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Abstract
In this article, we propose a new formulation and

a suitable finite element method for the steady cou-

pling of viscous flow in deformable porous media using

divergence-conforming filtration fluxes. The proposed

method is based on the use of parameter-weighted spaces,

which allows for a more accurate and robust analysis of the

continuous and discrete problems. Furthermore, we con-

duct a solvability analysis of the proposed method and

derive optimal error estimates in appropriate norms. These

error estimates are shown to be robust in a variety of

regimes, including the case of large Lamé parameters and

small permeability and storativity coefficients. To illustrate

the effectiveness of the proposed method, we provide a few

representative numerical examples, including convergence

verification and testing of robustness of block-diagonal

preconditioners with respect to model parameters.
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1 INTRODUCTION

We address the analysis of the Biot–Brinkman equations, which serve as a model for filtration of

viscous flow in deformable porous media [3, 22, 53, 54]. The system has been recently analysed in

[35] for the case of multiple network poroelasticity, using H(div,Ω)-conforming displacements and

filtration fluxes (or seepage velocities) for each compartment, also designing robust preconditioners.

Here we propose a reformulation for only one fluid compartment but using the vorticity field (defined

as the curl of the filtration velocity) as an additional unknown in the system, and we also include

the total pressure, following [42, 49]. Such an approach enables us to avoid the notorious problem of

locking or non-physical pressure oscillations when approximating poroelastic models and it has led

to a number of developments including extensions to multiple network models, interfacial free-flow

and poromechanics coupling, nonlinear interaction with species transport, reformulations into four and

more fields systems, and using other discretizations such as discontinuous Galerkin, nonconforming

FEM, weak Galerkin, and virtual elements. See, for example, [16, 20, 36, 38, 41, 43, 50, 51, 55, 57–58].

The formulation of viscous flow equations using vorticity, velocity and pressure has been used

and analysed (in terms of solvability of the continuous and discrete formulations and deriving error

estimates) extensively in, for example, [1, 2, 6–9, 14, 23, 27–28, 56]. Methods based on vorticity

formulations are useful for visualization of rotational flows and they are convenient when dealing

with rotation-based boundary conditions. The coupling with other effects such as mass and energy

transport has also been addressed, see for example [4, 15, 44]. These contributions include fully mixed

finite elements, augmented forms, spectral methods, and Galerkin least-squares stabilized types of

discretizations. At the continuous level, one appealing property of some of these vorticity formulations

is that the H1
-conformity of the filtration flux is relaxed and velocity is sought in H(div,Ω) and the

vorticity is sought in either H(curl,Ω) or L2(Ω). Then, using simply a conforming method, resulting

discretizations are readily mass conservative. Also, mixed methods that look for both vorticity and

velocity will typically deliver approximate vorticity with the same accuracy as velocity (as opposed

to schemes needing numerical differentiation to get vorticity from approximate velocity). Another

advantage of using a vorticity-based method is that an exactness sequence exists between the spaces for

velocity, vorticity, and pressure, yielding a framework that can be straightforwardly analysed with finite

element exterior calculus [34]. We also stress that solving directly for vorticity enables a more thorough

investigation of vortical patterns, interactions at boundary layers, and the formation of turbulent eddies,

all of which are crucial in a diverse array of applications.

Note however that, differently from the aforementioned works, in the case of the Biot–Brinkman

problem, the divergence of the fluid velocity is not zero (or a prescribed fluid source), but it depends

on the velocity of the solid and on the rate of change of fluid pressure. Also, an additional term of

grad–div type appears in the momentum balance for the fluid.

In this article, we prove the well-posedness of the continuous and discrete formulations for

the coupling of mechanics and fluid flow in fluid-saturated deformable porous media using

Banach–Nečas–Babuška theory in parameter-weighted Hilbert spaces. The appropriate choice of

weighting parameters yields automatically a framework for robust operator preconditioning in the Biot

equations, following the approach from [42]. This operator scaling yields robustness with respect to

the elastic parameters, storativity, Biot–Willis coefficient, and with respect to permeability. For the

Brinkman component, our present formulation is such that the filtration flux terms have a different

weight in their L2(Ω) and H(div,Ω) contributions, which requires a different treatment for the analysis

of the pore pressure terms. To address this issue it suffices to appeal to the recent theory in [13] (see also

[46]), which was developed for Darcy equations using nonstandard sum spaces, and we appropriately
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modify the scalings in the momentum equation. This modification entails the use of (discontinuous)

Laplacian operators in the fluid pressure preconditioning.

Our proposed approach also offers a novel contribution to the field of operator preconditioning

for the interaction of mechanics and fluid flow in fluid-saturated deformable porous media, which are

challenging to solve, and the design of efficient preconditioners is highly problem-dependent [29].

Previous works have explored the use of block-diagonal preconditioners, Schur complements, and

pressure-correction methods, which have improved the convergence rate and computational efficiency

of numerical solutions for poromechanics problems [24, 32, 37, 45]. In this work, we also derive

parameter-robust solvers, but following [35] and also [38, 43, 50]. Our results confirm that, additionally

to the Laplacian contribution needed in the Riesz preconditioner associated with the fluid pressure

mentioned above, we also require off-diagonal contributions in the total pressure and fluid pressure

coupling terms (as employed in [16]). The overall parameter scalings that we propose are motivated

by the stability analysis and we verify computationally that robustness holds for this particular choice.

Note that we only discuss one type of boundary conditions, but the extension to other forms can be

adapted accordingly.

Research on preconditioning techniques for advanced discretizations of block multiphysics sys-

tems has also crystallized in a number of high quality open source software packages. One of the

earliest efforts was the BKPIT C++ package [25] which, following an object-oriented approach, pro-

vides an extensible framework for the implementation of algebraic block preconditioners, such as

block Jacobi or block Gauss–Seidel. More recently, as the field of physics-based and discretization

tailored preconditioners has evolved with breakthrough inventions in approximate block factorization

and Schur-complement methods towards ever faster and scalable iterative solvers for large-scale sys-

tems, more sophisticated block preconditioning software is available. The widely-used PETSc package

offers the PCFIELDSPLIT subsystem [19] to design and compose complex block preconditioners.

The Firedrake library extends PETSc block preconditioning capabilities and algebraic composabil-

ity further [40]. Another tightly-related effort is the Teko Trilinos package [26], which provides a

high-level interface to compose block preconditioners using a functional programming style in C++.

The authors in [10] present a generic software framework in object-oriented Fortran to build block

recursive algebraic factorization preconditioners for double saddle-point systems, as those arising in

MagnetoHydroDynamics (MHD).

In this article, we build upon the high momentum gained in the last years by the Julia program-

ming language for scientific and numerical computing. In particular, the realization of the numerical

discretization and preconditioning algorithms is conducted with the Gridap finite element software

package [12]. We leverage the flexibility of this framework, and its composability with others in the

Julia package ecosystem, such as LinearOperators [48], to prototype natural Riesz map pre-

conditioners in the sum spaces described above, leading to complex multiphysics coupling solvers

that are robust with respect to physical parameters variations and mesh resolution. For the sake of

reproducibility, the Julia software used in this article is available publicly/openly at [21].

The remainder of this article is organized as follows. The presentation of the new form of

Biot–Brinkman equations and its weak formulation are given in Section 2. The modification of the

functional structure to include parameter weights and the unique solvability analysis for the con-

tinuous problem are addressed in Section 3. The definition of the finite element discretization and

the specification of the well-posedness theory for the discrete problem is carried out in Section 4.

The error analysis (tailored for a specific family of finite elements but applicable to other com-

binations of discrete spaces as well) is detailed also in that section. Numerical experiments are

collected in Section 5 and we close in Section 6 with a brief summary and a discussion on possible

extensions.
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2 MODEL PROBLEM AND ITS WEAK FORMULATION

2.1 Preliminaries

Let us consider a simply connected bounded and Lipschitz domain Ω ⊂ R𝑑

, 𝑑 ∈ {2, 3} occupied

by a poroelastic domain with one incompressible fluid network incorporating viscosity. The domain

boundary is denoted as Γ ∶= 𝜕Ω. Throughout the text, given a normed space S, by S and S we will

denote the vector and tensor extensions, S𝑑 and S𝑑×𝑑 , respectively. In addition, by L
2(Ω)we will denote

the usual Lebesgue space of square integrable functions and H
m(Ω) denotes the usual Sobolev space

with weak derivatives of order up to m ≥ 0 in L
2(Ω), and use the convention that H

0(Ω) = L
2(Ω).

Next, we recall the definition of the following Hilbert spaces

H1+m(Ω) ∶= {𝜸 ∈ Hm(Ω) ∶ 𝛁𝜸 ∈ H
m(Ω)},

Hm(div,Ω) ∶= {𝜻 ∈ Hm(Ω)∶ div 𝜻 ∈ H
m(Ω)}, Hm(curl,Ω) ∶= {𝜽 ∈ Hm(Ω)∶ curl 𝜽 ∈ Hm(Ω)},

and in the case that m = 0 the latter two spaces are denoted H(div,Ω) and H(curl,Ω), and we use the

following notation for the typical norms associated with such spaces

||u||2

1,Ω ∶= ||u||2

0,Ω + ||𝛁u||2

0,Ω, ||v||2

div,Ω ∶= ||v||2

0,Ω + ||div v||2

0,Ω, ||𝜻||2

curl,Ω ∶= ||𝜻||2

0,Ω + ||curl 𝜻||2

0,Ω,

respectively. Furthermore, in view of the boundary conditions on Γ (to be made precise below), we

also use the following notation for relevant subspaces

H1

0(Ω) ∶= {𝜸 ∈ H1(Ω) ∶ 𝜸 = 0 on Γ},
H0(div,Ω) ∶= {𝜻 ∈ H(div,Ω) ∶ 𝜻 ⋅ n = 0 on Γ}, (2.1)

H0(curl,Ω) ∶= {𝜽 ∈ H(curl,Ω) ∶ 𝜽 × n = 0 on Γ},

L
2

0(Ω) ∶=
{

𝜁 ∈ L
2(Ω) ∶

∫Ω
𝜁 = 0

}

.

