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NEW MIXED FINITE ELEMENT METHODS FOR THE COUPLED STOKES
AND POISSON–NERNST–PLANCK EQUATIONS IN BANACH SPACES

Claudio I. Correa1, Gabriel N. Gatica1,˚ and Ricardo Ruiz-Baier2,3,4

Abstract. In this paper we employ a Banach spaces-based framework to introduce and analyze new
mixed finite element methods for the numerical solution of the coupled Stokes and Poisson–Nernst–
Planck equations, which is a nonlinear model describing the dynamics of electrically charged incom-
pressible fluids. The pressure of the fluid is eliminated from the system (though computed afterwards
via a postprocessing formula) thanks to the incompressibility condition and the incorporation of the
fluid pseudostress as an auxiliary unknown. In turn, besides the electrostatic potential and the concen-
tration of ionized particles, we use the electric field (rescaled gradient of the potential) and total ionic
fluxes as new unknowns. The resulting fully mixed variational formulation in Banach spaces can be
written as a coupled system consisting of two saddle-point problems, each one with nonlinear source
terms depending on the remaining unknowns, and a perturbed saddle-point problem with linear source
terms, which is in turn additionally perturbed by a bilinear form. The well-posedness of the continuous
formulation is a consequence of a fixed-point strategy in combination with the Banach theorem, the
Babuška–Brezzi theory, the solvability of abstract perturbed saddle-point problems, and the Banach–
Nečas–Babuška theorem. For this we also employ smallness assumptions on the data. An analogous
approach, but using now both the Brouwer and Banach theorems, and invoking suitable stability con-
ditions on arbitrary finite element subspaces, is employed to conclude the existence and uniqueness
of solution for the associated Galerkin scheme. A priori error estimates are derived, and examples
of discrete spaces that fit the theory, include, e.g., Raviart–Thomas elements of order 𝑘 along with
piecewise polynomials of degree ď 𝑘. In addition, the latter yield approximate local conservation of
momentum for all three equations involved. Finally, rates of convergence are specified and several nu-
merical experiments confirm the theoretical error bounds. These tests also illustrate the aforementioned
balance-preserving properties and the applicability of the proposed family of methods.
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1. Introduction

Fluid mixtures with electrically charged ions are critical for many industrial processes and natural phenomena.
Notable examples of current interest are efficient energy storage and electrodialysis cells, design of nanopore
sensors, electro-osmotic water purification techniques, and even drug delivery in biological tissues [40]. One of
the most well-known models for liquid electrolytes is the Poisson–Nernst–Planck/Stokes system. It describes the
isothermal dynamics of the molar concentration of a number of charged species within a solvent. This classical
model is valid for the regime of relatively small Reynolds numbers and it is written in terms of the concentrations,
the barycentric velocity of the mixture, the pressure of the mixture, and the electrostatic potential. The system
is strongly coupled and the set of equations consist of the transport equations for each dilute component of
the electrolyte, a diffusion equation for the electrostatic equilibrium, the momentum balance for the mixture
(including a force exerted by the electric field), and mass conservation.

Solving these systems lends itself difficult due to coupling nonlinearities of different nature. Numerical meth-
ods for incompressible flow equations coupled with Poisson–Nernst–Planck equations that are based on finite
element schemes in primal formulation (also including stabilized and goal-adaptive methods) can be found in
[3, 20, 32, 35, 37, 39], finite differences in e.g., [34], finite volume schemes in [38], spectral elements in [36], and
also for virtual element methods in [17]. Regarding formulations using mixed methods, the first works address-
ing Stokes/PNP systems are relatively recent [27,28], where a stabilized mixed method is employed for the Poisson
problem, whereas the usual primal approach is applied to the Stokes, Navier–Stokes and Nernst–Planck equations,
and all them within a Hilbertian framework. Mixed variational formulations are particularly interesting when direct
discrete approximations of further variables of physical relevance are required. A recent approach to mixed methods
consists in defining the corresponding variational settings in terms of Banach spaces instead of the usual Hilbertian
framework, and without augmentation. As a consequence, the unknowns belong now to the natural spaces that are
originated after carrying out the respective testing and integration by parts procedures, simpler and closer to the
original physical model formulations arise, momentum conservative schemes can be obtained, and even other un-
knowns can be computed by postprocessing formulae. As a non-exhaustive list of contributions taking advantage of
the use of Banach frameworks for solving the aforementioned kind of problems, we refer to [4,8–11,13,14,24,26,29],
and among the different models considered there, we find Poisson, Brinkman–Forchheimer, Darcy–Forchheimer,
Navier–Stokes, chemotaxis/Navier–Stokes, Boussinesq, coupled flow-transport, and fluidized beds. Nevertheless,
and up to our knowledge, no mixed methods with the described advantages seem to have been developed so far for
the coupled Stokes and Poisson–Nernst–Planck equations.

As motivated by the previous discussion, the goal of this paper is to develop a Banach spaces-based formulation
yielding new mixed finite element methods for, precisely, the coupled Stokes and Poisson–Nernst–Planck equations.
The main novelties with respect to [27,28] refer to the use of mixed methods for each one of the equations involved,
the setting of the resulting variational formulation within a Banach framework, and the no need of incorporating
any additional stabilization term. The rest of the manuscript is organized as follows. Required notations and basic
definitions are collected at the end of this introductory section. In Section 2 we describe the model of interest and
introduce the additional variables to be employed. The mixed variational formulation is deduced in Section 3. After
some preliminaries, the respective analysis is split according to the three equations forming the whole system. In
particular, the right spaces to which the trial and test functions must belong are derived in each case by applying
suitable integration by parts formulae jointly with the Cauchy–Schwarz and Hölder inequalities. In Section 4 we uti-
lize a fixed-point approach to study the solvability of the continuous formulation. The Babuška–Brezzi theory and
recent results on perturbed saddle-point problems, both in Banach spaces, along with the Banach–Nečas–Babuška
theorem, are utilized to prove that the corresponding uncoupled problems are well-posed. The classical Banach
fixed-point theorem is then applied to conclude the existence of a unique solution. In Section 5 we proceed analo-
gously to Section 4 and, under suitable stability assumptions on the discrete spaces employed, show existence and
then uniqueness of solution for the Galerkin scheme by applying the Brouwer and Banach theorems, respectively. A
priori error estimates are also derived here. Next, in Section 6 we define explicit finite element subspaces satisfying
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those conditions, and provide the associated rates of convergence. Finally, several numerical examples confirming
the latter, showing the good performance of the method, and illustrating the approximate local conservation of
momentum, are reported in Section 7.

Preliminary notations

Throughout the paper, Ω is a bounded Lipschitz-continuous domain of 𝑅𝑛, 𝑛 P t2, 3u, which is star shaped with
respect to a ball, and whose outward normal at Γ :“ BΩ is denoted by 𝜈. Standard notation will be adopted for
Lebesgue spaces 𝐿𝑡pΩq and Sobolev spaces 𝑊 𝑙,𝑡pΩq and 𝑊 𝑙,𝑡

0 pΩq, with 𝑙 ě 0 and 𝑡 P r1,`8q, whose corresponding
norms, either for the scalar and vectorial case, are denoted by }¨}0,𝑡;Ω and }¨}𝑙,𝑡;Ω, respectively. Note that 𝑊 0,𝑡pΩq “
𝐿𝑡pΩq, and if 𝑡 “ 2 we write 𝐻 𝑙pΩq instead of 𝑊 𝑙,2pΩq, with the corresponding norm and seminorm denoted by }¨}𝑙,Ω
and | ¨ |𝑙,Ω, respectively. In addition, letting 𝑡, 𝑡1 P p1,`8q conjugate to each other, that is such that 1{𝑡` 1{𝑡1 “ 1,
we denote by 𝑊 1{𝑡1,𝑡pΓq the trace space of 𝑊 1,𝑡pΩq, and let 𝑊´1{𝑡1,𝑡1pΓq be the dual of 𝑊 1{𝑡1,𝑡pΓq endowed with the
norms }¨}´1{𝑡1,𝑡1;Γ and }¨}1{𝑡1,𝑡;Γ, respectively. On the other hand, given any generic scalar functional space 𝑀 , we let
Mand M be the corresponding vectorial and tensorial counterparts, whereas }¨}will be employed for the norm of any
element or operator whenever there is no confusion about the spaces to which they belong. Furthermore, as usual,
I stands for the identity tensor in R :“ 𝑅𝑛ˆ𝑛, and | ¨ | denotes the Euclidean norm in 𝑅𝑛. Also, for any vector field
v “ p𝑣𝑖q𝑖“1,𝑛 we set the gradient and divergence operators, respectively, as ∇v :“

´

B𝑣𝑖

B𝑥𝑗

¯

𝑖,𝑗“1,𝑛
and divpvq :“

ř𝑛
𝑗“1

B𝑣𝑗

B𝑥𝑗
. Additionally, for any tensor fields 𝜏 “ p𝜏𝑖𝑗q𝑖,𝑗“1,𝑛 and 𝜁 “ p𝜁𝑖𝑗q𝑖,𝑗“1,𝑛, we let divp𝜏 q be the divergence

operator div acting along the rows of 𝜏 , and define the transpose, the trace, the tensor inner product operators, and
the deviatoric tensor, respectively, as

𝜏 t “ p𝜏𝑗𝑖q𝑖,𝑗“1,𝑛, trp𝜏 q “
𝑛
ÿ

𝑖“1

𝜏𝑖𝑖, 𝜏 : 𝜁 :“
𝑛
ÿ

𝑖,𝑗“1

𝜏𝑖𝑗𝜁𝑖𝑗 , and 𝜏 d :“ 𝜏 ´
1
𝑛

trp𝜏 qI.

2. The model problem

We consider the nonlinear system given by the coupled Stokes and Poisson–Nernst–Planck equations, which
constitute an electrohydrodinamic model describing the stationary flow of a Newtonian and incompressible fluid
occupying the domain Ω Ď 𝑅𝑛, 𝑛 P t2, 3u, with polygonal (resp. polyhedral) boundary Γ in 𝑅2 (resp. 𝑅3). Under
the assumption of isothermal properties, equal molar volumes and molar masses for each species, the behavior
of the system is determined by the concentrations 𝜉1 and 𝜉2 of ionized particles, and by the electric current
field 𝜙. Mathematically speaking, and firstly regarding the fluid, we look for the barycentric velocity u and the
pressure 𝑝 of the mixture, such that pu, 𝑝q is solution to the Stokes equations

´ 𝜇∆u`∇𝑝 “ ´p𝜉1 ´ 𝜉2q𝜀
´1𝜙` f in Ω,

divpuq “ 0 in Ω, u “ g on Γ,

ż

Ω

𝑝 “ 0, (1)

where 𝜇 ą 0 is the constant viscosity, 𝜀 is the heterogeneous dielectric coefficient, also known as the electric
conductivity coefficient, f is a source term, g is the Dirichlet datum for u on Γ, and the null mean value
of 𝑝 has been incorporated as a uniqueness condition for this unknown. In addition, 𝜙, 𝜉1 and 𝜉2 solve the
Poisson–Nernst–Planck equations, which depend on the velocity u and are given by

𝜙 “ 𝜀∇𝜒 in Ω, ´divp𝜙q “ p𝜉1 ´ 𝜉2q ` 𝑓 in Ω,

𝜒 “ 𝑔 on Γ, (2)

where 𝜒 is the electrostatic potential, and for each 𝑖 P t1, 2u

𝜉𝑖 ´ div
`

𝜅𝑖

`

∇𝜉𝑖 ` 𝑞𝑖𝜉𝑖𝜀
´1𝜙

˘

´ 𝜉𝑖u
˘

“ 𝑓𝑖 in Ω,

𝜉𝑖 “ 𝑔𝑖 on Γ, (3)
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Figure 1. Illustrative graph of the coupling mechanisms connecting the three sub-problems
(1)–(3).

where 𝜅1 and 𝜅2 are the diffusion coefficients, 𝑞𝑖 :“
"

1 if 𝑖 “ 1
´1 if 𝑖 “ 2 , 𝑓 , 𝑓1, and 𝑓2 are external source/sink terms,

and 𝑔, 𝑔1 and 𝑔2 are Dirichlet data for 𝜒, 𝜉1 and 𝜉2, respectively, on Γ. The systems (2) and (3) correspond to
the Poisson and Nernst–Planck equations, respectively. We end the description of the model by remarking that
𝜀, 𝜅1, and 𝜅2 are all assumed to be bounded above and below, which means that there exist positive constants
𝜀0, 𝜀1, 𝜅, and s𝜅, such that

𝜀0 ď 𝜀pxq ď 𝜀1 and 𝜅 ď 𝜅𝑖pxq ď s𝜅 for almost all x P Ω, @𝑖 P t1, 2u. (4)

We stress that in order to solve (3), u and 𝜙 are needed. In turn, (1) requires 𝜉1, 𝜉2 and 𝜙, whereas (2)
makes use of 𝜉1 and 𝜉2. This multiple coupling is illustrated through the graph provided in Figure 1, where the
vertexes represent the aforementioned equations and the arrows, properly labeled with the unknowns involved,
show the respective dependence relationships.

Furthermore, since we are interested in employing a fully mixed variational formulation for the coupled model
(1)–(3), we introduce the auxiliary variables of pseudostress

𝜎 :“ 𝜇∇u´ 𝑝I in Ω, (5)

and, for each 𝑖 P t1, 2u, the total (diffusive, cross-diffusive, and advective) ionic fluxes

𝜎𝑖 :“ 𝜅𝑖

`

∇𝜉𝑖 ` 𝑞𝑖𝜉𝑖𝜀
´1𝜙

˘

´ 𝜉𝑖u in Ω. (6)

Thus, applying the matrix trace in (5) and using the incompressibility condition, we deduce that

𝑝 “ ´
1
𝑛

trp𝜎q, (7)
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so that, incorporating the latter expression into (5), 𝑝 is eliminated from the system (1)–(3), which can then be
rewritten in terms of the unknowns 𝜎, u, 𝜙, 𝜒, 𝜎𝑖 and 𝜉𝑖, 𝑖 P t1, 2u, as

1
𝜇
𝜎d “ ∇u in Ω, divp𝜎q “ p𝜉1 ´ 𝜉2q 𝜀

´1𝜙´ f in Ω,

u “ g on Γ,

ż

Ω

trp𝜎q “ 0,

1
𝜀
𝜙 “ ∇𝜒 in Ω, ´divp𝜙q “ p𝜉1 ´ 𝜉2q ` 𝑓 in Ω,

𝜒 “ 𝑔 on Γ,

1
𝜅𝑖
𝜎𝑖 :“ ∇𝜉𝑖 ` 𝑞𝑖𝜉𝑖𝜀

´1𝜙´ 𝜅´1
𝑖 𝜉𝑖 u in Ω,

𝜉𝑖 ´ divp𝜎𝑖q “ 𝑓𝑖 in Ω, 𝜉𝑖 “ 𝑔𝑖 on Γ, 𝑖 P t1, 2u. (8)

We notice here that the uniqueness condition for 𝑝 has been rewritten equivalently as the null mean value
constraint for trp𝜎q.

3. The fully mixed formulation

In this section we derive a suitable Banach spaces-based variational formulation for (8) by splitting the analysis
in four sections. The first one collects some preliminary discussions and known results, and the remaining three
deal with each one of the pairs of equations forming the whole nonlinear coupled system (8), namely Stokes,
Poisson, and Nernst–Planck.

3.1. Preliminaries

We begin by noticing that there are three key expressions in (8) that need to be looked at carefully before
determining the right spaces where the unknowns must be sought, namely p𝜉1´ 𝜉2q 𝜀

´1𝜙, 𝑞𝑖𝜉𝑖𝜀
´1𝜙 and 𝜅´1

𝑖 𝜉𝑖u
in the first and fifth rows of (8). More precisely, ignoring the bounded above and below functions 𝜀´1 and 𝜅´1

𝑖 , as
well as the constant 𝑞𝑖, and given test functions v and 𝜏𝑖 associated with u and 𝜎𝑖, respectively, straightforward
applications of the Cauchy–Schwarz and Hölder inequalities yield

ˇ

ˇ

ˇ

ˇ

ż

Ω

p𝜉1 ´ 𝜉2q𝜙 ¨ v
ˇ

ˇ

ˇ

ˇ

ď }𝜉1 ´ 𝜉2}0,2ℓ;Ω}𝜙}0,2𝑗;Ω}v}0,Ω, (9a)
ˇ

ˇ

ˇ

ˇ

ż

Ω

𝜉𝑖𝜙 ¨ 𝜏𝑖

ˇ

ˇ

ˇ

ˇ

ď }𝜉𝑖}0,2ℓ;Ω}𝜙}0,2𝑗;Ω}𝜏𝑖}0,Ω, (9b)

and similarly
ˇ

ˇ

ˇ

ˇ

ż

Ω

𝜉𝑖u ¨ 𝜏𝑖

ˇ

ˇ

ˇ

ˇ

ď }𝜉𝑖}0,2ℓ;Ω}u}0,2𝑗;Ω}𝜏𝑖}0,Ω, (9c)

where ℓ, 𝑗 P p1,`8q are conjugate to each other. In this way, denoting

𝜌 :“ 2ℓ, 𝜚 :“
2ℓ

2ℓ´ 1
(conjugate of 𝜌), 𝑟 :“ 2𝑗, and 𝑠 :“

2𝑗

2𝑗 ´ 1
(conjugate of 𝑟), (10)

it follows that the above expressions make sense for 𝜉𝑖 P 𝐿𝜌pΩq, 𝜙, u P L𝑟pΩq, and v, 𝜏𝑖 P L2pΩq. The specific
choice of ℓ, and hence of 𝑗, 𝜌, 𝑟 and the respective conjugates 𝜚 and 𝑠, will be addressed later on, so that
meanwhile we consider generic values for the indexes defined in (10).

Having set the above preliminary choice for the space to which 𝜙 belongs, we deduce from the first equation
in the third row of (8) that 𝜒 should be initially sought in 𝑊 1,𝑟pΩq. In turn, using that 𝐻1pΩq is embedded in
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𝐿𝑡pΩq for 𝑡 P r1,`8q in 𝑅2 (resp. 𝑡 P r1, 6s in 𝑅3), and for reasons that will become clear below, the unknowns
𝜉𝑖, 𝑖 P t1, 2u, and u are initially sought in 𝐻1pΩq and H1pΩq, respectively, certainly assuming that 𝜌 and 𝑟
verify the indicated ranges, namely 𝜌, 𝑟 P p2,`8q in 𝑅2, and 𝜌, 𝑟 P p2, 6s in 𝑅3. Note that in terms of ℓ the
latter constraint becomes ℓ P r 32 , 3s, which yields 𝜌 P r3, 6s. Equivalently, 𝑗 P r 32 , 3s and 𝑟 P r3, 6s, though going
through the respective intervals in the opposite direction to ℓ and 𝜌, respectively.

In turn, in order to derive the variational formulation of (8), we need to invoke a couple of integration by
parts formulae, for which, given 𝑡 P p1,`8q, we first introduce the Banach spaces

Hpdiv𝑡; Ωq :“
 

𝜏 P L2pΩq : divp𝜏 q P 𝐿𝑡pΩq
(

, (11a)
Hpdiv𝑡; Ωq :“

 

𝜏 P L2pΩq : divp𝜏 q P L𝑡pΩq
(

, (11b)
H𝑡pdiv𝑡; Ωq :“

 

𝜏 P L𝑡pΩq : divp𝜏 q P 𝐿𝑡pΩq
(

, (11c)

which are endowed with the natural norms defined, respectively, by

}𝜏 }div𝑡;Ω :“ }𝜏 }0,Ω ` }divp𝜏 q}0,𝑡;Ω @𝜏 P Hpdiv𝑡; Ωq, (12a)
}𝜏 }div𝑡;Ω :“ }𝜏 }0,Ω ` }divp𝜏 q}0,𝑡;Ω @𝜏 P Hpdiv𝑡; Ωq, (12b)
}𝜏 }𝑡,div𝑡;Ω :“ }𝜏 }0,𝑡;Ω ` }divp𝜏 q}0,𝑡;Ω @𝜏 P H𝑡pdiv𝑡; Ωq. (12c)

Then, proceeding as in equation (1.43), Section 1.3.4 from [22] (see also [7], Sect. 4.1 and [14], Sect. 3.1), it is

easy to show that for each 𝑡 P

"

p1,`8q if 𝑛 “ 2
r6{5,`8q if 𝑛 “ 3 there holds

x𝜏 ¨ 𝜈, 𝑣y “

ż

Ω

t𝜏 ¨∇𝑣 ` 𝑣divp𝜏 qu @p𝜏 , 𝑣q P Hpdiv𝑡; Ωq ˆ𝐻1pΩq, (13)

and analogously

x𝜏𝜈,vy “
ż

Ω

t𝜏 : ∇v ` v ¨ divp𝜏 qu @p𝜏 ,vq P Hpdiv𝑡; Ωq ˆH1pΩq, (14)

where x¨, ¨y stands for the duality pairing between 𝐻´1{2pΓq and 𝐻1{2pΓq, as well as between H´1{2pΓq and
H1{2pΓq. Furthermore, given 𝑡, 𝑡1 P p1,`8q conjugate to each other, there also holds (cf. [19], Cor. B. 57)

x𝜏 ¨ 𝜈, 𝑣yΓ “

ż

Ω

t𝜏 ¨∇𝑣 ` 𝑣 divp𝜏 qu @p𝜏 , 𝑣q P H𝑡pdiv𝑡; Ωq ˆ𝑊 1,𝑡1pΩq, (15)

where x¨, ¨yΓ stands for the duality pairing between 𝑊´1{𝑡,𝑡pΓq and 𝑊 1{𝑡,𝑡1pΓq.

3.2. The Stokes equations

Let us first notice that, applying (14) with 𝑡 “ 𝑠 to 𝜏 P Hpdiv𝑠; Ωq and u P H1pΩq, and using the Dirichlet
boundary condition on u, for which we assume from now on that g P H1{2pΩq, we obtain

ż

Ω

𝜏 : ∇u “ ´
ż

Ω

u ¨ divp𝜏 q ` x𝜏 𝜈,gy,

and thus, the testing of the first equation in the first row of (8) against 𝜏 yields

1
𝜇

ż

Ω

𝜎d : 𝜏 d `

ż

Ω

u ¨ divp𝜏 q “ x𝜏 𝜈,gy. (16)

Note from the second term on the left-hand side of (16) that, knowing that divp𝜏 q P L𝑠pΩq, it actually suffices
to look for u in L𝑟pΩq, which is coherent with a previous discussion on the space to which this unknown should
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belong. In addition, testing the second equation in the first row of (8) against v P L𝑟pΩq, for which we require
that f P L𝑠pΩq, we get

ż

Ω

v ¨ divp𝜎q “
ż

Ω

p𝜉1 ´ 𝜉2q 𝜀
´1𝜙 ¨ v ´

ż

Ω

f ¨ v, (17)

which makes sense for divp𝜎q P L𝑠pΩq. Hence, due to the last equation in the second row of (8), it follows that
we should look for 𝜎 in H0pdiv𝑠; Ωq, where

H0pdiv𝑠; Ωq :“
"

𝜏 P Hpdiv𝑠; Ωq :
ż

Ω

trp𝜏 q “ 0
*

.

Moreover, it is easily seen that there holds the decomposition

Hpdiv𝑠; Ωq “ H0pdiv𝑠; Ωq ‘𝑅I, (18)

and that the incompressibility of the fluid forces the compatibility condition on g given by
ż

Γ

g ¨ 𝜈 “ 0.

