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ABSTRACT: A spatially two-dimensional epidemic model is formulated by a reaction-diffusion system. 
The spatial pattern formation is driven by a cross-diffusion corresponding to a non-diagonal, upper-
triangular diffusion matrix. Whereas the reaction terms describe the local dynamics of susceptible and 
infected species, the diffusion terms account for the spatial distribution dynamics. For both self-diffusion 
and cross-diffusion nonlinear constitutive assumptions are suggested. To simulate the pattern forma-
tion two finite volume formulations are proposed, which employ a conservative and a non-conservative 
discretization, respectively. Numerical examples illustrate the impact of the cross-diffusion on the pattern 
formation.

have been proposed to study pattern formation 
induced by cross-diffusion (Ni 2004, Bendahmane 
et al. 2009b, Tian et al. 2010). In addition to a 
fundamental existence proof for general reaction-
diffusion systems (Crandall et al. 1987), there are 
several approaches to analyze reaction-diffusion 
equations with one single ”cross-diffusion” that 
lead to a system with upper triangular diffusion 
matrix (Badraoui 2006, Daddiouaissa 2008). The 
structure of an upper triangular diffusion matrix 
has also been utilized in the existence analysis for 
systems of convection-diffusion equations with 
both Dirich-let and Neumann boundary condi-
tions (see e.g. Frid & Shelukhin 2004, Frid & She-
lukhin 2005, Berres et al. 2006). Besides numerous 
contributions to the development of numerical 
methods to solve reaction-diffusion equations in 
related contexts (Wong 2008, Phongthanapanich & 
Dechaumphai 2009), convergence proofs of asso-
ciated finite volume schemes (Bendahmane & 
Sepúlveda 2009, Andreianov et al. 2011) and 
finite element formulations (Galiano et al. 2003, 
Barrett & Blowey 2004) have been provided.

This contribution is a condensed version of 
Berres & Ruiz-Baier 2011. The goal is, on the 
one hand, to generate pattern formation in an 
epidemic model by a cross-diffusion term, and, 
on the other hand, to prevent blow-up by a non-
linear limitation of the cross-diffusion. These 
assumptions are designed to qualitatively reflect 
psychological behavior. The cross-diffusion term 
has the interpretation that the susceptible popula-
tion moves away from increasing gradients of the 

1 INTRODUCTION

The knowledge of spreading dynamics of infec-
tious diseases helps to design prevention meas-
ures. A generic model category for the quantitative 
description of the epidemic evolution dynamics by 
an ordinary differential equation are the so-called 
SIR models, which classify a population into ‘sus-
ceptible’ (S), ‘infected’ (I) and ‘recovered’ (R) sub-
groups and balance the changes between these. 
One very early and simple prototype of a SIR-
model is due to Kermack and McKendrick 1927. 
It describes the population evolution by the system 
of ordinary differential equations

dS
dt

SI dI
dt

SI dR
dt

I= − −SIα αSIS SS= SS β βII dR
dt

II=,
d

SIαS βI ,

where α > 0 is the infection rate and β > 0 the recovery 
rate. There are several suggestions for improving 
the specification of these ODE-dynamics (Kim 
et al. 2010, Li et al. 2010), and structural modifi-
cations like SIR-models in networks (Liu & Zhang 
2010). A key issue in epidemic modeling is the 
formation of spatial patterns. Based on a general 
setting in the two-dimensional reaction-diffusion 
framework for epidemic processes (Webb 1981), 
there are several suggestions for the combination 
of the system of ordinary differential equations of 
the SIR-model with a spatially two-dimensional 
diffusion equation of the involved variables (He & 
Stone 2003, Milner & Zhao 2008, Li & Zou 2009, 
Sun et al. 2009). Moreover, several contributions 
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infected population. In addition, it is assumed that 
the cross-diffusion effect depends on the local pop-
ulation density. For the nonlinear cross-diffusion it 
is assumed that there exists carelessness at a small 
and fatalism at a high total population number. 
At carelessness and fatalism the susceptible popu-
lation decreases its tendency to avoid agents of the 
infected population. Such an avoidance is most 
effective for intermediate (neither too small nor 
too large) population numbers.

