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NEW MIXED FINITE ELEMENT METHODS FOR THE COUPLED STOKES
AND POISSON-NERNST-PLANCK EQUATIONS IN BANACH SPACES

CLAUDIO I. CORREA', GABRIEL N. GATICA" AND RICARDO RUIZ-BAIER?3*

Abstract. In this paper we employ a Banach spaces-based framework to introduce and analyze new
mixed finite element methods for the numerical solution of the coupled Stokes and Poisson—Nernst—
Planck equations, which is a nonlinear model describing the dynamics of electrically charged incom-
pressible fluids. The pressure of the fluid is eliminated from the system (though computed afterwards
via a postprocessing formula) thanks to the incompressibility condition and the incorporation of the
fluid pseudostress as an auxiliary unknown. In turn, besides the electrostatic potential and the concen-
tration of ionized particles, we use the electric field (rescaled gradient of the potential) and total ionic
fluxes as new unknowns. The resulting fully mixed variational formulation in Banach spaces can be
written as a coupled system consisting of two saddle-point problems, each one with nonlinear source
terms depending on the remaining unknowns, and a perturbed saddle-point problem with linear source
terms, which is in turn additionally perturbed by a bilinear form. The well-posedness of the continuous
formulation is a consequence of a fixed-point strategy in combination with the Banach theorem, the
Babuska—Brezzi theory, the solvability of abstract perturbed saddle-point problems, and the Banach—
Necas—-Babuska theorem. For this we also employ smallness assumptions on the data. An analogous
approach, but using now both the Brouwer and Banach theorems, and invoking suitable stability con-
ditions on arbitrary finite element subspaces, is employed to conclude the existence and uniqueness
of solution for the associated Galerkin scheme. A priori error estimates are derived, and examples
of discrete spaces that fit the theory, include, e.g., Raviart—-Thomas elements of order k along with
piecewise polynomials of degree < k. In addition, the latter yield approximate local conservation of
momentum for all three equations involved. Finally, rates of convergence are specified and several nu-
merical experiments confirm the theoretical error bounds. These tests also illustrate the aforementioned
balance-preserving properties and the applicability of the proposed family of methods.
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1. INTRODUCTION

Fluid mixtures with electrically charged ions are critical for many industrial processes and natural phenomena.
Notable examples of current interest are efficient energy storage and electrodialysis cells, design of nanopore
sensors, electro-osmotic water purification techniques, and even drug delivery in biological tissues [40]. One of
the most well-known models for liquid electrolytes is the Poisson—Nernst—Planck/Stokes system. It describes the
isothermal dynamics of the molar concentration of a number of charged species within a solvent. This classical
model is valid for the regime of relatively small Reynolds numbers and it is written in terms of the concentrations,
the barycentric velocity of the mixture, the pressure of the mixture, and the electrostatic potential. The system
is strongly coupled and the set of equations consist of the transport equations for each dilute component of
the electrolyte, a diffusion equation for the electrostatic equilibrium, the momentum balance for the mixture
(including a force exerted by the electric field), and mass conservation.

Solving these systems lends itself difficult due to coupling nonlinearities of different nature. Numerical meth-
ods for incompressible flow equations coupled with Poisson—Nernst—Planck equations that are based on finite
element schemes in primal formulation (also including stabilized and goal-adaptive methods) can be found in
[3, 20, 32, 35, 37, 39], finite differences in e.g., [34], finite volume schemes in [38], spectral elements in [36], and
also for virtual element methods in [17]. Regarding formulations using mixed methods, the first works address-
ing Stokes/PNP systems are relatively recent [27,28], where a stabilized mixed method is employed for the Poisson
problem, whereas the usual primal approach is applied to the Stokes, Navier—Stokes and Nernst—Planck equations,
and all them within a Hilbertian framework. Mixed variational formulations are particularly interesting when direct
discrete approximations of further variables of physical relevance are required. A recent approach to mixed methods
consists in defining the corresponding variational settings in terms of Banach spaces instead of the usual Hilbertian
framework, and without augmentation. As a consequence, the unknowns belong now to the natural spaces that are
originated after carrying out the respective testing and integration by parts procedures, simpler and closer to the
original physical model formulations arise, momentum conservative schemes can be obtained, and even other un-
knowns can be computed by postprocessing formulae. As a non-exhaustive list of contributions taking advantage of
the use of Banach frameworks for solving the aforementioned kind of problems, we refer to [4,8-11,13,14,24,26,29],
and among the different models considered there, we find Poisson, Brinkman—Forchheimer, Darcy—Forchheimer,
Navier—Stokes, chemotaxis/Navier—Stokes, Boussinesq, coupled flow-transport, and fluidized beds. Nevertheless,
and up to our knowledge, no mixed methods with the described advantages seem to have been developed so far for
the coupled Stokes and Poisson—Nernst—Planck equations.

As motivated by the previous discussion, the goal of this paper is to develop a Banach spaces-based formulation
yielding new mixed finite element methods for, precisely, the coupled Stokes and Poisson—Nernst—Planck equations.
The main novelties with respect to [27, 28] refer to the use of mixed methods for each one of the equations involved,
the setting of the resulting variational formulation within a Banach framework, and the no need of incorporating
any additional stabilization term. The rest of the manuscript is organized as follows. Required notations and basic
definitions are collected at the end of this introductory section. In Section 2 we describe the model of interest and
introduce the additional variables to be employed. The mixed variational formulation is deduced in Section 3. After
some preliminaries, the respective analysis is split according to the three equations forming the whole system. In
particular, the right spaces to which the trial and test functions must belong are derived in each case by applying
suitable integration by parts formulae jointly with the Cauchy—Schwarz and Holder inequalities. In Section 4 we uti-
lize a fixed-point approach to study the solvability of the continuous formulation. The Babuska—Brezzi theory and
recent results on perturbed saddle-point problems, both in Banach spaces, along with the Banach—Necas-Babuska
theorem, are utilized to prove that the corresponding uncoupled problems are well-posed. The classical Banach
fixed-point theorem is then applied to conclude the existence of a unique solution. In Section 5 we proceed analo-
gously to Section 4 and, under suitable stability assumptions on the discrete spaces employed, show existence and
then uniqueness of solution for the Galerkin scheme by applying the Brouwer and Banach theorems, respectively. A
priori error estimates are also derived here. Next, in Section 6 we define explicit finite element subspaces satisfying



NEW MIXED FINITE ELEMENT METHODS FOR THE COUPLED STOKES/PNP EQUATIONS IN BANACH SPACES 1513

those conditions, and provide the associated rates of convergence. Finally, several numerical examples confirming
the latter, showing the good performance of the method, and illustrating the approximate local conservation of
momentum, are reported in Section 7.

Preliminary notations

Throughout the paper, €2 is a bounded Lipschitz-continuous domain of R™, n € {2, 3}, which is star shaped with
respect to a ball, and whose outward normal at T' := 0€2 is denoted by v. Standard notation will be adopted for
Lebesgue spaces Lf(£2) and Sobolev spaces Wt (£2) and Wé’t(Q), with ! > 0 and ¢ € [1, +00), whose corresponding
norms, either for the scalar and vectorial case, are denoted by | - [o.+.0 and |- |1 4.0, respectively. Note that W (Q) =
LY(2), and ift = 2 we write H!(Q2) instead of W'2(Q), with the corresponding norm and seminorm denoted by | -||;.o
and | - |;,q, respectively. In addition, letting ¢, ¢’ € (1, +00) conjugate to each other, that is such that 1/t + 1/t = 1,
we denote by W1/*t(T') the trace space of W1*(Q), and let W~/*>*(T') be the dual of W'/**(T") endowed with the
norms |- | _q /¢ ;0 and | - |1 ¢ ¢, respectively. On the other hand, given any generic scalar functional space M, we let
M and M be the corresponding vectorial and tensorial counterparts, whereas | - | will be employed for the norm of any
element or operator whenever there is no confusion about the spaces to which they belong. Furthermore, as usual,
I stands for the identity tensor in R := R™*™ and | - | denotes the Euclidean norm in R™. Also, for any vector field

v = (v;)i=1,n, We set the gradient and divergence operators, respectively, as Vv := (g;” ) and div(v) :=
i)ij=1,n

23;1 g% Additionally, for any tensor fields 7 = (74;)i j=1,n and ¢ = ((ij)i,j=1,n, we let div(7) be the divergence
J

operator div acting along the rows of 7, and define the transpose, the trace, the tensor inner product operators, and

the deviatoric tensor, respectively, as

n

n
1
’7't = (Tji)i,jzl,na tI‘(T) = Z Tiis T C = Z TijCij; and Td =T — Etr('r)]l
i=1 i,j=1

2. THE MODEL PROBLEM

We consider the nonlinear system given by the coupled Stokes and Poisson—Nernst—Planck equations, which
constitute an electrohydrodinamic model describing the stationary flow of a Newtonian and incompressible fluid
occupying the domain 2 € R", n € {2, 3}, with polygonal (resp. polyhedral) boundary I' in R? (resp. R?). Under
the assumption of isothermal properties, equal molar volumes and molar masses for each species, the behavior
of the system is determined by the concentrations £ and & of ionized particles, and by the electric current
field . Mathematically speaking, and firstly regarding the fluid, we look for the barycentric velocity u and the
pressure p of the mixture, such that (u,p) is solution to the Stokes equations

—pAu+Vp=—(& — &)l +f in Q
diviu)=0 in Q, u=g on T, fp:O, (1)
Q

where p > 0 is the constant viscosity, € is the heterogeneous dielectric coefficient, also known as the electric
conductivity coefficient, f is a source term, g is the Dirichlet datum for u on I', and the null mean value
of p has been incorporated as a uniqueness condition for this unknown. In addition, ¢, & and & solve the
Poisson—Nernst—Planck equations, which depend on the velocity u and are given by

e=cVy i Q —div(p)=(&-&)+f in O
x=g on T, (2)
where x is the electrostatic potential, and for each i € {1, 2}
& —div(ki (V& + qige o) —&u) = f; in €,
&=g9i on I (3)
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F1Gure 1. Ilustrative graph of the coupling mechanisms connecting the three sub-problems

(1)-3).

where 1 and ko are the diffusion coefficients, ¢; := { 1_1 gz Z ; , [, f1, and fy are external source/sink terms,
and g, g1 and go are Dirichlet data for x, £ and &, respectively, on T'. The systems (2) and (3) correspond to
the Poisson and Nernst—Planck equations, respectively. We end the description of the model by remarking that
€, K1, and ko are all assumed to be bounded above and below, which means that there exist positive constants
€0, €1, K, and K, such that

g0 <e(x)<e; and k< ki(x) <K for almost all xe Q, Vie {l,2}. (4)

We stress that in order to solve (3), u and ¢ are needed. In turn, (1) requires &1, & and ¢, whereas (2)
makes use of &1 and &;. This multiple coupling is illustrated through the graph provided in Figure 1, where the
vertexes represent the aforementioned equations and the arrows, properly labeled with the unknowns involved,
show the respective dependence relationships.

Furthermore, since we are interested in employing a fully mixed variational formulation for the coupled model
(1)—(3), we introduce the auxiliary variables of pseudostress

o:=pVu—pl in Q, (5)
and, for each i € {1,2}, the total (diffusive, cross-diffusive, and advective) ionic fluxes
o =K, (V& + qiﬁis’lcp) —&u in Q. (6)
Thus, applying the matrix trace in (5) and using the incompressibility condition, we deduce that
1
p=——tr(o), (7)

n
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so that, incorporating the latter expression into (5), p is eliminated from the system (1)—(3), which can then be
rewritten in terms of the unknowns o, u, ¢, x, o; and &, i € {1,2}, as

1
;O’d =Vu in Q, div(e)= (& -&)elp—f in Q,
u=g on T, f tr(o) =0,

Q
1 . . .
gcp =Vx in Q, —div(p)=(& —&)+f in Q
x=g9g on I,

1 _ _ .
—0; = V& +qlie o -k Lu in Q,

(2

& —diviey)=f; in Q &=g on T, ie{l,2}. (8)

We notice here that the uniqueness condition for p has been rewritten equivalently as the null mean value
constraint for tr(o).

3. THE FULLY MIXED FORMULATION

In this section we derive a suitable Banach spaces-based variational formulation for (8) by splitting the analysis
in four sections. The first one collects some preliminary discussions and known results, and the remaining three
deal with each one of the pairs of equations forming the whole nonlinear coupled system (8), namely Stokes,
Poisson, and Nernst—Planck.

3.1. Preliminaries

We begin by noticing that there are three key expressions in (8) that need to be looked at carefully before
determining the right spaces where the unknowns must be sought, namely (£; — &) e 1o, ¢;&e 1 and Iii_l&u
in the first and fifth rows of (8). More precisely, ignoring the bounded above and below functions e~ and &; 1 as
well as the constant g;, and given test functions v and 7; associated with u and o;, respectively, straightforward
applications of the Cauchy—Schwarz and Hoélder inequalities yield

JQ@ — &) - v| < &1 — Elosnaleloasal Voo (9a)
U &ip - Til < |&illo2eallello2ialTilo.q, (9b)
Q
and similarly
[ suen| < eloaoluloasalmloo, (%)

where ¢, j € (1,+0) are conjugate to each other. In this way, denoting

20

0
71 (conjugate of p), r:=2j, and s:= 4 (conjugate of 1), (10)

p:=20 po:= 57— 1
it follows that the above expressions make sense for &; € LP(Q), ¢, u € L"(Q), and v, 7; € L2(2). The specific
choice of ¢, and hence of j, p, r and the respective conjugates o and s, will be addressed later on, so that
meanwhile we consider generic values for the indexes defined in (10).