As a consequence of the above, we realize that imposing (16) for each 𝜏 P Hpdiv𝑠; Ωq is equivalent to doing it
for each 𝜏 P H0pdiv𝑠; Ωq. Furthermore, since 𝑟 ą 2 it follows that L𝑟pΩq is embedded in L2pΩq, which, along
with the estimate (9a), confirms that the first term on the right-hand side of (17) is also well-defined. In this
way, denoting from now on 𝜉 :“ p𝜉1, 𝜉2q, and joining (16) and (17), we arrive at the following mixed variational
formulation for the Stokes equations (given by the first two rows of (8)): Find p𝜎,uq P HˆQ such that

ap𝜎, 𝜏 q ` bp𝜏 ,uq “ Fp𝜏 q @𝜏 P H,

bp𝜎,vq “ G𝜉,𝜙pvq @v P Q, (19)

where
H :“ H0pdiv𝑠; Ωq, Q :“ L𝑟pΩq, (20)

and the bilinear forms a : H ˆ H Ñ 𝑅 and b : H ˆ Q Ñ 𝑅, and the functional F : H ÝÑ 𝑅, are defined,
respectively, as

ap𝜁, 𝜏 q :“
1
𝜇

ż

Ω

𝜁d : 𝜏 d @𝜁, 𝜏 P H, (21a)

bp𝜏 ,vq :“
ż

Ω

v ¨ divp𝜏 q @p𝜏 ,vq P HˆQ, (21b)

Fp𝜏 q :“ x𝜏𝜈,gy @𝜏 P H, (21c)

whereas, given 𝜂 :“ p𝜂1, 𝜂2q P L𝜌pΩq and 𝜑 P L𝑟pΩq, the functional G𝜂,𝜑 : Q ÝÑ 𝑅 is set as

G𝜂,𝜑pvq :“
ż

Ω

p𝜂1 ´ 𝜂2q 𝜀
´1𝜑 ¨ v ´

ż

Ω

f ¨ v @v P Q. (21d)

It is readily seen that, endowing H with the corresponding norm from (12b), that is

}𝜏 }H :“ }𝜏 }div𝑠;Ω @𝜏 P H, (22)

and recalling that } ¨ }0,𝑟;Ω is that of Q, the bilinear forms a and b, and the linear functionals F and 𝐺𝜂,𝜑, are
all bounded. Indeed, applying the Cauchy–Schwarz and Hölder inequalities, noting that }𝜏 d}0,Ω ď }𝜏 }0,Ω for all
𝜏 P H, invoking the identity (14) along with the continuous injection i𝑟 : H1pΩq Ñ L𝑟pΩq, using (9a) together
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with the fact that } ¨ }0,Ω ď |Ω|p𝑟´2q{2𝑟 } ¨ }0,𝑟;Ω, and bounding 𝜀´1 according to (4), we deduce the existence of
positive constants, denoted and given as

}a} :“
1
𝜇

, }b} :“ 1, }F} :“ p1` }i𝑟}q }g}1{2,Γ,

and }G} :“ max
!

𝜀´1
0 |Ω|p𝑟´2q{2𝑟, 1

)

, (23)

such that

|ap𝜁, 𝜏 q| ď }a} }𝜁}H }𝜏 }H @𝜁, 𝜏 P H,

|bp𝜏 ,vq| ď }b} }𝜏 }H }v}Q @p𝜏 ,vq P HˆQ,

|Fp𝜏 q| ď }F} }𝜏 }H @𝜏 P H, and
|G𝜂,𝜑pvq| ď }G} t}𝜂1 ´ 𝜂2}0,𝜌;Ω }𝜑}0,𝑟;Ω ` }f}0,𝑠;Ωu }v}Q @v P Q. (24)

We end this section by emphasizing, according to the previous discussion, that the introduction of the
pseudostress 𝜎 as an auxiliary unknown leads to the derivation of simple postprocessing formulae for the
pressure 𝑝 (cf. (7)) and the velocity gradient ∇u (cf. first equation in the first row of (8)). In addition, it allows
us to seek the velocity u in a Lebesgue space, which is certainly less regular, whence the corresponding finite
element subspace, not requiring any continuity property, can be chosen cheaper and easier to implement.

3.3. The electrostatic potential equations

We begin the derivation of the mixed formulation for the Poisson equation by testing the first equation in the
third row of (8) against 𝜓 P H𝑠pdiv𝑠; Ωq. In this way, applying (15) with 𝑡 “ 𝑠 and 𝑡1 “ 𝑟 to the given 𝜓 and
𝜒 P 𝑊 1,𝑟pΩq, and employing the Dirichlet boundary condition on 𝜒, for which we assume that 𝑔 P 𝑊 1{𝑠,𝑟pΓq,
we get

ż

Ω

1
𝜀
𝜙 ¨𝜓 `

ż

Ω

𝜒 divp𝜓q “ x𝜓 ¨ 𝜈, 𝑔yΓ. (25)

In turn, testing the second equation in the third row of (8) against 𝜆 P 𝐿𝑠pΩq, which requires to assume that
𝑓 P 𝐿𝑟pΩq, we obtain

ż

Ω

𝜆 divp𝜙q “ ´
ż

Ω

𝜆 p𝜉1 ´ 𝜉2q ´

ż

Ω

𝑓 𝜆, (26)

which certainly makes sense for divp𝜙q P 𝐿𝑟pΩq. Thus, recalling from (9a) and (9b) that 𝜙 must belong to
L𝑟pΩq, it follows from the above that this unknown should be sought then in H𝑟pdiv𝑟; Ωq. Furthermore, bearing
in mind from (9a) to (9c) that 𝜉1 and 𝜉2 must belong to 𝐿𝜌pΩq, we notice that in order for the first term on the
right-hand side of (26) to make sense, we require that 𝜌 ě 𝑟, which is assumed from now on. Therefore, placing
together (25) and (26), we obtain the following mixed variational formulation for the electrostatic potential
equations (given by the third and fourth rows of (8)): Find p𝜙, 𝜒q P 𝑋2 ˆ𝑀1 such that

𝑎p𝜙,𝜓q ` 𝑏1p𝜓, 𝜒q “ 𝐹 p𝜓q @𝜓 P 𝑋1,

𝑏2p𝜙, 𝜆q “ 𝐺𝜉p𝜆q @𝜆 P 𝑀2, (27)

where
𝑋2 :“ H𝑟pdiv𝑟; Ωq, 𝑀1 :“ 𝐿𝑟pΩq, 𝑋1 :“ H𝑠pdiv𝑠; Ωq, 𝑀2 :“ 𝐿𝑠pΩq, (28)

and the bilinear forms 𝑎 : 𝑋2 ˆ𝑋1 Ñ 𝑅 and 𝑏𝑖 : 𝑋𝑖 ˆ𝑀𝑖 Ñ 𝑅, 𝑖 P t1, 2u, and the functional 𝐹 : 𝑋1 Ñ 𝑅, are
defined, respectively, as

𝑎p𝜑,𝜓q :“
ż

Ω

1
𝜀
𝜑 ¨𝜓 @p𝜑,𝜓q P 𝑋2 ˆ𝑋1, (29a)
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𝑏𝑖p𝜓, 𝜆q :“
ż

Ω

𝜆 divp𝜓q @p𝜓, 𝜆q P 𝑋𝑖 ˆ𝑀𝑖, (29b)

𝐹 p𝜓q :“ x𝜓 ¨ 𝜈, 𝑔yΓ @𝜓 P 𝑋1, (29c)

whereas, given 𝜂 :“ p𝜂1, 𝜂2q P L𝜌pΩq, the functional 𝐺𝜂 : 𝑀2 Ñ 𝑅 is defined by

𝐺𝜂p𝜆q :“ ´
ż

Ω

𝜆 p𝜂1 ´ 𝜂2q ´

ż

Ω

𝑓 𝜆 @𝜆 P 𝑀2. (29d)

We end this section by establishing the boundedness of 𝑎, 𝑏𝑖, 𝑖 P t1, 2u, 𝐹 , and 𝐺𝜂, for which we recall that
the norms of 𝑋1 and 𝑋2 are defined by (12c) with 𝑡 “ 𝑠 and 𝑡 “ 𝑟, respectively, whereas those of 𝑀1 and
𝑀2 are certainly given by } ¨ }0,𝑟;Ω and } ¨ }0,𝑠;Ω, respectively. Then, employing again the Cauchy–Schwarz and
Hölder inequalities, bounding 𝜀´1 according to (4), and using that } ¨ }0,𝑟;Ω ď |Ω|p𝜌´𝑟q{𝜌𝑟 } ¨ }0,𝜌;Ω, which follows
from the fact that 𝜌 ě 𝑟, we find that there exist positive constants

}𝑎} :“
1
𝜀0

, }𝑏1} “ }𝑏2} :“ 1, and }𝐺} :“ max
!

1, |Ω|p𝜌´𝑟q{𝜌𝑟
)

, (30)

such that

|𝑎p𝜑,𝜓q| ď }𝑎} }𝜑}𝑋2 }𝜓}𝑋1 @p𝜑,𝜓q P 𝑋2 ˆ𝑋1,

|𝑏𝑖p𝜓, 𝜆q| ď }𝑏𝑖} }𝜓}𝑋𝑖
}𝜆}𝑀𝑖

@p𝜓, 𝜆q P 𝑋𝑖 ˆ𝑀1, @𝑖 P t1, 2u, and
|𝐺𝜂p𝜆q| ď }𝐺} t}𝜂1 ´ 𝜂2}0,𝜌;Ω ` }𝑓}0,𝑟;Ωu }𝜆}0,𝑠;Ω @𝜆 P 𝑀2. (31)

Regarding the boundedness of 𝐹 , we need to apply Lemma A.36 of [19], which, along with the surjectivity of
the trace operator mapping 𝑊 1,𝑟pΩq onto 𝑊 1{𝑠,𝑟pΓq, yields the existence of a fixed positive constant 𝐶𝑟, such
that for the given 𝑔 P 𝑊 1{𝑠,𝑟pΓq, there exists 𝑣𝑔 P 𝑊 1,𝑟pΩq satisfying 𝑣𝑔|Γ “ 𝑔 and

}𝑣𝑔}1,𝑟;Ω ď 𝐶𝑟 }𝑔}1{𝑠,𝑟;Γ.

Hence, employing (15) with p𝑡, 𝑡1q “ p𝑠, 𝑟q and p𝜏 , 𝑣q “ p𝜓, 𝑣𝑔q, and then using Hölder’s inequality, we arrive at

|𝐹 p𝜓q| ď }𝐹 } }𝜓}𝑋1 @𝜓 P 𝑋1, (32)

with
}𝐹 } :“ 𝐶𝑟 }𝑔}1{𝑠,𝑟;Γ. (33)

3.4. The ionized particles concentration equations

We now deal with the Nernst–Planck equations, that is the fifth and sixth rows of (8), for which we proceed
analogously as we did for the Stokes equations in Section 3.2. More precisely, applying (13) with 𝑡 “ 𝜚 to
𝜏𝑖 P Hpdiv𝜚; Ωq and 𝜉𝑖 P 𝐻1pΩq, and using the Dirichlet boundary condition on 𝜉𝑖, for which we assume from
now on that 𝑔𝑖 P 𝐻1{2pΓq, we obtain

ż

Ω

∇𝜉𝑖 ¨ 𝜏𝑖 “ ´

ż

Ω

𝜉𝑖 divp𝜏𝑖q ` x𝜏𝑖 ¨ 𝜈, 𝑔𝑖y,

so that the testing of the equation in the fifth row of (8) against 𝜏𝑖, yields
ż

Ω

1
𝜅𝑖
𝜎𝑖 ¨ 𝜏𝑖 `

ż

Ω

𝜉𝑖 divp𝜏𝑖q ´

ż

Ω

 

𝑞𝑖 𝜉𝑖 𝜀´1𝜙´ 𝜅´1
𝑖 𝜉𝑖 u

(

¨ 𝜏𝑖 “ x𝜏𝑖 ¨ 𝜈, 𝑔𝑖y. (34)

Since divp𝜏𝑖q P 𝐿𝜚pΩq, we notice from the second term on the left-hand side of (34) that it suffices to look for 𝜉𝑖

in 𝐿𝜌pΩq, which, similarly as for Stokes, is coherent with a previous discussion on where to seek this unknown.
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In fact, as already commented, the corresponding estimates (9b) and (9c) confirm that the third term on the
left-hand side of (34) is well-defined as well. We end this derivation by testing the first equation of the sixth
row of (8) against a function in the same space to which 𝜉𝑖 belongs, that is 𝜂𝑖 P 𝐿𝜌pΩq, which gives

ż

Ω

𝜂𝑖 divp𝜎𝑖q ´

ż

Ω

𝜉𝑖 𝜂𝑖 “ ´

ż

Ω

𝑓𝑖 𝜂𝑖. (35)

We remark that the above requires to assume that both 𝑓𝑖 and divp𝜎𝑖q belong to 𝐿𝜚pΩq, which is coherent
with the fact that 𝜉𝑖 is sought in 𝐿𝜌pΩq since, being 𝜌 ą 2, it follows that 𝜌 ą 𝜚, and hence 𝐿𝜌pΩq Ď 𝐿𝜚pΩq.
Consequently, we arrive at the following mixed variational formulation for the ionized particles concentration
equations: Find p𝜎𝑖, 𝜉𝑖q P 𝐻𝑖 ˆ𝑄𝑖 such that

𝑎𝑖p𝜎𝑖, 𝜏𝑖q ` 𝑐𝑖p𝜏𝑖, 𝜉𝑖q ´ 𝑐𝜙,up𝜏𝑖, 𝜉𝑖q “ 𝐹𝑖p𝜏𝑖q @𝜏𝑖 P 𝐻𝑖,

𝑐𝑖p𝜎𝑖, 𝜂𝑖q ´ 𝑑𝑖p𝜉𝑖, 𝜂𝑖q “ 𝐺𝑖p𝜂𝑖q @𝜂𝑖 P 𝑄𝑖, (36)

where
𝐻𝑖 :“ Hpdiv𝜚; Ωq, 𝑄𝑖 :“ 𝐿𝜌pΩq, (37)

and the bilinear forms 𝑎𝑖 : 𝐻𝑖 ˆ 𝐻𝑖 Ñ 𝑅, 𝑐𝑖 : 𝐻𝑖 ˆ 𝑄𝑖 Ñ 𝑅, and 𝑑𝑖 : 𝑄𝑖 ˆ 𝑄𝑖 Ñ 𝑅, and the functionals
𝐹𝑖 : 𝐻𝑖 ÝÑ 𝑅 and 𝐺𝑖 : 𝑄𝑖 ÝÑ 𝑅, are defined, respectively, as

𝑎𝑖p𝜁𝑖, 𝜏𝑖q :“
ż

Ω

1
𝜅𝑖
𝜁𝑖 ¨ 𝜏𝑖 @p𝜁𝑖, 𝜏𝑖q P 𝐻𝑖 ˆ𝐻𝑖, (38a)

𝑐𝑖p𝜏𝑖, 𝜂𝑖q :“
ż

Ω

𝜂𝑖 divp𝜏𝑖q @p𝜏𝑖, 𝜂𝑖q P 𝐻𝑖 ˆ𝑄𝑖, (38b)

𝑑𝑖p𝜗𝑖, 𝜂𝑖q :“
ż

Ω

𝜗𝑖 𝜂𝑖 @p𝜗𝑖, 𝜂𝑖q P 𝑄𝑖 ˆ𝑄𝑖, (38c)

𝐹𝑖p𝜏𝑖q :“ x𝜏𝑖 ¨ 𝜈, 𝑔𝑖y @𝜏𝑖 P 𝐻𝑖, (38d)

𝐺𝑖p𝜂𝑖q :“ ´
ż

Ω

𝑓𝑖 𝜂𝑖 @𝜂𝑖 P 𝑄𝑖, (38e)

whereas, given p𝜑,vq P 𝑋2 ˆQ “ H𝑟pdiv𝑟; Ωq ˆ L𝑟pΩq, the bilinear form 𝑐𝜑,v : 𝐻𝑖 ˆ𝑄𝑖 Ñ 𝑅 is set as

𝑐𝜑,vp𝜏𝑖, 𝜂𝑖q :“
ż

Ω

 

𝑞𝑖 𝜂𝑖 𝜀´1𝜑´ 𝜅´1
𝑖 𝜂𝑖 v

(

¨ 𝜏𝑖 @p𝜏𝑖, 𝜂𝑖q P 𝐻𝑖 ˆ𝑄𝑖. (38f)

Similarly to the analysis at the end of Section 3.2 (cf. (23) and (24)), we conclude here that 𝑎𝑖, 𝑐𝑖, 𝑑𝑖, 𝐹𝑖,
𝐺𝑖, and 𝑐𝜑,v are all bounded with the norm defined by (12a) with 𝑡 “ 𝜚 for 𝐻𝑖, and certainly the norm
} ¨ }0,𝜌;Ω for 𝑄𝑖. Indeed, applying the Cauchy–Schwarz and Hölder inequalities, bounding both 𝜀´1 and 𝜅´1

𝑖

according to (4), noting that } ¨ }0,Ω ď |Ω|p𝜌´2q{2𝜌 } ¨ }0,𝜌;Ω, invoking the identity (13) and the continuous
injection 𝑖𝜌 : 𝐻1pΩq Ñ 𝐿𝜌pΩq, and utilizing (9b) and (9c), we find that there exist positive constants

}𝑎𝑖} :“
1
𝜅

, }𝑐𝑖} :“ 1, }𝑑𝑖} :“ |Ω|p𝜌´2q{𝜌, }𝐹𝑖} :“ p1` }𝑖𝜌}q }𝑔𝑖}1{2,Γ,

}𝐺𝑖} :“ }𝑓𝑖}0,𝜚;Ω, and }𝑐} :“ max
 

𝜀´1
0 , 𝜅´1

(

, (39)

such that

|𝑎𝑖p𝜁𝑖, 𝜏𝑖q| ď }𝑎𝑖} }𝜁𝑖}𝐻𝑖
}𝜏𝑖}𝐻𝑖

@p𝜁𝑖, 𝜏𝑖q P 𝐻𝑖 ˆ𝐻𝑖,

|𝑐𝑖p𝜏𝑖, 𝜂𝑖q| ď }𝑐𝑖} }𝜏𝑖}𝐻𝑖 }𝜂𝑖}𝑄𝑖 @p𝜏𝑖, 𝜂𝑖q P 𝐻𝑖 ˆ𝑄𝑖,

|𝑑𝑖p𝜗𝑖, 𝜂𝑖q| ď }𝑑𝑖} }𝜗𝑖}𝑄𝑖
}𝜂𝑖}𝑄𝑖

@p𝜗𝑖, 𝜂𝑖q P 𝑄𝑖 ˆ𝑄𝑖,
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|𝐹𝑖p𝜏𝑖q| ď }𝐹𝑖} }𝜏𝑖}𝐻𝑖
@𝜏𝑖 P 𝐻𝑖,

|𝐺𝑖p𝜂𝑖q| ď }𝐺𝑖} }𝜂𝑖}𝑄𝑖 @𝜂𝑖 P 𝑄𝑖, and
|𝑐𝜑,vp𝜏𝑖, 𝜂𝑖q| ď }𝑐} t}𝜑}0,𝑟;Ω ` }v}0,𝑟;Ωu }𝜂𝑖}0,𝜌;Ω }𝜏𝑖}0,Ω @p𝜏𝑖, 𝜂𝑖q P 𝐻𝑖 ˆ𝑄𝑖. (40)

Throughout the rest of the paper we will use indistinctly either }𝜂}𝑄1ˆ𝑄2 or }𝜂}0,𝜌;Ω, where

}𝜂}0,𝜌;Ω :“ }𝜂1}0,𝜌;Ω ` }𝜂2}0,𝜌;Ω @𝜂 :“ p𝜂1, 𝜂2q P 𝑄1 ˆ𝑄2.

Summarizing, and putting together (19), (27), and (36), we find that, under the assumptions that f P L𝑠pΩq,
g P H1{2pΓq, 𝑓 P 𝐿𝑟pΩq, 𝑔 P 𝑊 1{𝑠,𝑟pΓq, 𝑓𝑖 P 𝐿𝜚pΩq, 𝑔𝑖 P 𝐻1{2pΓq, and 𝜌 ě 𝑟, the mixed variational formulation
of (8) reduces to: Find p𝜎,uq P HˆQ, p𝜙, 𝜒q P 𝑋2 ˆ𝑀1, and p𝜎𝑖, 𝜉𝑖q P 𝐻𝑖 ˆ𝑄𝑖, 𝑖 P t1, 2u, such that

ap𝜎, 𝜏 q ` bp𝜏 ,uq “ Fp𝜏 q @𝜏 P H,

bp𝜎,vq “ G𝜉,𝜙pvq @v P Q,

𝑎p𝜙,𝜓q ` 𝑏1p𝜓, 𝜒q “ 𝐹 p𝜓q @𝜓 P 𝑋1,

𝑏2p𝜙, 𝜆q “ 𝐺𝜉p𝜆q @𝜆 P 𝑀2,

𝑎𝑖p𝜎𝑖, 𝜏𝑖q ` 𝑐𝑖p𝜏𝑖, 𝜉𝑖q ´ 𝑐𝜙,up𝜏𝑖, 𝜉𝑖q “ 𝐹𝑖p𝜏𝑖q @𝜏𝑖 P 𝐻𝑖,

𝑐𝑖p𝜎𝑖, 𝜂𝑖q ´ 𝑑𝑖p𝜉𝑖, 𝜂𝑖q “ 𝐺𝑖p𝜂𝑖q @𝜂𝑖 P 𝑄𝑖. (41)

Notice here that the second, fourth, and sixth rows of (41) constitute the conservation of momentum for
each respective equation. We will refer again to this subject from the discrete point of view later on in Sec-
tions 5.1 and 6.2.

We end this section by stressing that, as compared with previously studied Banach spaces-based mixed
formulations for other coupled nonlinear models (see, e.g., [4,14,24,26]), the main novelty of the analysis to be
developed for (41) has to do with the occurrence in its last two rows of the perturbed saddle point scheme in
Banach spaces represented by the bilinear forms 𝑎𝑖, 𝑐𝑖, and 𝑑𝑖. Indeed, up to our knowledge, the present one
constitutes the first work applying the theoretical results provided recently in [15] to perform the continuous
and discrete analyses of a problem showing that structure.

4. The continuous solvability analysis

In this section we proceed as in several related previous contributions (see, e.g., [11] and the references
therein), and employ a fixed-point strategy to address the solvability of (41).