2 CONCEPTUAL MODEL

The two-dimensional reaction-diffusion system 
describing spatial epidemic dynamics with cross 
diffusion is written as

u f
v g

t

t

( )u v + ∇⋅ ( )a u( )u ∇ + ∇ ( )c v( )u v ∇
( )u v + ∇⋅ ( )b v( )v ∇

)v + ∇ ( )a u( )u ∇ ∇ (c (u ,
,)v + ∇ ( )b v( )v ∇  (1)

in ΩT = Ω × (0,T), where u and v denote the popula-
tions of susceptible and infected persons, respec-
tively. No external input is imposed, therefore on 
the physical domain boundary δ Ω the Neumann 
boundary condition is assumed to hold:

(a(u)∇u + c(u,v)∇v) ⋅ n = 0, (b(v)∇u) ⋅ n = 0,

where n is the outer normal vector to the physical 
domain boundary. In the system (1), an additional 
equation for the recuperated population is omitted 
because the model does not consider their feed-
back on the susceptible or infected population. 
With the notation

u
u
v

f
f
g

a
a c

b

= ⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

( )u = ( )u v
( )u v

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

( )u = ( )u ( )u v
( )v

⎛
⎝⎜
⎛⎛
⎝⎝

, ,

0
⎞⎞
⎠⎟
⎞⎞⎞⎞
⎠⎠

,

the system (1) can be written in compact form as

d
dt

u f ( )u + ∇ ( )a u( )u ∇ .

The model enforeces phase separation since the 
susceptible species avoid the infected population 
by a cross-diffusion term ∇ ⋅ (c(u,v)∇v). The cross-
diffusion term directs the flow in the opposite 
direction of the gradient ∇v. Whenever there is 
an increase of the amount of the infected popula-
tion then the susceptible aents move away from the 
direction of the increasing gradient.

The reaction terms are considered to be given by 
the following specifications (see e.g. Su et al. 2009)

f uv
u v

g uv
u v

kv

ru ,

,kv

( )u,v ru ( )K/u −
+

( )u v,v =
+

−

β

β
 

(2)

where the model parameters are the carrying 
capacity of the susceptible species K, r is the intrin-
sic birth rate, β is the rate of disease transmission, 
and k represents the recovery rate of the infected 
species.

The equilibrium points are pairs (u,v) such that 
f(u,v) = 0 and g(u,v) = 0. For (2), the equilibrium 
points are (0,0) (trivial equilibrium), (K,0), which 
corresponds to the disease-free point, and (u*,v*), 
which corresponds to an endemic stationary state 
that is explicitly given by

K
r rk

,
K

.( )u v*, * ( )rr − ( )k+ ( )k⎛
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

K)kk+ (r − ((

In Figure 1, the phase portrait of the ODE sys-
tem associated to (1), (2). From now on, as model 
variants we will consider diffusion terms which 
are linear (Model 1) and nonlinear (Model 2). For 
better comparison, in Model 2 the same reaction 
kinetics (2) as for Model 1 are used.

For Model 1 the diffusion terms are given by the 
constants

a a b b c c( )u = ( )v ( )u v0 0b 0bb( )v 0,0bbb( )v ,c)v 0  (3)

which adopts the setting of Sun et al. 2009. In 
Model 2 we propose nonlinear model variants of 
the parametric functions. The self-diffusion terms 
are chosen as

a a u b b vm mb b v( )u = ( )vv =0 0u b b( )v = .v0bbb( )v  (4)
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Figure 1. Phase portrait for the ODE system associated 
to (1), (2). Three trajectories are displayed starting from 
the states A = (80,300), B = (200,50) and C = 300,200) and 
reaching the equilibrium point (u*, v*). The parameters 
correspond to those used in Example 1.
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By the assumption that m ∈ (−1,0), a degressive 
growth is described since

∂ ( ) < ∂ ( )u v( ) <a (( b( u v∂ 0) <b( ,( )v∂ u0∂ ( ) <v∂ b( .for all

The biological interpretation is that the ten-
dency to avoid crowds reduces with higher num-
bers as the population “gets used” to them. Using 
the notation of the Laplace operator,

∆ ( ) = ∇ ⋅ ( )( )∇ ∆ ( ) ∇ ( )( )∇A( ( B) ∆ ) = ∇ ⋅ ( )∇, ,( ) ∇ ( )( )∇B∆ ) ∇ ( )∇  (5)

we have

A a
m

u B b
m

vm mB v( )u =
+

( )vv( ) = +mvbbB+ ( )v0 1 00bbbb 1

1 1m
( )

+
,v, B ( )v

1
( )

 
(6)

where A(u) and B(v) are sub-linear functions. For 
m = 0 the functions (4) of Model 2 boil down to 
those of the linear Model 1 (3) as

A(u) = a0u, B(v) = b0v.

