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In this paper, we introduce and analyze a Banach spaces-based approach yielding a fully-mixed finite
element method for numerically solving the coupled poroelasticity and heat equations, which describe
the interaction between the fields of deformation and temperature. A nonsymmetric pseudostress tensor
is utilized to redefine the constitutive equation for the total stress, which is an extension of Hooke’s law
to account for thermal effects. The resulting continuous formulation, posed in suitable Banach spaces,
consists of a coupled system of three saddle point-type problems, each with right-hand terms that depend
on data and the unknowns of the other two. The well-posedness of it is analyzed by means of a fixed-
point strategy, so that the classical Banach theorem, along with the BabuSka—Brezzi theory in Banach
spaces, allows to conclude, under a smallness assumption on the data, the existence of a unique solution.
The discrete analysis is conducted in a similar manner, utilizing the Brouwer and Banach theorems to
demonstrate both the existence and uniqueness of the discrete solution. The rates of convergence of the
resulting Galerkin method are then presented. Finally, a number of numerical tests are shown to validate
the aforementioned statement and demonstrate the good performance of the method.

Keywords: thermo-poroelasticity; porous media; mixed finite element methods; analysis in Banach spaces.

1. Introduction

Scope. The relationship between the flow of a viscous fluid and the deformation of an elastic solid within
a porous medium is described by the poroelasticity equations, which were initially introduced in the early
works Biot (1941, 1972) and Terzaghi (1944). While porous materials are commonly associated with
objects such as rocks and clays, they also encompass a broader range of materials, including biological
tissues, foams and even paper products. Moreover, in applications such as the underground disposal of
radioactive waste, geothermal energy production and oil extraction from deep, high-temperature, high-
pressure reservoirs, temperature plays a crucial role. Therefore, to study these phenomena, we focus on
the coupling between poroelasticity and heat equations. The resulting system, a slightly modified version
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of the thermo-poroelastic problem Brun et al. (2018, 2019, 2020), is nonlinear and strongly coupled. The
set of equations consists of the steady-state balance of linear momentum for the mixture and mass balance
for the fluid content (using the modified Darcy law) and a convection-diffusion equation depending on the
Darcy seepage velocity and the total stress. In terms of numerical solvability, a wide variety of techniques
have been developed to simulate the poroelasticity problem, both by itself Boon ef al. (2021) and when
coupled with other equations. These include couplings with chemotaxis Barnafi et al. (2022), elasticity
Anaya et al. (2022), Stokes Boon et al. (2022), Ruiz-Baier et al. (2022) and diffusion Gémez-Vargas
et al. (2023). The thermo-poroelasticity problem has also been recently addressed in Brun et al. (2018,
2019, 2020), Zhang & Rui (2022, 2023 and 2024). These references include primal formulations Zhang
& Rui (2022), a combination of primal and mixed formulations Brun et al. (2020); Zhang & Rui
(2024), discontinuous Galerkin methods Antonietti ef al. (2023), a fully-mixed formulation Brun ef al.
(2019) and a mixed-primal-characteristics finite element method Zhang & Rui (2024). The introduction
of additional variables of physical relevance is a common approach to solving problems that involve
couplings and nonlinearities. Consequently, mixed methods are strongly justified in such a scenario. A
recent approach to this method consists of defining the corresponding variational formulation in terms
of Banach spaces instead of the usual Hilbertian framework without augmentation. It is important to
note that, although augmented methods allow the recovery of a Hilbertian framework, they increase
the cost of the computational implementation of the Galerkin scheme. Therefore, an analysis based on
Banach spaces has the advantage of studying the problem in its purest form. Another advantage of this
method lies in the relaxation of assumptions that must be made about the data, source terms and eventual
solutions of the system. Consequently, the unknowns are now associated with the natural spaces that
result from the testing and integration by parts procedures; formulations of the models become simpler
and more faithful to the original physical models; momentum-conservative schemes can be acquired;
and additional unknowns can be calculated through postprocessing formulas. As a nonexhaustive list
of contributions taking advantage of the use of Banach frameworks for solving the aforementioned
kinds of problems, we refer to Camafo et al. (2021), Careaga & Gatica (2023), Carrasco et al. (2023),
Caucao et al. (2023) and Correa et al. (2023), and among the different models considered there, we find
elasticity, Brinkman—Forchheimer, Poisson—Nernst—Planck, Navier—Stokes, chemotaxis/Navier—Stokes,
Boussinesq, coupled flow-transport and fluidized beds. For the coupled poroelasticity and heat equations,
however, no mixed methods with the aforementioned benefits have, up to our knowledge, been developed
yet. As motivated by the preceding discussion, the goal of this paper is to develop a Banach spaces-based
formulation leading to new mixed finite element methods for the poroelasticity-heat model.

The manuscript is organized as follows. The rest of this section collects some preliminary notations,
definitions and results to be utilized throughout the paper. In Section 2, we describe the model of interest.
In particular, we reformulate it in terms of the nonsymmetric pseudostress tensor. In Section 3, we derive
the fully-mixed variational formulation of the problem by splitting the analysis according to the three
equations forming the coupled model. Suitable integration by parts formulae jointly with the Cauchy—
Schwarz and Holder inequalities are crucial for determining the right Lebesgue and related spaces to
which the unknowns and corresponding test functions are required to belong. In Section 4, a fixed-point
strategy is adopted to analyze the solvability of the continuous formulation. The Babuska—Brezzi theory
in Banach spaces is employed to study the corresponding uncoupled problems, and then the classical
Banach theorem is applied to conclude the existence of a unique solution. An analog fixed-point approach
to that of Section 4 is utilized in Section 5 to study the well-posedness of the associated Galerkin scheme.
Finally, numerical results showing how well the method works and confirming the theoretical rates of
convergence given in Section 5 are presented in Section 6.
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Preliminaries. Throughout the paper, §2 is a bounded Lipschitz-continuous domain of R"”, n € {2, 3},
which is star-shaped with respect to a ball, and whose outward unit normal at its boundary I” is denoted
by v. Standard notation will be adopted for Lebesgue spaces L'(£2), with ¢ € [1,+00), and Sobolev
spaces wht (£2) and Wé”(&?), with £ > 0, whose corresponding norms and seminorms, either for the

scalar, vector, or tensorial version, are denoted by || - || .o | - . and | - | .o, respectively. Note that
WO (2) = L!(£2), and that when 7 = 2, we simply write H’(§2) instead of W%?(£2), with its norm and
seminorm denoted by || - |l;.; and | - |,.(;, respectively. Now, letting 7, ' € (1,+00) conjugate to each

other, that is such that 1 /7+1/¢ = 1, we let W'/**/(I"y and W~'/"" (I") be the trace space of W'*(£2) and
its dual, respectively, and denote the duality pairing between them by (-, -). In particular, whent = ¢ = 2,
we simply write HY2(r) and H=V/2(I") instead of W'/22(I") and W—1/22(I), respectively.

Given any generic scalar functional space M, we let M and M be its vector and tensorial counterparts.
In particular, R := R”, R := R™”, and | - | denotes the Euclidean norm in both of them and R.
Furthermore, for any vector fields v = (vl-) . andw = (w) we set the gradient and divergence

i=1,n i

operators as

i=1n’

aVi . " avj
Vy = (8_) 1 and div(y) ;= Z Py
ij=1,n

Xj j=1 "7

In addition, for any tensor fields T = (rl]) - and ¢ = ({l]) e let div(t) be the divergence
ij=1,n ij=1,n

operator div acting along the rows of T, and define the transpose, the trace, the tensor inner product and
the deviatoric tensor, respectively, as

n n
1
Tt = (Tji)i,j—ln’ tr(t) := ZIﬁ, T:¢:= Z TiiCijs 4= 17— Ztr(r)]l, (1.1)
v i=1 ij=1

where I stands for the identity tensor of R. On the other hand, for each ¢t € [1, +00), we introduce the
Banach spaces

H(div,; 2) {r cL2(2): div(z) eL’(.Q)},

H'(div,; 2) = {r cLi(2): div(r) eL’(.Q)},

and

H (div,; 2) := {r cLi(2): div(z) € L’(Q)},
which are endowed with the natural norms
ITllgiv,.0 = Tl + 1div(T)llo e V1 € H(div; £2),

. : fedgis .
1Tl dgivse = ITllose + 1div(@)llg,e VT e H(div;: $2),

and

. : trdAiw -
Il aivee = I1Tlose + Idiv(@Dlge YT € H div; ).
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Then, we recall that, proceeding as in (Gatica, 2014, eq. (1.43), Section 1.3.4) (see also (Camaio
et al., 2018, Section 4.1) and (Colmenares et al., 2020, Section 3.1)), one can prove that for each

1, in R?,
€ (6 ool 1.n 5 there holds
[3,+00] in R7,
(T-v,v) = / {z Vv + vdiv(r)} Y (z,v) € H(div,; 2) x H'(£2), 1.2)
Q

where (-, -) denotes the duality pairing between HY?(r) and H~Y2(I"). In turn, given t, ¥’ € (1, 400)
conjugate to each other, there also holds (cf. (Ern & Guermond, 2004, Corollary B.57))

(T-v,v) = / {r Vv + vdiv(t)} V(7.v) € H(div,;; 2) x W'(22), (1.3)
2
and analogously
(Tv,v) = / {r VY 4+ v div(r)} V(r.v) € H'(div,; 2) x W' (), (1.4)
2

where (-, -) denotes in (1.3) (resp. (1.4)) the duality pairing between W) (resp. W—1/54(IM)) and
W () (resp. WY/t (I)).

2. Governing equations and boundary conditions

We consider a homogeneous porous medium constituted by a mixture of incompressible grains and
interstitial fluid. The domain of interest 2 C R",n = 2, 3, is assumed bounded. For a given body force f
and given source terms f and g neglecting convective, gravitational and inertial terms, we will concentrate
the discussion on the following Biot’s equations coupled with a stationary convection-diffusion equation
modeling the heat of the mixture:

o =2uem)+Ardivw)l — (ap+p60)I, —div(e) =f in £, (2.1a)

xp+adivi) —divow) =f, w==Vp in £, (2.1b)
n

0+w-VO—div(D(e)VO) =g in £2, (2.1¢)

u=up, p=pp and 6=0 on T, (2.1d)

where the tensor o is a generalized Hooke’s law, extended to include thermal effects, u is the unknown
vector of displacement of the solid particles, p is the bulk pressure of the fluid, w is the Darcy’s seepage
velocity and 6 is the temperature distribution. The remaining terms are the infinitesimal strain tensor
e(u) = %(Vu + Vu"), the permeability of the porous solid «, the Lamé constants of the solid (moduli
of dilation and shear, respectively) A and u, the constrained specific storage coefficient y > 0, the
Biot—Willis parameter o € (0, 1], the scaling of active stress that indicates a two-way coupling between
diffusion and motion B, the viscosity of the pore fluid n and the stress-dependent diffusivity accounting
for an altered diffusion acting in the poroelastic domain D : R — R. We also stress that the mass and
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energy balance equations do not include thermal dilation terms. The coefficient scaling these additional
zeroth-order terms for the pressure and temperature is very small in the regime where either the expansion
coefficients of the fluid and solid constituents are very close to each other, or when the initial porosity is
very small (see, e.g., Coussy (2004)).

Observe that tensor ¢ is symmetric since both e(#) and I are. In order to avoid the weak imposition
of this property of o, which would imply the introduction of the vorticity tensor y := %(Vu + Vu®)
as a further unknown, thus yielding a more demanding discrete inf-sup condition to be satisfied, we
reformulate (2.1) in terms of the pseudostress p (nonsymmetric stress), defined by

pi=uVu+(u+rdiva)l— @p+B60)1 in . 2.2)

In this regard, we stress that the reason for choosing here either o or p is motivated by the fact that
we are dealing with a coupled model, and particularly with a heat equation whose diffusivity depends
on the stress tensor ¢ coming from the Biot equations. The first aforementioned choice is discarded
for the inconvenient expressed above, whereas the second one, while yielding a nonsymmetric tensor,
still allows us to express the diffusion coefficient in terms now of p instead of o, as we explain later on.
Needless to say, and as a complementary remark, the pure poroelasticity model in Oyarzia & Ruiz-Baier
(2016) does not involve any coupling with heat or other equation including o as part of it, and hence in
that case there is no need to introduce neither ¢ nor p as an independent unknown. Indeed, we notice
that a primal formulation is employed there.

Now, going back to (2.2), and applying matrix trace to that equation, we can express div(u) in terms
of p, p and 6, namely

divw) = y () (tr(p) + n(ap + o)), (2.3)
with the parameter-dependent coefficient
y(A) == i+ (n+ D)~ (2.4)

While this coefficient depends also on p and n, only its dependence on XA and its relation with other
model parameters will be important when we analyze the formulation in the quasi-incompressibility
limit. Replacing the obtained expression for div(u) into (2.2) and using (1.1), we can equivalently rewrite
the equations in (2.1a) in terms of p as follows:

1

A
_pd+7()
n

n

tr(p)l —Vu=—yX) (ap+B6)I, —div(p)=f in £.

Note that for the second equation above, we have used the fact that div(e) = div(p), which can be
corroborated by taking divergence to the first equation of (2.1a) and to (2.2), respectively. Moreover,
replacing (2.3) into the first equation of (2.1b), we obtain

ciM)p —diviw) =f — (M) tr(p) — c3(1) 0,
where we have used the following parameter-dependent coefficients

c(A) = x + nazy(k), c(A) == ay@) and c3(A) == naByQ). 2.5)
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Again, we stress here the dependence on A only. Next we reformulate (2.1c) in terms of p within the
diffusivity function D, for which is necessary to establish the function that maps ¢ to the triple (p, p, ).
In this regard, from (2.1a), we have

2e@) =p+p°"—2(n+ 1 diva) I+ 2(@p+ B, (2.6)
and thus, we deduce from (2.2), along with (2.3) and (2.6), that the original stress tensor ¢ can be
expressed in terms of the pseudostress p, pressure p and temperature 6, through the linear mapping

C(p,p,0) :=p+p"—yQ) ((ZM +At(e)+2n—1)(ap+ ,39)) I =o. 2.7)

Consequently, we can recast the original stress-dependent diffusivity D by a function K depending on
p, p and 6 defined by

K(p.p.0) :=D({C(p.p.0)). (2.8)

Finally, the model equations in (2.1) are restated, equivalently, on the unknowns p, p and 8 by the coupled
system:

[ A%) . .
—pt+—tu(@I—Vu=—yXN)(ap+B6)I, —div(p)=f in £, (2.9a)
n
ciM)p—diviw) =f —c,(M) tr(p) — c3(1) 6, n w—Vp=0 in £, (2.9b)
K
0+w-Vo — div(lC(p,p,Q) Vé) =g in £, (2.9¢)
u=uy, p=pp and 6=0 on TI. (2.9d)

At this point we remark in advance that, thanks to the way the coefficients y (1) (cf. (2.4)) and c;(}) (cf.
(2.5)),i € {1, 2, 3}, depend on X, we will obtain afterwards a locking-free fully-mixed method for (2.9),
which also yields robustness with respect to the quasi-incompressible limit.

