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Abstract A fully adaptive finite volume multiresolution scheme for one-dimensional strongly degenerate parabolic
equations with discontinuous flux is presented. The numerical scheme is based on a finite volume discretization using
the Engquist—Osher approximation for the flux and explicit time-stepping. An adaptive multiresolution scheme with
cell averages is then used to speed up CPU time and meet memory requirements. A particular feature of our scheme
is the storage of the multiresolution representation of the solution in a dynamic graded tree, for the sake of data
compression and to facilitate navigation. Applications to traffic flow with driver reaction and a clarifier—thickener
model illustrate the efficiency of this method.
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1 Introduction
1.1 Scope of the paper

High-resolution finite volume schemes for the approximation of discontinuous solutions to conservation laws are
of at least second-order accuracy in regions where the solution is smooth and resolve discontinuities sharply and
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366 R. Biirger et al.

without spurious oscillations. Methods of this type include the schemes described in [1-6]. In standard situations,
the solution u(x, t) of a conservation law

ur+ fu)y =0, (x,)eQr:=Qx[0,T], QRCR (1.1)

exhibits strong variations (shocks) in small regions but behaves smoothly on the major portion of the computa-
tional domain. The multiresolution technique adaptively concentrates computational effort associated with a high-
resolution scheme on the regions of strong variation. It goes back to Harten [7] for hyperbolic equations and was
used by Bihari and Harten [8] and Roussel et al. [9] for parabolic equations. Important contributions to the analysis
of multiresolution methods for conservation laws include [10-12].

In this paper, we present a fully adaptive multiresolution scheme and corresponding numerical experiments for
strongly degenerate parabolic equations with discontinuous flux. Specifically, we consider equations of the type

ur+ f (y(x),u), = 1i(x)A(w)y), forx e Iy ;=R x (0, T], (1.2)

where we assume that for each x, the function f(y(x), -) : R — R is piecewise smooth and Lipschitz continuous,
and that y (x) is a vector of scalar parameters that are discontinuous at most at a finite number of points. On the
other hand, we assume that the integrated diffusion function A(-) is Lipschitz continuous and piecewise smooth
with A(v) > A(u) for v > u. We admit intervals [«, 8] with A(u) = const. for all u € [«, ], such that (1.2)
degenerates into the first-order equation

ur+ fyx),u), =0 (1.3)

wherever u € [«, f]. If degeneracy occurs on u-intervals of positive length (and not only at isolated points), Eq. 1.2
is called strongly degenerate. Clearly, solutions of (1.2) are in general discontinuous, and need to be characterized
as weak solutions along with an entropy condition. Applications of (1.2) with constant parameters include models
of sedimentation—consolidation processes of particulate suspensions [ 13, 14], two-phase flow in porous media [15],
and traffic flow with driver reaction [16,17]. Applications with a discontinuous parameter vector y(x) include
models of traffic flow on highways with discontinuous road-surface conditions [16,18], and a model of clarifier—
thickener units used in engineering applications for the continuous solid-liquid separation of suspensions [19,20].
In the latter application, the function A(x) models sediment compressibility; the special case A = 0, in which we
fall back to (1.3), corresponds to a so-called ideal suspension of rigid spherical particles forming incompressible
sediments. See [20] for further applications.

The novelty of the present paper is that we apply an adaptive multiresolution method to one-dimensional initial-
value problems for (1.2). This equation is discretized in space by a first-order conservative finite volume scheme
using the Engquist—Osher approximation, for which convergence results for our class of problems are available
[16], [19-22]. For time discretization an explicit Euler scheme is used. The multiresolution representation of the
solution allows to introduce a locally refined mesh by thresholding of the wavelet coefficients while controlling
the error of the approximation. This allows us to reduce the number of costly flux evaluations with respect to the
finite volume scheme on a regular fine grid. Hence, a gain in CPU time can be obtained. Furthermore, the data are
efficiently represented in a dynamic graded-tree data structure, which also leads to memory compression.

1.2 Multiresolution schemes

In the following, we briefly outline the underlying ideas of multiresolution schemes for conservation laws and
parabolic equations. The starting point is a conservative high-resolution finite volume discretization on a uniform
mesh of (1.1) or (1.3). A multiresolution analysis of the solution with subsequent thresholding of the coefficients
allows an approximation with fewer coefficients within a given tolerance. This allows us to reduce the number
of costly flux evaluations required by the high-resolution scheme, which results in a gain of efficiency. For this
purpose, either point values or cell averages of the numerical solution are defined on a hierarchical sequence of
nested dyadic grids. Applying a multiresolution analysis to the solution, which can be efficiently done using the fast
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wavelet transform, we can construct a truncated representation by simple thresholding of the obtained coefficients.
This procedure yields an efficient representation of the solution on a locally refined grid while controlling the error
of the approximation.

The principle of multiresolution data representation consists in considering grid averages of the data at different
resolutions from the finest to the coarsest grid, and in encoding the differences between two grids. Finally, one
retains only the grid averages on the coarsest grid and the set of errors (or details) for predicting the grid averages
of each resolution level in this hierarchy from those of the next coarsest one. In regions where the solution is
sufficiently smooth, the multiresolution coefficients are small and can hence be neglected. Thus, data can be com-
pressed by a thresholding or truncation operation, i.e., by setting to zero those components of the representation
whose multiresolution coefficients (also called wavelet coefficients or details) are in absolute value smaller than a
prescribed tolerance. Thresholding allows to control the so-called perturbation error thanks to norm equivalences.
The representation of the solution in physical space corresponds to a locally refined grid.