The construction of a conservative or noncon-
servative discretization depends roughly speaking 
on whether the finite differences are based on the 
formulation of the left-hand or right-hand side of 
(5), respectively.

A nonlinear cross-diffusion function implements 
a situation-dependent tendency of the susceptible 
population to avoid the infected population. This 
situation-dependent behavior reflects an average 
psychological disposition. An approach to model 
such a disposition is as follows. From the per-
spective of the susceptible population, avoidance 
is pursued whenever there is an awareness, i.e., 
when there is a detectable fraction of the infected 
population. For a small number of populations the 
necessary awareness has not been matured or is 
temporarily not active, since then there is no vital 
urgency for self-protection. In the other extreme, at 
large population numbers, such a selective detec-
tion is neither possible nor makes sense, since 
there is less, or even no chance to avoid infection 
in the crowd. The population number affects the 
conscious disposition of avoidance. Therefore, the 
cross-diffusion coefficient is designed to be negligi-
ble for imposed by the following constraints both 
small and large number of populations, which is 
imposed by the following constraints

c(u,0) = 0, c(0,v) = 0, for all u,v ∈ !,
c(u,v) = 0 for v ≥ V (u),

where V is a Lipschitz continuous monotonically 
decreasing function with a zero for u > 0. For 

example, one might choose V (u) = c1 − u with c1 > 0. 
By these constraints, the reaction-diffusion equation 
with cross-diffusion (1) degenerates into an equa-
tion without cross-diffusion outside the domain

"Ω : .{ }: , ,( ), ,≥ ( ), , <

The constraints (7) are satisfied, for example, 
by a function which is quadratic in the domain 
u,v ≥ 0, u + v = c1

c c uv c c,c ,( )u v,v c uv ( )c u vu vc − >0uvuvuv (ccc 0 1c,c 0  (8)

and vanishes (c(u,v) = 0) otherwise. This quadratic 
function is convex and takes its global maximum in

 
(9)

In the sequel some supporting arguments for 
the constraints (7) and in particular for the non-
linear model (8) are summarized. First of all, the 
constraint c(u,0) = 0 for all v corresponds to care-
lessness; during the absence, and also in the case 
of a small number of infected persons, the con-
sciousness of the danger of the disease is not suf-
ficiently present, even though there might be are 
some single dangerous intercourses. The constraint 
c(0,v) = 0 for all u is not only set for symmetry rea-
sons, since, at a small number of susceptible agents, 
they have little chance to form a group conscious-
ness on the importance of a separation from the 
infected population; instead, the susceptible popu-
lation is absorbed by the infected population. The 
maximum  has the interpretation that there is 
most avoidance when there is a fairly equal mixing 
of susceptible and infected population, whereas at 
small population numbers there is less need and at 
large total population numbers no possibility for 
avoidance.

In the situation of a large concentration of per-
sons there is little possibility of a selective avoid-
ance. Since the infected species is present anywhere 
and thus cannot be sustainably avoided in the 
crowd, there is small to no possibility to keep 
distance from the infected species. Thus, fatalism 
rules above a certain threshold ’upper’ population 
number. This fatalism is modelled by the assump-
tion that the cross-diffusion coefficient vanishes 
above this threshold population number. This 
upper population bound is set by the function V 
such that c1 corresponds to a maximum popula-
tion, where, in the case that c1 = u + v, total fatal-
ism rules.

A formal property of the constraints (7) is the 
that the cross-diffusion is switched off  at a cer-
tain finite total population. By this setting, it is 
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prevented that the population attains (unrealistic) 
local population peaks. In fact, by this limitation 
of the cross-diffusion, a maximum principle for 
the system (1) is imposed. The switch-off  of the 
diffusion term can be seen in the context of equa-
tions with strongly degenerate diffusion, where the 
diffusion function is set to zero on an interval as 
proposed in (Bürger & Ruiz-Baier 2009, Bürger 
et al. 2010).

