—a))
+ (c(w; @, u — @) — c(w;@,u—a)) — (d(y, v — @) — d(y,u —a)) =0.
Applying the coercivity of the bilinear form a(-,-) in (2.7), we readily get
agllu—alfq < la(y, @, u —a) - a(y, @, u - a)|
(3.8) + |e(w; @, u — @) — c(@; @, u — )|
+ |d(y, v — @) — d(g,u — @)|.

Analogously, we can take s = y — g € [H}(Q)]? in (3.7b), and employ the coercivity
of the form ay(,-,-) in (2.7), to eventually obtain

Qally — i/”%,(z < |Cy(u - Y, Y — '!7)|
On the other hand, from relation (2.5) and assumption (3.6) it follows that

(39) |a(y, ’&, u - ’ﬂ,) - a’(@7 a? u— ﬂ’)| < ’YVMHy - QHLQ |’LL - ,'1”1»9

and, hence, replacing (3.9) in (3.8) and taking into account the continuity of the forms
¢(+;-,+) (stated in (2.6)) and the Lipschitz condition (2.2), we arrive at the bound

aallu—alf o <My —glliollu—ale + Cyla| 10
ly — 9l

Proceeding in a similar manner, we can also derive the estimate

1olu — 4l

+rFlu —tl,0
dally — 9l3 o < Collu — @l allgllire @)z lly — 9lhe-

Now employing (2.9) in combination with Young’s inequality, we have
- v, 1 - M -
aaltu =@l < M (% 4 G0t 3 )lu =l + 5 (ot Dlly = 3l

Gully ~ 910 < 5CO=M (fu—all} o + 1y~ 910).
Adding these inequalities and defining C = 1+, +C,Cx)/2, we get
(@ = M(CuCos + O)) 4 = @l + (G0 = MCO)ly = FllT 0 <0,
and thus uniqueness holds as long as M < min{a,/(CyCso + C), éa/C}. O
4. Finite element discretization.

4.1. Formulation of the H (div)-conforming method. Let us consider a
family of regular partitions, denoted 7y, of € into simplices K (triangles in two di-
mensions (2D) or tetrahedra in three dimensions (3D)) of diameter hgx. The mesh
size will be denoted by h and, for any interior facet e in &, (the set of faces in 7y), we
will label K~ and K7 the elements adjacent to it, while h, will stand for the length
of the edge in 2D (or maximum diameter of the facet in 3D). Supposing that v, w
are, respectively, smooth vector and scalar fields defined over 7;,. Then, by (v, w*)
we will denote the traces of (v, w) on e being the extensions from the interiors of the
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elements K+ and K, respectively. Let nF denote the outward unit normal vector
to e on K* (hence, n* = —n~). We define the average {{-}} and jump [-] operators
as v} = (v7 +07)/2, fwh = (W™ +w")/2, [v] = (v -nS + o7 -n]), and
[w] == (w™n. + wTn}), whereas for boundary jumps and averages we adopt the
convention that {v}} = v, [v] = v - ngq and {w}} = w, [w] = wnpq. In addition,
we denote by V;, the broken gradient operator.

For k € Ny and a mesh 7y, on €, let us consider the discrete spaces (see, e.g., [11])

Vi, = {v, € Ho(div; Q) : vp| i € [Pr(K)]? VK € Ty},
Qn = {aqn € L§(Q) : qn|x € Pr_1(K) VK €Tp},
Mh = {Sh S [C(Q)]2 : Sh‘K c []P)k(.Kv)}2 VK € 7;1}, Mh,O = Mh N [H(}(Q)P?
which, in particular, satisfy divVy, C Qj (cf. [28]). Here Py (K) denotes the local
space spanned by polynomials of degree up to k and V', is the space of divergence-

conforming BDM elements. Associated with these finite-dimensional spaces, we state
the following Galerkin formulation for problem (1.1):

Find (wp,pn,y,) € Vi x Qn x M, such that y,|r = yg

and for all (vp, qn, sp) € Vi, X Qp X My 0,
(4.1) N N
a" (Ypi Un, V1) + ¢ (Wp; Up, V1) + b(vn, pr) = d(yp, vn),
b(un,qn) =0, ay(yp,sn) + cy(un; Yy, sn) = 0.
Here y? := Zr yP and Zr is the nodal interpolation operator defined in section 4.4,
the discrete versions of the trilinear forms a(-;-,-) and ¢(:;+,-) are defined using a
symmetric interior penalty and an upwind approach, respectively (see, e.g., [9, 13, 28]):

a”(sn;un, vp)

= [ (K o v Vi Vi)
Q

= 3 [ (o ond - o Twond ol + Govtsn) ol o]
Z /(')K\F w,°(up) - vp,

"(wp; up, vp) ::/(thuh)'v;ﬁ
Q KeThn

where the fluxes are defined as w," (u) = 3 (wy - ngx — |wy, - nk|)(u§ — up), and uf
is the trace of u taken from within the exterior of K. As in the continuous case, we
define the discrete kernel of the bilinear form b(-,-) as

X, = {’Uh ceVy: b(vh,qh) = OV(Ih € Qh} = {’Uh eV, :divvy =0in Q}

4.2. Discrete stability properties. For the sake of the subsequent analysis,
we introduce the following parameter and mesh dependent broken norms:

ol 7 = > IIVollf x + Z II[[U]]HOE,

KeTh eEEh

[vI[% 7, = ollvllg o + vallvll 7, forallv € H'(Ty),

lol3,7, = oI} 7, + D hiklvl for all v € H*(Ty),
KeTh
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where 0 = || K !||oo.q and v is defined in (2.1). We also recall the broken version
of the well-known Sobolev embedding result (see, e.g., [21, Lemma 6.2], [27, Proposi-
tion 4.5], or [19, Theorem 5.3]): For any r > 1if d =2 or 1 <r <6, if d = 3 there
exists a constant Cepp, > 0 such that

(4.2) lvllLr ) < Cembl|vl1,7, for all v € H'(Ty).
Moreover, we will use the broken space
C'(Ty) ={ue H(Ty) : ulx € C"(K),K € Ty},
equipped with an appropriate norm ||ul|lyy 1.7, = maxke7, |w|wi.~ k). Finally,
we will also use an augmented H!'-norm defined as
lslle, = lslta+ Y olslf.  forall s € [ @),
ecgy

Using these norms, and the local trace inequalities

[vlloox < Ch P vllo.x + hil2wlik) for all v € HY(K),

Ipllo.ox < Chi’?|plos  for all p € Py(K),

we can establish continuity of the trilinear and bilinear forms involved, stated in the
following lemma that can be proved following [37, section 3.3.2] and [9, section 4].