Having set the above preliminary choice for the space to which ¢ belongs, we deduce from the first equation
in the third row of (8) that x should be initially sought in W (Q). In turn, using that H(Q) is embedded in
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LY(Q) for t € [1,400) in R? (resp. t € [1,6] in R?), and for reasons that will become clear below, the unknowns
&, i € {1,2}, and u are initially sought in H'(2) and H'(Q), respectively, certainly assuming that p and r
verify the indicated ranges, namely p, 7 € (2, +00) in R?, and p, r € (2,6] in R3. Note that in terms of ¢ the
latter constraint becomes ¢ € [2,3], which yields p € [3,6]. Equivalently, j € [2,3] and r € [3,6], though going
through the respective intervals in the opposite direction to ¢ and p, respectively.

In turn, in order to derive the variational formulation of (8), we need to invoke a couple of integration by
parts formulae, for which, given ¢ € (1, 4+00), we first introduce the Banach spaces

H(divy; Q) :== {T e L*(Q) : div(7) e L'(Q)}, (11a)
H(div; Q) := {‘r elL?(Q): div(r) e LY(Q) }, (11b)
H'(div;; Q) := {7 e L'(Q) : div(7) € L'(Q)}, (11c)

which are endowed with the natural norms defined, respectively, by

7 dive:0 i= iv(T) V7 € H(divy; ), (12a)
[7lldive:e == | iv(T) V1 € H(divy; ), (12b)
0.6:0 + [div(T)]o.s:0 V7 e H' (divy; Q). (12¢)

Then, proceeding as in equation (1.43), Section 1 3.4 from [22] (see also [7], Sect. 4.1 and [14], Sect. 3.1), it is

easy to show that for each ¢ € { [é}S—TOOg) gz there holds
(t-v,v)= f {r- Vv + vdiv(T)} Y(1,v) e H(div; Q) x HY(Q), (13)
Q
and analogously
{(tv,v) = J {T:Vv+v.-div(r)} V(7,v) € H(div,; Q) x HY(Q), (14)
Q

where (-,-) stands for the duality pairing between H~'/2(T') and H'/?(T'), as well as between H~'/2(I") and
H'/2(I"). Furthermore, given t, ¢’ € (1, +00) conjugate to each other, there also holds (cf. [19], Cor. B. 57)

(Tt v,v)r = JQ{T Vo +vdiv(T)} V(T,v) € H' (divy; Q) x Wl’t/(Q)7 (15)

where (-, ->r stands for the duality pairing between W~Y44(I") and W/t (T).

3.2. The Stokes equations

Let us first notice that, applying (14) with ¢t = s to 7 € H(divy; ) and u € H!(Q), and using the Dirichlet
boundary condition on u, for which we assume from now on that g € H'/?(Q), we obtain

LT:VHZ _fﬂu-div(7)+<‘l'1/7g>,

and thus, the testing of the first equation in the first row of (8) against 7 yields

1
= J oA J u-div(t) = {(Tv,g). (16)
B Ja Q

Note from the second term on the left-hand side of (16) that, knowing that div(7) € L*(Q), it actually suffices
to look for u in L"(€2), which is coherent with a previous discussion on the space to which this unknown should
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belong. In addition, testing the second equation in the first row of (8) against v € L"(£2), for which we require
that £ € L*(Q), we get

| vedivieo) = [ @ -eete v | 1o, (17)

which makes sense for div(o) € L*(€2). Hence, due to the last equation in the second row of (8), it follows that
we should look for o in Hy(div,; ), where

Ho (div,; Q) = {T e H(div,; Q) : L tr(r) = 0}.

Moreover, it is easily seen that there holds the decomposition
H(divs; Q) = Hy(divs; Q) @ RI, (18)

and that the incompressibility of the fluid forces the compatibility condition on g given by

J-g-uz().
r

As a consequence of the above, we realize that imposing (16) for each 7 € H(div; Q) is equivalent to doing it
for each T € Ho(divy; Q). Furthermore, since r > 2 it follows that L"(£2) is embedded in L?(f2), which, along
with the estimate (9a), confirms that the first term on the right-hand side of (17) is also well-defined. In this
way, denoting from now on £ := (£1,&2), and joining (16) and (17), we arrive at the following mixed variational
formulation for the Stokes equations (given by the first two rows of (8)): Find (o, u) € H x Q such that

a(o,7) +b(T,u) =F(1) V7 e H,
b(o,v) = G¢ (V) Vv eQ, (19)
where
H := Hy(divs; Q), Q :=L"(Q), (20)

and the bilinear forms a: Hx H — Rand b : H x Q — R, and the functional F : H — R, are defined,
respectively, as

a(¢,7) = %JQ ¢t e V¢, T e H, (21a)
b(r,v) := JQ v - div(T) V(r,v) e Hx Q, (21b)
F(r):={(tv,g) V7 e H, (21c)

whereas, given 1 := (n1,172) € L?(Q) and ¢ € L"(f2), the functional G, 4 : Q — R is set as

Gro(v) = L(m —m)e gV — Lf v WweQ (21d)

Tt is readily seen that, endowing H with the corresponding norm from (12b), that is

Il = |7laiv..e V7 eH, (22)

and recalling that | - o0 is that of Q, the bilinear forms a and b, and the linear functionals F and G, 4, are
all bounded. Indeed, applying the Cauchy—Schwarz and Holder inequalities, noting that |79 < ||7o,o for all
T € H, invoking the identity (14) along with the continuous injection i, : H*(Q2) — L"(Q), using (9a) together
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with the fact that | - 0.0 < |2|"2/2" | - |o-0, and bounding e~ according to (4), we deduce the existence of
positive constants, denoted and given as

1 .
lall = o Ibl=1, [F]:= (14 [ ) lghyar
and |G| := max{=5" 0722, 1}, (23)
such that
[a(¢. 7| < [lal ¢l 7 v¢, T e H,
b(r,v)| < ] I [vlq ¥(r,v) e Hx Q,
F(r)| < [F||7]u vreH, and
(G o (V)| < |G = n2lo,pic | Blora + [Elosal IVia  ¥veqQ. (24)

We end this section by emphasizing, according to the previous discussion, that the introduction of the
pseudostress o as an auxiliary unknown leads to the derivation of simple postprocessing formulae for the
pressure p (c¢f. (7)) and the velocity gradient Vu (cf. first equation in the first row of (8)). In addition, it allows
us to seek the velocity u in a Lebesgue space, which is certainly less regular, whence the corresponding finite
element subspace, not requiring any continuity property, can be chosen cheaper and easier to implement.

3.3. The electrostatic potential equations

We begin the derivation of the mixed formulation for the Poisson equation by testing the first equation in the
third row of (8) against ¥ € H*(divs;2). In this way, applying (15) with ¢ = s and ¢’ = r to the given 1 and
x € WLT(€), and employing the Dirichlet boundary condition on ¥, for which we assume that g € Wl/s”“(f‘),
we get

L§w¢+mewwwwmwn (25)

In turn, testing the second equation in the third row of (8) against A € L*(Q2), which requires to assume that

f e L"(), we obtain
J Adiv(g) = —f ME—6) —f Y (26)
Q Q Q

which certainly makes sense for div(y) € L"(€2). Thus, recalling from (9a) and (9b) that ¢ must belong to
L"(Q), it follows from the above that this unknown should be sought then in H"(div,; Q). Furthermore, bearing
in mind from (9a) to (9¢) that & and & must belong to L?(2), we notice that in order for the first term on the
right-hand side of (26) to make sense, we require that p = r, which is assumed from now on. Therefore, placing
together (25) and (26), we obtain the following mixed variational formulation for the electrostatic potential
equations (given by the third and fourth rows of (8)): Find (¢, x) € X2 x M; such that

a(¢a¢)+bl(¢aX):F(¢) V’I,DGXl,
bg((p, )\) = Gg()\) YA e Mo, (27)

where
Xo :=H"(div,; ), M;:=L"(Q), X;:=H(divs;Q), My:=L(Q), (28)

and the bilinear forms a : Xo x X; — R and b; : X; x M; — R, i € {1,2}, and the functional F': X; — R, are
defined, respectively, as

a(.)i= | Tob W)€ X x X, (292)
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() 1= | Adiv() () € X x M, (20)
Q
F(p) =@ vgor Ve Xy, (29¢)
whereas, given 1 := (n1,72) € L”(), the functional Gy, : My — R is defined by

G(A) = —L/\(m ) — Lf)\ VAe My, (20d)

We end this section by establishing the boundedness of a, b;, i € {1,2}, F, and G, for which we recall that
the norms of X; and X5 are defined by (12¢) with ¢ = s and ¢ = r, respectively, whereas those of M; and
M, are certainly given by | - |00 and | - |o,s;0, respectively. Then, employing again the Cauchy-Schwarz and
Hélder inequalities, bounding e ! according to (4), and using that | - [o~q < |Q|®~/*" || - |o,p:0, Which follows
from the fact that p > r, we find that there exist positive constants

1
la == = Ibal =[lbal =1, and @] := max]1, jo-Ver), (30)
€0
such that
la(@, )| < |a] |@]x, |¥]x, V() € Xo x Xy,
16 (9, ) < 1bill [0l x; IA] 2, V(,\) e X; x My, Vie{l,2}, and
1G] < IGIH{lIm = n2llo.pse + [flomab [Alossie VA€ M. (31)

Regarding the boundedness of F', we need to apply Lemma A.36 of [19], which, along with the surjectivity of
the trace operator mapping W17 (Q) onto W'/57(I), yields the existence of a fixed positive constant C,., such
that for the given g € W1/*7(T), there exists v, € W (Q) satisfying vy|r = g and

lvgllima < Cr lglhys,rr-
Hence, employing (15) with (¢,t') = (s,r) and (7,v) = (¢, v,), and then using Holder’s inequality, we arrive at
[F@) < [F[¥lx,  VpeX, (32)
with
IF] := Cr llgllass,rr- (33)
3.4. The ionized particles concentration equations

We now deal with the Nernst—Planck equations, that is the fifth and sixth rows of (8), for which we proceed
analogously as we did for the Stokes equations in Section 3.2. More precisely, applying (13) with ¢ = ¢ to
7; € H(div,; Q) and & € H'(Q), and using the Dirichlet boundary condition on &;, for which we assume from
now on that g; € H'/?(T"), we obtain

| vem=- [ aavim)+ v,
Q Q
so that the testing of the equation in the fifth row of (8) against 7, yields
Lo r divie) — | fo oo — e r v
o T; + &i le(Tz) {QZ e e Ky &i u} C T = <Tz "V, gz>- (34)
Q ki Q Q

Since div(T;) € L2(2), we notice from the second term on the left-hand side of (34) that it suffices to look for &;
in LP(£2), which, similarly as for Stokes, is coherent with a previous discussion on where to seek this unknown.
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In fact, as already commented, the corresponding estimates (9b) and (9c) confirm that the third term on the
left-hand side of (34) is well-defined as well. We end this derivation by testing the first equation of the sixth
row of (8) against a function in the same space to which & belongs, that is n; € L*(Q), which gives

J nidiv(e;) — | &mi = —f fini- (35)
Q Q Q

We remark that the above requires to assume that both f; and div(e;) belong to L2(2), which is coherent
with the fact that & is sought in LP(2) since, being p > 2, it follows that p > p, and hence L?(Q) < Le(Q).
Consequently, we arrive at the following mixed variational formulation for the ionized particles concentration
equations: Find (0,&;) € H; x Q; such that

ai(oi, 1) + ¢i(Ti, &) — cou(Ti, &) = Fi(T) VT, € Hy,
ci(oiymi) — di(&i,mi) = Gi(mi) Vi € Qi, (36)

where

H; .= H(div,; Q), Q; =L (), (37)

and the bilinear forms a; : H; x H; > R, ¢; : H; x Q; — R, and d; : @Q; x @Q; — R, and the functionals
F;: H.— R and G; : Q; — R, are defined, respectively, as

a;(Ci, Ti) = L % G Ti Y(¢i,Ti) € Hy x Hy, (38a)

ci(Ti,mi) == J n; div(7;) Y(7i,m) € Hy x Qs (38b)
Q

di(Vi,m;) == L 9 Y(9i,m:) € Qi x Qs (38c)

Fi(m;) == {1 -v,g:) V7 € Hy, (38d)

Gi(n;) == — J;z fimi Vn; € Qs, (38e)

whereas, given (¢, v) € Xy x Q = H"(div,; Q) x L"(Q2), the bilinear form cg v : H; X Q; — R is set as
Copv (Tir i) i= f {aimie o —r"miv} T Y(1i,mi) € Hi x Q. (38f)
Q

Similarly to the analysis at the end of Section 3.2 (¢f. (23) and (24)), we conclude here that a;, ¢;, d;, Fj,
Gi, and cg are all bounded with the norm defined by (12a) with ¢ = p for H;, and certainly the norm
| Jo.p:0 for Q;. Indeed, applying the Cauchy-Schwarz and Holder inequalities, bounding both e~1 and r; !
according to (4), noting that || - oo < [Q|%°~2/27| - | ., invoking the identity (13) and the continuous
injection i, : H'(Q2) — L?(Q), and utilizing (9b) and (9c), we find that there exist positive constants

1 _ .
lail == =, leil =1, il :== 121972 [ E] = 0+ fipl) [gilla2,rs

K
IGi] == I filo,e:0, and [c] := max{eg ", "}, (39)
such that
|ai(Ci, 7i)| < [laif 1Cill a7l &, Y(Ci, Ti) € Hy x Hy,
lei(Tisma)| < el |7il a; [m:]l @ V(Ti,m:) € Hi x Qs
|di(9ismi)| < |ldill 193]l . [millqs V(9i,mi) € Qi x Qi
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|5 ()] < [ E5] 7] s VT € H;,
|Gi(m:)] < |Gill Imi] . Vi € Qi, and
leg,v (Ti,m0)| < el {l@llore + [V]orat [millope Tilloe  V(7iin:) € Hi x Qi (40)

Throughout the rest of the paper we will use indistinctly either |n]g,xqg, or [n

0,0:0, Where

700,02 := [n1lo.pi2 + [m2loe Y1 := (1,m2) € Q1 x Q2.