For a generic functional space X and a scalar 𝜂 > 0, the weighted space 𝜂X refers to the same X but

endowed with the norm 𝜂|| ⋅ ||X . In addition, we recall the definition of the norm of intersection X ∩ Y
and sum X + Y of Hilbert spaces X,Y

||z||2

X∩Y = ||z||2

X + ||z||2

Y , ||z||2

X+Y = inf
z=x+y

x∈X,y∈Y

||x||2

X + ||y||2

Y . (2.2)

2.2 The governing equations

The viscous filtration flow through the deformed porous skeleton can be described by the follow-

ing form of the Biot–Brinkman equations in steady form, representing the mixture momentum, fluid

momentum, and mixture mass balance, respectively

− div(2𝜇𝜺(u) + [𝜆 div u − 𝛼p]I) = b, (2.3a)

1

𝜅

v − 𝜈

𝜅

𝚫v + ∇p =̂f, (2.3b)

− c0p − 𝛼 div u − div v = g, (2.3c)

where u is the displacement of the skeleton, 𝜺(u) = 1

2
(𝛁u+𝛁ut) is the tensor of infinitesimal strains,

v is the filtration flux, and p is the pressure head. The parameters are the external body load b, the

external force applied on the fluid ̂f, the kinematic viscosity of the interstitial fluid 𝜈, the hydraulic

conductance (permeability field, here assumed a positive constant) 𝜅, the Lamé coefficients of the
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solid structure 𝜆, 𝜇, the storativity c0, and the Biot–Willis modulus 𝛼. Equations (2.3a) are equipped

with boundary conditions of clamped boundary for the solid phase and slip filtration velocity

u = 0 and v ⋅ n = 0 on Γ.

Next we introduce the rescaled filtration vorticity vector

𝝎 ∶=
√
𝜈

𝜅

curl v, (2.4)

which has a different weight than that used in [9] for Brinkman flows. We also define, following the

developments in [43, 49], the additional total pressure field

𝜑 ∶= −𝜆 div u + 𝛼p.

In order to rewrite the fluid momentum balance in terms of the rescaled filtration vorticity (2.4), we

employ the following vector identity, valid for a generic vector field v:

curl curl v = −𝚫v + ∇(div v).

These steps, together with a rescaling of the external force f = 𝜈
̂f, lead to the following equations

(mixture momentum, constitutive equation for total pressure, fluid momentum, constitutive equation

for filtration vorticity, and mixture mass balance)

− div(2𝜇𝜺(u) − 𝜑I) = b, (2.5a)

− 1

𝜆

𝜑 + 𝛼

𝜆

p − div u = 0, (2.5b)

1

𝜅

v +
√
𝜈

𝜅

curl𝝎 − 𝜈

𝜅

∇(div v) + ∇p = f, (2.5c)

−𝝎 +
√
𝜈

𝜅

curl v = 0, (2.5d)

−
(

c0 +
𝛼

2

𝜆

)

p + 𝛼

𝜆

𝜑 − div v = g; (2.5e)

and the boundary conditions now read

u = 0 and v ⋅ n = 0 and 𝝎 × n = 0 on Γ. (2.5f)

2.3 Weak formulation

Let us assume that b, f ∈ L2(Ω), g ∈ L
2(Ω) and that all other model coefficients are positive constants.

We proceed to multiply the governing equations by suitable test functions and to integrate by parts

over the domain. Note that for the divergence-based terms we appeal to the usual form of the Gauss

formula, whereas for curl-based terms we use the following result from, for example, [33]:

∫Ω
curl 𝜸 ⋅ 𝜽 =

∫Ω
𝜸 ⋅ curl 𝜽 +

∫
𝜕Ω
(𝜽 × n) ⋅ 𝜸 ∀𝜽 ∈ H(curl,Ω), 𝜸 ∈ H1(Ω),

together with the scalar triple product identity

(𝜽 × n) ⋅ v = 𝜽 ⋅ (n × v).

We observe in advance that Equations (2.5b), (2.5e) suggest that, in the limit of c0 → 0, 𝜆 → ∞,

both pressures are not uniquely defined and so we require to add a constraint on their mean value (to be
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6 of 26 CARABALLO ET AL.

zero, for example). We then arrive at the following weak formulation for (2.5a): find (u, v,𝝎, 𝜑, p) ∈
H1

0(Ω) ×H0(div,Ω) ×H0(curl,Ω) × L
2

0(Ω) × L
2

0(Ω) such that

2𝜇
∫Ω
𝜺(u) ∶ 𝜺(𝜸) −

∫Ω
𝜑 div 𝜸 =

∫Ω
b ⋅ 𝜸 ∀𝜸 ∈ H1

0(Ω), (2.6a)

1

𝜅 ∫Ω
v ⋅ 𝜻 +

√
𝜈

𝜅 ∫Ω
curl𝝎 ⋅ 𝜻 + 𝜈

𝜅 ∫Ω
div v div 𝜻 −

∫Ω
p div 𝜻 =

∫Ω
f ⋅ 𝜻 ∀𝜻 ∈ H0(div,Ω),

(2.6b)

−
∫Ω
𝝎 ⋅ 𝜽 +

√
𝜈

𝜅 ∫Ω
curl 𝜽 ⋅ v = 0 ∀𝜽 ∈ H0(curl,Ω), (2.6c)

− 1

𝜆 ∫Ω
𝜑 𝜓 + 𝛼

𝜆 ∫Ω
p𝜓 −

∫Ω
𝜓 div u = 0 ∀𝜓 ∈ L

2

0(Ω), (2.6d)

−
(

c0 +
𝛼

2

𝜆

)

∫Ω
p q + 𝛼

𝜆 ∫Ω
𝜑 q −

∫Ω
q div v =

∫Ω
g q ∀q ∈ L

2

0(Ω), (2.6e)

where we have also used the boundary conditions (2.5f).

Let us now define the following bilinear forms and linear functionals

a1(u, 𝜸) ∶= 2𝜇
∫Ω
𝜺(u) ∶ 𝜺(𝜸), b1(𝜸, 𝜓) ∶= −

∫Ω
𝜓 div 𝜸, ̂b1(𝜻 , q) ∶= −

∫Ω
q div 𝜻 ,

a2(v, 𝜻) ∶=
1

𝜅 ∫Ω
v ⋅ 𝜻 + 𝜈

𝜅 ∫Ω
div v div 𝜻 , b2(𝜽, 𝜻) ∶=

√
𝜈

𝜅 ∫Ω
curl 𝜽 ⋅ 𝜻 ,

a3(𝝎,𝜽) ∶=
∫Ω
𝝎 ⋅ 𝜽, a4(𝜑,𝜓) ∶=

1

𝜆 ∫Ω
𝜑 𝜓, b3(q, 𝜓) ∶=

𝛼

𝜆 ∫Ω
q 𝜓,

a5(p, q) ∶=
(

c0 +
𝛼

2

𝜆

)

∫Ω
p q,

B(𝜸) ∶=
∫Ω

b ⋅ 𝜸, F(𝜻) ∶=
∫Ω

f ⋅ 𝜻 , G(q) ∶=
∫Ω

g q,

with which (2.6) is rewritten as follows: find (u, v,𝝎, 𝜑, p) ∈ H1

0(Ω) × H0(div,Ω) × H0(curl,Ω) ×
L

2

0(Ω) × L
2

0(Ω) such that

a1(u, 𝜸) + b1(𝜸, 𝜑) = B(𝜸) ∀𝜸 ∈ H1

0(Ω), (2.7a)

a2(v, 𝜻) + b2(𝝎, 𝜻) + ̂b1(𝜻 , p) = F(𝜻) ∀𝜻 ∈ H0(div,Ω), (2.7b)

b2(𝜽, v) − a3(𝝎,𝜽) = 0 ∀𝜽 ∈ H0(curl,Ω), (2.7c)

b1(u, 𝜓) − a4(𝜑,𝜓) + b3(p, 𝜓) = 0 ∀𝜓 ∈ L
2

0(Ω), (2.7d)

̂b1(v, q) + b3(q, 𝜑) − a5(p, q) = G(q) ∀q ∈ L
2

0(Ω). (2.7e)

3 SOLVABILITY ANALYSIS

3.1 Preliminaries

The well-posedness analysis for (2.7) will be put in the framework of the abstract

Banach–Nečas–Babuška theory, which we state next (see, e.g., [30]).

Theorem 3.1. Let (E1, || ⋅ ||E
1
) be a reflexive Banach space, (E2, || ⋅ ||E

2
) a Banach space,

and T ∶ E1 → E′
2

a bounded, linear form satisfying the followings conditions:
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(BNB1) For each y ∈ E2⧵{0}, there exists x ∈ E1 such that

⟨T(x), y⟩E′
2
,E

2
≠ 0. (3.1)

(BNB2) There exists c > 0 such that

||T(x)||E′
2

≥ c||x||E
1

for all x ∈ E1. (3.2)

Then, for every x∗ ∈ E′
2

there exists a unique x ∈ E1 such that

T(x) = x∗.