LEMMA 4.1. The following properties hold:

(4.3a) |ah(-,u,v)| < Cllullz, 7 vl 7 for all w € H(Tp,), v € Vi,
(4.3b) |ah(~,u,v)| < C’a||u||1,7—h||v||1;rh for all u,v € Vi,
(4.3c) ’b('u,q)‘ < ||vll1,7 llgllo,0 for all v € H'(Ty), q € Li(Q),

and for all w,v,w € H'(T;) and s,y € [H'(Q)]?,

(4.4a) |d(y,v)| < Crllyl10

[v]

1,7h>
(4.4b) |cy(w;y,8)| < Cillwlly,7 |Isll1ellylle,
(4.4c) |ey(wiy, s)| < Collwll1,7, 1yllLs @2V sllo.0-

Moreover, for 81,82 € [H*(Q)]?, w € C*(Ts), and v € V,, there holds
(4.5)  |a"(s1;u,v) — a"(s23u,v)| < Cripywllsy — s2llre, [[wllwre )17,

where the constant Cpi, > 0 is independent of h (cf. [37, Lemma 3.3]). A related
result follows for ¢”(-;-,-) as in [37, Lemma 3.4]. Let w1, ws, u € H2(771) and v € V},.

Then there exists C, > 0 independently of h such that
(4.6) | (w15 u,v) = (w2 u,0)| < Cyllwr — wa 17 w7 v]h,7 -

While the coercivity of the form ay(-,-) in the discrete setting is readily implied
by (2.7), there also holds (cf. [28, Lemma 3.2])

(4.7) a(-,v,v) > aalvli 5, forallve Vy,

provided that ag > 0 is sufficiently large and independent of the mesh size.
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Let w € Ho(div’; Q), then, according to [37] we can write
1
(4.8) o) = 5 Y /|'w ne|[]2 >0 for all w e Vi,
ecgi V¢
as well as the following relation
(4.9) cy(w; sp,sp) =0 for all s, € My,

which arises from integration by parts and holds at the discrete level since the pro-
duced discrete velocities are exactly divergence free. Finally, we recall from [28] the
following discrete inf-sup condition for b(-,-), where [ is independent of h:

b(vy, ~
(4.10) sup M > Bllgnllo,.o for all gp € Q.

v, eVi\{0} lvn 1,Th

4.3. Existence of discrete solutions. Due to the discrete stability properties
stated in the previous section, a discrete analogue of Lemma 3.1 holds.

LEMMA 4.2. If (up,pr,yp) € Vi x Qn XMy, is a solution of (4.1), then up € Xy,
and (up,y;,) is a solution of the discrete reduced problem
a" (yp; un, v) + ¢ (up; up, v) — d(yy,, v) = 0,

4.11
( ) ay(Yp, 8) + cy(up;yy,s) =0 for all (v,s) € X x My, .

Conversely, if (up, yp) € Xn X Mp o is a solution of (4.11), then there exists a unique
pressure py, € Qp, such that (un,pr,yy) s a solution to (4.1).

As in the continuous case, we also perform a boundary lifting of y,; by setting
Yo = Ypo T Yp1 With y, o € Mp 0, and

(4.12) Yp1 € Mu, Ypilr = y}?-

LEMMA 4.3. Let (un,yy,) be a solution of (4.11) with y;, = Yy, o + Y1 as in
(4.12). Assume that

CrCs

1
(4.13) Cacpllynalliza@yz < 5. where Caep = Z=2=

Then there exist constants Ct, C'y > 0 only depending on the stability constants from
section 4.2, such that

(4.14) lulli 7 < Cullynalle and flyullie < Cyllynilhie.

Proof. We choose (v, 8) = (un, Yy, ) in (4.11) and use (4.8)-(4.9) to obtain

ah(yhé up, up) = d(yy, un), @y(yh,m yh,o) + ay(yh,u yh,o) = —Cy(uh§ yh,lvyh,o)'

Invoking the coercivity of the forms ap(+;-,-) and ay(-,-) in (4.7), (2.7b) and the
boundedness of ¢y (+;-,-), d(-,-) stated in (4.4c), (4.4a), we have

(4.15a) Gallun

1.7, < Cr(lynolie + lynalie),
(4.15Db) dallynollre < Callynallie + Callynallws @pzllwllz-
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Substituting (4.15b) into (4.15a) then leads to

c, Cs
aqllunll1 7 < Cr Ith1||m+ Ith1IIm+ IthlHLs(m ollull1,7, ),

C éa
lunlly 7 < CacpllYnallizs @z + dF< 2 )

where Cy, = 2CF (1 —|— ) Finally, the definition of the discrete liftings and an appli-
cation of the trlangle mequahty imply that

C
Hyh 1, lunll1,7,
C +a ’ Do + 6
<= Hyh 1||[L3(Q)]220F7Hyh 1”19
L
Cota
<29 L%y, o < Cylya e 0

THEOREM 4.1. Let y, | be a discrete lifting satisfying (4.13). Then there exists a
discrete solution (up,y,) € Xp x My, to (4.11) satisfying the stability bound (4.14).

Proof. We shall make use of Brouwer’s fixed-point theorem in the following form:
Let K # @ be a nonempty compact convez subset of a finite-dimensional normed space,
and let L : KK — K be a continuous mapping. Then L has at least one fized point in
K. Let us then start by defining the following finite-dimensional set, where C, is the
constant from (4.14):

K1 = {wn € Xyt |wnlli 7, < Cullynalle}-

Note that Iy is convex and compact. Next we define the mapping T' : K1 — Kq,
wy, — T(wp) = uyp, where uy, is the first component of the solution of the following
linearized version of problem (4.11):

Find (up,y;,) € X5 x My, such that for all (v,s) € X x My,
(4.16) ah(yh;uh,v)—i-ch(wh;uh,v) —d(y,,v) =0,
ay(yh,m 8) + cy(wp; Yh,0> 8) = *ay(yh,lv 8) — cy(wn; Yu,1s s).

Clearly, we have the equivalence
T(up) =up <= (up,y;) € X, x My, satisfies (4.11)
and, owing to Lemma 4.2, we also get
T(up) =up <= (Up,Yp,pn) € Vi x My, x Q) satisfies (4.1).

