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A new stress-based mixed variational formulation for the stationary Navier-Stokes equations with constant
density and variable viscosity depending on the magnitude of the strain tensor, is proposed and analyzed
in this work. Our approach is a natural extension of a technique applied in a recent paper by some of the
authors to the same boundary value problem but with a viscosity that depends nonlinearly on the gradient of
velocity instead of the strain tensor. In this case, and besides remarking that the strain-dependence for the
viscosity yields a more physically relevant model, we notice that to handle this nonlinearity we now need to
incorporate not only the strain itself but also the vorticity as auxiliary unknowns. Furthermore, similarly as
in that previous work, and aiming to deal with a suitable space for the velocity, the variational formulation is
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augmented with Galerkin-type terms arising from the constitutive and equilibrium equations, the relations
defining the two additional unknowns, and the Dirichlet boundary condition. In this way, and as the resulting
augmented scheme can be rewritten as a fixed-point operator equation, the classical Schauder and Banach
theorems together with monotone operators theory are applied to derive the well-posedness of the contin-
uous and associated discrete schemes. In particular, we show that arbitrary finite element subspaces can
be utilized for the latter, and then we derive optimal a priori error estimates along with the corresponding
rates of convergence. Next, a reliable and efficient residual-based a posteriori error estimator on arbitrary
polygonal and polyhedral regions is proposed. The main tools used include Raviart-Thomas and Clément
interpolation operators, inverse and discrete inequalities, and the localization technique based on triangle-
bubble and edge-bubble functions. Finally, several numerical essays illustrating the good performance of the
method, confirming the reliability and efficiency of the a posteriori error estimator, and showing the desired
behavior of the adaptive algorithm, are reported. © 2017 Wiley Periodicals, Inc. Numer Methods Partial
Differential Eq 33: 1692–1725, 2017

Keywords: a priori error analysis; augmented mixed formulation; fixed point theory; mixed finite element
methods; Navier-Stokes equations; nonlinear viscosity

I. INTRODUCTION

The development of mixed finite element techniques for quasi-Newtonian fluids whose viscos-
ity is a nonlinear function of the state variables, such as blood, polymers, and molten metals,
among others, has gained considerable attention in the last few years. For instance, a mixed finite
element method for the Navier-Stokes equations with a viscosity depending nonlinearly on the
magnitude of the gradient of velocity, was introduced and analyzed recently in [1]. The approach
there makes use of the same modified pseudostress tensor used in [2], which, similarly to the
one from [3], involves the diffusive and convective terms, and the pressure. The latter unknown
is then eliminated thanks to an equivalent statement implied by the incompressibility condition.
In addition, to handle the nonlinear viscosity, and following [3] and [4], the gradient of velocity
is incorporated as an auxiliary unknown. Furthermore, as the velocity actually lives in a smaller
space than expected, the variational formulation is augmented with suitable Galerkin-type terms
arising from the constitutive and equilibrium equations, the relation defining the aforementioned
additional unknown, and the Dirichlet boundary condition. Moreover, the resulting augmented
scheme can be rewritten as a fixed-point equation, and therefore the well-known Schauder and
Banach theorems, combined with classical results on monotone operators, are applied to prove
the well-posedness of the continuous and discrete systems. In particular, the unique solvability of
the Galerkin schemes does not require any discrete inf-sup conditions, and hence arbitrary finite
element subspaces of the respective continuous spaces can be used in [1]. For a complete biblio-
graphic discussion on the wide variety of dual-mixed methods for Newtonian and Non-Newtonian
incompressible flows, and particularly for the Navier-Stokes equations, including pseudostress-
based, stress-based, least-squares, augmented, stabilized, and other related formulations, we refer
to [1, Section I].

Conversely, it is well known that standard Galerkin procedures such as finite element and
mixed finite element methods inevitably lose accuracy when they are applied to nonlinear prob-
lems on quasiuniform discretizations. This fact is usually due to the lack of previous knowledge
on how to mesh the domains in these cases, and hence adaptive algorithms that are based on a
posteriori error estimates are useful in overcoming such a difficulty. In this regard, a residual-
based a posteriori error analysis for the model and method from [1] has been developed in the
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recent work [5]. More precisely, the technique proposed in [6, 7] for a class of nonlinear problems
in fluid mechanics is adapted in [5] to derive reliable and efficient residual-based a posteriori
error estimators for the augmented mixed formulation introduced in [1] of the Navier-Stokes
equations with viscosity depending on the gradient of velocity. In fact, the strategy in [5] begins
with a global inf-sup condition for the linearization arising from the use of the Gâteaux deriv-
atives of the nonlinear terms of the formulation. The rest of the analysis includes a suitable
handling of the corresponding convective term of the Navier-Stokes equations, the introduc-
tion of continuous and discrete Helmholtz’s decompositions, and the application of the local
approximation properties of the Raviart-Thomas and Clément interpolation operators, inverse
inequalities, and the localization technique based on triangle-bubble and edge-bubble functions.
For an extensive list of references on a posteriori error analysis for linear and nonlinear problems,
mainly in fluid mechanics, we refer to [5, Section I]. In particular, we remark that most of the
main ideas and associated techniques can be found in the early works [8, 9] and the references
therein.

In spite of the aforedescribed contributions (cf. [1, 5]), we find it important to remark that
a physically more meaningful model for the Navier-Stokes equations arises from a viscosity
depending nonlinearly not on the full gradient of the velocity, but only on the symmetric part of
it. According to it, the purpose of the present paper is to additionally contribute in the direction of
mixed finite element methods for nonlinear problems in fluid mechanics, by extending the a priori
and a posteriori error analyses developed in [1, 5] to the steady state Navier-Stokes equations with
constant density and variable viscosity depending on the magnitude of the strain tensor. In this
way, the physical relevance of the underlying model together with the fact that we now gather both
the a priori and a posteriori error analyses in a single contribution, guarantee a greater visibility of
our results. The rest of this work is organized as follows. Some preliminary notations, the nonlin-
ear model of interest, and the definite unknowns to be considered in the variational formulation
are discussed in Section II. In Section III, we first derive the augmented mixed variational formu-
lation, which, differently from [1], and aiming to handle the new nonlinearity, includes now the
strain and vorticity tensors as auxiliary unknowns. Next, we introduce and analyze the equivalent
fixed point setting, and then we consider the particular case of homogeneous Dirichlet boundary
conditions, for which one of the augmented equations is no longer needed. The section ends with
the solvability analysis, mainly via the Schauder and Banach theorems and assuming sufficiently
small data, of the corresponding fixed point operator equations. In turn, in Section IV, we study the
associated Galerkin scheme by employing a discrete version of the fixed-point strategy developed
in Section III. Similarly, as for [1], we remark that no discrete inf-sup conditions are required here
for the discrete analysis, and hence arbitrary finite element subspaces can be used as well. In addi-
tion, the a priori error estimate and the corresponding rates of convergence for a particular choice
of discrete subspaces are also deduced in Section IV under a similar assumption on the size of the
data. Furthermore, in Section V, we derive a reliable and efficient residual-based a posteriori error
estimator for our augmented mixed formulation on arbitrary polygonal and polyhedral regions of
R2 and R3, respectively. We provide most of the details for the 3D case, whereas the main aspects
of the 2D case, being analogous, are simply summarized at the end of that Section. We remark that
Raviart-Thomas and Clément interpolation operators, inverse and discrete inequalities, and the
localization technique based on triangle-bubble and edge-bubble functions constitute the main
tools used. Finally, in Section VI, we collect several numerical examples illustrating the good
performance of the augmented mixed finite element method, confirming the theoretical rates of
convergence, providing the expected bounded ranges for the effectivity indexes of the a posteri-
ori error estimator in 2D and 3D, and showing the satisfactory behaviour of the corresponding
adaptive refinement strategy.
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II. THE MODEL PROBLEM

A. Preliminaries

Let us denote by ! ⊆ Rn, n ∈ {2, 3}, a given bounded domain with polyhedral boundary ", and
denote by ν the outward unit normal vector on ". Standard notation will be adopted for Lebesgue
spaces Lp(!) and Sobolev spaces Hs(!) with norm ∥ · ∥s,! and seminorm | · |s,!. In particular,
H1/2(") is the space of traces of functions of H1(!) and H−1/2(") denotes its dual. By M and
M, we will denote the corresponding vectorial and tensorial counterparts of the generic scalar
functional space M, and ∥ · ∥, with no subscripts, will stand for the natural norm of either an
element or an operator in any product functional space. In turn, for any vector fields v = (vi)i=1,n

and w = (wi)i=1,n, we set the gradient, divergence, and tensor product operators, as

∇v :=
(

∂vi

∂xj

)

i,j=1,n

, div v :=
n∑

j=1

∂vj

∂xj

, and v ⊗ w := (viwj )i,j=1,n.

In addition, for any tensor fields τ = (τij )i,j=1,n and ζ = (ζij )i,j=1,n, we let div τ be the diver-
gence operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner
product, and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr(τ ) :=
n∑

i=1

τii , τ : ζ :=
n∑

i,j=1

τijζij , and τ d := τ − 1
n

tr(τ )I,

where I stands for the identity tensor in R := Rn×n. Furthermore, we recall that

H(div; !) :=
{
τ ∈ L2(!) : div τ ∈ L2(!)

}

equipped with the usual norm

∥τ∥2
div;! := ∥τ∥2

0,! + ∥div τ∥2
0,!

is a standard Hilbert space. Finally, in what follows, | · | denotes the Euclidean norm in R := Rn.
We use C, with or without subscripts, bars, tildes or hats, to mean generic positive constants

independent of the discretization parameters, which may take different values at different places.

B. The Steady-State Navier-Stokes Equations with Variable Viscosity

We consider the Navier-Stokes equations with constant density and variable viscosity, that is

−div(µ(|e(u)|)e(u)) + (∇u)u + ∇p = f in !,
div u = 0 in !,

u = g on ",
(2.1)

where the unknowns are the velocity u and the pressure p of a fluid occupying the region !, and
e(u) := 1

2

{
∇u + (∇u)t

}
stands for the strain rate tensor. In turn, the given data are the nonlinear

fluid viscosity µ : R+ → R, a volume force f ∈ L2(!), and the boundary velocity g ∈ H1/2(").
Note that, according to the incompressibility of the fluid, g must satisfy the compatibility condition

∫

"

g · ν = 0, (2.2)
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and that uniqueness of a pressure solution of (2.1) is ensured in the space

L2
0(!) =

{
q ∈ L2(!) :

∫

!

q = 0
}

.

We remark that the nonlinear function µ depends now on the magnitude of e(u) instead of that
of ∇u as it was in [1]. Assumptions on the viscosity include µ being of class C1, and that there
exist constants µ1, µ2 > 0, such that

µ1 ≤ µ(s) ≤ µ2 and µ1 ≤ µ(s) + sµ′(s) ≤ µ2 ∀s ≥ 0 (2.3)

which, according to [10, Theorem 3.8], imply Lipschitz continuity and strong monotonicity of the
nonlinear operator induced by µ. A classical example of viscosity functions is the well-known
Carreau law

µ(s) := α0 + α1(1 + s2)
(β−2)/2 ∀s ≥ 0 (2.4)

where α0, α1 > 0 and β ∈ [1, 2]. This law satisfies the assumptions (2.3) with (µ1, µ2) =
(α0, α0 + α1).