Let us first consider the product space

X ∶= H1

0(Ω) ×H0(div,Ω) ×H0(curl,Ω) × L
2

0(Ω) × L
2

0(Ω),

and, using the notation x⃗ ∶= (u, v,𝝎, 𝜑, p) ∈ X, we proceed to equip this space with the norm

||x⃗||2

X ∶= 2𝜇||𝜺(u)||2

0,Ω +
1

𝜅

||v||2

0,Ω +
𝜈

𝜅

||div v||2

0,Ω + ||𝝎||2

0,Ω + 𝜈||curl𝝎||2

0,Ω

+ c0||p||2

0,Ω +
1

𝜆

||𝜑 + 𝛼p||2

0,Ω. (3.3)

Remark 3.1. Note that the scaling of the vorticity seminorm with the viscosity (fifth term

in the right-hand side of (3.3) is not readily apparent from the weak formulation (2.7), but

it is suggested by the stability analysis in Lemma 3.1, below.

Let us also introduce the bilinear form

⟨
𝜖
(x⃗), y⃗⟩ ∶= a1(u, 𝜸) + b1(𝜸, 𝜑) + a2(v, 𝜻) + b2(𝝎, 𝜻) + ̂b1(𝜻 , p) + b2(𝜽, v) − a3(𝝎,𝜽)

+ b1(u, 𝜓) − a4(𝜑,𝜓) + b3(p, 𝜓) + ̂b1(v, q) + b3(q, 𝜑) − a5(p, q), (3.4)

induced by the operator
𝜖
∶ X → X′

(where the subscript 𝜖 indicates dependence with respect to the

model parameters 𝜅, 𝛼, 𝜇, 𝜈, c0, 𝜆), and again we emphasize that we have different scalings than those

used in [5, 35].

From the Cauchy–Schwarz inequality we readily have the following bounds for the bilinear forms

in (2.7)

a1(u, 𝜸) ≤ 2𝜇|u|1,Ω|𝜸|1,Ω, b1(𝜸, 𝜑) ≤ ||𝜑||0,Ω|𝜸|1,Ω, ̂b1(𝜻 , q) ≤ ||q||0,Ω||div 𝜻||0,Ω,

a2(v, 𝜻) ≤
1

𝜅

||v||0,Ω||𝜻||0,Ω +
𝜈

𝜅

||div v||0,Ω||div 𝜻||0,Ω, b2(𝜽, 𝜻) ≤
√
𝜈

𝜅

||curl 𝜽||0,Ω||𝜻||0,Ω,

a3(𝝎,𝜽) ≤ ||𝝎||0,Ω||𝜽||0,Ω, a4(𝜑,𝜓) ≤
1

𝜆

||𝜑||0,Ω||𝜓||0,Ω,

b3(q, 𝜓) ≤
𝛼

𝜆

||q||0,Ω||𝜓||0,Ω, a5(p, q) ≤
(

c0 +
𝛼

2

𝜆

)

||p||0,Ω||q||0,Ω, (3.5)

for all u, 𝜸 ∈ H1(Ω), v, 𝜻 ∈ H(div,Ω), 𝝎,𝜽 ∈ H(curl,Ω), 𝜑,𝜓, p, q ∈ L
2(Ω).

Lemma 3.1. Consider the bilinear form defined in (3.4). For all x⃗ ∈ X, there exists y⃗ ∈ X
such that

⟨
𝜖
(x⃗), y⃗⟩ ≳ ||x⃗||2

X and ||y⃗||X ≤
√

2||x⃗||X. (3.6)

Proof. Using first and second Young’s inequalities it is not difficult to assert that

(𝜻 , curl 𝜽)0,Ω ≤
1

2
||𝜻||2

0,Ω +
1

2
||curl 𝜽||2

0,Ω and (q, 𝜓)0,Ω ≤
𝜀

2
||q||2

0,Ω +
1

2𝜀
||𝜓||2

0,Ω. (3.7)
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8 of 26 CARABALLO ET AL.

Next, for a given z⃗ ∶= (𝜸, 𝜻 ,𝜽, 𝜓, q) we can construct y⃗ ∶=(

𝜸, 𝜻 + 1

2

√
𝜅𝜈 curl 𝜽,−𝜽,−𝜓,−q

)

. We then invoke (3.7), so that we can ensure that

⟨
𝜖
(z⃗), y⃗⟩ = 2𝜇|𝜸|2

1,Ω +
1

𝜅

||𝜻||2

0,Ω +
√
𝜈

2

√
𝜅

(𝜻 , curl 𝜽)0,Ω +
𝜈

𝜅

||div 𝜻||2

0,Ω +
𝜈

2
||curl 𝜽||2

0,Ω

+ ||𝜽||2

0,Ω +
1

𝜆

||𝜓||2

0,Ω −
𝛼

𝜆

(q, 𝜓)0,Ω −
𝛼

𝜆

(q, 𝜓) +
(

c0 +
𝛼

2

𝜆

)

||q||2

0,Ω

≥ 2𝜇|𝜸|2

1,Ω +
1

𝜅

||𝜻||2

0,Ω +
√
𝜈

2

√
𝜅

(𝜻 , curl 𝜽)0,Ω +
𝜈

𝜅

||div 𝜻||2

0,Ω +
𝜈

2
||curl 𝜽||2

0,Ω + ||𝜽||2

0,Ω

+
(

c0 +
𝛼

2

𝜆

− 𝜀𝛼

2𝜆

)

||q||2

0,Ω +
(

1

𝜆

− 𝛼

2𝜆𝜀

)

||𝜓||2

0,Ω.

Now, taking 𝜀 ∶= 5𝛼

4
+ 𝜆c

0

𝛼

we can deduce that

c0 +
𝛼

2

𝜆

− 𝜀𝛼

2𝜆
≥

3

8

(

c0 +
𝛼

2

𝜆

)

, (3.8a)

1

𝜆

− 𝛼

2𝜆𝜀
=

1

4
+ 𝜆c0

𝛼
2

5

4
+ 𝜆c0

𝛼
2

1

𝜆

≥
1

5

1

𝜆

, (3.8b)

and using (3.8a) and (3.8b) we readily obtain the bound

⟨
𝜖
(z⃗), y⃗⟩ ≥ 1

10
||z⃗||2

X.

Finally, the definition of the preliminary X-norm (3.3) and triangle inequality yield the

estimates

||y⃗||2

X = 2𝜇|𝜸|2

1,Ω +
1

𝜅

‖
‖
‖
‖
‖

𝜻 +
√
𝜅𝜈

2
curl 𝜽

‖
‖
‖
‖
‖

2

0,Ω
+ 𝜈

𝜅

||div 𝜻||2

0,Ω + 𝜈||curl 𝜽||2

0,Ω + ||𝜽||2

0,Ω

+
(

c0 +
𝛼

2

𝜆

)

||q||2

0,Ω +
1

𝜆

||𝜓||2

0,Ω

≤ 2𝜇|𝜸|2

1,Ω +
2𝜈

𝜅

||𝜻||2

0,Ω +
𝜈

𝜅

||div 𝜻||2

0,Ω +
3𝜈

2
||curl 𝜽||2

0,Ω + ||𝜽||2

0,Ω

+
(

c0 +
𝛼

2

𝜆

)

||q||2

0,Ω +
1

𝜆

||𝜓||2

0,Ω

≤ 2||z⃗||2

X,

which completes the proof. ▪

Using the Banach–Nečas–Babuška result, from (3.1) and (3.6) we immediately conclude that

problem (2.7) has a unique solution (u, v,𝝎, 𝜑, p) in the space X. However we can note that the bound

on (u, v,𝝎, 𝜑, p) in the X-norm will degenerate with 𝜀 (tending either to zero or to infinity).

As a preliminary result required in the sequel, we recall the following classical inf-sup condition

for the bilinear form ̂b1 (which coincides with that of the Stokes problem, see, for example, [33]).

Lemma 3.2. There exists 𝛽1 > 0 such that

sup

𝜸∈H1

0
(Ω)⧵{0}

̂b1(𝜓, 𝜸)
|𝜸|1,Ω

= sup

𝜸∈H1

0
(Ω)⧵{0}

−(𝜓, div 𝜸)0,Ω
|𝜸|1,Ω

≥ 𝛽1||𝜓||0,Ω for all 𝜓 ∈ L
2

0(Ω).
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CARABALLO ET AL. 9 of 26

3.2 Parameter-robust well-posedness

Before addressing the well-posedness of (2.7) robustly with respect to 𝜀, we first note that the bilinear

forms defining the solution operator suggest to modify the metric in X and include the following

particular parameter-weighting of the functional spaces

X
𝜖
∶=

√
2𝜇H1

0(Ω) ×

[√
1

𝜅

L2(Ω) ∩
√
𝜈

𝜅

H0(div,Ω)] × [L2(Ω) ∩
√
𝜈H0(curl,Ω)

]

×

[√
1

𝜆

L
2(Ω) ∩

√
1

2𝜇
L

2

0(Ω)

]

×

[√

c0 +
𝛼

2

𝜆

L
2(Ω) ∩

(
√
𝜅H

1

0(Ω) +
√
𝜅

𝜈

L
2

0(Ω)
)]

.

An important observation is that X
𝜖

contains the same vectors x⃗ that are in X, but which are bounded

in the norm || ⋅ ||
𝜖

to be defined later.