In order to prove that the discrete fixed-point operator T is well-defined, we define
the following sets, where C,, and C,, are the constants from (4.14):

K = {(wn, ¢3) € Xn x My : |wnllr 7, < Cullypallie
Ko = {p) € My :

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/06/19 to 152.74.35.9. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1330 R. BUERGER, P. E. MENDEZ, AND R. RUIZ-BAIER

and introduce the discrete operator R : K — K1, (wp, ¢;,) — R((wh,¢;)) = un,
where uy, is the unique solution to the problem

(4.17) find u;, € X, such that for all v € Xy,
. ah(‘Ph§ Uh,’U) + Ch('th;'U,h,’U) - d(¢h7v) = 07

and similarly define the discrete map S : K1 — Ko, wy — S(wp) = y;,, where
y;, € My, is the unique solution of the problem

find y,, € My, such that for all s € My, ,

(4.18) ay(yh,Oa s) + Cy('wh;yh,m s) = _ay<yh,17 s) — Cy(wh§yh,1)-

Clearly, T can be rewritten as T'(wp) = R(wp, S(wy)), so to prove its well-definite-
ness, it suffices to show that R and S are well-defined. We begin with operator R.
Since for any wj, € X, and ¢, € [H'(2)]? the bilinear form a”(¢p;-,-) + " (wp, -, -)
is Vp-elliptic (thanks to (4.7) and (4.8)), existence and uniqueness follow from the
Lax—Milgram lemma. Moreover, selecting v = wuy, in (4.17), we can appeal to the
coercivity of a”(-;-,-), the positivity of ¢”(-;-,-) (4.8), condition (4.13), the bound for
d(-,-) stated in (4.4a), and the bounds within the definition of K to deduce that

Cr
unllf 7, < TH‘Ph”LQ”uhHLﬁ,V

aa+C

unll,7 < Hyh1H1Q<<26%

which implies that u, € ICy.

Analogously, for S we note that thanks to (2.7b) and (4.9), the bilinear form
ay () +c(wp, -, ) is My, g-elliptic, hence, for a fixed discrete lifting Y1, the homo-
geneous counterpart to the linear problem (4.18) has a unique solution. Proceeding
as done above for (4.16), we use once more the coercivity of ay(-,-) (2.4b), (4.9),
condition (4.13), the bound (4.4c) for ¢y(-;-,-), and the definition of &y to find that

Hyh1||[L5(Q 12

Hyh,o ”%Q

a+C

3(Q)] 22CF

C
lynolue < Z=llynalho

fg + Co
< 2= yp 1l 0
Qg

We then employ the triangle inequality to obtain

aa—i—C
&

Lo+ ynalie <C

[ynlhe <2

hence establishing that y,;, € Ks.

In order to apply Brouwer’s theorem, it remains to show that R and S are
continuous operators. Let us assume we are given (w,¢) € K and a sequence
{(wy, ;) }en C K such that |w; — w|17;, = 0 and |¢; — ¢|l1,0 = 0 as | — oc.
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From the definition of R (cf. (4.17)) the following relations can be derived:

a (3w, v) + " (wy;up,v) — d(g;,v) =0,
a"(@;u,v) + (w;u,v) — d(p,v) =0 forallve X,.
Subtracting these two systems from each other and rearranging terms yields
a (g u —up,v) + (wu — wp,v) = — (@ u,v) + d (@ u,v) — H(w;u, v)
+ " (wi;u,v) + d(y,v) — d(ep,v)
for all v € X . We can take in particular v = u — u;, and exploit the coercivity of

a"(-;-,-), the fact that ¢"(-,u — u;,u — u;) > 0, the boundedness of c"(-;-,-) (4.6) in
combination with the bounds for d(-,-), as well as property (4.5), to eventually get

1 -
| — w17 < g(CLip7V||90 —@ille, lullwre (7

a
+Collw —willy 7 |ulh 7 +3Flle — i)
<C(lle -l 17, + e = @illie)

u

ullwroo () + [lw — w7,

and, hence, ||[u —w|j1,7;, — 0 asl — oo.
Next we consider the definition of S (4.18) and again we consider the relations

ay(y;, 8) + cy(wisy;,s) =0, ay(y,s) +cy(w;y,s) =0 forall s € My .
Subtracting the second system from the first leads to
ay(Y, — Y, 8) + cy(wiy —y;, 8) = —cy(w;y, 8) — cy(wis y, 9).

Now we take s = y —y; € My o and immediately note that ¢, (w;;y —y;,,y—1y,;) =0,
0 (4.9). Using the coercivity of ay(-;-,-) in (2.4b) together with the boundedness of
Ccy(+;+,-), we have

Cy
Lo < = lw—will 7z lyllizsopely - v

ly — v 1,9

thus |ly — y[l1,0 < Cllw — w;

177'h||yH[L3(Q)]2 and so ||y —y;llio > 0asl—o0. 0O

Note that unlike conforming discretizations, one cannot directly establish a dis-
crete version of Theorem 3.2. In fact we were not able to control the augmented norm
[Ill1,, in a way reciprocal to that used to prove that theorem. However, even when
uniqueness of the discrete counterpart remains an open problem, our nonexhaustive
selection of numerical examples did not present any difficulties in this regard.

4.4. A priori error analysis. Let us denote by Z;, : [C(2)]? — [M,]? the
classical nodal interpolation operator with respect to a unisolvent set of Lagrangian
interpolation nodes associated with the conforming space My, and by Zr the restric-
tion of Z;, to the boundary nodes. By HEDM u we denote the BDM projection of wu,
and IIj, p is the L2-projection of p onto Qy,. Under adequate regularity assumptions,
the following approximation properties hold (see [12, 28]):

[ — TP w2, < C(VohP 4 /uah®)|ulles 0
Iy = Znyllie < Ch[ylesre,  Ip—apllog < Ch¥|p]

(4.19)

Q-

The following preliminary trace result can be proven as in [37, Lemma 4.3].
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LEMMA 44. Assume that y? € [O(T)}* and '!JE = TIryP. Then there is a lifting
Yn1 € M, such that yh,1|F = ylf? and

(4.20) Hyh,1||1,ﬂ < Clift||y]f?||1/2,r,

where the constant Clyg > 0 is independent of the mesh size.

Remark 2. If one assumes that C’depC’embChftHyE“l/z,r < 1/2 with Crip, Cemb,
and Cqep defined by (4.20), (4.2), and (4.13), respectively, then, by Theorem 3.1,
there exists a solution (un,y;) to (3.1) with y,, =y, o + y, 1 satisfying the stability
bounds

(4.21) lunlli g, < CuClieellyp 120 and |y, llz < CyCusllyp 2.0

If we assume additional regularity of the exact solution y € [H?()]?, then [[y}|l1/2.r
is bounded independently of h (cf. [37, Lemma 4.7 and Remarks 4.8 and 4.9]).

