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In this article, we analyse an augmented mixed finite element method for the steady Navier–Stokes equa-
tions. More precisely, we extend the recent results from Camaño et al.. (2017, Analysis of an augmented
mixed-FEM for the Navier–Stokes problem. Math. Comput., 86, 589–615) to the case of mixed no-slip
and traction boundary conditions in different parts of the boundary, and introduce and analyse a new
pseudostress–velocity-augmented mixed formulation for the fluid flow problem. The well-posedness anal-
ysis is carried out by combining the classical Babuška–Brezzi theory and Banach’s fixed-point theorem.
A proper adaptation of the arguments exploited in the continuous analysis allows us to state suitable
hypotheses on the finite element subspaces ensuring that the associated Galerkin scheme is well defined.
For instance, Raviart–Thomas elements of order k ≥ 0 and continuous piecewise polynomials of degree
k + 1 for the nonlinear pseudostress tensor and velocity, respectively, yield optimal convergence rates.
In addition, we derive a reliable and efficient residual-based a posteriori error estimator for the proposed
discretization. The proof of reliability hinges on the global inf–sup condition and the local approximation
properties of the Clément interpolant, whereas the efficiency of the estimator follows from inverse inequal-
ities and localization via edge–bubble functions. A set of numerical results exemplifies the performance of
the augmented method with mixed boundary conditions. The tests also confirm the reliability and efficiency
of the estimator, and show the performance of the associated adaptive algorithm.
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1. Introduction

This article is concerned with the numerical study of the Navier–Stokes problem with Dirichlet and
traction boundary conditions in different parts of the boundary. Our focus will be on an augmented mixed
pseudostress-based formulation of this problem.

An important body of recent literature deals with numerical techniques to numerically solve the
Navier–Stokes equations. A rich variety of methods is available, having different features being tested for
many fundamental cases and industrial applications. Among these methods, we give special attention to
numerical schemes based on dual-mixed formulations, which have gained considerable attention (already
over the last few decades) mainly due to the fact that, on the one hand, they allow to unify the analysis
for Newtonian and non-Newtonian flows, and on the other hand, they permit to approximate additional
variables of interest as a simple post-processing from the primal unknowns (see, for instance, Farhloul
et al., 2009; Cai & Zhang, 2012; Howell & Walkington, 2013; Camaño et al., 2016, 2017 and the
references therein). For example, dual-mixed methods based on stresses or pseudostress tensors have
proven remarkable success, especially in coupled problems such as Stokes–Darcy, Navier–Stokes/Darcy
and Boussinesq systems (see, for instance, Gatica et al., 2011a, 2012; Colmenares et al., 2016; Caucao
et al., 2017).

Regarding Navier–Stokes equations, Cai & Zhang (2012) introduced and analysed a conforming
dual-mixed method where the pseudostress, the velocity and the pressure are the main unknowns of the
system (see also Cai et al., 2010). Their formulation accommodates the use of Raviart–Thomas elements
for the pseudostress, yielding approximations with accuracy O(hk+1−n/6) (n = 2, 3) in the L3−norm.
More recently, Camaño et al. (2017) proposed a new pseudostress-based mixed method for the pure
Dirichlet Navier–Stokes problem. Such a method involves a pseudostress tensor depending nonlinearly
on the velocity through the convective term, whereas pressure is eliminated via the incompressibility
constraint and can be later recovered as a post-process of the pseudostress tensor. The formulation from
Camaño et al. (2017) results in Raviart–Thomas approximations of pseudostresses exhibiting optimal
convergence. Up to the authors’ knowledge, that is the first Raviart–Thomas-based mixed method for
Navier–Stokes providing optimal convergence for all the unknowns, and the key feature behind this opti-
mality is the incorporation of residual terms arising from the constitutive and equilibrium equations. This
(so-called augmentation) procedure allows to circumvent inf–sup conditions and consequently relaxing
the hypotheses on the discrete subspaces. Further details on augmented approaches can be found in,
e.g., Brezzi & Fortin (1991), Franca & Hughes (1988) and Gatica (2006) (see also Farhloul et al., 2009;
Howell & Walkington, 2013).