4.1. The fixed-point strategy

In order to rewrite (41) as an equivalent fixed point equation, we introduce suitable operators associated
with each one of the three problems forming the whole nonlinear coupled system. Indeed, we first let p𝑇 :
p𝑄1 ˆ𝑄2q ˆ𝑋2 Ñ Q be the operator defined by

p𝑇 p𝜂,𝜑q :“ pu @p𝜂,𝜑q P p𝑄1 ˆ𝑄2q ˆ𝑋2,

where pp𝜎, puq P HˆQ is the unique solution (to be confirmed below) of problem (19) (equivalently, the first two
rows of (41)) with p𝜂,𝜑q instead of p𝜉,𝜙q, that is

app𝜎, 𝜏 q ` bp𝜏 , puq “ Fp𝜏 q @𝜏 P H,

bpp𝜎,vq “ G𝜂,𝜑pvq @v P Q. (42)

In turn, we let s𝑇 : 𝑄1 ˆ𝑄2 Ñ 𝑋2 be the operator given by

s𝑇 p𝜂q :“ s𝜙 @𝜂 P 𝑄1 ˆ𝑄2,
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where p s𝜙, s𝜒q P 𝑋2 ˆ𝑀1 is the unique solution (to be confirmed below) of problem (27) (equivalently, the third
and fourth rows of (41)) with 𝜂 instead of 𝜉, that is

𝑎p s𝜙,𝜓q ` 𝑏1p𝜓, s𝜒q “ 𝐹 p𝜓q @𝜓 P 𝑋1,

𝑏2p s𝜙, 𝜆q “ 𝐺𝜂p𝜆q @𝜆 P 𝑀2. (43)

Similarly, for each 𝑖 P t1, 2u, we let r𝑇𝑖 : 𝑋2 ˆQÑ 𝑄𝑖 be the operator defined by

r𝑇𝑖p𝜑,vq :“ r𝜉𝑖 @p𝜑,vq P 𝑋2 ˆQ,

where pr𝜎𝑖, r𝜉𝑖q P 𝐻𝑖 ˆ𝑄𝑖 is the unique solution (to be confirmed below) of problem (36) (equivalently, the fifth
and sixth rows of (41)) with p𝜑,vq instead of p𝜙,uq, that is

𝑎𝑖pr𝜎𝑖, 𝜏𝑖q ` 𝑐𝑖

´

𝜏𝑖, r𝜉𝑖

¯

´ 𝑐𝜑,v

´

𝜏𝑖, r𝜉𝑖

¯

“ 𝐹𝑖p𝜏𝑖q @𝜏𝑖 P 𝐻𝑖,

𝑐𝑖pr𝜎𝑖, 𝜂𝑖q ´ 𝑑𝑖

´

r𝜉𝑖, 𝜂𝑖

¯

“ 𝐺𝑖p𝜂𝑖q @𝜂𝑖 P 𝑄𝑖, (44)

so that we can define the operator r𝑇 : 𝑋2 ˆQÑ p𝑄1 ˆ𝑄2q as:

r𝑇 p𝜑,vq :“
´

r𝑇1p𝜑,vq, r𝑇2p𝜑,vq
¯

“ p𝜉1, 𝜉2q “: r𝜉 @p𝜑,vq P 𝑋2 ˆQ. (45)

Finally, defining the operator T : p𝑄1 ˆ𝑄2q Ñ p𝑄1 ˆ𝑄2q as

Tp𝜂q :“ r𝑇
´

s𝑇 p𝜂q, p𝑇
`

𝜂, s𝑇 p𝜂q
˘

¯

@𝜂 P 𝑄1 ˆ𝑄2, (46)

we observe that solving (41) is equivalent to seeking a fixed point of T, that is: Find 𝜉 P 𝑄1 ˆ𝑄2 such that

Tp𝜉q “ 𝜉. (47)

4.2. Well-posedness of the uncoupled problems

In this section we establish the well-posedness of the problems (42)–(44), defining the operators p𝑇 , s𝑇 , and
r𝑇𝑖, respectively. To this end, we apply the Babuška–Brezzi theory in Banach spaces for the general case (cf. [5],
Thm. 2.1, Cor. 2.1, Sect. 2.1), and for a particular one ([19], Thm. 2.34), as well as a recently established result
for perturbed saddle point formulations in Banach spaces (cf. [15], Thm. 3.4) along with the Banach–Nečas–
Babuška Theorem (also known as the generalized Lax–Milgram Lemma) (cf. [19], Thm. 2.6).

4.2.1. Well-definedness of the operator p𝑇

Here we apply Theorem 2.34 of [19] to show that, given an arbitrary p𝜂,𝜑q P
`

𝑄1 ˆ𝑄2

˘

ˆ𝑋2, (42) is well-
posed, equivalently that p𝑇 is well-defined. We remark that p𝜂,𝜑q only influences the functional G𝜂,𝜑, and that
the boundedness of all the bilinear forms and linear functionals defining (42), has already been established in
(23) and (24). Hence, the discussion below just refers to the remaining hypotheses to be satisfied by a and b.
We begin by letting V be the kernel of the operator induced by b, that is

V :“ t𝜏 P H : bp𝜏 ,vq “ 0 @v P Qu,

which, according to the definitions of H, Q, and b (cf. (20), (21b)), along with the fact that L𝑠pΩq is isomorphic
to the dual of L𝑟pΩq, yields

V :“ t𝜏 P H0pdiv𝑠; Ωq : divp𝜏 q “ 0u. (48)
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Next, we recall that a slight modification of the proof of Lemma 2.3 from [22] allows to prove that for each
𝑡 ě 2𝑛

𝑛`2 (see, e.g., [8], Lem. 3.1 for the case 𝑡 “ 4{3, which is extensible almost verbatim for any 𝑡 in the
indicated range) there exists a constant 𝐶𝑡, depending only on Ω, such that

𝐶𝑡 }𝜏 }
2
0,Ω ď }𝜏

d}20,Ω ` }divp𝜏 q}20,𝑡;Ω @𝜏 P H0pdiv𝑡; Ωq. (49)

Then, assuming that 𝑠 ě 2𝑛
𝑛`2 , and using (49), we deduce from the definition of a (cf. (21a)), and similarly to

Lemma 3.2 of [8], that
ap𝜏 , 𝜏 q ě 𝛼 }𝜏 }2div𝑠;Ω @𝜏 P V, (50)

with 𝛼 :“ 𝐶𝑠{𝜇. Hence, thanks to (50), it is straightforward to see that a satisfies the hypotheses specified in
Theorem 2.34, equation (2.28) of [19] with the foregoing constant 𝛼. In order to fulfill all the hypotheses of the
latter theorem, and knowing from (23) and (24) that the boundedness of the corresponding bilinear forms and
linear functionals has already been established, it only remains to show the continuous inf-sup condition for b.
Moreover, being this result already proved for the particular case 𝑠 “ 4{3 (cf. [8], Lem. 3.3 and [24], Lem. 3.5
for a closely related one), and arising no significant differences for an arbitrary 𝑠 ě 2𝑛

𝑛`2 , we provide below, and
for sake of completeness, only the main aspects of its proof.

Indeed, given v P Q :“ L𝑟pΩq, we first recall from (10) that 𝑟 ą 2, and set v𝑠 :“ |v|𝑟´2 v, which is easily
seen to satisfy

v𝑠 P L𝑠pΩq and
ż

Ω

v ¨ v𝑠 “ }v}0,𝑟;Ω }v𝑠}0,𝑠;Ω.

In what follows, we make use of both, the Poincaré inequality, which refers to the existence of a positive constant
𝑐P, depending on Ω, such that 𝑐P }z}21,Ω ď |z|

2
1,Ω @z P H1

0pΩq, and the continuous injection i𝑟 : H1pΩq Ñ L𝑟pΩq
for the indicated range of 𝑠. Then, we let w P H1

0pΩq be the unique solution of:
ş

Ω
∇w ¨∇z “ ´

ş

Ω
v𝑠 ¨ z for all

z P H1
0pΩq, which is guaranteed by the classical Lax–Milgram Lemma, and notice, thanks to the corresponding

continuous dependence estimate, that }w}1,Ω ď
}i𝑟}
𝑐P
}v𝑠}0,𝑠;Ω. Hence, defining 𝜁 :“ ∇w P L2pΩq, we deduce

that divp𝜁q “ v𝑠 in Ω, so that 𝜁 P Hpdiv𝑠; Ωq, and }𝜁}div𝑠;Ω ď
`

1 ` }i𝑟}
𝑐P

˘

}v𝑠}0,𝑠;Ω. Finally, letting 𝜁0 be the
H0pdiv𝑠; Ωq-component of 𝜁, it is clear that divp𝜁0q “ v𝑠 and that }𝜁0}div𝑠;Ω ď }𝜁}div𝑠;Ω, whence bounding by
below with 𝜏 :“ 𝜁0 P H, and using the definition of b (cf. (21b)) along with the above identities and estimates,
we conclude that

sup
𝜏PH
𝜏 ­“0

bp𝜏 ,vq
}𝜏 }H

ě 𝛽 }v}Q @v P Q, (51)

with 𝛽 :“
`

1` }i𝑟}
𝑐P

˘´1. The foregoing inequality (51) proves Theorem 2.34, equation (2.29) of [19] and completes
the hypotheses of this theorem.

Consequently, the well-definedness of the operator p𝑇 is stated as follows.

Theorem 4.1. For each p𝜂,𝜑q P p𝑄1 ˆ 𝑄2q ˆ𝑋2 there exists a unique pp𝜎, puq P H ˆQ solution to (42), and
hence one can define p𝑇 p𝜂,𝜑q :“ pu P Q. Moreover, there exists a positive constant 𝐶

p𝑇 , depending only on 𝜇,
}i𝑟}, 𝜀0, |Ω|, 𝛼, and 𝛽, and hence independent of p𝜂,𝜑q, such that

›

›

›

p𝑇 p𝜂,𝜑q
›

›

›

Q
“ }pu}Q ď 𝐶

p𝑇

!

}g}1{2,Γ ` }f}0,𝑠,Ω ` }𝜂}0,𝜌;Ω }𝜑}0,𝑟;Ω

)

. (52)

Proof. Given p𝜂,𝜑q P p𝑄1ˆ𝑄2qˆ𝑋2, a direct application of Theorem 2.34 from [19] guarantees the existence of
a unique pp𝜎, puq P HˆQ solution to (42). Then, the corresponding a priori estimate in Theorem 2.34, equation
(2.30) of [19] gives

}pu}Q ď
1
𝛽

ˆ

1`
}a}
𝛼

˙

}F}H1 `
}a}
𝛽2

ˆ

1`
}a}
𝛼

˙

}G𝜂,𝜑}Q1 , (53)

which, according to the identities and estimates given by (23) and (24), along with some algebraic manipulations,
yields (52) and finishes the proof. �
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Regarding the a priori bound for the component p𝜎 of the unique solution to (42), it follows from Theorem 2.34,
equation (2.30) of [19] that

}p𝜎}H ď
1
𝛼
}F}H1 `

1
𝛽

ˆ

1`
}a}
𝛼

˙

}G𝜂,𝜑}Q1 ,

which yields the same inequality as (52), but with a different constant. Hence, choosing the largest of the
respective constants, and still denoting it by 𝐶

p𝑇 , we can summarize the a priori estimates for pu and p𝜎 by saying
that both are given by the right-hand side of (52).

4.2.2. Well-definedness of the operator s𝑇

We now employ Theorem 2.1, Section 2.1 of [5] to prove that, given an arbitrary 𝜂 P 𝑄1 ˆ 𝑄2, (43) is
well-posed, equivalently that s𝑇 is well-defined. Similarly as for Section 4.2.1, we first stress that 𝜂 is utilized
only to define the functional 𝐺𝜂, and that the boundedness of all the bilinear forms and functionals defining
(43), was already established by (30) and (31). In this way, it only remains to show that 𝑎, 𝑏1, and 𝑏2 satisfy
the corresponding hypotheses from Theorem 2.1, Section 2.1 of [5]. To this end, and because of the evident
similarities, we follow very closely the analysis in Section 3.2.3 from [11], which, in turn, suitably adopts the
approach from Section 2.4.2 of [26]. Indeed, we begin by letting 𝐾𝑖 be the kernel of the operator induced by the
bilinear form 𝑏𝑖, for each 𝑖 P t1, 2u, that is

𝐾𝑖 :“ t𝜓 P 𝑋𝑖 : 𝑏𝑖p𝜓, 𝜆q “ 0 @𝜆 P 𝑀𝑖u, (54)

which, according to the definitions of 𝑋𝑖 and 𝑀𝑖 (cf. (28)), and 𝑏𝑖 (cf. (29b)), along again with the fact that
L𝑟pΩq and L𝑠pΩq can be isomorphically identified with

`

L𝑠pΩq
˘1 and

`

L𝑟pΩq
˘1, respectively, gives

𝐾1 :“ t𝜓 P H𝑠pdiv𝑠; Ωq : divp𝜓q “ 0 in Ωu, (55)

and
𝐾2 :“ t𝜓 P H𝑟pdiv𝑟; Ωq : divp𝜓q “ 0 in Ωu. (56)

Next, in order to establish the inf-sup conditions required for the bilinear form 𝑎 (cf. [5], Eqs. (2.8) and (2.9)),
we resort to Lemma 3.3 of [11], which is recalled below.

Lemma 4.2. Let Ω be a bounded Lipschitz-continuous domain of 𝑅𝑛, 𝑛 P t2, 3u, and let 𝑡, 𝑡1 P p1,`8q conjugate

to each other with 𝑡 (and hence 𝑡1) lying in
"

r4{3, 4s if 𝑛 “ 2
r3{2, 3s if 𝑛 “ 3

. Then, there exists a linear and bounded operator

𝐷𝑡 : L𝑡pΩq Ñ L𝑡pΩq such that

divp𝐷𝑡pwqq “ 0 in Ω @w P L𝑡pΩq. (57)

In addition, for each z P L𝑡1pΩq such that divpzq “ 0 in Ω, there holds
ż

Ω

z ¨𝐷𝑡pwq “
ż

Ω

z ¨w @w P L𝑡pΩq. (58)

Proof. It reduces to a minor modification of the proof of Lemma 2.3 from [26], for which one needs to apply
the well-posedness in 𝑊 1,𝑡pΩq of a Poisson problem with homogeneous Dirichlet boundary conditions (see [23],
Thm. 3.2 or [30], Thms. 1.1 and 1.3 for the vector version of it). The specified ranges for 𝑡 and 𝑡1 are precisely
forced by the latter result. We omit further details and refer to the proof of Lemma 3.3 from [11]. �

We are now in position to prove the required hypotheses on 𝑎.
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Lemma 4.3. Assume that 𝑠 (and hence 𝑟) satisfy the ranges specified in Lemma 4.2. Then, there exists a
positive constant s𝛼 such that

sup
𝜓P𝐾1
𝜓 ­“0

𝑎p𝜑,𝜓q

}𝜓}𝑋1

ě s𝛼 }𝜑}𝑋2 @𝜑 P 𝐾2. (59)

In addition, there holds
sup
𝜑P𝐾2

𝑎p𝜑,𝜓q ą 0 @𝜓 P 𝐾1, 𝜓 ­“ 0. (60)

Proof. Being almost verbatim to that of Lemma 3.4 from [11], we just proceed to sketch it. Indeed, given 𝜑 P 𝐾2,
we recall from (10) that 𝑟 ą 2 and set 𝜑𝑠 :“ |𝜑|𝑟´2 𝜑, which belongs to L𝑠pΩq and satisfies

ż

Ω

𝜑 ¨ 𝜑𝑠 “ }𝜑}0,𝑟,Ω }𝜑𝑠}0,𝑠,Ω. (61)

In this way, bounding the left-hand side of (59) by below with 𝜓 :“ 𝐷𝑠p𝜑𝑠q, which, according to Lemma 4.2,
belongs to 𝐾1, and then using (58), (61), the boundedness of 𝐷𝑠, and the upper bound of 𝜀 (cf. (4)), we
arrive at (59) with s𝛼 :“

`

}𝐷𝑠} 𝜀1

˘´1. On the other hand, given now 𝜓 P 𝐾1, 𝜓 ­“ 0, we define 𝜓𝑟 :“
"

|𝜓|𝑠´2𝜓 if 𝜓 ­“ 0
0 if 𝜓 “ 0

, which lies in L𝑟pΩq and satisfies
ş

Ω
𝜓 ¨𝜓𝑟 “ }𝜓}

𝑠
0,𝑠;Ω ą 0. Thus, bounding the left-hand

side of (60) by below with 𝜑 :“ 𝐷𝑟p𝜓𝑟q P 𝐾2, and proceeding similarly as for (59), we deduce (60) and conclude
the proof. �

Before continuing with the continuous inf-sup conditions for the bilinear forms 𝑏𝑖, 𝑖 P t1, 2u, we now check
the feasibility of the indexes employed so far, according to the different constraints that have arisen along the
analysis. In fact, from the preliminary discussion provided in Section 3.1, we have the following initial ranges

#

𝑙, 𝑗 P p1,`8q and 𝜌, 𝑟 P p2,`8q if 𝑛 “ 2,

𝑙, 𝑗 P r3{2, 3s and 𝜌, 𝑟 P r3, 6s if 𝑛 “ 3,
(62)

which, being added the request 𝜌 ě 𝑟, equivalently 𝑙 ě 𝑗, becomes
"

𝑙 P r2,`8q, 𝑗 P p1, 2s, 𝜌 P r4,`8q, 𝑟 P p2, 4s if 𝑛 “ 2,
𝑙 P r2, 3s, 𝑗 P r3{2, 2s, 𝜌 P r4, 6s, 𝑟 P r3, 4s if 𝑛 “ 3.

(63)

Finally, imposing to 𝑟 (and hence to 𝑠) the ranges required by Lemma 4.2, and guaranteeing that 𝑠 ě 2𝑛
𝑛`2 , we

arrive at the final feasible choices
#

𝑙 P r2,`8q, 𝑗 P p1, 2s, 𝜌 P r4,`8q, 𝜚 P p1, 4{3s, 𝑟 P p2, 4s, 𝑠 P r4{3, 2q if 𝑛 “ 2,

𝑙 “ 3, 𝑗 “ 3{2, 𝜌 “ 6, 𝜚 “ 6{5, 𝑟 “ 3, 𝑠 “ 3{2 if 𝑛 “ 3.
(64)

In particular, the only possibility for the 3D case is obtained by intersecting the range for 𝑟 specified in the
second row of (63), that is 𝑟 P r3, 4s, with the one required by Lemma 4.2, that is 𝑟 P r3{2, 3s, which certainly
yields 𝑟 “ 3. The respective conjugate becomes 𝑠 “ 3{2, which clearly verifies 𝑠 ě 2𝑛

𝑛`2 “ 6{5. The occurrence
of this unique way of choosing the exponents does not seem in principle to be coincidental since it has also
arose in some related papers when a technical result like Lemma 4.2 (or a similar one), is employed (see, e.g.,
[26], Eq. (2.20), [11], Eqs. (2.25) and (2.26), and [16], Sect. 4.2). However, this is not the case for the stress-
assisted diffusion problem studied in [25], where the feasible ranges obtained in 3D are actually intervals (see
[25], Eqs. (3.70) and (3.71)), and hence it is not possible to conclude a corresponding general rule.

Note that in (64) we have included the consequent ranges for 𝜚 :“ 𝜌
𝜌´1 and 𝑠 :“ 𝑟

𝑟´1 as well. However, we
remark that the above indexes are not chosen independently, but once 𝑙 (or its conjugate 𝑗) is chosen, then
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all the remaining ones are fixed. In this regard, and extending a related comment made in Section 3.1, we
stress here that in the 2D case the values of the feasible exponents 𝑟 and 𝜌 (equivalently, the indexes 𝑗 and ℓ)
vary in opposite directions, namely as 𝑟 increases, 𝜌 decreases, and conversely. Similarly, being p𝑟, 𝑠q and p𝜌, 𝜚q
conjugate pairs, as the first component of each increases, the second one decreases, and conversely. According to
the above, and bearing in mind the spaces to which the unknowns belong (cf. (20), (28), and (37)), we deduce
that as the regularities of 𝜎 and 𝜉𝑖 increase, which means higher values for the exponents 𝑠 and 𝜌, the ones of
the remaining unknowns decrease, that is 𝑟 and 𝜚 get smaller, and conversely. Consequently, no values yielding
simultaneously either the least or the most regularity for each component of the solution are available, but only
separately for each one of them. Certainly, the maximum or minimum regularity for a particular unknown in
this latter case will not be achieved if the respective end of the corresponding interval is open.

We now go back to the well-definedness of s𝑇 by establishing the continuous inf-sup conditions for the bilinear
forms 𝑏𝑖, 𝑖 P t1, 2u. While the corresponding proofs are similar to those of Lemma 2.7 from [26] and Lemma 3.6
of [11], and very close to that of Lemma 3.5 of [25], for sake of completeness we provide below the main details
of them.

Lemma 4.4. For each 𝑖 P t1, 2u there exists a positive constant s𝛽𝑖 such that

sup
𝜓P𝑋𝑖
𝜓 ­“0

𝑏𝑖p𝜓, 𝜆q

}𝜓}𝑋𝑖

ě s𝛽𝑖 }𝜆}𝑀𝑖
@𝜆 P 𝑀𝑖. (65)

Proof. We begin by noticing that the values of 𝑟 and 𝑠 specified in (64) are compatible with the range r 2𝑛
𝑛`1 , 2𝑛

𝑛´1 s

required by Theorem 3.2 from [25], an existence result to be applied below. According to it, and since the pairs
`

𝑋1, 𝑀1

˘

and
`

𝑋2, 𝑀2

˘

result from each other exchanging 𝑟 and 𝑠, it suffices to prove (65) either for 𝑖 “ 1
or for 𝑖 “ 2. In what follows we consider 𝑖 “ 1, so that, given 𝜆 P 𝑀1 :“ 𝐿𝑟pΩq, we set 𝜆𝑠 :“ |𝜆|𝑟´2 𝜆, which
belongs to 𝐿𝑠pΩq and satisfies

ş

Ω
𝜆 𝜆𝑠 “ }𝜆}0,𝑟;Ω }𝜆𝑠}0,𝑠;Ω. Thus, a straightforward application of the scalar

version of Theorem 3.2 from [25] yields the existence of a unique 𝑧 P 𝑊 1,𝑠
0 pΩq such that ∆𝑧 “ 𝜆𝑠 in Ω, 𝑧 “ 0

on Γ. Moreover, the corresponding continuous dependence result reads }𝑧}1,𝑠;Ω ď s𝐶𝑠 }𝜆𝑠}0,𝑠;Ω, where s𝐶𝑠 is a
positive constant depending on 𝑠. Next, defining 𝜑 :“ ∇𝑧 P L𝑠pΩq, it follows that divp𝜑q “ 𝜆𝑠 in Ω, whence
𝜑 P H𝑠pdiv𝑠; Ωq “: 𝑋1, and there holds }𝜑}𝑋1 “ }𝜑}𝑠,div𝑠;Ω ď

`

1 ` s𝐶𝑠

˘

}𝜆𝑠}0,𝑠;Ω. In this way, bounding by
below with 𝜓 :“ 𝜑 P 𝑋1, and bearing in mind the definition of 𝑏1 (cf. (29b)) along with the foregoing identities
and estimates, we arrive at (65) for 𝑖 “ 1 with 𝛽1 :“

`

1 ` s𝐶𝑠

˘´1. The proof for 𝑖 “ 2 proceeds analogously,

except for the fact that, given 𝜆 P 𝑀2 :“ 𝐿𝑠pΩq, and since 𝑠 ă 2, one needs to define 𝜆𝑟 :“
"

|𝜆|𝑠´2 𝜆 if 𝜆 ­“ 0,

0 if 𝜆 “ 0.
Further details are omitted. �

As a consequence of Lemmas 4.3 and 4.4, and the boundedness properties given by (30)–(33), we are able to
conclude now that the operator s𝑇 is well-defined.