THEOREM 4.2. Let us consider liftings satisfying (4.12), and let us assume the
data are sufficiently small (4.13). Let also (u,p,y), (un,pn,y;) be the solutions of
(2.3) and (4.1), respectively. Assume the condition

(4.22) max{ || w10 () [Yll[zoo ()25 7F} < min(M, M)

with M sufficiently small as specified in (3.6), and M is bounded by the data of the
problem in a way that will be made explicit in the proof. Furthermore, suppose that
fork=1,uecC'(QNH*(Q)NX,pc H(Q), and y € [L=(Q)]> N [H?(Q)]?, and
that for k > 2 there holds w € H* ™ (Q)N X, p € H¥(Q), and y € [H*1(Q)]?. Then
there exist constants C > 0 independent of the mesh size such that

(4.23) lw = wnll2,7, + ly =y
(4.24) Ip = pn

Lo < ChF (Jullesro + [Yllkee),
0.0 < Ch¥(|lp|

ko T ko + [Yllke0)-

Proof. An application of integration by parts together with the assumed velocity
regularity readily implies that the exact solution (u,p,y) satisfies

(425)  a"(giwovn) + ¢ (wsw,vp) — bvg,p) — dy,va) =0 for all vy € V3,

(see, for example, [28, Lemma 3.1]). We then write a discrete analogue of (4.25) and
subtract the result, leading to the following Galerkin orthogonality:

ah(y; u,vp) — ah(yh; Up, V) + ch(u; u,vp) — ch(uh; Up, Vp)

(4.26)
— b(vn,p —pn) — d(y — yp,vn) = 0.

In addition, it is not difficult to verify that
(427) b(u_uthh) = 07 ay(y _y}mcph) +Cy(u7ya<Ph) - cy(uhayhasoh) =0

for all (gn, ¢p) € Qn X Mp . Let us define the errors

ew = (u — TIEPM ) 4 (TIBPM 4y — wy,) = &y + éu,
ep = (p—np)+ (Inp —pr) = ép + &,
€y = (y*Ihy)+(Ihy*yh) :éy+éya
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so after testing (4.26) against v, = &, and rearranging terms we end up with

ah(yh, Cu, €u) + ch(uh, bu,Cn) =Io+ I + Iy, where
Iy = d(y,eu) — d(Yp, €u),
(428) I = [a"(yp, u, @) — a"(Tn g5 u, 84))]
+[a" (T ysu, ) — a" (g4, 80)] — a"(yy; u, €u),
Iy := ["(up;u, éy) — MIAEPM usu, )]
+ [MIIBPM ;&) — (s, E4)] — ¢ (Un; éu, E).
The rest of the proof will be devoted to finding appropriate bounds for these
terms. Starting with Iy, we combine (2.2) and the triangular inequality to get

In < 9plly — ynllieléullr < vr(léyline + léylie)léull,z -
Next, from (4.5), the continuity of a”, and the small data assumption in (4.22) we get

I < Cupn M (leylelléullm + lleylielléwlr) + Calléulr 1€l

Moreover, from (4.6), (4.6), (2.9), (4.21), and again assumption (4.22), we obtain

I < Cylleall? 7 lullie + Colléwllm llwll g leullz + Collunllmlléwls s 1wl
< CoCooM (||Eullf 7, + lleulli, T llEull7) + CoCuClitellyr 1 2rlléwll i 1Eull, 7 -
Inserting the bounds on Iy, I1, and I into (4.28), and also using the coercivity

of the left-hand side, thanks to (4.7)—(4.8) and applying Young’s inequality we arrive
at

aalleull? 7, < (14 CLip)Meyllie + (Ca + ColCullyi a2y el m) 1€l

-1+ Cys - 14
(429) + (M( +(/;L1p711 +Cvcm>>||éu| +C;L1p711

Lt Mlley |3 7

We handle (4.27) in a similar way and take ¢, = €, as the test function. This leads
to

ay(éy7 éy) + Cy(yh§yh7 éy) = _ay(é'yu éy) - Cy(éu;ya éy)

—cy(Cu; Y, Ey) — cy(Un; €y, Ey).

In addition, on the left-hand side we use the coercivity of a,, properties (2.8), (4.4b),
(4.21), the embedding (2.9), as well as assumption (4.22) to get

dalléyll? o < Calléyllnalléyllie + C1C M ([l 7 lleylla + [léw

1.7 18y [11.0)

+ C1C, Chige || YR l1/2.rlléyll1.alléyllo,

and after applying Young’s inequality and regrouping terms, we have

balléylli o < ((Ca+ CrlCuClsllyh o) lléyll1e + CrOxMl|éull1,7:. ) |Ey 1.0
1 -
2

(4.30) + 500 M ([[Eallf 7, + Iyl 0)-
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Adding (4.29) and (4.30) and defining C := (1 + CLipy, + C1Cx)/2 we obtain

(da - M(é + évcm)) ”éu”?,Th + (OA‘a - MC’)Hé'y”%,Q

< C(lleyllie + llewll,7) (lewll, 7 + lléyllz)-

Hence, if we choose M such that M < min{d,/(C + CyCs),@q/C} (note that this
constant depends only on the data of the problem), then we readily obtain ||é,||1,7;, +
leylli.o < C(lléylli,a + ||éwll1,7;,). Using now the approximation properties in (4.19),
we straightforwardly get (4.23).

For the pressure estimate we consider the discrete inf-sup condition (4.10) as well
as (4.3¢). It follows that

1 b é 1 b 1 b 2
léplloe < = sup blon. &) <= sup MJFT sup Ao, )
B onevirior 1Ol 7 = B onevirioy IVnlli 7 B onevivior lvnlliT,
1 b(vp, e 1, .
(4.31) < sup bonep) | =llépllo,0-

E’L)hEVh\{O} th”LTh B

Now for any vy, € Vi, (4.26) implies the bound b(vy, e,) < Is + I4 + I5, where

Iy = |d(y,vn) — d(ys, vn)|,

Iy = |a"(y;u,vp) — a"(ypiw,v1)| + [0 (), €w, v1)

)

Is = |ch(u;u7vh) — ch(uh;umh)‘ + |ch(uh; eu,vh)|.