Throughout this work, we suppose that K : R x R x R — R is a function of class C' and uniformly
positive definite, meaning the latter that there exists », > 0 such that

K(r,q,8)s-s = x |s|2, V(r,9,§) e RxR xR, VseR (2.10)

We also require uniform boundedness and Lipschitz continuity of /C, that is that there exist positive
constants »; and Ly, such that

|IC(19 q’é)l =< X1 and |IC(T’ 5],5) - K:(T()» qo»é())' =< LIC |(T, C],E) - (To, qO’EO)L (211)

forall (r,q,£), (t4,9p,%)) € R x R x R. Although we do not assume explicitly that IC is bounded from
below, we highlight that this bound follows straightforwardly from (2.10).

It is pertinent to mention here that one of the main consequences of introducing the new variable
p is that (2.9¢) becomes nonlinear with respect to 6 unlike (2.1c). Furthermore, it is easily seen from
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(2.7) and (2.8) that sufficient conditions for the smoothness of K, and for (2.11), are given by analogue
conditions for D, thatis D : R — R a function of class C!, and the existence of positive constants &,
and Lp, such that

ID(r)| =8, and [DE)—-D(r)| = Lplf—7| Vi 1eR

3. Mixed weak formulation

In this section, we derive a mixed formulation of the system (2.9). To this end, we treat each variational
formulation of (2.9a), (2.9b) and (2.9¢c) independently, ending up with three systems whose coupling is
carried out via a fixed-point iteration strategy.

3.1 Mixed formulation of the poroelasticity equations

In what follows, we are going to address the mixed formulation for the poroelasticity equations in
(2.9a) for a given pressure p and temperature 6, which are going to be determined by (2.9b) and (2.9¢c),
respectively. The poroelasticity equations defined for the nonsymmetric pseudostress p and velocity u
unknowns are given by

1 1
—pd + —ytr(p)] — Vu = —yM) (@p+BO)I in £2,
H n (3.1

—div(p) =f in £ and w=up on I.

We notice that in order to properly couple the equations (2.9), we need to be able to control the following
expression associated with the heat equation

/Q (K@.F.9) — K(Eg.For 9)) £ -5,

where (¢,p, 9) and (£, Py, V) belong to the same space in which we will seek the unknowns (p, p, 6),
and the functions ¢ and s are generic vectors that belong to the same space than V6. In this regard, and
employing the Lipschitz-continuity property of I (cf. (2.11)), straightforward applications of Cauchy—
Schwarz and Holder inequalities yield

/Q (K@.5.9) — K(&o:Bou90)) -5

< Lic (I8 = Sollogse + 1P — Bollozze + 19 = Dolloze ) Mloze Islys  (32)

where j, k € (1, 4+00) are conjugate to each other. The latter inequality makes sense for ¢, ¢ € L% (£2),
P, Py, ¥ and 9 € L%(£2), and ¢t € L¥*(£2). In this way, the above leads us to initially look for p in the
space L"(£2), p € L"(£2) and 0 initially in L"(£2), with r := 2j. The specific choice of r will be discussed
later on, so that meanwhile we consider a generic r and let s € (1, 2) be its respective conjugate. In turn,
a suitable bounding of [|¢[|( 5> in (3.2) for a particular ¢ will also be explained subsequently by means
of a regularity argument.

With the preliminary choice of the space to which p belongs established above, it follows now from
the first equation of (3.1) that u should be initially sought in W' (£2). Thus, in order to derive the
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variational formulation for the poroelasticity equations, we need to invoke a suitable integration by parts
formula. Indeed, applying (1.4) with t = s and ¥ = r to u € W' (£2), for which we assume from now
on that up, belongs to WU/sr (M), we find that

/ Vu- -1t = —/ u-div(r) + (rv,up)r,
2 Q

so that, the testing of the first equation of (3.1) against T € H*(div; £2) gives

l/ pd:rd—l—w/ tr(p)tr(r)+/ u - div(t)
nJe nJo Q

3.3)
— (tv.ap) f — 7() /_Q<ap+/39>tr<r>.

Here, we notice that the second term on the right-hand side of (3.3) does indeed make sense for p and 8
initially in L"(£2). In fact, thanks to Holder’s inequality, we have

/Q pte(®) < 0" pllg o ITlloses /Q 0tr(r) < 0" 1101l 1Tl seca- (3.4)

As aresult, the third term on the left-hand side of (3.3) implies that it is sufficient to consider # in L"(£2).
Additionally, when testing the second equation of (3.1) against v € L(£2), we obtain

/ v-div(p) = —/ f.v, 3.5)
Q Q

which makes sense when div(p) € L"(£2) and f € L"(£2), the latter being assumed in what follows, and
thus from now on we seek p in H’ (div,; £2). In addition, we notice that for each ¢ € (1, +-00) there holds
the decomposition

H'(div,; £2) = H{(div,; 2) @RI, with
(3.6)
Hf(div,; 2) = ['r € H'(div,; 2) : / tr(t) = O].
2

Note that replacing T by the identity tensor I in (3.3) and using that the deviatoric of I is the null tensor,
we get an expression for the integral of the trace of p, this is

/tr(p): L/ u-v—n/ (ap + B0). 3.7)
o) y) Jr I?)

Now, using the decomposition (3.6) with # = r, we have that p = p + cll with unique p, € Hj(div,; £2)
and constant ¢ € R, which thanks to (3.7), can be computed by

1 1 1
_ L 9). 3.8
n|9|/9“(”) ny(mm/p”D ’ |9|/9(°‘p+’3) G:8)

Cc =
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Hence, ¢ can be obtained once the pressure and temperature are known, and in order to fully attain the
explicit knowledge of the unknown p, it only remains to find its H(div,; §2)-component p,,. On the
other hand, (3.6) also applies to each t in H(div,; £2) with unique decomposition T = t + dI, for
T € Hj(div; £2) and respective constant d € R.

Therefore, we reformulate our problem in terms of p instead. To do so, we replace p = p + cI
into (3.3) and (2.9b), denote p, simply by p and substitute K(p,p,0) by K(p + cI,p,6) in the heat
equation (2.9c). Furthermore, we observe that testing (3.3) against T € H'(div; £2) is equivalent to
doing it against T € ]I-]If)(divs; £2), which, together with the above, leads us to consider the following
Banach spaces

X, :=Hidiv,.;2), M, :=L"(£2), X, :=H\div;$2), M, :=L2),
2 old1v, 1 1 old1v 2

so that, given p, 6 € L"(§2), and gathering (3.3) and (3.5), we arrive at the following mixed formulation
for the poroelasticity equations (2.9a): Find (p,u) € X, x M; such that

a(p,t)+b(r,u) = Fp’g(r) vVt eX|,
3.9
b,(p,7v) = G(®) Vv eM,,

where the bilinear forms a : X, x X; — Rand b, : X; x M; — R, with i € {1, 2}, are defined by

a(p,t) == l / pd sl 4 w / tr(p) tr(t) Y(p, 1) e Xy x Xy,
nJe n Q

b;(z,v) = / v - div(t) V(r,v) € X; x M,
Q

In turn, given ¢, ¥ in L"(£2), the linear functionals Fq’l9 :X; - Rand G : M, — R, are defined by
Fq’ﬁ(r) = (wv,up)r —y Q) /Q(ocq + B 9) tr(7) vVt eX,, (3.10a)
Gy = —/ f-v Vv eM,. (3.10b)
Q

Next, it is easily seen that a, b;, b, and G are bounded. In fact, applying Holder’s inequality, we find
that there exist positive constants, denoted and given by

2
lall := " bl :=1 and |Gl = IIfllp,.c- (3.1
such that
la(o, )l < llallllpllx, ITllx, V(p.7) € X, x X,
bz < Iblllzly [vlly, ¥ @) €X; x M,
IGOMI = IGIHIYI, Vv eM,.

Regarding the boundedness of the functional F, 5, where p and 6 are initially in L"(£2), we will establish
this in the forthcoming Section 3.3, where the range of r will be determined for each unknown.
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3.2 Mixed formulation of the perturbed Darcy problem

Continuing with the weak formulation of (2.9), we are going to focus now on the perturbed Darcy
equation (2.9b) including the boundary condition of the pressure, for a given p € X, and p,6 € L'(£2).
Following the derivation done in Section 3.1, we use decomposition (3.6) together with the definition of
¢ (cf. (3.8)), and replace tr(p) by tr(p + cl) into (2.9b), so that the perturbed Darcy problem describing
the velocity w and pressure p is then given by

Qw—Vp:O in £,

K

diviw) —ci(M) p=cy (M) tr(p +cl) +c3(M) 0 —f in £, (3.12)
p=pp on I,

where the constant ¢ multiplying I on the right-hand side of the second equation is defined by (3.8), and
depends on p and 4. Next, given ¢ € (1, 00), we consider the zero mean mapping m : L'(£2) — Lf)(.Q)
defined by

1
m(q) = q — A q Vg eL(R2). (3.13)

Then, replacing (3.8) and using the notation g, := m(q) € Lf)(.Q), the second equation of (3.12) can be
written as

diviw) — x p — nazy(k)po = (M) tr(p) + c3(A) 6y + |?2—| /ruD -v —f. (3.14)

Prior to addressing the weak formulation of (3.12), we notice that in order to properly couple (3.14) to
equation (2.9¢), we need to be able to control the expression

/ W - VO,
2

which arises later on (cf. (3.25)) when dealing with the variational formulation of the heat equation.
Here ¢ is a function belonging to the same space in which we will seek the temperature 6. Applying
generalized Holder’s inequality to the triple product present in the above integral, we get

/ w - V)
2

where j,k € (1,400) are conjugate to each other, and the inequality holds true for w € L"(£2), V6 €
L2(£2), and 9 € LP(£2), with (r, p) := (2], 2k). Considering that 6 is initially taken from L"(£2), we
have to require that r < p, a condition that will be satisfied when determining the range for p, so that
for now we consider p € (2, +00), and let o be its respective conjugate.

Having chosen L’ (£2) as the preliminary space for w, (3.12) tentatively suggests to look for p in
W7 (£2). In this way, testing the first equation of (3.12) against z € H* (div,; £2), and applying (1.3)

< wlloz.2 1VOllo.2 1910202 (3.15)
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together with the Dirichlet boundary condition for p, we obtain

g/ w-z+/ pdiv(z) = (z-v,pp)r Vz € Hi(divg; £2), (3.16)
2 2

which requires to assume that pp, € WU/Sr(I). Then, a straightforward application of Holder’s inequality
in the second term on the left-hand side of (3.16) shows that it suffices to seek the pressure p in the space
L"(§2), which coincides with the space obtained in (3.4). On the other hand, testing (3.14) against an
arbitrary function g belonging to a space to be determined, we formally get

/qdiV(W)—x/pq—nazy(k)/poq
2 2 2

=cz(k)/ qtr(p)+c3(k)/ 00q+L/uD-v/ q—/fq- (3.17)
fo) 2 n|$2| Jr o) fo)

Since we will look for p in L"(§2), a direct application of the Holder’s inequality implies that the
second term on the left-hand side of (3.17) makes sense if ¢ is considered in L°(§2). Consequently,
the remaining terms of (3.17) are well-defined if div(w) and f belong to L"(£2), and then w must be
sought in H"(div,; £2). In this way, we define the following spaces

X, :=H (div,; 2), X, :=H(iv;2), M,:=L"(2) and M, :=L*). (3.18)

Then, given (p,0) € X, x L?(£2), the mixed formulation for the perturbed Darcy equation reduces to
the following: Find (w,p) € X, x M such that

cw,z) + di(@z,p) = F@ vz e X,
(3.19)
d,(w.q) —ep.9 = G,4(q Vg eM,,

where the bilinear forms ¢ : X, x X; — R, d; : X; xM; — R,i € {1,2} and e : M| x M, — R, which
are independent of p and 6, are defined by

c(w,z) := g / w-z VYw,2) € X, x X, (3.20a)
2

4z q) = / gdiv) V(g eX; x M, (3.20b)
2
and

e(p,q) :=x/pq+na2)/(k)/poq V(.q) € M| x M,. (3.20¢)
2 2
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Furthermore, the functionals F : X; — R and gw : M, — R, foreach (¢£,9) € X, x L?(£2), are
defined by

F@) =& -v,ppir VzeX; and (3.21a)

Gy (@) ::cz(k)/ qtr(c)+c3(,\)/ ﬁ0q+i/uD.v/ q—/fq Vg € M,. (3.21b)
Q Q n|2| Jr Q Q

In addition, the bilinear forms ¢, d;, i € {1,2} and e are all bounded. Finally, applying Cauchy—Schwarz
and Holder inequalities, we find that there exist positive constants, given by

n
llell = . Id;]l :=1, Jle|l := max{x,nazy(k)}, (3.22)
such that
lew,2)| < lcll Iwlx, llzllx, V(w,z) € X, x X,

d;z. )| = lld;ll llzllx; llglly, ¥V (z.q) € X;x M, ie{l,2],

le@,@)| < llelllIpln, llglim, V(p,q) € M; x M,.
The boundedness of F and G ) will be proven later in the next section.

3.3 Mixed formulation of the heat equation

We treat now the mixed formulation of (2.9¢) for a given p € X, and w € X,. For this purpose, we
define two auxiliary unknowns, the gradient of the temperature and the term contained in the argument
of the divergence operator in (2.9¢), this is

T:=V0 and o :=K(p,p, 0L (3.23)
Then, replacing these variables, the heat equation (2.9c) describing the temperature 6 can be written as

t=V0, o =K(p,p.0)f and 6 +w-T—div(c) =g in £,
(3.24)
6=0 on I.