3 NUMERICAL ANALYSIS

In order to provide a space-adaptive numerical 
scheme, we apply the technique of fully adaptive 
multiresolution (Bendahmane et al. 2009a, Bürger 
et al. 2010) constructed on the basis of a reference 
finite volume approximation (Eymard et al. 2000, 
see also e.g. Müller 2003 for a survey on multireso-
lution methods for PDEs). The success of this 
approach mainly relies on the strategy used for 
storing only the relevant information. The numeri-
cal approximation obtained in each time step is 
represented (and also computed) using a dynami-
cally evolving adaptive mesh which is generated 
from a sequence of nested grids. An appropriate 
smoothness analysis of the solution is performed 
using wavelet decomposition and such information 
on the local smoothness is used to locally adapt the 
mesh and the numerical scheme. Essentially, posi-
tions related to small wavelet coefficients may be 
discarded, allowing for substantial data and CPU-
time compression.

Admissible rectangular meshes
These ideas are made precise, first by introducing a 
nested hierarchy of grids T 0 ⊂ … ⊂ T H, where each 
grid T ℓ, ℓ = 0, …, H is assumed to be an admissi-
ble rectangular mesh. The index ℓ = 0 corresponds 
to the coarsest and ℓ = H to the finest resolution 
level, which is fixed and chosen large enough at 
the beginning of the algorithm. That is, a parti-
tion of Ω formed by control volumes K  ℓ (open 
rectangles of maximum diameter hK

ℓ ), constrained 
by the condition that the segment joining the cent-
ers of two neighboring control volumes xK

ℓ and xL
ℓ 

must be orthogonal to the corresponding interface 
σ = σ (K  ℓ,Lℓ). The interface length is denoted by 
|σ | = |σ (K  ℓ,L)|. By ε (K  ℓ) we denote the set of edges 
of K  ℓ, εint(K ℓ) corresponds to those is in the interior 
of T  ℓ and εext(K  ℓ) is the set of edges of K  ℓ lying on 
the boundary ∂Ω, i.e.,

ε ε ε
ε ε

ε
ε K T

ε
ε ℓ ℓT

( )K ℓ ( )K ℓK ∪ ( )K ℓ

( )K ℓ ( )K ℓK ∈K=
inεε t

inεε t

,
.

exε t

exε t for all∅

By ε inε t
ℓεε  and εexε t

ℓεε  we will denote the sets of all edges 
in the interior of Tl and lying on the boundary 
∂Ω, respectively. For a given finite volume Kℓ, we 
denote by N(Kℓ) the set of neighbors of Kℓ which 
share a common edge with Kℓ. For all Lℓ ∈ N(Kℓ), 
d(Kℓ,Lℓ) denotes the distance between xK

ℓ and xL
ℓ.

Two one-level finite volume methods
In order to define the discrete marching formula 
for (1), we choose an admissible discretization of 
ΩT consisting of an admissible mesh Tl of Ω and 
a time step size ∆t > 0. We may choose N > 0 as 
the smallest integer such that N ∆ t ≥ T, and set 
tn: = n ∆ t for n ∈ {0,...,N}.

We denote the cell averages of u and v on Kℓ ∈ Tℓ 

at time t = tn by the respective expressions

u
K

dxdd

v
K

dxdd

K
n

K

K
n

K

ℓ ℓ

ℓ ℓ

ℓ

ℓ

uu
K ℓ:

ℓ
,

vv
K ℓ:

ℓ
.

( )tnt,xx

( )tnt,xx

∫K∫K

∫K∫K

1

1

Furthermore, we define the coefficients

f f g g

a b
Kff
n

K
n

K
n

Kbn
ℓ ℓ

ff , :gng ,
,: aa :

( )vK
n

K
n

ℓ,uK
n

ℓuK ( )u vK
n

K
n

ℓ ℓv, K ℓvK

( )K( )nuK ℓuK = bbb

cK
n

ℓ

( )vK
n

ℓ

( )vK
n

K
n

ℓ

,
: cc (u( K

n
ℓuK .