The multiresolution analysis of the numerical solution automatically detects discontinuities, since a wavelet coef-
ficient takes into account the regularity of a function in each position and on each scale. In [7,23,24] Harten explored
this idea and introduced multiresolution schemes for efficiently solving hyperbolic conservations laws. Using the
multiresolution representation of the solution, he devised a sensor to decide at which positions of a fine mesh the flux
should be exactly evaluated, and where otherwise it can be obtained more cheaply by interpolation of pre-calculated
fluxes on coarser scales. Still in the context of hyperbolic conservation laws and preserving flux evaluations for all
fine grid positions, Bihari and Harten [8] developed a second-order adaptive switch for flux evaluations, keeping an
essentially non-oscillatory (ENO) scheme where multiresolution coefficients were larger than a given tolerance, and
otherwise using interpolation. In [25], Daubechies wavelets were used as a grid-refinement strategy associated with
finite-difference stencils on an irregular grid for solving hyperbolic equations. Centered finite differences are used
in [26] for approximating space derivatives on sparse point approximations (SPR) obtained by interpolating wavelet
transforms. An SPR-based multiresolution WENO scheme is presented in [27]. For parabolic PDEs a finite volume
method with dynamical adaptation strategy to advance the grid was developed in [9].

An alternative adaption strategy could be based on local a posteriori error estimates by means of residual-error
computation. Results of a posteriori error estimates have been reported in the literature for elliptic problems (see
[28]), parabolic problems (see [29,30]) and hyperbolic problems (see [31,32] and the references therein), but there is
not known results for strongly degenerate parabolic problems. In this sense, to compute a local error estimator is not
easily realized in practice, and we prefer to concentrate our effort on the strategy based on the multiscale technique.
The multiresolution strategy proposed herein for strongly degenerate parabolic equations with a discontinuous flux
produces a gain in computational time and in memory. The solution is efficiently represented using a graded-tree
data structure and the costly fluxes are computed on the locally refined grid only. The computational efficiency of
the multiresolution method is related to the data compression rate, that is, to the amount of significant information
preserved after thresholding in comparison with the number of grid points of the finest mesh. Thus, efficiency is
measured in terms of the compression rate and CPU time.

Finally, although we limit our treatment to one space dimension, the multiresolution scheme can be extended
to higher-dimensional problems in different ways. One possibility is to use higher-dimensional wavelet transforms
constructed by a tensor-product approach, and through interpolations of the numerical divergence in the sense of
cell averages from coarser to finer levels, the method of predicting values hierarchically can be extended as done
in [33]. Another possibility is to explore the splitting capability of the divergence by directions as in [34]. Fully
three-dimensional computations of flame instabilities are presented in [35].

1.3 Strongly degenerate parabolic equations and conservation laws with discontinuous flux
Equation 1.2 combines two independent non-standard ingredients of conservation laws: the strongly degenerate

diffusion term A(u),,, and the flux f(y(x), u) that depends discontinuously on the spatial position x. We briefly
review some recent results for equations that include either ingredient.
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The basic difficulty associated with degenerate parabolic equations of the type
ur+ fy = Ay, x€QCR, te(0,T] (1.4)

is that their solutions need to be defined as weak, in general discontinuous solutions along with an entropy con-
dition to select the physically relevant weak solution. In [14] the existence of BV entropy weak solutions to an
initial-boundary value problem for (1.4) in the sense of Kruzkov [36] and Vol’pert and Hudjaev [37,38] is shown
via the vanishing viscosity method, while their uniqueness is shown by a technique due to Carrillo [39]. The
well-posedness of multi-dimensional Dirichlet initial-boundary value problems for strongly degenerate parabolic
equations is shown in [40]. Further recent contributions to the analysis of strongly degenerate parabolic equations
include [41-44].

Evje and Karlsen [45] show that explicit monotone finite-difference schemes [46] converge to BV entropy
solutions for the Cauchy problem for (1.4). These results are extended to several space dimensions in [47]. The
convergence of finite volume schemes for initial-boundary value problems is proved in [44,48]. The monotone
scheme used for numerical experiments in [19,20] is the robust Engquist—-Osher scheme [49]. Thus, (1.4) admits a
rigorous convergence analysis for suitable numerical schemes.

In the context of the clarifier—thickener model, the analysis of (1.2) for the case A = 0, that is, of the first-
order conservation law with discontinuous flux (1.3), has been the topic of a recent series of papers including
[19,50,51], in which a rigorous mathematical (existence and uniqueness) and numerical analysis is provided. The
main ingredient in these clarifier—thickener models is Eq. 1.3, where the (with respect to #, nonconvex) flux f and
the discontinuous vector-valued coefficient y = (y1, y2) are given functions. When p is smooth, KruZkov’s theory
[36] ensures the existence of a unique and stable entropy weak solution to (1.3). Kruzkov’s theory does not apply
when p is discontinuous. In [19], a variant of KruZzkov’s notion of entropy weak solution for (1.3) that accounts for
the discontinuities in p is introduced and existence and uniqueness (stability) of such entropy solutions in a certain
functional class are proved. The existence of such solutions follows from the convergence of various numerical
schemes such as front tracking [50], a relaxation scheme [51,52], and upwind difference schemes [19].

Strongly degenerate parabolic equations with discontinuous fluxes are studied in [21,22,53]. In [21] equations
like (1.2) are studied with a concave convective flux u +— f(y (x), u) and with (y1(x) A(u),), replaced by A(u) .
Existence of an entropy weak solution is established by proving convergence of a difference scheme of the type
discussed in this paper. Uniqueness and stability issues for entropy weak solutions are studied in [22] for a particular
class of equations. These analyses are extended to the traffic and clarifier—thickener models studied herein in [16]
and [20], respectively.

1.4 Time discretization, space discretization, and numerical stability

The numerical scheme for the solution of (1.2) is described in [20]. In this work, the basic scheme is first order
in time and space. We utilize a simple explicit Euler discretization in time. The spatial discretization is done by
using the Engquist—Osher approximation for the convective part of the flux combined with a second-order con-
servative discretization of the diffusion term. For stability we need to satisfy a CFL condition requiring that in
general Ar/(Ax)? be bounded. In some cases without diffusion (Example 2 of Sect. 6) we need only that A7/Ax
be bounded.

