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Abstract

Time delay is an essential ingredient of spatio-temporal predator–prey models since the reproduction of the predator population
after predating the prey will not be instantaneous, but is mediated by a constant time lag accounting for the gestation of predators.
In this paper we study a predator–prey reaction–diffusion system with time delay, where a stability analysis involving Hopf
bifurcations with respect to the delay parameter and simulations produced by a new numerical method reveal how this delay
affects the formation of spatial patterns in the distribution of the species. In particular, it turns out that when the carrying capacity
of the prey is large and whenever the delay exceeds a critical value, the reaction–diffusion system admits a limit cycle due to
the Hopf bifurcation. This limit cycle induces the spatio-temporal pattern. The proposed discretization consists of a finite volume
element (FVE) method combined with a Runge–Kutta scheme.
c⃝ 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

1.1. Scope

The effect of time delay is fundamental in continuous models of populations of single or multiple species whenever
the growth rate of a population does not respond instantaneously to changes in population size. One of the first models
with delay was proposed by Volterra [55], who took into account the delay in response of a population’s death rate to
changes in population density caused by an accumulation of pollutants in the past. Further causes of response delays
include differences in resource consumption with respect to age structure, migration and diffusion of populations,
gestation and maturation periods, delays in behavioral response to environmental changes, and dependence of a
population on a food supply that requires time to recover from grazing [7]. Within epidemic models, time delays
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describe the incubation periods of infectious diseases, the infection periods of infective members, and the periods of
recovered individuals with immunity [57]. More generally, the main expected consequence of including time delay is
oscillatory solution behavior [41].

In this work we are interested in criteria for the formation, and numerical methods for the efficient simulation, of
spatio-temporal patterns described by a predator–prey model with time delay and diffusion. The model is given by the
following initial–boundary value problem for a pair of reaction–diffusion equations, the second of them with a delay
term:

∂t u1 − d11u1 = u1(a1 − b11u1 − b12u2), (x, t) ∈ Ω × T , (1.1a)

∂t u2 − d21u2 = u2

−a2 + b21(u1)τ − b22u2


, (x, t) ∈ Ω × T , (1.1b)

∂nu1 = ∂nu2 = 0, (x, t) ∈ ΣT , (1.1c)

u1(x, t) = ψ1(x, t), u2(x, t) = ψ2(x, t), (x, t) ∈ Ωτ . (1.1d)

The model is posed on a finite time interval T := (0, T ) for a fixed final time T > 0, and where ΣT := (∂Ω) × T ,
Ωτ := Ω × [−τ, 0], and ∂n denotes the directional derivative with respect to the outer normal vector n of the bound-
ary ∂Ω of Ω . Here u1 = u1(x, t) and u2 = u2(x, t) are the sought densities of the prey and the predator, respectively.
The right-hand side of (1.1b) includes the delay term (u1)τ := u1(x, t −τ), where the constant τ > 0 is the delay. The
delay in (1.1b) can be regarded as a gestation period (roughly speaking, abundance of prey at time t will influence the
growth of the predator population at time t + τ ) or reaction time of the predators [48]. The homogeneous Neumann
boundary condition (1.1c) indicates zero population flux across ∂Ω . Moreover, the parameters a1 and a2 are, respec-
tively, the growth rate of the prey and the death rate of the predator. Both are assumed strictly positive for sake of the
subsequent analysis. In addition bi i (i = 1, 2) are the rates of intra-specific competition (assumed nonzero), and b12
and b21 denote the rates of consumption by predator on prey and mass conversion from prey to predator, respectively.
The ratios ai/bi i (i = 1, 2) are environmental carrying capacities, and d1 and d2 are diffusion coefficients of each
species.

The first purpose of this paper is to study the spatio-temporal patterns produced by solutions of (1.1) and to examine
the onset of oscillatory solution behavior through a Hopf bifurcation with respect to the delay τ as a bifurcation
parameter. The second purpose is to introduce a new numerical method for the solution of (1.1). Our objective here
is to explore how delay determines the stability threshold of the steady state of (1.1a), (1.1b). The present analysis
reveals that spatio-temporal patterns can be induced by a series of Hopf bifurcation critical points. Specifically, spatio-
temporal patterns become possible for supercritical values of delay when the limit cycle appears due to the Hopf
bifurcation. To the authors’ knowledge, the formation of spatio-temporal patterns as a consequence of delay has not
yet been reported in the literature related to spatial patterns. Nevertheless, there is a body of work in investigating
pattern formation in reaction–diffusion systems due to the existence of a limit cycle; see, for instance, [36,39].

1.2. Related work

Introductions to delay differential equations are given by Kuang [33] and Smith [52]; see also Chapter 8 of
McKibben [38]. For general introductions to bifurcation theory we mention [13,27], as well as [28] for Hopf
bifurcations. In predator–prey systems, delay effects were first considered by Volterra [56]. He showed that under
certain conditions, all solutions possess an oscillatory behavior. In fact, there are many plausible ways to introduce
delays into a predator–prey model, see [48] (and the references cited therein) for a survey in the non-spatial setting.
For the delayed non-spatial predator–prey model, the asymptotic stability of the equilibrium and the periodicity of the
solution were investigated (see [6,16,37], and the references therein). Analyses of non-spatial variants of (1.1) also
include [19,31,49,58,62], and references to spatio-temporal pattern formation include, besides [36,39] and the vast
list of references in both works, [15,24]. Numerical methods tailored for these kinds of problems can be found in
e.g. [2,26]. We here decide to use stable Runge–Kutta (RK) schemes proposed by Koto [32] (see also [29,30]).

For predator–prey models with diffusion, the existence of traveling wave solutions was shown in [40] and [22]
for discrete and continuous delays, respectively, although the models differ from (1.1). For (1.1) and related spatio-
temporal models, Gourley et al. [25] present a survey of mechanisms where diffusion and time delays may coexist in a
system involving nonlocal terms, in such a way that the ability of individuals to be at different points in space, at past
times, can be explained. On the other hand, Sen et al. [50] show that the time delay may induce spatial patterns in the
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reaction–diffusion system. A version of (1.1) with Beddington–Angelis functional response is studied in [61] along
with numerical simulations in one space dimension. We also mention [54], where the formation of delay-induced
Turing patterns is analyzed for a version of (1.1) with a different functional response (the bifurcation theory in that
paper is less involved). Bifurcations akin to those studied herein are also examined by [47] for a fully discrete coupled
map lattice predator–prey model.

We study the effects of the time delay by a finite volume element (FVE) approximation of (1.1). This method
is a hybrid concept between finite elements and finite volume discretizations that features some desirable properties
including the ability to deal with unstructured meshes on arbitrarily shaped domains, the conservativity of inter-
element fluxes, and the feasibility of error estimates in L2 and H1 norms. FVE methods have historically been
applied for flow equations [11,12,34,46] and recently also for several applicative time-dependent convection–diffusion
problems [8,9,17,18,35,45]. Other numerical methods for similar problems include finite differences [20,53,59], finite
volume methods [1,5,51], and finite elements [4,21,60].

1.3. Outline of the paper

In Section 2 we show that without delay (i.e., τ = 0), the problem (1.1) does not generate spatial patterns, while in
the presence of delay (τ > 0), the formation of spatial patterns is induced. To this end, after stating some preliminaries
(Section 2.1), we first prove (in Section 2.2) by standard arguments that (1.1) admits a unique, positive and uniformly
bounded solution for all times. In Section 2.3 we analyze the linear stability of (1.1). We show that when τ exceeds
a certain critical value τ ∗, then the operator arising from linearization of (1.1) around the non-trivial equilibrium u∗

admits sequences {τ ∗
n }n∈N0 of purely complex eigenvalues, and that the solutions of the linearized version undergo

a Hopf bifurcation at u = u∗ whenever τ = τ ∗
n . Next, in Section 2.4, we employ the normal form method and the

center manifold theory to analyze the direction of the Hopf bifurcation of solutions of (1.1) (using τ as bifurcation
parameter) obtained in Section 2.3. The result is a predictive criterion that states whether the Hopf bifurcations are
supercritical or subcritical, respectively, and the corresponding bifurcating periodic solutions on the center manifold
are stable (unstable, respectively). In Section 3 we introduce the numerical method for the solution of (1.1), which
is based on a FVE spatial discretization (introduced in Section 3.1) combined with a Runge–Kutta method for delay
differential equations (Section 3.2). Numerical results are presented in Section 4. Example 1 (Section 4.2) refers to
a simplified version of (1.1), for which an exact solution is available. The recorded error histories indicate that the
method converges when discretization parameters are refined. Examples 2 and 3 (Sections 4.3 and 4.4) consider the
full model (1.1) on a square. It is illustrated that spatial pattern formation and temporal oscillatory behavior appear as
predicted. Example 4 in Section 4.5 reports similar findings in a disk-shaped domain, while Example 5 in Section 4.6
alerts to the formation of structures similar to spiral waves in a rectangular domain. Finally, Section 5 collects some
conclusions.