Next, proceeding similarly as in [1] (see also [2, 11]), that is defining now the tensor

σ := µ(|e(u)|)e(u) − (u ⊗ u) − pI in ! (2.5)

using the incompressibility and the foregoing equation to eliminate the pressure, introducing the
auxiliary unknowns

t := e(u) and ρ := ∇u − e(u),

which denote the strain and the vorticity, respectively, and observing from (2.5) that σ is now
required to be symmetric, which improves the approach from [1], we arrive at the following
system of equations with unknowns t , u, σ , and ρ

∇u = t + ρ in !,

µ(|t |)t − (u ⊗ u)d = σ d in !,

−div σ = f in !,

u = g on ",

σ = σ t in !,
∫

!
tr(σ + u ⊗ u) = 0 .

(2.6)

We notice here that the fluid incompressibility is implicitly incorporated in the new constitutive
equation relating σ and u (second equation of (2.6)). In turn, the fact that the pressure must belong
to L2

0(!) is guaranteed by the equivalent statement given by the last equation of (2.6). Indeed, it
is easy to see (by taking the trace in [2.5]) that

p = −1
n

tr(σ + u ⊗ u) in !. (2.7)
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III. THE CONTINUOUS FORMULATION

A. The Augmented Mixed Formulation

We now proceed to derive a weak formulation of (2.6). First, we recall (cf. [12, 13]) that

H(div; !) = H0(div; !) ⊕ RI (3.1)

where

H0(div; !) :=
{
ζ ∈ H(div; !) :

∫

!

tr(ζ ) = 0
}

.

In particular, decomposing σ in (2.6) as σ = σ 0 + cI, with σ 0 ∈ H0(div; !), we deduce from
(3.1) and the last equation in (2.6) that c is given explicitly in terms of u as

c = − 1
n|!|

∫

!

tr(u ⊗ u). (3.2)

In this way, since σ d = σ d
0 and div σ = div σ 0 throughout the rest of the paper we rename σ 0 as

σ ∈ H0(div; !) and realize that the second, third, and fifth equations of (2.6) remain unchanged.
In addition, thanks to the incompressibility condition and the first equation of (2.6), the unknown
t can be sought in the space

L2
tr (!) :=

{
s ∈ L2(!) : trs = 0

}

whereas the vorticity ρ lives in

L2
skew(!) :=

{
η ∈ L2(!) : η = −ηt

}
.

Noticing first that it suffices to test the first equation of (2.6) against τ ∈ H0(div; !), using the
Dirichlet condition for u, realizing that the constitutive equation given by the second equation of
(2.6) needs to be tested only with s ∈ L2

tr (!), and then imposing weakly the equilibrium equation
and the symmetry of σ , we arrive, at first instance, at the following weak formulation of (2.6):
Find (t , σ , ρ) ∈ L2

tr (!) × H0(div; !) × L2
skew(!), and u in a suitable space, such that

∫

!

µ(|t |)t : s −
∫

!

σ d : s −
∫

!

(u ⊗ u)d : s = 0 ∀s ∈ L2
tr (!)

∫

!

τ d : t +
∫

!

u · div τ +
∫

!

ρ : τ = ⟨τν, g⟩ ∀τ ∈ H0(div; !)

−
∫

!

v · div σ −
∫

!

η : σ =
∫

!

f · v ∀(v, η) ∈ L2(!) × L2
skew(!) (3.3)

where ⟨·, ·⟩ denotes the duality pairing between H−1/2(") and H1/2(").
We continue our analysis by observing, exactly as we did in [1], that by applying Cauchy-

Schwarz and Hölder inequalities, and then using the compact (and hence continuous) injection
ic of H1(!) into L4(!) (see Rellich-Kondrachov compactness Theorem in [14, Theorem 6.3] or
[15, Theorem 1.3.5]), that the third term in the first row of the foregoing system suggests to look
for the unknown u in H1(!) and to restrict the set of corresponding test functions v to the same
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space. Consequently, we now augment (3.3) through the incorporation of the following redundant
Galerkin terms:

κ1

∫

!

{
σ d − µ(|t |)t + (u ⊗ u)d

}
: τ d = 0 ∀τ ∈ H0(div; !),

κ2

∫

!

div σ · div τ = −κ2

∫

!

f · div τ ∀τ ∈ H0(div; !),

κ3

∫

!

{e(u) − t} : e(v) = 0 ∀v ∈ H1(!),

κ4

∫

!

(ρ − {∇u − e(u)}) : η = 0 ∀η ∈ L2
skew(!),

κ5

∫

"

u · v = κ5

∫

"

g · v ∀v ∈ H1(!), (3.4)

where κ1, κ2, κ3, κ4, and κ5 are positive parameters to be specified later. It is important to observe
that, differently from the analysis in [1], here we have a third equation in (3.4) involving the strain
tensor instead of the gradient of velocity, as well as a completely new fourth equation arising from
the introduction of the vorticity ρ as an auxiliary unknown. As we will see later on, these facts
yield a number of modifications with respect to the solvability analysis carried out in [1].

The two foregoing systems of equations lead to the following augmented mixed formulation:
Find t⃗ := (t , σ , u, ρ) ∈ H := L2

tr (!) × H0(div; !) × H1(!) × L2
skew(!) such that

[(A + Bu)(t⃗), s⃗] = [F, s⃗] ∀s⃗ := (s, τ , v, η) ∈ H, (3.5)

where [·, ·] stands for the duality pairing between H′ and H, A : H → H′ is the nonlinear operator

[A(t⃗), s⃗] :=
∫

!

µ(|t |)t : s −
∫

!

σ d : s +
∫

!

τ d : t +
∫

!

u · div τ −
∫

!

v · div σ

+
∫

!

ρ : τ −
∫

!

η : σ + κ1

∫

!

{
σ d − µ(|t |)t

}
: τ d + κ2

∫

!

div σ · div τ

+ κ3

∫

!

{e(u) − t} : e(v) + κ4

∫

!

(ρ − {∇u − e(u)}) : η + κ5

∫

"

u · v, (3.6)

F : H → R is the bounded linear functional

[F, s⃗] := ⟨τν, g⟩ +
∫

!

f · {v − κ2div τ } + κ5

∫

"

g · v, (3.7)

and for each z ∈ H1(!), Bz : H → H′ is the bounded linear operator

[Bz(t⃗), s⃗] :=
∫

!

(z ⊗ u)d :
{
κ1τ

d − s
}

, (3.8)

for all t⃗ := (t , σ , u, ρ), s⃗ := (s, τ , v, η) ∈ H.
The boundedness of F and Bz will be confirmed in the following section, where we introduce

our fixed-point approach to study the well-posedness of (3.5).
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B. A Fixed-Point Approach

We begin by defining the operator T : H1(!) → H1(!) by

T(z) := u ∀z ∈ H1(!),

where u is the third component of the unique solution (to be confirmed below) of the nonlinear
problem: Find t⃗ := (t , σ , u, ρ) ∈ H such that

[(A + Bz)(t⃗), s⃗] = [F, s⃗] ∀s⃗ := (s, τ , v, η) ∈ H. (3.9)

It follows that our augmented mixed formulation (3.5) can be rewritten, equivalently, as the
fixed-point problem: Find u ∈ H1(!) such that

T(u) = u.

The following useful inequalities will be employed below to analyze the well-posedness of
(3.9) and a particular case of it to be considered in Section C below.

Lemma 3.1. There exists c1(!) > 0 such that

c1(!)∥τ 0∥2
0,! ≤ ∥τ d∥2

0,! + ∥div τ∥2
0,! ∀τ = τ 0 + cI ∈ H(div; !).

Proof. See [12, Proposition 3.1, Chapter IV].

Lemma 3.2. There holds

∥e(v)∥2
0,! ≥ 1

2
|v|21,! ∀v ∈ H1

0(!).

Proof. See [16, Theorem 10.1].

Lemma 3.3. There exists κ0 > 0 such that

∥e(v)∥2
0,! + ∥v∥2

0," ≥ κ0∥v∥2
1,! ∀v ∈ H1(!).

Proof. See [17, Lemma 3.1 and inequality (3.9)].

Note that Lemmas 3.2 and 3.3 correspond to the Korn first inequality and a modified Korn
inequality, respectively, which are more elaborated lower bounds than the usual Poincaré one
used in [1]. As announced before, the application of these estimates is caused by the present
dependence on the strain tensor in the third equation of (3.4). In turn, we also need to recall from
[10] that, under the assumptions given by (2.3), the nonlinear operator induced by µ is Lipschitz
continuous and strongly monotone. More precisely, we have the following result.

Lemma 3.4. Let Lµ := max {µ2, 2µ2 − µ1}, where µ1 and µ2 are the bounds of µ given in
(2.3). Then for each r , s ∈ L2(!) there holds

∥µ(|r|)r − µ(|s|)s∥0,! ≤ Lµ∥r − s∥0,!, (3.10)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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and
∫

!

{µ(|r|)r − µ(|s|)s} : (r − s) ≥ µ1∥r − s∥2
0,!. (3.11)

Proof. See [10, Theorem 3.8] for details.

The following lemma provides sufficient conditions under which the operator T is well-defined.

Lemma 3.5. Assume that κ1 ∈
(

0, 2δµ1
Lµ

)
, κ3 ∈

(
0, 2δ̃(µ1 − κ1Lµ

2δ
)
)

, κ4 ∈
(

0, 2δ̂κ0β(!)
)

, and

κ2, κ5 > 0, with δ ∈
(

0, 2
Lµ

)
, δ̃, δ̂ ∈ (0, 2), and β(!) := min

{
κ3(1 − δ̃

2 ), κ5

}
. Then, there exists

ε0 > 0 such that for each ε ∈ (0, ε0), problem (3.9) has a unique solution t⃗ := (t , σ , u, ρ) ∈ H
for each z ∈ H1(!) such that ∥z∥1,! ≤ ε. Moreover, there exists cT > 0, independent of z and
the data f and g, such that

∥T(z)∥1,! = ∥u∥1,! ≤ ∥t⃗∥ ≤ cT
{
∥f ∥0,! + ∥g∥0," + ∥g∥1/2,"

}
. (3.12)

Proof. We proceed similarly as in the proof of [1, Lemma 3.4]. In fact, given z ∈ H1(!),
we first deduce from (3.6), using the Cauchy-Schwarz inequality, the Lipschitz continuity of the
operator induced by µ (cf. (3.10) in Lemma 3.4), and the trace operator γ 0 : H1(!) → L2("),
that there exists a positive constant LA, depending on Lµ, the parameters κi , i ∈ {1, . . . , 5}, and
∥γ 0∥, such that

[A(⃗t) − A(⃗r), s⃗] ≤ LA||⃗t − r⃗||||s⃗|| (3.13)

for all t⃗ , r⃗ , s⃗ ∈ H. In turn, recalling that ic denotes the continuous injection of H1(!) into L4(!),
it readily follows (3.8), by applying Cauchy-Schwarz and Hölder inequalities, that

∣∣[Bz(t⃗), s⃗]
∣∣ ≤ ∥ic∥2(κ2

1 + 1)
1/2∥z∥1,!∥t⃗∥∥s⃗∥ ∀t⃗ , s⃗ ∈ H, (3.14)

which, thanks to the linearity of Bz, and together with (3.13), proves that the operator A + Bz is
Lipschitz continuous with constant LA + ∥ic∥2(κ2

1 + 1)
1/2∥z∥1,!. Next, it is also clear from (3.6)

that for each r⃗ := (r , ζ , w, ξ), s⃗ := (s, τ , v, η) ∈ H there holds

[A(r⃗) − A(s⃗), r⃗ − s⃗]

=
∫

!