Theorem 4.5. For each 𝜂 P 𝑄1 ˆ𝑄2 there exists a unique p s𝜙, s𝜒q P 𝑋2 ˆ𝑀1 solution to (43), and hence one
can define s𝑇 p𝜂q :“ s𝜙 P 𝑋2. Moreover, there exists a positive constant 𝐶

s𝑇 , depending only on 𝜀0, 𝐶𝑟, |Ω|, s𝛼,
and s𝛽2, such that

›

› s𝑇 p𝜂q
›

›

𝑋2
“ } s𝜙}𝑋2

ď 𝐶
s𝑇

 

}𝑔}1{𝑠,𝑟;Γ ` }𝑓}0,𝑟;Ω ` }𝜂}0,𝜌;Ω

(

. (66)

Proof. Given 𝜂 P 𝑄1 ˆ 𝑄2, a straightforward application of Theorem 2.1, Section 2.1 from [5] implies the
existence of a unique p s𝜙, s𝜒q P 𝑋2ˆ𝑀1 solution to (43). In turn, the a priori estimate provided in Corollary 2.1,
Section 2.1, equation (2.15) of [5] establishes

} s𝜙}𝑋2
ď

1
s𝛼
}𝐹 }𝑋1

1
`

1
s𝛽2

ˆ

1`
}𝑎}

s𝛼

˙

}𝐺𝜂}𝑀 1
2
, (67)

which, along with the aforementioned boundedness properties, yields (66) and ends the proof. �
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Similarly as for p𝑇 , and employing now ([5], Cor. 2.1, Sect. 2.1, Eq. (2.16)), we observe that the a priori bound
for the s𝜒 component of the unique solution to (43) reduces to

}s𝜒}𝑀1
ď

1
s𝛽1

ˆ

1`
}𝑎}

s𝛼

˙

}𝐹 }𝑋1
1
`
}𝑎}
s𝛽1

s𝛽2

ˆ

1`
}𝑎}

s𝛼

˙

}𝐺𝜂}𝑀 1
2
,

which yields the same inequality as (66), but with a different constant, in particular depending additionally on
s𝛽1. Therefore, as before, we still denote the largest of them by 𝐶

s𝑇 , and simply say that the right hand-side of
(66) constitutes the a priori estimate for both s𝜙 and s𝜒.

4.2.3. Well-definedness of the operator r𝑇

In this section we employ the solvability result for perturbed saddle point formulations in Banach spaces
provided by Theorem 3.4 of [15], along with the Banach–Nečas–Babuška Theorem (cf. [19], Thm. 2.6), to show
that, given an arbitrary p𝜑,vq P 𝑋2 ˆ Q, equation (44) is well-posed for each 𝑖 P t1, 2u, equivalently that 𝑇𝑖

is well-defined. Since this result was already derived in Theorem 4.2 of [15] as an application of the abstract
theory developed there, and more specifically of Theorem 3.4 from [15], we just discuss in what follows the main
aspects of its proof.

To begin with, we introduce the bilinear forms 𝐴, 𝐴𝜑,v : p𝐻𝑖 ˆ𝑄𝑖q ˆ p𝐻𝑖 ˆ𝑄𝑖q Ñ 𝑅 given by

𝐴pp𝜁𝑖, 𝜗𝑖q, p𝜏𝑖, 𝜂𝑖qq :“ 𝑎𝑖p𝜁𝑖, 𝜏𝑖q ` 𝑐𝑖p𝜏𝑖, 𝜗𝑖q ` 𝑐𝑖p𝜁𝑖, 𝜂𝑖q ´ 𝑑𝑖p𝜗𝑖, 𝜂𝑖q, (68)

and
𝐴𝜑,vpp𝜁𝑖, 𝜗𝑖q, p𝜏𝑖, 𝜂𝑖qq :“ 𝐴pp𝜁𝑖, 𝜗𝑖q, p𝜏𝑖, 𝜂𝑖qq ´ 𝑐𝜑,vp𝜏𝑖, 𝜗𝑖q, (69)

for all p𝜁𝑖, 𝜗𝑖q, p𝜏𝑖, 𝜂𝑖q P 𝐻𝑖 ˆ𝑄𝑖, and realize that (44) can be re-stated as: Find pĂ𝜎𝑖, r𝜉𝑖q P 𝐻𝑖 ˆ𝑄𝑖 such that

𝐴𝜑,v

´´

r𝜎𝑖, r𝜉𝑖

¯

, p𝜏𝑖, 𝜂𝑖q

¯

“ 𝐹𝑖p𝜏𝑖q `𝐺𝑖p𝜂𝑖q @p𝜏𝑖, 𝜂𝑖q P 𝐻𝑖 ˆ𝑄𝑖. (70)

In this way, the proof reduces to show first that the bilinear forms forming part of 𝐴 satisfy the hypotheses of
Theorem 3.4 from [15], and then to combine the consequence of this result with the effect of the extra term
given by 𝑐𝜑,vp¨, ¨q, to conclude that 𝐴𝜑,v satisfies a global inf-sup condition.

Indeed, it is clear from (38a), (38c), and the upper bound of 𝜅𝑖 (cf. (4)) that 𝑎𝑖 and 𝑑𝑖 are symmetric and
positive semi-definite, which proves the assumption (i) of Theorem 3.4 from [15]. Next, bearing in mind the
definitions of 𝑐𝑖 (cf. (38b)) and the spaces 𝐻𝑖 and 𝑄𝑖 (cf. (37)), and using again that 𝐿𝜌pΩq is isomorphic to
the dual of 𝐿𝜚pΩq, we readily find that the null space 𝑉𝑖 of the operator induced by 𝑐𝑖 becomes

𝑉𝑖 :“ t𝜏𝑖 P 𝐻𝑖 : divp𝜏𝑖q “ 0u, (71)

and thus
𝑎𝑖p𝜏𝑖, 𝜏𝑖q ě

1
s𝜅
}𝜏𝑖}

2
0,Ω “

1
s𝜅
}𝜏𝑖}

2
div𝜚;Ω @𝜏𝑖 P 𝑉𝑖, (72)

from which the assumption (ii) of Theorem 3.4 from [15], namely the continuous inf-sup condition for 𝑎𝑖, is
clearly satisfied with constant r𝛼 :“ s𝜅´1.

In turn, while the continuous inf-sup condition for r𝑐𝑖 was already established in Lemma 2.9 from [26] (see
also [15], Lem. 4.1), for sake of clearness we provide below the main steps of its proof, which follows similarly
to the one yielding the continuous inf-sup condition for b in the present Section 4.2.1. More precisely, given
𝜂𝑖 P 𝑄𝑖 :“ 𝐿𝜌pΩq, we set 𝜂𝑖,𝜚 :“ |𝜂𝑖|

𝜌´2 𝜂𝑖, which uses from (64) that 𝜌 ě 2, and notice that there hold
𝜂𝑖,𝜚 P 𝐿𝜚pΩq and

ş

Ω
𝜂𝑖 𝜂𝑖,𝜚 “ }𝜂𝑖}0,𝜌;Ω }𝜂𝑖,𝜚}0,𝜚;Ω. Then, we let 𝜁𝑖 :“ ∇𝑧 P L2pΩq, where 𝑧 P 𝐻1

0 pΩq is the unique
solution of the variational formulation:

ş

Ω
∇𝑧 ¨∇𝑤 “ ´

ş

Ω
𝜂𝑖,𝜚 𝑤 for all 𝑤 P 𝐻1

0 pΩq, and deduce from the latter
that divp𝜁𝑖q “ 𝜂𝑖,𝜚 in Ω, which yields 𝜁𝑖 P 𝐻𝑖 :“ Hpdiv𝜚; Ωq. In turn, denoting by 𝑐P the positive constant
guaranteeing the Poincaré inequality: 𝑐P }𝑤}

2
1,Ω ď |𝑤|

2
1,Ω @𝑤 P 𝐻1

0 pΩ, and letting again 𝑖𝜌 : 𝐻1pΩq Ñ 𝐿𝜌pΩq
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be the continuous injection, we find that }𝑧}1,Ω ď
}𝑖𝜌}

𝑐P
}𝜂𝑖,𝜚}0,𝜚;Ω, and hence }𝜁𝑖}𝐻𝑖

ď
`

1 ` }𝑖𝜌}

𝑐P

˘

}𝜂𝑖,𝜚}0,𝜚;Ω. In
this way, bounding by below with 𝜏𝑖 :“ 𝜁𝑖 P 𝐻𝑖, recalling the definition of 𝑐𝑖 (cf. (38b)), and employing the
foregoing identities and estimates, we arrive at

sup
𝜏𝑖P𝐻𝑖
𝜏𝑖 ­“0

𝑐𝑖p𝜏𝑖, 𝜂𝑖q

}𝜏𝑖}𝐻𝑖

ě r𝛽 }𝜂𝑖}𝑄𝑖 @𝜂𝑖 P 𝑄𝑖, (73)

with r𝛽 :“
`

1` }𝑖𝜌}

𝑐P

˘´1, thus confirming the verification of assumption (iii) of Theorem 3.4 from [15].
Consequently, having shown that 𝑎𝑖, 𝑐𝑖, and 𝑑𝑖 verify all the hypotheses of Theorem 3.4 from [15], we conclude

that 𝐴 satisfies the global inf-sup condition, which means that there exists a positive constant r𝛼𝐴, depending
only on }𝑎𝑖}, }𝑐𝑖}, r𝛼, and r𝛽, such that

sup
p𝜏𝑖,𝜂𝑖qP𝐻𝑖ˆ𝑄𝑖
p𝜏𝑖,𝜂𝑖q­“0

𝐴
`

p𝜁𝑖, 𝜗𝑖q, p𝜏𝑖, 𝜂𝑖q
˘

}p𝜏𝑖, 𝜂𝑖q}𝐻𝑖ˆ𝑄𝑖

ě r𝛼𝐴 }p𝜁𝑖, 𝜗𝑖q}𝐻𝑖ˆ𝑄𝑖
@p𝜁𝑖, 𝜗𝑖q P 𝐻𝑖 ˆ𝑄𝑖. (74)

Moreover, invoking the upper bound of 𝑐𝜑,v (cf. (39), (40)), it follows from (69) and (74) that

sup
p𝜏𝑖,𝜂𝑖qP𝐻𝑖ˆ𝑄𝑖
p𝜏𝑖,𝜂𝑖q­“0

𝐴𝜑,v

`

p𝜁𝑖, 𝜗𝑖q, p𝜏𝑖, 𝜂𝑖q
˘

}p𝜏𝑖, 𝜂𝑖q}𝐻𝑖ˆ𝑄𝑖

ě tr𝛼𝐴 ´ }𝑐} p}𝜑}0,𝑟,Ω ` }v}0,𝑟,Ωqu }p𝜁𝑖, 𝜗𝑖q}𝐻𝑖ˆ𝑄𝑖
(75)

for all p𝜁𝑖, 𝜗𝑖q P 𝐻𝑖 ˆ𝑄𝑖, from which, under the assumption that, say

}𝜑}0,𝑟,Ω ` }v}0,𝑟,Ω ď
r𝛼𝐴

2 }𝑐}
, (76)

we conclude that

sup
p𝜏𝑖,𝜂𝑖qP𝐻𝑖ˆ𝑄𝑖
p𝜏𝑖,𝜂𝑖q­“0

𝐴𝜑,v

`

p𝜁𝑖, 𝜗𝑖q, p𝜏𝑖, 𝜂𝑖q
˘

}p𝜏𝑖, 𝜂𝑖q}𝐻𝑖ˆ𝑄𝑖

ě
r𝛼𝐴
2
}p𝜁𝑖, 𝜗𝑖q}𝐻𝑖ˆ𝑄𝑖 @p𝜁𝑖, 𝜗𝑖q P 𝐻𝑖 ˆ𝑄𝑖. (77)

Similarly, using the symmetry of 𝐴 and (74), and assuming again (76), we find that

sup
p𝜁𝑖,𝜗𝑖qP𝐻𝑖ˆ𝑄𝑖
p𝜁𝑖,𝜗𝑖q­“0

𝐴𝜑,v

`

p𝜁𝑖, 𝜗𝑖q, p𝜏𝑖, 𝜂𝑖q
˘

}p𝜁𝑖, 𝜗𝑖q}𝐻𝑖ˆ𝑄𝑖

ě
r𝛼𝐴
2
}p𝜏𝑖, 𝜂𝑖q}𝐻𝑖ˆ𝑄𝑖

@p𝜏𝑖, 𝜂𝑖q P 𝐻𝑖 ˆ𝑄𝑖. (78)

In this way, we are now in position of establishing that, for each 𝑖 P t1, 2u, equation (44) is well-posed, which
means, equivalently, that r𝑇𝑖 is well-defined.

Theorem 4.6. For each 𝑖 P t1, 2u, and for each p𝜑,vq P 𝑋2 ˆQ such that (76) holds, there exists a unique
pr𝜎𝑖, r𝜉𝑖q P 𝐻𝑖 ˆ 𝑄𝑖 solution to (44), and hence one can define r𝑇𝑖p𝜑,vq :“ r𝜉𝑖 P 𝑄𝑖. Moreover, there exists a
positive constant 𝐶

r𝑇 , depending only on }𝑖𝜌} and r𝛼𝐴, such that

} r𝑇𝑖p𝜑,vq}𝑄𝑖 “ }
r𝜉𝑖}𝑄𝑖 ď }pr𝜎𝑖, r𝜉𝑖q}𝐻𝑖ˆ𝑄𝑖 ď 𝐶

r𝑇

 

}𝑔𝑖}1{2,Γ ` }𝑓𝑖}0,𝜚;Ω

(

. (79)

Proof. Thanks to (77), (78), and the boundedness of 𝐹𝑖 and 𝐺𝑖 (cf. (39), (40)), the unique solvability of (44)
follows from a straightforward application of Theorem 2.6 from [19]. In turn, the a priori estimate given by
Theorem 2.6, equation (2.5) [19] reads

›

›

›

´

r𝜎𝑖, r𝜉𝑖

¯
›

›

›

𝐻𝑖ˆ𝑄𝑖

ď
2
r𝛼𝐴

!

}𝐹𝑖}𝐻1
𝑖
` }𝐺𝑖}𝑄1𝑖

)

,

which, along with the upper bounds for }𝐹𝑖}𝐻1
𝑖

and }𝐺𝑖}𝑄1𝑖 derived from (39) and (40), yields (79) with 𝐶
r𝑇 :“

2
r𝛼𝐴

`

1` }𝑖𝜌}
˘

. �
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We end this section by observing from the definition of r𝑇 (cf. (45)) and the priori estimates given by (79) for
each 𝑖 P t1, 2u, that

›

›

›

r𝑇 p𝜑,vq
›

›

›

𝑄1ˆ𝑄2

:“
2
ÿ

𝑖“1

›

›

›

r𝑇𝑖p𝜑,vq
›

›

›

𝑄𝑖

ď 𝐶
r𝑇

2
ÿ

𝑖“1

 

}𝑔𝑖}1{2,Γ ` }𝑓𝑖}0,𝜚;Ω

(

(80)

for each p𝜑,vq P 𝑋2 ˆQ satisfying (76).

4.3. Solvability analysis of the fixed-point scheme

Knowing that the operators p𝑇 , s𝑇 , r𝑇 , and hence T as well, are well defined, we now address the solvability of
the fixed-point equation (46). For this purpose, and in order to finally apply the Banach Theorem, we first derive
sufficient conditions under which T maps a closed ball of 𝑄1 ˆ 𝑄2 into itself. Thus, letting 𝛿 be an arbitrary
radius to be properly chosen later on, we define

𝑊 p𝛿q :“ t𝜂 :“ p𝜂1, 𝜂2q P 𝑄1 ˆ𝑄2 : }𝜂}𝑄1ˆ𝑄2 ď 𝛿u. (81)

Then, given 𝜂 P 𝑊 p𝛿q, we have from the definition of T (cf. (46)) and the a priori estimate for r𝑇 (cf. (80))
that, under the assumption (cf. (76))

𝒮p𝜂q :“
›

› s𝑇 p𝜂q
›

›

0,𝑟,Ω
`

›

›

›

p𝑇
`

𝜂, s𝑇 p𝜂q
˘

›

›

›

0,𝑟,Ω
ď

r𝛼𝐴
2 }𝑐}

, (82)

there holds

}Tp𝜂q}𝑄1ˆ𝑄2 “

›

›

›

r𝑇
´

s𝑇 p𝜂q, p𝑇
`

𝜂, s𝑇 p𝜂q
˘

¯
›

›

›

𝑄1ˆ𝑄2

ď 𝐶
r𝑇

2
ÿ

𝑖“1

 

}𝑔𝑖}1{2,Γ ` }𝑓𝑖}0,𝜚;Ω

(

. (83)

In turn, applying the a priori estimates for p𝑇 (cf. (52)) and s𝑇 (cf. (66)), we find that

𝒮p𝜂q ď
`

1` 𝐶
p𝑇 }𝜂}

˘
›

› s𝑇 p𝜂q
›

›` 𝐶
p𝑇

 

}g}1{2,Γ ` }f}0,𝑠,Ω

(

ď 𝐶0p1` }𝜂}q}𝜂} ` 𝐶0p1` }𝜂}q
 

}𝑔}1{𝑠,𝑟;Γ ` }𝑓}0,𝑟;Ω

(

` 𝐶
p𝑇

 

}g}1{2,Γ ` }f}0,𝑠,Ω

(

,

with 𝐶0 :“ max
 

1, 𝐶
p𝑇

(

𝐶
s𝑇 , so that, bounding }𝜂} by 𝛿, we deduce that a sufficient condition for (82) reduces

to
𝐶0

`

1` 𝛿
˘

𝛿 ` 𝐶0

`

1` 𝛿
˘ 

}𝑔}1{𝑠,𝑟;Γ ` }𝑓}0,𝑟;Ω

(

` 𝐶
p𝑇

 

}g}1{2,Γ ` }f}0,𝑠,Ω

(

ď
r𝛼𝐴

2 }𝑐}
¨ (84)

For instance, defining

𝛿 :“ min
"

1,
r𝛼𝐴

8𝐶0}𝑐}

*

, (85)

letting 𝐶1 :“ 2𝐶0, and imposing

𝐶1

 

}𝑔}1{𝑠,𝑟;Γ ` }𝑓}0,𝑟;Ω

(

` 𝐶
p𝑇

 

}g}1{2,Γ ` }f}0,𝑠,Ω

(

ď
r𝛼𝐴

4 }𝑐}
, (86)

it is easily seen that (84) holds. We have therefore proved the following result.

Lemma 4.7. Assume that 𝛿 and the data are sufficiently small so that there hold (84) and

𝐶
r𝑇

2
ÿ

𝑖“1

 

}𝑔𝑖}1{2,Γ ` }𝑓𝑖}0,𝜚;Ω

(

ď 𝛿. (87)

Then, T
`

𝑊 p𝛿q
˘

Ď 𝑊 p𝛿q. In particular, with the definition (85) of 𝛿, and under the assumptions (86) and (87),
the same conclusion is attained.
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We now address the continuity properties of p𝑇 , s𝑇 , r𝑇 , and hence of T. We begin with that of p𝑇 .

Lemma 4.8. There exists a positive constant 𝐿
p𝑇 , depending only on 𝜀0, |Ω|, 𝛼, 𝛽, and }a}, such that

›

›

›

p𝑇 p𝜂,𝜑q ´ p𝑇 p𝜗,𝜓q
›

›

›

Q
ď 𝐿

p𝑇

!

}𝜂}0,𝜌,Ω }𝜑´𝜓}0,𝑟,Ω ` }𝜂 ´ 𝜗}0,𝜌,Ω }𝜓}0,𝑟,Ω

)

(88)

for all p𝜂,𝜑q, p𝜗,𝜓q P
`

𝑄1 ˆ𝑄2

˘

ˆ𝑋2.

Proof. Given p𝜂,𝜑q, p𝜗,𝜓q P
`

𝑄1 ˆ 𝑄2

˘

ˆ𝑋2, we let p𝑇 p𝜂,𝜑q :“ pu and p𝑇 p𝜗,𝜓q :“ pw, where pp𝜎, puq P H ˆQ
and pp𝜁, pwq P HˆQ are the corresponding unique solutions of (42). Then, subtracting both systems, we obtain

a
´

p𝜎 ´ p𝜁, 𝜏
¯

` bp𝜏 , pu´ pwq “ 0 @𝜏 P H,

b
´

p𝜎 ´ p𝜁,v
¯

“ pG𝜂,𝜑 ´G𝜗,𝜓qpvq @v P Q, (89)

which says that pp𝜎 ´ p𝜁, pu ´ pwq P H ˆ Q is the unique solution of a system like (42), but with F “ 0 and
G𝜂,𝜑 ´ G𝜗,𝜓 instead of just G𝜂,𝜑. Hence, similarly as for the derivation of (52), that is employing ([19],
Thm. 2.34, Eq. (2.30)) (see also (53)), we deduce that

›

›

›

p𝑇 p𝜂,𝜑q ´ p𝑇 p𝜗,𝜓q
›

›

›

Q
“ }pu´ pw}Q ď

}a}
𝛽2

ˆ

1`
}a}
𝛼

˙

}G𝜂,𝜑 ´G𝜗,𝜓}Q1 . (90)

In turn, it is clear from (21d), and then subtracting and adding 𝜓 to the factor 𝜑 in the first term, that for
each v P Q there holds

pG𝜂,𝜑 ´G𝜗,𝜓qpvq “
ż

Ω

𝜀´1 tp𝜂1 ´ 𝜂2q𝜑´ p𝜗1 ´ 𝜗2q𝜓u ¨ v

“

ż

Ω

𝜀´1 tp𝜂1 ´ 𝜂2q p𝜑´𝜓q ` pp𝜂1 ´ 𝜗1q ´ p𝜂2 ´ 𝜗2qq𝜓u ¨ v,

from which, proceeding as for the boundedness of G𝜂,𝜑 (cf. (23), (24)), that is employing the lower bound of 𝜀
(cf. (4)), (9a), and the fact that } ¨ }0,Ω ď |Ω|p𝑟´2q{2𝑟} ¨ }0,𝑟;Ω, we conclude that

}G𝜂,𝜑 ´G𝜗,𝜓}Q1 ď 𝜀´1
0 |Ω|p𝑟´2q{2𝑟

!

}𝜂}0,𝜌,Ω }𝜑´𝜓}0,𝑟,Ω ` }𝜂 ´ 𝜗}0,𝜌,Ω }𝜓}0,𝑟,Ω

)

. (91)

In this way, replacing (91) back into (90), we arrive at (88) and finish the proof. �

The next result establishes the continuity of s𝑇 , whose proof follows similarly to that of Lemma 4.8.

Lemma 4.9. There exists a positive constant 𝐿
s𝑇 , depending only on |Ω|, s𝛼, s𝛽2, and }𝑎}, such that

›

› s𝑇 p𝜂q ´ s𝑇 p𝜗q
›

›

𝑋2
ď 𝐿

s𝑇 }𝜂 ´ 𝜗}0,𝜌;Ω @𝜂, 𝜗 P 𝑄1 ˆ𝑄2. (92)

Proof. Given 𝜂,𝜗 P 𝑄1 ˆ𝑄2, we let s𝑇 p𝜂q :“ s𝜙 and s𝑇 p𝜗q :“ s𝜑, where p s𝜙, s𝜒q P 𝑋2 ˆ𝑀1 and p s𝜑, s𝜔q P 𝑋2 ˆ𝑀1

are the corresponding unique solutions of (43). Then, subtracting both systems, we get

𝑎
`

s𝜙´ s𝜑,𝜓
˘

` 𝑏1p𝜓, s𝜒´ s𝜔q “ 0 @𝜓 P 𝑋1,

𝑏2

`

s𝜙´ s𝜑, 𝜆
˘

“ p𝐺𝜂 ´𝐺𝜗qp𝜆q @𝜆 P 𝑀2, (93)

which states that p s𝜙 ´ s𝜑, s𝜒 ´ s𝜔q P 𝑋2 ˆ 𝑀1 is the unique solution of a problem like (43) with 𝐺 “ 0 and
𝐺𝜂´𝐺𝜗 instead of 𝐺𝜂. In this way, proceeding as for the derivation of (66), which means applying the a priori
estimate given by Corollary 2.1, Section 2.1, equation (2.15) from [5] (see also (67)), we find that

›

› s𝑇 p𝜂q ´ s𝑇 p𝜗q
›

›

𝑋2
“
›

›

s𝜙´ s𝜑
›

›

𝑋2
ď

1
s𝛽2

ˆ

1`
}𝑎}

s𝛼

˙

}𝐺𝜂 ´𝐺𝜗}𝑀 1
2
. (94)
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Now, it is clear from (29d) that for each 𝜆 P 𝑀2 there holds

p𝐺𝜂 ´𝐺𝜗qp𝜆q “ 𝐺𝜂´𝜗p𝜆q “ ´

ż

Ω

𝜆 tp𝜂1 ´ 𝜗1q ´ p𝜂2 ´ 𝜗2qu,

from which, applying Hölder’s inequality, as we did for the boundedness of 𝐺𝜂 (cf. (30), (31)), and using that
} ¨ }0,𝑟;Ω ď |Ω|p𝜌´𝑟q{𝜌𝑟 } ¨ }0,𝜌;Ω, we deduce that

}𝐺𝜂 ´𝐺𝜗}𝑀 1
2
ď |Ω|p𝜌´𝑟q{𝜌𝑟 }𝜂 ´ 𝜗}0,𝜌;Ω. (95)

Finally, employing (95) in (94), we obtain (92) and conclude the proof. �

It remains to prove the continuity of r𝑇 , which is provided by the following lemma.