Hence we can use property (2.2) to deduce that I3 < vyplleyl|1,0llvnl1,7, - From (4.5),
(4.3a), and assumption (4.22), it then follows that

Iy < Cupwllegllellullw= @ llvalliz + Cllewlz.r lvnll 7,

< CripmvM|leyl1,0

[onlle 7. + Cllewllz, 7 [onll,7-
Now we use (4.6), (2.9), (4.21), and the bound in (4.6) to get

I5 S év||uh

17+ Collwllz, lewll, 7 lvnll 7

1.7 el lvn

< évaM‘leu

2.7 [0nll1, 75 + CoCuClieelYR || vz lewll2 7 1vnll,7 -

The estimates on I3, I, and I5 therefore yield
(4.32) b(vn, ep)] < Clleylle + lewllz,r ) vl

Hence (4.24) follows by replacing (4.32) in (4.31) and using the approximation prop-
erties (4.19). O
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Notice that, thanks to the divergence-free property of the discrete velocities, the
bound (4.23) confirms that the family of methods proposed here is pressure robust
(see also the discussion in [26]). This can be also observed numerically, for instance
in Table 3 where the magnitude of the pressure errors does not affect the magnitude
of the velocity errors.

5. Numerical tests. The following set of examples provides numerical confir-
mation of the convergence rates anticipated in Theorem 4.2. We further validate the
proposed method by comparing our produced results against benchmark solutions
found in the literature, and we present one test oriented to applications inherent to
doubly diffusive flows in porous media. The linearization of the system of equations
associated with the assembled form of (4.1) is carried out by Newton’s method, setting
a relative tolerance of 1E-8 on the residuals. In turn, the solution of the resulting lin-
ear systems present at each Newton step is conducted using the biconjugate gradient
stabilized Krylov solver (BiCGStab). In the implementation of the method, the nor-
mal component of the velocity is fixed in the form of an essential boundary condition,
whereas its tangential component is incorporated as a natural boundary condition
and imposed d la Nitsche (see, e.g., [24]). Moreover, the condition of zero mean value
for the pressure approximation is implemented using a real Lagrange multiplier. All
tests were implemented using the open-source finite element library FEniCS [4].

5.1. Example 1: Accuracy test. In our first computational test we examine
the convergence of the Galerkin method (4.1), taking as computational domain the
square © = (—1,1)%, and considering a sequence of uniformly refined meshes {75},
of mesh size h; = 27'\/2. We take a buoyancy term of the form F(y) = (T + N,.S)g,
where N, is the solutal to the thermal buoyancy ratio, and choose an exponential
form for the viscosity v(T) = vy exp(~T), g = (0,1)7, K~' = oI, D = 10001, ag =
\/o10*. Following the approach of manufactured solutions, we prescribe boundary
data and additional external forces and adequate source terms so that the closed-
form solutions to (1.1) are given by the smooth functions

u(z,y) = (sin(rz) cos(my), — cos(wz) sin(ry))
T(x,y) =0.5+0.5cos(zy), S(z,y)

T
,  p(z,y) = cos(mz) exp(y),
= 0.1+ 0.3 exp(zy).

Relative errors in their natural norms, along with the corresponding convergence
rates computed as

lullzis e =P =pulloo/lIplo,  er =T = Thllio/ITlh.0,

1,0, rate= log(e(_)/é(_))[log(h/ﬁ)]_1,

euw = [[u —upll17,/
es = IS — Sull1.a/llS]

where e, € denote errors generated on two consecutive meshes of sizes h and fL, re-
spectively, are listed in Table 1 for £ = 1,2, where the model constants are chosen
as stated above. We can observe that the total error is dominated by the pressure
approximation, and that the discrete velocities are divergence free. The tabulated
values also indicate an optimal O(h*) convergence, consistently with the theoretical
bounds stated in Theorem 4.2. We also conduct two additional series of accuracy
tests focusing on the cases where the viscosity and permeability coefficients scale dif-
ferently, changing from Stokes to Darcy regimes. These values are collected in Tables 2
and 3, respectively. Apart from an increase of the pressure error, we can see that the
experimental rates of convergence remain close to the optimal behavior.
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TABLE 1
Example 1 (accuracy test): Experimental errors and convergence rates for the approximate
solutions wy, pn, Th, and Sy, and the £°°-norm of the vector formed by the divergence of the
discrete velocity computed for each discretization. Values are displayed for the first and second
order schemes for a flow regime with vo = o = 1.

H k [ DoF [ ew rate ep rate er rate eg rate [[divup|eo.0 H

1 195 | 0.6798 - 1.5670 - 0.3498 - 0.2721 - 1.33E-15
707 |1 0.3779 0.847 1.1370 0.563 0.1975 0.824 0.1385 0.974 4.88E-15
2691 | 0.1873 1.012 0.6614 0.787 0.1019 0.954 0.0696 0.992 9.77E-15
10499 | 0.0923 1.021 0.3485 0.925 0.0513 0.988 0.0348 0.998 2.13E-14
41475 | 0.0459 1.007 0.1771 0.977 0.0257 0.997 0.0174 0.999 4.62E-14
2 523 | 0.3258 1.657 1.7741 1.243 0.1221 1.101 0.0338 1.767 9.03E-14
1971 | 0.0847 1.943 0.6826 1.378 0.0326 1.905 0.0089 1.928 2.23E-13
7651 | 0.0179 2.237 0.2159 1.661 0.0083 1.968 0.0023 1.979 4.82E-13
30147 | 0.0038 2.238 0.0587 1.877 0.0021 1.991 0.0006 1.994 9.96E-13
119683 | 0.0008 2.108 0.0151 1.964 0.0005 1.998 0.0001 1.998 2.01E-12

TABLE 2
Exzample 1 (accuracy test): Errors and convergence rates under a Stokes regime with vo =
10,0 = 0.

[k] DoF][ ew rate ep rate er rate eg rate [divupflo,0 |

1 195 | 2.1490 - 14.352 - 0.3498 - 0.2721 - 1.55E-15
707 | 1.2041 0.835 10.710 0.429 0.1975 0.824 0.1385 0.974 4.00E-15
2691 | 0.5958 1.015 6.3981 0.749 0.1019 0.954 0.0696 0.992 8.88E-15
10499 | 0.2925 1.026 3.4170 0.904 0.0513 0.988 0.0348 0.998 2.31E-14
41475 | 0.1453 1.010 1.7461 0.968 0.0257 0.997 0.0174 1.000 4.26E-14
2 523 | 1.0380 1.652 17.152 1.119 0.1221 1.101 0.0338 1.767 9.24E-14
19711 0.2688 1.949 6.7861 1.338 0.0326 1.905 0.0089 1.928 2.29E-13
7651 | 0.0568 2.241 2.1562 1.654 0.0083 1.968 0.0023 1.979 4.87E-13
30147 | 0.0121 2.239 0.5875 1.876 0.0021 1.991 0.0006 1.994 1.01E-12
119683 | 0.0028 2.108 0.1507 1.963 0.0005 1.998 0.0001 1.998 2.00E-12

TABLE 3
Ezample 1 (accuracy test): Errors and convergence rates for the approzimate solutions for a
Darcy regime, with vo = 1,0 = 10000.