Now, testing the third equation of (3.24) against an arbitrary function ¢+ belonging to a space to be
determined, we formally get

/019+/w~719—/ ﬁdiv(&):/gﬁ. (3.25)
2 2 2 2
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Next, proceeding as in (3.15), we notice that applying generalized Holder’s inequality to the triple
product in the second term on the left-hand side of (3.25), we get

’/w?ﬁ
2

whence we can look for7 € L?(£2) and 9 € L°(£2). In addition, performing similar calculations as
before, but over the first term on the left-hand side of (3.25), for p = 2k > 2, we obtain

/-
2

and in consequence 6 can be sought in the same space as ¥, its associated test function, which is L” (£2).
In light of this, the data g will be considered in L8(§2). Furthermore, a direct application of Holder’s
inequality yields the third term on the left-hand side of (3.25) to be bounded as follows:

/ ¥ div(o)
Q

where, recalling that o is the conjugate of p, we observe that this term makes sense as long as div(o) €
L2(£2). Moreover, since € L2(£2) and K is bounded (cf. (2.11)), we can test the second equation of
(3.23) against 5 in L?(£2), that is

< Iwllor.e o2 1910,

p=2
= 10llo;2 19 llo,e = 18217 11€1lg,p.2 1P Ml0, ;2

< 19119, pe 14iv@)lg peco-

—/ 5.'§+/ Kp,p,0)f-5=0 V5eLX(£), (3.26)
2 2

where, from the first term, we obtain that & must be searched in L?(£2) and more specifically in
H(div,; £2) according to the preceding discussion.

Now, we observe that from the first equation of (3.24) we need 6 € H!(£2), but since 8 € LP(£2)
this condition will be valid if H' (§2) is continuously embedded in L” (§2). The latter is guaranteed for
p € [1,+00) when n = 2, which is always satisfied in the two-dimensional case, and for p € [1, 6] when
n = 3. Furthermore, in order to prove an inf-sup condition associated to, w we are going to apply, e.g.
(Gatica & Inzunza, 2021, Theorem 3.2), which requires that r € [4/3,4] whenn = 2 and r € [3/2,3]
when n = 3. On the other hand, since r > 2 (see Section 3.1), the respective lower bounds are already
satisfied, and we only need to verify the upper ones. We readily observe that since r = 2p/(p — 2), for
n=2r <4ifonlyif p > 4, whereas for n = 3, » < 3 if only if p > 6. Thus, intersecting the above
with the previous restrictions on p, we find that when n = 2 we require p > 4, and when n = 3 the only
possible choice is p = 6. Therefore, we conclude that the feasible ranges for (7, p) and their respective
conjugates, (s, 0), are given by

{r€(2,4] and s €[4/3,2) ifn=2, Ipe[4,+oo) and ¢ € (1,4/3] ifn =2, 327

r=3 and s =3/2 ifn=23, p =06 and o =6/5 ifn=3.
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Then, bearing in mind that 7 and 6 belong to L?(£2) and L” (£2), respectively, we test the first equation
of (3.23) againsta T € H(div,; §2) and applying (1.2), we formally get

/ 23 +/ 0div(t) =0 V7T € H(div,; 2). (3.28)
2 Q

Consequently, taking into account the foregoing discussion, we introduce the following spaces and
notation to be used in our formulation:

H, :=L°(2), H, = L?(2), H := H xH,, Q:= H(din;.Q),
6:=©79, v:=(@175 cH

Finally, suitably gathering (3.25), (3.26) and (3.28), for a given p :=A(p,w,p) e X, x X, x M, we
arrive at the following mixed formulation for the heat equation: Find (0,0) := ((0,7), 5) € H x Q such
that

-

V= (9,5 € H,
- (3.29)
VT €Q,

a34(0.9) +b(3,5) = F(9)
b(6,7) =0

where, given § = (£,2,q) € X, x X, xM; and € € Hl,aq’s :HxH— Randb: H x Q — Rare
the bilinear forms defined by

a;(0.9) :=/91§‘+/ K(;,q,§)~-'§+/ z- 10 V0,9 cH, (3.30a)
2 2 2

b(#,7) = —/.Q?-E—/Qz?div(?) Y (3, T)eHxQ. (3.30b)

It is important to notice that, since g; » involves the function K in its definition, which in turn depends

on 6, the term a5 4 (6, ) is nonlinear. Additionally, the functional F : H — R is given by

F(E‘)::/gz&‘ Vo = (8,5 € H.
2

Next, it is easily seen that, given § € X, x X, x M; and § € H;, az, b and F are bounded. In fact,
endowing H and Q with the norms

191y = ||19||0,p;9 + ||3:||o;9 Vo € H, ”?”Q = ||"E||d'wg;g VT €Q,

and applying the Cauchy—Schwarz and Holder inequalities, we find that there exist positive constants,
denoted and given by

lall := max{|2|°"2/> 5}, bl ;=1 and [IF]| = |gllp.q- (3.31)
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such that
laz e @) = (llall + lzllg.) 161glldlg V6.9 €H,
b3, &)| < 16115147l V(@©,7) e HxQ, (3.32)
IF@) < IFIIS g Vd e H.

Regarding the boundedness of Fq’ﬂ, JF and gw (cf. (3.10a), (3.21a) and (3.21b), respectively), we
observe that knowing already that (¢, ) € L"(§2) x L?(£2), with r and p within the ranges stipulated by
(3.27), invoking the identity (1.3), the continuous injections i,. : H!(£2) — L"(£2) and ip - H! (£2) —>
L”($2), the definitions of the constants ¢, (1) and c53(A) (cf. (2.5)), and employing the Cauchy—Schwarz
and Holder inequalities, we can conclude that there exist positive constants Cy, C£ and Cg, depending
onn,r, p, |li.ll, i, 1l 1521, e and B, so that letting

IR, == Ce {lupllijerer + 70 (19l + 1910, ) 1
IFI == Cglpplli)s,r and
G, 51l = Cg {Hf”o,r;ﬂ + llwplly g + ¥ ) (||;||XZ + ||l9||0’p;9)},
there holds
F,@ < IE,,lltly, VYreX,
IF@I = IFIzlx, VzeX; and (3.33)
<

Geo @] < IGeolllgly, ¥aeM,

3.4 The coupled fully-mixed formulation

Following the derivations presented in the previous sections, the fully-mixed formulation for (2.9)
reduces to gathering (3.9), (3.19) and (3.29), that is: Find (po,u) € X, x M;, (w,p) € X, x M, and
(6,0) := ((6,9),3) € H x Q such that

a(p,7)+b(r,u) = Fp’g (1) vVt eX,
b,(p,v) = G() Vv eM,,
cw,z) + d;(z,p) = F@) vz e X,
(3.34)
d,(w,q) —e(p.q) = G,p(q) Vg eM,,
a5 4(0.0) + b(3.5) = F(9) V9 e H,
b(6,7) =0 VT eQ,

where p = (p,w,p) € X, x X, x M.

Regarding the relevance of the mixed formulation (3.34) for the original model (2.1), we first stress
that, while the nonsymmetric pseudostress p has been introduced mainly for theoretical reasons, it allows
to compute afterwards the symmetric tensor o (cf. (2.7)), which, besides being required for the diffusivity
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of the heat equation, as remarked before, is certainly the one of mayor interest from the physical point
of view. In addition, we highlight that the variable 7, representing the temperature gradient, is in some
applications as important as the temperature itself, so that having formulations like (3.34), yielding direct
approximations of that gradient without employing any numerical differentiation process, constitutes a
very attractive feature. The other unknowns are the variables appearing in the original system of equations
(2.1), whose physical meanings are explained right after it.

Furthermore, the same observation above regarding the computation of the gradient is valid in case
one is interested in getting direct approximations of the divergence of u and the infinitesimal strain
tensor, both physical quantities of relevance in diverse applications. In fact, as noticed from (2.3), div(u)
is obtained as a function of p, p and 0, whereas, according to (2.1a), e(u) can be expressed in terms of
o, p, 0 and div(n) itself.

4. The continuous solvability analysis

In this section, we will first use the Babuska—Brezzi theory in Banach spaces (cf. (Bernardi et al., 1988,
Theorem 2.1, Corollary 2.1, Section 2.1) for the general case, and (Ern & Guermond, 2004, Theorem
2.34) for a particular one) to address the well-posedness of each one of the decoupled problems arising
from (3.9), (3.19) and (3.29). Then, we proceed similarly as in Colmenares et al. (2020) and Gatica et al.
(2022b) (see also Camaio et al. (2018), Gatica et al. (2021), and some references therein), and adopt a
fixed-point strategy to analyze the solvability of the fully coupled system (3.34).

4.1 The decoupled poroelasticity equations

We begin by introducing the operator S : M; x H; — X, defined by
S(qs ﬁ) = p V(qv 19) € M[ X H19

where (p,u) € X, x Mj is the unique solution (to be confirmed below) of the mixed formulation arising
from (3.9) after replacing (p, 6) by (g, ¥), that is

a(p, ) +b(v,u) = Fqﬁ(r) vVt eX,
4.1)
b,(p,v) = G Vv e M,.

In order to prove that (4.1) is well-posed (equivalently, that S is well-defined), we notice that (4.1) has
the same bilinear forms of (Gatica et al., 2022a, eq. (3.15)). Then, assuming that the Lamé parameter
is sufficiently large, namely A > M, where M is specified in (Gatica et al., 2022a, Lemma 3.4), we can
establish that the operator S is well defined. Indeed, letting & 4, B and B, be the constants yielding the
continuous inf-sup conditions for a, b; and b, (cf. (Gatica et al., 2022a, Lemmas 3.4 and 3.5)), we have
the following result:

Lemma 4.1. Let r and s be within the range of values stipulated by (3.27), and assume that A > M. Then,
for each (¢, ) € M| x H; there exists a unique (o, u) € X, x M, solution of (4.1), and hence one can
define S(g, ?) := p. Moreover, there exists a positive constant Cg, depending on & 4, 81, B,, Cy and 1,
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such that

1S )1 = lpllz, < Cs [nanl/W;p + IEllo e + 7 (Igllo + ||ﬂ||o,p;9)]. (42)

Proof. Thanks to the fact that X; and M;, with i = {1,2}, are reflexive Banach spaces, along with the
boundedness of all the forms and functionals involved, and the inf-sup conditions provided by (Gatica
et al., 2022a, Lemmas 3.4 and 3.5), the proof reduces to a direct application of (Bernardi et al., 1988,
Theorem 2.1, Corollary 2.1). In particular, the a priori estimate (4.2) follows from (Bernardi et al.,
1988, Corollary 2.1, eq. (2.15)). Note that the dependence of the constant Cg on p is due to [|all
(cf. 3.11)). O

Regarding the a priori estimate for the component u € M, of the unique solution of (4.1), we recall
that, given (¢, %) € M; x H;, the second inequality in (Bernardi et al., 1988, Corollary 2.1) yields

luly, < Cs luply/srr + 1Ellg,.0 +v@R) (“CI”()J;_Q + ||l9||o,p;g) ],

where @S is a positive constant that depends principally on Cy, & 4, B, and 8.

4.2 The decoupled perturbed Darcy problem

As in Section 4.1, we now introduce the operator £ : X, x H; — X, x M, defined by
E(;a 19) = (51(;’ 19)’ 52(;’ 19)) = (WUD) v (C’ L?) € Xz X LP(Q)’

where (w,p) € X, x M; is the unique solution (to be confirmed below) of the mixed formulation arising
from (3.19) after replacing (p, 6) by (¢, ), that is

cw,z) + d;zp)

d,(w,q) —e(p.q) = G,5(@ VqgeM,.

F@ Vz e X,

4.3)

We observe that (4.3) has a perturbed saddle point structure over Banach spaces, but the fact that the
trial and test spaces are different prevent us from using, e.g., (Correa & Gatica, 2022, Theorem 3.1), and
therefore an additional treatment is needed. Then, proceeding as in (Caucao et al., 2023, Section 3.2.3),
we first employ the Babuska—Brezzi theory in Banach spaces (cf. (Bernardi et al., 1988, Theorem 2.1,
Corollary 2.1, Section 2.1)) to analyze part of (4.3), and then apply the Banach—Necas—BabuSka theorem
(cf. (Ern & Guermond, 2004, Theorem 2.6)) to conclude the well-posedness of the whole problem.
According to this, we now let A : (X, x M;) x (X; x M,) — R be the bounded bilinear form arising
from (4.3) after adding the left-hand sides of its equations, but excluding e, that is

A(W.p). @.9) = cw.2) +d,@.p) +dy(w.q) Yw.p) €Xy x M, Vz.q) € X; x My, (4.4)
and aim to prove next that A satisfies global continuous inf-sup conditions with respect to both its first

and second component. Note that the boundedness of A follows from those of ¢, d; and d, (cf. (3.20a)
and (3.20b)). The verification of the aforementioned properties of A is equivalent to establishing that
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the bilinear forms ¢, d; and d, verify the hypotheses of (Bernardi et al., 1988, Theorem 2.1), which we
address in what follows. First, according to the definitions of X; and M; (cf. (3.18)), the kernel of the
operators d;, i € {1,2}, are given by

V) = {z e (div;2): divk) = 0} and V, = {z eH (div,:2): divp) = o}.

The two subsequent lemmas, akin to those previously stated and demonstrated in Caucao et al. (2023)
and Gatica et al. (2022b), establish the inf-sup conditions required by (Bernardi ef al., 1988, Theorem
2.1) for the bilinear forms ¢ (cf. (3.20a)), and d;, d, (cf. (3.20b)), respectively.

LemMa 4.2. Assume that r and s satisfy the particular range specified by (3.27). Then, there exists a
positive constant o, such that

c(w,z)

zeV) ||Z||x1
z#0

> o wlx, Ywel,,

and

sup c¢(w,z) >0 vzeX;, z#0.

weV,

Proof. The proof follows a similar approach as in (Caucao er al, 2023, Lemma 3.4), leading to

a, = ﬁ, with D, being the bounded linear operator introduced in (Caucao et al., 2023,

Lemma 3.3). 0
The continuous inf-sup conditions for the bilinear forms d;, i € {1, 2} are presented next.

LemMma 4.3. For each i € {1, 2} there exists a positive constant Ei such that

d;(z,q)

zex; lzllx,
z#0

> Billghy, ~ VgeM,.