2. Delay-driven spatial patterns

2.1. Preliminaries

Notation 1. Let 0 = µ1 < µ2 < · · · → ∞ be the eigenvalues of −∆ on Ω under no-flux boundary conditions, and
E(µi ) be the space of eigenfunctions corresponding to µi . We define the following space decomposition:

(i) Xi j := {c · φi j : c ∈ R2
}, where {φi j } is an orthonormal basis of E(µi ) for j = 1, . . . , dim E(µi ),

(ii) X := {u = (u1, u2)
T

∈ [C1(Ω̄)]2
: ∂nu1 = ∂nu2 = 0 on ∂Ω}. Thus,

X =

∞
i=1

Xi , where Xi =

dim E(µi )
j=1

Xi j . (2.1)

Furthermore, we will eventually employ the following result (see Theorem 2.1 in [44]).

Lemma 2.1. Let (c̃1, c̃2) and (ĉ1, ĉ2) be a pair of ordered upper and lower solutions of the system (1.1). Then, that
system has a unique global solution (u1(x, t), u2(x, t)) such that ĉi ≤ ui (x, t) ≤ c̃i , i = 1, 2, for (x, t) ∈ Ω ×[0,∞).

We will also appeal to the following lemma (proven in Appendix A of [19]).
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Lemma 2.2 (Butler’s Lemma). Let α+β < 0 and αβ > γ . Then the real parts of solutions of λ2
− (α+β)λ+αβ−

γ e−τλ
= 0 are negative for τ < τ0, where τ0 > 0 is the smallest value for which this equation has a solution with

real part zero.

2.2. Existence of a solution

In order to establish the global existence of a solution to (1.1), it suffices to show that any solution candidate
(u1(x, t), u2(x, t)) must be bounded for all t > 0. To this end, we define the quantities ψ̂i (τ ) := sup(y,s)∈Ωτ

ψi (y, s)
for i = 1, 2.

Theorem 2.3. The initial–boundary value problem with delay (1.1) has a unique solution (u1, u2) for T = ∞.
Moreover, the components u1 and u2 satisfy the following respective bounds:

0 < u1(x, t) ≤ A1(τ ) := max


a1

b11
, ψ̂1(τ )


, (2.2)

0 < u2(x, t) ≤ A2(τ ) := max


1
b22


b21 max


a1

b11
, ψ̂1(τ )


− a2


, ψ̂2(τ )


. (2.3)

Proof. A straightforward derivation of local existence and uniqueness of solutions of (1.1) can be provided for
small values of T . We first show the positivity of the local solution (u1(x, t), u2(x, t)) for some T (here and in
what follows, we understand by positivity of the pair (u1, u2) that u1 > 0 and u2 > 0). We now consider (1.1)
for the time interval T = (0, τ ). Since the initial values are positive, the term (u1)τ is positive and bounded on
Ω × (0, τ ). A direct application of the standard maximum principle for parabolic equations implies that the local
solution (u1(x, t), u2(x, t)) of (1.1) for T = (0, τ ) is positive on Ω × (0, τ ]. Moreover, the bounds (2.2) and (2.3)
are valid for 0 < t < τ . In a similar way, we now consider the system formed by (1.1a)–(1.1c) for T = (τ, 2τ)
along with the initial condition u1(x, t) = ψ1(x, t) and u2(x, t) = ψ2(x, t) for (x, t) ∈ Ω × [0, τ ]. Then the solution
(u1(x, t), u2(x, t)) of this system is positive on Ω × (τ, 2τ ]. By the induction principle, (u1(x, t), u2(x, t)) is positive
and bounded for some T .

Now we deduce the global existence of the solution (u1(x, t), u2(x, t)) by appealing to the method of upper and
lower solutions stated in Lemma 2.1. It is easy to verify that the pairs (A1(τ ),A2(τ )) and (0, 0) are ordered upper
and lower solutions of (1.1). Now the existence theorem of [44] implies that (1.1) admits a unique global solution
(u1(x, t), u2(x, t)). �

We observe that if the initial values ψi (x, 0), i = 1, 2, are nonnegative and none of the initial values is identically
zero, then the corresponding solution of (1.1) (u1(x, t), u2(x, t)) is strictly positive on Ω × T .

2.3. Linear stability analysis

The system (1.1a), (1.1b) has a nontrivial equilibrium

u∗
= (u∗

1, u∗

2) =


a1b22 + a2b12

b11b22 + b12b21
,

a1b21 − a2b11

b11b22 + b12b21


,

which is feasible (i.e., u∗

1 > 0 and u∗

2 > 0) if we assume that the parameters of the kinetics in (1.1) satisfy

a1/b11 > a2/b21. (2.4)

We now set w1 := u1 − u∗

1, w2 := u2 − u∗

2 and substitute u1 = w1 + u∗

1 and u2 = w2 + u∗

2 into (1.1). This yields
the following system for w1 and w2, which is equivalent to (1.1):

∂tw1 − d11w1 = (u∗

1 + w1)(−b11w1 − b12w2), (x, t) ∈ ΩT , (2.5a)

∂tw2 − d21w2 = (u∗

2 + w2)(b21w1(x, t − τ)− b22w2), (x, t) ∈ ΩT , (2.5b)

∂nw1 = ∂nw2 = 0, (x, t) ∈ ΣT , (2.5c)

w1(x, t) = ψ1(x, t)− u∗

1, w2(x, t) = ψ2(x, t)− u∗

2, (x, t) ∈ Ωτ . (2.5d)
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We retain only the linear terms in w1 and w2 to obtain the following linearization of (1.1) around u∗:

∂tw1 − d11w1 = −b11u∗

1w1 − b12u∗

1w2, (x, t) ∈ ΩT ,

∂tw2 − d21w2 = b21u∗

2w1(x, t − τ)− b22u∗

2w2, (x, t) ∈ ΩT ,

∂nw1 = ∂nw2 = 0, (x, t) ∈ ΣT ,

w1(x, t) = ψ1(x, t)− u∗

1, w2(x, t) = ψ2(x, t)− u∗

2, (x, t) ∈ Ωτ .

By applying standard manipulations for delay differential equations (cf., e.g., [52]), we therefore may express the
linearization of (1.1) around u∗ as ∂t u = (D∆ + J∗)w, where D = diag(d1, d2), w = (w1, w2)

T, and

J∗
=


−b11u∗

1 −b12u∗

1

b21u∗

2e−λτ
−b22u∗

2


.

Notation 1 implies that Xi is invariant under the operator D∆+J∗, and λ is an eigenvalue of this operator on Xi if and
only if it is also an eigenvalue of the matrix −µi D + J∗. Let us now fix the index i and notice that the characteristic
equation of −µi D + J∗ is

∆(λ, τ ) := det(−µi D + J∗
− λ) = 0. (2.6)

A direct calculation shows that

∆(λ, τ ) = λ2
− Riλ+ Qe−λτ , (2.7)

where for sake of brevity, we define

Ri := b11u∗

1 + b22u∗

2 + d1µi + d2µi > 0, Q := b12b21u∗

1u∗

2. (2.8)

Then we have the following result on the existence of delay-driven spatial patterns.

Theorem 2.4. If the parameters in the kinetics of (1.1) satisfy assumption (2.4), then the system (1.1) admits spatio-
temporal patterns due to the presence of the delay. More precisely, the following holds:
(i) If the delay is absent, that is τ = 0, then the positive equilibrium u∗ of (1.1) is locally asymptotically stable.