H k [ DoF [ ey rate ep rate er rate es rate [[divup|oo.0 ”

1 195 | 5.3102 - 287.42 - 0.3498 - 0.2721 - 1.78E-15
707 | 1.6182 1.715 148.01 0.958 0.1975 0.825 0.1385 0.974 4.44E-15
2691 | 0.4303 1.911 72,992 1.021 0.1019 0.954 0.0696 0.993 1.07E-14
10499 | 0.1324 1.701 36.721 0.991 0.0514 0.988 0.0348 0.998 2.13E-14
41475 | 0.0516 1.359 18.472 0.992 0.0257 0.997 0.0174 1.000 4.26E-14
2 523 | 1.9250 2.483 270.41 2.175 0.1221 1.101 0.0338 1.767 9.49E-14
1971 | 0.5142 1.905 51.930 2.38 0.0326 1.905 0.0089 1.928 2.27E-13
7651 | 0.1364 1.914 11.504 2.175 0.0083 1.968 0.0023 1.979 4.94E-13
30147 | 0.0389 1.808 3.1610 1.863 0.0021 1.991 0.0006 1.994 9.99E-13
119683 | 0.0104 1.900 1.0190 1.633 0.0005 1.998 0.0001 1.998 2.03E-12

5.2. Example 2: Soret and Dufour effects in a porous cavity. Using the
following dimensionless variables, x = z*/H,y = y*/X,u = uH /v,p = p*H/pv, T =
(T*—To)/(T1 —Tp), and C = (C* —¢p)/(Cy — Cp) (where H is the cavity height and v
the kinematic viscosity of the fluid), we can write the equations describing transport
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TABLE 4
Example 2 (porous cavity): (left) Sketched domain with boundary conditions; (right) comparison
of average Nusselt and Sherwood numbers for N = 0, Le = 10 with thermal Rayleigh numbers on
Darcy’s regime.

u=0
adiabatic and impermeable
Ra | 100 200 400 1000 2000
w=0 w=0 Nu | Present study 3.10 4.97 7.84 13.72 20.31
B g} - Ref. [14] 3.15 5.02 7.83 14.01 20.00
T,Cy To, Co

Ref. [22] 3.11 4.96 7.77 13.47 19.90
Sh | Present study 13.58 20.73 30.91 49.42 66.80
Ref. [14] 13.54 20.11 27.96 48.01 71.25
Ref. [22] 13.25 19.86 28.41 48.32 69.29

adiabatic and impermeable

phenomena in a square porous cavity with thermal and concentration diffusion in
the form (1.1). We set K = Dal, v(T) = 1, and F(y) = (Grp T + Gre C)g,
where g = (0, —1)" points in the direction of gravity, y = (T, C)", and the diffusion
coefficients are given by

__ |Rk/Pr Du
D_{ Sr 1/80]'

Here, Ry is the thermal conductivity ratio, Grp, Gre are the thermal and solutal
Grashof numbers respectively, Da = x/H? is the Darcy number, Pr = v/« the Prandtl
number, Sc = v/ D¢ the Schmidt number, and the ratio Le = Sc/Pr the Lewis number.

For a preliminary validation we conduct a series of computational tests using a
buoyancy ratio N := Gre/Gry = 0. The computational domain is the unit square
Q := (0,1)2%, considering no-slip velocity conditions on I'. Temperature and concen-
tration are kept at Ty, Coy and T7, C7 at the right and left walls, respectively, where
Ty < Ty and Cy < C7. Horizontal walls are adiabatic and impermeable, as depicted
on the left of Table 4. In this subsection we will use £k = 2 and a mesh with 20000
elements. We compute Nusselt and Sherwood numbers and compare these outputs
against well-known benchmark data from [14] and [22]. The average values of Nu and
Sh values on the left vertical wall are, respectively,

Lor Loc
Nu = / —-— dy, Sh= / —_—
0 8$ =0 0 al'

For the values R, = 1.0, Da = 10"7, Le = 10, Sr = 0, Du = 0, and Pr = 10, results for
different thermal Rayleigh values are computed and summarized on the right panel of
Table 4 along with the results from [14, 22]. For Ra < 1000, the values of Nu and Sh
are within a relative error of 3%, for the last value Ra = 2000, within 6%.

Keeping the remaining parameters fixed, we now set Ra = 100, Le = 0.8, and
N = 1. The effect of Dufour parameter on the flow, thermal, and concentration
fields are portrayed in Figure 1 for Du € {0.1,1}. The velocity field and isotherms
are in qualitative agreement with those in [10, Figure 2]. In Figure 2 we repeat

dy.

x=0
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Fic. 1. Ezample 2 (porous cavity): (left) Velocity field, (middle) isotherms, and (right) con-
centration contours for (top) Du = 0.1, (bottorn) Du = 1.
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Fic. 2. Ezample 2 (porous cavity): (left) Velocity field, (middle) isotherms, and (right) con-
centration contours for (top) Sr = 0.1, (bottom) Sr = 1.
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Fic. 3. Ezample 2 (porous cavity): (left) Velocity field, (middle) isotherms, and (right) con-
centration contours for (top) N = —5, (bottom) N = 5.

the plots keeping Du = 0 and with Soret values of Sr € {0.1,1}. As expected, the
result is almost symmetric with an exchange of behavior between temperature and
concentration. Moreover, in both cases an increment of Sr or Du drives an increase of
velocity in the recirculation patterns. Finally, in Figure 3 we fix Du = 0.5, Sr = 0.5
and test the effect of buoyancy by setting N = —5 and, alternatively, N = 5. We can
see the reversion of flow direction caused by the difference in buoyancy of the species.
Note that in the last case D is not positive definite and solvability of the coupled
problem cannot be guaranteed. Nevertheless, convergence of the Newton iterations
was observed for a broad range of parameters (Sr,Pr € [1072,10%], N € [1,10],
Da € [1077,1], Ra € [100,2000]). The convergence of Newton iterates is lost only
when the Soret number Sr takes values greater than 5 (and provided that N > 0 and
Du = 0).