The purpose of this work is to extend the results in Camaño et al. (2017) to the case of mixed boundary
conditions, particularly useful, when modelling free surface flow or requiring outflow/artificial boundaries
(see, e.g., Bruneau & Fabrie, 1996; Bänsch, 2001, 2014; Dong & Shen, 2015). In this regard, the only
contribution addressing dual-mixed formulations and mixed boundary conditions for Navier–Stokes is
Farhloul et al. (2008). The authors study a strain–velocity–vorticity–pressure formulation, and use the
discrete elements developed in Farhloul & Fortin (1997) (designed for Stokes and elasticity problems),
to obtain a quasi-optimal mixed method.

Here, and similarly to Camaño et al. (2017), the main unknowns are the velocity and a pseudostress
tensor relating the strain tensor with the convective term. The pressure is eliminated using the fluid
incompressibility and can be recovered as a post-process of the pseudostress. Moreover, because of the
convective term, the velocity is sought in H1, which requires augmentation via Galerkin terms arising
from the constitutive and equilibrium equations. In contrast with the analysis for the pure Dirichlet
case in Camaño et al. (2017), here the mixed boundary conditions imply that the resulting augmented
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variational problem is written as a saddle-point system. Therefore, we can employ the classical Babuška–
Brezzi theory and Banach’s fixed-point theorem to prove existence and uniqueness of solution to both the
continuous and discrete problems. In addition, for generic finite-dimensional spaces, we derive a suitable
Céa’s estimate; and choosing, for instance, Raviart–Thomas elements of degree k for the pseudostress
tensor, and continuous piecewise polynomial elements of degree k + 1 for the velocity, provides optimal
rates of convergence. This is one of the principal advantages of our method. We highlight that, differently
from previous results related with dual-mixed formulations for elliptic problems dealing with strain
tensors and Neumann-type boundary conditions (see, for instance, Gatica, 2006; Camaño et al., 2015), in
this article we do not introduce the vorticity (or rotation in the case of the elasticity problem) nor vectorial
or scalar Lagrange multipliers on the boundary as further unknowns to derive our formulation, avoiding
hence the introduction of costly unknowns to the system.

Additionally to the continuous and discrete analyses of this article, and to guarantee optimal conver-
gence even under the eventual presence of boundary layers and singularities, we derive a reliable and
efficient, residual-based a posteriori error estimator for our method. For the proof of reliability, instead
of using a classical Helmholtz decomposition (see its application in similar contexts in, e.g., Camaño
et al., 2015; Gatica et al., 2016), here we use the global inf–sup condition, integration by parts and the
approximation properties of the Clément interpolator. This approach yields a reduction in the number of
terms composing the error indicator, it makes the analysis simpler, and it unifies the analysis for the two-
and three-dimensional cases. The proof of efficiency of the estimator consists of a localization method
based on edge-bubble (or face-bubble functions) and inverse inequalities.

The rest of this article is organized as follows. In Section 2, we introduce the model problem and rewrite
the equations in terms of the pseudostress tensor and the velocity. In Section 3, we derive the augmented
variational formulation, and prove its well-posedness by means of a fixed-point strategy and the classical
Babuška–Brezzi theory. In Section 4, we define the Galerkin scheme and derive suitable hypotheses on the
finite element subspaces, ensuring that the discrete scheme becomes well-posed and the corresponding
Céa’s estimate holds. We also describe a specific choice of finite element subspaces, namely Raviart–
Thomas of order k and continuous piecewise polynomials of degree k + 1 and derive the corresponding
theoretical rate of convergence. In Section 5, we introduce the a posteriori error estimator and prove its
reliability and efficiency. Finally, several numerical examples employing the spaces introduced in Section
4, illustrating the accuracy of the method and showing the good performance of the associated adaptive
algorithm are reported in Section 6.

We conclude this section by recalling some definitions and fixing useful notations. Given the vector
fields v = (vi)i=1,n and w = (wi)i=1,n, with n ∈ {2, 3}, we set the gradient, divergence and tensor product
operators by

∇v :=
(

∂vi

∂xj

)
i,j=1,n

, div v :=
n∑

j=1

∂vj

∂xj
and v ⊗ w := (viwj)i,j=1,n.