{µ(|r|)r − µ(|s|)s} : (r − s) + κ1∥(ζ − τ )d∥2
0,!

− κ1

∫

!

{µ(|r|)r − µ(|s|)s} : (ζ − τ )d + κ2∥div(ζ − τ )∥2
0,! + κ3∥e(w − v)∥2

0,!

− κ3

∫

!

(r − s) : e(w − v) + κ4∥ξ − η∥2
0,! + κ5∥w − v∥2

0,"

− κ4

∫

!

{∇(w − v) − e(w − v)} : (ξ − η),

which, using the Cauchy-Schwarz and Young inequalities, the Lipschitz continuity and strong
monotonicity properties of the operator induced by µ (cf. [3.10] and [3.11]), and the fact that

∥∇(w − v) − e(w − v)∥2
0,! = |w − v|21,! − ∥e(w − v)∥2

0,!,
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yields for any δ, δ̃, δ̂ > 0, the bound

[A(r⃗) − A(s⃗), r⃗ − s⃗]

≥
{(

µ1 − κ1Lµ

2δ

)
− κ3

2δ̃

}
∥r − s∥2

0,! + κ1

(
1 − Lµδ

2

)
∥(ζ − τ )d∥2

0,!

+ κ2∥div(ζ − τ )∥2
0,! +

{

κ3

(

1 − δ̃

2

)

+ κ4

2δ̂

}

∥e(w − v)∥2
0,! + κ5∥w − v∥2

0,"

+ κ4

(

1 − δ̂

2

)

∥ξ − η∥2
0,! − κ4

2δ̂
|w − v|21,!. (3.15)

Then, discarding the expression κ4
2δ̂

multiplying ∥e(w−v)∥2
0,!, and according to the hypotheses on

δ, κ1, δ̃, κ3, δ̂, κ4, κ2, and κ5, and applying Lemmas 3.1 and 3.3, we can define the positive constants

α0(!) :=
(

µ1 − κ1Lµ

2δ

)
− κ3

2δ̃
, α1(!) := min

{
κ1

(
1 − Lµδ

2

)
,
κ2

2

}
,

α2(!) := min
{
α1(!)c1(!),

κ2

2

}
, α3(!) := κ0β(!) − κ4

2δ̂
, and α4(!) := κ4

(

1 − δ̂

2

)

,

which allow us to deduce from (3.15) that

[A(r⃗) − A(s⃗), r⃗ − s⃗] ≥ α(!)∥r⃗ − s⃗∥2 ∀r⃗ , s⃗ ∈ H, (3.16)

where

α(!) := min {α0(!), α2(!), α3(!), α4(!)}

is the strong monotonicity constant of A. We remark that the fourth equation in (3.4) motivates
an additional application of the Young inequality, which implies the need of establishing suitable
relationships between the constant δ̂ and the remaining parameters appearing in the foregoing
proof of strong monotonicity. Next, a combination of (3.14) and (3.16) implies that

[(A + Bz)(r⃗) − (A + Bz)(s⃗), r⃗ − s⃗] ≥ α(!)

2
∥r⃗ − s⃗∥2 ∀r⃗ , s⃗ ∈ H, (3.17)

provided ∥z∥1,! ≤ ε0, with

ε0 := α(!)

2∥ic∥2(κ2
1 + 1)

1/2 , (3.18)

which confirms the strong monotonicity of the nonlinear operator A + Bz. Conversely, it follows
from (3.7), using Cauchy-Schwarz’s inequality and the trace theorems in H(div; !) and H1(!),
that F ∈ H′ with

∥F∥ ≤ MT
{
∥f ∥0,! + ∥g∥0," + ∥g∥1/2,"

}
,
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where MT := max
{
(1 + κ2

2 )
1/2, κ5∥γ 0∥

}
. Consequently, a straightforward application of [18,

Theorem 3.3.23] (which establishes the bijectivity of Lipschitz continuous and strongly monot-
one operators) implies that there exists a unique solution t⃗ ∈ H of (3.9). Finally, applying
(3.17) and performing simple algebraic manipulations, we derive (3.12) with the positive constant
cT := 2MT

α(!)
.

We now observe that the constant α(!) yielding the strong monotonicity of A + Bz can be
maximized by taking the parameters δ, κ1, δ̃, κ3, δ̂, and κ4 as the middle points of their feasible
ranges, and by choosing κ2 and κ5 so that they maximize the minima defining α1(!) and β(!),
respectively. More precisely, we simply take

δ = 1
Lµ

, κ1 = δµ1

Lµ

= µ1

L2
µ

, δ̃ = 1, κ3 = δ̃

(
µ1 − κ1Lµ

2δ

)
= µ1

2
,

κ2 = 2κ1

(
1 − Lµδ

2

)
= κ1 = µ1

L2
µ

, κ5 = κ3

(

1 − δ̃

2

)

= κ3

2
= µ1

4
,

δ̂ = 1, and κ4 = δ̂κ0β(!) = κ0κ5 = κ0µ1

4
, (3.19)

which yields

α0(!) = µ1

4
, α1(!) = µ1

2L2
µ

, α2(!) = min {c1(!), 1} µ1

2L2
µ

, α3(!) = α4(!) = κ0µ1

8
,

and hence

α(!) = min

{
µ1

4
,
κ0µ1

8
, min {c1(!), 1} µ1

2L2
µ

}

.

Note that the values of the stabilization parameters κi , i ∈ {1, . . . , 5}, given in (3.19), are all
explicitly computable in terms of the constants µ1 and µ2 (cf. (2.3)), except κ4, which depends
on the usually unknown constant κ0 appearing in the Korn-type inequality given by Lemma 3.3.
According to this, the aforementioned explicit parameters in (3.19) together with an heuristic
choice for κ0 (and hence for κ4 = κ0µ1

4 ) will be used below in Section VI for the corresponding
numerical experiments.

C. The Case of a Homogeneous Dirichlet Boundary Condition

We now address the case of a homogeneous Dirichlet condition for the velocity u on the boundary
". In this way, the present section constitutes a significant complement not only of the foregoing
discussion, but also of the results provided in [1], where the specific analysis for this kind of
boundary conditions was not included. In particular, as u lives now in H1

0(!), we first realize that
the last equation of (3.4) is not needed anymore, which means that only four stabilization para-
meters are required. Consequently, our resulting augmented mixed formulation becomes: Find
t⃗ := (t , σ , u, ρ) ∈ H0 := L2

tr (!) × H0(div; !) × H1
0(!) × L2

skew(!) such that

[(A + Bu)(t⃗), s⃗] = [F, s⃗] ∀s⃗ := (s, τ , v, η) ∈ H0, (3.20)

Numerical Methods for Partial Differential Equations DOI 10.1002/num



MIXED FEM FOR STEADY STATE NAVIER-STOKES 1703

where the nonlinear operator A : H0 → H′
0 is defined by

[A(t⃗), s⃗] :=
∫

!

µ(|t |)t : s −
∫

!

σ d : s +
∫

!

τ d : t +
∫

!

u · div τ −
∫

!

v · div σ

+
∫

!

ρ : τ −
∫

!

η : σ + κ1

∫

!

{
σ d − µ(|t |)t

}
: τ d + κ2

∫

!

div σ · div τ

+ κ3

∫

!

{e(u) − t} : e(v) + κ4

∫

!

(ρ − {∇u − e(u)}) : η,

the bounded linear functional F : H0 → R corresponds to

[F, s⃗] :=
∫

!

f · {v − κ2div τ }

and the operator Bz is given, as before, by (3.8). In turn, the associated fixed point operator is
given now by T0 : H1

0(!) → H1
0(!), where

T0(z) := u ∀z ∈ H1
0(!),

and u is the third component of the unique solution (to be confirmed below) of the nonlinear
problem: Find t⃗ := (t , σ , u, ρ) ∈ H0 such that

[(A + Bz)(t⃗), s⃗] = [F, s⃗] ∀s⃗ := (s, τ , v, η) ∈ H0. (3.21)

In this way, and similarly as in Section B, our augmented mixed formulation (3.20) can be
rewritten, equivalently, as the fixed point problem: Find t⃗ := (t , σ , u, ρ) ∈ H0 such that

T0(u) = u.

The analogue of Lemma 3.5, which will make use now of the first Korn inequality (cf. Lemma
3.2) instead of Lemma 3.3, is established as follows.

Lemma 3.6. Assume that κ1 ∈
(

0, 2δµ1
Lµ

)
, κ3 ∈

(
0, 2δ̃(µ1 − κ1Lµ

2δ
)
)

, κ4 ∈
(

0, 2δ̂κ3(1 − δ̃
2 )

)
,

and κ2 > 0, with δ ∈
(

0, 2
Lµ

)
, and δ̃, δ̂ ∈ (0, 2). Then, there exists ε0 > 0 such that for each

ε ∈ (0, ε0), problem (3.21) has a unique solution t⃗ := (t , σ , u, ρ) ∈ H0 for each z ∈ H1
0(!) such

that ∥z∥1,! ≤ ε. Moreover, there holds

∥T0(z)∥1,! = ∥u∥1,! ≤ ∥t⃗∥ ≤ 2(1 + κ2
2 )

1/2

α(!)
∥f ∥0,!.

Proof. As some details are either similar or almost verbatim to those provided in the proof
of Lemma 3.5, we concentrate here on the main difference of the analysis, which has to do with
the strong monotonicity of the nonlinear operator A. In other words, our starting point here is
inequality (3.15), which in the present case, and after applying Lemma 3.2, leads to

[A(r⃗) − A(s⃗), r⃗ − s⃗]

≥
{(

µ1 − κ1Lµ

2δ

)
− κ3

2δ̃

}
∥r − s∥2

0,! + κ1

(
1 − Lµδ

2

)
∥(ζ − τ )d∥2

0,!