1.5 Outline of this paper

The remainder of this paper is organized as follows. In Sect. 2, we briefly outline two applicative models that lead
to an equation of the type (1.2), namely, a model of traffic flow with driver reaction and discontinuous road surface
conditions (Sect. 2.1) and a clarifier-thickener model (Sect. 2.2). For detailed derivations of both models, we refer
to [16] and [54], respectively. In Sect. 3, we describe the basic numerical finite volume scheme for the discretization
of (1.2) on a uniform grid.
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In Sect. 4, the conservative adaptive multiresolution discretization is introduced. Details on the numerical method
and on its implementation using dynamical data structures can be found in [9]. For the particular application to
strongly degenerate parabolic equations with a flux that depends on u but not on x, we refer to [55].

The basic motivation of this approach is to accelerate a given finite volume scheme on a uniform grid without
losing accuracy. The principle of the multiresolution analysis is to represent a set of data given on a fine grid as values
on a coarser grid plus a series of differences at different levels of nested dyadic grids. These differences contain the
information of the solution when going from a coarse to a finer grid. An appealing feature of this data representation
is that coefficients are small in regions where the solution is smooth. Applying a thresholding of small coefficients,
we define a locally refined adaptive grid. The threshold is chosen such as to guarantee that the discretization error
of the reference scheme is balanced with the accumulated thresholding error which is introduced in each time step.
This yields a memory and CPU time reduction while controlling the precision of the computations. The dynamic
graded tree is introduced in Sect. 4.1, while the multiresolution transform of a function, which is stored in the graded
tree, is outlined in Sect. 4.2. The complete multiresolution algorithm is outlined in Sect. 4.3.

An error analysis, which has been adapted from [11] and is also advanced in [55] for strongly degenerate para-
bolic equations of the type (1.4), is presented in Sect. 5. This error analysis motivates the choice of two parameters
in the thresholding algorithm. In Sect. 6 we present three numerical examples, namely the traffic model (Example 1,
Sect. 6.1), a sub-case of the clarifier—thickener model with A = 0 that illustrates the application of the method to
(1.3) (Example 2, Sect. 6.2), and the clarifier—thickener model treating a flocculated suspension, now again with
a degenerate diffusion term A # 0 (Example 3, Sect. 6.3). Numerical results, limitations and extensions of the
method are discussed in Sect. 7.

2 Applications of strongly degenerate parabolic equations
2.1 Traffic flow with driver reaction and discontinuous road-surface conditions

The classical Lighthill-Whitham—Richards (LWR) kinematic wave model [56,57] for unidirectional traffic flow on
a single-lane highway starts from the principle of “conservation of cars” u; + (uv)y = 0 forx € Rand ¢ > 0,
where u is the density of cars as a function of distance x and time ¢t and v = v(x, ¢) is the velocity of the car located
at position x at time . The decisive constitutive assumption of the LWR model is that v is a function of u only,
v = v(u). In other words, it is assumed that each driver instantaneously adjusts his velocity to the local car density.
A common choice is v(#) = vmax V (1), where vpax is @ maximum velocity a driver assumes on a free highway,
and V (u) is a hindrance function taking into account the presence of other cars that urges each driver to adjust his
speed. Thus, the flux is

fu) == uv(u) = vmaxut V(@) for 0 < u < umax, f(u) = 0 otherwise, 2.1

where 1,y is the maximum “bumper-to-bumper” car density. The simplest choice is the linear interpolation V (u) =
Vi(u) := 1 — u/umax; but we may also consider the alternative Dick—Greenberg model [58,59]

V() = Vo(u) := min{1, C log(umax/u)}, C > 0. 2.2)

The diffusively corrected kinematic wave model (DCKWM) [16,17] extends the LWR model by a strongly
degenerating diffusion term. This model incorporates a reaction time 7, representing drivers’ delay in their response
to events, and an anticipated distance Lz, which means that drivers adjust their velocity to the density seen an
anticipated distance L; ahead. In fact, we adopt the equation L; = max{(v(u))2 /(2a), Lmin}, see [17], where the
first argument is the distance required to decelerate to full stop from speed v(u) at deceleration a, and the second
imposes a minimal anticipation distance, regardless of how small the velocity is. If one assumes that the effects of
reaction time and anticipation are only relevant when the local car density exceeds a critical value u., then the final
governing equation (replacing u; + f(u), = 0) of the DCKWM is the strongly degenerate parabolic equation
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ur+ fw)y =AWy, x€R, t>0; Au):= /ua(s) ds, (2.3)
0

where (see [16,54] for details of the derivation)

ifu <ue,

SO0 = tmatV ), a) = {_Mvmaxv/(u) (L&(u) + rvmaxuvl(u)) ifu > ue.

24
(A critical density u. > 0 automatically arises from the use of (2.2); obviously, V;(u) = 0 for u < u. :=
Umax €Xp(—1/C), so that (2.4) holds for V (1) = Va(u).)

We assume that V () is chosen such that D’(u) > 0 for u, < u < umax. Consequently, the right-hand side of
(2.3) vanishes on the interval [0, u.], and possibly at the maximum density umax. Thus, the governing equation of
the DCKWM model (2.3) is strongly degenerate parabolic.

Following Mochon [18], Biirger and Karlsen [16] extend the DCKWM traffic model to variable road sur-
face conditions by replacing the coefficient vpax in f(u) = vmaxu V(1) by a discontinuously varying function

Umax = Umax(x). However, the degenerate diffusion term models driver psychology and should therefore not
depend on road surface conditions. Consequently, the new model equation for the traffic model is
ur+ f @), u) =Axx, fy&),u):=yx)uV), yx):= vmx(x). (2.5)

For simplicity, we assume that on the major part of the highway, the maximum velocity assumes a constant value
vglax, which is also used as the value of v,y entering the definition of A(u) in (2.4), and that there is an interval
*

[a, b] on which the maximum velocity assumes an exceptional value v, # vJ.