5.3. Example 3: Bioconvection of oxytactic bacteria. With the notation
y = (c1,c2)T the oxytactic bacteria bioconvection phenomenon (see [30, 31]) can be
modeled by (1.1), with diffusion, reaction, and remaining concentration-dependent
coefficients given by

o =[5y 5"

= (") rie) -

oty =srien (O)). Fw)=ne

1+ 2~ % .
(ca —c3)? + €2

N —

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/06/19 to 152.74.35.9. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1340 R. BUERGER, P. E. MENDEZ, AND R. RUIZ-BAIER

Ch

-9.997e-01

1 .73854
.47737
.21621

4.496e-02 000e-01

z z

v v
L x o

Cip

.9976-01

0.73854
47737
21621

4.496e-02 N a0

Z z

r_x A3

CLh

9.997¢-01

073854

0.47737
21621
4.4960-02

2 z

v v
X X

Fic. 4. Ezxample 3 (bioconvection): Patterns generated by the bacterial chemotazis towards
ozygen concentration. Snapshots of the obtained solutions at times (top) t = 0.1, (middle) t = 0.3,
and (bottom) t = 0.5.

We consider a rectangular prism with square base [0,1] x [0,1] and height 0.75,
discretized into a tetrahedral mesh of 48000 cells. Fixing the parameters § = 0.1,
D; =0.01, Dy = 0.2, v = 5000, o = 0.25, Sc = 1072, and p = 2, we use a pseudo-
time-step, using At = 0.1 to compute intermediate state solutions, starting from a
distribution of bacteria packed in a ball of radius 0.2 and placed near the top of
the vessel. Snapshots (at advanced time) of the numerical solution are displayed in
Figures 4 and 5. We observe how the bacteria propagate downwards, producing re-
circulating zones as indicated by the velocity field. The first snapshot shows that
the oxygen concentration has more variation on the top layers due to the competi-
tion between consumption of the high bacterial concentration, recirculating flow, and
diffusion. Later on, oxygen concentration follows the flow direction, showing higher
values downwards in the center of the recirculating zones. The pressure distributes
from low on the top, to high on the bottom, also decreasing its magnitude as the
bacteria reach the vessel’s bottom.
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Fic. 5. Ezample 3 (bioconvection): Patterns generated by the bacterial chemotazis towards

ozygen concentration. Snapshots of the obtained solutions at times (top) t = 0.1, (middle) t = 0.3,
and (bottom) t = 0.5.

REFERENCES

A. AcouzaL AND K. ALLALI, Numerical analysis of reaction front propagation model under
Boussinesq approzimation, Math. Methods Appl. Sci., 26 (2003), pp. 1529-1572.

K. ALLALIL, A priori and a posteriori error estimates for Boussinesq equations, Int. J. Numer.
Anal. Model., 2 (2005), pp. 179-196.

A. ALLENDES, G. BARRENECHEA, AND C. NARANJO, A divergence-free low-order stabilized finite
element method for a generalized steady state Boussinesq problem, Comput. Methods Appl.
Mech. Engrg., 340 (2018), pp. 90-120.

M.S. ALN&S, J. BLECHTA, J. HAKE, A. JOHANSSON, B. KEHLET, A. LoGG, C. RICHARDSON,
J. RiNG, M.E. ROGNES, AND G.N. WELLS, The FEniCS project version 1.5, Arch. Numer.
Softw., 3 (2015), pp. 9-23.

M. ALvAREZ, G.N. GATICA, B. GOMEZ-VARGAS, AND R. RU1Z-BAIER, New mized finite element
methods for natural convection with phase-change in porous media, J. Sci. Comput., 80
(2019), pp. 141-174.

M. ALVAREZ, G.N. GATICA, AND R. RUIZ-BAIER, An augmented mized-primal finite element
method for a coupled flow-transport problem, ESAIM Math. Model. Numer. Anal., 49
(2015), pp. 1399-1427.

M. ALVAREZ, G.N. GATICA, AND R. RUIZ-BAIER, A mized-primal finite element approrimation
of a sedimentation-consolidation system, Math. Models Methods Appl. Sci., 26 (2016),
pp. 867-900.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/06/19 to 152.74.35.9. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1342 R. BUERGER, P. E. MENDEZ, AND R. RUIZ-BAIER

[8] V. ANAYA, M. BENDAHMANE, D. MORA, AND R. RU1Z-BAIER, On a primal-mized vorticity-based
formulation for reaction-diffusion-Brinkman systems, Netw. Heterog. Media, 13 (2018),
pp. 69-94.
[9] D.N. ArNoLD, F. BrREzz1, B. COCKBURN, AND L.D. MARINI, Unified analysis of discontinuous

Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), pp. 1749-1779.

[10] C.S. BALLAa AND K. NAIKOTI, Soret and Dufour effects on free convective heat and solute
transfer in fluid saturated inclined porous cavity, Engrg. Sci. Technol., 18 (2015), pp. 543~
554.

[11] F. Brezzl, J. DoucLAs, AND L.D. MARINI, Two families of mized finite elements for second
order elliptic problems, Numer. Math., 47 (1985), pp. 217-235.

[12] F. BrEZzl AND M. FORTIN, Mized and Hybrid Finite Element Methods, Springer Ser. Comput.
Math. 15, Springer, New York, 1991.

[13] R. BURGER, S.K. KENETTINKARA, R. RuIzZ-BAIER, AND H. TORRES, Coupling of discontinuous
Galerkin schemes for viscous flow in porous media with adsorption, STAM J. Sci. Comput.,
40 (2018), pp. B637-B662.

[14] A. CiBIK AND S. KAYA, Finite element analysis of a projection-based stabilization method for
the Darcy-Brinkman equations in double-diffusive convection, Appl. Numer. Math., 64
(2013), pp. 35-49.

[15] B. COCKBURN, G. KANSCHAT, AND D. SCHOTZAU, A locally conservative LDG method for the
incompressible Navier-Stokes equations, Math. Comput., 74 (2005), pp. 1067-1095.

[16] E. COLMENARES, G.N. GATICA, AND R. OYARZUA, Fized point strategies for mized variational
formulations of the stationary Boussinesq problem, C. R. Math. Acad. Sci. Paris Ser. I,
354 (2016), pp. 57-62.

[17] X. Cul, The regularity criterion for weak solutions to the m-dimensional Boussinesq system,
Bound. Value Probl., 2017 (2017), 44.

[18] R. DE AGUIAR, B. CLIMENT-EZQUERRA, M.A. ROJAS-MEDAR, AND M.D. ROJAS-MEDAR, On the
convergence of Galerkin spectral methods for a bioconvective flow, J. Math. Fluid Mech.,
19 (2017), pp. 91-104.

[19] D.A. D1 PIETRO AND A. ERN, Mathematical Aspects of Discontinuous Galerkin Methods, Series
Math. Appl. (Berlin) 69, Springer, Berlin, 2011.

[20] V. GIRAULT AND P.A. RAVIART, Finite Element Methods for Navier-Stokes Equations. Theory
and Algorithms, Springer, Berlin, 1986.