+ κ2∥div(ζ − τ )∥2
0,! +

{
κ3

2

(

1 − δ̃

2

)

− κ4

4δ̂

}

|w − v|21,! + κ4

(

1 − δ̂

2

)

∥ξ − η∥2
0,!.
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Then, according to the hypotheses on δ, κ1, δ̃, κ3, δ̂, κ4, and κ2, and applying Lemma 3.1, we can
define the positive constants

α0(!) :=
(

µ1 − κ1Lµ

2δ

)
− κ3

2δ̃
, α1(!) := min

{
κ1

(
1 − Lµδ

2

)
,
κ2

2

}
,

α2(!) := min
{
α1(!)c1(!),

κ2

2

}
, α3(!) := κ3

2

(

1 − δ̃

2

)

− κ4

4δ̂
, and

α4(!) := κ4

(

1 − δ̂

2

)

,

which, combined with the foregoing inequality, implies

[A(r⃗) − A(s⃗), r⃗ − s⃗] ≥ α(!)∥r⃗ − s⃗∥2 ∀r⃗ , s⃗ ∈ H,

where

α(!) := min
{
α0(!), α2(!), cpα3(!), α4(!)

}
(3.22)

and cp is the positive constant provided by Poincaré’s inequality. The rest proceeds exactly as in
the proof of Lemma 3.5. In particular, the constant ε0 is given by (3.18) but with α(!) defined
now by (3.22). We omit further details.

We end this section by remarking, as in Section B, that α(!) is maximized by taking the
parameters δ, κ1, δ̃, κ3, δ̂, and κ4 as the midpoints of their feasible ranges, and by choosing κ2 so
that it maximizes α1(!). The above means that we simply take

δ = 1
Lµ

, κ1 = δµ1

Lµ

= µ1

L2
µ

, δ̃ = 1, κ3 = δ̃

(
µ1 − κ1Lµ

2δ

)
= µ1

2
,

κ2 = 2κ1

(
1 − Lµδ

2

)
= κ1 = µ1

L2
µ

, δ̂ = 1, and κ4 = δ̂κ3

(

1 − δ̃

2

)

= κ3

2
= µ1

4
, (3.23)

which yields α0(!) = µ1
4 , α1(!) = µ1

2L2
µ

, α2(!) = min {c1(!), 1} µ1
2L2

µ
, α3(!) = µ1

16 , α4(!) = µ1
8 ,

and hence

α(!) = min

{

min {c1(!), 1} µ1

2L2
µ

, cp

µ1

16
,
µ1

8

}

.

The explicit parameters defined in (3.23) will be used below in Section V for the corresponding
numerical experiments with homogeneous Dirichlet boundary conditions for the velocity u.

D. Solvability Analysis of the Fixed-Point Equations

We now aim to establish the existence of unique fixed points of the operators T and T0. Actually,
in what follows we just concentrate in the analysis of T as the one of T0 is completely analogous.
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Moreover, as the approach follows very closely the ideas developed in [1], we simplify the pre-
sentation as much as possible and frequently refer to the results in that work. The same remarks
apply for the subsequent sections.

To prove the existence of a unique fixed point of the operator T, it suffices to verify the
hypotheses of the classical Banach fixed point theorem, whose statement is recalled in what
follows.

Theorem 3.7. Let W be a closed subset of a Banach space X, and let T : W → W be a
contraction mapping. Then T has a unique fixed point.

We begin the analysis with the following straightforward consequence of Lemma 3.5.

Lemma 3.8. Let ε ∈ (0, ε0), with ε0 given by (3.18) (cf. proof of Lemma 3.5), let Wε be the
closed ball defined by Wε :=

{
z ∈ H1(!) : ∥z∥1,! ≤ ε

}
, and assume that

cT
{
∥f ∥0,! + ∥g∥0," + ∥g∥1/2,"

}
≤ ε, (3.24)

with cT given at the end of the proof of Lemma 3.5. Then T(Wε) ⊆ Wε.

In turn, the following lemma establishes a key estimate in deriving the continuity of T.

Lemma 3.9. Let ε ∈ (0, ε0), with ε0 given by (3.18), and let Wε :=
{
z ∈ H1(!) : ∥z∥1,! ≤ ε

}
.

Then there exists a positive constant CT := 2(κ2
1 +1)

1/2∥ic∥
α(!)

, such that

∥T(z) − T(z̃)∥1,! ≤ CT∥T(z̃)∥1,!∥z − z̃∥L4(!) ∀z, z̃ ∈ Wε. (3.25)

Proof. It follows as in the proof of [1, Lemma 3.7].

The main result of this section is stated next.

Theorem 3.10. Suppose that the parameters κi , i ∈ {1, . . . , 5}, satisfy the conditions required
by Lemma 3.5. In addition, given ε ∈ (0, ε0), with ε0 defined by (3.18), we let Wε :={
z ∈ H1(!) : ∥z∥1,! ≤ ε

}
, and assume that the data satisfy (3.24; cf. Lemma 3.8). Then, the

augmented mixed formulation (3.5) has a unique solution t⃗ := (t , σ , u, ρ) ∈ H with u ∈ Wε, and
there holds

∥t⃗∥ ≤ cT
{
∥f ∥0,! + ∥g∥0," + ∥g∥1/2,"

}
, (3.26)

with cT given at the end of the proof of Lemma 3.5.

Proof. We proceed similarly as in the proof of [1, Theorem 3.9] and make use of the classical
Banach fixed point Theorem to prove that the mapping T has a unique fixed point in Wε. In fact,
given ε ∈ (0, ε0), we first notice, using (3.25) and the continuity of ic : H1(!) → L4(!), that

∥T(z) − T(z̃)∥1,! ≤ CT∥ic∥∥T(z̃)∥1,!∥z − z̃∥1,! ∀z, z̃ ∈ Wε.

Next, due to the definitions of the constants ε0 (cf. [3.18]) and CT (cf. Lemma 3.9), we obtain

∥T(z) − T(z̃)∥1,! ≤ 2(κ2
1 + 1)

1/2∥ic∥2

α(!)
∥T(z̃)∥1,!∥z − z̃∥1,! = 1

ε0
∥T(z̃)∥1,!∥z − z̃∥1,!,
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which, according to (3.12) and our assumption (3.24), yields

∥T(z) − T(z̃)∥1,! ≤ 1
ε0

cT
{
∥f ∥0,! + ∥g∥0," + ∥g∥1/2,"

}
∥z − z̃∥1,! ≤ ε

ε0
∥z − z̃∥1,!

for all z, z̃ ∈ Wε. This inequality proves that actually, under the hypothesis (3.24), the operator
T : Wε → Wε becomes a contraction, and hence it has a unique fixed point.

IV. THE GALERKIN SCHEME

In this section, we introduce and study the Galerkin scheme of the augmented mixed formulation
(3.5). We analyze its solvability by employing a discrete version of the fixed-point strategy devel-
oped in Section D. Finally, we derive the corresponding Céa estimate of our Galerkin scheme. We
begin by introducing arbitrary finite dimensional subspaces Ht

h, Hσ
h , Hu

h , and Hρ
h of the continuous

spaces L2
tr (!), H0(div; !), H1(!) and L2

skew(!), respectively. As usual, h denotes the size of a
regular triangulation Th of ! made up of triangles T (when n = 2) or tetrahedra T (when n = 3)
of diameter hT , that is h := max {hT : T ∈ Th}. Then, the Galerkin scheme associated with our
problem (3.5) reads: Find t⃗h := (th, σ h, uh, ρh) ∈ Hh := Ht

h × Hσ
h × Hu

h × Hρ
h such that

[(A + Buh
)(t⃗h), s⃗h] = [F, s⃗h] ∀s⃗h := (sh, τ h, vh, ηh) ∈ Hh. (4.1)

Next, analogously to the continuous case, we introduce the discrete version of T:

Th : Hu
h → Hu

h by Th(zh) := uh ∀zh ∈ Hu
h ,

where uh is the third component of the unique solution (to be confirmed below) of the discrete
nonlinear problem: Find t⃗h := (th, σ h, uh, ρh) ∈ Hh such that

[(A + Bzh
)(t⃗h), s⃗h] = [F, s⃗h] ∀s⃗h := (sh, τ h, vh, ηh) ∈ Hh. (4.2)

Then, similarly as for the continuous case, we rewrite our Galerkin scheme (4.1) as the fixed-point
equation: Find uh ∈ Hu

h such that

Th(uh) = uh.

We continue our analysis by observing, exactly as we did in [1], that the arguments used in
the proof of Lemma 3.5 can also be applied to the present discrete setting. In particular, for each
zh ∈ Hu

h the nonlinear operator A + Bzh
: Hh → H′

h becomes Lipschitz continuous as well with
constant LA + ∥ic∥2(κ2

1 + 1)
1/2∥zh∥1,!. Moreover, under the same feasible ranges stipulated in

Lemma 3.5 for the stabilization parameters and the given zh ∈ Hu
h (instead of z ∈ H1(!)), one

finds that A + Bzh
: Hh → H′

h becomes strongly monotone with the same constant α(!)

2 provided
in (3.17). Consequently, the classical result on the bijectivity of monotone operators given by [18,
Theorem 3.3.23] implies now the following lemma.

Lemma 4.1. Assume that κ1 ∈
(

0, 2δµ1
Lµ

)
, κ3 ∈

(
0, 2δ̃(µ1 − κ1Lµ

2δ
)
)

, κ4 ∈
(

0, 2δ̂κ0β(!)
)

, and

κ2, κ5 > 0, with δ ∈
(

0, 2
Lµ

)
, δ̃, δ̂ ∈ (0, 2), and β(!) := min

{
κ3(1 − δ̃

2 ), κ5

}
. Then, for each

ε ∈ (0, ε0), with ε0 given by (3.18), and for each zh ∈ Hu
h such that ∥zh∥1,! ≤ ε, problem (4.2)
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has a unique solution t⃗h := (th, σ h, uh, ρh) ∈ Hh. Moreover, with the same constant cT > 0 from
Lemma 3.5, which is independent of zh and the data f and g, there holds

∥Th(zh)∥1,! = ∥uh∥1,! ≤ ∥t⃗h∥ ≤ cT
{
∥f ∥0,! + ∥g∥0," + ∥g∥1/2,"

}
. (4.3)

Now, analogously to the continuous case, we are able to derive the following main result
concerning the Galerkin scheme (4.1).

Theorem 4.2. Suppose that the parameters κi , i ∈ {1, . . . , 5}, satisfy the conditions required
by Lemma 4.1. In addition, given ε ∈ (0, ε0), with ε0 defined by (3.18), we let Wh

ε :={
zh ∈ Hu

h : ∥zh∥1,! ≤ ε
}
, and assume that the data satisfy (3.24) (cf. Lemma 3.8), that is

cT
{
∥f ∥0,! + ∥g∥0," + ∥g∥1/2,"

}
≤ ε, (4.4)

with cT given at the end of the proof of Lemma 3.5. Then, (4.1) has a unique solution
t⃗h := (th, σ h, uh, ρh) ∈ Hh with uh ∈ Wh

ε , and there holds

∥t⃗h∥ ≤ cT
{
∥f ∥0,! + ∥g∥0," + ∥g∥1/2,"

}
. (4.5)

Proof. We first observe, thanks to (4.3), that the assumption (4.4) guarantees that Th(W
h
ε ) ⊆

Wh
ε . Then, using exactly the same arguments utilized in the proof of Theorem 3.10, we deduce

that Th : Wh
ε → Wh

ε is also a contraction. Hence, applying the Banach fixed point Theorem we
obtain that there exists a unique fixed point for Th, or equivalently, there exists a unique solution
to (4.1). In turn, the a priori estimate (4.5) follows directly from (4.3).