Vmax (X) = ¥ (x) = {“f}ax forx € la. b], (2.6)

max Otherwise.

The initial value problem for Eq. 2.5 with Cauchy data u(x, 0) = uo(x) for x € R is well-posed [16], but here we
insist on using a finite domain that can completely be represented by our data structure. Therefore, we consider a
circular road of length L, the initial condition

u(x,0) =up(x), xel0,L], 2.7)
and the periodic boundary condition
u@,t) =u(L,t), te(O,T]. (2.8)

Consequently, the “traffic model” is defined by the periodic initial-boundary value problem (2.5), (2.7), (2.8) under
the assumptions (2.4) and (2.6), where we assume 0 <a < b < L.

2.2 Clarifier—thickener model

The analysis of (1.4) has in part been motivated by a theory of sedimentation—consolidation processes of flocculated
suspensions [13,20], in which the unknown is the solids concentration u as a function of time ¢ and depth x. The
particular suspension is characterized by the hindered settling function f (u) and the integrated diffusion coefficient
A(u), which models the sediment compressibility. The function f () is assumed to be continuous and piecewise
smooth with f(u) > 0 foru € (0, umax) and f(u) = 0 foru < 0 and u > umax. A typical example is

Voo >0, C >0, 2.9)

Voot (1 — )€ for u € (0, tmax),
fu) = :
0 otherwise,

where v > 0 is the settling velocity of a single particle in unbounded fluid. Moreover, we have that

f W)/ (u) .

2.10
Ao (2.10)

Au) = /ua(s) ds, a(u) =
0
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Fig.1 The overflow 7 =0,7 =qL
clarifier—thickener model | | 1 1, overflow level
QL =quS
clarification zone nm=Ly=qa
feed source 1 } t tll
QF7 up p— l l l L 0 feed level
thickening zone =17 =qr
Qr = grS

1] + xR discharge level

discharge Nn=01=q¢

Here, A, > 0 is the solid—fluid density difference, g is the acceleration of gravity, and o/ (u) is the derivative of
the material specific effective solid stress function o, (12). We assume that the solid particles touch each other at a
critical concentration value (or gel point) 0 < u¢ < Umax, and that

—0 foru < ue,
%<u>,a;(u)[ TS e .11

>0 foru > uc.

This implies that a(u) = 0 for u < u., such that also this application motivates a strongly degenerate parabolic
equation (1.3). A typical function is

o (1) = {0 foru Sue. 0. g 1. 2.12)
ool(u/uc)? — 11 foru > uc,

The extension of the one-dimensional sedimentation—consolidation equation (1.4) (if f(#) and A(u) have the
interpretation given herein) to continuous sedimentation processes leads to the so-called clarifier—thickener model
[20]; see Fig. 1. We consider a cylindrical vessel of constant cross-sectional area S, which occupies the depth interval
[xL, xr] with x, < 0 and xg > 0. At depth x = 0, fresh suspension of a given feed concentration ur € [0, umax]
is pumped into the unit at a volume rate Qp > 0. Within the unit, the feed flow is divided into an upwards-directed
and a downwards-directed bulk flow with the signed volume rates Qp < 0 and Qr > 0, where conservation of
suspension implies Or = Qr — Q.. Furthermore, we assume that the feed suspension is loaded with solids at the
given feed concentration ur. Finally, at x = xp, and x = xR, overflow and underflow pipes are provided through
which the material leaves the clarifier—thickener unit. We assume that the solid and the fluid phases move at the
same velocity through these pipes, so that the solid—fluid relative velocity is zero for x < x. and x > xr, which
means that the term f (1) — A(u)y is “switched off” outside [x1, xr]. See [20] for details.

We only consider vessels with a constant interior cross-sectional area S and define the velocities g1, := Qp/S
and gr := QOgr/S. Then the final clarifier—thickener model is given by (1.2) with

f @), u) =y (x)(w —up) + y1(x) f (), (2.13)
where we use the discontinuous parameters

1 forx € (xp, xR), qr forx <0,
y1(x) = y2(x) =

. (2.14)
0 otherwise,

gr forx > 0.

We assume the initial concentration distribution

u(x,0) =up(x), xeR; wupx) €0, umaxl. (2.15)
Thus, the clarifier—thickener model is specified by (1.2) with the discontinuous fluxes defined by the continuous

functions u +— f(u), A(u) given by (2.9) and (2.10), the discontinuous parameters (2.13), (2.14), and the initial
condition (2.15).

3 Numerical scheme

The numerical scheme for the solution of (1.2) is essentially described in [20]. We begin with the definition of the
base algorithm discretizing R into cells /; := [xj_1/2, Xj11/2), where x;j 112 = (j + 1/2)Ax with j € Z. Let
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A= At/Ax, n = At/(Ax)* and U](.) = uo(x;). For n > 0 we define the approximations according to

U = U = 0D b 1y Ul UD + b= (1141280 AUD) (3.
where
Viti2 =Y (xj_+1/2) s V1Lj+1/2 ‘= VI (xj_+1/2) . 3.2)

The symbols A are spatial difference operators: A_V; :=V; —V;_yand A, V; :=V;1 — V;, and we use the
Engquist-Osher flux [49]

1 v
W v = [f(%u)Jrf(y,v)—/ |fu(y,w>|dw]