Summarizing, and putting together (19), (27), and (36), we find that, under the assumptions that f € L*(Q),
ge HY2(I), fe L"(Q), ge WYs™(I), fi € L(Q), g; € H/?(T'), and p > r, the mixed variational formulation
of (8) reduces to: Find (o,u) e H x Q, (¢, x) € Xo x My, and (0,&) € H; x Q;, i € {1,2}, such that

a(o,7)+b(T,u) = F(1) VT e H,
b(o,v) = G¢ (V) Vv e Q,
a(p, ) + b1 (¥, x) = F(9) Vi € Xy,
ba(p, A) = Ge(N) VA€ My,
ai(oi, i) + ci(1i, &) — cpu(Ti &) = Fi(T) V1, € Hy,
ci(os,m:) — di(&mi) = Gi(ni) Vi € Qi (41)

Notice here that the second, fourth, and sixth rows of (41) constitute the conservation of momentum for
each respective equation. We will refer again to this subject from the discrete point of view later on in Sec-
tions 5.1 and 6.2.

We end this section by stressing that, as compared with previously studied Banach spaces-based mixed
formulations for other coupled nonlinear models (see, e.g., [4,14,24,26]), the main novelty of the analysis to be
developed for (41) has to do with the occurrence in its last two rows of the perturbed saddle point scheme in
Banach spaces represented by the bilinear forms a;, ¢;, and d;. Indeed, up to our knowledge, the present one
constitutes the first work applying the theoretical results provided recently in [15] to perform the continuous
and discrete analyses of a problem showing that structure.

4. THE CONTINUOUS SOLVABILITY ANALYSIS

In this section we proceed as in several related previous contributions (see, e.g., [11] and the references
therein), and employ a fixed-point strategy to address the solvability of (41).

4.1. The fixed-point strategy

In order to rewrite (41) as an equivalent fixed point equation, we introduce suitable operators associated

with each one of the three problems forming the whole nonlinear coupled system. Indeed, we first let T
(Q1 x Q2) x X2 — Q be the operator defined by

~

T(n,¢):=u  V(n,¢)e(Q1x Q) x Xy,

where (&,1) € H x Q is the unique solution (to be confirmed below) of problem (19) (equivalently, the first two
rows of (41)) with (n, ¢) instead of (£, ¢), that is

a(o,7) +b(T,0) = F(1) VreH,
b(g,v) = Gy (V) Vv e Q. (42)

In turn, we let T : Q1 x Q2 — X5 be the operator given by

T(n):=¢ VneQixQs,
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where (¢, x) € X2 x M; is the unique solution (to be confirmed below) of problem (27) (equivalently, the third
and fourth rows of (41)) with n instead of &, that is

a(‘;»w)_’_bl("/}ai) =F(¢) V’IPEX]J
ba(@,A) = Gn(N) VA€ M. (43)

Similarly, for each i € {1,2}, we let T, : Xo x Q — Q; be the operator defined by
Ti(¢v) =&  ¥(¢v)eX2xQ

where (&;,&;) € H; x Q; is the unique solution (to be confirmed below) of problem (36) (equivalently, the fifth
and sixth rows of (41)) with (¢, v) instead of (¢, u), that is

ai(64, 1) + ¢ (’ri,gi) — Cpv (Ti,é> = Fi(7;) V1 € H;,
ci(0i, i) — di (5‘#71) =Gi(ni)  Vni€ Qi (44)

so that we can define the operator T: X5 x Q— (Q1 x Q) as:

~

T(¢.v) = (Ti(@ V). Ta(v) = (61.8) =€ ¥(6v) e Xox Q. (45)

Finally, defining the operator T : (@1 x Q2) — (@1 X Q2) as

T(n) = T(T(m), T(n.T(m)) Ve Qux Qs (46)
we observe that solving (41) is equivalent to seeking a fixed point of T, that is: Find & € Q1 x Q2 such that
T(¢) - €. (47)

4.2. Well-posedness of the uncoupled problems

In this section we establish the well-posedness of the problems (42)—(44), defining the operators f, T, and
Th respectively. To this end, we apply the Babuska—Brezzi theory in Banach spaces for the general case (cf. [5],
Thm. 2.1, Cor. 2.1, Sect. 2.1), and for a particular one ([19], Thm. 2.34), as well as a recently established result
for perturbed saddle point formulations in Banach spaces (¢f. [15], Thm. 3.4) along with the Banach—Necas—
Babuska Theorem (also known as the generalized Lax-Milgram Lemma) (c¢f. [19], Thm. 2.6).

4.2.1. Well-definedness of the operator T

Here we apply Theorem 2.34 of [19] to show that, given an arbitrary (n, @) € (Q1 X Qz) x Xo, (42) is well-

posed, equivalently that T is well-defined. We remark that (n, ¢) only influences the functional G, ¢, and that
the boundedness of all the bilinear forms and linear functionals defining (42), has already been established in
(23) and (24). Hence, the discussion below just refers to the remaining hypotheses to be satisfied by a and b.
We begin by letting V be the kernel of the operator induced by b, that is

Vi={reH: b(r,v) =0 VveQ}

which, according to the definitions of H, Q, and b (¢f. (20), (21b)), along with the fact that L*(£) is isomorphic
to the dual of L"(Q), yields
V= {7 € Hy(divs;Q): div(r) =0}. (48)
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Next, we recall that a slight modification of the proof of Lemma 2.3 from [22] allows to prove that for each

t = 2% (see, e.g., [8], Lem. 3.1 for the case t = 4/3, which is extensible almost verbatim for any ¢ in the

indicated range) there exists a constant C;, depending only on €2, such that

Ci <750 + 1div(T)E e V7 € Ho(divy Q). (49)
Then, assuming that s > %, and using (49), we deduce from the definition of a (¢f. (21a)), and similarly to

Lemma 3.2 of [§8], that
a(T7 T) Z HT”§iVS;Q VT e V) (50)

with a := Cs/u. Hence, thanks to (50), it is straightforward to see that a satisfies the hypotheses specified in
Theorem 2.34, equation (2.28) of [19] with the foregoing constant c. In order to fulfill all the hypotheses of the
latter theorem, and knowing from (23) and (24) that the boundedness of the corresponding bilinear forms and
linear functionals has already been established, it only remains to show the continuous inf-sup condition for b.
Moreover, being this result already proved for the particular case s = 4/3 (cf. [§], Lern 3.3 and [24], Lem. 3.5
for a closely related one), and arising no significant differences for an arbitrary s > we provide below, and
for sake of completeness, only the main aspects of its proof.

Indeed, given v € Q := L"(Q2), we first recall from (10) that 7 > 2, and set v := |v|""2 v, which is easily
seen to satisfy

+2’

ve e L9Q) and f v Vs = [Vloma [Velosa-
Q

In what follows, we make use of both, the Poincaré inequality, which refers to the existence of a positive constant
cp, depending on €, such that cp |z]] o < |2[7, Vz € Hj(Q2), and the continuous injection i, : H'(2) — L"(Q)
for the indicated range of s. Then, we let w € H§(Q2) be the unique solution of: {, Vw - Vz = — {_ v, - z for all
z € H}(Q), which is guaranteed by the classical Lax-Milgram Lemma, and notice, thanks to the corresponding
< |'TH |[vslo,s:0- Hence, defining ¢ := Vw € L*(Q), we deduce
that div(¢) = v, in Q, so that ¢ € H(divs; ), and I¢]aivase < (1+ HI;H) [vsllo,s;0- Finally, letting o be the
Ho(div,; Q)-component of ¢, it is clear that div({p) = v, and that [{o]aiv..0 < [[€]div.:q, whence bounding by
below with 7 := ¢y € H, and using the definition of b (¢f. (21b)) along with the above identities and estimates,
we conclude that

sup =B |v]q Vv eQ, (51)

ren ||T[E
T+0

with 8 := (1 + H;—;”) ' The foregoing inequality (51) proves Theorem 2.34, equation (2.29) of [19] and completes
the hypotheses of this theorem. R
Consequently, the well-definedness of the operator T is stated as follows.

Theorem 4.1. For each (n,¢p) € (Q1 x Q2) x Xo there exists a unique (6,1) € H x Q solution to (42), and

hence one can define T(n, ) := 1 € Q. Moreover, there exists a positive constant Cz, depending only on i,
li-], €0, ||, &, and B, and hence independent of (1, @), such that

T8, = Il <€ { v (52)

Proof. Given (1, ¢) € (Q1 x Q2) x Xa, a direct application of Theorem 2.34 from [19] guarantees the existence of
a unique (,1) € H x Q solution to (42). Then, the corresponding a priori estimate in Theorem 2.34, equation

(2.30) of [19] gives

-~ 1 lal| L2l Hall

filo < 5 (1+ 20) 1P + 155 (14 220 16 ol 53)
which, according to the identities and estimates given by (23) and (24), along with some algebraic manipulations,
yields (52) and finishes the proof. O
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Regarding the a priori bound for the component & of the unique solution to (42), it follows from Theorem 2.34,
equation (2.30) of [19] that

~ 1 1 |a

Olg<—|Flgw+5 1+ — ) |G ’

61k < Il + 5 (14 21 ) 160l
which yields the same inequality as (52), but with a different constant. Hence, choosing the largest of the
respective constants, and still denoting it by C's, we can summarize the a priori estimates for @i and & by saying
that both are given by the right-hand side of (52).

4.2.2. Well-definedness of the operator T

We now employ Theorem 2.1, Section 2.1 of [5] to prove that, given an arbitrary n € Q1 x Q2, (43) is
well-posed, equivalently that T is well-defined. Similarly as for Section 4.2.1, we first stress that 7 is utilized
only to define the functional Gy, and that the boundedness of all the bilinear forms and functionals defining
(43), was already established by (30) and (31). In this way, it only remains to show that a, by, and by satisfy
the corresponding hypotheses from Theorem 2.1, Section 2.1 of [5]. To this end, and because of the evident
similarities, we follow very closely the analysis in Section 3.2.3 from [11], which, in turn, suitably adopts the
approach from Section 2.4.2 of [26]. Indeed, we begin by letting K; be the kernel of the operator induced by the
bilinear form b;, for each i € {1,2}, that is

Ki = {’l,ZJEXZ : bz(’l,b,A) =0 V)\EMZ}, (54)

which, according to the definitions of X; and M; (c¢f. (28)), and b; (¢f. (29b)), along again with the fact that
L7 (Q) and L*(£2) can be isomorphically identified with (LS(Q))/ and (L’”(Q))/, respectively, gives

Ky :={yYeH(divs;Q): div(ep) =0 in 0}, (55)
and
Ky :={¢Y e H (div,;Q): div(¢p) =0 in Q}. (56)

Next, in order to establish the inf-sup conditions required for the bilinear form a (cf. [5], Egs. (2.8) and (2.9)),
we resort to Lemma 3.3 of [11], which is recalled below.

Lemma 4.2. Let Q) be a bounded Lipschitz-continuous domain of R™, n € {2,3}, and let t,t’ € (1, +0) conjugate
[4/3,4] if n =2
[3/2,3] ifn=3"

to each other with t (and hence t') lying in { Then, there exists a linear and bounded operator

Dy : LY(Q) — LY(Q) such that
div(Ds(w)) =0 in vYw e L'(Q). (57)

In addition, for each z € L (Q) such that div(z) = 0 in Q, there holds

Lz.pt(w) :Lz.w Yw e LH(Q). (58)

Proof. Tt reduces to a minor modification of the proof of Lemma 2.3 from [26], for which one needs to apply
the well-posedness in W1t(Q) of a Poisson problem with homogeneous Dirichlet boundary conditions (see [23],
Thm. 3.2 or [30], Thms. 1.1 and 1.3 for the vector version of it). The specified ranges for ¢t and ¢’ are precisely
forced by the latter result. We omit further details and refer to the proof of Lemma 3.3 from [11]. g

We are now in position to prove the required hypotheses on a.
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Lemma 4.3. Assume that s (and hence r) satisfy the ranges specified in Lemma 4.2. Then, there exists a
positive constant & such that

a(g, _
sp U0 - q gy, Ve Ko (59)
wer, [¥llx,
¥+0
In addition, there holds
sup a(¢, ) >0  VypeK;, v +0. (60)
PeK2

Proof. Being almost verbatim to that of Lemma 3.4 from [11], we just proceed to sketch it. Indeed, given ¢ € K,
we recall from (10) that r > 2 and set ¢ := |¢|"~2 ¢, which belongs to L*(2) and satisfies

L b s = [blors |Dslo.c (61)

In this way, bounding the left-hand side of (59) by below with v := D,(¢s), which, according to Lemma 4.2,
belongs to K7, and then using (58), (61), the boundedness of Dy, and the upper bound of ¢ (¢f. (4)), we
arrive at (59) with a := (|| Ds| 61)_1. On the other hand, given now % € K, ¢ + 0, we define v, :=

5=2 if 0
{ KA , which lies in L"(Q) and satisfies {, -1, = |13, 5.0 > 0. Thus, bounding the left-hand

0 ifp =0
side of (60) by below with ¢ := D,.(¥,) € K2, and proceeding similarly as for (59), we deduce (60) and conclude
the proof. (I

Before continuing with the continuous inf-sup conditions for the bilinear forms b;, i € {1,2}, we now check
the feasibility of the indexes employed so far, according to the different constraints that have arisen along the
analysis. In fact, from the preliminary discussion provided in Section 3.1, we have the following initial ranges

l,7e(1,+o0) and p,re(2,40) ifn=2, (62)
l,7€[3/2,3] and p,re[3,06] if n =3,
which, being added the request p = r, equivalently [ > j, becomes
le[2,40), je(1,2], pe[4d,+o0), re(2,4 ifn=2, 63)
1e[2,3], je[3/2,2], pel4,6], re][3,4] if n = 3.
Finally, imposing to r (and hence to s) the ranges required by Lemma 4.2, and guaranteeing that s > 7%:27 we
arrive at the final feasible choices
le[2,+0), je(1,2], peld+o), oe(1,4/3], re(24] se[4/3,2) ifn=2 o0
1=3,7=3/2, p=6, 0=6/5, r=3, s=3/2 if n = 3.