Lemma 4.10. There exists a positive constant 𝐿
r𝑇 , depending only on 𝜀0, 𝜅, r𝛼𝐴, and 𝐶

r𝑇 , such that

›

›

›

r𝑇 p𝜑,vq ´ r𝑇 p𝜓,wq
›

›

›

𝑄1ˆ𝑄2

ď 𝐿
r𝑇

2
ÿ

𝑖“1

 

}𝑔𝑖}1{2,Γ ` }𝑓𝑖}0,𝜚,Ω

(

}p𝜑,vq ´ p𝜓,wq}𝑋2ˆQ (96)

for all p𝜑,vq, p𝜓,wq P 𝑋2 ˆQ satisfying (76).

Proof. Given p𝜑,vq and p𝜓,wq as indicated, we let, for each 𝑖 P t1, 2u, r𝑇𝑖p𝜑,vq :“ r𝜉𝑖 P 𝑄𝑖 and r𝑇𝑖p𝜓,wq :“ r𝜗𝑖 P

𝑄𝑖, where pr𝜎𝑖, r𝜉𝑖q P 𝐻𝑖 ˆ𝑄𝑖 and pr𝜁𝑖, r𝜗𝑖q P 𝐻𝑖 ˆ𝑄𝑖 are the corresponding unique solutions of (44), equivalently
(cf. (70))

𝐴𝜑,v

´´

r𝜎𝑖, r𝜉𝑖

¯

, p𝜏𝑖, 𝜂𝑖q

¯

“ 𝐹𝑖p𝜏𝑖q `𝐺𝑖p𝜂𝑖q @p𝜏𝑖, 𝜂𝑖q P 𝐻𝑖 ˆ𝑄𝑖, (97)

and
𝐴𝜓,w

´´

r𝜁𝑖, r𝜗𝑖

¯

, p𝜏𝑖, 𝜂𝑖q

¯

“ 𝐹𝑖p𝜏𝑖q `𝐺𝑖p𝜂𝑖q @p𝜏𝑖, 𝜂𝑖q P 𝐻𝑖 ˆ𝑄𝑖. (98)

It follows from (97) and (98), along with the definitions of the bilinear forms 𝐴𝜑,v (cf. (69)) and 𝑐𝜑,v (cf. (38f)),
that

𝐴𝜑,v

´´

r𝜎𝑖, r𝜉𝑖

¯

´

´

r𝜁𝑖, r𝜗𝑖

¯

, p𝜏𝑖, 𝜂𝑖q

¯

“ 𝐴𝜑,v

´´

r𝜎𝑖, r𝜉𝑖

¯

, p𝜏𝑖, 𝜂𝑖q

¯

´𝐴𝜑,v

´´

r𝜁𝑖, r𝜗𝑖

¯

, p𝜏𝑖, 𝜂𝑖q

¯

“ 𝐴𝜓,w

´´

r𝜁𝑖, r𝜗𝑖

¯

, p𝜏𝑖, 𝜂𝑖q

¯

´𝐴𝜑,v

´´

r𝜁𝑖, r𝜗𝑖

¯

, p𝜏𝑖, 𝜂𝑖q

¯

“ 𝑐𝜑´𝜓,v´w

´

𝜏𝑖, r𝜗𝑖

¯

, (99)

so that applying the global inf-sup condition (77) to pr𝜎𝑖, r𝜉𝑖q´pr𝜁𝑖, r𝜗𝑖q, and then using (99) and the boundedness
of 𝑐𝜑,v (cf. (39), (40)), we conclude that

›

›

›

r𝜉𝑖 ´ r𝜗𝑖

›

›

›

𝑄𝑖

ď

›

›

›

´

r𝜎𝑖, r𝜉𝑖

¯

´

´

r𝜁𝑖, r𝜗𝑖

¯
›

›

›

𝐻𝑖ˆ𝑄𝑖

ď
2 }𝑐}
r𝛼𝐴

!

}𝜑´𝜓}0,𝑟;Ω ` }v ´w}0,𝑟;Ω

)
›

›

›

r𝜗𝑖

›

›

›

𝑄𝑖

.

Next, invoking the a priori bound (79) for }r𝜗𝑖}𝑄𝑖
, the foregoing inequality yields

} r𝑇𝑖p𝜑,vq ´ r𝑇𝑖p𝜓,wq}𝑄𝑖 ď
2 }𝑐}𝐶

r𝑇

r𝛼𝐴

 

}𝑔𝑖}1{2,Γ ` }𝑓𝑖}0,𝜚;Ω

(

}p𝜑,vq ´ p𝜓,wq}𝑋2ˆQ,

from which, summing over 𝑖 P t1, 2u, we arrive at (96) and end the proof. �
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Having proved Lemmas 4.8–4.10, we now aim to derive the continuity property of the fixed point operator
T. To this end, given 𝜂, 𝜗 P 𝑊 p𝛿q (cf. (81)), we first recall from the definition of T (cf. (46)) and Theorem 4.6
that, in order to define Tp𝜂q and Tp𝜗q, we need that the pairs

`

s𝑇 p𝜂q, p𝑇 p𝜂, s𝑇 p𝜂qq
˘

and
`

s𝑇 p𝜗q, p𝑇 p𝜗, s𝑇 p𝜗qq
˘

satisfy (76). Then, according to the discussion at the beginning of the present section, we know that a sufficient
condition for the latter is given by (84), which we assume in what follows. Alternatively, and as indicated there
as well, (85) and (86) are in turn sufficient for (84).

Thus, under the aforementioned assumption on 𝛿 and the data, a direct application of (96) (cf. Lem. 4.10)
yields

}Tp𝜂q ´Tp𝜗q}𝑄1ˆ𝑄2
“

›

›

›

r𝑇
´

s𝑇 p𝜂q, p𝑇
`

𝜂, s𝑇 p𝜂q
˘

¯

´ r𝑇
´

s𝑇 p𝜗q, p𝑇
`

𝜗, s𝑇 p𝜗q
˘

¯
›

›

›

𝑄1ˆ𝑄2

ď 𝐿
r𝑇

2
ÿ

𝑖“1

 

}𝑔𝑖}1{2,Γ ` }𝑓𝑖}0,𝜚,Ω

(

"

›

› s𝑇 p𝜂q ´ s𝑇 p𝜗q
›

›

𝑋2
`

›

›

›

p𝑇
`

𝜂, s𝑇 p𝜂q
˘

´ p𝑇
`

𝜗, s𝑇 p𝜗q
˘

›

›

›

Q

*

.

(100)

In addition, employing now (92) (cf. Lem. 4.9) and (88) (cf. Lem. 4.8), we obtain

} s𝑇 p𝜂q ´ s𝑇 p𝜗q}𝑋2 ď 𝐿
s𝑇 }𝜂 ´ 𝜗}𝑄1ˆ𝑄2 , (101)

and
›

›

›

p𝑇
`

𝜂, s𝑇 p𝜂q
˘

´ p𝑇
`

𝜗, s𝑇 p𝜗q
˘

›

›

›

Q
ď 𝐿

p𝑇

!

}𝜂}𝑄1ˆ𝑄2

›

› s𝑇 p𝜂q ´ s𝑇 p𝜗q
›

›

𝑋2
` }𝜂 ´ 𝜗}𝑄1ˆ𝑄2

›

› s𝑇 p𝜗q
›

›

𝑋2

)

, (102)

respectively, whereas the a priori estimate for s𝑇 p𝜗q (cf. (66), Thm. 4.5) states

›

› s𝑇 p𝜗q
›

›

𝑋2
ď 𝐶

s𝑇

!

}𝑔}1{𝑠,𝑟;Γ ` }𝑓}0,𝑟;Ω ` }𝜗}𝑄1ˆ𝑄2

)

. (103)

In this way, using (101) in both (100) and (102), and then replacing the resulting (102) along with (103) in
(100), as well as recalling that }𝜂}𝑄1ˆ𝑄2 and }𝜗}𝑄1ˆ𝑄2 are bounded by 𝛿, we deduce the existence of a positive
constant 𝐿T, depending only on 𝐿

r𝑇 , 𝐿
s𝑇 , 𝐿

p𝑇 , and 𝐶
s𝑇 , such that

}Tp𝜂q ´Tp𝜗q}𝑄1ˆ𝑄2
ď 𝐿T

`

1` 𝛿 ` }𝑔}1{𝑠,𝑟;Γ ` }𝑓}0,𝑟;Ω

˘

2
ÿ

𝑖“1

 

}𝑔𝑖}1{2,Γ ` }𝑓𝑖}0,𝜚,Ω

(

}𝜂 ´ 𝜗}𝑄1ˆ𝑄2
, (104)

for all 𝜂, 𝜗 P 𝑊 p𝛿q. We are thus in position to establish the main result of this section.

Theorem 4.11. In addition to the hypotheses of Lemma 4.7, that is (84) and (87), or alternatively (85), (86),
and (87), assume that

𝐿T

`

1` 𝛿 ` }𝑔}1{𝑠,𝑟;Γ ` }𝑓}0,𝑟;Ω

˘

2
ÿ

𝑖“1

 

}𝑔𝑖}1{2,Γ ` }𝑓𝑖}0,𝜚,Ω

(

ă 1. (105)

Then, the operator T has a unique fixed point 𝜉 P 𝑊 p𝛿q. Equivalently, the coupled problem (41) has a unique
solution p𝜎,uq P HˆQ, p𝜙, 𝜒q P 𝑋2ˆ𝑀1, and p𝜎𝑖, 𝜉𝑖q P 𝐻𝑖ˆ𝑄𝑖, 𝑖 P t1, 2u, with 𝜉 :“ p𝜉1, 𝜉2q P𝑊 p𝛿q. Moreover,
there hold the following a priori estimates

}p𝜎,uq}HˆQ ď 𝐶
p𝑇

!

}g}1{2,Γ ` }f}0,𝑠,Ω ` }𝜉}0,𝜌;Ω }𝜙}0,𝑟;Ω

)

,

}p𝜙, 𝜒q}𝑋2ˆ𝑀1
ď 𝐶

s𝑇

!

}𝑔}1{𝑠,𝑟;Γ ` }𝑓}0,𝑟;Ω ` }𝜉}0,𝜌;Ω

)

, and

}p𝜎𝑖, 𝜉𝑖q}𝐻𝑖ˆ𝑄𝑖
ď 𝐶

r𝑇

 

}𝑔𝑖}1{2,Γ ` }𝑓𝑖}0,𝜚,Ω

(

𝑖 P t1, 2u. (106)
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Proof. We first recall that the assumptions of Lemma 4.7 guarantee that T maps 𝑊 p𝛿q into itself. Then, bearing
in mind the Lipschitz-continuity of T : 𝑊 p𝛿q Ñ 𝑊 p𝛿q (cf. (104)) and the assumption (105), a straightforward
application of the classical Banach theorem yields the existence of a unique fixed point 𝜉 P 𝑊 p𝛿q of this operator,
and hence a unique solution of (41). Finally, it is easy to see that the a priori estimates provided by (52) (cf.
Thm. 4.1), (66) (cf. Thm. 4.5), and (79) (cf. Thm. 4.6) yield (106) and finish the proof. �

5. The Galerkin scheme

We now introduce the Galerkin scheme of the fully mixed variational formulation (41), analyze its solvability
by applying a discrete version of the fixed point approach adopted in Section 4.1, and derive the corresponding
a priori error estimate.

5.1. Preliminaries

We first let Hℎ, Qℎ, 𝑋𝑖,ℎ, 𝑀𝑖,ℎ, 𝐻𝑖,ℎ ,and 𝑄𝑖,ℎ, 𝑖 P t1, 2u, be arbitrary finite element subspaces of the
spaces H, Q, 𝑋𝑖, 𝑀𝑖, 𝐻𝑖, and 𝑄𝑖, 𝑖 P t1, 2u, respectively. Hereafter, ℎ denotes both the sub-index of each
subspace and the size of a regular triangulation 𝒯ℎ of sΩ made up of triangles 𝐾 (when 𝑛 “ 2) or tetrahedra 𝐾
(when 𝑛 “ 3) of diameter ℎ𝐾 , so that ℎ :“ maxtℎ𝐾 : 𝐾 P 𝒯ℎu. Explicit finite element subspaces satisfying the
stability hypotheses to be introduced throughout the forthcoming analysis, will be defined later on in Section 6.
Then, the Galerkin scheme associated with (41) reads: Find p𝜎ℎ,uℎq P Hℎ ˆQℎ, p𝜙ℎ, 𝜒ℎq P 𝑋2,ℎ ˆ𝑀1,ℎ, and
p𝜎𝑖,ℎ, 𝜉𝑖,ℎq P 𝐻𝑖,ℎ ˆ𝑄𝑖,ℎ, 𝑖 P t1, 2u, such that

ap𝜎ℎ, 𝜏ℎq ` bp𝜏ℎ,uℎq “ Fp𝜏ℎq @𝜏 P Hℎ,

bp𝜎ℎ,vℎq “ G𝜉ℎ,𝜙ℎ
pvℎq @vℎ P Qℎ,

𝑎p𝜙ℎ,𝜓ℎq ` 𝑏1p𝜓ℎ, 𝜒ℎq “ 𝐹 p𝜓ℎq @𝜓ℎ P 𝑋1,ℎ,

𝑏2p𝜙ℎ, 𝜆ℎq “ 𝐺𝜉ℎ
p𝜆ℎq @𝜆ℎ P 𝑀2,ℎ, (107)

𝑎𝑖p𝜎𝑖,ℎ, 𝜏𝑖,ℎq ` 𝑐𝑖p𝜏𝑖,ℎ, 𝜉𝑖,ℎq ´ 𝑐𝜙ℎ,uℎ
p𝜏𝑖,ℎ, 𝜉𝑖,ℎq “ 𝐹𝑖p𝜏𝑖,ℎq @𝜏𝑖,ℎ P 𝐻𝑖,ℎ,

𝑐𝑖p𝜎𝑖,ℎ, 𝜂𝑖,ℎq ´ 𝑑𝑖p𝜉𝑖,ℎ, 𝜂𝑖,ℎq “ 𝐺𝑖p𝜂𝑖,ℎq @𝜂𝑖,ℎ P 𝑄𝑖,ℎ.

Similarly to the remark right after (41) in Section 3.4, we highlight here that the second, fourth, and sixth
rows of (107) constitute the discrete conservation of momentum properties, which are actually satisfied in
an approximate sense. At the end of Section 6.2 we describe them explicitly in terms of suitable projection
operators.

In what follows, we adopt the discrete version of the strategy employed in Section 4.1 to analyse the solvability
of (107). We now let p𝑇ℎ : p𝑄1,ℎ ˆ𝑄2,ℎq ˆ𝑋2,ℎ Ñ Qℎ be the operator defined by

p𝑇ℎp𝜂ℎ,𝜑ℎq :“ puℎ @p𝜂ℎ,𝜑ℎq P p𝑄1,ℎ ˆ𝑄2,ℎq ˆ𝑋2,ℎ,

where pp𝜎ℎ, puℎq P Hℎ ˆQℎ is the unique solution (to be confirmed below) of the first two rows of (107) with
p𝜂ℎ,𝜑ℎq instead of p𝜉ℎ,𝜙ℎq, that is

app𝜎ℎ, 𝜏ℎq ` bp𝜏ℎ, puℎq “ Fp𝜏ℎq @𝜏ℎ P Hℎ,

bpp𝜎ℎ,vℎq “ G𝜂ℎ,𝜑ℎ
pvℎq @vℎ P Qℎ.

(108)

In turn, we let s𝑇ℎ : 𝑄1,ℎ ˆ𝑄2,ℎ Ñ 𝑋2,ℎ be the operator given by

s𝑇ℎp𝜂ℎq :“ s𝜙ℎ @𝜂ℎ P 𝑄1,ℎ ˆ𝑄2,ℎ,



1534 C.I. CORREA ET AL.

where p s𝜙ℎ, s𝜒ℎq P 𝑋2,ℎ ˆ𝑀1,ℎ is the unique solution (to be confirmed below) of the third and fourth rows of
(107) with 𝜂ℎ instead of 𝜉ℎ, that is

𝑎p s𝜙ℎ,𝜓ℎq ` 𝑏1p𝜓ℎ, s𝜒ℎq “ 𝐹 p𝜓ℎq @𝜓ℎ P 𝑋1,ℎ,

𝑏2p s𝜙ℎ, 𝜆ℎq “ 𝐺𝜂ℎ
p𝜆ℎq @𝜆ℎ P 𝑀2,ℎ.

(109)

Similarly, for each 𝑖 P t1, 2u, we let r𝑇𝑖,ℎ : 𝑋2,ℎ ˆQℎ Ñ 𝑄𝑖,ℎ be the operator defined by

r𝑇𝑖,ℎp𝜑ℎ,vℎq :“ r𝜉𝑖,ℎ @p𝜑ℎ,vℎq P 𝑋2,ℎ ˆQℎ,

where pr𝜎𝑖,ℎ, r𝜉𝑖,ℎq P 𝐻𝑖,ℎˆ𝑄𝑖,ℎ is the unique solution (to be confirmed below) of the fifth and sixth rows of (107)
with p𝜑ℎ,vℎq instead of p𝜙ℎ,uℎq, that is

𝑎𝑖pr𝜎𝑖,ℎ, 𝜏𝑖,ℎq ` 𝑐𝑖

´

𝜏𝑖,ℎ, r𝜉𝑖,ℎ

¯

´ 𝑐𝜑ℎ,vℎ

´

𝜏𝑖,ℎ, r𝜉𝑖,ℎ

¯

“ 𝐹𝑖p𝜏𝑖,ℎq @𝜏𝑖,ℎ P 𝐻𝑖,ℎ,

𝑐𝑖pr𝜎𝑖,ℎ, 𝜂𝑖,ℎq ´ 𝑑𝑖

´

r𝜉𝑖,ℎ, 𝜂𝑖,ℎ

¯

“ 𝐺𝑖p𝜂𝑖,ℎq @𝜂𝑖,ℎ P 𝑄𝑖,ℎ, (110)

so that we can define the operator r𝑇ℎ : 𝑋2,ℎ ˆQℎ Ñ p𝑄1,ℎ ˆ𝑄2,ℎq as:

r𝑇ℎp𝜑ℎ,vℎq :“
`

r𝑇1,ℎp𝜑ℎ,vℎq, r𝑇2,ℎp𝜑ℎ,vℎq
˘

“ p𝜉1,ℎ, 𝜉2,ℎq “: r𝜉ℎ @p𝜑ℎ,vℎq P 𝑋2,ℎ ˆQℎ. (111)

Finally, defining the operator Tℎ : p𝑄1,ℎ ˆ𝑄2,ℎq Ñ p𝑄1,ℎ ˆ𝑄2,ℎq as

Tp𝜂ℎq :“ r𝑇ℎ

`

s𝑇ℎp𝜂ℎq, p𝑇ℎ

`

𝜂ℎ, s𝑇ℎp𝜂ℎq
˘˘

@𝜂ℎ P 𝑄1,ℎ ˆ𝑄2,ℎ, (112)

we observe that solving (107) is equivalent to seeking a fixed point of Tℎ, that is: Find 𝜉ℎ P 𝑄1,ℎ ˆ𝑄2,ℎ such
that

Tℎp𝜉ℎq “ 𝜉ℎ. (113)

5.2. Discrete solvability analysis

In this section we proceed analogously to Sections 4.2 and 4.3 and establish the well-posedness of the discrete
system (107) by means of the solvability study of the equivalent fixed point equation (113). In this regard, we
emphasize in advance that, being the respective analysis very similar to that developed in the aforementioned
sections, here we simply collect the main results and provide selected details of the corresponding proofs.

According to the above, we first aim to prove that the discrete operators p𝑇ℎ, s𝑇ℎ, and r𝑇𝑖,ℎ, 𝑖 P t1, 2u, and
hence r𝑇ℎ and Tℎ, are all well-defined, which reduces, equivalently, to show that the problems (108)–(110) are
well-posed. To this end, we now apply the discrete versions of Theorem 2.34 from [19], Theorem 2.1, Section 2.1
from [5], and Theorem 3.4 from [15], which are given by Proposition 2.42 of [19], Corollary 2.2, Section 2.2 from
[5], and Theorem 3.5 from [15], respectively. More precisely, following similar approaches from related works (see,
e.g., [11], Sect. 4.2), our analysis throughout the rest of this section is based on suitable hypotheses that need
to be satisfied by the finite element subspaces utilized in (107), which are split according to the requirements
of the associated decoupled problems. Explicit examples of discrete spaces verifying these assumptions will be
specified later on in Section 6.

We begin by addressing the well-definedness of p𝑇ℎ, for which we let Vℎ be the discrete kernel of b, that is

Vℎ :“ t𝜏ℎ P Hℎ : bp𝜏ℎ,vℎq “ 0 @vℎ P Qℎu, (114)

and assume that

(H.1) there holds div
`

Hℎ

˘

Ď Qℎ, and
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(H.2) there exists a positive constant 𝛽d, independent of ℎ, such that

sup
𝜏ℎPHℎ
𝜏ℎ ­“0

bp𝜏ℎ,vℎq

}𝜏ℎ}H
ě 𝛽d }vℎ}Q @vℎ P Qℎ. (115)

Then, according to the definition of b (cf. (21b)), it follows from (114) and (H.1) that

Vℎ :“ t𝜏ℎ P Hℎ : divp𝜏ℎq “ 0u, (116)

which says that Vℎ is contained in the continuous kernel V (cf. (48)), and hence the discrete version of (50) is
automatically satisfied, that is

ap𝜏ℎ, 𝜏ℎq ě 𝛼d }𝜏 }
2
div𝑠;Ω @𝜏ℎ P Vℎ, (117)

with 𝛼d “ 𝛼 :“ 𝐶𝑠{𝜇. Recall here that 𝐶𝑠 is the constant provided by inequality (49) with 𝑡 “ 𝑠. In this way,
it is clear from (117) that a satisfies the hypotheses given by Proposition 2.42, equation (2.35) from [19] with
the constant 𝛼d, whereas (H.2) states that b fulfills ([19], Prop. 2.42, Eq. (2.36)) with the constant 𝛽d. We are
thus in position to establish next the following result.