Note that our pointwise discretization of y, Eq. 3.2, follows the usage of [16], [20-22], but differs from that of [19],
where p is discretized by cell averages taken over the cells [x;, x;41), where x; := jAx, j € Z. The important
point s that in both cases, the discretization of y is staggered with respect to that of the conserved quantity u, and this
property greatly facilitates the convergence analysis of the numerical schemes. If the discretizations were aligned
(i.e., not staggered), we would have to deal with more complicated 2 x 2 Riemann problems at cell boundaries.
Further discussion of this point is provided, e.g., in [22]. Our particular choice of (3.2) (as opposed to forming cell
averages) is motivated basically by its simplicity.
The space—time parameters are chosen in such way that we have the following CFL condition (see [20]):

1
A max | fu(y(x),u)|+p max |A"(w)] < = (3.3)
uel0,1]

uel0,1],xeR 2’
which means that Az/ (Ax)? must be bounded. On the other hand, when the diffusion term is not considered
(Example 2 of Sect. 6), the CFL condition is less restrictive than (3.3), that is,

1
)\' ) < ) 3.4
ue[(gl,lﬁ,)iceR [ fu(y (x), u)]| 5 (3.4)

which means that only Af/Ax must be bounded.

Let us mention that the scheme also admits a semi-implicit variant, in which the diffusion terms are evaluated
at the time level 7,4 1. This variant has been used for numerical examples in [20], and its convergence for a similar
equation with a convective flux that does not depend on x, but which is supplemented by boundary conditions, has
been proved in [48]. The advantage of a semi-implicit scheme is that it is stable under the CFL condition (3.4),
which is milder than (3.3), so that a much larger time step At could be used. However, a semi-implicit version
involves the solution of systems of nonlinear equations for each time step, and these equations have to be solved
iteratively by appropriate linearization. Since we wish to keep the basic scheme as simple as possible and focus on
the multiresolution device, we have decided to avoid this additional effort here. Additional complications possibly
arise from the fact that we herein implement the scheme on an adaptive grid; a semi-implicit variant would, for
example, generate nonlinear systems of different size in each time step. In general, implicit multiresolution schemes
have received little attention so far.

4 Conservative adaptive multiresolution discretization

4.1 The graded dynamic tree

The reference standard finite volume scheme described in Sect. 3 yields solutions represented by vectors U" = U"©
containing approximated cell averages on a dyadic uniform grid X* at time 1" = nAt.

An important feature of our scheme is that the differences at different levels, and the solution at different levels,
are always organized in a tree structure that is dynamic in the following sense: whenever an element is included
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iz m e m e —< ’ k=...

_ k=2
k=1
k=0

GO

Fig. 2 Graded tree data structure. The nodes, leaves and virtual leaves are represented by thin, bold, and dotted horizontal lines,
respectively

in the tree, all other elements corresponding to the same spatial region in coarser resolutions, are also included.
The data structure is organized as a dynamic graded-tree mainly for the sake of data and time compression and,
in particular, to be able to navigate through the tree. The adaptive grid corresponds to a set of nested dyadic grids
generated by refining recursively a given cell depending on the local regularity of the solution. The basis of the tree
is called root. A node is an element of the tree. In one-dimensional space, a parent node has two sons, and the sons
of the same parent are called brothers. A given node has nearest neighbors in each direction, called nearest cousins.
A node without sons is called a leaf. For the computation of the fluxes of a leaf, we need s’ = 2 nearest cousins in
each direction. If these do not exist, we create them as virtual leaves. In Fig. 2 we illustrate the graded-tree structure.

The nodes of the tree are the control volumes. Following [7], we denote by A the set of indices of existing nodes,
by L(A) the restriction of A to the leaves, and by A; the restriction of A to a multiresolution level [, 0 < < L.

To estimate the cell averages of u on level / from those of the next finer level / + 1, we use the projection operator
P;+1-;. This operator is exact, unique, and in our one-dimensional case is defined by

i _ 1. _
uj =Pris1Ui41)j = §(M1+1,2j +irp12j-1).

4.2 The multiresolution transform

To estimate the cell averages of a level / + 1 from the ones of the immediately coarser level [, we use the prediction
operator P;_,;, 1. This operator gives an approximation by interpolation of U at level / + 1. In contrast to the pro-
jection operator, there is an infinite number of choices for the definition of P;_, 41, but we impose two constraints:
first, the prediction is local in the sense that the interpolation for a son is made from the cell averages of its parent
and the s nearest cousins of its parent; and second, the prediction is consistent with the projection in the sense that
it is conservative with respect to the coarse grid-cell averages or equivalently, Pj41_; o P41 = Id.

For a regular grid structure in one space dimension, we use a polynomial interpolation:

N
o) =it + O Y igjom — i1 jom)s J=1,..., N, (4.1a)
m=1
)
121 =it — D Ym g jrm — i1 jom)- (4.1b)
m=1
The order of accuracy of the multiresolution method chosen for our cases is » = 3, which correspondsto y; = —1/8

in (4.1a) and (4.1b).

The detail is the difference between the exact and the predicted value: dj, j =iy, j — iy, j. Given that a parent has
two sons, only one detail is independent. Then, knowledge of the cell-average values of the two sons is equivalent
to that of the cell-average value of the father and the independent detail. Repeating this operation recursively on L
levels, we get the multiresolution transform on the cell average values M:U L~ ([)L, e, Dl s Uo).
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One of the features of this adaptive multiresolution discretization lies in the possibility to avoid considering the
prediction error of the numerical flux in the update of the numerical solution, as in Harten’s original approach. This
feature may be seen as an advantage in the frame of equations with discontinuous flux.

4.3 Multiresolution algorithm

Now we give a brief description of the multiresolution procedure used to solve the test problems.

(1) Initialization of parameters: Model, FV and multiresolution parameters.
(2) Creating the initial graded tree structure:

Create the root of the tree and compute its cell-average value.

Split the cell, compute the cell-average values in the sons and compute the corresponding details.
Apply the thresholding strategy for the splitting of the new sons.

Repeat this until all sons have details below the required tolerance &;.