(ii) If the delay is present, that is τ ≠ 0, assume that ω∗ < Q1/2, where

ω∗
:=

1
√

2


R4

i + 4Q21/2
− R2

i

1/2
, (2.9)

for Ri and Q as defined in (2.8). Then there exists a critical point

τ ∗
=

1
ω∗

arccos
ω∗2

b12b21u∗

1u∗

2
=

1
ω∗

arccos
ω∗2

Q
,

such that the positive equilibrium u∗ is locally asymptotically stable for τ ∈ [0, τ ∗
] and unstable for τ ∈ (τ ∗,∞).

Proof. (i) We first show that τ = 0 does not generate spatial patterns. From the above argument, it is sufficient to
show that all roots of ∆(λ, 0) have negative real parts. It follows from (2.7) that ∆(λ, 0) = λ2

− Riλ+ Q. Therefore,
by the Descartes rule of sign, the quadratic equation ∆(λ, 0) = 0 always has two negative roots.

(ii) In light of the theory developed in [23, Chapter 3], in order to prove the instability of the uniform equilibrium it
is sufficient to show that there exist a purely imaginary number ωi, where ω ∈ R and i =

√
−1 is the imaginary unit,

and a real number τ > 0 such that ∆(ωi, τ ) = 0. If ωi is a root of (2.6), then ω must satisfy the pair of equations

−ω2
− Q cosωτ = 0, ωRi − Q sinωτ = 0, (2.10)

which leads to the quadratic equation (with respect to ω2)

ω4
+ R2

i ω
2
− Q2

= 0.

Again by the Descartes rule of sign, we have that this equation always has a unique positive real root ω = ω∗ given
by (2.9), and ∆(ωi, τ ) = 0 has a pair of simple purely imaginary roots ±ω∗i whenever

τ ∗
n =

1
ω∗

arccos
ω∗2

Q
+

2nπ

ω∗
, n = 0, 1, . . . . (2.11)
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If we now set τ ∗
:= τ ∗

0 , then by Lemma 2.2, u∗ is stable for τ < τ ∗. On the other hand, if τ ≥ τ ∗, then (2.7) has a
unique root on the imaginary axis. By the eigenvalue theory of [49], the sum of orders of the zeros of (2.7) for τ > τ ∗

is equal to that of τ = τ ∗. Then (2.7) for τ ∈ [τ ∗,∞) has roots with positive real parts, which implies that u∗ is
locally asymptotically unstable for τ ≥ τ ∗. �

Theorem 2.5. Under assumption (2.4), all solutions of problem (1.1) undergo a Hopf bifurcation at u∗ when τ = τ ∗
n

for n ∈ N0.

Proof. We have already shown that ∆(ωi, τ ) = 0 has a pair of simple purely imaginary roots ±ω∗i at τ ∗
n . Thus, to

prove that a Hopf bifurcation occurs at τ = τ ∗
n for n = 0, 1, . . . , we must still prove the following transversality

property:

d
dτ


Re(λ(τ ))


τ=τ∗

n
> 0, n = 0, 1, . . . . (2.12)

To this end, we substitute λ = σ + ωi, σ, ω ∈ R into (2.6) to obtain

σ 2
− ω2

− Riσ + e−στ Q cosωτ = 0, 2σω − Riω − e−στ Q sinωτ = 0.

Differentiating these equations with respect to τ yields
2σ − Ri − τe−στ Q cosωτ

 dσ
dτ

− 2ω
dω
dτ

− e−στ Q(ω sinωτ + σ cosωτ) = 0,
2ω + τe−στ Q sinωτ

 dσ
dτ

+ (2σ − Ri )
dω
dτ

+ e−στ Q(σ sinωτ − ω cosωτ) = 0.

Substituting σ = 0 into the above equations, we obtain the system of linear equations

(−Ri − τQ cosωτ)
dσ
dτ

− 2ω
dω
dτ

− Qω sinωτ = 0,

(2ω + τQ sinωτ)
dσ
dτ

− Ri
dω
dτ

− Qω cosωτ = 0,

whose solution gives

dσ
dτ

= A−1
Qω sinωτ −2ω
Qω cosωτ −Ri

 ,
where A is the determinant. Substituting τ = τ ∗

n , ω = ω∗ and (2.10) into the expression above, we obtain
A = R2

i + 4ω∗2
+ τ ∗ω∗2 Ri > 0, and thus

dσ
dτ


τ=τ∗

n ,ω=ω∗

=
(Q sinω∗τ ∗

n )
2
+ 2ω∗4

A
> 0,

which proves (2.12). �

2.4. The direction and stability of the Hopf bifurcation

As in Section 2.4, let us set w1 := u1 − u∗

1, w2 := u2 − u∗

2, and also γ := τ − τ ∗
n , so that γ = 0 is the Hopf

bifurcation value of system (1.1). Let us recall the Banach space decomposition (2.1) in Notation 1, and let us apply a
rescaling of time t → t/τ , in order to normalize the delay. Then the PDEs (2.5a) and (2.5b) can be written as follows:

∂tw1 = (τ ∗
n + γ )(d11w1 − b11u∗

1w1 − b12u∗

1w2 − b11w
2
1 − b12w1w2),

∂tw2 = (τ ∗
n + γ )


d21w2 + b21u∗

2w1(x, t − 1)− b22u∗

2w2 + b21w1(x, t − 1)w2 − b22w
2
2


.

(2.13)

We are now looking for solutions of (1.1), or equivalently, of (2.5) or of (2.13) (supplied with the appropriate initial
and boundary conditions (2.5c) and (2.5d) that are not repeated here) that are periodic in space in the sense that

1wl + k2wl = 0 on Ω × T , ∂nwl = 0 on ΣT , l = 1, 2,
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for a wavenumber k. According to Notation 1, k2
= µi for a suitable index i , i.e., 1wl = −µiwl for a suitable index

i , l = 1, 2. Inserting this into the right-hand sides of (2.13), we conclude that determining spatially periodic solutions
of system (1.1) is equivalent to the solution of the following system:

∂tw1 = (τ ∗
n + γ )(−d1µiw1 − b11u∗

1w1 − b12u∗

1w2 − b11w
2
1 − b12w1w2),

∂tw2 = (τ ∗
n + γ )


−d2µiw2 + b21u∗

2w1(x, t − 1)− b22u∗

2w2 + b21w1(x, t − 1)w2 − b22w
2
2


.

(2.14)

Next, we use the notation of [28] and define the space C := C([0, 1],R2). Then the system (2.14) is transformed into
a functional differential equation as

ẇ(t) = Lγ (wt )+ f (γ,wt ), (2.15)

where w(t) = (w1(t), w2(t))T ∈ R2, ˙≡ d/dt , and the operators Lγ : C → R2 and f : R × C → R2 are represented
by the respective equations

Lγ (φ) = (τ ∗
n + γ )


−d1µi − b11u∗

1 −b12u∗

1
0 −d2µi − b22u∗

2


φ1(0)
φ2(0)


+ (τ ∗

n + γ )


0 0

b21u∗

2 0


φ1(−1)
φ2(−1)


,

f (γ,φ) = (τ ∗
n + γ )


−b11φ

2
1(0)− b12φ1(0)φ2(0)

b21φ1(−1)φ2(0)− b22φ
2
2(0)


, (2.16)

where φ(θ) = (φ1(θ), φ2(θ))
T for (φ1, φ2)

T
∈ C. By the Riesz representation theorem, there exists a 2 × 2 matrix,

denoted η(θ, γ ), whose entries are functions of bounded variation, such that

Lγφ =

 0

−1
[dη(θ, γ )]φ(θ) for φ ∈ C.

As a matter of fact, we can choose

η(θ, γ ) = (τ ∗
n + γ )


−d1µi − b11u∗

1 −b12u∗

1
0 −d2µi − b22u∗

2


δ(θ)+ (τ ∗

n + γ )


0 0

b21u∗

2 0


δ(θ + 1),

where δ is a Dirac delta function. For φ ∈ C1([−1, 0],R2) we define

A(γ )φ :=


dφ(θ)

dθ
if θ ∈ [−1, 0), 0

−1
[dη(s, γ )]φ(s) if θ = 0,

R(γ )φ :=


0 if θ ∈ [−1, 0),
f (γ, φ) if θ = 0.