Note also that, proceeding similarly as in [13] (see also [46]), we have decomposed the space for

fluid pressure as the sum

L
2

0(Ω) =
√
𝜅

𝜈

L
2

0(Ω) +
√
𝜅H

1

0(Ω) ∩ L
2

0(Ω),

and have endowed it with the norm || ⋅ ||r defined, thanks to (2.2), as follows

||q||2
r ∶= inf

s∈
√
𝜅H

1

0
(Ω)∩L

2

0
(Ω)

{(
𝜅

𝜈

+ c0

)

||q − s||2

0,Ω + c0||s||2

0,Ω + ||
√
𝜅∇s||2

0,Ω

}

. (3.9)

With this norm we see that, for example, the boundedness of the bilinear form ̂b1(⋅, ⋅) can be written

as follows

(q, div 𝜻)0,Ω = (q − s + s, div 𝜻)0,Ω = −(∇s, 𝜻)0,Ω + (q − s, div 𝜻)0,Ω

≤

{

𝜅|s|2

1,Ω +
𝜅

𝜈

||q − s||2

0,Ω

}1∕2{
1

𝜅

||𝜻||2

0,Ω +
𝜈

𝜅

||div 𝜻||2

0,Ω

}1∕2

,

for all s ∈ H
1

0(Ω), so from (3.9) we have

(q, div 𝜻)0,Ω ≤ ||q||r

{
1

𝜅

||𝜻||2

0,Ω +
𝜈

𝜅

||div 𝜻||2

0,Ω

}1∕2

.

On the other hand, we have the following robust-in-𝜖 inf-sup condition for ̂b1(⋅, ⋅).

Lemma 3.3. There exists 𝛽0 > 0 independent of the parameters in 𝜖, such that

sup

𝜻∈H
0
(div,Ω)⧵{0}

−(q, div 𝜻)
{

1

𝜅

||𝜻||2

0,Ω +
𝜈

𝜅

||div 𝜻||2

0,Ω

}1∕2
≥ 𝛽0||q||r for all q ∈ L

2

0(Ω). (3.10)

Proof. Owing to [33], we know that there exists 𝛽1 > 0 (independent of the parameters)

such that

||∇q||−1,Ω ≥ 𝛽1||q||0,Ω for all q ∈ L
2

0(Ω).

Then, for the operator ∇−1 ∶ ∇L
2

0(Ω) → L
2

0(Ω) (where ∇L
2

0(Ω) is a closed subspace of

H−1(Ω)), we can deduce that

||∇−1||
(∇L

2

0
(Ω),L2

0
(Ω)) ≤ 𝛽

−1

1
.

Using the Poincaré inequality we can find a positive constant c ∶= c(Ω) such that

||q||0,Ω ≤ c|q|1,Ω for all q ∈ H
1(Ω) ∩ L

2

0(Ω),
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10 of 26 CARABALLO ET AL.

or, equivalently,

||∇−1||
(∇(H1(Ω)∩L

2

0
(Ω)),H1(Ω)∩L

2

0
(Ω)) ≤ c. (3.11)

Then, we have that

||∇q||L2(Ω)+𝜈−1∕2H−1(Ω) ≥ max{c, 𝛽−1

1
} inf

q=q
1
+q

2

q
1
∈H

1

0
(Ω)∩L

2

0
(Ω),

q
2
∈L

2

0
(Ω)

{

|q1|
2

1,Ω +
1

𝜈

||q2||
2

0,Ω

}1∕2

. (3.12)

Multiplying (3.12) by

√
𝜅 and applying algebraic manipulations, we can conclude that the

inf-sup condition (3.10) holds with 𝛽0 ∶= max{c, 𝛽−1

1
}. ▪

As done in the previous subsection, the unique solvability analysis will also follow from the

Banach–Nečas–Babuška theory, but now using the space X
𝜖

endowed with the new norm

||x⃗||2
𝜖
∶= ||x⃗||2

X + ||p||2
r +

1

2𝜇
||𝜑||2

0,Ω. (3.13)

Problem (2.7) is written as: find x⃗ ∈ X
𝜖

such that

⟨
𝜖
(x⃗), y⃗⟩ =  (y⃗) for all y⃗ ∈ X

𝜖
,

or in operator form as follows


𝜖
(x⃗) =  in X′

𝜖
, (3.14)

and the norm of the solution operator is defined as

||
𝜖
||(X

𝜖

,X′
𝜖

) ∶= sup

x⃗,y⃗∈X
𝜖

⧵{⃗0}

|⟨(x⃗), y⃗⟩|
||x⃗||

𝜖
||y⃗||

𝜖

.

Translating Theorem 3.1 to the present context, we aim to prove that the operator 
𝜖

is continuous,

that is

⟨
𝜖
(x⃗), y⃗⟩ ≲ ||x⃗||

𝜖
||y⃗||

𝜖
∀x⃗, y⃗ ∈ X

𝜖
, (3.15)

and that the following global inf-sup condition is satisfied

sup

y⃗∈X
𝜖

⧵{⃗0}

⟨
𝜖
(x⃗), y⃗⟩

||y⃗||
𝜖

≳ ||x⃗||
𝜖

∀x⃗ ∈ X
𝜖
. (3.16)

Theorem 3.2. Let || ⋅ ||
𝜖

be defined as in (3.13). Then the bilinear form induced by
𝜖

(cf.
(3.4)) is continuous and inf-sup stable under the norm || ⋅ ||

𝜖
, that is, the conditions (3.15)

and (3.16) are satisfied.

Proof. For the continuity of 
𝜖
, it suffices to use (3.5), the norm definition (3.13),

Cauchy–Schwarz inequality, the definition of
𝜖
, and (3.10), to arrive at

⟨
𝜖
(x⃗), y⃗⟩ ≤ 2||x⃗||

𝜖
||y⃗||

𝜖
.

For the global inf-sup, we take a given x⃗ ∈ X
𝜖
, and for Lemma 3.1, there exists y⃗

1
∈ X

such that

⟨
𝜖
(x⃗), y⃗

1
⟩ ≥

1

10
||x⃗||2

X and ||y⃗
1
||X ≤

√
2||x⃗||X.

Using Lemmas 3.3 and 3.2 we can find 𝜻
2
, 𝜸

3
and constants C1, C2, ̂C1, ̂C2 such that

−(p, div 𝜻
2
) ≥ C1||p||2

r and

{
1

𝜅

||𝜻
2
||0,Ω +

𝜈

𝜅

||div 𝜻
2
||2

0,Ω

}1∕2

≤ C2||p||r,
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and

−(𝜑, div 𝜸) ≥ ̂C1

1

2𝜇
||𝜑||2

0,Ω and

√
2𝜇|𝜸

3
|1,Ω ≤ ̂C2

1
√

2𝜇

||𝜑||0,Ω.

Taking y⃗
2
∶= (0, 𝜻

2
, 0, 0, 0), y⃗

3
∶= (𝜸

3
, 0, 0, 0, 0), 𝛿 > 0, and ̂

𝛿 > 0, we have that

⟨
𝜖
(x⃗), 10y⃗

1
+ 𝛿y⃗

2
+ ̂
𝛿y⃗

3
⟩ ≥ ||x⃗||2

X + 𝛿(a2(v, 𝜻2
) + b2(𝝎, 𝜻2

) + ̂b1(𝜻2
, p)) + ̂

𝛿(a1(u, 𝜸3
) + b1(𝜸3

, 𝜑))

≥ ||x⃗||2

X − 𝛿
{

1

𝜅

||v||0,Ω +
𝜈

𝜅

||div v||2

0,Ω

}1∕2

×
{

1

𝜅

||𝜻
2
||0,Ω +

𝜈

𝜅

||div 𝜻
2
||2

0,Ω

}1∕2

− 𝛿 𝜈

√
𝜅

||curl 𝝎||0,Ω||𝜻2
||0,Ω + 𝛿C1||p||2

r − 2𝜇 ̂𝛿|u|1,Ω|𝜸3
|1,Ω

+ ̂
𝛿

̂C1

2𝜇
||𝜑||2

0,Ω

≥ ||x⃗||2

X −
1

2

(
1

𝜅

||v||0,Ω +
𝜈

𝜅

||div v||2

0,Ω

)

− 𝜈

2
||curl 𝝎||2

0,Ω

− 𝜇|u|2

1,Ω + 𝛿C1||p||2
r

+ ̂
𝛿

̂C1

2𝜇
||𝜑||2

0,Ω − 𝛿2 1

𝜅

||𝜻
2
||0,Ω − 𝛿2 𝜈

2𝜅
||div 𝜻

2
||2

0,Ω − 2𝜇 ̂𝛿
2

|𝜸
3
|2

1,Ω

≥
1

2
||x⃗||2

X + 𝛿(C1 − 𝛿C2

2
)||p||2

r + ̂
𝛿

1

2𝜇

(
̂C1 − ̂

𝛿
̂C2

2
)

||𝜑||2

0,Ω.

Then, choosing 𝛿 ∶= C
1

2C2

2

and ̂
𝛿 ∶= ̂C

1

2 ̂C2

2

, we can deduce the estimates

⟨
𝜖
(x⃗), 10y⃗

1
+ 𝛿y⃗

2
+ ̂
𝛿y⃗

3
⟩ ≥

1

2
||x⃗||2

X +
C2

1

4C2

2

||p||2
r +

̂C2

1

4 ̂C2

2

1

2𝜇
||𝜑||2

0,Ω

≥
1

2
min

{

1,
C2

1

2C2

2

,

̂C2

1

2 ̂C2

2

}

||x⃗||2
𝜖
, and

||10y⃗
1
+ 𝛿y⃗

2
+ ̂
𝛿y⃗

3
||
𝜖
≤ 10

√
2||x⃗||

𝜖
+ 𝛿C2||p||r + ̂

𝛿
̂C2

1
√

2𝜇

||𝜑||0,Ω

≤ max

{

10

√
2,

C1

2C2

,

̂C1

2 ̂C2

}

||x⃗||
𝜖
.

