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A fully adaptive finite volume multiresolution scheme for one-dimensional strongly degenerate parabolic equations with
discontinuous flux modelling an extended clarifier-thickener, is presented. The numerical scheme is based on a finite volume
discretization using the approximation of Engquist-Osher for the flux and explicit time stepping. Cell averages multiresolution
scheme speeds up CPU time and memory requirements. A particular feature of our scheme is the storage of the multiresolution
representation of the solution in a dynamic graded tree.

1 Introduction

High resolution finite volume schemes for the approximation of discontinuous solutions to conservation laws are of at least
second-order accuracy in regions where the solution is smooth and resolve discontinuities sharply and without spurious os-
cillations. Methods of this type include the schemes described in [1, 2, 3]. In standard situations, the solution u(x, t) of a
conservation law ut + f(u)x = 0, exhibits strong variations (shocks) in small regions but behaves smoothly on the major
portion of the computational domain. The multiresolution technique adaptively concentrates computational effort associated
with a high resolution scheme on the regions of strong variation. It goes back to Harten [4] for hyperbolic equations and
was used by Roussel et al. [5] for parabolic equations. Important contributions to the analysis of multiresolution methods for
conservation laws include [6, 7]. In this note, we present a multiresolution scheme and corresponding numerical experiments
for strongly degenerate parabolic equations with discontinuous flux modelling an extended clarifier-thickener. Specifically,
we consider equations of the type

ut + f
(
γ(x), u

)
x

= γ3(x)ux for x ∈ ΠT := R × (0, T ], (1)

where f : R
n+1 → R is a piecewise smooth and Lipschitz continuous function, and γ(x) is a vector of scalar parameters,

which are discontinuous at most in a finite number of points. The unknown is the solids concentration u as function of time t
and depth x. The extended model for the clarifier–thickener is given by (1) with f

(
γ(x), u

)
= γ2(x)(u − uF) + γ1(x)b(u),

where b(u) = v∞u(1−u)C for u ∈ (0, umax), and 0 otherwise. The discontinuities are given by: γ1(x) = 1, if x ∈ [xL, xR],
and 0 otherwise; γ2(x) = q̃R − qF, if x � 0, and γ2(x) = q̃R, if x > 0; γ3(x) = 0, if x < xD, and γ3(x) = −qD, if x > xD.
Assume an initial concentration u(x, 0) = u0(x), for x ∈ R and u0(x) ∈ [0, umax].

2 Numerical scheme and multiresolution discretization

The numerical scheme for the solution of (1) is essentially described in [8]. We discretize R into cells Ij := [xj−1/2, xj+1/2),
where xj+1/2 = (j + 1/2)Δx with j ∈ Z. Let λ = Δt/Δx and U0

j = u0(xj). We define the approximations according to

Un+1

j = Un
j − λΔ−h(γj+1/2, U

n
j+1, U

n
j ) − λγ3

j Δ+Un
j , (2)

where γj+1/2 := γ
(
x−

j+1/2

)
, and γ3

j := γ3
(
x−

j

)
. The symbols Δ± are spatial difference operators: Δ−Vj := Vj − Vj−1

and Δ+Vj := Vj+1 − Vj , and we use the Engquist-Osher flux h(γ, v, u) := 1

2

[
f(γ, u) + f(γ, v) −

∫ v

u |fu(γ, w)| dw
]
. For

stability we need to satisfy a CFL condition requiring that Δt/Δx be bounded (see [8]). In our scheme, the differences and
the solution at different levels, are organized in a tree structure. Whenever an element is included in the tree, all other elements
corresponding to the same spatial region in coarser resolutions, are also included. The adaptive grid corresponds to a set of
nested dyadic grids generated by refining recursively a given cell depending on the local regularity of the solution. See [9] for
more details of the multiresolution strategy.
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3 Numerical results

In this example we use the fully adaptive multiresolution scheme to solve a problem modelled by a conservation law with
discontinuous flux. The corresponding equation possesses a nonconservative term, and despite this fact we see that with
our adaptive scheme we obtain correct and highly accurated solutions. Let us consider a suspension characterized by v∞ =
1.0 × 10−4 m/s, C = 5 and umax = 1. Furthermore xL = −2 m and xR = 1 m, the device being initially empty (u0 ≡ 0).
These parameters and the control variables qL = 0.0 m/s, qR = 0.6 m/s, qD = −1.0 m/s and uF = 0.7 are chosen as in
Case 5 of [8]. The reference tolerance used for this example is ε = 4.6 × 10−4. Figures 1 show the numerical solution using
multiresolution. In every case the figures on the right side show that the multiresolution effectively detects the stationary
shocks corresponding to the flux discontinuities and the differences of gradients in the solution.

Fig. 1 Left side: numerical solution (asteriscs), initial condition (dashed); right side: position of the leaves; t = 1 s and t = 4 s.

MR Method V μ L1−error L2−error L∞−error

t = 1 s r = 3 7.46 10.6391 8.56 × 10−5 2.35 × 10−7 3.83 × 10−5

r = 5 7.25 10.1450 2.16 × 10−5 7.48 × 10−8 1.29 × 10−5

t = 4 s r = 3 8.29 11.3463 2.83 × 10−4 5.32 × 10−9 9.51 × 10−8

r = 5 8.01 11.2871 7.55 × 10−5 1.39 × 10−9 3.62 × 10−8

Table 1 Speed–up rate V =
(CPU time)FV

(CPU time)MR

, compression rate μ, and normalized errors. L = 12 (more details can be found in [9]).
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