In particular, the only possibility for the 3D case is obtained by intersecting the range for r specified in the
second row of (63), that is r € [3,4], with the one required by Lemma 4.2, that is r € [3/2, 3], which certainly

yields r = 3. The respective conjugate becomes s = 3/2, which clearly verifies s > nQ—fQ = 6/5. The occurrence

of this unique way of choosing the exponents does not seem in principle to be coincidental since it has also
arose in some related papers when a technical result like Lemma 4.2 (or a similar one), is employed (see, e.g.,
[26], Eq. (2.20), [11], Egs. (2.25) and (2.26), and [16], Sect. 4.2). However, this is not the case for the stress-
assisted diffusion problem studied in [25], where the feasible ranges obtained in 3D are actually intervals (see
[25], Egs. (3.70) and (3.71)), and hence it is not possible to conclude a corresponding general rule.

T

Note that in (64) we have included the consequent ranges for g := ﬁ and s := ;5 as well. However, we

remark that the above indexes are not chosen independently, but once ! (or its conjugate j) is chosen, then
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all the remaining ones are fixed. In this regard, and extending a related comment made in Section 3.1, we
stress here that in the 2D case the values of the feasible exponents r and p (equivalently, the indexes j and /)
vary in opposite directions, namely as r increases, p decreases, and conversely. Similarly, being (r, s) and (p, o)
conjugate pairs, as the first component of each increases, the second one decreases, and conversely. According to
the above, and bearing in mind the spaces to which the unknowns belong (¢f. (20), (28), and (37)), we deduce
that as the regularities of o and &; increase, which means higher values for the exponents s and p, the ones of
the remaining unknowns decrease, that is r and p get smaller, and conversely. Consequently, no values yielding
simultaneously either the least or the most regularity for each component of the solution are available, but only
separately for each one of them. Certainly, the maximum or minimum regularity for a particular unknown in
this latter case will not be achieved if the respective end of the corresponding interval is open.

We now go back to the well-definedness of T' by establishing the continuous inf-sup conditions for the bilinear
forms b;, i € {1,2}. While the corresponding proofs are similar to those of Lemma 2.7 from [26] and Lemma 3.6
of [11], and very close to that of Lemma 3.5 of [25], for sake of completeness we provide below the main details
of them.

Lemma 4.4. For each i€ {1,2} there exists a positive constant 3; such that

bi(¢, A -

p 2PN S 5 VAe M (63)
wex, |¥]x,
Y+0

Proof. We begin by noticing that the values of r and s specified in (64) are compatible with the range [f—fl, %]

required by Theorem 3.2 from [25], an existence result to be applied below. According to it, and since the pairs
(Xl,Ml) and (XQ,MQ) result from each other exchanging r and s, it suffices to prove (65) either for i = 1
or for i = 2. In what follows we consider i = 1, so that, given A € My := L"(f), we set A\, := |[A|""2 ), which
belongs to L*(2) and satisfies {, AXs = [ Ao, |As]lo,s;0- Thus, a straightforward application of the scalar
version of Theorem 3.2 from [25] yields the existence of a unique z € W,"*(€) such that Az = A\, in Q, z = 0
on I'. Moreover, the corresponding continuous dependence result reads |z]1,5.0 < Cs [As|o.s.0, where Cj is a
positive constant depending on s. Next, defining ¢ := Vz € L*(Q), it follows that div(¢) = A in £, whence
¢ € H*(divy; Q) =: Xy, and there holds @] x, = [@]saiv.;0 < (14 Cs) [Aslo,s;0- In this way, bounding by
below with 1 := ¢ € X3, and bearing in mind the definition of b; (¢f. (29b)) along with the foregoing identities
and estimates, we arrive at (65) for ¢ = 1 with §; := (1 + 6’5)_1. The proof for i = 2 proceeds analogously,

. . IAF7Z N A £ 0,
except for the fact that, given A € My := L*(£2), and since s < 2, one needs to define A, := 0 =0
Further details are omitted. (I

As a consequence of Lemmas 4.3 and 4.4, and the boundedness properties given by (30)—(33), we are able to
conclude now that the operator T is well-defined.

Theorem 4.5. For each n € Q1 x Q2 there exists a unique (p,X) € Xa x My solution to (43), and hence one
can define T'(n) := @ € Xa. Moreover, there exists a positive constant Cy, depending only on ey, Cy, ], @,
and B2, such that

0’p;9}' (66)

Proof. Given n € Q1 x Q2, a straightforward application of Theorem 2.1, Section 2.1 from [5] implies the
existence of a unique (@, x) € X5 x M solution to (43). In turn, the a priori estimate provided in Corollary 2.1,
Section 2.1, equation (2.15) of [5] establishes

ITM)] x, = 12l x, < Cr{lglysrr + [ flora +n

_ 1 1 [lall
bol, < 517 + 3 (14 120) 16l (67)

a

which, along with the aforementioned boundedness properties, yields (66) and ends the proof. (I
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Similarly as for f and employing now ([5], Cor. 2.1, Sect. 2.1, Eq. (2.16)), we observe that the a priori bound
for the ¥ component of the unique solution to (43) reduces to

- 1 |al al| la]
Ix <@+_Fx+1+_IGW~
1%l s, 7 = ) 1Flx N = ) IGnlla

which yields the same inequality as (66), but with a different constant, in particular depending additionally on
(1. Therefore, as before, we still denote the largest of them by Cg, and simply say that the right hand-side of
(66) constitutes the a priori estimate for both ¢ and ¥.

4.2.8. Well-definedness of the operator T

In this section we employ the solvability result for perturbed saddle point formulations in Banach spaces
provided by Theorem 3.4 of [15], along with the Banach-Nec¢as-Babuska Theorem (cf. [19], Thm. 2.6), to show
that, given an arbitrary (¢, v) € Xy x Q, equation (44) is well-posed for each i € {1,2}, equivalently that T;
is well-defined. Since this result was already derived in Theorem 4.2 of [15] as an application of the abstract
theory developed there, and more specifically of Theorem 3.4 from [15], we just discuss in what follows the main
aspects of its proof.

To begin with, we introduce the bilinear forms A, Ay v : (H; x Qi) x (H; x Q;) — R given by

A((Ci, V), (Timi)) = ai(Giy i) + cilTiy 9i) + (G mi) — di(9iy mi), (68)

and

Agp v (o %), (Ti,m3)) i= A((Cir Vi), (Tiy 1)) — v (T35 05), (69)
for all (¢;,%:), (74,m:) € H; x Q;, and realize that (44) can be re-stated as: Find (3{,5) € H; x Q; such that

Ap ((308). (rim) ) = Fir) + Gil) - V(rm:) € Hi x Q. (70)

In this way, the proof reduces to show first that the bilinear forms forming part of A satisfy the hypotheses of
Theorem 3.4 from [15], and then to combine the consequence of this result with the effect of the extra term
given by ce v (-, ), to conclude that Ay , satisfies a global inf-sup condition.

Indeed, it is clear from (38a), (38c), and the upper bound of x; (cf. (4)) that a; and d; are symmetric and
positive semi-definite, which proves the assumption (i) of Theorem 3.4 from [15]. Next, bearing in mind the
definitions of ¢; (¢f. (38b)) and the spaces H; and Q; (¢f. (37)), and using again that LP(£2) is isomorphic to
the dual of L2(Q2), we readily find that the null space V; of the operator induced by ¢; becomes

V;' = {Ti (S Hz : le(Tz) = 0}, (71)

and thus 1

1
ai(Ti, i) > — I7illg.0 = = I7ilGiv,.0  VTieV, (72)

from which the assumption (ii) of Theorem 3.4 from [15], namely the continuous inf-sup condition for a;, is
clearly satisfied with constant & := R~ 1.

In turn, while the continuous inf-sup condition for ¢ was already established in Lemma 2.9 from [26] (see
also [15], Lem. 4.1), for sake of clearness we provide below the main steps of its proof, which follows similarly
to the one yielding the continuous inf-sup condition for b in the present Section 4.2.1. More precisely, given
n; € Q; = LP(Q), we set n;, := |n;|P"?n;, which uses from (64) that p > 2, and notice that there hold
Nio € L2(Q) and §o 175 150 = |Millo,p:2 [7i,0]10,050- Then, we let ¢; := Vz € L*(Q), where z € H}(Q) is the unique
solution of the variational formulation: {;, Vz - Vw = — {, n; , w for all w € Hg(€2), and deduce from the latter
that div(¢;) = mi,p in Q, which yields ¢; € H; := H(div,; Q). In turn, denoting by cp the positive constant
guaranteeing the Poincaré inequality: cp |w|? o < |w|i o Yw € Hj(Q, and letting again i, : H'(Q) — L?(Q)
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be the continuous injection, we find that |z[1,0 < @ |75,0/l0,0:2, and hence [ ¢l m, < (1 + H%H) Imi.00l0,0:2- In
this way, bounding by below with 7; := {; € H;, recalling the definition of ¢; (¢f. (38b)), and employing the
foregoing identities and estimates, we arrive at

sup ST S Bl e @, (73)
‘riiH& HTiHHi

with § := (1+ ”z—gu)fl, thus confirming the verification of assumption (iii) of Theorem 3.4 from [15].

Consequently, having shown that a;, ¢;, and d; verify all the hypotheses of Theorem 3.4 from [15], we conclude
that A satisfies the global inf-sup condition, which means that there exists a positive constant & 4, depending
only on |ag||, ||, &, and 3, such that

A((Ci ), (1i,m,))

HixQ;

sup
(Ti,m;)EH; XQ; H(Tlvnl)‘
(Ti,m:)F0

Moreover, invoking the upper bound of c¢ v (cf. (39), (40)), it follows from (69) and (74) that
A¢f" ((C’Lv 191)7 (Ti7 771))

= aa (€ Vi) Hix0. V(i ¥i) € Hy x Q. (74)

sup — = {aa — ] (I¢lo,r0 + [Vore)} (& )l m:xq: (75)
(75,m)EH; X Q; ” (Tl?nl)| H;xQ;
(7i,mi)+0
for all ({;,%;) € H; x Q;, from which, under the assumption that, say
Qg
I#lo,r0 + [vlore < : (76)
2|l
we conclude that
Agp~ ((Ciy04), (T5,m4) aa
sup o ) > — (G Vi)lmixq, V(i) € Hi x Q. (77)
(Tim)EH; xQ; H(Tum)\ H;xQ; 2
(7:,m:) %0

Similarly, using the symmetry of A and (74), and assuming again (76), we find that

Agp v ((Ciy04), (5,m5) a
sup o (( ) >4 I(7s5m6) | 7 % @ Y(Ti,m:) € Hi x Q. (78)
(Cq‘,rﬁi)eHv/oni H(Cﬂﬂl)‘ H;xQ; 2

i Vi

In this way, we are now in position of establishing that, for each i € {1, 2}, equation (44) is well-posed, which
means, equivalently, that T; is well-defined.
Theorem 4.6. For each i € {1,2}, and for each (¢,v) € Xo x Q such that (76) holds, there exists a unique

(&i,é) € H; x Q; solution to (44), and hence one can define ﬁ»(d),v) = & € Q,. Moreover, there ezists a
positive constant Cg, depending only on ||i,| and &a, such that

ITi(@ V) o = lala, < 1E0&)lmxa, < Ci{lgiljar + | fillo.sa}- (79)

Proof. Thanks to (77), (78), and the boundedness of F; and G; (cf. (39), (40)), the unique solvability of (44)
follows from a straightforward application of Theorem 2.6 from [19]. In turn, the a priori estimate given by
Theorem 2.6, equation (2.5) [19] reads

2

5i,&i Fillg + G: /}7

(08 = 2 8 10

which, along with the upper bounds for |Fj||g: and |G| q; derived from (39) and (40), yields (79) with Cj :=
= (14 |lip])- O
aa 14
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We end this section by observing from the definition of T' (¢f. (45)) and the priori estimates given by (79) for
each i € {1, 2}, that

2
=2 |% < Cy Z{ngznm + 1 fillo.e0} (80)
Q1><Q2

=1 =1

o)

for each (¢, v) € X5 x Q satisfying (76).
4.3. Solvability analysis of the fixed-point scheme

Knowing that the operators YA“, T, Zl~’, and hence T as well, are well defined, we now address the solvability of
the fixed-point equation (46). For this purpose, and in order to finally apply the Banach Theorem, we first derive
sufficient conditions under which T maps a closed ball of Q1 x @2 into itself. Thus, letting § be an arbitrary
radius to be properly chosen later on, we define

W) :={n:=(mm) e QuxQ2: [nlgxq, <0} (81)

Then, given 17 € W (), we have from the definition of T (cf. (46)) and the a priori estimate for T' (cf. (80))
that, under the assumption (cf. (76))

Sm) = [Ty, o + [T To0)| < 55 (82)

there holds )
IT)laixa. = |T(Tm). 2. Tm) )| <0z ¥ {laidsjer + 1filoe). (83)

1 X2 i1

In turn, applying the a priori estimates for T (cf (52)) and T (cf. (66)), we find that
Sm) < (1+Czml) [T + C7 {lglyzr + [flosa}
o1+ Inl)ln| + Co( rilglijzr + [£losa},

with Cp := max{1,Cz} Cr, so that, bounding ||| by &, we deduce that a sufficient condition for (82) reduces
to

<
<C

~

aa
Co(140)6 + Co(1+6){lgli/srr + [ floma} + Ci{lglijor + [flosa} < > HCH (84)
For instance, defining
. aa
4 := min 85
i) =
letting Cy := 2C), and imposing
C (86)
S HCH
it is easily seen that (84) holds. We have therefore proved the following result.
Lemma 4.7. Assume that § and the data are sufficiently small so that there hold (84) and
2
Cy Z{H%Hl/z,r + | fil (87)
i=1

Then, T(W(8)) < W(8). In particular, with the definition (85) of §, and under the assumptions (86) and (87),
the same conclusion is attained.
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We now address the continuity properties of f, T, f, and hence of T. We begin with that of T.