And from these relations we can conclude that:

sup

y⃗∈X
𝜖

⧵{⃗0}

⟨
𝜖
(x⃗), y⃗⟩

||y⃗||
𝜖

≥
⟨

𝜖
(x⃗), 10y⃗

1
+ 𝛿y⃗

2
+ ̂
𝛿y⃗

3
⟩

||10y⃗
1
+ 𝛿y⃗

2
+ ̂
𝛿y⃗

3
||
𝜖

≥
1

2

min

{

1,
C2

1

2C2

2

,

̂C2

1

2 ̂C2

2

}

||x⃗||2
𝜖

max

{

10

√
2,

C1

2C2

,

̂C1

2 ̂C2

}

||x⃗||
𝜖

≳ ||x⃗||
𝜖
.

▪

3.3 Operator preconditioning

We recall from, for example, [39, 46], that since 
𝜖

maps X
𝜖

to its dual, when solving the discrete

version of (3.14), iterative methods are not directly applicable unless a modified problem is considered,

for example


𝜖
(x⃗) =  in X

𝜖
,
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12 of 26 CARABALLO ET AL.

where  ∶ X′
𝜖
→ X

𝜖
is an appropriately defined isomorphism. As usual, one can take  as the Riesz

map (self-adjoint and positive definite) whose inverse defines a scalar product (⋅, ⋅)X
𝜖

on X
𝜖
, and the

operator 
𝜖

is also self-adjoint with respect to this inner product. Then

⟨
𝜖
(x⃗), y⟩ = (

𝜖
(x⃗), y⃗)X

𝜖

and ||
𝜖
(x⃗)||X

𝜖

= ||
𝜖
(x⃗)||X′

𝜖

,

and therefore, using the definition of the operator norms, it is readily deduced that

||
𝜖
||(X

𝜖

,X
𝜖

) = ||
𝜖
||(X

𝜖

,X′
𝜖

) and ||(
𝜖
)−1||(X

𝜖

,X
𝜖

) = ||−1
𝜖

||(X
𝜖

,X′
𝜖

).

Then, if an appropriate metric is chosen such that the norms of
𝜖

and of−1
𝜖

are bounded by constants

independent of the model parameters 𝜖, then the condition number of the preconditioned system will

also be independent of the model parameters.

Proceeding then similarly as in, for example, [13, 16, 43], we consider the following block-diagonal

preconditioners focusing on the case of mixed boundary conditions (and therefore not including

contributions related to the zero-mean value of fluid and total pressure)

1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(−div(2𝜇𝜺))−1
0 0 0 0

0

(

𝜅

−1I − 𝜈

𝜅

∇ div

)−1

0 0 0

0 0 (I + 𝜈 curl)−1
0 0

0 0 0

((
1

𝜆

+ 1

2𝜇

)

I
)−1

0

0 0 0 0

((

c0 + 𝛼

2

𝜆

+ 𝜅
)

I
)−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(3.17a)

2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(−div(2𝜇𝜺))−1
0 0 0 0

0

(

𝜅

−1I − 𝜈

𝜅

∇ div

)−1

0 0 0

0 0 (I + 𝜈 curl)−1
0 0

0 0 0

((
1

𝜆

+ 1

2𝜇

)

I
)−1

0

0 0 0 0

(

(c0 + 𝛼

2

𝜆

)I − 𝜅Δ
)−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(3.17b)

3 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(−div(2𝜇𝜺))−1
0 0 0 0

0

(

𝜅

−1I −
(

1 + 𝜈

𝜅

)

∇ div

)−1

0 0 0

0 0 (I + 𝜈 curl)−1
0 0

0 0 0 ̂

0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.17c)

with

̂ =

(
( 1

𝜆

+ 1

2𝜇
)I 𝛼

𝜆

I
𝛼

𝜆

I (1 + c0 + 𝛼

2

𝜆

)I

)−1

+

(
( 1

𝜆

+ 1

2𝜇
)I 𝛼

𝜆

I
𝛼

𝜆

I (c0 + 𝛼

2

𝜆

)I − 𝜅Δ

)−1

.
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CARABALLO ET AL. 13 of 26

Note that only 3 results from the Riesz map corresponding to X
𝜖

with the complete norm as

in (3.13), while 1,2 are approximations of 3. In particular, 1 simply considers the parame-

ter weighting suggested by the weak formulation (2.6) (but taking into account the scaling of the

vorticity seminorm according to Remark 3.1) combined with the Riesz map associated with the

natural regularity of that formulation, and 2 includes also the sum of spaces leading to the pres-

sure Laplacian forms which are key in achieving robustness for Darcy-type problems [13]. The full

form 3 also includes the nonstandard Brezzi–Braess type of block ̂ for total and fluid pressures,

which is needed in perturbed saddle-point problems with penalty as proposed in [16, Section 4]

(see also [17]).

4 ANALYSIS OF A FINITE ELEMENT METHOD

Let h denote a family of tetrahedral meshes (triangular in 2D) on Ω and denote by h the set of

all facets (edges in 2D) in the mesh. By hK we denote the diameter of the element K and by hF
we denote the length/area of the facet F. As usual, by h we denote the maximum of the diameters

of elements in h. For all meshes we assume that they are sufficiently regular (there exists a uni-

form positive constant 𝜂1 such that each element K is star-shaped with respect to a ball of radius

greater than 𝜂1hK). It is also assumed that there exists 𝜂2 > 0 such that for each element and every

facet F ∈ 𝜕K, we have that hF ≥ 𝜂2hK , see, for example, [30, 52]. By Pk(Θ) we will denote be

the space of polynomials of total degree at most k defined locally on the domain Θ, and denote by

Pk(Θ) and Pk(Θ) their vector- and tensor-valued counterparts, respectively. By h we will denote the

set of all facets and will distinguish between facets lying on the interior and the two sub-boundaries

h =  int

h ∪ Γh .

For smooth scalar fields w defined on h, the symbol w± denotes the traces of w on e that are

the extensions from the interior of the two elements K+
and K−

sharing the facet e. The symbols

{{⋅}} and [[⋅]] denote, respectively, the average and jump operators defined as {{w}} ∶= 1

2
(w− + w+),

[[w]] ∶= (w− − w+). The element-wise action of a differential operator is denoted with a subindex h,

for example, ∇h will denote the broken gradient operator.

The discrete spaces that we consider herein correspond, for k ≥ 0, to the generalized

Taylor–Hood element pair (Pk+2 − Pk+1) for the displacement/total pressure approximation, the

H(div)-conforming Raviart–Thomas elements of degree k (denoted RTk) for velocity approximation,

the H(curl)-conforming Nédélec elements of the first kind and order k + 1 (denoted NDk+1) for fil-

tration vorticity (see, e.g., [18, 31] for precise definitions of these families of spaces), and piecewise

polynomials of degree k for the approximation of interstitial pressure

Uh ∶= {uh ∈ H1

0(Ω) ∶ uh|K ∈ Pk+2(K), ∀K ∈ h},

Vh ∶= {vh ∈ H0(div,Ω) ∶ vh|K ∈ RTk(K), ∀K ∈ h},

Wh ∶= {𝝎h ∈ H0(curl,Ω) ∶ 𝝎h|K ∈ NDk+1(K), ∀K ∈ h},

Mm
h ∶= {uh ∈ L2(Ω) ∶ uh|K ∈ Pm(K), ∀K ∈ h}, (4.1)

Uh ∶= {uh ∈ H
1

0(Ω) ∶ uh|K ∈ Pk(K), ∀K ∈ h},

Zh ∶= {𝜓h ∈ C0(Ω) ∶ 𝜓h|K ∈ Pk+1(K), ∀K ∈ h},

Qh ∶= {qh ∈ L
2(Ω) ∶ qh|K ∈ Pk(K), ∀K ∈ h}.
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14 of 26 CARABALLO ET AL.

Note that other combinations of finite element families are feasible as well (as long as appropriate

discrete inf-sup conditions are satisfied). In 2D we will consider the same space Qh for both total and

fluid pressures and we will use the P2 − P0 pair for displacement and total pressure approximation.

The (conforming) finite element scheme associated with (2.7) reads: Find

(uh, vh,𝝎h, 𝜑h, ph) ∈ Xh ∶= Uh × Vh ×Wh × Zh × Qh,

such that

a1(uh, 𝜸h) + b1(𝜸h, 𝜑h) = B(𝜸h) ∀𝜸h ∈ Uh, (4.2a)

a2(vh, 𝜻h) + b2(𝝎h, 𝜻h) + ̂b1(𝜻h, ph) = F(𝜻h) ∀𝜻h ∈ Vh, (4.2b)

b2(𝜽h, vh) − a3(𝝎h,𝜽h) = 0 ∀𝜽h ∈ Wh, (4.2c)

b1(uh, 𝜓h) − a4(𝜑h, 𝜓h) + b3(ph, 𝜓h) = 0 ∀𝜓h ∈ Zh, (4.2d)

̂b1(vh, qh) + b3(qh, 𝜑h) − a5(ph, qh) = G(qh) ∀qh ∈ Qh. (4.2e)

Similarly as in the continuous case, we define

X
𝜖,h ∶= 2𝜇Uh ×

[√
1

𝜅

Mk+1

h ∩
√
𝜈

𝜅

Vh

]

× [Mk+1

h ∩
√
𝜈Wh] ×

[
1

𝜆

Qh ∩
1

2𝜇
Zh

]

×
[
√

c0Qh ∩
(√

𝜅

𝜈

Qh +
√
𝜅Uh

)]