Next, we establish the corresponding Céa estimate for our Galerkin scheme (4.1). We remark in
advance that, differently from [1, Lemma 4.3, Theorem 4.4], where a Strang-type lemma was used
for its proof, we now follow a more straightforward approach, which is based on a suitable decom-
position of the error and the Galerkin orthogonality condition. This alternative argumentation can
be utilized for the error analysis of other nonlinear problems as well (see, e.g., [2]).

The announced result is stated as follows.

Theorem 4.3. Let t⃗ ∈ H and t⃗h ∈ Hh be the unique solutions of the continuous and discrete
problems (3.5) and (4.1), respectively, and let dist(t⃗ , Hh) be the distance of t⃗ to Hh, that is

dist(t⃗ , Hh) := inf
r⃗h∈Hh

∥t⃗ − r⃗h∥H.

In addition, given ε ∈ (0, ε0), with ε0 defined by (3.18), we assume that the data f and g satisfy

cT
{
∥f ∥0,! + ∥g∥0," + ∥g∥1/2,"

}
≤ ε

2
, (4.6)

with cT given at the end of the proof of Lemma 3.5. Then, there exits a positive constant C,
depending only on LA and α(!), such that

∥t⃗ − t⃗h∥ ≤ C dist(t⃗ , Hh). (4.7)

Proof. To simplify the subsequent analysis, we define et⃗ := t⃗ − t⃗h. As usual, given any
r⃗h := (rh, ζ h, wh, ξ h) ∈ Hh, we decompose this error as

et⃗ = ξ t⃗ + χ t⃗ = (t⃗ − r⃗h) + (r⃗h − t⃗h). (4.8)
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First, from (3.5) and (4.1), we easily get the Galerkin orthogonality property

[A(t⃗) − A(t⃗h), s⃗h] + [Bu(t⃗) − Buh
(t⃗h), s⃗h] = 0 ∀s⃗h ∈ Hh,

and adding and subtracting Bu(t⃗h) and A(r⃗h), we obtain

[A(r⃗h) − A(t⃗h), s⃗h] + [Bu(t⃗ − t⃗h), s⃗h] = −[A(t⃗) − A(r⃗h), s⃗h] − [Bu−uh
(t⃗h), s⃗h].

Hence, proceeding similarly with Bzh
(t⃗h) on the right-hand side, and using the decomposition

(4.8), we find that

[A(r⃗h) − A(t⃗h), s⃗h] + [Bu(χ t⃗), s⃗h] = −[A(t⃗) − A(r⃗h), s⃗h] − [Bu(ξ t⃗), s⃗h]
− [Bu−zh

(t⃗h), s⃗h] − [Bzh−uh
(t⃗h), s⃗h].

In particular, for s⃗h = χ t⃗ , using that u ∈ Wε, and applying the strong monotonicity of the form on
the left-hand side, and the Lipschitz continuity of A and B on the right-hand side, we deduce that

α(!)

2
∥χ t⃗∥2 ≤ LA∥ξ t⃗∥∥χ t⃗∥ + ∥ic∥2(κ2

1 + 1)
1/2∥u∥1,!∥ξ t⃗∥∥χ t⃗∥

+ ∥ic∥2(κ2
1 + 1)

1/2∥u − zh∥1,!∥t⃗h∥∥χ t⃗∥

+ ∥ic∥2(κ2
1 + 1)

1/2∥zh − uh∥1,!∥t⃗h∥∥χ t⃗∥,

so that, using that ∥zh − uh∥1,! ≤ ∥χ t⃗∥ and ∥u − zh∥1,! ≤ ∥ξ t⃗∥, we arrive at

α(!)

2
∥χ t⃗∥2 ≤

(
LA + ∥ic∥2(κ2

1 + 1)
1/2∥u∥1,! + ∥ic∥2(κ2

1 + 1)
1/2∥t⃗h∥

)
∥ξ t⃗∥∥χ t⃗∥

+ ∥ic∥2(κ2
1 + 1)

1/2∥t⃗h∥∥χ t⃗∥2.

But, as ∥t⃗h∥ ≤ cT
{
∥f∥0,! + ∥g∥0," + ∥g∥1/2,"

}
≤ ε/2 and ∥u∥1,! ≤ ε/2, we conclude that

(
α(!)

2
− ε

2
∥ic∥2(κ2

1 + 1)
1/2

)
∥χ t⃗∥ ≤

(
LA + ε∥ic∥2(κ2

1 + 1)
1/2

)
∥ξ t⃗∥,

which, together with the fact that ε ∈ (0, ε0), with ε0 defined in (3.18), and the triangle inequality,
finish the proof.

Now, with the help of the previous theorem, we estimate the error for the postprocessed pres-
sure. In fact, according to the Eqs. (2.7), and (3.2), we define our discrete approximation of the
pressure as

ph := −1
n

tr {σ h + chI + (uh ⊗ uh)} in !, with ch := − 1
n|!|

∫

!

tr(uh ⊗ uh),

which yields

p − ph = 1
n

tr {(σ h − σ ) + (uh ⊗ uh − u ⊗ u)} + (ch − c),
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and thus, applying the Cauchy-Schwarz inequality, we first deduce that

∥p − ph∥0,! ≤ Ĉ
{
∥σ − σ h∥0,! + ∥uh ⊗ uh − u ⊗ u∥0,! + |c − ch|

}
,

where Ĉ > 0 depends on n and |!|. Next, bearing in mind the expression for c given by (3.2),
decomposing

uh ⊗ uh − u ⊗ u = (uh − u) ⊗ uh + u ⊗ (uh − u),

and using the triangle and Hölder inequalities, the compact embedding ic : H1(!) → L4(!),
and the a priori bounds for ∥u∥1,! and ∥uh∥1,! (cf. (3.26) in Theorem 3.10 and (4.5) in Theorem
4.2), we conclude from the foregoing equations that there exists a constant C > 0, independent of
h, but depending on n, |!|, ∥ic∥, and the data f and g, such that

∥p − ph∥0,! ≤ C
{
∥σ − σ h∥div;! + ∥u − uh∥1,!

}
. (4.9)

We now specify a concrete example of finite element subspaces for our Galerkin scheme (4.1).
In what follows, given an integer k ≥ 0 and a set S ⊆ R := Rn, Pk(S) denotes the space of
polynomial functions on S of degree ≤ k. In addition, according to the notation described in
Section 2.1, we set Pk(S) := [Pk(S)]n and Pk(S) := [Pk(S)]n×n. Similarly, C(!) = [C(!)]n and
C(S) := [C(S)]n×n. We start defining the corresponding local Raviart-Thomas spaces of order
k as

RTk(T ) := Pk(T ) ⊕ Pk(T )x ∀T ∈ Th,

where x is a generic vector in Rn. Then, we introduce examples of specific finite element subspaces
Ht

h, Hσ
h , Hu

h , and Hρ
h approximating the unknowns t , σ , u, and ρ as follows:

Ht
h :=

{
sh ∈ L2

tr (!) : sh|T ∈ Pk(T ) ∀T ∈ Th

}
, (4.10)

Hσ
h :=

{
τ h ∈ H0(div; !) : ctτ |T ∈ RTk(T ), ∀c ∈ Rn ∀T ∈ Th

}
, (4.11)

Hu
h :=

{
vh ∈ C(!) : vh|T ∈ Pk+1(T ) ∀T ∈ Th

}
, (4.12)

Hρ
h :=

{
ηh ∈ L2

skew(!) : ηh|T ∈ Pk(T ) ∀T ∈ Th

}
. (4.13)

The approximation properties of the above finite element subspaces are as follows (cf. [12, 13]):

(APt
h) There exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each

r ∈ Hs(!) ∩ L2
tr (!), there holds

dist(r , Ht
h) := inf

rh∈Ht
h

∥r − rh∥0,! ≤ Chs∥r∥s,!.

(APσ
h ) There exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each

ζ ∈ Hs(!) ∩ H0(div; !) with div ζ ∈ Hs(!), their holds

dist(ζ , Hσ
h ) := inf

ζh∈Hσ
h

∥ζ − ζ h∥div;! ≤ Chs
{
∥ζ∥s,! + ∥div ζ∥s,!

}
.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



1710 CAMAÑO ET AL.

(APu
h) There exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each

w ∈ Hs+1(!), there holds

dist(w, Hu
h) := inf

wh∈Hu
h

∥w − wh∥1,! ≤ Chs∥w∥s+1,!.

(APρ
h) There exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each

η ∈ Hs(!) ∩ L2
skew(!), there holds

dist(η, Hρ
h) := inf

ηh∈Hρ
h

∥η − ηh∥0,! ≤ Chs∥η∥s,!.

In consequence, we can establish the convergence of the Galerkin scheme (4.1) associated to
the spaces specified in (4.10)–(4.13). We notice here that the main assumption (3.24) on the data
guaranteeing the well-posedness of the continuous and discrete problems follows from (4.6), and
hence it suffices to assume the latter only.

Theorem 4.4. Besides the hypotheses of Lemma 4.1 (or Lemma 3.5) and Theorem 4.3, assume
that there exists s > 0 such that t ∈ Hs(!), σ ∈ Hs(!), div σ ∈ Hs(!), u ∈ Hs+1(!), and
ρ ∈ Hs(!), and that the finite element subspaces are defined by (4.10)–(4.13). Then, there exists
C > 0, independent of h, such that for each h > 0 there holds

∥t⃗ − t⃗h∥ + ∥p − ph∥0,!

≤ Chmin{s,k+1} {∥t∥s,! + ∥σ∥s,! + ∥div σ∥s,! + ∥u∥s+1,! + ∥ρ∥s,!
}

. (4.14)

Proof. It follows from the Céa estimate (4.7), the upper bound given by (4.9), and the
approximation properties (APt

h ), (APσ
h ), (APu

h) and (APρ
h ).

Before moving to the a posteriori error analysis of our Galerkin scheme, we highlight that,
while the gradient of the velocity is not directly approximated here as it was in [1], we can still
exploit the present auxiliary unknowns t and ρ, as they actually suggest a fairly simple way of
obtaining a discrete approximation of ∇u. In fact, instead of performing a numerical differen-
tiation of uh, which usually yields a loss of accuracy, we follow the first equation of (2.6) and
define

(∇u)h := th + ρh.

In this way, we readily obtain

∥∇u − (∇u)h∥0,! ≤ ∥t − th∥0,! + ∥ρ − ρh∥0,! ≤ ∥t⃗ − t⃗h∥,

which, together with (4.14), certainly gives

∥t⃗ − t⃗h∥ + ∥p − ph∥0,! + ∥∇u − (∇u)h∥0,!

≤ Chmin{s,k+1} {∥t∥s,! + ∥σ∥s,! + ∥div σ∥s,! + ∥u∥s+1,! + ∥ρ∥s,!
}

.
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V. A POSTERIORI ERROR ANALYSIS

In this section, we derive a reliable and efficient residual-based a posteriori error estimate for (4.1),
with the discrete spaces introduced in Section IV for n = 3. After that, we introduce our approach
in the two-dimensional case and point out the differences between the estimator obtained for n = 3
and n = 2. We first recall that the curl of a three-dimensional vector field v := (v1, v2, v3) is the
vector

curlv = ∇ × v :=
(

∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)
.