Thus, the system (2.15) is equivalent to

ẇt = A(γ )(wt )+ R(γ )(wt ), (2.17)

where wt (θ) := w(t + θ) for θ ∈ [−1, 0]. Now, for ψ ∈ C1([0, 1], (R2)∗) we define

A∗ψ(s) :=


−

dψ(s)
ds

if s ∈ [−1, 0), 0

−1
ψ(−t)dηT(t, 0) if s = 0,

and an inner product ⟨·, ·⟩ by

⟨ψ(s),φ(θ)⟩ = ψ̄(0)φ(0)−

 0

−1

 θ

0
ψ̄(ξ − θ) dη(θ)φ(ξ) dξ, (2.18)

where η(θ) = η(θ, 0). Then A(0) and A∗ are adjoint operators. From the discussion in Theorem 2.4, we know
that ±ω∗τ ∗

n i are eigenvalues of A(0) and, therefore, also of A∗. We now suppose that q(θ) = (q1, q2)
Teiω∗τ∗

n is the
eigenvector of A(0) corresponding to the eigenvalue ω∗τ ∗

n i. Thus, A(0)q(θ) = ω∗τ ∗
n iq(θ), and from the definition of
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A(0) we have
−d1µi − b11u∗

1 − iω∗
−b12u∗

1

b21u∗

2e−iω∗τ∗
n −d2µi − b22u∗

2 − iω∗


q1
q2


= 0,

which implies that

q(θ) =


1,−

d1µi + b11u∗

1 + iω∗

b12u∗

1

T

eiω∗τ∗
n θ .

Similarly, let q∗(s) = M(q∗

1 , q∗

2 )e
iω∗τ∗

n s be the eigenvector of A∗ corresponding to −iω∗τ ∗
n , where the factor M is to

be determined later. Then by A∗q∗(s) = −iω∗τ ∗
n q∗(s) and the definition of A∗, we have

−d1µi − b11u∗

1 + iω∗ b21u∗

2eiω∗τ∗
n

−b12u∗

1 −d2µi − b22u∗

2 + iω∗


q∗

1
q∗

2


= 0,

which gives

q∗(s) = M


−d2µi − b22u∗

2 + iω∗

b12u∗

1
, 1


eiω∗τ∗
n s .

To ensure that ⟨q∗(s), q(θ)⟩ = 1 it suffices with specifying M . From (2.18), we have

⟨q∗(s), q(θ)⟩ = q̄∗(0)q(0)−

 0

−1

 θ

0
q̄∗(ξ − θ) dη(θ)q(ξ) dξ

= M̄(q̄∗

1 , q̄∗

2 )


q1
q2


−

 0

−1

 θ

0
M̄(q̄∗

1 , q̄∗

2 )e
−iω∗τ∗

n (ξ−θ) dη(θ)


q1
q2


eiω∗τ∗

n ξ dξ

= M̄q̄∗

1


q1 + τ ∗

n e−iω∗τ∗
n (0q1 + 0q2)


+ M̄q̄∗

2


q2 + τ ∗

n e−iω∗τ∗
n (b21u∗

2q1 + 0q2)


= M̄

q̄∗

1 q1 + q̄∗

2 q2 + q̄∗

2 q1τ
∗
n b21u∗

2e−iω∗τ∗
n

.

Since q1 = 1 and q∗

2 = 1, we can choose M as

M̄ =

q̄∗

1 + q2 + τ ∗
n b21u∗

2e−iω∗τ∗
n
−1

,

where M̄ is the conjugate imaginary of M . Next we will compute the coordinate to describe the center manifold C0 at
γ = 0. Let wt be the solution of (2.17) when γ = 0. Define

z(t) := ⟨q∗,wt ⟩, W(t, θ) := wt (θ)− 2 Re{z(t)q(θ)}. (2.19)

On the center manifold C0, we have W(t, θ) = W(z(t), z̄(t), θ), where

W

z(t), z̄(t), θ


= W20(θ)

z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ · · · , (2.20)

where z and z̄ are local coordinates for the center manifold C0 in the direction of q∗ and q̄∗. Recall that we only need
to focus on real solutions, and note that W is real whenever wt is real. For wt ∈ C0 of (2.17), thanks to (2.19) and the
fact that γ = 0, we readily have

ż(t) = ⟨q∗, ẇt ⟩ = iω∗τ ∗
n z + q̄∗(0)f


0,W(z, z̄, θ)+ 2 Re{zq(θ)}


, iω∗τ ∗

n z + q̄∗(0)f0(z, z̄), (2.21)

and we can rewrite (2.21) as ż(t) = iω∗τ ∗
n z + g(z, z̄), where

g(z, z̄) := q̄∗(0)f0(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z̄2 z̄

2
+ · · · . (2.22)
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From (2.19) and (2.20), we obtain that

wt (θ) = W(t, θ)+ 2 Re{z(t)q(θ)}

= W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ zq + z̄q̄ + · · ·

= W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ eiω∗τ∗

n θ z


q1
q2


+ e−iω∗τ∗

n θ z̄


q̄1
q̄2


+ · · · . (2.23)

Substituting (2.16) and (2.23) into (2.22), we have

g(z, z̄) = q̄∗(0)f0(z, z̄) = M̄τ ∗
n (q̄

∗

1 , q̄∗

2 )


−b11φ

2
1(0)− b12φ1(0)φ2(0)

b21φ1(−1)φ2(0)− b22φ
2
2(0)


= p1z2

+ p2zz̄ + p3 z̄2
+ p4z2 z̄ + h.o.t.,

where h.o.t. stands for higher order terms, and

p1 = M̄τ ∗
n


q̄∗

1 (−b11 − b12q2)+ (−b22q2
2 + b21q2e−iω∗τ∗

n )

,

p2 = 2M̄τ ∗
n


q̄∗

1 (−b11 − b12 Re{q2})+ (−b22|q2|
2
+ b21 Re{q2eiω∗τ∗

n })

,

p3 = M̄τ ∗
n


q̄∗

1 (−b11 − b12q̄2)+ (−b22q̄2
2 + b21q̄2eiω∗τ∗

n )

,

p4 = M̄τ ∗
n q̄∗

1


−2b11


W (1)

20 (0)

2
+ W (1)

11 (0)


− b12


W (1)

20 (0)

2
q̄2 + W (1)

11 (0)q2 + W (2)
11 (0)+

W (2)
20 (0)

2


+ M̄τ ∗

n


b21


W (1)

20 (−1)

2
q̄2 + W (1)

11 (−1)q2 + W (2)
11 (0)e

−iωτ∗
n +

W (2)
20 (0)

2
eiωτ∗

n


− 2b22


W (2)

20 (0)

2
q̄2 + W (2)

11 (0)q2


, (2.24)

where we have used the notation Wmn(θ) = (W (1)
mn (θ),W (2)

mn (θ))
T. Comparing (2.22) and (2.24), we get

g20 = 2p1, g11 = p2, g02 = 2p3, g21 = 2p4.

The next step consists in determining W20(θ) and W11(θ), since g21 depends on their values. From (2.15) and (2.19),
we have

ẇ = ẇt − żq − ˙̄zq̄ =


AW − 2 Re{q̄∗(0)f0q(θ)} if − 1 ≤ θ < 0,
AW − 2 Re{q̄∗(0)f0q(θ)} + f0 if θ = 0

, AW + H(z, z̄, θ), (2.25)

where

H(z, z̄, θ) = H20
z2

2
+ H11zz̄ + H02

z̄2

2
+ · · · . (2.26)

From (2.20), we have

ẇ = ẇz ż(t)+ ẇz̄ ˙̄z(t)

= (W20(θ)z + W11(θ)z̄ + · · · )(iω∗τ ∗
n z(t)+ g(z, z̄))+ (W11(θ)z + W02(θ)z̄ + · · · )(−iω∗τ ∗

n z̄(t)+ ḡ(z, z̄)).
(2.27)

It follows from (2.22) that

ẇ = A(0)


W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ · · ·


+ H20(θ)

z2

2
+ H11(θ)zz̄ + H02(θ)

z̄2

2
+ · · ·

=


A(0)W20(θ)+ H20(θ)
 z2

2
+


A(0)W11(θ)+ H11(θ)

zz̄ +


A(0)W02(θ)+ H02(θ)

 z̄2

2
+ · · · . (2.28)
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Comparing the coefficients of z2 and zz̄ from (2.27) and (2.28), we get

(A(0)− 2iω∗τ ∗
n I )W20(θ) = −H20(θ), A(0)W11(θ) = −H11(θ). (2.29)

For θ ∈ [0, 1], it follows from (2.19), (2.20), (2.26) and (2.27) that

H(z, z̄, θ) = −q̄∗(0)f0q(θ)− q∗(0)f̄0q̄(θ)

= −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ)

= −


g20

z2

2
+ g11zz̄ + g02

z̄2

2
+ · · ·


q(θ)−


ḡ20

z̄2

2
+ ḡ11zz̄ + ḡ02

z2

2
+ · · ·


q̄(θ).