,

and the associated discrete norm is

||x⃗h||
2

𝜀,h ∶= 2𝜇||𝜺(uh)||2

0,Ω +
1

𝜅

||vh||
2

0,Ω +
𝜈

𝜅

||div vh||
2

0,Ω + ||𝝎h||
2

0,Ω + 𝜈||curl𝝎h||
2

0,Ω +
1

2𝜇
||𝜑h||

2

0,Ω

+ inf
sh∈Uh

[(

c0 +
𝜅

𝜈

)

||ph − sh||
2

0,Ω + c0||sh||
2 + ‖

‖
‖

√
𝜅∇hsh

‖
‖
‖

2

0,Ω

]

+ 1

𝜆

||𝜑h + 𝛼ph||
2

0,Ω + c0||ph||
2

0,Ω. (4.3)

As in the continuous case, now problem (4.2) is written as: Find x⃗h ∈ X
𝜖,h such that

⟨
𝜖
(x⃗h), y⃗h⟩ = h(y⃗h) for all y⃗h ∈ X

𝜖,h,

or in operator form as follows


𝜖
(x⃗h) = h in X′

𝜖,h. (4.4)

Lemma 4.1. There exists 𝛽1 > 0 independent of the parameters in 𝜖 and h, such that

sup

𝜻h∈Vh⧵{0}

−(qh, div 𝜻h)0,Ω
{

1

𝜅

||𝜻h||
2

0,Ω +
𝜈

𝜅

||div 𝜻h||
2

0,Ω

}1∕2
≥ 𝛽1||qh||r for all qh ∈ Qh. (4.5)

Proof. The proof requires to assume that the continuous inf-sup condition holds. Then,

similarly to the proof of that result (Lemma 3.3), the first part (steps until (3.11)) is a con-

sequence of the fact that the spaces Vh and Qh satisfy the usual discrete inf-sup condition

for the Stokes problem. Then, it suffices to follow the scaling argument in (3.12), also

valid at the discrete level, to complete the desired condition. ▪
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CARABALLO ET AL. 15 of 26

Analogously to the continuous case, we need the following conditions to be satisfied to guarantee

existence and uniqueness to problem (4.4):

⟨
𝜖
(x⃗h), y⃗h⟩ ≲ ||x⃗h||𝜖||y⃗h||𝜖,h ∀x⃗h, y⃗h ∈ X

𝜖,h, (4.6a)

sup

y⃗h∈X
𝜖,h⧵{⃗0}

⟨
𝜖
(x⃗h), y⃗h⟩

||y⃗h||𝜖,h
≳ ||x⃗h||𝜖,h ∀x⃗h ∈ X

𝜖,h. (4.6b)

Theorem 4.1. Let || ⋅ ||
𝜖,h be defined as in (4.3). Then the bilinear form induced by 

𝜖

(cf. (3.4)) is continuous and inf-sup stable under the norm || ⋅ ||
𝜖,h, that is, the conditions

(4.6a) and (4.6b) are satisfied.

Proof. We use again that the pairs (Uh,Zh) and (Vh,Qh) are inf-sup stable spaces for

the usual bilinear form in Stokes problem, which ensures that we can find discrete ver-

sions y⃗h,2, y⃗h,3 of the tuples y⃗
2

and y⃗
3
, respectively, constructed in Theorem 3.2. We also

note that curl Wh ⊂ Vh, and therefore we can prove the discrete version of Lemma 3.1.

Then the desired result is a consequence of repeating the arguments used in the proof of

Theorem 3.2. ▪

Theorem 4.2. For given b, f ∈ L2(Ω) and g ∈ L2(Ω), problem (4.2) has a unique solu-
tion (uh, vh,𝝎h, 𝜑h, qh) ∈ X

𝜖,h. In addition, the solution satisfies the following continuous
dependence on data

||(uh, vh,𝝎h, 𝜑h, ph)||𝜖 ≲ (||b||0,Ω + ||f||0,Ω + ||g||0,Ω),

and the following Céa estimate

||(u − uh, v − vh,𝝎 − 𝝎h, 𝜑 − 𝜑h, p − ph)||𝜖 ≤
(

1 + 𝛼−1||
𝜖
||(X

𝜖

,X′
𝜖

)

)

||(u − 𝜸h, v − 𝜻h,𝝎 − 𝜽h, 𝜑 − 𝜓h, p − qh)||𝜖,

for all (𝜸h, 𝜻h,𝜽h, 𝜓h, qh) ∈ X
𝜖,h, where 𝛼 is the positive constant associated with (4.6b).

Proof. The existence and uniqueness of the solution is obtained in a similar way to its

counterpart in the continuous level. For the corresponding Céa estimate, we proceed to

denote as x⃗ ∶= (u, v,𝝎, 𝜑, p), x⃗h ∶= (uh, vh,𝝎h, 𝜑h, ph) and y⃗h ∶= (𝜸h, 𝜻h,𝜽h, 𝜓h, qh).
From (4.6b), we can infer that there exists a positive constant 𝛼 independent of the

parameters such that

sup

z⃗h∈X
𝜖,h⧵{⃗0}

⟨
𝜖
(x⃗h), z⃗h⟩

||z⃗h||𝜖
≥ 𝛼||x⃗h||𝜖 ∀x⃗h ∈ X

𝜖,h.

Using the error equation, we readily obtain that ⟨
𝜖
(x⃗), y⃗h⟩ = ⟨

𝜖
(x⃗h), y⃗h⟩. Furthermore,

since y⃗h − x⃗h ∈ X
𝜖,h we can deduce that

||x⃗ − x⃗h||𝜖 ≤ ||x⃗ − y⃗h||𝜖 + ||y⃗h − x⃗h||𝜖

≤ ||x⃗ − y⃗h||𝜖 + 𝛼−1
sup

z⃗h∈X
𝜖,h⧵{⃗0}

⟨
𝜖
(y⃗h − x⃗h), z⃗h⟩

||z⃗h||𝜖

≤ ||x⃗ − y⃗h||𝜖 + 𝛼−1
sup

z⃗h∈X
𝜖,h⧵{⃗0}

⟨
𝜖
(y⃗h − x⃗), z⃗h⟩

||z⃗h||𝜖
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16 of 26 CARABALLO ET AL.

≤ ||x⃗ − y⃗h||𝜖 + 𝛼−1
sup

z⃗h∈X
𝜖,h⧵{⃗0}

||
𝜖
||(X

𝜖

,X′
𝜖

)||y⃗h − x⃗||
𝜖
||z⃗h||𝜖

||z⃗h||𝜖

≤ (1 + 𝛼−1||
𝜖
||(X

𝜖

,X′
𝜖

))||x⃗ − y⃗h||𝜖,

which finishes the proof. ▪

Let us recall, from, for example, [30, Chapters 16, 17, and 22], the following approximation

properties of the finite element subspaces (4.1), which are obtained using the classical interpolation

theory. Assume that (u, v,𝝎, 𝜑, p) ∈ H1+s(Ω) × Hs(div,Ω) × Hs(curl,Ω) × Hs(Ω) × Hs(Ω), for some

s ∈ (1∕2, k + 1]. Then there exists C > 0, independent of h, such that

||𝜺(u − h(u))||0,Ω ≤ Chs|u|1+s,Ω, (4.7a)

||p − Πh(p)||0,Ω ≤ Chs|p|s,Ω, (4.7b)

||v − RT
h (v)||0,Ω ≤ Chs|v|s,Ω, (4.7c)

||𝝎 − N
h (𝝎)||0,Ω ≤ Chs|𝝎|s,Ω, (4.7d)

where Πh ∶ L
2

0 → Zh ⊂ Qh is the L2
-projection and h ∶ H1(Ω) → Uh, 

RT
h ∶ H0(div,Ω) → Vh,


N
h ∶ H0(curl,Ω) → Wh are the Lagrange, Raviart–Thomas and Nédelec interpolators respectively.

Theorem 4.3. Let (u, v,𝝎, 𝜑, p) ∈ X
𝜖

and (uh, vh,𝝎h, 𝜑h, ph) ∈ X
𝜖,h be the unique

solutions to the continuous and discrete problems (2.7) and (4.2), respectively. Assume
that (u, v,𝝎, 𝜑, p) ∈ H1+s(Ω) × Hs(div,Ω) × Hs(curl,Ω) × Hs(Ω) × Hs(Ω), for some
s ∈ (1∕2, k+1]. Then, there exists C > 0, independent of the mesh size h and of the model
parameters 𝜖, such that

||(u − uh, v − vh,𝝎 − 𝝎h, 𝜑 − 𝜑h, p − ph)||𝜖 ≤ Chs||(u, v,𝝎, 𝜑, p)||s,𝜖 ,

where

||(u, v,𝝎, 𝜑, p)||2
s,𝜖 ∶= 2𝜇|u|2

1+s,Ω +
1

𝜅

|v|2

s,Ω +
𝜈

𝜅

|div v|2

s,Ω + |𝝎|2

s,Ω + 𝜈|curl𝝎|2

s,Ω +
1

2𝜇
|𝜑|2

s,Ω

+
(

c0 +
𝜅

𝜈

)

|p|2

s,Ω +
1

𝜆

|𝜑 + 𝛼p|2

s,Ω.

Proof. This result follows immediately after choosing the tuple

(𝜸h, 𝜻h,𝜽h, 𝜓h, qh) ∶= (h(u),RT
h (v),N

h (𝝎),Πh(𝜑),Πh(p)),

in Theorem 4.2, and then using the estimates (4.7a)–(4.7d) together with the following

commuting properties of the Raviart–Thomas and Nédélec operators

div
RT
h (v) = Πh(div v), curl N

h (𝝎) = Πh(curl𝝎).