Then, given a tensor function τ := (τij )3×3, the operator curl denotes the operator curl acting
along each row of τ , that is, τ is the 3 × 3 tensor whose rows are given by

curlτ :=

⎛

⎝
curl(τ11, τ12, τ13)

curl(τ21, τ22, τ23)

curl(τ31, τ32, τ33)

⎞

⎠ .

Having defined curl, we now introduce the Sobolev space

H(curl; !) :=
{
w ∈ L2(!) : curlw ∈ L2(!)

}
.

In addition, we denote by τ × ν the 3 × 3 tensor whose rows are given by the tangential trace of
each row of τ , that is,

τ × ν :=

⎛

⎝
(τ11, τ12, τ13) × ν
(τ21, τ22, τ23) × ν
(τ31, τ32, τ33) × ν

⎞

⎠ .

We denote by Eh the set of faces e of Th, subdivided into interior and exterior faces Eh =
Eh(!) ∪ Eh("), with Eh(!) := {e ∈ Eh : e ⊆ !} and Eh(") := {e ∈ Eh : e ⊆ "}. In turn, for
each T ∈ Th, we let E(T ) denote the set of faces of T. Here, he stands for the diameter of a
given e ∈ Eh, and for each e ∈ Eh we fix a unit normal νe to e. Then, given τ ∈ H(curl; !) and
e ∈ Eh(!), we let [[τ × νe]] := (τ |T ′ − τ |T ′′)|e × νe, where T ′ and T ′′ are elements of Th sharing
the common face e. If no confusion arises, we will simply write ν instead of νe.

Now, let t⃗ := (t , σ , u, ρ) ∈ H and t⃗h := (th, σ h, uh, ρh) ∈ Hh be the unique solutions of the
continuous and discrete problems (3.5) and (4.1), respectively. Then, we introduce the global a
posteriori error estimator

+ :=

⎧
⎨

⎩
∑

T ∈Th

+2
T

⎫
⎬

⎭

1/2

, (5.1)

where for each T ∈ Th we set:

+2
T := h2

T ∥curl(th + ρh)∥2
0,T + ∥σ d

h − µ(|th|)th + (uh ⊗ uh)
d∥2

0,T

+ ∥σ h − σ t
h∥2

0,T + ∥f − Ph(f )∥2
0,T + ∥f + div(σ h)∥2

0,T

+ ∥e(uh) − th∥2
0,T + ∥ρh − ∇uh + e(uh)∥2

0,T

Numerical Methods for Partial Differential Equations DOI 10.1002/num



1712 CAMAÑO ET AL.

+
∑

e∈E(T )∩Eh(!)

he|[[(th + ρh) × ν]]|20,e +
∑

e∈E(T )∩Eh(")

∥g − uh∥2
0,e

+
∑

e∈E(T )∩Eh(")

he|
(
∇g − th − ρh

)
× ν|20,e, (5.2)

where Ph is the L2(!)-orthogonal projector onto Ht
h. Note that the above definition requires that

∇g × ν|e ∈ L2(e) for each e ∈ Eh("), which is fixed below by assuming that g ∈ H1(").
The main result of this section is stated as follows.

Theorem 5.1. Let t⃗ ∈ H and t⃗h ∈ Hh be the unique solutions of the continuous and discrete
problems (3.5) and (4.1), respectively, and assume that g ∈ H1("). Then, there exist Crel > 0
and Ceff > 0, independent of h, such that

Ceff + ≤ ∥t⃗ − t⃗h∥ ≤ Cref +. (5.3)

The efficiency of + (lower bound in [5.3]) is proved in Section B, whereas the corresponding
reliability estimate (upper bound in [5.3]) is proved next in Section A.

A. Reliability of the a posteriori Error Estimator

To prove the reliability of our a posteriori error estimator, we follow the strategy proposed orig-
inally in [7], and then used in [5], which is based on a linearization technique that involves the
Gâteaux derivatives of the nonlinear terms of the formulation. More precisely, proceeding simi-
larly as in [5], we begin with the result to be introduced next. However, we notice in advance that
due to the new meaning of the unknown t and the presence of additional terms in the present aug-
mented formulation, two of the resulting bounded functionals, whose norms need to be estimated
later on, do not coincide with those in [5] (see R3 and R4 below).

Lemma 5.2. Let t⃗ ∈ H and t⃗h ∈ Hh be the unique solutions of the continuous and discrete
problems (3.5) and (4.1), respectively. In addition, given ε ∈ (0, ε0), with ε0 defined by (3.18) (cf.
proof of Lemma 3.5), we assume that the data f and g satisfy

cT
{
∥f ∥0,! + ∥g∥0," + ∥g∥1/2,"

}
≤ ε

2
, (5.4)

with cT given at the end of the proof of Lemma 3.5. Then, there exists a constant C > 0, independent
of h, such that

∥t⃗ − t⃗h∥ ≤ C∥R∥,

where

R(s⃗) := R1(s) + R2(τ ) + R3(v) + R4(η) ∀s⃗ := (s, τ , v, η) ∈ H,

and R1(s), R2(τ ), R3(v), R4(η) are defined by

R1(s) :=
∫

!

{
σ d

h − µ(|th|)th + (uh ⊗ uh)
d
}

: s,

R2(τ ) := ⟨τν, g⟩ −
∫

!

uh · div τ −
∫

!

th : τ d − κ2

∫

!

{f + div σ h} · divτ
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−
∫

!

ρh : τ − κ1

∫

!

{
σ d

h − µ(|th|)th + (uh ⊗ uh)
d
}

: τ d ,

R3(v) :=
∫

!

{f + div σ h} · v − κ3

∫

!

{e(uh) − th} : e(v) + κ5

∫

"

{g − uh} · v,

R4(η) := 1
2

∫

!

{
σ h − σ t

h

}
: η − κ4

∫

!

(ρh − {∇uh − e(uh)}) : η. (5.5)

Furthermore, there holds

R(s⃗h) = 0 ∀s⃗h ∈ Hh. (5.6)

Proof. First, we note that the operator A (cf. (3.6)) can be split into linear and nonlinear
terms:

[A(t⃗), s⃗] = [A1(t), s] − κ1[A1(t), τ d] + [A2(t⃗), s⃗],

where

[A1(t), s] :=
∫

!

µ(|t |)t : s,

[A2(t⃗), s⃗] := −
∫

!

σ d : s +
∫

!

τ d : t +
∫

!

u · div τ −
∫

!

v · div σ

+
∫

!

ρ : τ −
∫

!

η : σ + κ1

∫

!

σ d : τ d

+ κ2

∫

!

div σ · div τ + κ3

∫

!

{e(u) − t} : e(v)

+ κ4

∫

!

(ρ − {∇u − e(u)}) : η + κ5

∫

"

u · v.

Next, since µ is of class C1 and satisfies the assumptions (2.3), minor modifications of the proof of
[7, Lemma 5.1] allow to show that the nonlinear operator A1 is Gâteaux differentiable. This means
that for each r ∈ L2

tr (!) there exists a bounded linear operator DA1(r) : L2
tr (!) → L2

tr (!)′ such
that

DA1(r)(t) := lim
ϵ→0

A1(r + ϵt) − A1(r)

ϵ
∀t ∈ L2

tr (!).

Notice that for each r ∈ L2
tr (!), DA1(r) can be considered as a bilinear form satisfying

DA1(r)(t , s) := DA1(r)(t)(s) ∀t , s ∈ L2
tr (!).

In addition, it is easy to prove, using (2.3), that DA1(r) becomes both uniformly bounded and
elliptic with constants Lµ and µ1, respectively, that is

|DA1(r)(t , s)| ≤ Lµ∥t∥0,!∥s∥0,! (5.7)

and

|DA1(r)(s, s)| ≥ µ1∥s∥2
0,!, (5.8)
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for all r , t , s ∈ L2
tr (!) (see, for instance, [7, Lemma 5.1]). Then, given r ∈ L2

tr (!), we introduce
the linear operator

[Ã(t⃗), s⃗] := DA1(r)(t , s) − κ1DA1(r)(t , τ d) + [A2(t⃗), s⃗] ∀t⃗ , s⃗ ∈ H,

so that, using (5.7), (5.8), and the same arguments showing the strong monotonicity of [A(t⃗), (s⃗)],
we deduce the ellipticity of Ã

[Ã(s⃗), s⃗] ≥ α(!)∥s⃗∥2 ∀s⃗ ∈ H. (5.9)

It readily follows that

[(Ã + Bw)(s⃗), s⃗] ≥ α(!)

2
∥s⃗∥2, (5.10)

for all s⃗ ∈ H and for all w ∈ H1(!) such that ∥w∥1,! ≤ ε ∈ (0, ε0), with ε0 defined by (3.18),
which yields the inf-sup condition

α(!)

2
∥r⃗∥ ≤ sup

s⃗∈H
s⃗ ̸=0

[(Ã + Bw)(r⃗), s⃗]
∥s⃗∥ ∀r⃗ ∈ H.

Hence, taking in particular w = u and r⃗ = t⃗ − t⃗h, we deduce from the foregoing inequality that

α(!)

2
∥t⃗ − t⃗h∥ ≤ sup

s⃗∈H
s⃗ ̸=0

[(Ã + Bu)(t⃗ − t⃗h), s⃗]
∥s⃗∥ . (5.11)

Conversely, using the Mean Value Theorem, we can assert that there exists a convex combination
rh of t and th such that

DA1(rh)(t − th, s) = [A1(t), s] − [A1(th), s] ∀s ∈ L2
tr (!), (5.12)

so that using now rh in the definition of Ã, we can write

[Ã(t⃗), s⃗] = DA1(rh)(t , s) − κ1DA1(rh)(t , τ d) + [A2(t⃗), s⃗] ∀t⃗ , s⃗ ∈ H.

The foregoing equality and (5.12) imply that

[(Ã + Bu)(t⃗ − t⃗h), s⃗] = [Ã(t⃗) − Ã(t⃗h), s⃗] + [Bu(t⃗ − t⃗h), s⃗]
= [A(t⃗) − A(t⃗h), s⃗] + [Bu(t⃗ − t⃗h), s⃗]
= [(A + Bu)(t⃗), s⃗] − [(A + Bu)(t⃗h), s⃗]
= [F, s⃗] − [(A + Bu)(t⃗h), s⃗],

and therefore, the inf–sup condition (5.11) becomes

α(!)

2
∥t⃗ − t⃗h∥ ≤ sup

s⃗∈H
s⃗ ̸=0

[(R̃(t⃗ − t⃗h), s⃗]
∥s⃗∥ ,
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where

[R̃(t⃗ − t⃗h), s⃗] := [F, s⃗] − [(A + Buh
)(t⃗h), s⃗] + [Buh−u(t⃗h), s⃗].

