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Abstract

A fully space-adaptive multiresolution method is applied to an explicit
finite volume scheme for solving a strongly degenerate reaction-diffusion
system. Since a closed mathematical theory is lacking, insight into
the behaviour of these systems, in particular into the spatial patterns
their solutions may exhibit, can be currently obtained by numerical
experimentation only. It is demonstrated that the present space-
adaptive scheme is an appropriate tool for this purpose. In particular,
the multiresolution method and the classical finite volume scheme are
compared and the numerical results show that this strategy provides
substantial savings in terms of data storage and computational effort,
while giving an accurate approximation to the sought quantities.
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1 Introduction

In [1] we present a fully adaptive multiresolution (MR) scheme for spatially
2D, possibly degenerate reaction-diffusion systems, focusing on models of
combustion, pattern formation, and chemotaxis. Solutions of these equations
in these applications often exhibit steep gradients, and in the degenerate case,
sharp fronts and discontinuities. This calls for a concentration of computational
effort to zones of strong variation.

In this note we investigate the influence of the form of the diffusion
terms, constructed so that the governing equations form a strongly degenerate
parabolic system, on the spatial patterns shown by the system. To consider
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degenerate diffusion as a mechanism for the creation of Turing-like instabilities
seems to be a novelty in the context of two-dimensional reaction-diffusion
systems. The proposed MR scheme is based on finite volume discretizations
with explicit time stepping, and the efficiency of the method relies in part on
the strategy for storing the solution, namely a dynamic graded tree, whose
leaves are the non-uniform finite volumes on the borders of which the numerical
divergence is evaluated. By a thresholding procedure, which accounts for the
elimination of leaves that are smaller than a threshold value, substantial data
compression and CPU time reduction is attained.

We specifically consider the reaction-diffusion system

ut = γf(u, v) + ΔA(u) on QT := Ω× (0, T ), Ω := (0, 1)2, (1a)

vt = γg(u, v) + dΔB(v) on QT , (1b)

u(x, 0) = u0(x), v(x, 0) = v0(x) for x ∈ Ω, (1c)

∇A(u) · n = ∇B(u) · n = 0 on ΣT := ∂Ω× (0, T ). (1d)

This system models several phenomena including combustion and
chemotaxis [1], but is considered here as the generalization of a well-known
model of pattern formation in mathematical biology [6]. Under a number
of structural conditions relating the functions f(u, v) and g(u, v) and their
derivatives to the parameters γ and d, the system (1) with A(u) = B(u) = u
produces stationary solutions with Turing-type spatial patterns [6]. To produce
this effect, we could select these diffusion terms along with the kinetics f(u, v) =
a−u+u2v and g(u, v) = b−u2v, with the parameters a = −0.5, b = 1.9, d = 4.8,
and γ = 210 [6]. In this work, however, the diffusion terms are chosen to be
strongly degenerate:

A(u) =

{
0 for u � uc,

u− uc otherwise
, B(u) =

{
0 for u � vc,

u− vc otherwise,
uc, vc � 0. (2)

It turns out that even if the stability analysis performed in [6] does not apply to
the strongly degenerate case, our numerical experiments in Section 4 lead to the
formation of spatial patterns. Holden et al. [5] prove existence and uniqueness
of entropy solutions of weakly coupled systems of degenerate parabolic equations
in an unbounded domain; the well-posedness analysis for (1) is, however, still
an open problem due to the boundary condition (1d), which is not covered by
the analysis of [5]. Turing instabilities driven by other non-standard diffusion
terms, namely by fractional diffusion, have been studied e.g. by Nec and
Nepomnyashchy [7].

The remainder of the paper is organized as follows. Section 2 contains
a description of the construction of the reference FV formulation used to
numerically solve the underlying problem. In Section 3 we detail the main
ingredients of the MR framework needed to provide space adaptivity to the
overall numerical scheme, and the numerical results provided in Section 4
confirm that the adaptive MR method provides high rates of data compression
and CPU time speed-up, while the error remains controlled.
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2 Finite volume discretization

An admissible mesh for Ω is formed by a family T of control volumes (open
and convex polygons) of maximum diameter h. For all K ∈ T , xK denotes the
center of K, N(K) the set of neighbors of K, Eint(K) is the set of edges of K
in the interior of T and Eext(K) the set of edges of K on the boundary ∂Ω.
For all L ∈ N(K) d(K,L) denotes the distance between xK and xL, σK,L is
the interface between K and L and ηK,L (ηK,σ respectively) is the unit normal
vector to σK,L (σ ∈ Eext(K) respectively) oriented from K to L (from K to
∂Ω respectively). For all K ∈ T , |K| stands for the measure of the cell K.
From the admissibility of T we have that Ω = ∪K∈TK, K ∩L = ∅ if K,L ∈ T
and K �= L, and there exists a finite sequence (xK)K∈T for which xKxL is
orthogonal to σK,L. Now, consider K ∈ T and L ∈ N(K) with common vertices
(a�,K,L)1���I with I ∈ N\{0} and let TK,L (respectively T ext