For constant coefficient functions (3) one has an 
a a b b c cK

n
K
n

K
n

ℓ a ℓa ba b0 0bbKbb 0,0bbK ℓbKb  on all cells Kl and time 
steps n. The computation starts from the initial cell 
averages

u
K K

v dxK K K
ℓ ℓℓ

0
0

1 1= ( )x∫ ∫u dx v
KK Kℓ ℓ ℓ

u dx
KK Kℓ

0 1d 0( )xx = .dxv
K ℓ 0 ( )x∫vK K

ℓ ℓ
vK ℓ

The resulting finite volume scheme for the 
approximation of (1), defined on the multiresolu-
tion level l assumes values uK

n
ℓ and vK

n
ℓ  for all Kℓ ∈ Tℓ 

at time t = tn and determines uK
n

ℓ
+1  and vK

n
ℓ
+1  for all 

Kℓ ∈ Tℓ at time t = tn + 1 = tn + ∆t by a marching 
formula. For linear coefficients (3) the system (1) 
is discretized as

K
u u

t

K f
d

a

K
n

K
n

Kff
n

ℓ

ℓ

ℓ ℓuK

aℓ

+

∆
=

+
( )K Lℓ ℓLL

( )K Lℓ ℓLLℓ ℓ ( )u uL
n

K
n

ℓuLL ℓ−{

1

0

σ

σ ε∈∈ inε tt

,c
( )K ℓ

∑

+c ( )L
n

K
nv vℓ ℓLL Kv−L

nv ℓL }0
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K
v v

t

K g
d

b

K
n

K
n

K
n

ℓ ℓ ℓvK

ℓ

+

( )K ℓ

∆
=

+
( )K Lℓ ℓLL

( )K Lℓ ℓLL
∑

1

0bb
σ

σ ε∈∈ inε t

( )u uL
n

ℓLL − KK
n

ℓ .

 
(10)

This marching formula is valid for all cells and 
in particular for the boundary cells. The no-slip 
boundary condition is considered automatically 
by not considering boundary fluxes, such that they 
are automatically set to zero.

For nonlinear coefficient functions the generali-
zation of (10) is not uniquely determined. There-
fore, two versions are suggested, which are denoted 
by scheme A and scheme B, respectively. Scheme A 
has the form

K
u u

t
K f

d

K
n

K
n

Kff
nℓKℓ uK K ℓuuK

ℓ

+

( )K ℓ

∆
= +K fKff

nK ℓ

( )K Lℓ ℓLL

( )K Lℓ ℓLL
∑

1

σ

σ ε∈∈ inε t

K
n

L
n

K
n

L
n

c CK
n

C CK
n

K

( )a aL
n

Kℓ ℓaLL K+ nn

( )L
n

K
nu uL

n +
⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

( )L
n

K
nv vL

n
lLLLL

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

2

2

LL KuL

ℓ ℓLLCL

ℓ ℓLLCL

,

ℓ ℓℓℓ ℓ
ℓ

v vℓ

t
K gℓ

d

K
n

K
n

K
n

+

∆
= +ℓK gℓ

K
n

( )ℓ ℓK Lℓ ℓ

( )ℓ ℓK Lℓ

( )ℓ ℓb bℓLℓb ℓ
n

K
n

1

2

σ ( )ℓv vℓLℓℓ
n

K ℓℓ
n

( )ℓK
∑ .
intσ ε∈∈ i

 (11)

Whereas the coefficient functions a(u,v) and 
b(u,v) are averaged, for the coefficient function 
c(u,v) the exchange coefficient in the cross-diffusion 
term is computed by the following harmonic mean 
formula (see e.g. Eymard et al. 2000).

c
c c

c c
K
n

L
n

K
n

L
n

ℓ ℓcLL

ℓ ℓcLL

: .( );( )uK
n

K
n

ℓ ,vK
n

ℓvK ( )uL
n

L
n

ℓLL ,vL
n

ℓvLL =
+

2

 
(12)

We note that (12) is consistent in the sense that 
c((u,v); (u,v)) = c(u,v).

Even though scheme A looks reasonable, it is not 
conservative. For the discretization of conserva-
tion laws, it is well known that a non-conservative 
discretization might converge to a wrong solu-
tion (see e.g. Hayes & LeFloch 1998). For non-
conservative equations a possible remedy is the 
formulation of path-conservative schemes (Castro 
et al. 2006, Parés 2006). For parabolic equations 
(as treated here) there is a similar situation, which 
demands a careful consideration. In Bürger et al. 
2000, Figure 2, it is demonstrated that a non-
conservative discretization of the parabolic term 

can produce spurious solutions; our scheme A is 
a two-dimensional version of the nonconserva-
tive discretization specified in their formula (12). 
Therefore, we try to mimic in scheme B the con-
servative discretization, see e.g. their formula (13). 
In other words, scheme B avoids averaged trans-
mission coefficients, instead finite differences are 
calculated in terms of the antiderivatives A,B,C,