Theorem 5.1. For each p𝜂ℎ,𝜑ℎq P p𝑄1,ℎ ˆ 𝑄2,ℎq ˆ 𝑋2,ℎ there exists a unique pp𝜎ℎ, puℎq P Hℎ ˆ Qℎ solution
to (108), and hence one can define p𝑇ℎp𝜂ℎ,𝜑ℎq :“ puℎ P Qℎ. Moreover, there exists a positive constant 𝐶

p𝑇 ,d,
depending only on 𝜇, }i𝑟}, 𝜀0, |Ω|, 𝛼d, and 𝛽d, and hence independent of p𝜂ℎ,𝜑ℎq, such that

›

›

›

p𝑇ℎp𝜂ℎ,𝜑ℎq

›

›

›

Q
“ }puℎ}Q ď 𝐶

p𝑇 ,d

!

}g}1{2,Γ ` }f}0,𝑠,Ω ` }𝜂ℎ}0,𝜌;Ω }𝜑ℎ}0,𝑟;Ω

)

. (118)

Proof. Given p𝜂ℎ,𝜑ℎq P p𝑄1,ℎˆ𝑄2,ℎqˆ𝑋2,ℎ, the existence of a unique solution to (108) follows from a straight-
forward application of Proposition 2.42 from [19]. In turn, the corresponding a priori bound from Theorem 2.34,
equation (2.30) of [19] and the boundedness properties of F and G𝜂ℎ,𝜑ℎ

imply (118). �

Similarly as observed for the continuous operator p𝑇 , we remark here that the right-hand side of (118) can
also be assumed as the respective a priori estimate for p𝜎ℎ.

Furthermore, for the well-definedness of s𝑇ℎ, we need to introduce the discrete kernels of 𝑏1 and 𝑏2, namely

𝐾1,ℎ :“ t𝜓ℎ P 𝑋1,ℎ : 𝑏1p𝜓ℎ, 𝜆ℎq “ 0 @𝜆ℎ P 𝑀1,ℎu, (119)

and
𝐾2,ℎ :“ t𝜓ℎ P 𝑋2,ℎ : 𝑏2p𝜓ℎ, 𝜆ℎq “ 0 @𝜆ℎ P 𝑀2,ℎu, (120)

respectively, and consider the following assumptions

(H.3) there exists a positive constant s𝛼d, independent of ℎ, such that

sup
𝜓ℎP𝐾1,ℎ

𝜓ℎ ­“0

𝑎p𝜑ℎ,𝜓ℎq

}𝜓ℎ}𝑋1

ě s𝛼d }𝜑ℎ}𝑋2
@𝜑ℎ P 𝐾2,ℎ, and (121a)

sup
𝜑ℎP𝐾2,ℎ

𝑎p𝜑ℎ,𝜓ℎq ą 0 @𝜓ℎ P 𝐾1,ℎ, 𝜓ℎ ­“ 0. (121b)

(H.4) for each 𝑖 P t1, 2u there exists a positive constant s𝛽𝑖,d, independent of ℎ, such that

sup
𝜓ℎP𝑋𝑖,ℎ

𝜓ℎ ­“0

𝑏𝑖p𝜓ℎ, 𝜆ℎq

}𝜓ℎ}𝑋𝑖

ě s𝛽𝑖,d }𝜆ℎ}𝑀𝑖 @𝜆ℎ P 𝑀𝑖,ℎ. (122)
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As a consequence of (H.3) and (H.4) we provide next the discrete version of Theorem 4.5.

Theorem 5.2. For each 𝜂ℎ P 𝑄1,ℎ ˆ𝑄2,ℎ there exists a unique p s𝜙ℎ, s𝜒ℎq P 𝑋2,ℎ ˆ𝑀1,ℎ solution to (109), and
hence one can define s𝑇ℎp𝜂ℎq :“ s𝜙ℎ P 𝑋2,ℎ. Moreover, there exists a positive constant 𝐶

s𝑇 ,d, depending only on
𝜀0, 𝐶𝑟, |Ω|, s𝛼d, and s𝛽2,d, such that

›

› s𝑇ℎp𝜂ℎq
›

›

𝑋2
“ } s𝜙ℎ}𝑋2

ď 𝐶
s𝑇 ,d

!

}𝑔}1{𝑠,𝑟;Γ ` }𝑓}0,𝑟;Ω ` }𝜂ℎ}0,𝜌;Ω

)

. (123)

Proof. Given 𝜂ℎ P 𝑄1,ℎ ˆ𝑄2,ℎ, a direct application of Corollary 2.2, Section 2.2 from [5] implies the existence
of a unique solution to (109), whereas the a priori estimate provided in Corollary 2.2, equation (2.24) of [5] and
the boundedness properties of 𝐹 and 𝐺𝜂ℎ

yield (123). �

Analogously as explained for the continuous operator s𝑇 , here we can also assume that, except for a con-
stant 𝐶

s𝑇 ,d depending additionally on s𝛽1,d, the a priori estimate for s𝜒ℎ, which follows now from Corollary 2.2,
equation (2.25) of [5], is also given by the right-hand side of (123).

It remains to prove the well-definedness of r𝑇ℎ :“ p r𝑇1,ℎ, r𝑇2,ℎq, for which we first observe that, being 𝑎𝑖 and
𝑐𝑖 symmetric and positive semi-definite in the whole spaces 𝐻𝑖 and 𝑄𝑖, they certainly keep these properties in
𝐻𝑖,ℎ and 𝑄𝑖,ℎ, respectively, so that the assumption (i) of Theorem 3.5 from [15] is clearly satisfied. Next, given
𝑖 P t1, 2u, we let 𝑉𝑖,ℎ be the discrete kernel of 𝑐𝑖, that is

𝑉𝑖,ℎ :“ t𝜏𝑖,ℎ P 𝐻𝑖,ℎ : 𝑐𝑖p𝜏𝑖,ℎ, 𝜂𝑖,ℎq “ 0 @𝜂𝑖,ℎ P 𝑄𝑖,ℎu, (124)

and consider the hypotheses

(H.5) for each 𝑖 P t1, 2u there holds div
`

𝐻𝑖,ℎ

˘

Ď 𝑄𝑖,ℎ, and
(H.6) there exists a positive constant r𝛽d ą 0, independent of ℎ, such that

sup
𝜏𝑖,ℎP𝐻𝑖,ℎ

𝜏𝑖,ℎ ­“0

𝑐𝑖p𝜏𝑖,ℎ, 𝜂𝑖,ℎq

}𝜏𝑖,ℎ}𝐻𝑖

ě r𝛽d }𝜂𝑖,ℎ}𝑄𝑖
@𝜂𝑖,ℎ P 𝑄𝑖,ℎ. (125)

It follows from (124), the definition of 𝑐𝑖 (cf. (38b)), and (H.5) that

𝑉𝑖,ℎ :“ t𝜏𝑖,ℎ P 𝐻𝑖,ℎ : divp𝜏𝑖,ℎq “ 0u, (126)

whence, similarly to the case of p𝑇ℎ, 𝑉𝑖,ℎ is contained in the continuous kernel 𝑉𝑖 (cf. (71)) of 𝑐𝑖, thus yielding
the discrete analogue of (72), that is

𝑎𝑖p𝜏𝑖,ℎ, 𝜏𝑖,ℎq ě
1
s𝜅
}𝜏𝑖,ℎ}

2
div𝜚;Ω @𝜏𝑖,ℎ P 𝑉𝑖,ℎ. (127)

In this way, it is clear from (127) that 𝑎𝑖 satisfies the hypothesis (ii) of Theorem 3.5 from [15] with the constant
r𝛼d :“ s𝜅´1, whereas (H.6) constitutes itself the corresponding assumption (iii). Consequently, a straightforward
application of Theorem 3.5 from [15] implies the discrete global inf-sup condition for 𝐴 (cf. (68)) with a positive
constant r𝛼𝐴,d depending only on }𝑎𝑖}, }𝑐𝑖}, r𝛼d, and r𝛽d, and thus the same property is shared by 𝐴𝜑ℎ,vℎ

for
each p𝜑ℎ,vℎq P 𝑋2,ℎ ˆQℎ satisfying the discrete version of (76), that is

}𝜑ℎ}0,𝑟,Ω ` }vℎ}0,𝑟,Ω ď
r𝛼𝐴,d

2 }𝑐}
¨ (128)

We are now in position of establishing the well-definedness of r𝑇𝑖,ℎ for each 𝑖 P t1, 2u.
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Theorem 5.3. Given 𝑖 P t1, 2u and p𝜑ℎ,vℎq P 𝑋2,ℎ ˆ Qℎ such that (128) holds, there exists a unique
pr𝜎𝑖,ℎ, r𝜉𝑖,ℎq P 𝐻𝑖,ℎ ˆ 𝑄𝑖,ℎ solution to (110), and hence one can define r𝑇𝑖,ℎp𝜑ℎ,vℎq :“ r𝜉𝑖,ℎ P 𝑄𝑖,ℎ. Moreover,
there exists a positive constant 𝐶

r𝑇 ,d, depending only on }𝑖𝜌} and r𝛼𝐴,d, such that
›

›

›

r𝑇𝑖,ℎp𝜑ℎ,vℎq

›

›

›

𝑄𝑖

“

›

›

›

r𝜉𝑖,ℎ

›

›

›

𝑄𝑖

ď

›

›

›

´

r𝜎𝑖,ℎ, r𝜉𝑖,ℎ

¯
›

›

›

𝐻𝑖ˆ𝑄𝑖

ď 𝐶
r𝑇 ,d

!

}𝑔𝑖}1{2,Γ ` }𝑓𝑖}0,𝜚;Ω

)

. (129)

Proof. It reduces to a direct application of Theorem 2.22 from [19], whose corresponding a priori estimate,
yielding (129), makes use of the boundedness of 𝐹𝑖 and 𝐺𝑖 (cf. (39) and (40)). �

Analogously to the continuous case, it follows from the definition of r𝑇ℎ (cf. (111)) and the a priori estimates
given by (129) for each 𝑖 P t1, 2u, that

›

›

›

r𝑇ℎp𝜑ℎ,vℎq

›

›

›

𝑄1ˆ𝑄2

:“
2
ÿ

𝑖“1

›

›

›

r𝑇𝑖,ℎp𝜑ℎ,vℎq

›

›

›

𝑄𝑖

ď 𝐶
r𝑇 ,d

2
ÿ

𝑖“1

 

}𝑔𝑖}1{2,Γ ` }𝑓𝑖}0,𝜚;Ω

(

(130)

for each p𝜑ℎ,vℎq P 𝑋2,ℎ ˆQℎ satisfying (128).
Having established that the discrete operators p𝑇ℎ, s𝑇ℎ, r𝑇ℎ, and hence Tℎ (under the constraint imposed by

(128)), are all well defined, we now proceed as in Section 4.3 to address the solvability of the corresponding
fixed-point equation (113). Then, letting 𝛿d be an arbitrary radius, we set

𝑊 p𝛿dq :“ t𝜂ℎ :“ p𝜂1,ℎ, 𝜂2,ℎq P 𝑄1,ℎ ˆ𝑄2,ℎ : }𝜂ℎ}𝑄1ˆ𝑄2 ď 𝛿du, (131)

and, reasoning analogously to the derivation of Lemma 4.7 (cf. beginning of Sect. 4.3), we deduce that Tℎ maps
𝑊 p𝛿dq into itself under the discrete versions of (84) and (87), which, denoting 𝐶0,d :“ maxt1, 𝐶

p𝑇 ,du𝐶
s𝑇 ,d, are

given, respectively, by

𝐶0,dp1` 𝛿dq𝛿d ` 𝐶0,dp1` 𝛿dq
 

}𝑔}1{𝑠,𝑟;Γ ` }𝑓}0,𝑟;Ω

(

` 𝐶
p𝑇 ,d

 

}g}1{2,Γ ` }f}0,𝑠,Ω

(

ď
r𝛼𝐴,d

2 }𝑐}
(132)

and

𝐶
r𝑇 ,d

2
ÿ

𝑖“1

 

}𝑔𝑖}1{2,Γ ` }𝑓𝑖}0,𝜚;Ω

(

ď 𝛿d. (133)

Alternatively, the same conclusion is attained if, instead of (132), we define

𝛿d :“ min
"

1,
r𝛼𝐴,d

8𝐶0,d}𝑐}

*

, (134)

and, letting 𝐶1,d :“ 2𝐶0,d, impose

𝐶1,d

 

}𝑔}1{𝑠,𝑟;Γ ` }𝑓}0,𝑟;Ω

(

` 𝐶
p𝑇 ,d

 

}g}1{2,Γ ` }f}0,𝑠,Ω

(

ď
r𝛼𝐴,d

4 }𝑐}
¨ (135)

Note, however, that only (132) is required for Tℎ to be well-defined. Furthermore, employing analogue arguments
to those utilized in the proofs of Lemmas 4.8–4.10, we are able to show the continuity properties of p𝑇ℎ, s𝑇ℎ, and
r𝑇ℎ, that is the discrete versions of (88), (92), and (96), which are exactly as the latter, but with corresponding
constants denoted 𝐿

p𝑇 ,d, 𝐿
s𝑇 ,d, and 𝐿

r𝑇 ,d. Therefore, following an analogue procedure to the one that yielded
(104), we deduce that, under the assumption (132), there exists a positive constant 𝐿T,d, depending only on
𝐿

r𝑇 ,d, 𝐿
s𝑇 ,d, 𝐿

p𝑇 ,d, and 𝐶
s𝑇 ,d, such that

}Tℎp𝜂ℎq ´Tℎp𝜗ℎq}𝑄1ˆ𝑄2
ď 𝐿T,d

`

1` 𝛿d ` }𝑔}1{𝑠,𝑟;Γ ` }𝑓}0,𝑟;Ω

˘

2
ÿ

𝑖“1

 

}𝑔𝑖}1{2,Γ ` }𝑓𝑖}0,𝜚,Ω

(

}𝜂ℎ ´ 𝜗ℎ}𝑄1ˆ𝑄2
,

(136)
for all 𝜂ℎ, 𝜗ℎ P 𝑊 p𝛿dq.

Consequently, we can establish next the main result of this section.
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Theorem 5.4. Assume that 𝛿d and the data are sufficiently small so that (132) and (133) are satisfied, or
alternatively that there holds (134), (135), and (133). Then, the operator Tℎ has a fixed point 𝜉ℎ P 𝑊 p𝛿dq.
Equivalently, the coupled problem (107) has a solution p𝜎ℎ,uℎq P Hℎ ˆ Qℎ, p𝜙ℎ, 𝜒ℎq P 𝑋2,ℎ ˆ 𝑀1,ℎ, and
p𝜎𝑖,ℎ, 𝜉𝑖,ℎq P 𝐻𝑖,ℎ ˆ 𝑄𝑖,ℎ, 𝑖 P t1, 2u, with 𝜉ℎ :“ p𝜉1,ℎ, 𝜉2,ℎq P 𝑊 p𝛿dq. Moreover, there hold the following a priori
estimates

}p𝜎ℎ,uℎq}HˆQ ď 𝐶
p𝑇 ,d

!

}g}1{2,Γ ` }f}0,𝑠,Ω ` }𝜉ℎ}0,𝜌;Ω }𝜙ℎ}0,𝑟;Ω

)

,

}p𝜙ℎ, 𝜒ℎq}𝑋2ˆ𝑀1
ď 𝐶

s𝑇 ,d

!

}𝑔}1{𝑠,𝑟;Γ ` }𝑓}0,𝑟;Ω ` }𝜉ℎ}0,𝜌;Ω

)

, and

}p𝜎𝑖,ℎ, 𝜉𝑖,ℎq}𝐻𝑖ˆ𝑄𝑖
ď 𝐶

r𝑇 ,d

 

}𝑔𝑖}1{2,Γ ` }𝑓𝑖}0,𝜚,Ω

(

𝑖 P t1, 2u. (137)

In addition, under the extra assumption

𝐿T,d

`

1` 𝛿d ` }𝑔}1{𝑠,𝑟;Γ ` }𝑓}0,𝑟;Ω

˘

2
ÿ

𝑖“1

 

}𝑔𝑖}1{2,Γ ` }𝑓𝑖}0,𝜚,Ω

(

ă 1, (138)

the aforementioned solutions of (113) and (107) are unique.

Proof. As previously observed, the fact that Tℎ maps 𝑊 p𝛿dq into itself is consequence of (132) and (133), or
alternatively of (134), (135), and (133). Then, the continuity of Tℎ (cf. (136)) and Brouwer’s theorem (cf. [12],
Thm. 9.9-2) imply the existence of solution of (113), and hence of (107). In turn, under the additional hypothesis
(138), the Banach fixed point theorem guarantees the uniqueness of solution. In either case, equations (52), (66),
and (79) yield the a priori estimates (137) and conclude the proof. �

5.3. A priori error analysis

In this section we consider arbitrary finite element subspaces satisfying the assumptions specified in
Section 5.2, and establish the Céa estimate for the Galerkin error

}p𝜎,uq ´ p𝜎ℎ,uℎq}HˆQ ` }p𝜙, 𝜒q ´ p𝜙ℎ, 𝜒ℎq}𝑋2ˆ𝑀1
`

2
ÿ

𝑖“1

}p𝜎𝑖, 𝜉𝑖q ´ p𝜎𝑖,ℎ, 𝜉𝑖,ℎq}𝐻𝑖ˆ𝑄𝑖
, (139)

where
`

p𝜎,uq, p𝜙, 𝜒q, p𝜎𝑖, 𝜉𝑖q
˘

P
`

HˆQ
˘

ˆ
`

𝑋2ˆ𝑀1

˘

ˆ
`

𝐻𝑖ˆ𝑄𝑖

˘

, 𝑖 P t1, 2u, is the unique solution of (41), and
`

p𝜎ℎ,uℎq, p𝜙ℎ, 𝜒ℎq, p𝜎𝑖,ℎ, 𝜉𝑖,ℎq
˘

P
`

Hℎ ˆQℎ

˘

ˆ
`

𝑋2,ℎ ˆ𝑀1,ℎ

˘

ˆ
`

𝐻𝑖,ℎ ˆ𝑄𝑖,ℎ

˘

, 𝑖 P t1, 2u, is a solution of (107).
We proceed as in previous related works (see, e.g., [11]) by applying suitable Strang-type estimates to the pairs
of associated continuous and discrete schemes arising from (41) and (107) after splitting them according to the
three decoupled equations. Throughout the rest of this section, given a subspace 𝑍ℎ of an arbitrary Banach
space

`

𝑍, } ¨ }𝑍
˘

, we set
distp𝑧, 𝑍ℎq :“ inf

𝑧ℎP𝑍ℎ

}𝑧 ´ 𝑧ℎ}𝑍 @𝑧 P 𝑍.

We begin the analysis by considering the first two rows of (41) and (107), so that, employing the estimates
provided by Proposition 2.1, Corollary 2.3, Theorem 2.3 from [5], we deduce the existence of a positive constant
p𝑐, independent of ℎ, such that

}p𝜎,uq ´ p𝜎ℎ,uℎq}HˆQ ď p𝑐
!

distp𝜎,Hℎq ` distpu,Qℎq ` }G𝜉,𝜙 ´G𝜉ℎ,𝜙ℎ
}Q1ℎ

)

. (140)

Thus, proceeding analogously to the derivation of (91), we readily obtain

}G𝜉,𝜙 ´G𝜉ℎ,𝜙ℎ
}Q1ℎ

ď 𝜀´1
0 |Ω|p𝑟´2q{2𝑟

!

}𝜉}0,𝜌,Ω }𝜙´𝜙ℎ}0,𝑟,Ω ` }𝜙ℎ}0,𝑟,Ω }𝜉 ´ 𝜉ℎ}0,𝜌,Ω

)

, (141)
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which, substituted back in (140), yields

}p𝜎,uq ´ p𝜎ℎ,uℎq}HˆQ ď 𝑐
p𝑇

!

distp𝜎,Hℎq ` distpu,Qℎq ` }𝜉}0,𝜌,Ω }𝜙´𝜙ℎ}0,𝑟,Ω ` }𝜙ℎ}0,𝑟,Ω }𝜉 ´ 𝜉ℎ}0,𝜌,Ω

)

,

(142)

with 𝑐
p𝑇 :“ p𝑐 max

 

1, 𝜀´1
0 |Ω|p𝑟´2q{2𝑟

(

.
Next, employing the same estimates from Proposition 2.1, Corollary 2.3, Theorem 2.3 of [5] to the context

given by the third and fourth rows of (41) and (107), we find that there exists a positive constant s𝑐, independent
of ℎ, such that

}p𝜙, 𝜒q ´ p𝜙ℎ, 𝜒ℎq}𝑋2ˆ𝑀1 ď s𝑐
!

distp𝜙, 𝑋2,ℎq ` distp𝜒, 𝑀1,ℎq ` }𝐺𝜉 ´𝐺𝜉ℎ
}𝑀 1

2,ℎ

)

. (143)

In turn, proceeding as for the deduction of (95), we obtain

}𝐺𝜉 ´𝐺𝜉ℎ
}𝑀 1

2,ℎ
ď |Ω|p𝜌´𝑟q{𝜌𝑟 }𝜉 ´ 𝜉ℎ}0,𝜌;Ω, (144)

which, along with (143), gives

}p𝜙, 𝜒q ´ p𝜙ℎ, 𝜒ℎq}𝑋2ˆ𝑀1 ď 𝑐
s𝑇 tdistp𝜙, 𝑋2,ℎq ` distp𝜒, 𝑀1,ℎq ` }𝜉 ´ 𝜉ℎ}0,𝜌;Ωu, (145)

with 𝑐
s𝑇 :“ s𝑐 max

 

1, |Ω|p𝜌´𝑟q{𝜌𝑟
(

.
Furthermore, we now focus on the last two rows of (41) and (107), with 𝑐𝜙,up𝜏𝑖, 𝜉𝑖q and 𝑐𝜙ℎ,uℎ

p𝜏𝑖,ℎ, 𝜉𝑖,ℎq

being considered as part of the respective functionals on the right-hand side. In this way, applying the estimate
from Lemma 2.27 of [19], we conclude that there exists a positive constant r𝑐, independent of ℎ, such that

}p𝜎𝑖, 𝜉𝑖q ´ p𝜎𝑖,ℎ, 𝜉𝑖,ℎq}𝐻𝑖ˆ𝑄𝑖
ď r𝑐

!

distp𝜎𝑖, 𝐻𝑖,ℎq ` distp𝜉𝑖, 𝑄𝑖,ℎq ` }𝑐𝜙,up¨, 𝜉𝑖q ´ 𝑐𝜙ℎ,uℎ
p¨, 𝜉𝑖,ℎq}𝐻1

𝑖,ℎ

)

. (146)

Then, subtracting and adding 𝜉𝑖,ℎ to the second component of 𝑐𝜙,up¨, 𝜉𝑖q, making use of the triangle inequality,
bearing in mind the definition of 𝑐𝜑,v (cf. (38f)), and employing its boundedness property (cf. (39), (40)), we
get

}𝑐𝜙,up¨, 𝜉𝑖q ´ 𝑐𝜙ℎ,uℎ
p¨, 𝜉𝑖,ℎq}𝐻1

𝑖,ℎ
ď }𝑐𝜙,up¨, 𝜉𝑖 ´ 𝜉𝑖,ℎq}𝐻1

𝑖,ℎ
` }𝑐𝜙´𝜙ℎ,u´uℎ

p¨, 𝜉𝑖,ℎq}𝐻1
𝑖,ℎ

ď }𝑐}
!

p}𝜙}0,𝑟;Ω ` }u}0,𝑟;Ωq }𝜉𝑖 ´ 𝜉𝑖,ℎ}0,𝜌;Ω ` }𝜉𝑖,ℎ}0,𝜌;Ω

´

}𝜙´𝜙ℎ}0,𝑟;Ω ` }u´ uℎ}0,𝑟;Ω

¯)

,

which, jointly with (146), and summing over 𝑖 P t1, 2u, imply

2
ÿ

𝑖“1

}p𝜎𝑖, 𝜉𝑖q ´ p𝜎𝑖,ℎ, 𝜉𝑖,ℎq}𝐻𝑖ˆ𝑄𝑖
ď 𝑐

r𝑇

#

2
ÿ

𝑖“1

pdistp𝜎𝑖, 𝐻𝑖,ℎq ` distp𝜉𝑖, 𝑄𝑖,ℎqq

` p}𝜙}0,𝑟;Ω ` }u}0,𝑟;Ωq }𝜉 ´ 𝜉ℎ}0,𝜌;Ω ` }𝜉ℎ}0,𝜌;Ω p}𝜙´𝜙ℎ}0,𝑟;Ω ` }u´ uℎ}0,𝑟;Ωq

+

, (147)

with 𝑐
r𝑇 :“ r𝑐 maxt1, }𝑐}u.