K,σ for σ ∈ Eext(K))
be the open and convex polygon with vertices (xK , xL) (xK respectively) and
(a�,K,L)1���I . For all K ∈ T , the approximation ∇huh of ∇u is defined by

∇h
Luh(x) =

{
|TK,L|−1|σK,L|(uL − uK)ηK,L if x ∈ TK,L,

0 if x ∈ T ext
K,σ.

Now we choose an admissible mesh for Ω and a time step size Δt > 0. We
may choose N > 0 as the smallest integer such that NΔt � T , and set
tn := nΔt for n ∈ {0, . . . , N}. The discretized reaction terms are defined as
fn+1

K := f(un+1
K , vn+1

K ) and gn+1
K = g(un+1

K , vn+1
K ) and the nonlinear diffusions

are constructed using the terms An+1
K := A(un+1

K ) and Bn+1
K := A(vn+1

K ).
Incorporating an explicit first order Euler time integration, the resulting FV
scheme reads: Determine (un+1

K )K∈T , (vn+1
K )K∈T such that

un+1
K − un

K

Δt
+

∑
L∈N(K)

∇h
LA

n
K = fn

K ,
vn+1

K − vn
K

Δt
+

∑
L∈N(K)

d∇h
LB

n
K = gn

K , (3)

for all K ∈ T . The boundary condition is taken into account by imposing
zero fluxes on external edges. The resulting finite volume scheme has a unique
solution that converges to the weak solution of (1) in the non-degenerate case [4].
Moreover, according to [5] this scheme is stable under the CFL condition

h−1Δtγmax
K∈T

(
|fu

K |+ |fv
K |+ |gu

K |+ |gv
K |

)
+ 4h−2Δtmax

K∈T

(
|A′K |+ d|B′K |

)
� 1,

where fu
K := ∂uf(uK , vK) and A′K := A′(uK), for K ∈ T .

3 Multiresolution representation

For further details on the one-dimensional theory, we refer to the fairly complete
description in [3]. For ease of computations, we only consider rectangular meshes
on a rectangular domain, which after a change of variables can be regarded as
Ω = [0, 1]2. Nevertheless, the multiresolution analysis could be carried out for
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non-structured meshes. Firstly, a nested mesh hierarchy T0 ⊂ · · · ⊂ TL using
a partition of Ω is constructed, where each grid Tl is formed by the control
volumes on each level K l, l = 0, . . . , L. Here l = 0 corresponds to the coarsest
and l = L to the finest resolution level and the so called refinement sets are
defined by MK,l = {Ll+1

i }i and K l = ∪#MK,l

i=1 Ll+1
i . For x ∈ K l the scale box

function is defined as ϕ̃K,l(x) := |K l|−1χKl(x) and the average of any function
u(·, t) ∈ L1(Ω) in the cell K l may be written as uK,l := 〈u, ϕ̃K,l〉L1(Ω) .

It is known that cell averages and box functions satisfy the two-level relation

ϕ̃K,l =
∑

Ll+1

i ∈MK,l

|Ll+1
i |
|K l| ϕ̃Li,l+1, ūK,l =

∑
Ll+1

i ∈MK,l

|Ll+1
i |
|K l| uLi,l+1, (4)

which defines a projection operator needed to move from finer to coarser levels.
For x ∈ K l+1 the wavelet function is defined by

ψ̃K,j,l =
∑

Ll+1

i ∈MK,l

|Ll+1
i |
|K l| (−1)ijϕ̃Li,l+1 for j = 1, . . . ,#MK,l,

and from (4), a similar inverse two-level relation holds. Detail coefficients are
defined as dK,j,l := 〈u, ψ̃K,j,l〉 for j = 1, . . . ,#MK,l. An appealing feature is
that a transformation between the cell averages on level L and the cell averages
on level zero plus a series of details can be determined and such transformation
should be reversible. Therefore

ũK,l+1 =
∑

T∈S̄l
K

gl
K,TuT,l, (5)

where S̄l
K is the stencil of interpolation or coarsening set, gl

K,T are coefficients,
and the tilde over u in the left-hand side of (5) denotes a predicted value.
In this way, a prediction operator is defined, which is imposed to be local
and consistent with the projection and will be necessary to move from
coarser to finer resolution levels. For rectangular meshes it corresponds to
ũLi,l+1 = uL,l −Qx −Qy +Qxy for i = 1, . . . ,#MK,l, where

Qz :=

s∑
n=1

γ̃n

(
uSz,l − uTz,l

)
, z ∈ {x, y},

Qxy :=

s∑
n=1

γ̃n

s∑
p=1

γ̃p

(
uSx,y,l − uSx,−y,l − uS−x,y,l + uS−x,−y,l

)
.