Lemma 4.8. There exists a positive constant Lz, depending only on <o, |Q|, a, B, and |a, such that

opalld— | 00 [¥lore ]} (88)

Tn.¢) - f(ﬂ,w)HQ <Lz {In| ot ln—o

for all (n, @), (9,%) € (Q1 x Q2) x Xo.

Proof.A Given (1, ¢), (9,9) € (Q1 x Q2) x X3, we let f(n,(ﬁ) := 1 and f(ﬁ,w) := w, where (6,0) e Hx Q
and (¢,w) € H x Q are the corresponding unique solutions of (42). Then, subtracting both systems, we obtain
a(&—g,r)—kb(T,ﬁ—VAv):O VT e H,

b(3 = Cv) = (Gro —Gou)(v)  WeQ, (89)

which says that (60 — Ci— w) € H x Q is the unique solution of a system like (42), but with F = 0 and
G,.6 — Gy o instead of just Gy 4. Hence, similarly as for the derivation of (52), that is employing ([19],
Thm. 2.34, Eq. (2.30)) (see also (53)), we deduce that

700.6) - T0.0)] = 1~ ¥l < B (14 2) 1600~ Gola- (90)

32 a
In turn, it is clear from (21d), and then subtracting and adding %) to the factor ¢ in the first term, that for
each v € Q there holds

(Gg — Gog)(v) = L e {(m — 1) b — (91 — D)} - v

Q

_ L e {(m —m) (b — ) + ((m — 1) — (m2 — 02)) B} - v,

from which, proceeding as for the boundedness of Gy, 4 (cf. (23), (24)), that is employing the lower bound of &
(cf. (4)), (9a), and the fact that || - [o.0 < |Q|772/2"| - [0, We conclude that

[Gns = Gowlg <5 191772 {|m

002016 = $lo 0+ 1 =Dl p0 [¥lore (1)

In this way, replacing (91) back into (90), we arrive at (88) and finish the proof. O

The next result establishes the continuity of 7', whose proof follows similarly to that of Lemma 4.8.

Lemma 4.9. There exists a positive constant Ly, depending only on ||, &, B2, and |al, such that
|T(m) =T@)|y, <Lzln—Fo,0 V0, 9€Qrx Qo (92)

Proof. Given 1,9 € Q1 x Qa, we let T(n) := @ and T'(9) := ¢, where (@,%) € Xo x M; and (¢,@) € Xo x M,
are the corresponding unique solutions of (43). Then, subtracting both systems, we get

a(¢_($a¢)+bl(wvi_w):0 V¢EX1,
ba(@— B, \) = (G — Go)(\) VA€ My, (93)

which states that (¢ — ¢, X — @) € Xo x M is the unique solution of a problem like (43) with G = 0 and
Gy — Gy instead of Gy,. In this way, proceeding as for the derivation of (66), which means applying the a priori
estimate given by Corollary 2.1, Section 2.1, equation (2.15) from [5] (see also (67)), we find that

T~ 70, = 19 l, <~ (14

llal
a

)1Gn = Gl (94)
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Now, it is clear from (29d) that for each A € My there holds

(Gn = Go)(A) = Gps(N) = LA{(m 1) = (n2 = 92)},

from which, applying Holder’s inequality, as we did for the boundedness of Gy, (¢f. (30), (31)), and using that
I - < Q=P | g, pi2, We deduce that

|Gy = Gioll gy < 1AC77 [ =By (95)
Finally, employing (95) in (94), we obtain (92) and conclude the proof. O

It remains to prove the continuity of ZN“, which is provided by the following lemma.

Lemma 4.10. There exists a positive constant Ly, depending only on €o, K, &a, and Cg, such that

2
Tev) ~Tw,w)| <Ly Y {laler + 1filoeet 1@V) = W)y .q (96)
i=1

Q1xQ2
for all (p,v), (¢, w) € Xo x Q satisfying (76).

Proof. Given (¢, v) and (¢, w) as indicated, we let, for each i € (1,2}, Ti(¢p,v) := & € Q; and Ty(ap, w) 1= 0; €
Q;, where (&, fz) € H; x Q; and (Cz, i) € H; x Q; are the corresponding unique solutions of (44), equivalently
(¢f. (70))

Aq&y((&i;fi), (‘mm)) = Fi(m) + Gi(ni)  Y(7i,m:) € Hi x Qi (97)

and

A¢,w((5i75i)7 (Tnm)) = Fi(m) + Gi(ni)  V(mi,mi) € Hi x Q. (98)

It follows from (97) and (98), along with the definitions of the bilinear forms Ag v (cf. (69)) and cg v (cf. (381)),
that

Apa ((30:8) = (69:). (rm)) = Apw (508 (rim)) = g ((G05). (7m0
S (RN RO (X REN)

= Coprw (7- 57;), (99)

so that applying the global inf-sup condition (77) to (&4, &) — (C;,J;), and then using (99) and the boundedness
of ¢y (¢f (39), (40)), we conclude that

L <1.8) - (@)

Next, invoking the a priori bound (79) for H@HQU the foregoing inequality yields

- <2 .
&0, {16 = loio v =Wl o f |7

HiXQl

- R o lel O
|Ts (¢, v) — T (¢, w)| ”C” %

QS {ngHl/QF + Hfl 79,9} H ¢? (¢7W)|‘X2XQ’

from which, summing over i € {1,2}, we arrive at (96) and end the proof. O
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Having proved Lemmas 4.8—4.10, we now aim to derive the continuity property of the fixed point operator
T. To this end, given n, ¥ € W(0) (c¢f. (81)), we first recall from the definition of T (¢f. (46)) and Theorem 4.6
that, in order to define T(n) and T(¥), we need that the pairs (T(n),f(n,f(n))) and (T(ﬂ),f('z‘},f(ﬂ)))
satisfy (76). Then, according to the discussion at the beginning of the present section, we know that a sufficient
condition for the latter is given by (84), which we assume in what follows. Alternatively, and as indicated there
as well, (85) and (86) are in turn sufficient for (84).

Thus, under the aforementioned assumption on § and the data, a direct application of (96) (cf. Lem. 4.10)
yields

— ~ [ —

IT(m) = T(O)lg, q, = |T(T). T (n.T(m)) - T(T®),7(9,7(9)))|

Q1XQ2

<Ly i{mnm,r + [ filo.00} {mn) — 1), + [T (0. T(m) = T(9,7(9)) )Q}.

(100)
In addition, employing now (92) (cf. Lem. 4.9) and (88) (c¢f. Lem. 4.8), we obtain
IT(n) = T(9)|x, < Lz In — Qi xq.: (101)
and
7 (n.Tm) =T(0.7) | < Ly {Inleuxa [Tm) = T@)]y, +In—Dlg 0, [Ty, }. (102
respectively, whereas the a priori estimate for T(9) (cf. (66), Thm. 4.5) states
IT@)x, < Cr {lgljsr + 1Floma + 10, xq, ) (103)

In this way, using (101) in both (100) and (102), and then replacing the resulting (102) along with (103) in
(100), as well as recalling that |n]g, xg, and |¥]g, xg, are bounded by §, we deduce the existence of a positive
constant L, depending only on L, Ly, L4, and Cp, such that

2

0,r) Z{ng‘\h/m + [ fi

i=1

IT(n) = T(9)lg,xq, < Lt (1+0+ lglisrr + £

O,Q,Q} In — 19HQl xQz" (104)

for all n, ¥ € W(J). We are thus in position to establish the main result of this section.

Theorem 4.11. In addition to the hypotheses of Lemma 4.7, that is (84) and (87), or alternatively (85), (86),
and (87), assume that

2

|O,T;Q) Z{”giul/Z,I‘ + | f

i=1

Lt (1 + 4+ ”ng/s,r;F + Hf |0,Q,Q} <1 (105)

Then, the operator T has a unique fized point & € W (§). Equivalently, the coupled problem (41) has a unique
solution (o,u) € Hx Q, (¢, x) € Xox My, and (0,&;) € H; x Q;, i € {1,2}, with & := (&1, &) € W(5). Moreover,
there hold the following a priori estimates

|O,7‘;Q}7

100 xy ity < Cr {Lglor + I lor + €l pa}s - and
(o4, &)l o0} € {1,2}. (106)

[, W letxq < Cz {Igl/ar + £l + €l 0l

mixo: < Cf {lgillij2.,0 + | fi
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Proof. We first recall that the assumptions of Lemma 4.7 guarantee that T maps W (J) into itself. Then, bearing
in mind the Lipschitz-continuity of T : W (§) — W () (¢f. (104)) and the assumption (105), a straightforward
application of the classical Banach theorem yields the existence of a unique fixed point € € W () of this operator,
and hence a unique solution of (41). Finally, it is easy to see that the a priori estimates provided by (52) (cf.
Thm. 4.1), (66) (¢f. Thm. 4.5), and (79) (¢f. Thm. 4.6) yield (106) and finish the proof. O

5. THE GALERKIN SCHEME

We now introduce the Galerkin scheme of the fully mixed variational formulation (41), analyze its solvability
by applying a discrete version of the fixed point approach adopted in Section 4.1, and derive the corresponding
a priori error estimate.

5.1. Preliminaries

We first let Hy, Qp, Xin, Min, Hip ;and Q;p, ¢ € {1,2}, be arbitrary finite element subspaces of the
spaces H, Q, X;, M;, H;, and Q;, ¢ € {1,2}, respectively. Hereafter, h denotes both the sub-index of each
subspace and the size of a regular triangulation 7;, of Q made up of triangles K (when n = 2) or tetrahedra K
(when n = 3) of diameter hg, so that h := max{hg : K € 7;}. Explicit finite element subspaces satisfying the
stability hypotheses to be introduced throughout the forthcoming analysis, will be defined later on in Section 6.
Then, the Galerkin scheme associated with (41) reads: Find (o, up,) € Hy X Qp, (n, xn) € Xap x My p, and
(O'i,h;fi,h) €eHip xQin, 1€ {1, 2}, such that

a(op, ) + b(th,up) = F(m) VT e Hy,
b(on, vi) = G, (va) Vv € Qp,
a(Pn, ¥n) + b1 (¥n, xn) = F(n) Vb, € X1,n,
ba(@hs An) = Ge, (An) VAn € My, (107)
ai(oin, Tisn) + Ci(Tin, &in) — Copun (Tishs &in) = Fi(Tin) VTin € Hyp,
ci(oin, Min) — di(&ins Min) = Gi(i,n) Vnin € Qih-

Similarly to the remark right after (41) in Section 3.4, we highlight here that the second, fourth, and sixth
rows of (107) constitute the discrete conservation of momentum properties, which are actually satisfied in
an approximate sense. At the end of Section 6.2 we describe them explicitly in terms of suitable projection
operators.

In what follows, we adopt the discrete version of the strategy employed in Section 4.1 to analyse the solvability
of (107). We now let T}, : (Q1,n X Q2.1) X X2, — Qp, be the operator defined by

Th(nns dn) :=0n  Y(n, én) € Qi x Qap) x Xop,

where (67,,10;) € Hy x Qy, is the unique solution (to be confirmed below) of the first two rows of (107) with
(Mn, @) instead of (&x, ), that is

a(&h,‘rh) +b(‘l‘h,ﬁh) = F(Th) VThEHh,
R (108)
b(ah,vh) = G'flh,¢h (Vh) VVh € Qh-
In turn, we let T}, : Q1,n X Q2,5 — X2 be the operator given by

Th(mn) :==@n  Ymn € Qi X Qap,
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where (@n, Xn) € Xo,n X My p is the unique solution (to be confirmed below) of the third and fourth rows of
(107) with ny, instead of &, that is

a(@n, ¥n) + bi(¥n, Xn) = F(n) Vapp, € X p,

(109)
ba(@ns An) = G, (An) YA € Map.

Similarly, for each i € {1,2}, we let ﬁ,h : Xon X Qp — Qi p, be the operator defined by

Tin(Pn, Vi) := Ein V(dn, Vi) € Xopn X Qu,

where (& p, &h) € H; , x Q; p is the unique solution (to be confirmed below) of the fifth and sixth rows of (107)
with (¢p, vp) instead of (¢, uy), that is

a;(Cihy Tin) + Ci (Ti,h,fi,h) — Cop v, (ﬂ‘,;u&‘,h) = Fi(Ti,n) V1in € Hyp,

ci(Gin,Min) — di (fi,hv”i,h) = Gi(ni,n) Vni,n € Qin,s (110)
so that we can define the operator fh : Xon X Qp = (Q1,n x Qo) as:

Th(dnvi) == (Ton(dn, vi), Ton(@n, vi)) = (Ern.bon) = € Y(dn, Vi) € Xan x Qn. (111)

Finally, defining the operator T}, : (Q1,n X Q2.1) — (Q1,n X Q2.1) as

T () := Th(Th (), T (1, Tn(mn) ) V1 € Q1 X Q2., (112)

we observe that solving (107) is equivalent to seeking a fixed point of T}, that is: Find &, € Q1,5 x Q2 such
that

Th(&n) =& (113)
5.2. Discrete solvability analysis

In this section we proceed analogously to Sections 4.2 and 4.3 and establish the well-posedness of the discrete
system (107) by means of the solvability study of the equivalent fixed point equation (113). In this regard, we
emphasize in advance that, being the respective analysis very similar to that developed in the aforementioned
sections, here we simply collect the main results and provide selected details of the corresponding proofs.