Comparing the coefficients of z2 and zz̄ between this expression and (2.26), we get

H20(θ) = −g20q(θ)− ḡ20q̄(θ), H11(θ) = −g11q(θ)− ḡ11q̄(θ). (2.30)

From the definition of A(θ) and (2.29) and (2.30), we have

Ẇ20(θ) = 2iω∗τ ∗
n W20(θ)+ g20q(θ)+ ḡ02q̄(θ). (2.31)

Since q(θ) = (q1, q2)
T eiω∗τ∗

n θ , we obtain

W20(θ) =
ig20

ω∗τ ∗
n

q(0)eiω∗τ∗
n θ +

iḡ02

3ω∗τ ∗
n

q̄(0)e−iω∗τ∗
n θ + E1e2iω∗τ∗

n θ , (2.32)

where E1 = (E (1)1 , E (2)1 )T is a constant vector. Similarly, we have

W11(θ) =
−ig11

ω∗τ ∗
n

q(0)eiω∗τ∗
n θ +

iḡ11

ω∗τ ∗
n

q̄(0)e−iω∗τ∗
n θ + E2, (2.33)

where E2 = (E (1)2 , E (2)2 )T is a constant vector. Now, we shall find the values of E1 and E2. From the definition of
A(0) and (2.31), we have 0

−1
dη(θ)W20(θ) = 2iω∗τ ∗

n W20(0)− H20(0), (2.34) 0

−1
dη(θ)W11(θ) = −H11(0),

where η(θ) = η(θ, 0). In view of (2.25), we deduce that when θ = 0,

H(z, z̄, 0)− 2 Re

q̄∗(0)f0q(0)


+ f0 = −g(z, z̄)q(0)− ḡ(z, z̄)q̄(0)+ f0.

Then we have

H20
z2

2
+ H11zz̄ + H02

z̄2

2
+ · · · = −


g20

z2

2
+ g11zz̄ + g02

z̄2

2
+ · · ·


q(0)

−


ḡ20

z̄2

2
+ ḡ11zz̄ + ḡ02

z2

2
+ · · ·


q̄(0)+ f0. (2.35)

Comparing both sides of (2.35), we obtain

H20 = −g20q(0)− ḡ02q̄(0)+ 2τ ∗
n


H1
H2


, H11 = −g11q(0)− ḡ11q̄(0)+ τ ∗

n


P1
P2


,

where H , (H1, H2)
T and P , (P1, P2)

T are the respective coefficients of z2 and zz̄ of f0(z, z̄). Thus we have

H =


−b11 − b12q2

−b22q2
2 + b21q2e−iω∗τ∗

n


, P =


−b11 − b12 Re{q2}

−b22|q2|
2
+ b21 Re{q̄2e−iω∗τ∗

n }


.
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Since iω∗τ ∗
n is the eigenvalue of A(0) and q(0) is the corresponding eigenvector, we get

iω∗τ ∗
n I −

 0

−1
eiω∗τ∗

n θ dη(θ)


q(0) = 0, (2.36)


−iω∗τ ∗

n I −

 0

−1
e−iω∗τ∗

n θ dη(θ)


q̄(0) = 0. (2.37)

Therefore, substituting (2.34) and (2.36) into (2.37), we have
2iω∗τ ∗

n I −

 0

−1
e2iω∗τ∗

n θ dη(θ)


E1 = 2τ ∗

n H,

that is HE1 = 2H, where

H =


2iω∗

+ d1µi + b11u∗

1 b12u∗

1
−b21u∗

2e−iω∗τ∗
n 2iω∗

+ d2µi + b22u∗

2


.

Thus, according to Cramer’s rule, E (i)1 = 2∆i/∆, where ∆ = det H and ∆i = det U i , where U i is formed by
replacing the i th column vector of H by another column vector (H1, H2)

T for i = 1, 2. In a similar way, we have
PE2 = 2P, where

P =


d1µi + b11u∗

1 b12u∗

1
−b21u2 d2µi + b22u∗

2


.

Thus E (i)2 = 2∆̃i/∆̃, where ∆̃ = det P and ∆̃i = det V i , where V i is formed by replacing the i th column vector of
P by another column vector (P1, P2)

T for i = 1, 2. Therefore, we can determine W20(θ) and W11(θ) from (2.32) and
(2.33). Furthermore, we can easily compute g21. Again, according to [28], the Hopf bifurcation periodic solutions of
(1.1) at τ ∗

n on the center manifold are determined by the following formulas:

C1(0) =
i

2τ ∗
nω

∗


g11g20 − 2|g11|

2
−

|g02|
2

3
+

g21

2


,

ν2 = − Re{C1(0)}


Re


dλ
dτ
(τ ∗

n )

−1

,

β2 = 2 Re{C1(0)},

T2 =
1

τ ∗
nω

∗


− Im{C1(0)} + ν2 Im


dλ
dτ
(τ ∗

n )


.

Here ν2 determines the direction of the Hopf bifurcation. If ν2 > 0 (ν2 < 0, respectively) then these bifurcations are
supercritical (subcritical, respectively) and the bifurcating periodic solutions exist for τ > τ ∗

n (τ < τ ∗
n , respectively).

Once again β2 determines the stability of the bifurcating periodic solutions: they are stable (unstable) if β2 < 0
(β2 > 0, respectively). Also, T2 determines their period: the period increases (decreases, respectively) if T2 > 0
(T2 < 0, respectively). We collect these results in the following theorem.

Theorem 2.6. Assume that Re{C1(0)} < 0 (Re{C1(0)} > 0, respectively). Then,

• the Hopf bifurcation of solutions to (1.1) at the equilibrium u∗ when τ = τ ∗
n is supercritical (subcritical,

respectively), and
• the bifurcating periodic solutions on the center manifold are stable (unstable, respectively).

2.5. Global stability of the equilibrium

First we study the global stability of the equilibrium when the delay is absent.

Theorem 2.7. If (1.1) satisfies (2.4) and we choose τ = 0, then its positive equilibrium u∗ is globally asymptotically
stable.
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Proof. We define E(t) = E1(t)+ E2(t), where

Ei (t) :=


Ω

b3−i,i


ui − u∗

i − u∗

i log


ui

u∗

i


dx, i = 1, 2.

We now show that E(t) is a Lyapunov functional. It is obvious that E(t) ≥ 0. We now prove that dE(t)/dt ≤ 0.
Differentiating E1(t), replacing ∂t u1 by using (1.1a) and employing the homogeneous Neumann boundary condition
(1.1c), we get

Ė1(t) = −b21d1u∗

1


Ω

|∇u1|
2

u2
1

dx − b21


Ω
(u1 − u∗

1)

b11(u1 − u∗

1)+ b12(u2 − u∗

2)


dx.

Analogously, we obtain

Ė2(t) = −b12d2u∗

2


Ω

|∇u2|
2

u2
2

dx + b12


Ω
(u2 − u∗

2)

b21(u1 − u∗

1)− b22(u2 − u∗

2)


dx.

Combining the expressions for Ė1(t) and Ė2(t), we have

Ė(t) = −b21d1u∗

1


Ω

|∇u1|
2

u2
1

dx − b12d2u∗

2


Ω

|∇u2|
2

u2
2

dx − b11b21


Ω
(u1 − u∗

1)
2 dx

− b22b12


Ω
(u2 − u∗

2)
2 dx ≤ 0.

This completes the proof. �

Now we study the global stability of the equilibrium in the presence of delay.

Theorem 2.8. If the system (1.1) satisfies the assumption (2.4) and

max{b12, b21} ≤ (b11b22)
1/2, (2.38)

then the positive equilibrium u∗ of (1.1) is globally asymptotically stable.

Proof. We now define F(t) = F1(t)+ F2(t)+ F3(t), where

Fi (t) :=


Ω

b3−i,i


ui − u∗

i − u∗

i log


ui

u∗

i


dx, i = 1, 2,

F3(t) :=


Ω

 t

t−τ

b11

2


u1(s, x)− u∗

1

2 ds dx.