Proof. A proof of this lemma can be done by slightly modifying that of (Gatica et al., 2022b, Lemma
2.7), considering Dirichlet boundary conditions of the auxiliary problems instead. (]

According to Lemmas 4.2 and 4.3, the required hypotheses of (Bernardi ez al., 1988, Theorem 2.1,
Section 2.1) are satisfied, and hence the a priori estimation provided by (Bernardi ez al., 1988, Corollary
2.1, Section 2.1) imply the existence of a positive constant a4, depending only on e, /31 ﬂ2 and |c]|,
such that

A(w.p), z.q))

@oeX;xMy 1@ DIX, xm,
(z.9)#0

aA ”(wsp)”szMl v(wsp) € X2 X M], (453)

A(w.p), @ q))

wpeXoxM; 1, PIIx, M,
(w,p)#0

> ey @D lxm, Y@ €X) x M, (4.5b)
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Therefore, we let A : (X, x M;) x (X; x M,) — R be the bounded and linear operator arising from
(4.3) after adding the full left-hand sides of its equations, that is

A((W,p), (Z, C])) = C(W,Z) + dl(z»p) + dZ(w’ CI) - e(p’ CI)
Yw,p)eX, xM;, V(&g €X; xM,.

(4.6)

Having introduced this operator, we realize that solving (4.3) for a given pair (¢£,9) € X, x Hy, is
equivalent to: Find (w,p) € X, x M, such that

A(w,p),z9) =F@)+G,5(@ Vg €X; xM,.

‘We notice that, thanks to the boundedness of A and e, the operator A is bounded as well. Thus bearing
in mind (4.6), employing (4.5a) and the boundedness of e (cf. (3.22)), we have

A(w,p), 2, 9)
PR BTl > Loy — el I plixar, Y 0p) € X, x M,
(z,9)€X| XM ||(Z,C])||Xl><M2
(z,q)#0

Then, assuming that the data satisfy

o
lell := max {x .na?y (| < =2, “7)

we arrive at the global inf-sup condition for the perturbed Darcy problem

A((w,p), (z,q9)

(z,9)€X| XMy Iz, q) ”Xl xM;
(z.9)#0

o
> 7" lw. D) lIx,unt, Y 0.p) € Xy x M. (4.8)

Similarly, but employing now (4.5b) instead of (4.5a), and under the same assumption (4.7), we obtain
the second desired inf-sup condition for A, which is

AW.p), @9) _ o4

(W,p)EXzXM| ”(W’p)szxM, - 2’
(w,p)#0

1@ DlIx, xm, Y@ q) € Xy x M,. 4.9)

We are now in position to establish the well-posedness of the operator =, equivalently the existence
and uniqueness of solution of (4.3).

Lemma 4.4. Let r and s be within the range of values stipulated by (3.27), and assume that the data fulfill
condition (4.7). Then, for each (¢, ) € X, x H;, there exists a unique (w,p) € X, x M; solution of
(4.3), and hence one can define Z (¢, ) := (w,p) € X, x M. Moreover, there exists a positive constant
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Cgz, depending on a4, C £, and Cg, such that

IE@. D)lixxng, = Wlx, + 1Plhy,

< Cg [ ||PD||1/s,r;1" + ”f”(),r;_(z + ”uD”l/s,r;F +y ) (||C||X2 + ||l9||0,p;g)]- (4.10)

Proof. Given (¢,v) € X, x H;, thanks to the boundedness of A, and the global inf-sup conditions (4.8)
and (4.9), a direct application of (Ern & Guermond, 2004, Theorem 2.6) provides the existence of a

unique solution (w,p) € X, x M to (4.3). The a priori estimate (cf. (Ern & Guermond, 2004, Theorem
2.6, eq. (2.5))) yields

2
IZ@ D)y, = I, + WP, < = {1F1+ 16 51}
A

which, together with the expressions for | F|, |G 9 || given in (3.33) imply (4.10). (I

4.3 The decoupled heat equation
We now introduce the operator IT : X, x (X, x M) x H; — H defined by

M(,7.6) = (I,(8,2.6),M,(8.5,£)) =0 = (0,9,

forall (¢,%.&) = (£.(z.9).§) € X, x (X, x M)) x H;, where 6,0) = ((0,9,0) € H x Qs the
unique solution (to be confirmed below) of the problem arising from (3.29) after replacing a5 4, with
P = (p,®,p), by az, with ¢ = (¢,z,q), that is

-

V= (8 H
@.5) € H, 4.11)
VT €Q.

a35(6,9) +b(,5) = F()
b(b.,7) =0

N

We recall from (3.32) that the bilinear form ag ;. (cf. (3.30a)) is bounded with constant [|a|| + [zl ..
which is independent of ¢, g and £. Furthermore, it is easy to see that the null space associated with the
bilinear form b is given by (see, e.g., (Colmenares et al., 2020, eq. (3.35)) for the case (p, 0) = (4,4/3))

YV, = [(ﬁ,@)eH: /?~E+/ #div(t) =0 V?EQ]
2 2
— {(0,E)GH: §=Vo and ﬁeHé(Q)}.

Then, following the same ideas as in (Colmenares et al., 2020, Lemma 3.6), we have to prove that
ag e is Vy-elliptic plus an inf-sup condition on b. To show the property of aj ., we use the above

characterization along with (2.10) and the continuous injection i ’x H'(£2) — L?(£2). In this way, for
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each & = (9,5) € V), we get

a3 3.9) > 1913g +x0 IFEq + /Q 250 > %1910 + /DR IR + /Q 250

v

~ s =2 1012 ~112 ~
X ||lp|| ||19||0,p;9 + (30/2) ||s||0;g - ||Z||0,r;g ||s||();g||19||o,p;_q

> 5 (2% = lizllo ) 151, (4.12)

where the constants 5 and x are given by

~ . [*o [~ . =2 %0
= —, 1} d = { s —} .
X mm{ > and x min 1, ||lp|| >
Thus, under the assumption ||z|x, < oy = %%, the inequality (4.12) implies

a;:(0.0) > ay |97 VO = ®.5) eV, (4.13)

which establishes the Vj-ellipticity of aj . with constant .
The inf-sup condition for the bilinear form b states that there exists a constant 8 > 0 such that

sup — > BTl VT eqQ, (4.14)
deH 17 g
540

which can be proved analogously to the case (p,0) = (4,4/3) provided in (Colmenares et al., 2020,
Lemma 3.3, eq. (3.45)) since the present indexes p and o are conjugate to each other as well.

The previous discussion allows us to establish the following lemma on the existence and uniqueness
of solution of the decoupled system (4.11).

LemMma 4.5. Let p and o be within the range of values stipulated by (3.27). Then, for each (¢,Z, &) =
({, (z,9), S) € X, x(X,xM,;)xH, suchthat ||z|| < o, there exists aunique (5, o) = ((9,7), E) e HxQ
solution of (4.11), and hence one can define IT1(¢,Z,£) = g. Moreover, there exist positive constants
Cp and C 1- depending on o4, E, [$2], p and »,, such that the following a priori estimates hold

1T, 2,8l = 10llg < Crr lglo g0 151g < Crr llgllo.p:- (4.15)

Proof. The proof is a consequence of the V), -ellipticity of ag ¢ (cf. (4.13)), the inf-sup condition (4.14),
and a direct application of (Bernardi ef al., 1988, Theorem 2.1, Corollary 2.1). Note that the dependence
of the constants Cp; and CH on |£2], p and x,, is due to [|la|| (cf. (3.31)) since ||aa,§ I, which is required
by the abstract a priori estimates from (Bernardi et al., 1988, Corollary 2.1, equations (2.15) and (2.16)),
is bounded above by |la| + ||z]|. O
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4.4  Solvability of the fully-mixed formulation

In order to solve the fully-mixed coupled problem (3.34), we propose a fixed-point strategy based on the
operators S, = and I, which correspond to the decoupled problems (4.1), (4.3) and (4.11), respectively.
The coupling of the three problems can be analyzed in terms of the compose operator T : X, x H; —
X, x H; given by

T, 9) = (S(E2(§,19),19),HI(S(EZ(;,ﬁ),ﬂ),E(;,ﬂ),ﬂ)) VE.9) eX, xH.  (4.16)

The well-definedness of S, = and IT, which was obtained from Lemmas 4.1, 4.4 and 4.5, respectively,
implies the same property for the operator T. Furthermore, due to the nonlinear character of II, the
operator T becomes nonlinear as well. Then, we observe that solving (3.34) is equivalent to seeking a
fixed-point of T, that is: Find (p,0) € X, x H; such that

T(p.0) = (p,0). (4.17)

In what follows, we address the solvability of the nonlinear equation (4.17), equivalently of (3.34),
by means of the Banach fixed-point theorem. For this purpose, given § > 0, we first introduce the ball

W) = {(C,ﬂ) eXy xHp: @D = lElx, + 11700 = 5}.
Now, given (¢, ) € W(8), the definition of T yields
IT@, D = [S(Z2,9),9) |5, + [T (S(E,4.9),9), £, 9),9) | .05
from which, assuming (4.7) and the upper bound
&1, Dlx, = . (4.18)

and bearing in mind the a priori estimates for S, = and IT (cf. (4.2), (4.10) and (4.15), respectively), we
find that

ITE&, DI = Cp {”"D”l/s,r;r + Ifllo,.2 + Pl /s 02

+ Wllose + Nl + 7@ (I8, +191l0,50) ) (4.19)

where Cy is a positive constant depending on Cg, Cz and Cpg. In turn, we deduce from the estimate for
IZ (¢, )| (cf. (4.10)) that a sufficient condition for the assumption (4.18) is given by

Cz {||PD||1/SJ;1" + Hf”o,r;g + ”uDHI/s,r;F +r®) (”C”XZ + ||19||o,p;g)} = 0y.

In this way, noting that certainly [|£||x, + 19 [l o2 < dwe conclude the following result.
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LemMma 4.6. Let p, o, r and s be the real numbers within the range specified in (3.27), and A > M.
Assume that the data are sufficiently small so that (4.7) and the conditions

Cz {”I’DH]/s,r;r + Wflloe + luplly /s r + V()&)‘S} < a4 and (4.202)
CT{”uD”]/”;F + ||f||0,r;9 + ||PD||1/SJ;Q + ”f”o,r;g + ||g||o,g;9 +r@) 5} <39, (4.20b)

are satisfied. Then, the operator T maps the ball YW(§) into itself, that is TOV(5)) € W(9).

‘We now aim to prove that the operator T is Lipschitz-continuous, for which, according to its definition
(cf. (4.16)), it suffices to show that S, & and IT satisfy the same property. We begin with the corresponding
result for S.

LemMma 4.7. Let r and s be within the range of values stipulated by (3.27), and A > M. Then, with the

same constant Cg from the a priori estimate (4.2) for S (cf. Lemma 4.1), there holds

S(q1,91) — S(g2,9)x, = Csv M) (g1, 91) — (92, 92 lIm, <, » (4.21)

Proof. Given (q;,%), (¢,,%,) € M| xH;,weletS(q,,?;) = p; € X, andS(g,,?,) = p, € X,, where
(p1,uq) and (p,, u,) in X, x M; are the respective unique solutions of (4.1). Then, thanks to the linearity
of this problem, it is straightforward to see that (o; — p,,u; — u,) € X, x M; is the unique solution
of (4.1) with ¥, , —F, ;, and the null functional instead of F, , and G, respectively. Consequently,
noting from (3.10a) that

(B, = o) = =70 [ (algy a0+ b0y =) e Ve e,
the a priori estimate (4.2) yields

IS(q1, 91) — S(g2, %) lIx;, = o1 — P2llx, < Cs¥ M) (g1 — @allo e + 191 — Dllo i)

which ends the proof. g
The Lipschitz continuity of the operator = is addressed next.

Lemma 4.8. Let r and s be within the range of values stipulated by (3.27), and assume that the data
fulfills the condition (4.7). Then, with the same constant Cz from the a priori estimate (4.10) for £ (cf.
Lemma 4.4), there holds

||E(c]a 191) - E(CZa 7-92) ”XZXMI E CE J/()\) ”(;]’ 191) - (C29 192)”}{2)(]{1 s (422)
forall (¢,%), (£5,0,) € X5 x Hy.
Proof. The proof follows in a similar fashion as the previous lemma. Given the two pairs of functions

(&1,71), (£r,1,) € Xy x Hy, we let E(&,D) = (wy,py) € X, x My and E(&,,9,) = (Wy,p,) €
X, x M, in X, x M;, where (w,,p;) and (w,,p,) are the respective solutions of (4.3). Then, thanks
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to the linearity of (4.3), we realize that (w; — w,,p; — p;) € X, x M is the unique solution of this
problem when G, , and F are replaced by G I g ¢,.9, and the null functional, respectively. In this
way, noting from (3.21b) that

(g;l,ﬁl - 9;2,192)(61) = ¢ (A) /Qtr(é'l —85)q + c3(A) /9(191,0 —U0) 4

where ¢, , = m(¥;) (cf. (3.13)), i € {1,2}, the a priori estimate (4.10) gives

||E(§1,191) - E(Czaﬁz)” = ||W1 _w2||X2 + ||P1 _172”1\/[1
= Czv0) (181 = Eall, + 191 = Dallg e )

which concludes the proof. O

It remains to establish the continuity of IT, for which, following the approach from several previous
works (see, e.g Gatica et al. (2018, 2022a,b)), we assume from now on a regularity assumption on the
solution of the problem defining this operator, namely

and a positive constant 55, such that for each (¢,Z,&) € X, x (X, x M;) x
6 = (0,f) € Wo () x H*(2), and

1611 == 11011, pi + [Flecc < Co Igllogic- (4.23)

(H.1) there exists ¢ >
H,, there hold I1(¢,Z,&) :

n
r

At this point we stress that the C! regularity imposed on /C, which is actually equivalent to imposing
it to D, and which aims to facilitate the achievement of (H.1), has actually been stated in that way for
simplicity. The actual regularity needed on K to insure (H.1) is also connected to the regularity of the
datum g. Indeed, we first observe that this hypothesis is determined by the regularity of the second order
elliptic problem given by (2.1c¢), that is

0+w-V0—div(D(e)V0) =g in £2.