DO n =1:total_time_steps

(3) Determine the set of leaves and virtual leaves.

(4) Time evolution with fixed time step: Compute the discretized divergence operator for all the leaves. Performing
of the space discretization is done in a locally uniform grid (regarding each leaf as a control volume of an
uniform grid), so we need only those cell average values which are involved in the evaluation of the fluxes for
the “edges” of the adaptive mesh formed by the leaves of the tree, i.e., we need the leaves and the s’ = 2 nearest
cousins in each direction.

(5) Updating the tree structure:

e Recalculate the values on the nodes and the virtual nodes by projection from the leaves. Compute the details
in the whole tree. If the detail in a node is smaller than the prescribed tolerance, then the cell and its brothers
are deletable.

e If some node and all its sons are deletable, and the sons are leaves without virtual sons, then delete sons. If
this node has no sons and it is not deletable and it is not at level [ = L, then create sons.

e Update the values in the new sons by prediction operator from the former leaves.

END DO n.
(6) Output: Save mesh, leaves and cell-averages. De-allocate tables and plots.

With such a process, we obtain a high-order approximation in the smooth regions and mesh refinement near dis-
continuities as a consequence of the polynomial exactness in the multiresolution prediction operator, even in the
reference finite volume scheme is low-order accurate.

For a given case of simulation, the performance of the multiresolution method can be assessed by two quantities:
the data compression rate n and the speed-up factor V. The data compression rate is defined by

Np
y

= N L -

where Ny, and |£(A)| are numbers of points of the finest grid and of the leaves in the graded tree, respectively. Note
that the data compression rate measures the memory compression at a given time of the simulation.

The speed-up factor is the ratio between the CPU time of the numerical solution obtained by the FV method and
the CPU time of the numerical solution obtained by the multiresolution method:

_ (CPU time)py
" (CPUtime)mr
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5 Error analysis of the adaptive multiresolution scheme

The main properties of the basic finite volume scheme, i.e., its L! contractivity, the CFL stability condition and the
order of approximation in space, allow to derive the optimal choice of the threshold parameter ¢ for the adaptive
multiresolution scheme. Following the ideas put forward by Cohen et al. [11] and thereafter extended to parabolic
equations by Roussel et al. [9], we decompose the global error between the cell average values of the exact solution
at the level L, denoted by zZeLX, and those of the multiresolution computation with a maximal level L, denoted by
ﬁﬁ,lR, into two errors

;L R, )
Ugy — UNR H S | Uex — UEy H + H”FV — UNR H . (.1

The first error on the right-hand side, called discretization error, is the one of the finite volume scheme on the finest
grid of level L. It can be bounded by

ﬁé—ﬁ%H<CZ”Q C >0, (5.2)

provided that « is the convergence order of the finite volume scheme. The classical approach of Kuznetsov [60]
allows to obtain o = 1/2 for a hyperbolic scalar equation. Excepting the discontinuity due to the degeneracy, we
can anticipate that the value o = 0.5 is a pessimistic estimate of the convergence rate for our case. Unfortunately, to
our knowledge, no theoretical result regarding the convergence rate for numerical schemes for strongly degenerated
parabolic equations has been available so far. Some numerical tests in [55] give o & 0.6, which is slightly over our
chosen value.

For the second error, called perturbation error, Cohen et al. [11] assume that the details on a level [ are deleted
when smaller than a prescribed tolerance ¢;. Under this assumption, they show that if the numerical scheme, i.e.,
the discrete time evolution operator is contractive in the chosen norm, and if the tolerance ¢; at the level [ is set
to g = 2!=L¢  then the difference between finite volume solution on the fine grid and the solution obtained by
multiresolution accumulates in time and satisfies

~L ~L r
HuFV — UMR H <C——e C>0, (5.3)
At
where T = nAt and n denotes the number of time steps.
On the other hand, denoting by |1 the size of the domain and Ax the smallest space step, we have Ax = |I|27L.
Thus, according to the CFL condition (3.3), the time step Af must satisfy

|I|2 2—2L—1
At

< .
I127Y max x),u)| + max |A'(u
7] ue[O,l],xeR|fu(Y( ), u)] ue[O,l]l ()]
If we want the perturbation error (5.3) to be of the same order as the discretization error (5.2), we need that

A% o 2oL, Following Cohen et al. [11], we define the so-called reference tolerance as e = 2-*L At This gives

9—(a+DL

er = C (5.4)

I : 27t A(w)]
[I| max R|fu(y(x) u)| + urerl[%ﬁ]| ()]

uel0,1],xe
For the case A(1) = 0 (see Example 2 of Sect. 6), the reference tolerance must be taken as
-1
er = C27%L (ue[(l)r’lla]l’);e]R [ fu (¥ (x), M)|)

because of the less restrictive CFL condition. To choose an acceptable value for the factor C, a series of computations
with different tolerances are necessary.
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Fig. 3 Example 1 (traffic model): three-dimensional plot of the numerical solution

6 Numerical results
6.1 Example 1: Diffusively corrected kinematic traffic model with changing road-surface condition
Our numerical example for this model has been chosen in such a way that results can be compared with simulations

shown in Example 5 of [16]. The velocity function is given by (2.2) with u,x = 220 cars/mi, C = e/7 = 0.38833
and vpax = 70 mph, so that

VUmax U for0 <u <u. =exp(—1/C)umax = 16.7512 cars/mi,
fu) = Umax (€/Du In(Umax/u) forue < u < umax, (6.1)
0 otherwise.

0 *

We choose vy, = 70 mph and v};,, = 25 mph. The initial density is chosen as

100 cars/mi for —2mi < x < —1mi,
po(x) = .
otherwise.

The integrated diffusion coefficient A (u) resulting from our choice of parameters satisfies A(u) = 0for0 < u <
uc = 16.7512 cars/mi, and has an explicit algebraic representation [16,54].