It is obvious that F(t) ≥ 0. In a similar way as for Theorem 2.7, we show that Ḟ ≤ 0. First, direct computation yields

Ḟ1(t) = −d1u∗

1


Ω

|∇u1|
2

u2
1

dx −


Ω
(u1 − u∗

1)

b11(u1 − u∗

1)+ b12(u2 − u∗

2)


dx,

Ḟ2(t) = −d2u∗

2


Ω

|∇u2|
2

u2
2

dx +


Ω
(u2 − u∗

2)

b21(u1(t − τ, x)− u∗

1)− b22(u2 − u∗

2)


dx,

Ḟ3(t) =
b11

2


Ω


(u1 − u∗

1)
2
− (u1(t − τ, x)− u∗

1)
2 dx.

Combining these equations, we obtain

Ḟ(t) = −d1u∗

1


Ω

|∇u1|
2

u2
1

dx − d2u∗

2


Ω

|∇u2|
2

u2
2

dx

−


Ω


b11

2
(u1 − u∗

1)
2
+ b22(u2 − u∗

2)
2
+

b11

2


u1(t − τ, x)− u∗

1

2 dx

+


Ω


b21

u1(t − τ, x)− u∗

1


(u2 − u∗

2)− b12(u1 − u∗

1)(u2 − u∗

2)


dx.
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Fig. 1. Sketch of a primal mesh Th (solid lines) and a dual mesh T ∗
h (dashed lines) of a disk-shaped domain.

Thus, in view of (2.38), it follows that Ḟ(t) ≤ 0. Therefore, F(t) is a Lyapunov functional and the proof is
completed. �

Remark 2.1. Theorem 2.8 implies that if (2.38) holds, then the time delay cannot induce spatial patterns.

3. Numerical method

3.1. Finite volume element spatial discretization

Let Th be a family of partitions of Ω into triangles K , and assume that Th with meshsize h > 0 is regular in
the sense of [14]. By Pr (K ) we denote the space of polynomial functions on K ∈ Th of degree at most r ≥ 0. The
classical finite dimensional space of continuous piecewise linear functions

Vh =

vh ∈ C0(Ω̄) : vh |K ∈ P1(K ),∀K ∈ Th


,

spanned by the Lagrangian basis {φi }i of linear nodal functions (and satisfying φi (s j ) = δ j i for the vertices s j of Th ,
where δ j i is the Kronecker delta) is a subspace of H1(Ω) used to write the weak formulation in a semi-discrete sense:

For t > 0, find u1,h(t), u2,h(t) ∈ Vh such that
d
dt


u1,h(t), vh


Ω + d1


∇u1,h(t),∇vh


Ω =


f1,h(t), vh


Ω ∀vh ∈ Vh,

d
dt


u2,h(t), wh


Ω + d2


∇u2,h(t),∇wh


Ω =


f2,h(t), wh


Ω ∀wh ∈ Vh,

(3.1)

where the nonlinear reaction terms in the semi-discrete setting are given by

f1,h(t) := u1,h(t)

a1 − b11u1,h(t)− b12u2,h(t)


,

f2,h(t, τ ) := u2,h(t)

−a2 + b21u1,h(τ )− b12u2,h(t)


.

Existence and uniqueness of solutions to (3.1) along with a-priori estimates can be obtained following [43].
The associated finite volume element discretization is obtained by introducing a dual mesh T ∗

h consisting of
polygons (control volumes) K ∗

i centered on each node si of Th and defined by joining the barycenter of each element
sharing the vertex si and the midpoints of the edges that intersect si , see Fig. 1.

We next define the finite volume space V ∗

h as

V ∗

h :=

w ∈ L2(Ω) : w

K j
i

∈ P0(K ∗

i ),∀K ∗

i ∈ T ∗

h


,

and a Petrov–Galerkin map Ph : Vh → V ⋆
h (cf., e.g., [46]) defined by

(Phvh)(x) =


i

vh(si )χi (x) for x ∈ Ω ,
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where χi is the characteristic function on the control volume K ⋆
i ∈ T ∗

h , that is, χi (x) = 1 if x ∈ K ⋆
i and zero

otherwise. Using Lemma 3.1 of [35], we end up with a semi-discrete finite volume element formulation where
functions of the dual test space V ∗

h appear in the mass terms associated to the time derivatives and the nonlinear
reaction kinetics:

For t > 0, find u1,h(t), u2,h(t) ∈ Vh such that

d
dt


u1,h(t),Phvh


Ω + d1


∇u1,h(t),∇vh


Ω =


f1,h(t),Phvh


Ω ∀vh ∈ Vh,

d
dt


u2,h(t),Phwh


Ω + d2


∇u2,h(t),∇wh


Ω =


f2,h(t, τ ),Phwh


Ω ∀wh ∈ Vh .

The experimental spatial convergence properties of the method will be addressed in Section 4.2.

3.2. Runge–Kutta time discretization

A fully discrete method is obtained after partitioning the time interval T into nodes {tk
}

N
k=−m , where t0

= 0,
t−m

= τ and t N
= T ; and choosing a stable Runge–Kutta time integration scheme [32] (see also [3] for tests on the

robustness and performance of RK methods for differential delay equations). The resulting system of equations is

1
1t

LYn
i +

i
j=1

αi j KYn
j =

1
1t

LUn
+

i−1
j=1

Lα̃i j F(Yn
j ,Yn−m

j ), i = 1, . . . , s,

1
1t

LUn+1
+

s
i=1

βi KYn
i =

1
1t

LUn
+

s
i=1

Lβ̃i F(Yn
i ,Yn−m

i ),

(3.2)

where s is the order of the RK scheme, U is the vector of nodal values of the discrete solution (u1,h(t), u2,h(t)), Yi
is the vector of the discrete solution in the intermediate stage i ∈ {1, . . . , s}, L is the primal–dual projection matrix
(between Vh and V ⋆

h ) with entries

Ω φiχ j dx, K is the stiffness matrix with entries


Ω ∇φi ·∇φ j dx, and F(An,An−m)

is the vector of reaction terms depending on the discrete generic field A at times t = tn and t = tn
−τ = tn−m . System

(3.2) is solved at each RK step using a generalized minimal residual (GMRES) method with a fixed tolerance.
Note that the FVE method in [35] (combined with a backward difference formula of order 2 for the time

discretization) actually assumed d
dt


u1,h(t),Phvh


Ω ≈

d
dt


u1,h(t), vh


Ω , and analogously for the second species

w. In relation with (3.2) this suggests that, in the terms multiplied by 1
1t , the coefficient matrix L could be replaced by

the mass matrix M with entries

Ω φiφ j dx. However, such an approximation may generate larger errors, especially in

the case of multistep methods. The convergence behavior of the time discretization has been predicted by the results
in [10], and will be confirmed numerically in the tests of Section 4.2.

4. Numerical results

4.1. Hopf parameter space

In view of Theorem 2.4, satisfaction of condition (2.4) is sufficient for the positive uniform equilibrium (u∗

1, u∗

2) to
be linearly unstable with respect to the particular case of system (1.1). In the simulations we will take the following
values in the parameter space:

a1 = 2, a2 = 0.2, b11 = 0.2, b12 = 0.5, b21 = 0.2, b22 = 0.2,

d1 = 0.1, d2 = 0.1. (4.1)

For this particular choice, the positive uniform equilibrium is given by

(u∗

1, u∗

2) =


25
7
,

18
7


≈ (3.5714, 2.5714).

Now, we present the bifurcations represented by the formula (2.11) in the parameter region spanned by the
parameters a1 and τ that are also depicted in Fig. 2. All arising spatial patterns are induced in this parameter region.
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Fig. 2. Bifurcation diagram of model (1.1) for parameters a1 (a), a2 (b), and a1, a2 (c), where the remaining parameters are fixed to b11 =

0.2, b12 = 0.5, b21 = 0.2, b22 = 0.2, d1 = 0.1, d2 = 0.1. The figures show the Hopf instability space (labeled as T in plots (a, b)), corresponding
to the region bounded by the two Hopf bifurcations τ = τ∗

= τ∗
0 and τ = τ∗

1 .

Following a standard procedure (cf., e.g., [42]), we can compute the wavenumber explicitly and characterize the
pattern selection mechanism by the linearization around the positive uniform equilibrium and taking τ as the Hopf
bifurcation parameter. From the mathematical viewpoint, the Hopf bifurcation occurs when Im(λ) > 0, Re(λ) = 0
and d Re(λ(τ ))/dτ > 0 at

√
µi for some fixed i . By the eigenvalue theory of the parabolic differential equations,

kc :=
√
µi is the critical wavenumber and λ is the root of the characteristic equation (2.6).