Next, using that

|[Buh−u(t⃗h), s⃗]| ≤ ∥ic∥2(κ2
1 + 1)

1/2∥uh − u∥1,!∥t⃗h∥∥s⃗∥,

and having in mind (4.5) and (5.4), we find that

(
α(!)

2
− ε∥ic∥2(κ2

1 + 1)
1/2

2

)

∥t⃗ − t⃗h∥ ≤ sup
s⃗∈H
s⃗ ̸=0

[F, s⃗] − [(A + Buh
)(t⃗h), s⃗]

∥s⃗∥ .

This estimate together with the fact that ε ∈ (0, ε0), with ε0 defined in (3.18), allow us to conclude
that

α(!)

4
∥t⃗ − t⃗h∥ ≤ sup

s⃗∈H
s⃗ ̸=0

[F, s⃗] − [(A + Buh
)(t⃗h), s⃗]

∥s⃗∥ = sup
s⃗∈H
s⃗ ̸=0

R(s⃗)

∥s⃗∥ , (5.13)

with

R(s⃗) := R1(s) + R2(τ ) + R3(v) + R4(η),

where R1, R2, R3, and R4 are defined in (5.5). Finally, the identity (5.6) is a straightforward
consequence of (4.1).

We end this section by remarking that the supremum in (5.13) can be bounded in terms of
Ri , i = 1, . . . , 4 as follows:

α(!)

4
∥t⃗ − t⃗h∥ ≤ {∥R1∥L2

tr (!)′ + ∥R2∥H0(div;!)′ + ∥R3∥H1(!)′ + ∥R4∥L2
skew(!)′}, (5.14)

and thus, the derivation of the upper bound in (5.3) is completed by providing suitable upper
bounds for each one of the terms on the right-hand side of (5.14). To this respect, we first observe
that direct applications of the Cauchy-Schwarz inequality give the corresponding estimates for
the functionals R1, R3, and R4. Finally, the derivation of the upper bound for ∥R2∥H0(div;!)′ makes
use of a stable Helmholtz decomposition for H0(div; !) which has been recently proved for n = 3
in [19, Lemma 4.3] (see also [20, Theorem 3.1]), the Raviart–Thomas interpolation operator (see
[12, 13]), the classical Clément interpolator ([21]), and the local approximation properties of them.
This estimate follows basically from suitable modifications of the proofs of [5, Theorem 3.7] and
[5, Lemmas 3.8 and 3.9]. In this regard, we just comment that within the process of bounding
∥R2∥H0(div;!)′ it also appears the local term h2

T ∥∇uh − th − ρh∥2
0,T , which being dominated by

∥e(uh)−th∥2
0,T +∥ρh −∇uh +e(uh)∥2

0,T , is then omitted from the final definition of +2
T (cf. (5.2)).

Further details on all the reliability estimates can be found in the aforementioned bibliography.
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B. Efficiency of the a posteriori Error Estimator

We now aim to prove the efficiency of +, that is, the lower bound in (5.3). First, we deal with the
zero order terms appearing in the definition of +T , for which we begin with the local estimates
provided by the following lemma.

Lemma 5.3. There hold

∥f + div(σ h)∥0,T ≤ ∥σ − σ h∥div,T ∀T ∈ Th,

∥σ h − σ t
h∥0,T ≤ 2∥σ − σ h∥0,T ∀T ∈ Th,

and there exist positive constants C1, C2, independent of h, such that

∥e(uh) − th∥2
0,T ≤ C1

{
∥u − uh∥2

1,T + ∥t − th∥2
0,T

}
∀T ∈ Th,

and

∥ρh − ∇uh + e(uh)∥2
0,T ≤ C2

{
∥ρ − ρh∥2

0,T + ∥u − uh∥2
1,T

}
∀T ∈ Th.

Proof. These inequalities follow using the relations f = −div(σ ), σ = σ t , e(u) = t , and
ρ = ∇u − e(u), respectively. We omit further details.

We continue with the following nonlocal estimates.

Lemma 5.4. There exists C3, C4 > 0, independent of h, such that there hold

∑

e∈Eh(")

||g − uh∥2
0,e ≤ C3∥u − uh∥2

1,!,

and

∥σ d
h − µ(|th|)th + (uh ⊗ uh)

d∥2
0,! ≤ C4

{
∥σ − σ h∥2

0,! + ∥t − th∥2
0,! + ∥u − uh∥2

1,!

}
.

Proof. The first estimate follows from the fact that g = u on " and the trace inequal-
ity, whereas the second one is a straightforward consequence of the constitutive relation σ d =
µ(|t |)t − (u ⊗ u)d in !, the Lipschitz continuity of the nonlinear operator induced by µ (cf.
(3.10) in Lemma 3.4), a convenient decomposition of u ⊗ u − uh ⊗ uh, and the continuity of the
injection ic : H1(!) → L4(!).

The derivation of the upper bounds of the remaining terms defining the a posteriori error indi-
cator +2

T proceeds similarly to [5], but adapting the results to the 3D case using some recent results
from [19] and applying inverse inequalities and the localization technique based on element-bubble
and edge-bubble functions. In this regard, we remark that the application of the aforementioned
inequalities requires shape-regularity of the meshes. Nevertheless, the corresponding efficiency
estimates should be easily extensible to more general triangulations by using, for instance, the
results from [22] (where inverse inequalities for piecewise constant and continuous piecewise
linear finite elements on locally refined shape-regular meshes were provided).

The announced estimates are summarized in the following three lemmas.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



MIXED FEM FOR STEADY STATE NAVIER-STOKES 1717

Lemma 5.5. There exist positive constants C5, C6, independent of h, such that

a) h2
T ∥curl(th + ρh)∥2

0,T ≤ C5
{
∥t − th∥2

0,T + ∥ρ − ρh∥2
0,T

}
∀T ∈ Th,

b) he|[[(th + ρh) × ν]]|20,e ≤ C6
{
∥t − th∥2

0,ωe
+ ∥ρ − ρh∥2

0,ωe

}
∀e ∈ Eh(!),

where ωe := ∪{T ′ ∈ Th : e ∈ E(T ′)}.

Proof. We refer to [19, Lemmas 4.9 and 4.10] for the proofs of a) and b).

Lemma 5.6. Assume that g is piecewise polynomial. Then, there exists C7 > 0, independent of
h, such that

he|
(
∇g − th − ρh

)
× ν|20,e ≤ C7

{
∥t − th∥2

0,Te
+ ∥ρ − ρh∥2

0,Te

}
∀e ∈ Eh("),

where Te is the tetrahedron of Th having e as a face.

Proof. It follows from a slight modification of the proof of [19, Lemma 4.13].

Lemma 5.7. There exists C8 > 0, independent of h, such that

∥f − Ph(f )∥0,T ≤ C8∥σ − σ h∥div,T ∀T ∈ Th.

Proof. It suffices to see that ∥f − Ph(f )∥2
0,T = ∥Ph(div σ ) − div σ∥2

0,T , add and subtract
Ph(div σ h), and then apply continuity of the operator Ph.

We close this section by remarking that the required efficiency of the a posteriori error estimator
+ follows straightforwardly from Lemmas 5.3–5.7. In addition, we highlight that, on the contrary
to [5], where the presentation concentrated in providing first the details of the 2D case and then a
brief summary of the respective analysis for the 3D one, here we have privileged the discussion
of the latter mainly because it involves the utilization of a recently established 3D Helmholtz
decomposition. Moreover, the three-dimensional case is even more interesting from the applica-
bility point of view, which is also taken into account below in the choice of our numerical results
(cf. Section VI). In turn, some aspects of the 2D version of our a posteriori error analysis are
provided next.

C. Two-Dimensional Case

In what follows we briefly discuss the a posteriori error estimator in the two-dimensional case.
We start by introducing some notations. For each T ∈ Th we let E(T ) be the set of edges of T and
we denote by Eh the set of all edges of Th, subdivided as in the three-dimensional case:

Eh = Eh(!) ∪ Eh("),

where Eh(!) := {e ∈ Eh : e ⊆ !} and Eh(") := {e ∈ Eh : e ⊆ "}. In what follows, he stands for
the length of a given edge e ∈ Eh. Now, let v ∈ L2(!) such that v|T ∈ C(T ) for each T ∈ Th. Then,
given e ∈ Eh(!), we denote by [[v]] the jump of v across e, that is [[v]] := (v|T ′)|e − (v|T ′′)|e,
where T ′ and T ′′ are the triangles of Th having e as an edge. Also, we fix a unit normal vector
νe := (n1, n2)

t to the edge e (its particular orientation is not relevant) and let se := (−n2, n1)
t be

the corresponding fixed unit tangential vector along e. Hence, given v ∈ L2(!) and v ∈ L2(!)
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such that v|T ∈ C(T ) and τ |T ∈ C(T ), respectively, for each T ∈ Th, we let [[v · se]] and [[τ se]]
be the tangential jumps of v and τ , across e, that is [[v · se]] := {(v|T ′)|e − (v|T ′′)|e} · se and
[[τ se]] := {(τ |T ′)|e − (τ |T ′′)|e} se, respectively. From now on, when no confusion arises, we will
simply write s and ν instead of se and νe, respectively. Finally, for sufficiently smooth tensor
fields τ := (τij )2×2, we let

curlτ :=

⎛

⎜⎝

∂τ12

∂x1
− ∂τ11

∂x2
∂τ22

∂x1
− ∂τ21

∂x2

⎞

⎟⎠ .

Now, let t⃗ := (t , σ , u, ρ) ∈ H and t⃗h := (th, σ h, uh, ρh) ∈ Hh be the unique solutions of the
continuous and discrete problems (3.5) and (4.1), respectively. Then, we introduce the global a
posteriori error estimator

+̂ :=

⎧
⎨

⎩
∑

T ∈Th

+̂2
T

⎫
⎬

⎭

1/2

, (5.15)

where for each T ∈ Th:

+̂2
T := h2

T ∥curl(th + ρh)∥2
0,T + ∥σ d

h − µ(|th|)th + (uh ⊗ uh)
d∥2

0,T

+ ∥σ h − σ t
h∥2

0,T + ∥f − Ph(f )∥2
0,T + ∥f + div(σ h)∥2

0,T

+ ∥e(uh) − th∥2
0,T + ∥ρh − ∇uh + e(uh)∥2

0,T

+
∑

e∈E(T )∩Eh(!)

he|[[(th + ρh)s]]|20,e +
∑

e∈E(T )∩Eh(")

∥g − uh∥2
0,e + he

∣∣∣∣
dg

ds
− (th + ρh)s

∣∣∣∣
2

0,e

.

The reliability of +̂ can be proved similarly as in the three-dimensional case, that is, using a
global inf-sup condition for a linearization of the problem, Helmholtz’s decomposition and local
approximation properties of interpolation operators. Indeed, if we compare the definitions of +

(cf. (5.1)) and +̂ we observe that most of the terms are exactly the same in both cases. In turn, to
prove the efficiency of +̂ it suffices to control the new terms, which is the purpose of the following
two lemmas.