One could affirm for certain that, under the assumption that IC(p, p, ) (equivalently D(a)), g and the
given w, are sufficiently smooth, the respective elliptic regularity result (see, e.g., (Dauge, 1988, Theorem
14.6)) establishes that 6 € Hite (£2), for each ¢ € (0, %), where w € (0,7) U (7,2 ) is the largest
interior angle of £2. It follows that 7 = V@ € H®(£2), as required, and using a suitable embedding result
(see, e.g., (Grisvard, 1985, Theorem 1.4.5.2, part e) in the 2D case), one can prove that H!te (£2) is
continuously contained in W#"(£2), thus concluding that 6 € W¥”(£2), as required as well by (H.1).
The lower bound of ¢ specified in (H.1) is explained within the proof of Lemma 4.9 below, which
provides the Lipschitz-continuity of IT. In this regard, we recall here that for each ¢ < 75 there holds

Hé(2) C LS*(.Q) with continuous injection

2n
n—2e

i, HS(2) > LY (2), where &* =

Note that the indicated lower and upper bounds for the additional regularity e, which turn out to require
thate € [%, 5), are compatible if and only if » > 2, which is coherent with the range stipulated in (3.27).
Thus, we have the following result:
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Lemma 4.9. Let p and o be within the range of values stipulated by (3.27), and assume that the regularity
condmon (H.1) (cf. (4.23)) holds. Then, there exists a positive constant Ly, depending on Ly, ay, i,
> |§2|, , n and &, such that

I (81,21,6) — ($5,7,8) lg < Ly lIgllo g0 161:Z1,6)) — (§2,72,6) I, (4.24)

for all @'1321»‘51) = (§1,(Zl,q1),§1), (@2,22,{:2) = (;2’ (12"]2)’52) € XZ X (X2 X Ml) 2 Hl’ such
that ||z, [lx,, 1Zllx, < 4.

Proof. Given (£4,%,&)), (£2,75,&) € Xy x (X, x M) x Hj as indicated, we let 01 =M(p,,Z,,§)) €
H and 92 =1M(p,,7,,&,) € H, where (6,,6,) = ((91, ), ‘71) e Hx Qand (92,02) ((92,t2) 02)
H x Q are the respective solutions of (4.11). Defining ¢, := (£;,2,q,) and g, := (£,,%,, qy), it follows

from the corresponding second equation of (4.11) that 6, — 6, € V,, and then the V, -ellipticity of ag ¢
(cf. (4.13)) gives

I 1 L L
16, — 6,113 < o % 6, — 6,,6, — 6,). (4.25)

In turn, the evaluation at 51 — 52 of the two systems arising from (4.11) for the pairs (¢,,&,) and (¢,.&,),
lead to

aal’sl (él’ 51 — 52) = F(él - 52) and aaz’sz (52, él — 52) = F(él — 52),
from which we find that

aal’él (91 — 92, 91 — 7}2) = aql’él (91, 91 — 02) — a(}l’gl (92, 91 — 02)

aqz’sz (92, 91 —_ 92) — aal’sl (92, 61 — 62)

/Q(’C(L'z’%’&) - K(Cp%sé]))@ : (fl _72) + /Q(Zz - 11) '72(91 - 92)- (4.26)

Next, invoking the Lipschitz-continuity of K (cf. (2.11)), and making use of the Cauchy—Schwarz and
Holder inequalities, we obtain

/Q(K(Cz,‘b,éz) - K(Cl,ql,gl))Tz : (71 —72)
< Lg (llé’z —Cilloare + llay — aallopr,e + 16) — 92”0,2;/;9) 51102002 1E) = H Nl (4:27)

where t,7 € (1,+00) are conjugate to each other. Now, choosing ¢ such that 27 = &*, we get 2f' = 2
which, according to the range stipulated for ¢, yields 2¢ < r, and certainly r < p, so that the norm of the

embedding of the respective Lebesgue spaces is given by C, , := [£2| % In this way, using additionally
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the continuity of i, along with the regularity assumption (4.23), the estimate (4.27) becomes

/Q(K(Czs%’gz) - K@ 1,q1,))0 - (G — 1)
< Ly lgloge {u;l — &ollx, + gy — ol + 1€ —szno,p;g} 16; — 65l (4.28)

where ZH depends on Ly, C, ., 68, lli, I and |£2]. In turn, bearing in mind the a priori estimation of 72
(cf. (4.15)), the Cauchy—Schwarz and Holder inequalities yield

/ (2 —2)) B — 1) < Crllgloge 122 — 2, lIx, 16, — 6, l1g. (4.29)
22

Finally, replacing (4.28) and @.29) back into (4.26), we deduce, along with (4.25), the required inequality
(4.24) with L := i max{Ln, C 1'1}’ which ends the proof. (I

Now, we conclude that, under the hypotheses of Lemmas 4.7, 4.8 and 4.9, the compose operator
T (cf. (4.16)) becomes Lipschitz-continuous within the ball W(8) of the space X, x L (£2). This is
summarized in the next lemma.

Lemma 4.10. Let p, g, r and s be the real numbers within the range specified in (3.27), and . > M. In
addition, assume that the regularity condition (H.1) (cf. (4.23)) holds, and that the data are sufficiently
small so that (4.7), (4.20a) and (4.20b) are satisfied, that is

lell := max { .na?y () | < 22,

Cg {||PD||1/”;1“ + |lf||0,r;_rz + ””D”l/s,r;F + J/()\)a} <oy and

Cr {”uD”l/y,r;]—' + Il + IPpllijs 2 + W o2 + 18ll0 00 + ¥ () 5} <3.
Then, there exists a positive constant Ly, depending on Cg, Cz and Ly, such that

T, 0y) = T(&s, D)l

= Ly (v®) (0 + lglogie) + 18logie) 1€ 12D = o) lspariys 430)

for all (¢,,9)), (£.9,) € W(S).

Proof. Itreadily follows from the definition of the operator T (cf. (4.16)), and the estimates (4.21), (4.22)
and (4.24). O

We are now in position to formulate the main result of this section, which establishes the existence
of a unique fixed-point of T (cf. (4.17)), equivalently, the existence and uniqueness of solution of the
coupled system (3.34).
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THEOREM 4.11. Let p, o, r and s be the real numbers within the range specified in (3.27), and A > M. In
addition, assume that the regularity condition (H.1) (cf. (4.23)) holds, and that the data are sufficiently
small so that (4.7), (4.20a) and (4.20b) are satisfied. Besides, suppose that

Ly (v (r ) + gl ) + o) < 1. (“31)

where Ly is the positive constant from Lemma 4.10. Then, the operator T has a unique fixed-point
(p,0) € W(). EquivaLently, the coupled problem (3.34) has a unique solution (p,u) € X, x M,
(w,p) € X, x M and (9,0) € H x Q, with (p,0) € W(§). Moreover, there hold

”(p’”)"XZXMl =< Zws {”uD”l/s,r;F + ||f||o,r;_(2 + ||PD||1/”;_Q + ”f”(),r;_rz + ||8||(),Q;_Q +y@) 5},

100, D)y, < Cz {lupllyjsger + 120120 + Wl + Igllogie + v G 8},

A

16. D) llixq < Cn (1 +8) lgllo g

where Cg, Cz and Cy; are positive constants depending on Cg, Cz and Cp;.

Proof. Recall, from Lemma 4.6, that (4.20a) and (4.20b) guarantee that T maps W (§) into itself. Hence,
in virtue of the equivalence between (3.34) and (4.17), and bearing in mind the Lipschitz-continuity of
(4.30) (cf. Lemma 4.10) and the hypothesis (4.31), a straightforward application of the Banach fixed-
point Theorem implies the existence of a unique solution (p,6) € W(S) of (3.34), and hence, the
existence of a unique (p,u) € X, x My, (w,p) € X, x M; and (5, o) € H x Q solution of (3.34).
In addition, the a priori estimates follow straightforwardly from (4.2), (4.10) and (4.15), and bounding
lelx, and [16]x, by 4. M

We would like to end this section by emphasizing that the hypothesis A > M (as used in Sections 4.1
and 4.4) naturally hold true in the context of the nearly incompressible scenario. Consequently, we
proceed by assuming that A is sufficiently large, which, in turn, makes y (1) to become sufficiently small
(cf. (2.4)). In this way, considering diminutive values for x , we ensure the feasibility of (4.7). A similar
remark arises later on in the discrete analysis.

5. The discrete analysis
5.1 Preliminaries

Let {7,},_, be a regular family of triangulations 7;, of the domain £2 made of triangles K in 2D (resp.
tetrahedra K in 3D) with corresponding diameter i > 0. The meshsize h, which also stands for the
sub-index, is defined by the largest diameter of the triangulation 7, that is & := max {hK : Ke 7;1}
Furthermore, given an integer £ > 0, we let P,(S) (resp. 1313 (8)) be the space of polynomials defined on
S C £2 of degree < £ (resp. = £). The vector counterpart of P,(S) is denoted by P,(S) := [P,(5)]". In
turn, for a generic vector x € R”, we define the local Raviart-Thomas finite element space of order ¢
over K € T, as RT,(K) := P,(K) & P_’e (K) x. Then, based on the above, we introduce the following
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global spaces:

Pu) = [w, e L@ wilk e P(K), VYK eT;),
P,(2) = {wheL2(9): w,lx € P, (K), VKeﬁ,],
RT,(2) := {rh cH(div:2): 1,lx € RT,(K), VK¢ Th},
RT(@) = [z, e H@iv;2): 7,lx € RT,(K), Vie{l..n, VKeT,}.

where 7, ; stands for the ith-row of a tensor 7. It is easy to see that for each 7 € [1, +00], there hold

P,(2) CLY(R2), P,(2)CL(2), RT,(2) C H(div,;2) NH (div; 2)
and  RT,(£2) € H(div,;; 2) N H (div,; 2).

5.2 The discrete coupled system

In order to set the discrete version of (3.34), we now resort to the definitions from Section 5.1 to introduce
the following sets of finite element subspaces, one for each decoupled problem:

X, o= Hp(div,; 2) NRT,(2), X, = Hj(divy; 2) NRT,(2), M, :=P,(2) = M,,, (5.1a)
X,, =RT,(2), X, =RT,(2), M, :=P,(2)=M,, (5.1b)

H,, = P(2), H,, =P, (2), H, :=H ,xH,, Q,: =RT,(2). (5.1¢c)

Then, the Galerkin scheme associated with (3.34) reads: Find (pj,u;) € X, x My, W;,,p,) €
X, X M, and (6,,5,) = ((6,.,7,).7,) € H; x Q, such that

a(p,,7,) +b(r,,u;) =F, (T Yr,eX,,
by (05 V1) = Gy Vv, € My,

cwp,z) + dy(z4,pp) = F(z) vz, € X 52)
dZ(Wh, Qh) - e(ph, qh) = gph’@h (qh) th c M2,h’ *
ap, 6, @ D) + 00,5 = F(@)) V3, cH,,

where p), 1= (0, W), p) € Xp ) X Xy )y x My,

For the solvability analysis of (5.2) we will adopt a discrete version of the fixed-point strategy
developed in Section 4.4. To this end, we first use the analogues of the operators S, £ and II to
introduce in the following section the corresponding discrete decoupled problems, and establish their

well-posedness.
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5.3 The discrete decoupled problems
We begin by letting S;, : M , x H, , — X, be the operator defined by

Sp(an. %) == pp Vg0 €My, x Hyy,

where (pj,u;) € X, x M , is the unique solution (to be confirmed below) of the discrete formulation
arising from the first and second rows of (5.2) after replacing (p,,, 8),) by (g;, V), that is

a(p,. 7)) +b(ty,u,) = th,,}h (rp))  Vr1,eXy,,

(5.3)
bz(ph, vh) = G(vh) Vvh (S Mz’h.

For the solvability analysis of (5.3), we first observe from (5.1a) that
div(X;,) <€ H,;, Vi e {1,2},

whence the discrete kernels of b, and b, coincide, and are given by
K¢ = {rh €RT,(2): div(r,) = 0 and /Q tr(z,) = 0}.

Furthermore, since the bilinear forms involved in the mixed formulation of the poroelasticity equations
coincide with those of (Gatica er al., 2022a, eq. (3.15)), and, additionally, the same finite element
subspaces (cf. (5.1a)) are employed here, in what follows we proceed to simply use the results from
Gatica et al. (2022a). In this way, given t € (1,400), we consider the mesh size hf for which the
usual L2(£2)-orthogonal projector satisfies the property stated in (Gatica et al., 2022a, eq. (5.21)). Then,
thanks to (Gatica et al., 2022a, Lemma 5.3), there exist positive constants Mj and « Aa such that for
each A > My and for each h < hy := min{h’, h’} there hold

r>'ts

ay,, tp)
i 2 %Aqg ||§h||x2 V¢, € Xz,h,
ek Iz,

40 (5.4)
sup a(¢,,7,) >0  VYr,eKi 1,#0.
§hEK}ZI

In addition, the inf-sup conditions for the bilinear forms b; and b,, proved in (Gatica et al., 2022a,
Lemma 5.4), provide the existence of positive constants 8, ; and B, 4, independent of 4, such that

b;(z),v,)

€Xip ||Th||x,-
75,70

> Bialvplly,  YveM,, Vie{l2). (5.5)

Thus, thanks to (5.4) and (5.5), we are in position to show next the discrete version of Lemma 4.1.