For the rest of the analysis we introduce the partial error

E :“ }p𝜎,uq ´ p𝜎ℎ,uℎq}HˆQ `

2
ÿ

𝑖“1

}p𝜎𝑖, 𝜉𝑖q ´ p𝜎𝑖,ℎ, 𝜉𝑖,ℎq}𝐻𝑖ˆ𝑄𝑖
,

and suitably combine the estimates (142), (145), and (147). More precisely, employing the right-hand side of
(145) to bound }𝜙 ´ 𝜙ℎ}0,𝑟;Ω in (142) and (147), adding the resulting inequalities, performing some algebraic
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manipulations, and then utilizing the a priori bounds for }𝜙}0,𝑟;Ω, }𝜙ℎ}0,𝑟;Ω, }𝜉}0,𝜌;Ω, }𝜉ℎ}0,𝜌;Ω, and }u}0,𝑟;Ω

provided by Theorems 4.11 and 5.4, we find that there exists a positive constant 𝐶𝑒, depending on 𝑐
p𝑇 , 𝑐

s𝑇 , 𝑐
r𝑇 ,

𝛿, 𝛿d, 𝐶
p𝑇 , 𝐶

s𝑇 , 𝐶
r𝑇 , 𝐶

s𝑇 ,d, and 𝐶
r𝑇 ,d, and hence independent of ℎ, such that

E ď 𝐶𝑒

#

distpp𝜎,uq,Hℎ ˆQℎq ` distpp𝜙, 𝜒q, 𝑋2,ℎ ˆ𝑀1,ℎq `

2
ÿ

𝑖“1

distpp𝜎𝑖, 𝜉𝑖q, 𝐻𝑖,ℎ ˆ𝑄𝑖,ℎq

+

` 𝐶𝑒

#

}g}1{2,Γ ` }f}0,𝑠,Ω ` }𝑔}1{𝑠,𝑟;Γ ` }𝑓}0,𝑟;Ω `

2
ÿ

𝑖“1

`

}𝑔𝑖}1{2,Γ ` }𝑓𝑖}0,𝜚,Ω

˘

+

E. (148)

Consequently, we are in position to establish the announced Céa estimate.

Theorem 5.5. In addition to the hypotheses of Theorems 4.11 and 5.4, assume that

𝐶𝑒

#

}g}1{2,Γ ` }f}0,𝑠,Ω ` }𝑔}1{𝑠,𝑟;Γ ` }𝑓}0,𝑟;Ω `

2
ÿ

𝑖“1

`

}𝑔𝑖}1{2,Γ ` }𝑓𝑖}0,𝜚,Ω

˘

+

ď
1
2
¨ (149)

Then, there exists a positive constant 𝐶, independent of ℎ, such that

}p𝜎,uq ´ p𝜎ℎ,uℎq}HˆQ ` }p𝜙, 𝜒q ´ p𝜙ℎ, 𝜒ℎq}𝑋2ˆ𝑀1
`

2
ÿ

𝑖“1

}p𝜎𝑖, 𝜉𝑖q ´ p𝜎𝑖,ℎ, 𝜉𝑖,ℎq}𝐻𝑖ˆ𝑄𝑖

ď 𝐶

#

distpp𝜎,uq,Hℎ ˆQℎq ` distpp𝜙, 𝜒q, 𝑋2,ℎ ˆ𝑀1,ℎq `

2
ÿ

𝑖“1

distpp𝜎𝑖, 𝜉𝑖q, 𝐻𝑖,ℎ ˆ𝑄𝑖,ℎq

+

. (150)

Proof. Under the assumption (149), the a priori estimate for E follows from (148), which, along with (145),
yield (150) and ends the proof. �

We end this section by remarking that (7) suggests the following postprocessed approximation for the pressure
𝑝

𝑝ℎ “ ´
1
𝑛

trp𝜎ℎq, (151)

for which it is easy to show that

}𝑝´ 𝑝ℎ}0,Ω ď
1
?

𝑛
}𝜎 ´ 𝜎ℎ}0,Ω. (152)

Similarly, the first eq. in the first row of (8) suggests to approximate the velocity gradient as

´

y∇u
¯

ℎ
:“

1
𝜇
𝜎d

ℎ, (153)

for which it is readily seen that
›

›

›
∇u´

´

y∇u
¯

ℎ

›

›

›

0,Ω
ď

1
𝜇
}𝜎 ´ 𝜎ℎ}0,Ω. (154)

6. Specific finite element subspaces

In this section we define explicit finite element subspaces satisfying the hypotheses (H.1)–(H.6) that were
introduced in Section 5.2 for the well posedness of the Galerkin scheme (107), and provide the corresponding
rates of convergence.
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6.1. Preliminaries

In what follows we make use of the notations introduced at the beginning of Section 5.1. Thus, given an integer
𝑘 ě 0, for each 𝐾 P 𝒯ℎ we let P𝑘p𝐾q and P𝑘p𝐾q be the spaces of polynomials of degree ď 𝑘 defined on 𝐾 and
its vector version, respectively. Similarly, letting x be a generic vector in 𝑅𝑛, RT𝑘p𝐾q :“ P𝑘p𝐾q ` P𝑘p𝐾qx
and RT𝑘p𝐾q stand for the local Raviart–Thomas space of order 𝑘 defined on 𝐾 and its associated tensor
counterpart. In addition, we let P𝑘p𝒯ℎq, P𝑘p𝒯ℎq, RT𝑘p𝒯ℎq and RT𝑘p𝒯ℎq be the corresponding global versions of
P𝑘p𝐾q, P𝑘p𝐾q, RT𝑘p𝐾q and RT𝑘p𝐾q, respectively, that is

𝑃𝑘p𝒯ℎq :“
 

𝑣ℎ P 𝐿2pΩq : 𝑣ℎ|𝐾 P 𝑃𝑘p𝐾q @𝐾 P 𝒯ℎ

(

,

P𝑘p𝒯ℎq :“
 

vℎ P L2pΩq : vℎ|𝐾 P P𝑘p𝐾q @𝐾 P 𝒯ℎ

(

,

RT𝑘p𝒯ℎq :“ t𝜏ℎ P Hpdiv; Ωq : 𝜏ℎ|𝐾 P RT𝑘p𝐾q @𝐾 P 𝒯ℎu,

and
RT𝑘p𝒯ℎq :“ t𝜏ℎ P Hpdiv; Ωq : 𝜏ℎ|𝐾 P RT𝑘p𝐾q @𝐾 P 𝒯ℎu.

We notice here that for each 𝑡 P p1,`8q there hold the inclusions 𝑃𝑘p𝒯ℎq Ď 𝐿𝑡pΩq, P𝑘p𝒯ℎq Ď L𝑡pΩq, RT𝑘p𝒯ℎq Ď

Hpdiv𝑡; Ωq, RT𝑘p𝒯ℎq Ď H𝑡pdiv𝑡; Ωq, and RT𝑘p𝒯ℎq Ď Hpdiv𝑡; Ωq, which are employed below to introduce our
specific finite element subspaces. Indeed, we now set

Hℎ :“ RT𝑘p𝒯ℎq XH0pdiv𝑠; Ωq, Qℎ :“ P𝑘p𝒯ℎq, 𝐻𝑖,ℎ :“ RT𝑘p𝒯ℎq, 𝑄𝑖,ℎ :“ 𝑃𝑘p𝒯ℎq,

𝑋2,ℎ :“ RT𝑘p𝒯ℎq, 𝑀1,ℎ :“ 𝑃𝑘p𝒯ℎq, 𝑋1,ℎ :“ RT𝑘p𝒯ℎq, and 𝑀2,ℎ :“ 𝑃𝑘p𝒯ℎq. (155)

6.2. Verification of the hypotheses (H.1)–(H.6)

We begin by observing from (155) that (H.1) is trivially satisfied, whereas (H.2) was proved in Lemma 5.5
from [14] (see, also, [8], Lem, 4.3) for the particular case given by 𝑟 “ 4 and 𝑠 “ 4{3. In turn, a vector version of
(H.2) was established in Lemma 4.5 from [26] for 𝑠 P p1, 2q in 2D (with local notation there given by 𝜚 instead of
𝑠). In both cases, the preliminary result provided by Lemma 5.4 of [14] plays a key role in the respective proofs.
While we could simply say, at least in 2D, that (H.2) follows basically from a direct extension of Lemma 4.5
from [26], we provide its explicit proof below for sake of completeness. To this end, following ([26], Sect. 4.1),
we now introduce for each 𝑡 P p1,`8q the space

H𝑡 :“
 

𝜏 P H𝑡pdiv𝑡; Ωq YHpdiv𝑡; Ωq : 𝜏 |𝐾 PW1,𝑡p𝐾q @𝐾 P 𝒯ℎ

(

,

and let Π𝑘
ℎ : H𝑡 Ñ RT𝑘p𝒯ℎq be the global Raviart–Thomas interpolator (cf. [6], Sect. 2.5). Then, we recall from

Proposition 2.5.2 and equation (2.5.27) of [6] the commuting diagram property

div
`

Π𝑘
ℎp𝜏 q

˘

“ 𝒫𝑘
ℎ

`

divp𝜏
˘˘

@𝜏 P H𝑡, (156)

where 𝒫𝑘
ℎ : 𝐿1pΩq Ñ 𝑃𝑘p𝒯ℎq is the projector defined, for each 𝑣 P 𝐿1pΩq, as the unique element 𝒫𝑘

ℎp𝑣q P 𝑃𝑘p𝒯ℎq

such that
ż

Ω

𝒫𝑘
ℎp𝑣q 𝑞ℎ “

ż

Ω

𝑣 𝑞ℎ @𝑞ℎ P 𝑃𝑘p𝒯ℎq. (157)

In turn, it follows from Proposition 1.135 of [19] (see, also, [11], Eq. (A.5)) that there exists a positive constant
𝐶𝒫 , independent of ℎ, such that for each 𝑡 P p1,`8q there holds

›

›𝒫𝑘
ℎp𝑣q

›

›

0,𝑡;Ω
ď 𝐶𝒫 }𝑣}0,𝑡;Ω @𝑣 P 𝐿𝑡pΩq. (158)

On the other hand, while here we could use again ([14], Lem. 5.4), we prefer to resort to the slightly more
general result provided by Lemma A.2 of [11], thus giving a greater visibility to it, which establishes that, given
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an integer 𝑙 such that 1 ď 𝑙 ď 𝑘` 1, and given 𝑡, 𝑝 P p1,`8q, such that 𝑝 ď 𝑡 ď 𝑛𝑝
𝑛´𝑝 if 𝑝 ă 𝑛, or 𝑝 ď 𝑡 ă `8 if

𝑝 “ 𝑛, there exists a positive constant 𝐶, independent of ℎ, such that
›

›𝜏 ´Π𝑘
ℎp𝜏 q

›

›

0,𝑡;Ω
ď 𝐶 ℎ𝑙`𝑛

𝑡 ´
𝑛
𝑝 |𝜏 |𝑙,𝑝;Ω @𝜏 PW𝑙,𝑝pΩq. (159)

Note that for the first set of constraints on 𝑡 and 𝑝, there holds 𝑛
𝑡 ´

𝑛
𝑝 ě ´1, which yields 𝑙` 𝑛

𝑡 ´
𝑛
𝑝 ě 0, whereas

for the second one, there holds 𝑙 ` 𝑛
𝑡 ´

𝑛
𝑝 “ 𝑙 ´ 1 ` 𝑛

𝑡 ě
𝑛
𝑡 , thus proving that in any case the power of ℎ in

(159) is non-negative. In this way, it follows from (159) that, for 𝑙 “ 1, and under the specified ranges of 𝑡 and
𝑝, there exists a positive constant 𝐶Π, independent of ℎ, such that (cf. [11], Lem. A.3)

}Π𝑘
ℎp𝜏 q}0,𝑡;Ω ď 𝐶Π }𝜏 }1,𝑝;Ω @𝜏 PW1,𝑝pΩq. (160)

In particular, for 𝑝 ă 𝑛 and 𝑡 “ 2, the inequality 𝑡 ď 𝑛𝑝
𝑛´𝑝 becomes 𝑝 ě 2𝑛

𝑛`2 , so that for the resulting range of
𝑝, that is 𝑝 P

“

2𝑛
𝑛`2 , 2

˘

in 2D, and 𝑝 P
“

2𝑛
𝑛`2 , 2

‰

in 3D, we obtain

}Π𝑘
ℎp𝜏 q}0,Ω ď 𝐶Π }𝜏 }1,𝑝;Ω @𝜏 PW1,𝑝pΩq. (161)

Analogue identities and inequalities to those stated above are valid with the tensor and vector versions of Π𝑘
ℎ

and 𝒫𝑘
ℎ , which are denoted by Π𝑘

ℎ and 𝒫𝑘
ℎ, respectively.

We are now in position to prove that (H.2) holds.

Lemma 6.1. Under the ranges for 𝑟 and 𝑠 specified by (64), there exists a positive constant 𝛽d, independent
of ℎ, such that

sup
𝜏ℎPHℎ
𝜏ℎ ­“0

ş

Ω
vℎ ¨ divp𝜏ℎq

}𝜏ℎ}div𝑠;Ω
ě 𝛽d }vℎ}0,𝑟;Ω @vℎ P Qℎ, (162)

Proof. Given vℎ P Qℎ, vℎ ­“ 0, we set vℎ,𝑠 :“ |vℎ|
𝑟´2 vℎ, which belongs to L𝑠pΩq, and notice that

ż

Ω

vℎ ¨ vℎ,𝑠 “ }vℎ}0,𝑟;Ω }vℎ,𝑠}0,𝑠;Ω. (163)

Next, we let 𝒪 be a bounded convex polygonal domain that contains sΩ, and define

g :“
"

vℎ,𝑠 in Ω,

0 in 𝒪zsΩ,
.

It is readily seen that g P L𝑠p𝒪q and }g}0,𝑠;𝒪 “ }vℎ,𝑠}0,𝑠;Ω. Then, applying the elliptic regularity result provided
by Corollary 1 from [21], we deduce that there exists a unique z P W2,𝑠p𝒪q XW1,𝑠

0 p𝒪q such that: ∆z “ g in
𝒪, z “ 0 on B𝒪. Moreover, there exists a positive constant 𝐶reg, depending only on 𝒪, such that

}z}2,𝑠;𝒪 ď 𝐶reg }g}0,𝑠;𝒪 “ 𝐶reg }vℎ,𝑠}0,𝑠;Ω. (164)

Hence, defining 𝜁 :“ ∇z|Ω P W1,𝑠pΩq, it follows that divp𝜁q “ vℎ,𝑠 in Ω, and, according to (164),

}𝜁}1,𝑠;Ω ď }z}2,𝑠;𝒪 ď 𝐶reg }vℎ,𝑠}0,𝑠;Ω. (165)

Now, since the identity tensor I clearly belongs to RT𝑘p𝒯ℎq, we can let 𝜁ℎ be the H0pdiv𝑠; Ωq-component (cf.
(18)) of Π𝑘

ℎp𝜁q, so that 𝜁ℎ P Hℎ. In this way, employing the analogue of (156), we find that

divp𝜁ℎq “ div
´

Π𝑘
ℎp𝜁q

¯

“ 𝒫𝑘
ℎpdivp𝜁qq “ 𝒫𝑘

ℎpvℎ,𝑠q, (166)
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which, along with the analogue of (158) for 𝑡 “ 𝑠, give

}divp𝜁ℎq}0,𝑠;Ω ď 𝐶𝒫 }vℎ,𝑠}0,𝑠;Ω. (167)

In turn, noting that the range for 𝑠 (cf. (64)) fits into the one for 𝑝 in (161), we can apply this inequality (with
𝑝 “ 𝑠) and the regularity estimate (165), to arrive at

}𝜁ℎ}0,Ω ď

›

›

›
Π𝑘

ℎp𝜁q
›

›

›

0,Ω
ď 𝐶Π }𝜁}1,𝑠;Ω ď 𝐶Π 𝐶reg }vℎ,𝑠}0,𝑠;Ω, (168)

which, combined with (167), implies

}𝜁ℎ}div𝑠;Ω ď
`

𝐶𝒫 ` 𝐶Π 𝐶reg

˘

}vℎ,𝑠}0,𝑠;Ω. (169)

Consequently, bounding below the supremum in (162) with 𝜁ℎ, and making use of (166), the analogue
of (157), (163), and (169), we conclude the required discrete inf-sup condition with the constant 𝛽d :“
`

𝐶𝒫 ` 𝐶Π 𝐶reg

˘´1. �

Furthermore, for the hypotheses (H.3) and (H.4), we first stress that (H.3) corresponds exactly to (H.5) of
[11], and hence we omit most details and refer to Section 5.2, Lemma 5.2 from [11]. We just make a few remarks
here. First of all, we observe that the discrete kernels of the bilinear forms 𝑏1 and 𝑏2 coincide algebraically,
which reduces to

𝐾𝑘
ℎ :“ t𝜓ℎ P RT𝑘p𝒯ℎq : divp𝜓ℎq “ 0 in Ωu.

Then, we let Θ𝑘
ℎ : L1pΩq Ñ 𝐾𝑘

ℎ be the projector defined similarly to (157), that is, given 𝜑 P L1pΩq, Θ𝑘
ℎp𝜑q is

the unique element in 𝐾𝑘
ℎ such that

ż

Ω

Θ𝑘
ℎp𝜑q ¨𝜓ℎ “

ż

Ω

𝜑 ¨𝜓ℎ @𝜓ℎ P 𝐾𝑘
ℎ .

In this way, a quasi-uniform boundedness property of Θ𝑘
ℎ in 2D (cf. [11], Eq. (5.8)), along with the properties of

the operators 𝐷𝑡 (cf. Lem. 4.2), play a key role in the proof of (H.3). Whether the aforementioned boundedness
is satisfied or not in 3D is still an open problem, and hence, similarly to [11], the assumption (H.3) is the
only aspect of the analysis in this section that does not hold in 3D. All the other conditions are valid in both
2D and 3D. Regarding (H.4), we remark that the discrete inf-sup conditions for 𝑏1 and 𝑏2, which adapt the
continuous analysis from Lemma 4.4 to the present discrete setting, follow from slight modifications of the proofs
of Lemma 4.5 from [26] and Lemma 5.3 from [11]. Further details are omitted here.

Finally, it is clear from (155) that (H.5) is trivially satisfied, whereas (H.6) was proved precisely by Lemma 4.5
from [26]. Alternatively, for the discrete inf-sup condition for 𝑐𝑖 we can proceed analogously to the proof of
Lemma 6.1 by observing that the range of 𝜚 (cf. (64), recall that 𝐻𝑖 :“ Hpdiv𝜚; Ωq) also fits into the one for 𝑝
in (161), whence this inequality can be applied to 𝑝 “ 𝜚 as well.

On the other hand, and as already announced in Section 5.1, we now observe that for the particular finite
element subspaces introduced in Section 6.1 (cf. (155)), the discrete conservation of momentum properties (cf.
second, fourth, and sixth rows of (107)) become

divp𝜎ℎq ´𝒫𝑘
ℎ

`

p𝜉1,ℎ ´ 𝜉2,ℎq 𝜀
´1𝜙ℎ ` f

˘

“ 0 in Ω,

divp𝜙ℎq ` p𝜉1,ℎ ´ 𝜉2,ℎq ` 𝒫𝑘
ℎp𝑓q “ 0 in Ω,

𝜉𝑖,ℎ ´ divp𝜎𝑖,ℎq ´ 𝒫𝑘
ℎp𝑓𝑖q “ 0 in Ω, (170)

so that, due to the presence of 𝒫𝑘
ℎ and 𝒫𝑘

ℎ, they are satisfied approximately.
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6.3. The rates of convergence

Here we provide the rates of convergence of the Galerkin scheme (107) with the specific finite element
subspaces introduced in Section 6.1, for which we previously collect the respective approximation properties. In
fact, thanks to Proposition 1.135 of [19] and its corresponding vector version, along with interpolation estimates
of Sobolev spaces, those of Qℎ, 𝑄𝑖,ℎ, and 𝑀1,ℎ, are given as follows

pAPu
ℎq there exists a positive constant 𝐶, independent of ℎ, such that for each 𝑙 P r0, 𝑘 ` 1s, and for each

v PW𝑙,𝑟pΩq, there holds

dist
`

v,Qℎ

˘

:“ inf
vℎPQℎ

}v ´ vℎ}0,𝑟;Ω ď 𝐶 ℎ𝑙 }v}𝑙,𝑟;Ω,

´

AP𝜉𝑖

ℎ

¯

there exists a positive constant 𝐶, independent of ℎ, such that for each 𝑙 P r0, 𝑘 ` 1s, and for each

𝜂𝑖 P W𝑙,𝜌pΩq, there holds

dist
`

𝜂𝑖, 𝑄𝑖,ℎ

˘

:“ inf
𝜂𝑖,ℎP𝑄𝑖,ℎ

}𝜂𝑖 ´ 𝜂𝑖,ℎ}0,𝜌;Ω ď 𝐶 ℎ𝑙 }𝜂𝑖}𝑙,𝜌;Ω,

pAP𝜒
ℎq there exists a positive constant 𝐶, independent of ℎ, such that for each 𝑙 P r0, 𝑘 ` 1s, and for each

𝜆 P W𝑙,𝑟pΩq, there holds

dist
`

𝜆, 𝑀1,ℎ

˘

:“ inf
𝜆ℎP𝑀1,ℎ

}𝜆´ 𝜆ℎ}0,𝑟;Ω ď 𝐶 ℎ𝑙 }𝜆}𝑙,𝑟;Ω.

Furthermore, from equation (4.6), Section 4.1 of [26] and its tensor version, which, as the foregoing ones, are
derived in the classical way by using the Deny–Lions Lemma and the corresponding scaling estimates (cf. [19],
Lems. B.67 and 1.101), we state next the approximation properties of Hℎ and 𝐻𝑖,ℎ

pAP𝜎ℎ q there exists a positive constant 𝐶, independent of ℎ, such that for each 𝑙 P r1, 𝑘 ` 1s, and for each
𝜏 P H𝑙pΩq XH0pdiv𝑠; Ωq with divp𝜏 q PW𝑙,𝑠pΩq, there holds

dist
`

𝜏 ,Hℎ

˘

:“ inf
𝜏ℎPHℎ

}𝜏 ´ 𝜏ℎ}div𝑠;Ω ď 𝐶 ℎ𝑙 t}𝜏 }𝑙,Ω ` }divp𝜏 q}𝑙,𝑠;Ωu,

pAP𝜎𝑖

ℎ q there exists a positive constant 𝐶, independent of ℎ, such that for each 𝑙 P r1, 𝑘 ` 1s, and for each
𝜏𝑖 P H𝑙pΩq with divp𝜏𝑖q PW𝑙,𝜚pΩq, there holds

dist
`

𝜏𝑖, 𝐻𝑖,ℎ

˘

:“ inf
𝜏𝑖,ℎP𝐻𝑖,ℎ

}𝜏𝑖 ´ 𝜏𝑖,ℎ}div𝜚;Ω ď 𝐶 ℎ𝑙 t}𝜏𝑖}𝑙,Ω ` }divp𝜏𝑖q}𝑙,𝜚;Ωu.