Here S±x,±y denote the neighbors of the corner of the control volume S and
the corresponding coefficients are γ̃1 = − 22

128 and γ̃2 = 3
128 (see [8]). Details are

related to the regularity of a given function. The more regular u is over K l,
the smaller is the corresponding detail coefficient. Therefore a thresholding
procedure is also applied, which basically consists in discarding all control
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volumes corresponding to details that are smaller in absolute value than a level-
dependent tolerance. Denoting by α the experimental convergence rate of (3)
and by εR given a reference tolerance determined by (see e.g. [1, 2] for details)

εR =
C2−(α+2)L

|Ω|max
K∈T

(|fu
K |+ |fv

K |+ |gu
K |+ |gv

K |) + |Ω|3/22L+2 max
K∈T

(|A′K |+ d|B′K |)
,

we obtain level-dependent tolerances εl defined by εl = 22(l−L)εR, l =
0, . . . , L. We organize the cell averages and corresponding details at different
levels in a dynamic graded tree. The root is the basis of the tree, a parent node
has four sons, and the sons of the same parent are called brothers. A node
without sons is a leaf and a given node has s′ = 2 nearest neighbors in each
spatial direction, needed for the computation of the fluxes of leaves; if these
neighbors do not exist, we create them as virtual leaves. We denote by Λ the
set of all nodes of the tree and by L(Λ) the set of leaves. We apply this MR
representation to the spatial part of the pair u = (u, v), which corresponds to
the numerical solution of the underlying problem for each time step, so we need
to update the tree structure for the proper representation of the solution during
the evolution. To this end, we apply a thresholding strategy, but always keep
the graded tree structure of the data. Once the thresholding is performed, we
add to the tree a safety zone, generated by adding one finer level to the tree in
all leaves without violating the graded tree data structure.

The data compression rate η := N/(2−(2L)N + #L(Λ)) and speed-up rate
V := CPU timeFV/CPUtimeMR are used to measure the improvement in data
and CPU time compression respectively. Here, N is the number of control
volumes in the full finest grid at level L, and #L(Λ) is the number of leaves.

4 Numerical experiments

As a first numerical result, we consider a computation starting from a random
perturbation of the steady state (u0 = a + b = 1.4, v0 = b/(a+ b)2 = 0.96939)
and we use L = 9 resolution levels and a reference tolerance given by εR =
7.82×10−4. The computational domain is the unit square Ω = [0, 1]2. Figure 1
presents the numerical solution for non-degenerate diffusion, i.e., we choose
A(u) = B(u) = u. (See [1] for further examples of this case).

Being one of our main interests studying the effect of degenerate diffusion,
we present in Example 2 several cases in which all parameters remain the same,
except for the test parameters which are the critical concentrations uc, vc used
in (2). Those cases are uc = u0 + c, vc = v0 + c, with c ∈ {0, 0.5, 2.0}. In
Figure 2 we display the component v of the numerical solution and the leaves of
the corresponding tree structure at a transient state at time t = 1.5 for all test
cases and it is clear that the larger the value of c, the more chaotic the spatial
patterns shown by the corresponding system. This behaviour could be explained
by the increasing incoherence between solution values at different points.

For Example 3, we select one of the cases from the previous example and
perform a study of the error. The effectiveness of the MR method is illustrated
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component u (3d view) component u (2d plot)

component v (3d view) component v (2d plot) adaptive mesh

Figure 1: Example 1: Component v and corresponding adaptive mesh at t = 1.5
for non-degenerate diffusion. The solution assumes values 1.390 < u < 1.402
and 0.96988 < v < 0.96998.

in Table 1, specifically displaying the corresponding simulated time, speedup
V , data compression rate η, and normalized errors in different norms for both
components of the solution. These errors are obtained by comparing with an
approximate solution given by a reference FV computation on a fine mesh of
4194304 control volumes. In addition, from Figure 3 a experimental rate of
convergence of about 1.9 is noticed for the adaptive MR scheme. As seen in [1],
a slightly better rate of convergence may be also obtained by the MR method
for the non-degenerate problem.
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