LemMma 5.1. Let r and s be within the range of values stipulated by (3.27), and A > M. Then, for each
(g, V) € My, x Hy , there exists a unique (pj,,u;) € X, , x M, solution of (5.3), and hence one can
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define S, (g;,, ¥;,) := p,,- Moreover, there exists a positive constant Cg 4, depending on & 4 4, 81 - B2 g
Cg, and 1, and hence independent of A, such that for each & < h, := min{h’, h'} there holds

r>°rs

1S,(qp Il = llppllx, < Csqa [”uD”]/s,r;r + Ifllo,.0 + v ) (||qh||0,r;9 + ||17h||o,p;9)]- (5.6)

Proof. 1t follows from a direct application of the discrete BabuSka—Brezzi theory in Banach spaces (cf.
(Bernardi et al., 1988, Theorem 2.1, Corollary 2.1)). Note that the dependence of the constant Cg 4 on
w is due to |a|| (cf. (3.11)). [l

We now let £, : X, , x H; , — M, be the operator defined by

EpCu ) = (E1aCu ) Eop@p0y) == Wipy) V(&0 € Xy x Hyy,

where (w,, p;,) € X, , x M, is the unique solution (to be confirmed below) of the discrete formulation
arising from the third and fourth rows of (5.2) after replacing (p,,,6,) by (¢, 1%;,), that is

cwy,z,) + di(@z,.pp) F(zp) vz, € Xy

5.7
Then, similarly as for (5.3), we first notice that

div(X;;,) € M;;, Vie{l,2),

which yields the discrete kernels of d; and d, to become
Vi =[5, e RT, @)1 divg) =0},
Knowing the above, the discrete version of Lemma 4.2 is now recalled from (Caucao ez al., 2023, Lemma
5.2).
LemMa 5.2. Assume that r and s satisfy the particular range specified by (3.27). Then, there exists a

positive constant e, 5 such that

C(Wh,zh)

eV} Iz l1x,
zh7é0

¢
> agglwylx, Yw, €V,

and

sup ¢(wy,,z,) > 0 vz, € Xy 2, #0.
werl
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Proof. 1t proceeds analogously to the proof of (Gatica ef al., 2022b, Lemma 4.3). However, for full
details we refer to (Caucao et al., 2022, Lemma 5.2), which is the preprint version of Caucao et al.
(2023). 0

On the other hand, the discrete inf-sup conditions for the bilinear forms d; and d,, which can be
f~0und in (Gatica et al., 2022b, Lemma 5.3), state that for each i € {1, 2}, there exists a positive constant
B, 4 such that

d;(z,, q,)

z2h€Xipn Iz, ||x,-J1
2070

> Biallanly, Y, € My, (5.8)

Then, analogously to the continuous case, Lemma 5.2 and (5.8) imply that the bilinear form A (cf. (4.4))
satisfies the global inf-sup conditions given by the discrete versions of (4.5a) and (4.5b), both with a
positive constant a4 4 depending on e, 3, B 5, B, 4 and [c||, and hence independent of . Moreover,
using these inequalities, and proceeding analogously to the derivation of (4.8) and (4.9), which means
assuming now the discrete version of (4.7), this is

o
llell =max{x,na2y(k)} < % (5.9)

we arrive at the discrete global inf-sup conditions for the global operator A (cf. (4.6)), namely

A((wh’ph)’ (zh’ Qh))

%pa
= > WP lIx,xm, Y Wpopp) € Xop x My, (5.10a)

sup
@n,qn) €X1, X Mo, ||(Zh’4h)||X1xM2
(2nqn)#0
A(Wy.pp), @ q,) _ %aq
sup PEISET = 2 @ @)X sy Y @) € Xy X My (5.10b)
Wh.pn)€Xon XMy ”(wh*ph)||X2><M1 ’ ’
(Wn.pn)#0

Similarly as for the continuous analysis, we stress here that the fact that y (1) approaches 0 as A increases
(cf. (2.4)), ensures the feasibility of (5.9) for sufficiently large A and sufficiently small .

Having established (5.10a) and (5.10b), a straightforward application of the discrete version of the
Banach—Necas—Babuska theorem (cf. (Ern & Guermond, 2004, Theorem 2.22)) allows to conclude the
following result.

Lemma 5.3. Let r and s be within the range of values specified by (3.27), and assume that the data satisfy
(5.9). Then, for each (¢,,1,) € Xz,h x Hy , there exists a unique (w;,p,) € X, , X Ml’h solution of
(5.7), and hence one can define Z (£, %) = (E1 4,5 0): E24C 1) 1= Wpapp) € Xy X My
Moreover, there exists a positive constant Cz 4, depending on a4 3, Cx and Cg, and hence independent
of h, such that

1E,(8 0 P)lIx,xm, = IWhlx, + IPllp,

< Czayllpollijsrr + Wlore + lupllsrr +v Q) (||§h||x2 + ||l9h||o,p;9)]~ (5.11)
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Finally, we let IT;, : X, , x (X;,, x M; ) x H, ;, > H,, be the operator defined by

0,8 7y, &) = (I 3,8 s 2y, §)5 M 1, (815 By, §)) o= Oy = O.F),

for all (;h,ih,éh) = (Ch, (zh,qh),éh) € Xy, x Xy, X Ml’h) X Hl,h’ where (éh,gh) € H;, x Q, is the
unique solution (to be confirmed below) of the discrete formulation arising from the fifth and sixth rows
of (5.2) after replacing aj, g, , With pj, := (0, @), ), by @, ¢, With g, := (£, 2, q;), that is

aah’sh (éh’ 5h) + b(lgh,a:h) = F(l;h) Vlgh = ('L?h,srh) S Hh’

S B (5.12)
b(@h, Th) == 0 V‘th (S] Qh

For the analysis of the Galerkin scheme (5.12), we proceed as in (Colmenares et al., 2020, Section 5.5)
(see also (Benavides et al., 2022, Section 4.3, Lemma 4.2) or (Carrasco et al., 2023, Section 5.3, equations
(5.19), (5.20))). More precisely, since the required results are already available in those references, in
what follows we just describe the main aspects of the corresponding discussion, for which we first
introduce the discrete kernel Vlf’ , of b (cf. (3.30b)), that is

and the subspace of Q,, given by
2, = {’fh €Q,: div(¥,) =0 in .(2}

Then, applying the abstract result provided in (Colmenares et al., 2020, Lemma 5.1), one deduces that
the existence of positive constants ;5 and B, 4, independent of A, such that

sup Ho——— > B IWllo e VO, €Hyy, and (5.13)
5, 1 Talldiv,:2
7,70

AR e
sup — > ﬂ2>d ”Th”diVQ;.Q VTh € Zb,h’ (514)
5peHy ||sh||(),_Q
53,70

is equivalent to the existence of positive constants ,Ed and E‘d, independent of A, such that

— > By Tyl YER€Q, and (5.152)
6h€Hh ||l9h||H
Dp#£0

Billoe = Calldplope Y0, = (9,5 € Vi (5.15b)
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The proof of (5.13) is basically provided at the last part of (Colmenares ef al., 2020, Section 5.5) by
noticing that it reduces to the vector version of (Colmenares et al., 2020, Lemma 5.5). Actually, while
the proof there is for (p, 0) = (4,4/3), it can be extended almost verbatim to an arbitrary conjugate pair
(p, 0) satisfying (3.27). In turn, it is readily seen that (5.14) follows from the fact that Zb n S H2 5 (cf.
(Carrasco et al., 2023, eq. (5.18))). In this way, havrng already the discrete inf-sup condition (5.15a) for
b, it only remains to employ (5.15b) to show the Vb ,-¢ellipticity of ag, , for given 4, = &p.24,q)) €
Xy x Xy xM; h and &, € H; . Indeed, proceeding similarly to the frrst part of the derivation of (4.12),

we have for each z?h = (0,5, € Vbh

ac},,,sh(ﬁh’ﬂh) > (%/2) Cé ”l?h”%,p;g + (%/2) ||Eh||(2);g - ||Zh||o,r;g ||Eh||o;g ||19h||(),p;9

Lp ;
> 5 {20 min{1.C3} = Izl e | 112,

1 ~
so that, under the constraint [|z;]|g .o < ay4 = 3% min {1, C3}, there holds
g oD 0) = agg 1017 V0, = (9,,5,) € Vi, (5.16)

thus confirming the announced property of a;
Hence, the solvability of (5.12) and therefore the well- -posedness of IT, can be established in the
following lemma:

Lemma 5.4. Let p and o be within the range of values stipulated by (3.27). Then, for each
ChZp &) = (Eh @), &) € Xy x (Xg;, x M, ) xH| j, such that ||z, || < ay 4, there exists a unique
(éh, g, = ((Gh,Th), Eh) € H;, x Q,, solution of (5.12), and hence one can define IT,({ ), 2, §,) = éh.
Moreover, there exist positive constants C ma and C .4 depending on o A.d Ba, 182|, p and »,, and hence
independent of &, such that the following a priori estimates hold

1T ,(8 1 2y, €Dl = 16,1l < Crrg 80 ;005 184llg < Crallglos.e- (.17

Proof. The result is a consequence of the Vf,h-ellipticity of aG & (cf. (5.16)), the inf-sup condition
(5.15a) and a direct application of, for instance, (Ern & Guermond, 2004, Theorem 2.34, Proposition
2.42). Note that the dependence of the constants Cpy 4 and CH,d on |§2], p and 5, is due to ||a| (cf. (3.31))
since ||aq & I, which is required by the theoretical estimates from (Bernardi ez al., 1988, Corollary 2.2,
equations (2.24) and (2.25)), is bounded above by ||a| + ||zl O

5.4 Solvability analysis of the discrete coupled system

The solvability analysis of the fully coupled discrete system (5.2) is performed in a similar fashion as
in the continuous case by using a fixed-point strategy, but now applying the Brouwer theorem instead
of the classical Banach one. Therefore, the structure and reasoning followed in this part, are going to
resemble partially the ones of Section 4.4. We begin this analysis by defining the discrete fixed-point
operator T, : X, , x H; , > X, , x H; , given by

T, (&), 0p) = (Sh(gz,h(fh’ﬁh)’ﬁh)’ Hl,h(sh(52,h(;h’ﬁh)’ﬁh)’Eh(;h’ﬁh)’ﬂh))’ (5.18)
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forall (¢, ¥,) € X, , x H; j,. Then, showing existence of solution is equivalent to seeking a fixed-point
to the operator T, that is: Find (¢, %,) € X, , x H; ;, such that

T, (L), 0) = (&, 0y). (5.19)

Now, given § > 0, we define the §-ball in the finite-dimensional subspace X, , x H; ;, by

Wy (8) = {(Ch,ﬁh) € Xz,h S H1,h DGR N = ||1;h||x2 + ||19h||(),p;g = 5},

where we conveniently choose § := a, 4. Furthermore, assumption (5.9) applies to the discrete operator
E |, in the same way as (4.18) applies to &, this is

1517 G Olx, Souq V(& Uy € Wy(0). (5.20)

Combining the estimates (5.6), (5.11) and (5.17), we obtain the discrete version of (4.19) as a priori
bound for the operator T, that is

T 21 = Cra {lp Il + 1€l + 1Pl s e

+ llore + 118ll0,0:0 + ¥R (||Ch||x2 + ||l9h||0,p;9)},

where Cy 4 is a positive constant depending on Cg 4, Cg 4 and Cpy 4, and hence independent of 4. In
addition, taking into account the a priori estimate (5.11) with (¢,,0;,) € W, (), we conclude that
operator Z'; , will satisfy assumption (5.20) if there holds

CE,d{“pD”l/s,r;F + Wfllo,e + luplly /spmr + V(’\)‘S} = 0y g-

Hence, the following lemma establishes the conditions under which the operator T; maps the ball
W, (8) into itself, thus yielding the discrete analogue of Lemma 4.6.

Lemma 5.5. Let p, o, r and s be as specified in (3.27), and A > M. Moreover, assume that z < hj :=
min{h’, h¢}, and that the data are sufficiently small so that (5.9) and the conditions

r>'ts

Czgq {”pDnl/s,r;F + W llore + luplly /s r + v 5} <oy and (5.21a)
Crg {||uD||1/S,r;r + fllor.0 + IPplli /50 + Wllore + 18ll000 + ¥ 5} <3, (5.21b)

are satisfied. Then, T;,(W,,(8)) € W, (8).
The next two lemmas show, respectively, that the operators S;, and &, are Lipschitz-continuous.

LemMa 5.6. Let r and s be within the range of values stipulated by (3.27), and A > M. Then, with the

same constant Cg 4 from the a priori estimate (5.6) (cf. Lemma 5.1), for h < hj := min{hf, hf}, there
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holds

||Sh(q1’h, 19Lh) - S};(‘]z,h, l%ﬁ)”xz =< CS,d y(A) ||(CI1,h» 191,;,) - (5]2,;1, 192,;1)||M1 xH|> (5.22)

for a]l (ql,h’ ﬂl,h)’ (qz’h, 1’92,}1) € Ml X Hl,h'
Proof. 1t proceeds analogously to the proof of Lemma 4.7. We omit further details. 0

LeEmMa 5.7. Let r and s be within the range of values stipulated by (3.27), and assume that the data fulfills
condition (5.9). Then, with the same constant Cg 4 from the a priori estimate (5.11) (cf. Lemma 5.3),
there holds

1ELC 1 1) = EnCon Do) lxy oM, = CoaV@ NG04 — Cop Do)l wm,>  (5:23)

forall (&4, 4)s (Sops Do) € Xy x Hy

Proof. 1t proceeds analogously to the proof of Lemma 4.8. Further details are omitted. g

The next result shows the continuity of IT;. In this regard, we stress in advance that the obvious
absence of a regularity assumption in the present discrete setting, stops us of proving a Lipschitz-
continuity property of IT,.

LemMma 5.8. Let p and o be within the range of values stipulated by (3.27). Then, there exists a positive
constant Ln,d» depending on Ly, o A4 |£2], r and p, and hence independent of £, such that

“Hh(C 1,h> (Z)l’h’ 51’[1) - Hh(;2,h$ (:)2’[15 52’/1) ”H

< L g M5 5805, @2 462 ) 0 p2 1081 1o @1 s §10) — € @24 62 ) s (5.24)

for all (€121 4 610) = (1 @i @i €1)s Copoprb) = (Sop @opstap)s62s) € Xy X
(Xop x My ) x Hy y, such that [z lIx,. 1Z,llx, < @pq-

Proof. The proof follows similarly to the one of Lemma 4.9, except for the fact, as already announced,
that no regularity result can be applied. Indeed, given (¢ | ;. Z . € ) and (&5, Zz’h, §,.,) as indicated, we

let 31,}1 = Hh(;l,h’il,h’ Sl,h) S H/’L and 1_9)2’]1 = Hh(;2,h’ iz’h, Ez’h) € Hh’ Where (51,h,51’h) (S Hh X Qh
and (9,,,,0,,) € H, x Q, are the respective solutions of (5.12). Defining g, ;, := (£ ;,.Z; .4, ) and
425 = o4 Zo > 92)- it follows from the corresponding second equation of (5.12) that 51’}, - 52,}, €
V}f’ ;, and then the V,f, ,-¢ellipticity of G\ & (cf. (5.16)) yields

- - 1 - .. -
”ﬁl,h - 192,}1”12—1 < o al}l h’sl h(ﬁl,h - 192’}1, ﬁl,h — 192’]1) (525)
Ad T
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Then, proceeding analogously as for the derivation of (4.26), but now certainly employing (g, ;,, &)
(@2.-&5,) and (5.12), we obtain

G nein@in = Vops U = Vo) = /Q(ZZ,h —21) b (O — Vo)

+ /Q(]C(;z,h"h,h’%_z,h) — K&y @i &) o g — 1) (5.26)

Next, using the Lipschitz-continuity of K as in the estimate (3.2), recalling that r = 2j, p = 2k and
r < p, and noting that [[#, , — %, ,llo.0 < 19, — ¥/l we find that

/Q(K@z,h"h,h’éz,h) — K@@y Erp)op - @ g =) < L (llil,h —Sonlloye
+ g1 — g2pllop0e + 151, — é52,h||0,p;9) 24llope2 1915 — P2l (5.27)

where Z,C depends on Ly, |£2|, r and p. In turn, the Cauchy—Schwarz and Hélder inequalities, and the
fact that

-2 -2 3 3
191 = Paslloe < 1219727210, — Pullope < 121972219, — Oyl

yield

_ i _ S
/Q 2o — Z13) oy P — Do) < 121972 N2y — 2y yllo g Eopllop2 1915 — Dopllp. (5:28)

Finally, using (5.28) and (5.27) we can bound (5.26), so that the resulting estimate along with (5.25) and
the fact that Iy (£ 5. 25 4. §5,) = by - imply (5.24) and conclude the proof. U

Combining Lemmas 5.6, 5.7 and 5.9, we prove next that the operator T}, is continuous in the closed
ball W, (8) of the space X, , x H, ;. In order to simplify the corresponding statement and proof, we let

S, and I, := (I, ;,, IT, ) be the operators defined for each (¢, 9,) € X, , x H, ;, by

Su@p ) = Su(EQu &y 0. 9,) and (5.29a)
0,859 = T,(S,( 0 91, E4(Ep 07, 9), (5.29b)

so that IT 1., and n 2., are obtained from (5.29b) by using, respectively, IT; , and IT, ; instead of IT),.