According to the above, we first aim to prove that the discrete operators ZA}“ T}, and ZN““M i€ {1,2}, and
hence T}, and T}, are all well-defined, which reduces, equivalently, to show that the problems (108)—(110) are
well-posed. To this end, we now apply the discrete versions of Theorem 2.34 from [19], Theorem 2.1, Section 2.1
from [5], and Theorem 3.4 from [15], which are given by Proposition 2.42 of [19], Corollary 2.2, Section 2.2 from
[5], and Theorem 3.5 from [15], respectively. More precisely, following similar approaches from related works (see,
e.g., [11], Sect. 4.2), our analysis throughout the rest of this section is based on suitable hypotheses that need
to be satisfied by the finite element subspaces utilized in (107), which are split according to the requirements
of the associated decoupled problems. Explicit examples of discrete spaces verifying these assumptions will be
specified later on in Section 6. R

We begin by addressing the well-definedness of T}, for which we let V;, be the discrete kernel of b, that is

Vi :={mneHp: b(rh,vy) =0 Vv,eQpn}, (114)

and assume that

(H.1) there holds div(Hh) < Qp, and
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(H.2) there exists a positive constant B4, independent of h, such that

b(m,, v
sup PV S g lg e Qu (115)

TheH) H ”
Th+0

Then, according to the definition of b (¢f. (21b)), it follows from (114) and (H.1) that
Vi i={m e Hp: div(m,) = 0}, (116)

which says that V}, is contained in the continuous kernel V (¢f. (48)), and hence the discrete version of (50) is
automatically satisfied, that is
a(mn, ) = aq HT”EWS;Q V1, € Vy, (117)

with ag = a := Cs/u. Recall here that C; is the constant provided by inequality (49) with ¢ = s. In this way,
it is clear from (117) that a satisfies the hypotheses given by Proposition 2.42, equation (2.35) from [19] with
the constant oy, whereas (H.2) states that b fulfills ([19], Prop. 2.42, Eq. (2.36)) with the constant 34. We are
thus in position to establish next the following result.

Theorem 5.1. For each (ny, ¢pn) € (Q1,5 X Qa,n) x Xop, there exists a unique (6p,0,) € Hy, x Qy, solution
to (108), and hence one can define Ty(nn, dn) := Uy € Q. Moreover, there exists a positive constant Cs |,
depending only on u, |i.|, €0, ||, aa, and B4, and hence independent of (nn, ¢n), such that

0,52+ [Mnllo pi0 [ Pn

(Tt @) = Inlq < Oz {lglhje.r + I£ oria ) (118)

Proof. Given (ny, ¢r) € (Q1,n X Q2,1) X Xa,p, the existence of a unique solution to (108) follows from a straight-
forward application of Proposition 2.42 from [19]. In turn, the corresponding a priori bound from Theorem 2.34,
equation (2.30) of [19] and the boundedness properties of F and G, 4, imply (118). O

Similarly as observed for the continuous operator IA’, we remark here that the right-hand side of (118) can
also be assumed as the respective a priori estimate for .
Furthermore, for the well-definedness of T}, we need to introduce the discrete kernels of b; and by, namely

Kip:={YneXin: bi(¥Yn, ) =0 VA, € M}, (119)

and
Kop:={YneXopn: ba(n,A\n) =0 VA, €My}, (120)

respectively, and consider the following assumptions

(H.3) there exists a positive constant &g, independent of h, such that

a\@n, P _
sup MZozd|\¢h\|X2 Ve € Kop, and (121a)
YReEK H"Phﬂxl
Yn+0
up  al(@p, ¥Yn) > h € 181 h, h .
sup  a(n, ) > 0 Vi € Kip, n 40 (121b)
PrEKa

(H.4) for each i € {1,2} there exists a positive constant 3; 4, independent of h, such that

sup bilwon, An) > Bia | Anlm, VYAn € Mj . (122)

YpeX; p H'libh|X7.
Yn+0
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As a consequence of (H.3) and (H.4) we provide next the discrete version of Theorem 4.5.

Theorem 5.2. For each np € Q1. X Q2,5 there exists a unique (@n, Xn) € Xon x My, solution to (109), and
hence one can define Ty, (ny) := @, € Xo . Moreover, there exists a positive constant Cr 4, depending only on
g0, Cr, |Q|, &4, and P24, such that

[Tume)l, = 18nlx, < Cra {lgljsre + 1 flome + lmlo pa }- (123)
Proof. Given ny, € Q1,5 X Qa,1, a direct application of Corollary 2.2, Section 2.2 from [5] implies the existence
of a unique solution to (109), whereas the a priori estimate provided in Corollary 2.2, equation (2.24) of [5] and
the boundedness properties of F' and G, yield (123). O

Analogously as explained for the continuous operator T, here we can also assume that, except for a con-
stant O 4 depending additionally on BLd, the a priori estimate for X}, which follows now from Corollary 2.2,
equation (2.25) of [5], is also given by the right-hand side of (123).

It remains to prove the well-definedness of Th = (T17h,f27h), for which we first observe that, being a; and
¢; symmetric and positive semi-definite in the whole spaces H; and Q);, they certainly keep these properties in
H, j, and Q; j, respectively, so that the assumption (i) of Theorem 3.5 from [15] is clearly satisfied. Next, given
i € {1,2}, we let V; ;, be the discrete kernel of ¢;, that is

Vin=Amin€Hin: ci(Tin,Min) =0 Vnin€Qin}, (124)
and consider the hypotheses
(H.5) for each i € {1,2} there holds div(H;) S Qj,n, and

(H.6) there exists a positive constant Bd > 0, independent of h, such that

qup ClTimMin) oz
i h€H; p HTi7h/ ‘Hz
Ti,n+0

Q. nin € Qip. (125)

It follows from (124), the definition of ¢; (¢f. (38b)), and (H.5) that
Vini={mne Hp: div(m,) =0}, (126)

whence, similarly to the case of Tj, Vi,n is contained in the continuous kernel V; (cf. (71)) of ¢;, thus yielding
the discrete analogue of (72), that is

1
ai(Tin, Tih) > — ITinlGivee  YTin € Vi (127)

In this way, it is clear from (127) that a; satisfies the hypothesis (ii) of Theorem 3.5 from [15] with the constant
Qg := K1, whereas (H.6) constitutes itself the corresponding assumption (iii). Consequently, a straightforward
application of Theorem 3.5 from [15] implies the discrete global inf-sup condition for A (¢f. (68)) with a positive
constant &4 4 depending only on |a;|, ¢, &q, and Bd, and thus the same property is shared by Ag, v, for
each (¢p,vy) € Xa ), x Qy, satisfying the discrete version of (76), that is

Qe

Ad
2|

[ (128)

om0 T IValloro <

We are now in position of establishing the well-definedness of ﬁ n for each i € {1,2}.
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Theorem 5.3. Given i € {1,2} and (¢n,vir) € Xayp x Qyp such that (128) holds, there exists a unique
(Gin,&in) € Hip X Qup solution to (110), and hence one can define T; p(dn,vi) = & n € Qipn. Moreover,
there exists a positive constant Cs ,, depending only on |i,| and caq, such that

T4

‘Ti,h(({bhavh)‘Qi = fi,h‘Q < H (?n,h,&',h) X0, <Cjgq {Hgiul/z,r + ”fiHO,g;Q}' (129)
Proof. Tt reduces to a direct application of Theorem 2.22 from [19], whose corresponding a priori estimate,
yielding (129), makes use of the boundedness of F; and G; (c¢f. (39) and (40)). O

Analogously to the continuous case, it follows from the definition of T (¢f. (111)) and the a priori estimates
given by (129) for each i € {1,2}, that

2
Q1XQ2 . ;
for each (¢pp, vi) € Xap x Qp, satisfying (128).
Having established that the discrete operators T}, T}, Th, and hence T}, (under the constraint imposed by
(128)), are all well defined, we now proceed as in Section 4.3 to address the solvability of the corresponding
fixed-point equation (113). Then, letting d4 be an arbitrary radius, we set

W (0a) := {mn = (M.h,m2,0) € Qra X Q2.0 | MnllQyx@s < da}, (131)

and, reasoning analogously to the derivation of Lemma 4.7 (c¢f. beginning of Sect. 4.3), we deduce that T}, maps
W (dq) into itself under the discrete versions of (84) and (87), which, denoting Cy 4 := max{l,Cs ,} CF 4, are
given, respectively, by

O,Q;Q} (130)

(Ti(on, 1) th,vh)HQ_ <Cp, Zz“{ugiulm s
‘ i=1

a
Co,a(1 + 64)da + Coa(l + 64) < WAC\T (132)
and
2
Cia 2 Algilijar + 1 filoen} < da. (133)
i=1
Alternatively, the same conclusion is attained if, instead of (132), we define
: QA
0q 1= mln{l, ’}, 134
; ol )
and, letting C 4 := 2Cy 4, impose
Qaq
Cra{lglysrr + [ flora}t + Cso{lglyzr + [flosal < 57 (135)

4]

Note, however, that only (132) is required for T}, to be well-defined. Furthermore, employing analogue arguments
to those utilized in the proofs of Lemmas 4.8-4.10, we are able to show the continuity properties of Th, T, and
Th, that is the discrete versions of (88), (92), and (96), which are exactly as the latter, but with corresponding
constants denoted LT @ L4, and LT, 4 Therefore, following an analogue procedure to the one that yielded
(104), we deduce that, under the assumption (132), there exists a positive constant Lt 4, depending only on
Ly 4 Ly g Ly 4 and CT,d> such that
2
lo.:0) D3 {l9illaar + [ filo.} Imn = 9nlo, xqy:

o (136)

ITh(mn) = Ta(9n)l g, wq, < Lra (1+ 6+ lgliysrr + If

for all g, ¥, € W(da).
Consequently, we can establish next the main result of this section.
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Theorem 5.4. Assume that dq and the data are sufficiently small so that (132) and (133) are satisfied, or
alternatively that there holds (134), (135), and (133). Then, the operator Ty has a fixed point &, € W (d4).
Equivalently, the coupled problem (107) has a solution (op,up) € Hp X Qn, (@n, Xn) € Xapn X My, and
(in,&in) € Hin X Qin, i € {1,2}, with &, := (&1,1,&2,n) € W(da). Moreover, there hold the following a priori
estimates

on u) it < Cr.a { I8l jr + 8000 + €4l o 9110}
I x)lxerrs < Cra {1glyjsne + [F o + 1€l o} and
i &)l e, < Cra il + I filon} i {12} (137)

In addition, under the extra assumption

2
o,r;Q) Z{Hgi\h/z,r + | fil

i=1

Lra (1+6a+gliysmr +11f] 000} <1, (138)

the aforementioned solutions of (113) and (107) are unique.

Proof. As previously observed, the fact that T), maps W (d4) into itself is consequence of (132) and (133), or
alternatively of (134), (135), and (133). Then, the continuity of T} (c¢f. (136)) and Brouwer’s theorem (cf. [12],
Thm. 9.9-2) imply the existence of solution of (113), and hence of (107). In turn, under the additional hypothesis
(138), the Banach fixed point theorem guarantees the uniqueness of solution. In either case, equations (52), (66),
and (79) yield the a priori estimates (137) and conclude the proof. O

5.3. A priori error analysis

In this section we consider arbitrary finite element subspaces satisfying the assumptions specified in
Section 5.2, and establish the Céa estimate for the Galerkin error

2

I(o;u) — (o'h7uh)HH><Q + (s x) — (‘PhaXh)”szMl + ZH(Uz‘,&‘) - (Ui,h7§i7h>“Hi><Qi’ (139)
i=1

where ((o,u), (@, x), (03, &)) € (Hx Q) x (Xz x My) x (H; x Q;), i € {1,2}, is the unique solution of (41), and
((a';“uh), (©n, Xn)s (ai7h7§¢7h)) € (Hh X Qh) X (ngh X Ml,h) X (Hi’h X Qi,h), i € {1,2}, is a solution of (107).
We proceed as in previous related works (see, e.g., [11]) by applying suitable Strang-type estimates to the pairs
of associated continuous and discrete schemes arising from (41) and (107) after splitting them according to the
three decoupled equations. Throughout the rest of this section, given a subspace Z, of an arbitrary Banach
space (Z, |- |z), we set
dist(z, Zp,) := inf |z — 24|, Vze Z.
ZhE€Zp

We begin the analysis by considering the first two rows of (41) and (107), so that, employing the estimates

provided by Proposition 2.1, Corollary 2.3, Theorem 2.3 from [5], we deduce the existence of a positive constant
¢, independent of h, such that

(o, 1) = (@ ) [5ixq < E{dist(U,Hh) +dist(w, Qn) + | Ge.o — Geyon

a } (140)

Thus, proceeding analogously to the derivation of (91), we readily obtain

<5t [0l { g

|G — Gey o ora €= €nlopat,  (14D)

0,00 | = nllo,a+ len

Qj,
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which, substituted back in (140), yields

(o, w) = (@ w) g < 7 {dist(a,Hh) + dist(u, Qp)

s}

(142)
with ¢z 1= ¢ max{1,e; " |Q|("=2)/2r}.
Next, employing the same estimates from Proposition 2.1, Corollary 2.3, Theorem 2.3 of [5] to the context

given by the third and fourth rows of (41) and (107), we find that there exists a positive constant ¢, independent
of h, such that

(9,30 = (@ns Xl xanr, < & {dist(, Xo,0) + dist(x, Miu) + |Ge — G, lasy, }- (143)
In turn, proceeding as for the deduction of (95), we obtain
|Ge = Ge,llary, <1207 € = €nllo,ps0, (144)

which, along with (143), gives

[(@, ) = (@ns xn) | xoxan, < e {dist(p, Xo,n) + dist(x, Myn) 29} (145)

with ¢z := ¢ max{1, |Q|(P—)/er}.