Lemma 5.8. There exist positive constants C1, C2, independent of h, such that

a) h2
T ∥curl(th + ρh)∥2

0,T ≤ C1{∥t − th∥2
0,T + ∥ρ − ρh∥2

0,T } ∀T ∈ Th,
b) he|[[(th + ρh)s]]|20,e ≤ C2{∥t − th∥2

0,ωe
+ ∥ρ − ρh∥2

0,ωe
} ∀e ∈ Eh(!),

where ωe := ∪{T ′ ∈ Th : e ∈ E(T ′)}.
Proof. For a) we refer to [23, Lemma 4.3] (see also [5, Lemma 3.15] or [24, Lemma 4.9]).

Similarly, for b) we refer to [23, Lemma 4.4] (see also [5, Lemma 3.15] or [24, Lemma 4.10]).

Lemma 5.9. Assume that g is piecewise polynomial. Then, there exists C3 > 0, independent of
h, such that

he

∣∣∣∣
dg

ds
− (th + ρh)s

∣∣∣∣
2

0,e

≤ C3
{
∥t − th∥2

0,Te
+ ∥ρ − ρh∥2

0,Te

}
∀e ∈ Eh("),

where Te is the triangle of Th having e as an edge.
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Proof. The proof follows from a slight modification of the proof of [24, Lemma 4.15].

Therefore, the main result in the 2D case is stated as follows.

Theorem 5.10. Let t⃗ ∈ H and t⃗h ∈ Hh be the unique solutions of the continuous and discrete
problems (3.5) and (4.1), respectively, and assume that g ∈ H1("). Then, there exist Ĉrel > 0
and Ĉeff > 0, independent of h, such that

Ĉeff +̂ ≤ ∥t⃗ − t⃗h∥ ≤ Ĉref +̂.

VI. NUMERICAL RESULTS

Test 1. Our first example serves to illustrate the accuracy of the mixed finite element method
(as predicted by Theorem 4.4), and also to assess the practical performance of the method in a
3D computation. We construct the following analytical solution to (2.1) and (2.6)

u =

⎛

⎝
sin(πx1) cos(πx2) cos(πx3)

−2 cos(πx1) sin(πx2) cos(πx3)

cos(πx1) cos(πx2) sin(πx3)

⎞

⎠ , t = e(u), ρ = ∇u − e(u),

p = x3
1 − x3

2 − x3
3 , σ = µ(|t |)e(u) − (u ⊗ u) − pI,

defined on the box ! = (0, 1)×(0, 1)×(−1, 1), and where the viscosity is specified by (2.4) with
α0 = 2 and α1 = β = 1. The manufactured velocity is divergence free and it is used to apply the
Dirichlet datum on ". It also satisfies the boundary compatibility condition

∫
"
u·ν = 0. Moreover,

the proposed pressure has zero mean value in !, implying that the last equation in (2.6) is fulfilled.
The stabilization constants are chosen according to (3.19), leading to κ1 = κ2 = 0.0555, κ3 = 1,
κ5 = 0.5, and as κ4 depends on the (unknown) Korn constant, we simply take κ4 = κ5. An experi-
mental convergence analysis is performed, focusing on the lowest-order scheme (with k = 0). Six
steps of uniform mesh refinement were applied to an initial structured tetrahedral mesh, and on
each nested mesh we denote computed errors and convergence rates as

e(t) = ∥t − th∥0,!, e(σ ) = ∥σ − σ h∥0,div, e(u) = ∥u − uh∥1,!,

e(ρ) = ∥ρ − ρh∥0,!, r(·) = −2 log(e(·)/ê(·))[log(N/N̂)]−1
,

where e, ê stand for errors generated by methods on meshes having N , N̂ degrees of freedom,
respectively. These errors are tabulated by number of degrees of freedom and meshsize in Table
I. Each individual error exhibits a clear O(h) rate of convergence, as expected from the a priori
error estimates stated in Theorem 4.4. The values collected in the last column of the table confirm
that a maximum of six Picard iterations are required to achieve a prescribed tolerance of 1E-6. All
linear systems arising after fixed point linearization are solved with the unsymmetric multifrontal
direct solver for sparse matrices UMFPACK. Computed solutions are shown in Fig. 1.

Test 2. Our next example assesses the accuracy of the proposed scheme along with the proper-
ties of the adaptive error estimator (5.15) (specialized for the 2D case). The domain is conformed
by a rectangle (0, 1.5)× (0, 1) with a pear-shaped hole inside. The viscosity is also given by (2.4)
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TABLE I. Test 1. Experimental convergence and fixed point iteration count for the approximation of the
Navier-Stokes equations with nonlinear viscosity.

D.o.f. h e(t) r(t) e(σ ) r(σ ) e(u) r(u) e(ρ) r(ρ) iter

270 1.4142 4.2007 – 42.5310 – 8.1726 – 2.3254 – 6
1887 0.7071 2.6383 0.6710 24.4819 0.7967 5.4160 0.5935 1.8920 0.2975 5
14211 0.3535 1.4840 0.8300 13.9391 0.8125 3.1370 0.7878 1.1008 0.7813 6
74322 0.2020 0.8804 0.9330 8.1546 0.9580 1.8845 0.9106 0.6505 0.9398 6
285090 0.1285 0.5683 0.9682 5.2564 0.9715 1.2177 0.9660 0.4143 0.9983 5
871875 0.0883 0.3930 0.9845 3.6869 0.9465 0.8416 0.9859 0.2843 1.0046 6
2741364 0.0524 0.2472 0.9937 2.2198 0.9687 0.5129 0.9803 0.1822 1.0175 6

FIG. 1. Test 1. Iso-surfaces of Euclidean norm of the approximate strain tensor (top left), Euclidean norm
of the Cauchy stress (top middle), postprocessed pressure (top right), approximate velocity components and
computed streamlines (center row), and vorticity components (bottom row). [Color figure can be viewed at
wileyonlinelibrary.com]

with α0 = 1, α1 = 0.1, and β = 1, and the forcing and boundary terms f , g are chosen such that
the exact solution to (2.6) is given by

u =
(

1 − exp(λx1) cos(2πx2)
λ

2π
exp(λx1) sin(2πx2)

)

, t = e(u), ρ = ∇u − e(u),

p = 1 − exp(2λx1)

2(x1 − a)2 + 2(x2 − b)2 , σ = µ(|t |)e(u) − (u ⊗ u) − pI,
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FIG. 2. Test 2. Individual error history vs. the number of degrees of freedom. Errors for strain and stress
(left), velocity and vorticity (middle), and Picard iteration count with effectivity indexes (right) for two runs
using uniform and adaptive mesh refinement according to the a posteriori error estimator (5.15). [Color
figure can be viewed at wileyonlinelibrary.com]

FIG. 3. Test 2. Initial and intermediate triangulations obtained after a few steps of mesh adaptation
according to the a posteriori error estimator (5.15). [Color figure can be viewed at wileyonlinelibrary.com]

with the parameter λ = 0.5 −
√

0.25 + 4π 2, and (a, b) = (3/4, 1/2) is a point located within
the hole in the domain, and close to the interior of !. The stabilization parameters take the
values κ1 = κ2 = 0.6944, κ3 = 0.5, κ4 = κ5 = 0.25. Due to the singularity of the pressure
(and therefore the Cauchy stress) at (a, b) we expect suboptimal convergence of the method
under uniform mesh refinement, and so we apply an adaptive algorithm. The nonlinear sys-
tem is linearized with a fixed-point strategy (stopped when the L2− norm of the total residual
attains the tolerance 1E-6), and in this case the subsequent linear systems were solved with the
direct solver MUMPS. After computing locally, the estimator using (5.15), we proceed to tag
elements for refinement using the Dörfler strategy, which consists in marking sufficiently many
elements so that they represent a given fraction of the total estimated error (cf. [25]). A remeshing
method is then applied, targeting the equidistribution of the local error indicators in the updated
mesh.

In Fig. 2, we report on the convergence history of the method (in its lowest-order config-
uration) following both a uniform refinement, and successive mesh adaptation according to the
algorithm described above. First, we notice a slightly larger Picard iteration count for this example
(in comparison with the results in Table I). Second, we also observe a loss of optimality in the
convergence rates under uniform mesh refinement, especially for the vorticity. In addition, the
effectivity index (computed as eff (θ̂) := e/θ̂ , where e denotes the total error) oscillates around
0.7 in the case of uniform refinement. This is remediated by the adaptive algorithm, which restores
optimal convergence rates for all fields and a much more steady effectivity index. One can also
notice that the method using adaptive mesh refinement outperforms the uniformly refined scheme
by almost two orders of magnitude (in the sense of needed degrees of freedom to attain a given
error). The initial coarse mesh, together with triangulations obtained after two and four adaptive
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FIG. 4. Test 2. Numerical solutions computed on an adaptively refined mesh. Strain norm, Cauchy
stress norm, postprocessed pressure, velocity components, and vorticity. [Color figure can be viewed at
wileyonlinelibrary.com]

steps are displayed in Fig. 3. We observe meshes heavily refined in the neighbourhood of (a, b)
and near to the left wall. Finally, we present the computed numerical solutions in Fig. 4, exhibiting
well-resolved profiles for all fields.

Test 3. The third example focuses on the driven cavity flow problem in the unit cube. The exter-
nal body force is zero, and the three-dimensional flow patterns are determined by the boundary
conditions only: an unidirectional Dirichlet velocity is set on the top lid u = g = (1, 0, 0)T ,
and no-slip velocities u = 0 are imposed elsewhere on ". The viscosity is again taken as the
Carreau law (2.4) with α0 = 0.005, α1 = 0.01 and β = 1. An initially coarse tetrahedral mesh
of 1058 elements and 332 vertices was generated, and the proposed numerical scheme was used
to solve the model problem, now via Newton linearization steps (with a fixed tolerance of 1E-8
on the residuals). After this first initial solve, we use an adaptive mesh refinement algorithm
marking elements for refinement according to the locally computable error indicator (5.1), re-
generating the mesh, and then solving again the discrete nonlinear problem until reaching the
convergence of the Newton iterations. For this example, the linear systems were solved with
a BiCGStab method with left Schur complement preconditioning. Five steps of adaptive mesh
refinement were applied (with a maximum Newton iteration count of 6), and the approximate
solutions computed on a mesh with 13685 elements are portrayed in Fig. 5. We observe smooth
vorticity and strain profiles, and from the velocity streamlines we can evidence the formation of
the typical asymmetric vortex parallel to the x1 − x3 plane. In Fig. 6, we present examples of
three adapted meshes resulting from adaptive refinement guided by the a posteriori error estimator
(5.1), after one, three, and five adaptive steps. An agglomeration of tetrahedra is observed near
the top corners of the domain, where the Dirichlet datum is discontinuous, and where the stress is
concentrated.
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FIG. 5. Test 3. Numerically computed mixing patterns for the cavity flow benchmark. Results obtained with
the lowest-order method. Strain norm, Cauchy stress norm, vorticity magnitude, and velocity streamlines.
[Color figure can be viewed at wileyonlinelibrary.com]

FIG. 6. Test 3. Clip of three intermediate tetrahedral meshes, refined adaptively according to the a posteriori
error estimator (5.1). [Color figure can be viewed at wileyonlinelibrary.com]
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