Furthermore, for any tensor fields S := (Sij)i,j=1,n and R := (Rij)i,j=1,n, we define the transpose, the trace,
the tensor inner product and the deviatoric tensor, respectively, by

St := (Sji)i,j=1,n, tr (S) :=
n∑

i=1

Sii, S : R :=
n∑

i,j=1

SijRij and Sd := S − 1

n
tr (S)I,
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where I is the identity matrix in R
n×n. When no confusion arises, | · | will denote the Euclidean norm in

R
n or R

n×n. Additionally, we will utilize standard simplified terminology for Sobolev spaces and norms.
In particular, if O is a domain, Γ is an open or closed Lipschitz curve (respectively, surface in R

3) and
r ∈ R, we define

Hr(O) := [Hr(O)]n, H
r(O) := [Hr(O)]n×n and Hr(Γ ) := [Hr(Γ )]n

and adopt the usual convention of writing L2(O), L2(O) and L2(Γ ) instead of H0(O), H0(O) and H0(Γ ),
respectively. The corresponding norms are denoted by ‖ · ‖r,O for Hr(O), Hr(O) and H

r(O), and ‖ · ‖r,Γ

for Hr(Γ ) and Hr(Γ ). We also write | · |r,O for the Hr-seminorm. In addition, we recall that

H(div ; O) := {w ∈ L2(O) : div w ∈ L2(O)
}

is a standard Hilbert space (see, e.g., Girault & Raviart, 1986; Brezzi & Fortin, 1991), and the space of
matrix-valued functions whose rows belong to H(div ; O) will be denoted by H(div ; O). The norms of
H(div ; O) and H(div ; O) are denoted by ‖ · ‖div ,O and ‖ · ‖div ,O, respectively. Note also that H(div ; O)

can be characterized as the space of matrix-valued functions S such that ctS ∈ H(div ; O) for any constant
column vector c. In addition, it is easy to see that there holds

H(div ; O) = H0(div ; O) ⊕ P0(O) I, (1.1)

where

H0(div ; O) :=
{

S ∈ H(div ; O) :
∫

O
tr S = 0

}
, (1.2)

and P0(O) is the space of constant polynomials on O. More precisely, each S ∈ H(div ; O) can be
decomposed uniquely as:

S = S0 + c I , with S0 ∈ H0(div ; O) and c := 1

n |O|
∫

O
tr S ∈ R. (1.3)

Such a decomposition will be exploited in the subsequent analysis of weak formulations.
Furthermore, given an integer k ≥ 0 and a set M ⊆ R

n, Pk(M) denotes the space of polynomials on
M of degree ≤ k. In addition, we set Pk(M) := [Pk(M)]n and Pk(M) := [Pk(M)]n×n. Finally, throughout
the rest of the article, we employ 0 to denote a generic null vector (including the null functional and
operator), and use C and c, with or without subscripts, bars, tildes or hats, to denote generic constants
independent of the discretization, which may take different values at different places.

2. The model problem

Let Ω ⊆ R
n be a bounded domain, n ∈ {2, 3}, with Lipschitz-boundary Γ . The boundary of this domain

is divided into two portions ΓD and ΓN , such that Γ̄D ∪ Γ̄N = Γ and |ΓD| > 0 on which different types
of boundary conditions will be imposed. We consider the flow of an incompressible fluid with constant
viscosity, where the Cauchy stress of the fluid σ can be written as

σ := 2 ν e(u) − pI, (2.1)
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with u denoting the velocity field, ν the viscosity, p the pressure and e(u) the strain rate

e(u) := 1

2
(∇u + (∇u)t).

The set of governing equations consists on the incompressible steady-state Navier–Stokes problem with
constant viscosity and mixed boundary conditions, given by

(u · ∇)u − div σ = f in Ω , div u = 0 in Ω ,

u = 0 on ΓD , σn = g on ΓN ,
(2.2)

where f and g are given data living in spaces to be specified next, and n is the outward unit vector normal
to the boundary ΓN .

We proceed analogously as in Camaño et al. (2017) and introduce the nonlinear-pseudostress tensor

T := σ − u ⊗ u = 2ν e(u) − pI − u ⊗ u, (2.3)

which assembles the Cauchy stress tensor σ with the convective term u ⊗ u. Note that this tensor
represents the flux associated to the momentum density. Then, using the incompressibility condition
div u = tr (e(u)) = 0 in Ω , we can easily obtain the identities (Camaño et al., 2017, Section 2.1)

p = −1

n
(tr (T) + tr (u ⊗ u)) in Ω and − div T = f in Ω . (2.4)

In particular, using the first identity above we can eliminate the pressure from (2.3) to obtain

Td = 2ν e(u) − (u ⊗ u)d in Ω . (2.5)

In turn, noticing that e(u) = ∇u − ω(u), with

ω(u) := 1

2
(∇u − (∇u)t), (2.6)

we have that (2.5) becomes

Td = 2ν ∇u − 2ν ω(u) − (u ⊗ u)d in Ω . (2.7)

It is then readily seen that (2.2) can be rewritten in terms of T and u as follows

Td = 2 ν∇u − 2 νω(u) − (u ⊗ u)d in Ω , − div T = f in Ω ,

T = Tt in Ω , u = 0 on ΓD and Tn + (u ⊗ u)n = g on ΓN .
(2.8)

Similar to Camaño et al. (2017), in what follows, we make use of (2.8) to derive our variational
formulation.