[21] V. GIRAULT, B. RIVIERE, AND M.F. WHEELER, A discontinuous Galerkin method with nonover-
lapping domain decomposition for the Stokes and Navier-Stokes problems, Math. Comput.,
74 (2005), pp. 53-84.

[22] B. GOYEAU, J.P. SONGBE, AND D. GOBIN, Numerical study of double-diffusive natural convec-
tion in a porous cavity using the Darcy-Brinkman formulation, Int. J. Heat Mass Transf.,
39 (1996), pp. 1363-1378.

[23] J. Guo AND P.N. KALONI, Double diffusive convection in a porous medium, nonlinear stability
and the Brinkman effect, Stud. Appl. Math., 94 (1995), pp. 341-358.

[24] P. HANSBO AND M.G. LARSON, Discontinuous Galerkin methods for incompressible and nearly
incompressible elasticity by Nitsche’s method, Comput. Methods Appl. Mech. Engrg., 191
(2002), pp. 1895-1908.

[25] J.C. HEINRICH, A finite element model for double diffusion convection. Internat. J. Numer.
Methods Engrg., 20 (1984), pp. 447-464.

[26] V. JouN, A. LINKE, C. MERDON, M. NEILAN, AND L.G. REBHOLZ, On the divergence constraint
in mized finite element methods for incompressible flows. SIAM Rev., 59 (2017), pp. 492—
544.

[27] O.A. KARAKASHIAN AND W.N. JUREIDINI, A nonconforming finite element method for the
stationary Navier—Stokes equations, SIAM J. Numer. Anal., 35 (1998), pp. 93-120.

(28] J. KONNO AND R. STENBERG, H(div)-conforming finite elements for the Brinkman problem,
Math. Models Methods Appl. Sci., 21 (2011), pp. 2227-2248.

[29] I. Kukavica, F. WANG, AND M. ZIANE, Persistence of regularity for solutions of the Boussinesq
equations in Sobolev spaces, Adv. Differential Equations, 21 (2016), pp. 85-108.

[30] H.G. LEe AND J. KM, Numerical investigation of falling bacterial plumes caused by biocon-
vection in a three-dimensional chamber, Eur. J. Mech. B Fluids, 52 (2015), pp. 120-130.

[31] P. LENARDA, M. Pacal, AND R. RuIz-BAIER, Partitioned coupling of advection-diffusion-
reaction systems and Brinkman flows, J. Comput. Phys., 344 (2017), pp. 281-302.

[32] C. LN AND L.E. PAYNE, Continuous dependence on the Soret coefficient for double diffusive
convection in Darcy flow, J. Math. Anal. Appl., 342 (2008), pp. 311-325.

[33] S.A. LorcA AND J.L. BOLDRINI, Stationary solutions for generalized Boussinesq models, J.
Differential Equations, 124 (1996), pp. 389-406.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/06/19 to 152.74.35.9. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

34]

(35]

(36]

37]

(38]

39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

H(div) METHODS FOR DOUBLE-DIFFUSION EQUATIONS 1343

S.A. LorcA AND J.L. BOLDRINI, The initial value problem for a generalized Boussinesq model,
Nonlinear Anal., 36 (1999), pp. 457-480.

E. MAGYARI AND A. POSTELNICU, Double-diffusive natural convection flows with thermosolutal
symmetry in porous media in the presence of Soret—Dufour effects, Transp. Porous Media,
88 (2011), pp. 149-167.

P. NiTHIARASU, K.N. SEETHARAMU, AND T. SUNDARARAJAN, Double-diffusive natural convec-
tion in an enclosure filled with fluid-saturated porous medium: A generalized non-Darcy
approach, Numer. Heat Transf. Part A, 30 (1996), pp. 413-426.

R. OvarzUA, T. QIN, AND D. SCHOTZAU, An exactly divergence-free finite element method for
a generalized Boussinesq problem, IMA J. Numer. Anal., 34 (2014), pp. 1104-1135.

R. OYARzUA AND M. SERON, A Divergence-Conforming DG-Mized Finite Element Method
for the Stationary Boussinesq Problem, Technical report 2018-21, CI2MA, Universidad de
Concepcién, Concepcidén, Chile, http://www.ci2ma.udec.cl (2018).

P.R. PaTiL AND C.P. PARVATHY, Thermohaline convection with cross-diffusion in an
anisotropic porous medium, Proc. Indian Acad. Sci. Math. Sci., 99 (1989), pp. 93-101.
J.N. SHADID, R.S. TUMINARO, AND H.F. WALKER, An inexact Newton method for fully coupled
solution of the Navier-Stokes equations with heat and mass transport, J. Comput. Phys.,

137 (1997), pp. 155-185.

Q. SHAO, M. Fans, A. YOUNES, A. MAKRADI, AND T. MARA, A new benchmark reference
solution for double-diffusive convection in a heterogeneous porous medium, Numer. Heat
Transf. Part B, 70 (2016), pp. 373-392.

L.Q. TanG AND T.T.H. TSANG, A least-squares finite element method for doubly-diffusive
convection, Int. J. Comput. Fluid Dyn., 3 (1994), pp. 1-17.

R. TEMAM, Navier-Stokes equations. Theory and Numerical Analysis, AMS-Chelsea Ser., Prov-
idence, RI, 2001.

J. WOODFIELD, M. ALVAREZ, B. GOMEZ-VARGAS, AND R. RuUIZ-BAIER, Stability and finite
element approximation of phase change models for natural convection in porous media, J.
Comput. Appl. Math., 360 (2019), pp. 117-137.

N. ZABARAS AND D. SAMANTA, A stabilized volume-averaging finite element method for flow
in porous media and binary alloy solidification processes, Internat. J. Numer. Methods
Engrg., 60 (2004), pp. 1103-1138.

Y.J. ZHUANG, H.Z. YU, AND Q.Y. ZHU, A thermal non-equilibrium model for 8D double dif-
fustve convection of power-law fluids with chemical reaction in the porous medium, Int. J.
Heat Mass Transf., 115 (2017), pp. 670-694.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


http://www.ci2ma.udec.cl

	Introduction
	Scope
	Related work
	Outline of the paper

	The model problem
	Preliminaries
	Assumptions and weak form of the governing equations
	Stability properties

	Well-posedness analysis of the continuous problem
	Finite element discretization
	Formulation of the bold0mu mumu HHsubsectionHHHH(div)-conforming method
	Discrete stability properties
	Existence of discrete solutions
	A priori error analysis

	Numerical tests
	Example 1: Accuracy test
	Example 2: Soret and Dufour effects in a porous cavity
	Example 3: Bioconvection of oxytactic bacteria

	References