We comment that the solution behavior of (1.1) depends on the choice of the parameters and on the shape and the
size of the computational domain. Consider, for instance, a square-shaped domain Ω = (0, L)2. The eigenvalues µi
are given by

µi =
π2

L2 si , i ∈ N,

where we assume that {si }i∈N ⊂ N is a strictly increasing list of all numbers of the form si = m2
+ n2, m, n ∈ N0,

i.e., s1 = 0, s2 = 1, s3 = 2,s4 = 4, s5 = 5, s6 = 8, etc. Note that independently of L , we have Q = 0.9184, and that
µ1 = 0 independently of the shape and size of the domain. We here consider square-shaped domains with L = 60 or
L = 2π , and the resulting coefficients are reported in Table 1.

4.2. Example 1: error histories for a simplified model

The accuracy of the numerical method is first studied for the reduced system

∂t u1 −1u1 = −(u1)τ +
u2

2
, ∂t u2 −1u2 = −2(u1)τ + u2, (4.2)

defined on Ω = (0, 2π)2, t ∈ [0, 1] with homogeneous Neumann boundary conditions and data u1(x, y, t) = cos(x)+
cos(y), u2(x, y, t) = 2(cos(x)+ cos(y)) for t ∈ [−τ, 0]. Its exact solution is u1 = w(t)[cos(x)+ cos(y)], u2 = 2u1
where

w(t) =


1 if − τ ≤ t < 0,
1 − t if 0 ≤ t < 1,
1
2
(t − 1)2 if 1 ≤ t < 2

is a solution of the following delayed ordinary differential equation:

dw
dt

= −w(t − τ) for t ∈ (0,∞); w(t) = 1 for t ∈ [−τ, 0].

An RK scheme of order s = 2 will be used, with parameters α21 = 0, α22 = 1, α̃21 = 1, α̃22 = 0, β1 = 0, β2 = 1,
β̃1 = 1, β̃2 = 0 (corresponding to an implicit RK method, see [32]). When required, the exact solution (if available)
is employed as additional initial data. Otherwise, we employ the homogeneous equilibrium state perturbed with a
uniformly distributed random field.
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Table 1

Coefficients leading to the formation of patterns on the square domain Ω = (0, L)2, for two different sizes.

i si µi Ri ω∗ τ∗ τ∗
1

Results for L = 60

1 0 0.0000 1.2285 0.6587 1.6372 11.1749
2 1 0.0027 1.2291 0.6585 1.6382 11.1785
3 2 0.0054 1.2296 0.6584 1.6391 11.1821
4 4 0.0109 1.2307 0.6580 1.6409 11.1894
5 5 0.0137 1.2313 0.6578 1.6419 11.1930
6 8 0.0219 1.2329 0.6572 1.6446 11.2039

Results for L = 2π

1 0 0.0000 1.2285 0.6587 1.6372 11.1749
2 1 0.2500 1.2785 0.6419 1.7221 11.5103
3 2 0.5000 1.3285 0.6254 1.8081 11.8545
4 4 1.0000 1.4285 0.5936 1.9826 12.5667
5 5 1.2500 1.4785 0.5784 2.0709 12.9334
6 8 2.0000 1.6285 0.5356 2.3391 14.0685

Table 2
Example 1: convergence histories for the FVE–RK approximation of the reduced system (4.2).

Spatial accuracy test Temporal accuracy test
h E0(u1) Rate E0(u2) Rate 1t e1(u1) Rate e1(u2) Rate

4.4428 2.3512 – 3.7025 – 1.4921e−3 6.1668 – 12.3322 –
2.2214 6.7035e−1 1.9104 1.3415 1.8143 7.5455e−4 9.6801e−1 1.9732 1.9368 1.9735
1.1107 1.5941e−1 2.0685 3.1974e−1 2.0683 3.7564e−4 2.5238e−1 1.8150 5.0914e−1 1.8151
0.5553 3.9429e−2 2.0198 7.8853e−2 2.0199 1.8477e−4 6.7396e−2 1.8898 1.3329e−1 1.8928
0.2776 9.8244e−3 2.0040 1.9620e−2 2.0037 9.3753e−5 1.3442e−2 1.9552 2.6925e−2 1.9551
0.1388 2.4576e−3 1.9994 4.9153e−3 1.9994 4.6841e−5 3.5837e−3 1.9818 7.3106e−3 1.9822
0.0694 6.1743e−4 1.9996 1.2332e−3 1.9995 2.3412e−5 8.1670e−4 1.9854 1.6343e−3 1.9849

The observed convergence rates of the approximate solutions are illustrated by computing errors in the
L2(0, T ; H1(Ω))-norm and at the final time T = 1 in the L2(Ω)-norm, defined as

e1(ui ) :=


1t

N
n=−m

ui (t
n)− un

i,h

2
H1(Ω)

1/2

, E0(ui ) :=
ui (t

N )− uN
h,i


L2(Ω),

for i = 1, 2. The spatial accuracy is assessed by a series of computations on a sequence of structured triangular primal
meshes where each node of a coarser mesh is also present in a finer mesh and the timestep is first fixed to 1t = 10−5

so that the total error is dominated by the spatial component of the error. Secondly, we study the time accuracy of the
RK scheme by fixing h = 0.0694 and running a set of tests with nested timesteps. We put τ = 0.25 and the results
can be observed in Fig. 3 and Table 2, where we report on the errors and experimental orders of convergence of (1t)2

for e1(ui ) and of h2 for E0(ui ).

4.3. Example 2: full delayed predator–prey model on a square

We continue with simulations for system (1.1) modeling a predator–prey scenario where the domain of interest is
the square Ω = (0, L)2 with L = 60. The corresponding wavenumber satisfies

k = π(m1/L ,m2/L), |k| = π


(m1/L)2 + (m2/L)2, for m1,m2 = 0, 1, . . . .

The timestep size is chosen as 1t = 10−3 and the system is evolved until T = 1000. Here and in Examples 3–5, the
numerical solutions start from certain noisy initial patterns such that the bounds for the exact solution, (2.2) and (2.3)
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a b

Fig. 3. Example 1: errors E0(u1), E0(u2) versus the meshsize (a) and e1(·), e0(·) versus the timestep (b) associated to the FVE–RK approximation
of the reduced system (4.2). See values in Table 2.

in Theorem 2.3, are actually given by

0 ≤ u1(x, t) ≤ A1 =
a1

b11
= 10, 0 ≤ u2(x, t) ≤ A2 =

1
b22


b21a1

b11
− a2


= 9. (4.3)

Apart from those given in Section 4.1, different combinations of model parameters have been successfully tested
indicating the significance of the model under various scenarios. From (2.11) we compute the Hopf bifurcation
thresholds τ ∗

= 1.637276 and τ ∗

1 = 11.174933 corresponding to s1 = 0, and an example for different values of
τ is presented in Figs. 4 and 5. Periodic solutions should appear due to the Hopf bifurcation. In addition, when the
time delay τ is less than the critical value τ ∗

= 1.637276, no patterns are generated. For instance, in the top-right
plot of Fig. 5 corresponding to the time evolution of the solution at the center of the domain and for τ = 1.5 < τ ∗,
we see that the initial patterns are smoothed out. From the theoretical results we expect that for 1.8 < τ < 11.2 the
amplitude of the oscillations will increase significantly within a short period. This is confirmed when we put τ = 5,
where we can observe the formation of patterns. This is also the case if we set the time delay as τ = 1t + τ ∗.
We finally put τ = 12 and notice that spatial patterns appear within a period of around 2τ . This can be especially
noticed in the bottom-left plot of Fig. 5. A similar behavior is observed for a delay τ = 1t + τ ∗

1 . A primal mesh with
38 952 elements and 19 733 vertices has been employed. The average number of GMRES iterations needed to achieve
convergence with a tolerance of 10−7 was 8. Note that in this example and in Examples 3–5, the numerical solution
for u1 and u2 assumes values in the intervals [0, 10] and [0, 9], respectively, in agreement with (4.3). This property
provides further support of the numerical method.