LemMma 5.9. Let p, o, r and s be the real numbers within the range specified in (3.27), and A > M.

Moreover, assume that 1 < hj := min{hf, hf}, and that the data are sufficiently small so that there hold

(5.9), (5.212) and (5.21b). Then, there exists a positive constant Ly 4, depending on Cg 4, Cz 4 and y (1),
and hence independent of /4, such that

ITh (1 p P i) = T (E o Oa )l
< Ly (14 L g 15510 9200, p:0) 1€ 10 P10) — G D2 )l (5.30)

for all (&1 1, 91 1)s (§as Dap) € Wy ().
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Proof. Given (&4, % ), (82, U2 ) € W, (8), we first observe from (5.18), (5.292) and (5.29b) that

T, (ip Vi) = (gh(fl‘,h’ﬂi,h)’ﬁl,h(fi,h’ﬂi,h)) vie{1.2},

which yields

T, (&1 01 0) — T8 Do)l
< 1S, 1 91) = SpCap Do) + T,y g 0y ) — T (8 D2 ) - (5.31)

Then, employing (5.29b) and (5.24), we find that

1,8 g0 910 — T, (Ea s Do)

< Laa ouGCap 22)lo e {184E 140 210 = SiCap 221

+ 141 P1) = Eaass 2l + 191 — D4l (5.32)
whereas (5.29a) and (5.22) imply

IS4(E 1 P10) — Sh@ap B2 )l

< Csav O {12410 0100 = B4 D)l + 1915 = 921} (5.33)

In this way, replacing (5.33) back into (5.32) and (5.31), and the resulting (5.32) back into (5.31) as well,
and performing minor algebraic manipulations, we arrive at

1T g P10) — T o)l < (14 Lpg g 1T (8o Pl pe) (1+Csav ()

x {124 100100 = B4 D)+ 1015 = 2,1} (5.34)

Finally, (5.34) and (5.23) give (5.30) with Ly 4 := (1 +Csq y(k)) (1 +Cz4 y(k)), and end the proof.
a

The main result of this section, which establishes the existence of solution of the discrete fixed-point
equation (5.19), or equivalently of the discrete coupled system (5.2), is presented now.

THeoREM 5.10. Let p, o, r and s be the real numbers within the range specified in (3.27), and A > M.
Moreover, assume that h < hy 1= min{hf, hf}, and that the data are sufficiently small so that there hold
(5.9), (5.21a) and (5.21b). Then, the operator T, has a fixed-point (p,,,6,) € W, (). Equivalently, the

coupled problem (5.2) has a solution (p;,u;) € X,, x My, W;,p;) € Xy, x My, and (0),0,) €
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H, x Qy,, with (p,,,0;,) € W, (8). Moreover, there hold

”(ph’”h)“szMl =< E‘s,d{”’ll)ul/s,r;r + ||f||o,r;9 + ||PD||1/S,r;Q + Hf”o,r;g + ||g||0,g;g +y Q) 5},

lWp P lIx, M, < 6::::,d{||14D||1/S,r;r + Pl o + oy + 18l + ¥ Q) 5},

A

16,5 o < Cral+ 88l pp0-

where E‘S’d, 6E,d and 611,01 are constants depending on Cg 4, Cgz 4 and Cpy 4.

Proof. From the assumptions (5.21a) and (5.21b), and Lemma 5.5 we have that T;, maps W, (6) into
itself. Furthermore, bearing in mind the continuity of T}, (cf. Lemma 5.9), a straightforward application
of the Brouwer Theorem implies the existence of a solution (p;,6,) € W, (8) of (5.19), and hence,
the existence of (pj,uy) € X, ), x My, W, p,) € X, x M, and (éh,Eh) € H;, x Q,, solution of
(5.2). Finally, the a priori estimates follows straightforwardly from (5.6), (5.11) and (5.17) and bounding
pallx, and 6,]lx, by 8. O

5.5 apriori error analysis

The goal of this section is to establish an a priori error estimate for the Galerkin scheme (5.2). More
precisely, we are interested in deriving the usual Céa estimate for the global error:

E = [(p,1) — (0p ) 5y sp1, + 1@.0) — @32 Ixysen, + 16.8) = 0.5 g

where ((p,u),(w,p),(é, &')) € (X5, x M) x (X, x M) x (Hx Q), with (p,8) € W(§), is the unique
solution of (3.34), which is guaranteed by Theorem 4.11, and ((p,, uy,), W), pp), (éh,Eh)) € Xy, x
M, ;) x (X, x My ;) x (H), X Qp,), with (pj, 8,) € W, (8), is a solution of (5.2), which is guaranteed by
Theorem 5.10. To this end, we proceed as in (Caucao et al., 2023, Section 4.3) and apply suitable Strang
estimates to each one of the three pairs of associated continuous and discrete formulations forming (3.34)
and (5.2). Throughout the rest of this section, given a subspace Z, of a generic Banach space (Z, || - ||,),
we set foreachz € Z

dist(z,Z,) := inf |lz—z,ll,.
ZhE€Zp

We begin the analysis by applying the Strang estimate provided by (Bernardi et al., 1988, Proposition
2.1, Corollary 2.3, Theorem 2.3) to the context given by the first and second rows of (3.34) and (5.2). In
this way, we deduce the existence of a positive constant 65, depending on o 4 4, B1 4, B2.a- 12l IIby|l
and ||b, || (cf. (3.11), Section 5.3), such that there holds

101) = o) gy, < Cs {dist((0.). X x Myy) + B, =Bl | (539
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Then, according to the definition of Fq’ﬂ (cf. (3.10a)), we have that

(Foo —F,0,)T) = —y() /ﬂ (@@—p)+BO—6))te(r,)  Vr1,eX,,

from which, applying Holder’s inequality, and using that » < p, we find that there exists a positive
constant Cg, depending on n, r, p, |§2], o and B, such that

IFpo = Fpallx, < Cev() {np —Pillog + 110 — ehno,p;g}. (5.36)

Next, we apply the classical first Strang’s Lemma (cf. (Ern & Guermond, 2004, Lemma 2.27)) to the
context gjyen by the third and fourth rows of (3.34) and (5.2). As a consequence, we obtain a positive
constant Cg, depending on ay 4, [Ic[l, [|d; ||, [[d, || and [e]| (cf. (3.22), Section 5.3), such that there holds

l(@,p) — (wh,Ph)”szMl =< 65 {diSt((w,P),Xz,h X Ml,h) + ||gp,9 - gphﬂh”M/z,h}' (5.37)

In this case, the definition of G £ (cf. (3.21Db)) yields

(gp’g - gphﬂh)(qh) = () /.Q tr(p — pp) g, + c3(0) /ﬂ(% - 9},,0) qn Vg, € Mz’h,

so that, employing again Holder’s inequality and the inequality » < p, and bearing in mind the
definitions of the constants ¢, (1) and c3(1) (cf. (2.5)), we deduce that

where é‘g is a positive constant depending on n, r, p, |$2|, o and B.

Furthermore, we apply the Strang estimate provided by (Colmenares et al., 2020, Lemma 6.1) to the
context given by the fifth and sixth rows of (3.34) and (5.2). As a result, we get a positive constant 61%
depending on o4 4, ,Ed, ||a1~,’9 Il ||al~,h’9h [ and ||b]| (cf. (3.31), (3.32), Section 5.3), such that there holds

16.8) = G G)lieg = Cn {dist(@.8).Hy x Q) + 1350, — a5, 0, )y}, (539
where p = (p,®,p) and p;, = (p;,, @, ;). Note that, being ||l@|| and ||@, || bounded by ar, and a4 g, it

turns out that ||a;,,9 || and ||a;,h’9h | are bounded by [la| + a4 and ||all +ay 4, respectively. Now, according
to the definition of g ¢ (cf. (3.30a)), we have for all 5h = (9,,5))

a5(0.9,) — a5 o (6,9,) = /Q {/C(p,p,e)—/C(ph,ph,eh)}?ih + /Q(w—wh) 19, (5.40)

Regarding the first term on the right-hand side of (5.40), we proceed exactly as for the derivation of
(4.28), so that, employing again the Lipschitz-continuity of C (cf. (2.11)), the Cauchy—Schwarz and
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Holder inequalities, the fact that r < p and the regularity assumption (H.1) (cf. (4.23)), we obtain with
the same constant Ly from (4.28) that

/ {/C(P,P,Q) - /C(Ph’l’hﬁh)}?ih
2

= ~n ||g||o,g;g {”P - Ph”(),r;g + lp _thO,r;.Q + 116 — 9h||o,p;_(2} ”Eh”().Q (5.41)

In turn, proceeding similarly to the deduction of (4.29), which means using the above mentioned classical
inequalities, along with the a priori estimate (4.15), we can write with the same constant Cpy from (4.15)
that

/ﬂ (=) T| = Crr lgllopis 10— @4lloyc 19410 i (5.42)
Hence, utilizing the bounds provided by (5.42) and (5.41), we readily conclude from (5.40) that
la 46, — g, 0,0, gy

< C, lglloo:2 {”P = Ppllo e +ll@—wyllo,e + 1P —Ppllo e + 10 — 9h||o,p;g}, (5.43)

where C‘a := max {Zn CH}. In this way, replacing (5.43) back into (5.39), (5.38) back into (5.37), and
(5.36) back into (5.35), and then adding the resulting inequalities, we arrive at

E = C, {dist((p.w), Ko x My ) + dist((@,p). Xy x My )
+ dist((3.5). H, x Qh)} + {62)/()») + G ||g||0’Q;Q}E, (5.44)

where C; := max {Cs,Cz,Cp}, C, := max {Cg Cy,Cz Cg} and C; := Cp C,,.
The announced Céa estimate can be stated now.

THEOREM 5.11. In addition to the hypotheses of Theorems 4.11 and 5.10, assume that

Cry () + Gsligloge < % (5.45)
Then, denoting C = 2/6\’1, there holds
1o, w) — (op iy xm, + 1@.0) = @4, ) lxyxm, + 10.5) = 6.5 ) laxo
<0 {dist((p,u),Xz,h x M, ) + dist((@,p), X, , x M, ) + dist((d, ), Hj, x Qh)].
Proof. Tt readily follows after employing the assumption (5.45) in (5.44). (I

We now aim to establish the associated rates of convergence of the Galerkin scheme (5.2), for which
we collect approximation properties of the finite element subspaces that were introduced in Section 5.2.
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Indeed, thanks to the error estimates of the vector and tensor versions of the Raviart—-Thomas interpolator
(see, e.g., (Gatica et al., 2022b, Section 4.1, eq. (4.6))), as well as of the scalar and vector versions of
the L-type projector onto piecewise polynomial spaces (see, e.g., (Ern & Guermond, 2004, Proposition
1.135)), and due to interpolation estimates of Sobolev spaces, there hold the following:

(APz) there exists a positive constant C, independent of £, such that for each k € [1, £ + 1], and for
each 7 € W& (£2) N H (div,; £2), with div(7) € WX (£2), there holds

. . . k .
dist(r. %) == inf [T =Tyl ami = CH Tl g + 1V e .
h 2,h

(APZ) there exists a positive constant C, independent of 4, such that for each k € [0, £ + 1], and for each
y € WK"(£2), there holds

: . : k
dist(v, M, ) = inf lv=vpllgre < Ch ||v||k’r;9,
VheMl,h

(APZ’) there exists a positive constant C, independent of 4, such that for each k € [1, £ 4 1], and for each
z € Wh(£2), with div(z) € W' (£2), there holds

. X . k .
st Xop) = inf 2=yl aie < CH{leling + 1AVQ k.
h 2,h

(APﬁ) there exists a positive constant C, independent of &, such that for each k € [0, £ 4 1], and for each
g € WK (£2), there holds

dist(q, M, ;) == inf g —gqyllo,.e < CHllgly .0
gn€M1

(APZ) there exists a positive constant C, independent of &, such that for each k € [0, £ + 1], and for each
9 € WK (£2), there holds

dist(@,H,,) := inf |9 =% llo..0 < CHUD . .00
ist( L) ﬂhlenHl,h I wllope = 191l 2

(APTh) there exists a positive constant C, independent of &, such that for each k € [0, £ 4 1], and for each
§ € HK(£2), there holds

. . . ~ ~ k 11~
dlStG, H2,/’l) = _ inf ”S —Sh||0’9 < Ch ||s||k’9,
speHy

(APZ) there exists a positive constant C, independent of 4, such that for each k € [1, £ 4 1], and for each
T € HY(R2), with div(T) € Wk (£2), there holds

dist(7,Qy) == _inf [|IT —T,llgy o < CHF {”?”k,.@ + ||div(?)||k’g.g}.
7,€Qp ¢ ’

The rates of convergence of (5.2) are then stated as follows:
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THeOREM 5.12. Let ((p, u), (w,p), (5, E)) € (X5 xM))x (X, xM ) x (HxQ), with (p,6) € W(5), be the
unique solution of (3.34), and let ((ph,uh), W) (éh, Eh)) € (Xz,h x M, ;) x (Xz,h x M ) x (H, x
Q,), with (p,,,0,) € W, (), be a solution of (5.2), which is guaranteed by Theorems 4.11 and 5.10,
respectively. Assume the hypotheses of Theorem 5.11 and that there exists k € [1,£ + 1], such that
p € WE'(2) N H;(div,; £2), div(p) € WE'(2), u € WE'(2), w € Wr'(2), diviw) € WK (£2),
p € WE'(2),0 € WEP(2),T € HY(2), & € HX(2) and div(G) € WXC(£2). Then, there exists a
positive constant C, independent of 4, such that

||(p7u) - (p//p uh)”szMl + ”(wap) - (wh’ph)”szMl + ”(5’ a:) - (éh’ &h)”HxQ

< CH 10l + 1V + Wl iy + Wi + V0N

+ WPl + 100k pr + Ell e + 1Tl 0 + IIdiV(g)Ilk,g;_q}- (5.46)

Proof. 1t follows straightforwardly from Theorem 5.11 and the above approximation properties. ]

We end this section by emphasizing that the rates of convergence provided by Theorem 5.12 are
achieved under further smoothness of the exact solution of (3.34). While the discussion on the feasibility
of the hypothesis (H.1) (cf. Section 4.4) guarantees an extra ¢ regularity for 6, and hence for 7, with
¢ € (0,1), we must point out that this is actually less than desired. Indeed, assuming either convexity
of 2 or sufficiently smooth boundary I", we would expect at least k = 1 regularity, thus yielding from
(5.46) arate of convergence of O(h). In addition, and coherently with the fact that there hold div(p) = f,
diviw) = f+ other terms depending on p,p, 6 and data, and div(e) = g, we will also require f, f,
and g to be more regular than stated in Section 3 for the derivation of the mixed formulation, namely
fe W (2),f e W (2)and g € WH(2), respectively. In order to have more regular solutions, and
hence higher rates of convergence, the data will have to be smoother as well. However, no matter how
regular the solution is, the highest rate of convergence that can be guaranteed by (5.46) is £ + 1, where
£ is the polynomial degree employed.