In Example 1, we consider an initial convoy of cars traveling on an empty road, and wish to see how the convoy
passes through the reduced-speed road segment. The numerical solution obtained by our method is represented in
a three-dimensional plot in Fig. 3 and shown at four different times in Figs. 4 and 5. These figures also display
the corresponding position of the leaves. For these four times, Table 1 displays the corresponding values of the
speed-up factor V, the compression rate 1, and normalized approximate errors. These errors and the speed-up factor
are measured with respect to a fine grid calculation (no multiresolution) with Ny = 213 cells. (We further comment
on the behavior of V and 7 in the discussion of Example 3.)

For this example, we take an initial dynamic graded tree, allowing L = 10 multiresolution levels. We use a fixed
time step determined by A = 0.0003 h/mi, thus Ar = Ahy. The prescribed tolerance ¢R is obtained from (5.4),
where the constant C for this example corresponds to a factor C = 10%, so ¢ = 0.301 and the thresholding strategy
1S & = k=L

The errors in L' norm between the numerical solution obtained by our multiresolution scheme for different
multiresolution levels L, and the numerical solution by finite volume approximation in a uniform fine grid with 2!3
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Table 1 Example 1 (traffic

model): corresponding tinal [11] %4 n L! error L? error L error
simulated time, speed-up 4 5 5
factor V', compression rate 0.05 6.38 45511 5.16x10~ 6.22x10~ 5.64%10~
and normalized errors. 0.10 6.99 4.2140 4571074 2.41x1073 8.16x107°
L — 10 multiresolution 0.15 7.84 7.8168 7.21x1074 5.12x1073 7.23%x1074
levels 0.20 9.01 17.3559 1.14x1073 2.47x107* 3.86x1073
10°
-- MR
-- FV
— slope=1.00
0
o 10
S .
s S
| N
10° Tl T
10—10 1 ‘ 2 ‘ 3 4
10 10 10 10

N
t Fig. 7 Example 2 (clarifier-thickener model with A = 0):

Fig. 6 Example 1 (traffic model): L' errors three-dimensional plot of the numerical solution

control volumes, are depicted in Fig. 6. In practice, we compute the error between the numerical solution obtained
by multiresolution and the projection of the numerical solution by finite volume approximation. We also observe
the same slope (=0.8819) between finite volume and multiresolution computation in the L' error of Fig. 6.

6.2 Example 2: Clarifier—thickener treating an ideal suspension (A = 0)

For Example 2, we choose the same parameters as in [50,51], so that results can be compared. In particular, we
consider an ideal suspension that does not form compressible sediments, i.e., we set A = 0, so that the model
considered in this example actually corresponds to the first-order equation (1.3).

We consider a clarifier—thickener unit that is initially full of water by setting up(x) = 0. At ¢ = 0, we start to
fill up the device with feed suspension of concentration ur = 0.8. We also consider x;, = —1 and xg = 1 and
we assume that the mixture leaving the unit at xp, and xR is transported away at the bulk flow velocities g, = —1
and gr = 0.6. The suspension is characterized by the function f(u) given by (2.9) with voe = 27/4, C = 2 and
Umax = 1.

We use an initially graded tree with L = 10 multiresolution levels and a reference tolerance of & = 4.15 x 1073.
The finest grid has N, = 512 control volumes and we choose a factor A = 1/16. Observe that the visual grid used
to display Fig. 7 coincides with the computational grid in the x-direction, but in the ¢-direction, only every 50th
profile is plotted.

For Example 2, we use as a reference solution a fine-grid computation with 2'> control volumes. Table 2 lists the
behavior of the error and the gain in computational effort and data storage for different times. Also, analogously to
Example 1, we can observe in Fig. 8 that the plots of the L! error, which is measured here for = 2, have the same
slopes.
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Table 2 Example 2 (clarifier—thickener model with A = 0): corresponding simulated time, speed-up factor V, compression rate, and
normalized errors. L = 10 multiresolution levels

tfinal |4 n L! error L? error L error
1 8.42 6.4362 247x107* 6.31x107 8.49% 1073
2 9.36 8.0315 4.11x10~4 8.47x10~* 2.40x107*
3 10.21 8.7850 3.42x107% 1.84x1073 6.74x107*
4 10.94 8.7850 4.18x1074 1.10x1073 1.26x1073
Fig. 8 Example 2 10°
(clarifier—thickener model “ - MR
with A = 0): L' errors 100 | ---FV |
0 — slope=1.00
107 -
(2}
S .
g 10 -
|
oo,
10” A -
107° e
107"° : :
10’ 10° 10° 10*
N

e
1] 0 -1 «m] t[s] 5 -1 «m]

Fig. 9 Example 3 (clarifier—thickener treating a flocculated suspension): two views of the time—space representation of the numerical
solution

6.3 Example 3: Clarifier—thickener treating a flocculated suspension (A # 0)

The parameter of the flux is the same as in Example 2, and the function o («) is given by (2.12) with og = 1.0Pa,
uc = 0.1 and B = 6. The remaining parameters are A, = 1,660 kg/m? and g = 9.81 m/s2. Note that for (2.9)
with B € N, the function A () has an explicit closed-form representation; see [61]. The reference numerical scheme
is (3.1) with A = 40s/m.