We compute the fields of maximum and total variations for the species u j , j = 1, 2 at a given point x ∈ Ω in
t ∈ [−τ, T ] as

maxvar j (x) := max
−m≤k≤N

uk
j,h(x)− min

−m≤k≤N
uk

j,h(x),

totalvar j (x) :=

N
k=1−m

uk
j,h(x)− uk−1

j,h (x)
,

respectively. These quantities are shown for τ = 12 in Fig. 6.

4.4. Example 3: predator–prey model with large delays

In this third example we introduce an initial noisy pattern in the solution and observe the evolution of these patterns
in Fig. 7. Here the domain is (0, 2π)2, the time delay is τ = 50, and we study the behavior of the system until
t = 400 = 8τ . From Fig. 8 we see that the spatial patterns present in the initial datum remain visible over a
longer period of time than in Example 2. However, the numerical solution displayed in Fig. 7, especially the plots
for t = 200 = 4τ and t = 250 = 5τ , indicates that the solution eventually assumes the behavior of a synchronous
oscillation (that is, both species exhibit the same cyclic pattern) over the whole domain. This becomes visible in
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a b

c d

e f

Fig. 4. Example 2: spatial patterns of species u1 (a, c, e) and u2 (b, d, f) for different time delays τ = 1.5 (a, b), τ = 5 (c, d), and τ = 12 (e, f).
Snapshots correspond to t = 1000.

the fact that the range of u1,h is from 8.55 to 9.79 at t = 200 = 4τ , which is fairly close to A1 = 10, while
at t = 250 = 5τ , solution values are practically identically zero. However, the solution component u1,h shown in
Fig. 7(f) does not remain identically zero. In fact, as can be inferred from Fig. 8(b), u1,h returns to values close to A1
shortly after t = 300 = 6τ . Moreover, the plot of umax

1 −umin
1 (Fig. 8(a)) exhibits a “peak” centered at roughly t = 310

with umax
1 −umin

1 ≈ 0 for extended time intervals before and after that peak. This behavior indicates that the numerical
solution is practically constant on the whole domain except for very short time intervals. Analogous statements
correspond to u2,h , for which results are not displayed. The solution behavior is consistent with the observation
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a

c

e f

d

b

Fig. 5. Example 2: time evolution of the total variation (a, c, e) and density of species on the center c of the domain (b, d, f) up to t = 480 for
different time delays τ = 1.5 (a, b), τ = 5 (c, d), and τ = 12 (e, f). When τ < τ∗

= 1.6373, the initial patterns are smoothed out. If τ > τ∗,
regular patterns appear with a given frequency, and if τ > τ∗

1 = 11.1749, patterns form with a frequency twice the previous one. These simulations
agree with the sketch in Fig. 2.

a b

Fig. 6. Example 2: maximum (a) and total (b) variations through time for species u1 (similar patterns are observed for u2 and therefore not shown).

that there are no stable states like (u∗

1, 0) or (0, u∗

2), as can be deduced from the analysis of Section 2.3 (especially,
considering (2.6)–(2.8)) under the assumption u∗

2 = 0 or u∗

1 = 0.
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Fig. 7. Example 3: evolution of spatial patterns of species u1 on the square (0, 2π)2 for a time delay of τ = 50. Snapshots going from t = 0 (a) to
t = 5τ (f).

4.5. Example 4: full delayed predator–prey model on a disk

The patterns can be observed with further detail in a simulation with a smaller wavenumber. The next simulation
is then performed on a disk of radius r = 10 and Fig. 9 illustrates the behavior of the model for species u1 at time
instants t = 24 and t = 480. The patterns developed for species u2 exhibit a similar spatial distribution (but with
different values) as those arising for species u1. These plots show that when the delay τ is close to τ ∗

1 , the pattern
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a b

Fig. 8. Example 3: dynamics of the maximum and total variations (a) and density of species on the domain center c (b) for a time delay of τ = 50.

modes are different than those arising when τ is close to τ ∗. In this way we are able to numerically reproduce two
critical points for the formation of spatial patterns. According to Theorem 2.5, we could obtain, in fact, more than two
critical points.

4.6. Example 5: formation of spiral waves in a full delayed predator–prey model

For our last example we simulate the formation of spiral waves in a rectangular domain Ω = (0, 900)× (0, 300).
The initial conditions are taken as small perturbation of the equilibrium state u0

1(x, y) = u∗

1 − ϵ1(x − y/10 −

225)(x − y/10 − 675), u0
2(x, y) = u∗

2 − ϵ2(x − 445) − ϵ3 ∗ (y − 150), at two given points (91.4634, 201.2195)
and (684.1463, 245.1219) where the species densities are zero. We choose ϵ1 = 2e − 7, ϵ2 = 3e − 5, ϵ3 = 1.2e − 4.
This datum will simultaneously trigger the formation of two spiral waves whose amplitudes will increase with time
and eventually will propagate into the whole domain. Three snapshots at times t = 20, 100, 200 are shown in Fig. 10.
They indicate that although the initial datum is chosen as a small perturbation around u∗, for each fixed time the
numerical solution for u1 and u2 assumes values that are close to zero on some parts of the domain and close to A1
and A2, respectively, on almost all other parts, with both regions separated by a relatively sharp boundary. Moreover,
the numerical results indicate an oscillation in time, and in contrast to Examples 2–4, there is no visible tendency
towards a synchronous en bloc oscillation on the whole domain.

5. Conclusion

In this paper we have presented the theoretical formulation, consistent mathematical analysis, and numerical
implementation of pattern formation phenomena in a predator–prey model with delay terms. Applying a stability
analysis and suitable numerical simulations, we investigate the Hopf parameter space, the Hopf bifurcation and the
pattern selection. We have shown that the time delay can lead to the formation of spatio-temporal patterns when the
carrying capacity of the prey is large. The stability of the positive uniform equilibrium is determined in the Hopf
parameter space. The existence of stability switches induced by the delay is found in the region of the Hopf space.
Coming back to the original biological interpretation of (1.1), we find that the explicit inclusion of delay as a gestation
period or reaction time may give rise to complex spatio-temporal behavior. In view of Examples 2–5 it is, in particular,
remarkable that when the delay assumes a supercritical value, either distinct spatial patterns form (as in Example 5)
or both population densities become nearly constant on the whole domain, and change almost abruptly between zero
and the respective maximum possible value. Finally, we mention that among other advantages, the numerical scheme
is not bound to a Cartesian grid, and therefore can handle real biological domains that are usually shaped somewhat
irregularly.

Numerical studies have been employed to support and extend the obtained theoretical results. The numerical
simulations illustrate the existence of both stable and unstable equilibria near the critical point of the delay which is in
good agreement with our theoretical analysis results. Our result does not cover yet the case of time delay far away from
the critical point. At the current stage the present model is still quite simple and can of course accommodate a number
of directions for improvement. For instance, the description of the prey–predator by a bilinear function, namely the
term f (u1, u1) := b12u1u2 in (1.1a), corresponds to a simple biological situation and works well for small density
of the prey, that is, when the carrying capacity a1/b11 is big, as is assumed in this paper (cf., e.g., (2.4)). However, it
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Fig. 9. Example 4: snapshots of the transient patterns of species u1 at t = 24 (a, c, e) and t = 480 (b, d, f) for time delays τ = 1.5 (a, b), τ = 5 (c, d),
and τ = 12 (e, f).

has been argued that such a model is not realistic and should be replaced by a prey–predator interaction given by a
nonlinear concave saturation function such as the Holling type II functional response f (u1, u2) = b12u1u2/(A + u1),
where A > 0 is constant (see, e.g., [7, Ch. 5] or [36, Ch. 4] for details and alternative choices). While it would certainly
be interesting to attempt to extend the Hopf bifurcation analysis of Section 2 to a version of (1.1) that includes such
an alternative functional response and the steps required for this purpose are clear, let us comment that the results of
Section 2 for the present model depend in an involved way on the specific algebraic structure of the right-hand sides
of (1.1a) and (1.1b) and it is not obvious, for instance, whether one arrives at the same possibilities for spatio-temporal
pattern formation for alternative models. That said, we comment that the numerical scheme introduced in Section 3
can easily be adapted to alternative functional responses.
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a b

c d
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Fig. 10. Example 5: snapshots of the transient patterns of species u1 (a, c, e) and u2 (b, d, f) at times t = 20 (a, b), t = 100 (c, d), and t = 200 (e, f),
for a time delay of τ = 5.
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