Furthermore, we now focus on the last two rows of (41) and (107), with ¢y u(7i,&) and ce, w, (Tijh, &in)
being considered as part of the respective functionals on the right-hand side. In this way, applying the estimate
from Lemma 2.27 of [19], we conclude that there exists a positive constant ¢, independent of h, such that

(03 &) = (@i &)l g, < E{dlist(os, Hin) + dist(&, Qi) + (&) = o, (s &n)lpgy, f- - (146)

Then, subtracting and adding &; j, to the second component of ¢, (-, &;), making use of the triangle inequality,
bearing in mind the definition of ¢y v (cf. (38f)), and employing its boundedness property (cf. (39), (40)), we
get

HCLP,U('afi> - Ccpmuh('aguh)HH;ﬁ < Hcc.mu('vgi - €i’h)HH£,h + HCLP*LPhﬂl*Uh(.’é—i;h)HH;h

< lel {(Ielom + o) 16 = &inlo o + I€inlo o (1€ = @hlo o + 10 = wallo 0 )

which, jointly with (146), and summing over i € {1,2}, imply
2 2
Z (0i,&) = (@in &n)ly, <o, < 7 {Z (dist(o;, Hip) + dist(&i, Qi,n))

) [€ = &n

lo,p:2 + 1€nllo,p:0 (lp —

+ (lelo,r T )}7 (147)
with ¢z := ¢ max{1, |c|}.
For the rest of the analysis we introduce the partial error

2

E:= (o, 0) ~ (on,un)lrxq + D [(03.6) — (@in, Ein)
i=1

and suitably combine the estimates (142), (145), and (147). More precisely, employing the right-hand side of
(145) (142) and (147), adding the resulting inequalities, performing some algebraic
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manipulations, and then utilizing the a priori bounds for ||¢lo.rq, |€nlora: |1€lo.m0, [€r]o,pa, and [uforo
provided by Theorems 4.11 and 5.4, we find that there exists a positive constant C,, depending on ¢4, cr, ¢z,

4, 64, Cp, Cp, Cg, Cp 4, and OT,d’ and hence independent of h, such that

2
E<C, {dist((o’,uLHh x Qp) + dist((e, x), Xon X M1 ) + Z dist((04, &), Hip ¥ th)}
i=1

i=1

2
+Ce {gll/z,r +€los2 + gl s + 1 lose + D5 (lgilijzr + 1fillo,e.0) } E. (148)

Consequently, we are in position to establish the announced Céa estimate.

Theorem 5.5. In addition to the hypotheses of Theorems 4.11 and 5.4, assume that

2
1
Ce {lglll/zr + €lo.s.2 + Igl1/smsr + If oo + D (lgilajar + |fi|o,g,sz)} <5 (149)
i=1
Then, there exists a positive constant C, independent of h, such that
2
(o, u) = (on, wn)lgxq + (@, x) = (@n Xn)l x,x0r, + ZH(U%&) = (i &in) | a1, <0,
i=1
2
<C {dist((ayu),Hh x Qp) + dist((¢, x), Xon X M1 ) + Z dist((04, &), Hip ¥ th)} (150)
i=1

Proof. Under the assumption (149), the a priori estimate for E follows from (148), which, along with (145),
yield (150) and ends the proof. O

We end this section by remarking that (7) suggests the following postprocessed approximation for the pressure
p

1
Dh = - tr(op), (151)

for which it is easy to show that

1
Ip = prloe < 7 lo = onfo.o- (152)

Similarly, the first eq. in the first row of (8) suggests to approximate the velocity gradient as
— 1 a
(vu) =~ o, (153)
hop

for which it is readily seen that

HVu — (ﬁl>hH0,Q < i lo —anlo.q- (154)

6. SPECIFIC FINITE ELEMENT SUBSPACES

In this section we define explicit finite element subspaces satisfying the hypotheses (H.1)—-(H.6) that were
introduced in Section 5.2 for the well posedness of the Galerkin scheme (107), and provide the corresponding
rates of convergence.
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6.1. Preliminaries

In what follows we make use of the notations introduced at the beginning of Section 5.1. Thus, given an integer
k =0, for each K € T, we let Py (K) and Py (K) be the spaces of polynomials of degree < k defined on K and
its vector version, respectively. Similarly, letting x be a generic vector in R™, RT(K) := Py(K) + P(K)x
and RTy(K) stand for the local Raviart—Thomas space of order k defined on K and its associated tensor
counterpart. In addition, we let Py (73), Pr(7r), RTk(7;) and RTy(7,) be the corresponding global versions of
Pi(K), Pr(K), RT(K) and RTy(K), respectively, that is

Py(Tn) i={on € L*(Q) : wp|k € Pu(K) VK € Tp},
Pi(Th) == {vie L*(Q): vp|k e Py(K) VK €T},
RT,(7h) :={mnh € H(div; Q) : 7|k € RTx(K) VK €T},

and
RTk(/Th) = {Th € H(diV,Q) : Th|K € RTk(K) VK € '];l}

We notice here that for each ¢ € (1, 4+00) there hold the inclusions Pi.(73,) € LY(Q), Px(75) < LY(Q), RT(71,) =
H(div; Q), RTx(7) < Hi(divy; ), and RTy(7,) < H(divy; ), which are employed below to introduce our
specific finite element subspaces. Indeed, we now set

Hj, := RTx(7n) n Ho(divs; Q), Qpn:=Px(7n), Hin:=RTx(Tn), Qin:= Pr(Tn),
Xg,h = RTk(’Th), Ml,h = Pk(/fh), X17h = RTk(/Th), and M27h = Pk('fh) (155)

6.2. Verification of the hypotheses (H.1)—(H.6)

We begin by observing from (155) that (H.1) is trivially satisfied, whereas (H.2) was proved in Lemma 5.5
from [14] (see, also, [8], Lem, 4.3) for the particular case given by r = 4 and s = 4/3. In turn, a vector version of
(H.2) was established in Lemma 4.5 from [26] for s € (1,2) in 2D (with local notation there given by o instead of
s). In both cases, the preliminary result provided by Lemma 5.4 of [14] plays a key role in the respective proofs.
While we could simply say, at least in 2D, that (H.2) follows basically from a direct extension of Lemma 4.5
from [26], we provide its explicit proof below for sake of completeness. To this end, following ([26], Sect. 4.1),
we now introduce for each ¢ € (1,400) the space

H, = {r e H'(div;; Q) UH(div;;Q) :  7|x e WH(K) VK €T},

and let II¥ : H; — RT(7,) be the global Raviart-Thomas interpolator (cf. [6], Sect. 2.5). Then, we recall from
Proposition 2.5.2 and equation (2.5.27) of [6] the commuting diagram property

div (I (7)) = Pr(div(r))  VreH,, (156)

where PF : L1(Q) — Py (73) is the projector defined, for each v € L!(f2), as the unique element P (v) € Py (7},)
such that

f Ph(v)an = J van  Yqn € Py(Th). (157)
Q Q

In turn, it follows from Proposition 1.135 of [19] (see, also, [11], Eq. (A.5)) that there exists a positive constant
Cp, independent of h, such that for each t € (1, +00) there holds

[P () o 40 < C v

ose  Yue LY(Q). (158)

On the other hand, while here we could use again ([14], Lem. 5.4), we prefer to resort to the slightly more
general result provided by Lemma A.2 of [11], thus giving a greater visibility to it, which establishes that, given
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an integer ! such that 1 <! <k + 1, and given ¢, p € (1, +0), such that p <t < % ifp<mn,orp<t<+ooif
p = n, there exists a positive constant C', independent of h, such that

n

|- HIIYL(T)Ho,t;Q SCHY 70 |rpe VT e WHP(Q). (159)

Note that for the first set of constraints on ¢ and p, there holds ¥ — % > —1, which yields [ + % — % > 0, whereas
for the second one, there holds [ + % — % =1—1+ % > %, thus proving that in any case the power of A in
(159) is non-negative. In this way, it follows from (159) that, for [ = 1, and under the specified ranges of ¢ and

p, there exists a positive constant Cry, independent of h, such that (¢f. [11], Lem. A.3)

I (Moo < CrilTlipe V7T e WHP(Q). (160)
In particular, for p < n and t = 2, the inequality ¢t < % becomes p > nQ—fQ, so that for the resulting range of
p, that is p e [n2—f2,2) in 2D, and p € [%,2] in 3D, we obtain

I (T)loe < CulTlipe  ¥7e WHP(Q). (161)

Analogue identities and inequalities to those stated above are valid with the tensor and vector versions of H’,?L
and PF, which are denoted by Hﬁ and ’Pﬁ, respectively.
We are now in position to prove that (H.2) holds.

Lemma 6.1. Under the ranges for r and s specified by (64), there exists a positive constant Ba, independent
of h, such that

.di
sup SQ vy, - div(Ty,)

mer, | Trlaivae
’Th,=’=0

= ,Bd thHO,T;Q vVh € Qh7 (162)

Proof. Given vy, € Qp, v, + 0, we set vy, ¢ := |v,|"~? vp,, which belongs to L*(Q2), and notice that
| v v = Wl Vsl (163)
Q
Next, we let O be a bounded convex polygonal domain that contains 2, and define
_fvns in €
€70 in O\Q,’
It is readily seen that g € L#(O) and ||gllo.s;0 = |[Va.sllo,s:2. Then, applying the elliptic regularity result provided

by Corollary 1 from [21], we deduce that there exists a unique z € W25(0) n W*(O) such that: Az = g in
O, z = 0 on 0O. Moreover, there exists a positive constant Creg, depending only on O, such that

[2]2,5:0 < Creg[8lo,5:0 = Creg [Vasllo,s:- (164)
Hence, defining ¢ := Vz|g € Wh#(Q), it follows that div(¢) = v, s in , and, according to (164),
I€]1,50 < [2]2,550 < Creg [Vh,slo,s50- (165)

Now, since the identity tensor I clearly belongs to RTy(73), we can let ¢ be the Hy(div; Q)-component (cf.
(18)) of TIF(¢), so that ¢, € Hy,. In this way, employing the analogue of (156), we find that

div(¢y) = div(TI5(C)) = Ph(div(¢)) = Ph(vas), (166)
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which, along with the analogue of (158) for ¢ = s, give

[div(Ch)llo,si0 < CP [Vhsllg - (167)
In turn, noting that the range for s (¢f. (64)) fits into the one for p in (161), we can apply this inequality (with

p = s) and the regularity estimate (165), to arrive at

I<n

00 < |IO)| < Cnl¢lin < Cn Creg Vnslo o (168)

which, combined with (167), implies

”Ch”divs;ﬂ < (C'P +Cn C(reg) ”vh,s 0,s;92- (169)

Consequently, bounding below the supremum in (162) with ¢;, and making use of (166), the analogue
of (157), (163), and (169), we conclude the required discrete inf-sup condition with the constant B4 :=

(Cp +Cn Creg)il. O

Furthermore, for the hypotheses (H.3) and (H.4), we first stress that (H.3) corresponds exactly to (H.5) of
[11], and hence we omit most details and refer to Section 5.2, Lemma 5.2 from [11]. We just make a few remarks
here. First of all, we observe that the discrete kernels of the bilinear forms b; and by coincide algebraically,
which reduces to

KF = {4, e RT(T;) :  div(yn) =0 in Q).

Then, we let ©F : L1(Q) — K} be the projector defined similarly to (157), that is, given ¢ € L'(Q), ©k(¢) is
the unique element in K 7,f such that

J @Z(@'@bh:J b i Vb, € K.
0 Q

In this way, a quasi-uniform boundedness property of ©F in 2D (cf. [11], Eq. (5.8)), along with the properties of
the operators D; (c¢f. Lem. 4.2), play a key role in the proof of (H.3). Whether the aforementioned boundedness
is satisfied or not in 3D is still an open problem, and hence, similarly to [11], the assumption (H.3) is the
only aspect of the analysis in this section that does not hold in 3D. All the other conditions are valid in both
2D and 3D. Regarding (H.4), we remark that the discrete inf-sup conditions for b; and by, which adapt the
continuous analysis from Lemma 4.4 to the present discrete setting, follow from slight modifications of the proofs
of Lemma 4.5 from [26] and Lemma 5.3 from [11]. Further details are omitted here.

Finally, it is clear from (155) that (H.5) is trivially satisfied, whereas (H.6) was proved precisely by Lemma 4.5
from [26]. Alternatively, for the discrete inf-sup condition for ¢; we can proceed analogously to the proof of
Lemma 6.1 by observing that the range of ¢ (c¢f. (64), recall that H; := H(div,;)) also fits into the one for p
in (161), whence this inequality can be applied to p = g as well.