∂ ( )
∂

= ( ) ∂ ( )
∂

= ( )
∂ ( )

∂
= ( )

A(
u

a ( B (
v

b(
C (

v
c (

, ,
∂

( )b(

,)

that retain the local nonlinear properties. Differenc-
ing with respect to these antiderivatives gives to 
the resulting scheme a conservative form. Scheme B 
has the form

K
u u

t
K f

d

K
n

K
n

Kff
nℓKℓ uK K ℓuuK

ℓ

+

( )K ℓ

∆
= +K fKff

nK ℓ

( )K Lℓ ℓLL

( )K Lℓ ℓLL
∑

1

σ

σ ε∈∈ inεε t

K
n

K
n

K
nK

v vn

t
K g

d

( )A ALAn
Kℓ ℓALL KAnn{ +( )L

n
K
nC CL

nCL
n }

∆
+K

n= K g

( )K L

( )K L

+

LL KCL KL

ℓv
ℓ

ℓ ℓK KvK KK
ℓ ℓKv

LL

LL

,

1

σ

σ εσσσσσσσ ( )
∑ ( )
inεε t

,−

 

(13)

with A AKAn
ℓ : ,AA( )K( )nuK

n
ℓuK  A ALAn

ℓLL : ,AA( )L( )nuL
n

ℓuLL  B BKBn
ℓ : ,BB ( )K( )nuK

n
ℓuK  

B BLBn
ℓ BLL ( )uL

n
ℓuLL  which is justified due to the equalities

∆A(u) = a(u)∆u, ∆B(v) = b(v)∆v.

With respect to the definition of the coefficient C, 
there is the difficulty that

∇ = ∂
∂

∆ + ∂
∂

∆C
u

u C
v

v,

Figure 2. Numerical solution for the susceptible species 
u (top) and leaves of the corresponding tree data struc-
ture (bottom) at time instants t = 10, t = 100 and t = 1500 
(Example 1).
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i.e. there remains the unresolvable term ∂
∂

∇C
u

u. 

Therefore a semi-averaged form of CKC n
ℓ  is built as

C C C C

u u
u u

KC n
L
n

L K
L
n

K
n

ℓ C

ℓ ℓL KL
ℓ ℓuLL K

: CC , :CLC ℓLL ,

.

( )vK
n

ℓvK,uu ( )u vL
n

ℓu v, LℓvLL

=u ℓ ℓ

+
2

The antiderivative of c(u,v) as defined in (8) with 
respect to the variable v is calculated as

C /c uv / ,( )u,v c uv ( )c uc⎡⎣ ⎤⎦0
2 2 v /− "/ 2

with "v ( )c ucmin(vv . Scheme B should be more 
accurate than scheme A since the nonlinear func-
tions are better approximated; more information is 
retained when differencing instead of simply cal-
culating averages. For linear coefficient functions, 
when

A a u B b C cKAn
K
n

K
n

K
n

KC n
K
n

ℓ ℓ: a ua : ,b uK
n

ℓb uK ,c uK
n

ℓc uKBa ua :0 0BK KB ℓ,K ℓuK bbB ℓu 0

both schemes (11) and (13) are the same and reduce 
to (10).

4 EXAMPLES

In Example 1, Model 1 is simulated, where the 
parameters are chosen according to Sun et al. 2009. 
The simulation is performed using a Cartesian 
mesh of N = 262,144 control volumes in the high-
est resolution level H = 9 and the time stepping is 
explicit with fixed time step ∆t = 0.01. The model 
parameters are set to K = 1000, β = 0.5, and the 
constant self—and cross-diffusion coefficients are 
chosen to be a0 = 0.1, b0 = 2, c0 = 0.02. The refer-
ence tolerance for the multiresolution algorithm 
is εR = 0.001. As initial data we assume that the 
density of both species is a random perturba-
tion around the endemic stationary state (u*, v*). 
That is,

u x, , ,* *uu u*( )x,0 uu ( )xx ( ), ( )( ) ∈δvv v*,v ( ),0x = +vv ( )xx Ω

where w(x)δ ∈ [0, 1] is a normally distributed vari-
able, w ∈ {u, v}. In this contribution, two exam-
ples for the linear diffusion model are shown, 
in Berres & Ruiz-Baier 2011 there are two more 
examples. For Example 1 we set d = 0.25, r = 0.27, 
which gives (u*, v*) = (74.0741, 74.0741). The 
computational domain for Example 1 is the square 
Ω = (0, 200)2.