Finally, that of 𝑋2,ℎ, which we recall from Section 4.5, (APu
ℎ) of [26], becomes

pAP𝜙h q there exists a positive constant 𝐶, independent of ℎ, such that for each 𝑙 P r1, 𝑘 ` 1s, and for each
𝜑 PW𝑙,𝑟pΩq with divp𝜑q P W𝑙,𝑟pΩq, there holds

dist
`

𝜑, 𝑋2,ℎ

˘

:“ inf
𝜑ℎP𝑋2,ℎ

}𝜑´ 𝜑ℎ}𝑟,div𝑟;Ω ď 𝐶 ℎ𝑙 t}𝜑}𝑙,𝑟;Ω ` }divp𝜑q}𝑙,𝑟;Ωu.

The rates of convergence of (107) are now provided by the following theorem.

Theorem 6.2. Let
`

p𝜎,uq, p𝜙, 𝜒q, p𝜎𝑖, 𝜉𝑖q
˘

P
`

HˆQ
˘

ˆ
`

𝑋2ˆ𝑀1

˘

ˆ
`

𝐻𝑖ˆ𝑄𝑖

˘

, 𝑖 P t1, 2u be the unique solution
of (41) with 𝜉 :“ p𝜉1, 𝜉2q P𝑊 p𝛿q, and let

`

p𝜎ℎ,uℎq, p𝜙ℎ, 𝜒ℎq, p𝜎𝑖,ℎ, 𝜉𝑖,ℎq
˘

P
`

HℎˆQℎ

˘

ˆ
`

𝑋2,ℎˆ𝑀1,ℎ

˘

ˆ
`

𝐻𝑖,ℎˆ

𝑄𝑖,ℎ

˘

, 𝑖 P t1, 2u be a solution of (107) with 𝜉ℎ :“ p𝜉1,ℎ, 𝜉2,ℎq P 𝑊 p𝛿dq, which is guaranteed by Theorems 4.11
and 5.4, respectively. In turn, let 𝑝, 𝑝ℎ, ∇u, and

`

y∇u
˘

ℎ
given by (7), (151), the first eq. in the first row of

(8), and (153), respectively. Assume the hypotheses of Theorem 5.5, and that there exists 𝑙 P r1, 𝑘 ` 1s such
that 𝜎 P H𝑙pΩq X H0pdiv𝑠; Ωq, divp𝜎q P W𝑙,𝑠pΩq, u P W𝑙,𝑟pΩq, 𝜙 P W𝑙,𝑟pΩq, divp𝜙q P W𝑙,𝑟pΩq, 𝜒 P W𝑙,𝑟pΩq,
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𝜎𝑖 P H𝑙pΩq, divp𝜎𝑖q PW𝑙,𝜚pΩq, and 𝜉𝑖 P W𝑙,𝜌pΩq, 𝑖 P t1, 2u. Then, there exists a positive constant 𝐶, independent
of ℎ, such that

}p𝜎,uq ´ p𝜎ℎ,uℎq}HˆQ ` }𝑝´ 𝑝ℎ}0,Ω ` }p𝜙, 𝜒q ´ p𝜙ℎ, 𝜒ℎq}𝑋2ˆ𝑀1

`

›

›

›
∇u´

´

y∇u
¯

ℎ

›

›

›

0,Ω
`

2
ÿ

𝑖“1

}p𝜎𝑖, 𝜉𝑖q ´ p𝜎𝑖,ℎ, 𝜉𝑖,ℎq}𝐻𝑖ˆ𝑄𝑖

ď 𝐶 ℎ𝑙 t}𝜎}𝑙,Ω ` }divp𝜎q}𝑙,𝑠;Ω ` }u}𝑙,𝑟;Ω ` }𝜙}𝑙,𝑟;Ω ` }divp𝜙q}𝑙,𝑟;Ω

` }𝜒}𝑙,𝑟;Ω `
2
ÿ

𝑖“1

´

}𝜎𝑖}𝑙,Ω ` }divp𝜎𝑖q}𝑙,𝜚;Ω ` }𝜉𝑖}𝑙,𝜌;Ω

¯

+

.

Proof. It follows straightforwardly from Theorem 5.5, equations (152), (154), and the above approximation
properties. �

7. Computational results

We turn now to the numerical verification of the rates of convergence anticipated by Theorem 6.2. The
following examples in 2D and 3D have been realized with the finite element library FEniCS [1]. The linearization
of the nonlinear algebraic equations that arise after discretization is done using either a fixed-point Picard
algorithm or an exact Newton–Raphson method (with the zero vector as initial guess and iterations are stopped
once the absolute or relative residual drops below 10´8) and the linear systems are solved with the multifrontal
massively parallel sparse direct method MUMPS [2].

Example 1. Considering first the spatial domain Ω “ p0, 1q3 along with the arbitrarily chosen parameters

𝜇 “ 10´3, 𝜀 “ 0.1, 𝜅1 “ 0.25, 𝜅2 “ 0.5,

we define the following manufactured exact solutions to (8)

u “

¨

˝

sin2
p𝜋𝑥q sinp𝜋𝑦q sinp2𝜋𝑧q

sinp𝜋𝑥q sin2
p𝜋𝑦q sinp2𝜋𝑧q

´rsinp2𝜋𝑥q sinp𝜋𝑦q ` sinp𝜋𝑥q sinp2𝜋𝑦qs sin2
p𝜋𝑧q

˛

‚,

𝑝 “ 𝑥4 ´
1
2
`

𝑦4 ` 𝑧4
˘

, 𝜉1 “ expp´𝑥𝑦 ` 𝑧q,

𝜉2 “ cos2p𝑥𝑦𝑧q, 𝜒 “ sinp𝑥q cosp𝑦q sinp𝑧q, 𝜎 “ 𝜇∇u´ 𝑝I,
𝜎𝑖 “ 𝜅𝑖

`

∇𝜉𝑖 ` 𝑞𝑖𝜉𝑖𝜀
´1𝜙

˘

´ 𝜉𝑖u, 𝜙 “ 𝜀∇𝜒,

and construct forcing/source terms and non-homogeneous Dirichlet boundary conditions f ,g, 𝑓𝑖, 𝑔𝑖 from these
closed-form solutions. Using the lowest-order version of the finite element spaces defined in (155) (with poly-
nomial degree 𝑘 “ 0), we solve problem (107) on a sequence of six succesively refined regular meshes. The
zero-mean pressure condition is enforced using a real Lagrange multiplier approach. At each refinement level
we compute errors between approximate and smooth exact solutions using the norms in (139) and Theorem 6.2
(but we split their contribution coming from the error on each individual field variable). For this 3D accuracy
test we consider the Banach spaces indexes specified in (64)

𝑟 “ 3, 𝑠 “ 3{2, 𝜌 “ 6, 𝜚 “ 6{5.

The results of this convergence study are collected in Figure 2 (top panels), where we plot in log-log scale the
error decay as the number of degrees of freedom increases. Apart from the electric field 𝜙 which converges with
rate of approximately 1.5, all other variables exhibit an optimal rate of convergence. In the bottom panel of the
figure we show approximate solutions for some of the field variables, which indicate well resolved profiles.
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Figure 2. Example 1. Error history associated with the finite element family (155) with 𝑘 “ 0
in 3D for primal variables (top left) and mixed variables (top right, including the velocity
gradient using the postprocess in (153)), and samples of approximate primal variables (velocity
streamlines uℎ, iso-surfaces of postprocessed pressure 𝑝ℎ, electrostatic potential 𝜒ℎ, and positive
ion concentration 𝜉1,ℎ; bottom plots). In all mesh refinements the number of Newton–Raphson
iterations was 4.

In addition, the balance-preserving properties (170) of the proposed mixed formulation are assessed by com-
puting the residual quantities

fluidℎ :“
›

›

›
divp𝜎ℎq ´𝒫𝑘

ℎ

`

p𝜉1,ℎ ´ 𝜉2,ℎq 𝜀
´1𝜙ℎ ` f

˘

›

›

›

ℓ8
,

currentℎ :“
›

›divp𝜙ℎq ` p𝜉1,ℎ ´ 𝜉2,ℎq ` 𝒫𝑘
ℎp𝑓q

›

›

ℓ8
,

mass𝑖,ℎ :“
›

›𝜉𝑖,ℎ ´ divp𝜎𝑖,ℎq ´ 𝒫𝑘
ℎp𝑓𝑖q

›

›

ℓ8
.

These values, for each refinement level, are collected in Table 1. We tabulate the total error

e :“ }p𝜎,uq ´ p𝜎ℎ,uℎq}HˆQ ` }𝑝´ 𝑝ℎ}0,Ω ` }p𝜙, 𝜒q ´ p𝜙ℎ, 𝜒ℎq}𝑋2ˆ𝑀1

`

›

›

›
∇u´

´

y∇u
¯

ℎ

›

›

›

0,Ω
`

2
ÿ

𝑖“1

}p𝜎𝑖, 𝜉𝑖q ´ p𝜎𝑖,ℎ, 𝜉𝑖,ℎq}𝐻𝑖ˆ𝑄𝑖
,

(as indicated by Thm. 6.2) as well as the rates of convergence computed as

r “ logpe{peq
”

log
´

ℎ{pℎ
¯ı´1

,
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Table 1. Example 1. Total error, experimental rates of convergence, and ℓ8-norm of the
projected residual of the momentum, potential, and ionic transport equations.

DoF ℎ e r fluidℎ currentℎ mass1,ℎ mass2,ℎ

145 1.732 4.51e+1 ‹ 2.37e–07 7.29e–17 1.83e–15 8.64e–16
1009 0.866 2.35e+1 0.88 8.61e–08 2.45e–16 4.14e–15 1.81e–15
7489 0.433 1.34e+1 0.91 6.07e–10 4.53e–16 5.10e–15 4.85e–15
57 601 0.217 6.90e+0 0.96 1.27e–11 6.76e–16 1.45e–14 8.77e–15
451 585 0.108 3.46e+0 1.00 1.04e–11 6.29e–15 1.47e–14 2.48e–11
3 575 809 0.051 1.72e+0 1.00 5.88e–11 4.20e–15 2.38e–15 2.95e–15

where e and pe denote errors produced on two consecutive meshes associated with mesh sizes ℎ and pℎ, respectively.
From the last columns we see that the potential and transport balance equations are satisfied to machine
precision while the error for the momentum balance is higher. This may be explained by the presence of the
term 𝜙ℎ on the right-hand side (which has a H(div)-component).

Example 2. In addition, and in order to illustrate the implementation of fixed-point solvers, we have realized
numerically Picard versions of the linearization of (107). In case A we follow the fixed-point structure used in
the analysis of Section 5.1, that is, solving sequentially problems

(108) Ñ (109) Ñ (110),

and iterating until the ℓ2-norm of the vector containing the residual of the Picard iterates reaches 10´8. Next,
in case B we choose a different fixed-point splitting where we apply two modifications with respect to case A.
First, in (110) instead of the linear functional for the second discrete electrostatic potential equation (discrete
version of (29d)) we consider 𝐺p𝜆ℎq :“ ´

ş

Ω
𝑓𝜆ℎ and the coupling term appears as a bilinear form contribution

(and no longer as part of the linear functional), say

p𝑔p𝜆ℎ, p𝜉1,ℎ, 𝜉2,ℎqq :“
ż

Ω

𝜆ℎp𝜉1,ℎ ´ 𝜉2,ℎq.

Secondly, with regards to the constitutive equation in the ionized particle equations, we swap the bilinearity in
the flux definition (discrete version of (38f)) from 𝜉𝑖,ℎ to the pair p𝜑ℎ,uℎq, that is, we consider

p𝑐𝜉𝑖,ℎ
p𝜏𝑖,ℎ, p𝜑ℎ,uℎqq :“

ż

Ω

!

𝑞𝑖 𝜉𝑖 𝜀´1𝜑ℎ ´ 𝜅´1
𝑖 𝜉𝑖 uℎ

)

¨ 𝜏𝑖.

For both fixed-point cases we have taken as initial guess solution the zero vector. Moreover, we consider a
2D problem with manufactured solutions defined on Ω “ p0, 1q2

u “
ˆ

cosp𝜋𝑥q sinp𝜋𝑦q
´ sinp𝜋𝑥q cosp𝜋𝑦q

˙

, 𝑝 “ 𝑥4 ´ 𝑦4, 𝜒 “ sinp𝑥q cosp𝑦q, 𝜉1 “ expp´𝑥𝑦q, 𝜉2 “ cos2p𝑥𝑦q,

and take the same model constants as before. In 2D, and according to (64) we now choose

𝑟 “ 4, 𝑠 “ 4{3, 𝜌 “ 4, 𝜚 “ 4{3.

We focus on the number of Picard iterations required in each case, displaying the obtained results in Table 2.
While we confirm that all methods give exactly the same errors (and consequently also the same convergence
rates, which are optimal in view of the theoretical bounds), from the number of fixed-point iterations we readily
note that case B performs much better than case A, for the two polynomial degrees we tested 𝑘 “ 0, 𝑘 “ 1.
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Table 2. Example 2. Total error, experimental rates of convergence, and number of iterations
required for two types of fixed-point methods as well as for Newton–Raphson linearization.

Case A Case B Case C
DoF ℎ e r iter e r iter e r iter

𝑘 “ 0

221 0.500 2.55e+1 ‹ 100 2.55e+1 ‹ 13 2.55e+1 ‹ 4
841 0.250 1.30e+1 0.97 83 1.30e+1 0.97 8 1.30e+1 0.97 4
3281 0.125 6.39e+0 1.03 72 6.39e+0 1.03 8 6.39e+0 1.03 4
12 961 0.062 3.15e+0 1.02 70 3.15e+0 1.02 9 3.15e+0 1.02 4
51 521 0.031 1.57e+0 1.01 68 1.57e+0 1.01 9 1.57e+0 1.01 4

𝑘 “ 1
681 0.500 4.33e+0 ‹ 68 4.33e+0 ‹ 9 4.33e+0 ‹ 4
2641 0.250 1.08e+0 2.00 68 1.08e+0 2.00 9 1.08e+0 2.00 4
10 401 0.125 2.72e–01 2.00 68 2.72e–01 2.00 9 2.72e–01 2.00 4
41 281 0.062 6.81e–02 2.00 68 6.81e–02 2.00 9 6.81e–02 2.00 4
164 481 0.031 1.71e–02 2.00 77 1.71e–02 1.99 10 1.70e–02 2.00 4

Figure 3. Example 2. Samples of approximate mixed variables (stress magnitude, electric field
magnitude and arrows, and ionic fluxes) obtained with the fixed-point algorithm labelled case
A, and for 𝑘 “ 1.

This behaviour could be explained by the stability of different linearizations of advective nonlinearities and by
the strength of the coupling for this particular choice of model parameters. We stress that the analysis of case B
is, however, not at all straightforward since the decoupled linear electrostatic potential problem resulting from
the first modification is no longer symmetric. For sake of reference we also tabulate total errors and number
of nonlinear iterates obtained with the method we use also in Examples 1 and 3: an exact Newton–Raphson
linearization (labelled here as case C). Needless to say, the latter is actually the one that one could eventually
employ in practical computations. Samples of the approximate solutions (only the mixed variables) computed
with the method in case A are portrayed in Figure 3.

Example 3. We conclude this section with an application problem where we demonstrate the use of the mixed
finite element scheme in simulating the transport process in an electrokinetic system with an ion-selective
interface, where the development of an electroosmotic instability is expected. The problem configuration is
adopted from [17, 18]. This system corresponds to a transient counterpart of (8) in the absence of external
forces and sources (f “ 0, 𝑓 “ 𝑓𝑖 “ 0), where the following additional terms appear in the momentum and



NEW MIXED FINITE ELEMENT METHODS FOR THE COUPLED STOKES/PNP EQUATIONS IN BANACH SPACES 1549

Figure 4. Example 3. Samples of approximate velocity (top) and anion concentration (bottom)
at times 𝑡 “ 10´4 and 10´3 (left and right, respectively), produced with the mixed method and
using 𝑘 “ 1.

concentration equations (note also the different scaling of 𝜀 on the right-hand side of the momentum balance,
required to match the adimensionalization in [18])

´
1
Sc
B𝑡u´ divp𝜎q “ p𝜉1 ´ 𝜉2q

1
2𝜀2

𝜙, ´B𝑡𝜉𝑖 ` divp𝜎𝑖q “ 0.

The time derivatives are discretized using backward Euler’s method. In the problem setup a boundary layer is
present in the vicinity of the solid boundary (the bottom edge of the rectangular domain), and therefore we
employ a graded mesh with a higher refinement close to the layer. For this problem we select the second-order
family of finite element subspaces (setting 𝑘 “ 1 in Sect. 6.1), which gives for the chosen mesh 865 201 degrees
of freedom.

The physical properties of the system are as follows. The cation species is Na` having diffusivity 𝜅1 “ 1 and
the anion species is Cl´ with the same diffusivity 𝜅2 “ 1. The dynamic viscosity of the mixture is 𝜇 “ 1. Initial
conditions are given by u “ 0, and a 2% random perturbation on a linearly varying initial ionic concentrations
𝜉1 “ 𝜁p2´ 𝑦q, 𝜉2 “ 𝜁𝑥, where 𝜁 is a uniform random variable between 0.98 and 1. On the top boundary we set
𝜉1 “ 𝜉2 “ 1, u “ 0, and an applied voltage of 𝜒 “ 120. On the bottom boundary we impose 𝜒 “ 0, 𝜉1 “ 2,
𝜎2 ¨ 𝜈 “ 0, and u “ 0. On the vertical walls we prescribe periodic boundary conditions. The other model
parameters take the values 𝜀 “ 8 ˆ 10´6, Sc =103, and we use a timestep ∆𝑡 “ 10´6. We plot snapshots of
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the anion concentration 𝜉2,ℎ in Figure 4 at times 𝑡 “ 10´4, 10´3. We observe similar ionic patterns to those
produced also in [31,33].
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[8] J. Camaño, C. Garćıa and R. Oyarzúa, Analysis of a momentum conservative mixed-FEM for the stationary Navier–Stokes
problem. Numer. Methods Part. Differ. Equ. 37 (2021) 2895–2923.

[9] S. Caucao and I. Yotov, A Banach space mixed formulation for the unsteady Brinkman–Forchheimer equations. IMA J. Numer.
Anal. 41 (2021) 2708–2743.
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[24] G.N. Gatica, R. Oyarzúa, R. Ruiz-Baier and Y.D. Sobral, Banach spaces-based analysis of a fully-mixed finite element method
for the steady-state model of fluidized beds. Comput. Math. Appl. 84 (2021) 244–276.

[25] G.N. Gatica, C. Inzunza and F.A. Sequeira, A pseudostress-based mixed-primal finite element method for stress-assisted
diffusion problems in Banach spaces. J. Sci. Comput. 92 (2022) 103.

[26] G.N. Gatica, S. Meddahi and R. Ruiz-Baier, An L𝑝 spaces-based formulation yielding a new fully mixed finite element method
for the coupled Darcy and heat equations. IMA J. Numer. Anal. 42 (2022) 3154–3206.

[27] M. He and P. Sun, Mixed finite element analysis for the Poisson–Nernst–Planck/Stokes coupling. J. Comput. Appl. Math. 341
(2018) 61–79.

[28] M. He and P. Sun, Mixed finite element method for modified Poisson–Nernst–Planck/Navier–Stokes equations. J. Sci. Comput.
87 (2021) 80.

[29] J. Howell and N. Walkington, Dual-mixed finite element methods for the Navier–Stokes equations. ESAIM Math. Model.
Numer. Anal. 47 (2013) 789–805.

[30] D. Jerison and C.E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130 (1995) 161–219.

[31] E. Karatay, C.L. Druzgalski and A. Mani, Simulation of chaotic electrokinetic transport: performance of commercial software
versus custom-built direct numerical simulation codes. J. Colloid Interf. Sci. 446 (2015) 67–76.

[32] F. Keller, M. Feist, H. Nirschl and W. Dörfler, Investigation of the nonlinear effects during the sedimentation process of a
charged colloidal particle by direct numerical simulation. J. Colloid Interf. Sci. 344 (2010) 228–236.

[33] S. Kim, M.A. Khanwalea, R.K. Anand and B. Ganapathysubramanian, Computational framework for resolving boundary
layers in electrochemical systems using weak imposition of Dirichlet boundary conditions. Finite Elem. Anal. Des. 205 (2022)
103749.

[34] Y.-K. Kwok and C.C.K. Wu, Fractional step algorithm for solving a multi-dimensional diffusion-migration equation. Numer.
Methods Part. Differ. Equ. 11 (1995) 389–397.

[35] G. Linga, A. Bolet and J. Mathiesen, Transient electrohydrodynamic flow with concentration-dependent fluid properties:
Modelling and energy-stable numerical schemes. J. Comput. Phys. 412 (2020) 109430.

[36] X. Liu and C. Xu, Efficient time-stepping/spectral methods for the Navier–Stokes–Nernst–Planck–Poisson equations. Commun.
Comput. Phys. 21 (2017) 1408–1428.

[37] G. Mitscha-Baude, A. Buttinger-Kreuzhuber, G. Tulzer and C. Heitzinger, Adaptive and iterative methods for simulations of
nanopores with the PNP–Stokes equations. J. Comput. Phys. 338 (2017) 452–476.

[38] F. Pimenta and M.A. Alves, A coupled finite-volume solver for numerical simulation of electrically-driven flows. Comput. Fluids
193 (2019) 104279.

[39] A. Prohl and M. Schmuck, Convergent finite element discretizations of the Navier–Stokes–Nernst–Planck–Poisson system.
ESAIM Math. Model. Numer. Anal. 44 (2010) 531–571.

[40] C. Wang, J. Bao, W. Pan and X. Sun, Modeling electrokinetics in ionic liquids. Electrophoresis 38 (2017) 1693–1705.

Please help to maintain this journal in open access!

This journal is currently published in open access under the Subscribe to Open model
(S2O). We are thankful to our subscribers and supporters for making it possible to
publish this journal in open access in the current year, free of charge for authors and
readers.

Check with your library that it subscribes to the journal, or consider making a personal donation to
the S2O programme by contacting subscribers@edpsciences.org.

More information, including a list of supporters and financial transparency reports,
is available at https://edpsciences.org/en/subscribe-to-open-s2o.

mailto:subscribers@edpsciences.org
https://edpsciences.org/en/subscribe-to-open-s2o

	Introduction
	Preliminary notations

	The model problem
	The fully mixed formulation
	Preliminaries
	The Stokes equations
	The electrostatic potential equations
	The ionized particles concentration equations

	The continuous solvability analysis
	The fixed-point strategy
	Well-posedness of the uncoupled problems
	Well-definedness of the operator Lg
	Well-definedness of the operator Lg
	Well-definedness of the operator Lg

	Solvability analysis of the fixed-point scheme

	The Galerkin scheme
	Preliminaries
	Discrete solvability analysis
	A priori error analysis 

	Specific finite element subspaces
	Preliminaries
	Verification of the hypotheses (H.1)–(H.6)
	The rates of convergence

	Computational results
	References