On the other hand, and as already announced in Section 5.1, we now observe that for the particular finite
element subspaces introduced in Section 6.1 (¢f. (155)), the discrete conservation of momentum properties (cf.
second, fourth, and sixth rows of (107)) become

div(on) = Ph((&in —Eon)e 'on +£) =0 in Q,
div(en) + (E1n — &on) +PE(f) =0 in Q,
Ein —div(oin) —PF(fi) =0 in Q, (170)

so that, due to the presence of ’P;’f and ’Pﬁ, they are satisfied approximately.
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6.3. The rates of convergence

Here we provide the rates of convergence of the Galerkin scheme (107) with the specific finite element
subspaces introduced in Section 6.1, for which we previously collect the respective approximation properties. In
fact, thanks to Proposition 1.135 of [19] and its corresponding vector version, along with interpolation estimates
of Sobolev spaces, those of Qp, Q; p, and M; j, are given as follows

(AP}) there exists a positive constant C, independent of h, such that for each I € [0,k + 1], and for each
v e WhT(Q), there holds

dist(v,Qp) := inf [v—1w,

0.0 < Ch[v]ire,
vhEQR

(AP%) there exists a positive constant C, independent of h, such that for each ! € [0,k + 1], and for each
n; € WhP(Q), there holds

0,0 S Ch! H77i|

dist (1;, Qin) = . inf  |n; —nin
i, Jh

1,p;Q2
h€Q; e

(APY) there exists a positive constant C, independent of h, such that for each [ € [0,k + 1], and for each
A e WHT(Q), there holds

dist(X, My ) = inf A= Mo e < Cht |\

hE]\/Il,h

Lr; Q-

Furthermore, from equation (4.6), Section 4.1 of [26] and its tensor version, which, as the foregoing ones, are
derived in the classical way by using the Deny—Lions Lemma and the corresponding scaling estimates (cf. [19],
Lems. B.67 and 1.101), we state next the approximation properties of Hj, and H; ,

(AP7) there exists a positive constant C, independent of h, such that for each [ € [1,k + 1], and for each
T € H(Q) n Hy(div,; Q) with div(7) e WH*(9), there holds

dist(T,Hh) =

T = Tallaiv.ie < ChH{|Tla + [div(T)]1s0),

inf
TheH),

(AP7?) there exists a positive constant C, independent of h, such that for each [ € [1,k + 1], and for each
7, € H/(Q) with div(7;) € WH2(Q), there holds

dist(‘ri, Hi’h) = 122 75 — Tinlaiv,0 < Chl A
i, hEH; h

o+ [|div(Ti)ig0}-

Finally, that of X5 5, which we recall from Section 4.5, (AP}') of [26], becomes

(APY) there exists a positive constant C, independent of h, such that for each ! € [1,k + 1], and for each
¢ € WHT(Q) with div(¢) € WHT(€2), there holds

dist (¢, Xas) =, inf 6= @ulaw, 0 < OB @l + [div(@) ).

The rates of convergence of (107) are now provided by the following theorem.

Theorem 6.2. Let ((0', u), (v, x), (o‘i,fi)) € (H X Q) X (Xg X Ml) X (Hl X Qi), i € {1,2} be the unique solution
of (41) with & := (&1,&) € W(6), and let (o, un), (@n, Xn), (Gin, &) € (Hu x Qi) x (Xop x My p) x (H; p X
inh), i e {1,2} be a solution of (107) with &, := (1.1, &2,n) € W(da), which is guaranteed by Theorems 4.11
and 5.4, respectively. In turn, let p, pn, Vu, and (ﬁl)h given by (7), (151), the first eq. in the first row of
(8), and (153), respectively. Assume the hypotheses of Theorem 5.5, and that there exists | € [1,k + 1] such
that o € H'(Q) n Hy(divy; Q), div(e) e WH3(Q), ue WHT(Q), p € WET(Q), div(e) € WHT(Q), x € W (Q),
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o; € H(Q), div(o;) e WHe(Q), and & € WHP(Q), i € {1,2}. Then, there exists a positive constant C, independent
of h, such that

l(o,w) = (on, un)[myq + [P = prlloq + (0, X) = (@ns X0)l x5 w0,

2
#vu= (V) |+ D00&) — @in&in)l o,
rloo 4= '
< Ch' {lofig + 1div(o) |ua + [u)ire + [l + |div(@) e

2
+ lxllere + Z (Ho'iuz,sz + HdiV(U'i)Hz,g;Q + Hfin,p;Q) }

i=1

Proof. Tt follows straightforwardly from Theorem 5.5, equations (152), (154), and the above approximation
properties. (I

7. COMPUTATIONAL RESULTS

We turn now to the numerical verification of the rates of convergence anticipated by Theorem 6.2. The
following examples in 2D and 3D have been realized with the finite element library FEniCS [1]. The linearization
of the nonlinear algebraic equations that arise after discretization is done using either a fixed-point Picard
algorithm or an exact Newton—Raphson method (with the zero vector as initial guess and iterations are stopped
once the absolute or relative residual drops below 10~%) and the linear systems are solved with the multifrontal
massively parallel sparse direct method MUMPS [2].

Example 1. Considering first the spatial domain = (0,1)3 along with the arbitrarily chosen parameters
p=10"% e=0.1, Kk =025 Ky =0.5,
we define the following manufactured exact solutions to (8)

sin? (7z) sin(my) sin(272)
u= sin(rx) sin? (7y) sin(272) ,
—[sin(27z) sin(my) + sin(7x) sin(27y)] sin®(72)
1
p=at =Syt +2"), & =exp(-ay+2),
cos*(zyz), x = sin(x)cos(y)sin(z), o = uVu— pl,

ri(VE + qibie o) —&u, @ =¢eVyx,

P
(V)
Il

g;

and construct forcing/source terms and non-homogeneous Dirichlet boundary conditions f, g, f;, g; from these
closed-form solutions. Using the lowest-order version of the finite element spaces defined in (155) (with poly-
nomial degree k = 0), we solve problem (107) on a sequence of six succesively refined regular meshes. The
zero-mean pressure condition is enforced using a real Lagrange multiplier approach. At each refinement level
we compute errors between approximate and smooth exact solutions using the norms in (139) and Theorem 6.2
(but we split their contribution coming from the error on each individual field variable). For this 3D accuracy
test we consider the Banach spaces indexes specified in (64)

r=3, $=3/2, p=6, o0=06/5.

The results of this convergence study are collected in Figure 2 (top panels), where we plot in log-log scale the
error decay as the number of degrees of freedom increases. Apart from the electric field ¢ which converges with
rate of approximately 1.5, all other variables exhibit an optimal rate of convergence. In the bottom panel of the
figure we show approximate solutions for some of the field variables, which indicate well resolved profiles.
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FIGURE 2. Example 1. Error history associated with the finite element family (155) with & = 0
in 3D for primal variables (top left) and mixed variables (top right, including the velocity
gradient using the postprocess in (153)), and samples of approximate primal variables (velocity
streamlines uy, iso-surfaces of postprocessed pressure py, electrostatic potential x},, and positive
ion concentration &; p; bottom plots). In all mesh refinements the number of Newton-Raphson
iterations was 4.

In addition, the balance-preserving properties (170) of the proposed mixed formulation are assessed by com-
puting the residual quantities

fluidy, := Hdiv(o’h) — 'Pﬁ((fl,h —&p)eton + f) H ,

gw
currenty := Hdiv(cph) + (&1,n —&on) + P}If(f) Heoo’
massi,h = Hfiah — diV(O’Z"h) — P}’f(fﬂ”em

These values, for each refinement level, are collected in Table 1. We tabulate the total error

e:=|(o,u) = (o, un)lgyq + I = Pulloq + (0. X) = (n: X0l x, w0,
. 2
#|va— (V) |+ D006 = @ &in)l o
' i=1

(as indicated by Thm. 6.2) as well as the rates of convergence computed as

r = log(e/8) [1og(h/i3)]71,
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TABLE 1. Example 1. Total error, experimental rates of convergence, and ¢*-norm of the
projected residual of the momentum, potential, and ionic transport equations.

DoF h e r fluidy, current; massip masssy p,

145 1.732 4.51le+1 = 2.37e-07 7.29¢-17 1.83e-15 8.64e—16
1009 0.866 2.35e+1 0.88 8.61e-08 2.45e-16 4.14e-15 1.81e-15
7489 0.433 1.34e+1 0.91 6.07e-10 4.53e-16 5.10e-15 4.85e-15

57601 0.217  6.90e+0 0.96 1.27e-11 6.76e-16 1.45e-14 8.77e-15
451 585 0.108 3.46e+0 1.00 1.04e-11 6.29e-15 1.47e-14  2.48e-11
3575809 0.0561 1.72e4+0 1.00 5.88¢-11 4.20e-15  2.38e-15 2.95e-15

where e and € denote errors produced on two consecutive meshes associated with mesh sizes h and iAL, respectively.
From the last columns we see that the potential and transport balance equations are satisfied to machine
precision while the error for the momentum balance is higher. This may be explained by the presence of the
term ¢y, on the right-hand side (which has a H(div)-component).

Example 2. In addition, and in order to illustrate the implementation of fixed-point solvers, we have realized
numerically Picard versions of the linearization of (107). In case A we follow the fixed-point structure used in
the analysis of Section 5.1, that is, solving sequentially problems

(108) — (109) — (110),

and iterating until the £2-norm of the vector containing the residual of the Picard iterates reaches 10~8. Next,
in case B we choose a different fixed-point splitting where we apply two modifications with respect to case A.
First, in (110) instead of the linear functional for the second discrete electrostatic potential equation (discrete
version of (29d)) we consider G(\) := — §, fAn and the coupling term appears as a bilinear form contribution
(and no longer as part of the linear functional), say

G0 (E1ms o)) = JQ MlErn — Ean).

Secondly, with regards to the constitutive equation in the ionized particle equations, we swap the bilinearity in
the flux definition (discrete version of (38f)) from &; ;, to the pair (¢p,uy), that is, we consider

65i«h(7i’h’ (Pn,un)) = fﬂ{%‘ g n — k7 E; uh} Ty

For both fixed-point cases we have taken as initial guess solution the zero vector. Moreover, we consider a
2D problem with manufactured solutions defined on Q = (0,1)?

u= (f;’iﬁ?ﬁﬁfﬁgé’{gg))7 p=a'—y', x=sin(@)cos(y), & =exp(—ay), & = cos(ay),

and take the same model constants as before. In 2D, and according to (64) we now choose
r=4, s=4/3, p=4, p=4/3.

We focus on the number of Picard iterations required in each case, displaying the obtained results in Table 2.
While we confirm that all methods give exactly the same errors (and consequently also the same convergence
rates, which are optimal in view of the theoretical bounds), from the number of fixed-point iterations we readily
note that case B performs much better than case A, for the two polynomial degrees we tested k = 0, k = 1.
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TABLE 2. Example 2. Total error, experimental rates of convergence, and number of iterations
required for two types of fixed-point methods as well as for Newton—Raphson linearization.

Case A Case B Case C

DoF h e r iter e r iter e r iter

k=0
221 0.500 2.55e+1  « 100 2.55e+1  * 13 2.55e+1  * 4
841 0.250 1.30e+1 0.97 83 1.30e+1 0.97 8 1.30e+1 0.97 4
3281 0.125 6.39e+0 1.03 72 6.39e+0 1.03 8 6.39e+0 1.03 4
12961 0.062 3.15e+0 1.02 70 3.15e+0 1.02 9 3.15e+0 1.02 4
51521 0.031 1.57e+0 1.01 68 1.57e4+0 1.01 9 1.57e4+0 1.01 4

k=1
681 0.500 4.33e+0 « 68 4.33e+0  * 9 4.33e+0  * 4
2641 0.250 1.08e+0 2.00 68 1.08e4+0 2.00 9 1.08e+0 2.00 4
10401 0.125 2.72e-01 2.00 68 2.72¢-01 2.00 9 2.72¢-01 2.00 4
41281 0.062 6.81e02 2.00 68 6.81e-02 2.00 9 6.81e-02 2.00 4
164481 0.031 1.71e02 2.00 77 1.71e-02 1.99 10 1.70e-02 2.00 4

A INING

llenl llos, lloz,ull

54602 008 10e-01 24602 05 9.1e-01 3.3e-02 1.4e+00
| — — | ——

FIGURE 3. Example 2. Samples of approximate mixed variables (stress magnitude, electric field
magnitude and arrows, and ionic fluxes) obtained with the fixed-point algorithm labelled case
A, and for k = 1.

This behaviour could be explained by the stability of different linearizations of advective nonlinearities and by
the strength of the coupling for this particular choice of model parameters. We stress that the analysis of case B
is, however, not at all straightforward since the decoupled linear electrostatic potential problem resulting from
the first modification is no longer symmetric. For sake of reference we also tabulate total errors and number
of nonlinear iterates obtained with the method we use also in Examples 1 and 3: an exact Newton—Raphson
linearization (labelled here as case C). Needless to say, the latter is actually the one that one could eventually
employ in practical computations. Samples of the approximate solutions (only the mixed variables) computed
with the method in case A are portrayed in Figure 3.

Example 3. We conclude this section with an application problem where we demonstrate the use of the mixed
finite element scheme in simulating the transport process in an electrokinetic system with an ion-selective
interface, where the development of an electroosmotic instability is expected. The problem configuration is
adopted from [17,18]. This system corresponds to a transient counterpart of (8) in the absence of external
forces and sources (f = 0, f = f; = 0), where the following additional terms appear in the momentum and
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FIGURE 4. Example 3. Samples of approximate velocity (top) and anion concentration (bottom)
at times t = 107* and 10~3 (left and right, respectively), produced with the mixed method and
using k = 1.

concentration equations (note also the different scaling of € on the right-hand side of the momentum balance,
required to match the adimensionalization in [18])

—éé’tu —div(o) = (& — &) %‘P’ —0; + div(o;) = 0.

The time derivatives are discretized using backward Euler’s method. In the problem setup a boundary layer is
present in the vicinity of the solid boundary (the bottom edge of the rectangular domain), and therefore we
employ a graded mesh with a higher refinement close to the layer. For this problem we select the second-order
family of finite element subspaces (setting k = 1 in Sect. 6.1), which gives for the chosen mesh 865201 degrees
of freedom.

The physical properties of the system are as follows. The cation species is Na™ having diffusivity x; = 1 and
the anion species is C1~ with the same diffusivity ke = 1. The dynamic viscosity of the mixture is p = 1. Initial
conditions are given by u = 0, and a 2% random perturbation on a linearly varying initial ionic concentrations
&1 =((2—y), & = Cx, where ( is a uniform random variable between 0.98 and 1. On the top boundary we set
& =& =1, u = 0, and an applied voltage of x = 120. On the bottom boundary we impose x = 0, & = 2,
oy -v = 0, and u = 0. On the vertical walls we prescribe periodic boundary conditions. The other model
parameters take the values € = 8 x 107%, Sc =102, and we use a timestep At = 107%. We plot snapshots of
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the anion concentration & 5, in Figure 4 at times ¢ = 107*,1073. We observe similar ionic patterns to those
produced also in [31, 33].
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