In Figure 2 In Example 1, “islands” of high con-
centration of susceptible individuals are formed. 

This reflects the phase separation triggered by the 
susceptible species avoiding the infected species.

In Example 2, Model 2 is simulated, where the 
parameters for the reaction equation are the same 
as in Example 1. The parameters for Model 2 are 
calibrated such that they quantitatively recover 
the orders of magnitudes of Model 1. More spe-
cifically we choose a0 = 0.5, b0 = 3, c1 = 3u*,

c0
1

0 02( )( )u vu vu vu v ( )1( )c u v1c −c1c
−

,)u v )u v1c

and the remaining parameters as in Example 1. 
The initial condition is now

u v x ,x* *u*( )x,0 uu ( )0 + ∈ρ ρvvuu vu )0x = +vδ δvv( ) ρvv, v vv, ( ),0x, = vv Ω

where ρ = 1e−4.
From Figure 3 the result of a qualitative com-

parison between Schemes A and B for Model 2 is 
given; we also notice that the solution recovers the 
same scaling as in Example 1.We have computed 
a numerical solution of a one-dimensional prob-
lem using both schemes with a maximal resolution 
of 512 control volumes. Even though scheme A is 
based on a nonconservative discretization, one can 
see that the two solutions are almost indistinguish-
able. On the other hand, in terms of computational 
effort, scheme B has found to be more efficient 
than scheme A. Therefore, the numerical solution 
for the two-dimensional case has been computed 
using scheme B enhanced with the multiresolu-
tion strategy. In this setting, we also observe the 
formation of spatial patterns (see Figure 4). Notice 
however, that in contrast with the results related to 
Model 1, here the “islands” of high concentration 
values of the susceptible species are surrounded by 
a layer of low concentration values (also noticeable 
from Figure 3). This behavior is in well accord-
ance with previous contributions in the field of 
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u by Scheme A

u by Scheme B

v by Scheme A

v by Scheme B

Figure 3. Profile of numerical solutions (species u) at 
time instant t = 750 obtained by the one-level finite vol-
ume schemes A and B (Example 2).
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numerical simulation of cross-diffusion systems 
(see e.g. Andreianov et al. 2011, Galiano et al. 
2003, Gambino et al. 2009).

5 CONCLUSIONS

This contribution is a condensed version of Berres 
& Ruiz-Baier 2011, where an efficient multireso-
lution method for the simulation of a nonlinear 
crossdiffusion model for epidemic dynamics is 
proposed. The ordinary differential equations 
involving the proposed reaction terms of our 
epidemic model are asymptotically stable in the 
sense that if  the initial data are chosen close to 
the equilibrium then the solution converges to the 
equilibrium. The numerical examples of the two-
dimensional reaction-diffusion equation show that 
there is a spatial phase separation in spite of the 
convergence behavior of the pure reaction terms. 
This means that the cross-diffusion in the para-
bolic terms of the reaction-diffusion equation is 
“stronger” than the attraction of the reaction 
terms. This is a remarkable property in compari-
son to other cross-diffusion models where the 
ordinary differential equations represented by the 
reaction part only show Lyapunov stability in the 
sense that initial data chosen in a close neighbor-
hood of the equilibrium then the solution remains 
in this neighborhood.

For the simulation both a conservative and a 
non-conservative discretization have been pro-
posed; both produce the same limit solution. 
The proposed schemes work stable both for the 
linear and nonlinear equations. The fully adaptive 
numerical method is particularly efficient to resolve 
phase interfaces due to the adaptive strategy.

From the numerical viewpoint, possible straight-
forward improvements include the use of time 
adaptive strategies such as local time stepping or 
Runge-Kutta-Fehlberg methods (Bendahmane et al. 
2009a), or the use of a multiresolution analysis 
defined on general unstructured meshes.

From the model point of view one further issue 
is to choose different reaction kinetics in order 

study quantitatively how the pattern formation 
produced by the cross-diffusion term can be com-
pensated by a stronger asymptotical stability of the 
reaction ODEs.
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