Our simulation corresponds to the choice gr = 2.5 x 107°m/s and g;. = —1.0 x 107> m/s. The feed concentra-
tion corresponds to up = 0.086. Figure 9 shows the numerical solution until # =50,000s. In this case we consider
the device with an initial concentration distribution of ug(x) = uc, x € [xL, xr] and we can observe the initial stage
of the fill-up process. For this example, we take an initial dynamic graded tree, allowing L = 8 multiresolution
levels, and for the reference tolerance we use C = 1073 ,80 R = 2.24 x 1074,

For Example 3 we use as a reference solution a fine grid computation with 2'3 control volumes. Table 3 again
displays the behavior of the error and the gain in computational effort and data storage for different times. Also,
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Table 3 Example 3 (clarifier—thickener model with A # 0): corresponding simulated time, speed-up factor V, compression rate, and
normalized errors. L = 9 multiresolution levels

tfinal [S] \% n L! error L? error L°° error
10000 7.88 4.1787 3.67x107* 8.41x1073 6.73x107*
25000 9.01 4.4265 4.82x1074 9.32x1073 8.29x10~*
50000 10.74 44734 6.30x10~* 1.24x10~4 1.07x1073
Fig. 10 Example 3 10°
(clarifier—thickener model
with A = 0): L' errors 10°
o 107
S
10
jl
10°
10°
-10 L L
10 401 102 108 10*

NL

analogously to the previous examples, we observe in Fig. 10 the same slope between the L! errors for the finite
volume and multiresolution methods. This error is measured here at r = 25, 000s.

Note that in all numerical examples, the speed-up factor V increases as ] is increased, even if the data compres-
sion rate 7 remains constant, which approximately is the case in Table 3, or even decreases, as we see, for example,
by comparing the values of 1 for #fpa = 0.05h and 4y, = 0.10h in Table 1. The explanation of this discrepancy
is that while n measures the quality of performance of the multiresolution seen at the instant ¢t = #g4], the speed-up
factor V is referred to the total time of simulation and also includes the “overhead” required by initializing the
graded tree in step (2) of the multiresolution algorithm. The initialization requires a fixed amount of CPU time,
which is independent of the number of total time steps (which is proportional to #gn4], Since we consider At to be
fixed). On the other hand, a standard FV method on a fixed grid will always require CPU time proportional to the
number of time steps. This explains why even if 1 does not change significantly, we observe an improvement of
the speed-up factor V as ffp,) is increased.

7 Conclusions

Before discussing our results, we comment that the standings of both applicative models are slightly different.
Numerous mathematical models have been proposed for one-directional flows of vehicular traffic; reviews of this
topic are given in the monographs by Helbing [62], Kerner [63] and Garavello and Piccoli [64], as well as in the
articles by Bellomo et al. [65-67]. These and other works vividly illustrate that the number of balance equations
(for the car density, velocity, and possibly other flow variables) that form a time-dependent model based on partial
differential equations, as well as the algebraic structure of these equations, is a topic of current research. Fortunately,
all these models are spatially one-dimensional, and a circular road with periodic boundary conditions provides a
setup that is both physically meaningful (since the flow is horizontal) and easy to implement for numerical simu-
lation. This setup, on the one hand, is widely used to compare different traffic models, and, on the other, allows to
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Fig. 11 Example 2 (clarifier—thickener model with A = 0): numerical solution (a, ¢) and position of the leaves (b, d) at # = 1 and
t=2

assess the local influence and long-term behavior of nonlinearities and inhomogeneities such as the ones introduced
in Sect. 6.1.

While the traffic problem highlights the use of the scheme used herein to explore different models, the clarifier—
thickener model calls for an efficient tool to perform simulations, on the one hand, related to clarifier—thickener
design and control [20,68], and on the other, to parameter identification calculations [69,70]. In fact, depending on
the parameters, clarifier—thickener operations such as fill-up may extend over weeks and months [68], and require
large simulation times, while the parameter identification procedures in [69,70] proceed by solution of an adjoint
problem, which needs storage of the complete solution of the previously solved direct problem. Clearly, methods
that imply savings in both computational time and memory storage, such as the multiresolution scheme presented
herein, are of significant practical interest for the clarifier—thickener model.

Both mathematical models considered herein exhibit three types of fronts that typically occur in solutions of
(1.2), namely standard shocks (i.e., discontinuities between solution values for both of which (1.2) is hyperbolic),
hyperbolic—parabolic type-change interfaces (such as the sediment level in Example 3), and stationary disconti-
nuities located at the discontinuities of y (x). The basic motivation for applying a finite volume multiresolution
scheme is that this device is sufficiently flexible to produce the refinement necessary to properly capture all these
discontinuities, and leads to considerable gains in storage, as can be seen from the sparsity of the graded trees in
our numerical examples. Moreover, Fig. 6 confirms that we may effectively control the perturbation error, in the
sense that the error of the resulting finite volume multiresolution scheme remains of the same order as that of the
finite volume scheme on a uniform grid. We recall from Sect. 5 that the feasibility of this control depends on an
estimate of the convergence rate of the basic discretization on a uniform grid, which is an open problem for strongly
degenerate parabolic equations.

Although our numerical results look promising, they still alert to some shortcomings that call for improvement.
The most obvious one is the limitation of the time step according to the spatial step size of the finest grid, which
can possibly be removed by using a space—time adaptive scheme such as the recent finite volume multiresolution
schemes of Stiriba and Miiller [71]. On the other hand, the basic finite volume scheme accurately resolves the
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horizontal solid line in (a, ¢) denotes the critical concentration u, = 0.1
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Fig. 14 Example 3 (clarifier—thickener treating a flocculated suspension): (a) numerical solution (stars) and initial condition (dashed),
(b) positions of the leaves (plus) at t = 50, 000 s for the transition to a steady state from ug = 0.09. The horizontal solid line in (a)
denotes the critical concentration u, = 0.1

discontinuities of the solution sitting at the jumps of y (x) at any level of discretization; these discontinuities are
not approximated by smeared transitions (as are discontinuities at positions where y (x) is smooth); see [19]. This
means that the refinement the multiresolution produces near these discontinuities, which is visible in Figs. 11 and 12,
and which is based on the adaptation of the refinement according to features of the solution (but not of y (x)), is
possibly unnecessary, and that a more efficient version of the present method may be feasible (Figs. 13, 14).
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