Finally, it suffices to invoke the fact that ||q||r ≤
(
𝜅

𝜈

+ c0

)

||q||0,Ω. ▪

Remark 4.1. The error estimate above holds true also in the limit cases of near incom-

pressibility (𝜆 → ∞) and near impermeability (𝜅 → 0). This robustness in these cases

(along with variations in other parameters) is explored in Section 5.2. We also stress that

in the non-viscous regime (𝜈 = 0) we do not have a velocity Laplacian in the fluid momen-

tum equation (2.3b), and no vorticity is required. In that case the formulation in (2.7)

recovers the 4-field Biot formulation from [16]. Optimal convergence for the Biot limit is

confirmed numerically in Section 5.1, below.
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5 NUMERICAL VERIFICATION

The aim of this section is to experimentally validate the theoretical results presented in Section 4. We

certify by error convergence verification the proposed finite element method, and then we apply the

formulation in the simulation of a representative viscous flow in a poroelastic channel. We also evaluate

the robustness of the preconditioners in (3.17). The numerical implementation uses the open-source

finite element framework Gridap [12], and is available in the public domain [21]. For the solution of

the linear systems in the accuracy verification tests we employ the sparse direct method MUMPS, while

in the preconditioner tests we use the preconditioner MINRES iterative solver; see the corresponding

section below for the full details underlying the setup of the preconditioner tests.

5.1 Accuracy tests

Let us consider the unit square domain Ω = (0, 1)2 together with the manufactured solutions

u(x, y) =

(
sin(𝜋[x + y])

cos(𝜋[x2 + y2])

)

, p(x, y) = sin(𝜋x + y) sin(𝜋y),

v(x, y) =

(
sin(𝜋x) sin(𝜋y)

cos(𝜋x) cos(2𝜋y)

)

, 𝜔(x, y) =
√
𝜈

𝜅

curl v, 𝜑(x, y) = −𝜆 div u + 𝛼p.

The model parameters assume the arbitrary values 𝜈 = 1, 𝜆 = 1, 𝜇 = 1, 𝜅 = 1, c0 = 1, 𝛼 = 1; and the

loading and source terms, together with essential boundary conditions are computed from the manu-

factured solutions above. The mean value of fluid and total pressure is prescribed to coincide with the

mean values of the manufactured pressures, which is implemented by means of a real Lagrange multi-

plier. Sequences of successively refined uniform tetrahedral meshes are used to compute approximate

solutions and to generate the error history (error decay with the mesh size h and experimental conver-

gence rates, using norms in non-weighted spaces for each individual unknown and at each refinement

level). We display the error history in Table 1, where the method confirms an asymptotic optimal con-

vergence of O(hk+1) for each variable and for both polynomial degrees. We remark that for this test we

use continuous and piecewise polynomials of degree k + 2 for displacement and discontinuous piece-

wise polynomials of degree k for total pressure. Note that in 2D, the filtration vorticity is a scalar field

𝜔 =
√

𝜈

𝜅

curl v and the appropriate functional space is H
1

0(Ω). In the discrete setting we then select

Wh ∶= {𝜔h ∈ H
1

0(Ω) ∶ 𝜔h|K ∈ P1(K), ∀K ∈ h}.

Moreover, to strengthen the numerical evidence, in the last column of the table we report the

(L2
-projection onto Zh of the) loss of mass

lossh ∶= −
(

c0 +
𝛼

2

𝜆

)

ph +
𝛼

𝜆

𝜑h − div(vh) − g, (5.1)

for each refinement level, confirming a satisfaction of the mass conservation equation on the order of

machine accuracy. This test has been performed using pure Dirichlet boundary conditions.

In regards to Remark 4.1, we perform exactly the same error history as reported in Table 1, now

in the non-viscous regime (setting 𝜈 = 0). Of course, then vorticity is zero and optimal convergence is

attained for all other fields also in this case, as shown in Table 2.

5.2 Robustness of the convergence rates

Next we conduct a second test of convergence, now in the unit cube domain Ω = (0, 1)3 and with

mixed boundary conditions (displacement, normal velocity, and tangential vorticity are prescribed on
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18 of 26 CARABALLO ET AL.

TABLE 1 Accuracy test in 2D.

DoF h e1(u) r ediv(v) r ecurl(𝝎) r e0(𝝋) r e0(p) r lossh

Discretization with k = 0

93 0.7071 2.36e+00 ⋆ 1.98e+00 ⋆ 8.43e+00 ⋆ 3.10e+00 ⋆ 4.77e−01 ⋆ 2.66e−15

309 0.3536 1.04e+00 1.18 1.36e+00 0.53 6.74e+00 0.32 1.75e+00 0.83 2.59e−01 0.88 8.88e−15

1125 0.1768 4.68e−01 1.16 6.94e−01 0.98 3.47e+00 0.96 8.98e−01 0.96 9.13e−02 1.50 1.66e−14

4293 0.0884 2.27e−01 1.04 3.49e−01 0.99 1.74e+00 0.99 4.52e−01 0.99 3.87e−02 1.24 3.68e−14

16,773 0.0442 1.13e−01 1.01 1.74e−01 1.00 8.73e−01 1.00 2.26e−01 1.00 1.84e−02 1.08 1.20e−13

66,309 0.0221 5.65e−02 1.00 8.73e−02 1.00 4.37e−01 1.00 1.13e−01 1.00 9.05e−03 1.02 1.99e−13

Discretization with k = 1

221 0.7071 8.54e−01 ⋆ 1.27e+00 ⋆ 5.40e+00 ⋆ 1.26e+00 ⋆ 2.04e−01 ⋆ 8.95e−15

789 0.3536 1.90e−01 2.17 3.01e−01 2.07 1.47e+00 1.87 3.92e−01 1.69 3.72e−02 2.46 2.30e−14

2981 0.1768 4.80e−02 1.99 7.75e−02 1.96 3.86e−01 1.93 1.01e−01 1.96 7.69e−03 2.27 5.56e−14

11,589 0.0884 1.20e−02 2.00 1.95e−02 1.99 9.84e−02 1.97 2.54e−02 1.99 1.82e−03 2.08 1.15e−13

45,701 0.0442 3.00e−03 2.00 4.89e−03 2.00 2.48e−02 1.99 6.36e−03 2.00 4.50e−04 2.02 2.40e−13

181,509 0.0221 7.50e−04 2.00 1.22e−03 2.00 6.23e−03 1.99 1.59e−03 2.00 1.12e−04 2.00 5.00e−13

Note: The symbol ⋆ denotes that no experimental convergence rate has been computed at the first refinement level. Error history (errors

for each field variable on a sequence of successively refined grids) using non-weighted spaces, convergence rates, and 𝓁∞-norm of the

loss of mass (the residual of the mass conservation equation at the discrete level, Equation (5.1)).

TABLE 2 Accuracy test in 2D.

DoF h e1(u) r ediv(v) r e0(𝝋) r e0(p) r lossh

Discretization with k = 0

93 0.7071 2.36e+00 ⋆ 1.93e+00 ⋆ 3.08e+00 ⋆ 2.61e−01 ⋆ 2.61e−15

309 0.3536 1.04e+00 1.18 1.34e+00 0.52 1.74e+00 0.83 1.40e−01 0.90 1.04e−14

1125 0.1768 4.68e−01 1.15 6.91e−01 0.96 8.97e−01 0.95 7.15e−02 0.97 8.17e−14

4293 0.0884 2.27e−01 1.04 3.48e−01 0.99 4.52e−01 0.99 3.59e−02 0.99 3.37e−13

16,773 0.0442 1.13e−01 1.01 1.74e−01 1.00 2.26e−01 1.00 1.80e−02 1.00 3.64e−12

66,309 0.0221 5.65e−02 1.00 8.73e−02 1.00 1.13e−01 1.00 9.00e−03 1.00 2.43e−11

Discretization with k = 1

221 0.7071 8.54e−01 ⋆ 1.26e+00 ⋆ 1.25e+00 ⋆ 9.43e−02 ⋆ 7.75e−15

789 0.3536 1.90e−01 2.17 3.01e−01 2.06 3.90e−01 1.68 2.54e−02 1.89 2.37e−14

2981 0.1768 4.81e−02 1.99 7.76e−02 1.95 1.01e−01 1.96 6.48e−03 1.97 5.83e−14

11,589 0.0884 1.20e−02 2.00 1.96e−02 1.99 2.53e−02 1.99 1.63e−03 1.99 1.25e−13

45,701 0.0442 3.00e−03 2.00 4.91e−03 2.00 6.35e−03 2.00 4.07e−04 2.00 4.19e−13

181,509 0.0221 7.51e−04 2.00 1.23e−03 2.00 1.59e−03 2.00 1.02e−04 2.00 7.12e−12

Note: The symbol ⋆ denotes that no experimental convergence rate has been computed at the first refinement level. Error history for

the non-viscous regime with 𝜈 = 0 (errors for each field variable except vorticity on a sequence of successively refined grids) using

non-weighted spaces, convergence rates, and 𝓁∞-norm of the loss of mass (the residual of the mass conservation equation at the discrete

level, Equation (5.1)).

the sides x = 0, y = 0, z = 0 and known normal stress, flux, and pressures are imposed on the

remainder of the boundary) considering closed-form solutions to the vorticity-based Biot–Brinkman

equations as follows

u(x, y, z) = 1

10

⎛
⎜
⎜
⎜
⎝

sin(𝜋[x + y + z])
cos(𝜋[x2 + y2 + z2])

sin(𝜋[x + y + z]) cos(𝜋[x + y + z])

⎞
⎟
⎟
⎟
⎠

,
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TABLE 3 Accuracy test in 3D.