6. Numerical examples

In this final section we present two sets of computational tests, first the verification of convergence
with respect to manufactured solutions in 2D and 3D, and an application example pertaining to the flow
through a deformable porous channel with obstacles and temperature gradient. In all cases we take the
following indexes (according to (3.27), valid for both 2D and 3D) r = 3, s = %, p=6and o = g.
The numerical realization has been done using the finite element library FEniCS Alnaes et al. (2015),
selecting Newton—Raphson as nonlinear solver, with an incremental relative tolerance of 10~8. The linear
solves are done with the direct method MUMPS.

6.1 Example 1: convergence verification

The error history (investigating the error decay with respect to mesh refinement—in a sequence of
successively refined regular grids) is done comparing approximate and closed-form exact solutions
defined on the unit square domain £2 = (0, 1)2. The mixed variables, forcing and source terms for the
balance equations, and nonhomogeneous boundary data are taken in such a way that the manufactured
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primal unknowns are

1 sin(xy)
10

ulx,y) = — cos(Tx) cos(ny)) ,  px,y) =sin(wx)sin(mwy), 6(x,y) = cos(x)exp(—x — ).
The model constants assume the following simple values: u =1, A =1, «=1, a=1, B=1,
x =1, n =1, whereas the stress-assisted diffusion coefficient is

D(o) = (Do + D, exp(—tr(az))) I, with Dy=0.1 and D; =0.0l. 6.1)

The error history associated with the proposed mixed finite element method on a sequence of
successively refined partitions of the domain, are collected in Table 1. Absolute errors are computed
for each variable in the following way

ew) = llu—uylly,.o. e =1p—pPpllope €O0)=10—=0ly,.0. €@ =I1p— ol g,

ew) =W —wyl, giv,.0 €O =1t—1llo0. @) =10 —0lgy,.0-

and we also tabulate rates of error decay computed as r(-) = log(e(-)/é(-))[log(h/iz)]_l, where e, e
denote errors generated on two consecutive meshes of sizes  and £, respectively. All results indicate
optimal convergence of O(h**!) in all fields and for the two tested polynomial degrees, which coincides
with the theoretical result proposed in Theorem 5.12. For this test we have also tabulated the loss of
momentum and mass conservation by taking the £°° norm of the corresponding residuals projected into
the discrete spaces for displacement and pressure. More precisely, letting 7P, and P, be the L2(£2)-type
and L2 (£2)-type orthogonal projectors, respectively, onto the scalar and vector piecewise polynomials
of degree < ¢, we set

momy, := || P,[div(o}) +flll,c, mass;, :=|Pylc;(A) pj,—div(w;)+c3(X) 0,4+, (M) tr(pg,) — flll oo,

which, according to the second and fourth equations of (5.2), are essentially zero at machine precision.
The table also reports that a maximum of three iterations are needed by the Newton—Raphson method to
reach a tolerance (either absolute or relative) of 10~8 on the residual. Sample approximate solutions for
all fields, obtained with the method using £ = 0, are plotted in Fig. 1.

The convergence tests are also done in 3D, taking £2 = (0, 1)3, the same model parameters as in the
2D case, and using the following manufactured primal solutions

1 sin(wxyz)
u(x,y,z) = — | cos(mx)cos(wry)cos(mz) |, px,y,z) = sin(wx)sin(ry) sin(wz),
10 sin(x) sin(;ry) sin(rrz)

0(x,y,z) = cos(xy) exp(—x —y — 2).

We report on the lowest-order case in Table 2 and Fig. 2, allowing us to draw the same conclusions as in
the 2D case.
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TaBLE | Example 1 (2D). Error history for the primal unknowns together with discrete approximation
of momentum and mass conservation (top table) and convergence of mixed unknowns together with
Newton—Raphson iteration count with respect to mesh refinement (bottom table). The symbol x indicates

that no convergence rate is computed at that refinement level

Primal unknowns and discrete conservation

DoFs h e(u) r(u) e(p) r(p) e(®) r(@) mom, massy,
Errors and convergence rates for £ = 0

113 0.707 4.79¢e—02 x 2.78e—01 x 1.59e—01 = 4.44e—16 2.11e—15
417 0.354 2.23e—02 1.11 1.50e—01 0.89 8.15¢e—02 096 1.52e—15 4.77e—15
1601 0.177 1.04e—02 1.10 7.65e—02 098 4.11e—02 099 5.12e—15 9.21e—15
6273 0.088 5.05e—03 1.04 3.84e—02 0.99 2.06e—02 1.00 1.48e—13 2.09e—14
24833  0.044 2.50e—03 1.01 1.92e—02 1.00 1.03e—02 1.00 2.14e—12 5.94e—13
98817 0.022 1.25¢e—03 1.00 9.61e—03 1.00 5.16e—03 1.00 1.26e—12 2.38e—13
Errors and convergence rates for £ = 1

337 0.707 1.22e—02 « 8.91e—02 « 1.48e—02 x 6.46e—15 7.49e—15
1281 0.354 3.02e—03 2.02 2.29e—02 196 3.64e—03 2.02 1.17e—14 3.50e—14
4993 0.177 7.48e—04 2.01 5.83e—03 198 9.13e—04 1.99 3.08e—14 5.20e—14
19713  0.088 1.86e—04 2.01 1.46e—03 1.99 229¢—04 2.00 7.4le—14 1.51le—13
78337 0.044 4.65e—05 2.00 3.66e—04 2.00 5.72¢—05 2.00 1.49e—13 3.46e—13
312321 0.022 1.16e—05 2.00 9.16e—05 2.00 1.43e—05 2.00 1.66e—12 1.02e—12
Mixed unknowns and iteration count

DoFs h e(p) r(p) e(w) riw) e( ri)  e(@) r(o) iter
Errors and convergence rates for £ = 0

113 0.707 2.14e4+00 = 6.50e4-00 = 1.50e—01 = 1.08e—01 = 3
417 0.354 1.16e4+00 0.88 3.55e+00 0.87 7.38¢e—02 1.02 5.06e—02 1.09 3
1601 0.177 598e—01 0.96 1.81e+00 098 3.70e—02 1.00 2.81e—02 0.85 3
6273 0.088 3.0le—01 0.99 9.07e—01 0.99 1.86e—02 0.99 1.48e—02 0.93 3
24833  0.044 1.51e—01 1.00 4.54e—01 1.00 9.31e—03 1.00 7.48e—03 0.98 3
98817 0.022 7.54e—02 1.00 2.27e—01 1.00 4.65e—03 1.00 3.75e—03 1.00 3
Errors and convergence rates for £ = 1

337 0.707 6.93e—01 «x 1.99e4-00 = 331e—02 « 6.14e—02 x 3
1281 0.354 2.00e—01 1.79 5.12¢e—01 196 4.77e—03 2.79 1.44e—02 2.10 3
4993 0.177 521e—02 194 130e—01 198 1.27e—03 191 4.65e—03 1.63 3
19713  0.088 1.32e—02 1.98 3.26e—02 199 3.39¢e—04 191 1.33e—03 1.80 3
78337  0.044 3.31e—03 199 8.16e—03 2.00 8.82e—05 1.94 33le—04 2.01 3
312321 0.022 8.29e—04 2.00 2.04e—03 2.00 2.23e—05 1.98 8.33e—05 1.99 3

6.2 Example 2: injection of fluid in a deformable porous channel

To conclude this section, we investigate the flow patterns of infiltration of a poroelastic channel having
an irregular array of eight circular cylinders that are maintained at a low temperature. The problem setup
mimics the behaviour of sponge-like materials or soils in the presence of macro-pores, for example
Liu et al. (2007); Carrillo & Bourg (2019). The undeformed body occupies the rectangular domain
2 = (0,1.6) x (0, 1) (in m2), which we discretize into an unstructured mesh of 55450 triangles.
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Fic. 1. Example 1 (2D). Verification of convergence with respect to manufactured solutions. Approximate primal (top) and mixed
(bottom) unknowns computed using the lowest-order scheme, and portrayed in the deformed configuration (the outline of the

undeformed domain is also shown for reference).

TaBLE 2 Example I (3D). Error history for the primal unknowns together with discrete approximation
of momentum and mass conservation (top table) and convergence of mixed unknowns together with
Newton—Raphson iteration count with respect to mesh refinement (bottom table). The symbol x indicates
that no convergence rate is computed at that refinement level

Primal unknowns and discrete conservation

DoFs h e(u) ru) e(p) r(p) e(®) r(@) mom, mass,,
139 1732 7.10e—02 « 3.27¢—01 2.18¢e—01 «* 6.45¢—16 4.00e—15
985 0.866 3.82e—02 0.89 2.23e—01 0.55 1.33e—01 0.71 1.16e—15 6.4le—15
7393 0.433 191e—02 1.00 1.17e—01 094 7.12e—02 0.90 2.72¢—15 1.08e—14
57217 0217 9.35¢—03 1.03 5.96e—02 0.97 3.63e—02 097 7.76e—15 2.07e—14
450049 0.108 4.63e—03 1.01 3.00e—02 0.99 1.82e—02 0.99 1.99¢e—14 3.79e—14
Mixed unknowns and iteration count

DoFs & e(p) r(p) e(w) row) el r@) @) r(0) iter
139 1732 3.76e+00 x 1.06e+01 * 2.65¢—01 7.99¢—02 * 3
985 0.866 2.17e+00 0.79 7.55e4+00 0.49 1.29¢e—01 1.04 4.67e—02 0.78 3
7393 0.433 1.16e+00 0.90 4.01e+00 091 6.56e—02 0.98 2.90e—02 0.69 3
57217 0217 5.90e—01 097 2.05e+00 0.97 3.27e—02 1.00 1.65e—02 0.81 3
450049 0.108 2.96e—01 0.99 1.03e4+00 0.99 1.63e—02 1.00 8.64e—03 0.94 3
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Fic. 2. Example 1 (3D). Verification of convergence with respect to manufactured solutions. Approximate primal (top) and mixed
(bottom) unknowns computed using the lowest-order scheme, and portrayed in the deformed configuration (the outline of the
undeformed domain is also shown for reference).

We consider a simple time-dependent version of the model (2.1), where only the energy balance
equation (2.1c) is modified to have 9,0. We use a backward Euler discretization in time, with constant
time step At = 1 (in s) and an initial temperature of 10 degrees. In addition, the boundary conditions
are of mixed type and do not coincide exactly with those analyzed in the manuscript. The left segment
is considered an inflow boundary where we set zero displacements (as a natural boundary condition), a
time-dependent parabolic profile as inflow of filtration flux (as an essential boundary condition) and a
quadratic temperature profile (natural boundary condition):

t
u=0, w-v= %atan(y[l —yD)m/s, 6= —74y2 + 91y + 3 (in°C) on [;

11’1;
on the horizontal walls we approximate a zero-traction boundary condition with a zero normal pseudo-
stress condition (imposed essentially), zero normal flux (essential) and a hot temperature on the top of

the channel and cold on the bottom (natural boundary conditions):

pov=0 w-v=0, 6=06p, on Iy,
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Fic. 3. Example 2. Fluid injection using Biot-heat equations on a deformable channel with an array of cylinders, plotted on the
undeformed configuration at time # = 50 s. Approximate solutions computed with a second-order method.

(where 0}, is 3 degrees on the bottom and 20 degrees on the top); on the holes, we impose

u=0 w-v=06=3°C, onFCyl;
and the boundary conditions are completed by prescribing zero traction (approximated by a zero normal
pseudostress), a vanishing pressure (natural boundary condition) and a zero thermal flux on the outlet
region (essentially imposed):

pov=0, p=0, o-v=0, on I .
We do not consider external volume forces nor fluid sources; therefore, f = 0, f = g = 0, the stress-
assisted diffusion term is as in Example 1 (cf. (6.1)) with Dy = 1073 and D, = 10~4, and the remaining
physical parameters are all constant and assuming the values

w=210Pa, A =1800Pa, n =103 Pas, k =10 m?, « =09, B =15, x = 1072 Pa.

The simulation runs until # = 50 s. The numerical solutions are obtained with a second-order scheme
(setting £ = 1), for which the method consists of 667928 DoFs. Note that the domain may lack higher
regularity (it has eight inclusions). Nevertheless, as carried out recently in Gatica et al. (2024), where
the authors refer to (Jakab er al., 2009, Theorem 1.1), we can use that the domain satisfies an outer ball
condition and therefore it is still possible to attain a higher regularity of the solution in H>(£2) (which
justifies the use of a second-order scheme). Samples of the obtained results are portrayed in Fig. 3,
showing snapshots of the deformed poroelastic region, filtration flux and all other field variables at the
final time. The expected injection patterns are seen in the flux plot, as well as the progressive heating of
the fluid near the top plate.
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