DoF h e((u, v, 𝝎, 𝝋, p)) r

Discretization with k = 0

4675 0.6124 1.02e+01 ⋆

19,939 0.3062 3.87e+00 1.402

110,083 0.1531 1.18e+00 1.718

718,339 0.0765 3.24e−01 1.862

5,162,755 0.0383 8.51e−02 1.928

Discretization with k = 1

12,766 0.6124 3.03e+00 ⋆

55,514 0.3062 7.32e−01 2.048

310,450 0.1531 1.34e−01 2.454

2,041,058 0.0765 2.03e−02 2.715

Note: The symbol ⋆ denotes that no experimental convergence rate has been computed at the first refinement level. Error history (total

error in the weighted norm that leads to the definition of 3 on a sequence of successively refined grids).

p(x, y, z) = sin(𝜋x) cos(𝜋y) sin(𝜋z),

v(x, y, z) =
⎛
⎜
⎜
⎜
⎝

sin
2(𝜋x) sin(𝜋y) sin(2𝜋z)

sin(𝜋x)sin
2(𝜋y) sin(2𝜋z)

−[sin(2𝜋x) sin(𝜋y) + sin(𝜋x) sin(2𝜋y)]sin
2(𝜋z)

⎞
⎟
⎟
⎟
⎠

,

𝝎(x, y, z) =
√
𝜈

𝜅

curl v, 𝜑(x, y, z) = −𝜆 div u + 𝛼p.

The 3D example uses generalized Taylor–Hood elements for the displacement/total pressure pair, but

differently from (4.1), we take one polynomial degree higher for the approximation of velocity, vor-

ticity, and fluid pressure. This to maintain an overall O(hk+2) convergence. This time we consider the

parameter values 𝜈 = 0.1, 𝜆 = 100, 𝜇 = 10, 𝜅 = 10
−3

, c0 = 0.1, 𝛼 = 0.1, and in Table 3 we only

show the error decay measured in the total weighted norm that leads to the definition of 3, that is

||x⃗ − x⃗h||𝜀 =
√
(x⃗ − x⃗h) ⋅ −1

3
(x⃗ − x⃗h). This shows an asymptotic hk+2

order of convergence. For sake

of illustration, we depict in Figure 1 the approximate solutions obtained after four levels of uniform

refinement.

We also explore the dependence of the order of convergence upon variation of the base-line param-

eter values used in Table 3. We consider several sample values of model parameters 𝜇 ∈ [1, 10
8],

𝜆 ∈ [1, 10
8], 𝜈 ∈ [10

−6
, 1], 𝜅 ∈ [10

−8
, 1], 𝛼 ∈ [0, 1], and c0 ∈ [10

−8
, 1]. These ranges are encountered

in typical applications of poromechanics of subsurface flows and of linear Biot consolidation of soft

tissues [16, 24, 43, 47, 55]. For the sake of brevity, however, we only report a subset of representative

results we obtained with 𝜇 = 1, 𝛼 = 1, 𝜆 = {1, 10
8}, 𝜈 = {10

−8
, 1}, 𝜅 = {10

−8
, 1}, and c0 = {10

−8
, 1}.

In any case, the software in [21] is written such that the reader might also run additional tests with other

parameter values as per-required. We consider the unit cube domain discretized into uniform tetrahe-

dral meshes. In particular, we consider four mesh resolutions, from one up to four levels of uniform

refinement of the unit cube discretized with two tetrahedra. We use mixed boundary conditions, with

Γ being conformed by the faces x = 0, y = 0, z = 0 and Σ the remainder of the boundary.

The results are shown in Figure 2 for k = 0. Overall, the different convergence curves confirm

O(hk+2) convergence in the weighted norm that leads to the definition of3 regardless of the parameter

values, as predicted by the theoretical analysis.
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20 of 26 CARABALLO ET AL.

FIGURE 1 Accuracy test in 3D. Approximate solutions of the Biot–Brinkman equations on a relatively coarse mesh.

Displacements on the deformed configuration, velocity streamlines, vorticity vectors, total and fluid pressures computed with

the lowest-order method.

FIGURE 2 Error convergence curves in 3D for k = 0 and different combinations of the physical parameters values. The

errors are measured in the weighted norm that leads to the definition of 3.
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CARABALLO ET AL. 21 of 26

FIGURE 3 Comparison of parameter robustness for preconditioners 1, 2, and 3.

5.3 Preconditioner robustness with respect to model parameters

Finally, we proceed to study the robustness of 
−1

j in (3.17) with respect to varying model parameters

and increasing mesh resolution. We use the same combination of parameter values as in the previous

section, namely 𝜇 = 1, 𝛼 = 1, 𝜆 = {1, 10
8}, 𝜈 = {10

−8
, 1}, 𝜅 = {10

−8
, 1}, and c0 = {10

−8
, 1}, and

five levels of uniform refinement of the unit cube discretized with two tetrahedra. We used the same

boundary conditions as in the previous section. We used the definition of FE spaces in (4.1) for k = 0.

The action of the different inverses arising in the diagonal blocks of 
−1

j in (3.17) is implemented

with the UMFPACK direct solver. For each combination of parameter values and mesh resolution, we

used these preconditioners to accelerate the convergence of the MINRES iterative solver. Convergence
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22 of 26 CARABALLO ET AL.

FIGURE 4 Comparison of parameter robustness for preconditioners 1, 2, and 3.

is claimed whenever the Euclidean norm of the (unpreconditioned) residual of the whole system is

reduced by a factor of 10
6
, and stopped otherwise if the number of iterations reaches an upper bound

of 500 iterations. The (discrete) Laplacian operator required for 2,3 acts on discontinuous pore

pressure approximations so we use (for a given piecewise-defined field 𝜂) the following form (see [13])

(−𝜂Δhph, qh)0,Ω =
∑

K∈h

(𝜂∇hph,∇hph)0,K +
∑

e∈ int

h

⟨
{{𝜂}}
{{he}}

[[
ph

]]
,

[[
qh

]]
⟩

e
+

∑

e∈Γh

⟨
𝜂

he
ph, qh⟩e, (5.2)

while for the lowest-order case we only keep the second and third terms on the right-hand side of (5.2).

In Figures 3 and 4, we show the number of preconditioned MINRES iterations versus number

of DoFs for the 1, 2, and 3 preconditioners with the particular parameter value combinations
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CARABALLO ET AL. 23 of 26

mentioned above. Each of the plots in these figures contain four curves corresponding each to one of

the four combinations of 𝜅 = {10
−8
, 1}, and c0 = {10

−8
, 1}. To facilitate the comparison among 1,

2, and 3, the six plots in each figure are grouped into two groups of three horizontally adjacent

plots each. Each group correspond to a combination of 𝜆 = {1, 10
8}, 𝜈 = {10

−8
, 1}; the particular

combination corresponding to a group is indicated in the title of the three plots in the group.

From Figures 3 and 4, we observe that the number of MINRES iterations with 3 reaches an

asymptotically constant regime with increasing mesh resolution for all combinations of parameter val-

ues tested. This is also the case of 1 and 2 in the majority of cases, except for some combinations

of parameter values in which 𝜈 = 10
−8

(see, e.g., 1 and 𝜇 = 1, 𝜆 = 1, 𝛼 = 1, 𝜈 = 10
−8

, 𝜅 = 1,

and c0 = {10
−8
, 1}), where preconditioner efficiency (number of MINRES iterations) significantly

degrades (increases) with mesh resolution. (We recall from Remark 4.1 that in the limit 𝜈 → 0 the

system at hand becomes a four-field Biot system [16].) For these combinations of parameters, the

coupling among the two pressures in the last leading block of 3 is essential to retain mesh indepen-

dence convergence. This observation agrees with the experiments in [16] for four-field formulations

of Biot poroelasticity and simpler problems (including Herrmann elasticity and reaction-diffusion

equation), where comparisons were performed against sub-optimal preconditioners. On the other hand,

we observe a relatively low sensitivity of the number of MINRES iterations (and thus robustness) with

respect to the value of the model of parameters for all preconditioners (leaving aside the aforemen-

tioned combination of parameter values). For example, for 𝜇 = 1, 𝜆 = 10
8
, 𝛼 = 1, 𝜈 = 10

−8
, 3, and

finest mesh resolution, the number of iterations varies between 40 and 50 despite the disparity of scales

in the values of c0 and 𝜅. It is worth noting that 1 and 2 lead to a similar or even lower number of

iterations than 3 in most cases, despite it being a computationally cheaper preconditioner. This is the

case, for example, for and 1, 𝜇 = 1, 𝜆 = 1, 𝛼 = 1, 𝜈 = 1, and all combinations of 𝜅 and c0 tested.

6 CONCLUDING REMARKS

We have presented a new formulation for the Biot–Brinkman problem using rescaled vorticity and

total pressure, and have carried out the stability and solvability analysis of the continuous and discrete

problems using parameter-weighted norms. We have derived theoretical error estimates and have sub-

sequently confirmed them numerically; and we have constructed suitable preconditioners that achieve

mesh-robustness iteration numbers when varying elastic and porous media flow model parameters. In

order to be able to apply these algorithms to more realistic problems one needs to efficiently exploit

the vast amount of hardware parallelism available in high-end supercomputers. As future work, we

plan to address the parallelization of the algorithms proposed using the GridapDistributed.jl
package [11].

Parts of the theoretical framework advanced herein (in particular, the use of a vorticity-based

formulation for the filtration equation) extend naturally to more complex setups, for example to the

multiple network generalized Biot–Brinkman model from [35]. Further improvements to the model and

to the theory include the rigorous treatment of different types of boundary conditions, the interfacial

coupling with free-flow or with elasticity, and robust a posteriori error estimates.
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