Remark 2.1 It is well known that when considering mixed boundary conditions, the constitutive equation
(2.1) must be written in terms of the strain rate e(u) (see Farhloul et al., 2008), and therefore integration
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by parts cannot be performed straightforwardly. A common remedy is to introduce a further unknown to
the system, say γ = 1

2 (∇u − (∇u)t), and utilize the decomposition e(u) = ∇u + γ (see, for instance,
Arnold et al., 1984a; Gatica, 2006; Farhloul et al., 2008). However, here we take advantage of the fact
that u is sought in H1, and we keep T and u as the only unknowns of the problem, avoiding the necessity
of further unknowns in the system (which would result in an increased computational cost).

3. Continuous problem

In this section, we introduce our augmented mixed variational formulation and address its solvability. We
begin by defining the variational problem.

3.1 The augmented mixed variational problem

We now turn to the derivation of the weak formulation of (2.8). We start by multiplying the first equation
of (2.8) by a suitable test function S ∈ H(div ; Ω), and then integrating by parts, employing the Dirichlet
boundary condition u = 0 on ΓD and using the identities

Td : S = Td : Sd and (ω(u), S)Ω = 1

2
(curl (u), as(S))Ω , (3.1)

with

curl (v) :=

⎧⎪⎪⎨⎪⎪⎩
∂v2

∂x1
− ∂v1

∂x2
in R

2,

∇ × v :=
(

∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)
in R

3,

and

as(S) :=
{

S21 − S12 in R
2,

(S32 − S23, S13 − S31, S21 − S12) in R
3,

we readily obtain

(Td, Sd)Ω + 2 ν(u, div S)Ω + ν(curl (u), as(S))Ω + ((u ⊗ u)d, S)Ω − 2 ν 〈Sn, u〉ΓN
= 0, (3.2)

Above, the symbol 〈·, ·〉ΓN
represents the duality paring of H−1/2

00 (ΓN) and H1/2
00 (ΓN) with respect to the

L2(Γ ) inner product, where

H1/2
00 (ΓN) :=

{
v|ΓN : v ∈ H1

ΓD
(Ω)

}
and H−1/2

00 (ΓN) = [H1/2
00 (ΓN)]′,

with

H1
ΓD

(Ω) := {v ∈ H1(Ω) : v|ΓD = 0
}
.
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In what follows, the norms of H1/2
00 (ΓN) and H−1/2

00 (ΓN) are denoted by ‖ · ‖1/2,00,ΓN and ‖ · ‖−1/2,00,ΓN ,
respectively. In particular, we observe that if E0 : H1/2(ΓN) → L2(Γ ) is the extension operator defined by

E0(ψ) :=
{
ψ on ΓN ,
0 on ΓD,

∀ψ ∈ H1/2(ΓN)

then the space H1/2
00 (ΓN) can be defined equivalently as

H1/2
00 (ΓN) := {ψ ∈ H1/2(ΓN) : E0(ψ) ∈ H1/2(Γ )

}
endowed with the norm ‖ψ‖1/2,00,ΓN = ‖E0(ψ)‖1/2,Γ , where

‖ξ‖1/2,Γ := inf
{‖v‖1,Ω : v ∈ H1(Ω) such that v|Γ = ξ

}
.

From the latter, it can be readily seen that

‖v‖1/2,00,ΓN = ‖v‖1/2,Γ ≤ ‖v‖1,Ω ∀ v ∈ H1
ΓD

(Ω). (3.3)

On the other hand, since we are interested in deriving an augmented formulation as the one in Camaño
et al. (2017), we now multiply the second equation of (2.8) by v ∈ H1

ΓD
(Ω), and differently from Camaño

et al. (2017), we integrate by parts and utilize the boundary condition Tn + (u ⊗ u)n = g on ΓN , to
deduce

(T, ∇v)Ω − 〈g, v〉ΓN + 〈
(u ⊗ u)n, v

〉
ΓN

= (f , v)Ω ,

which, because of the symmetry of T can be rewritten as

(T, e(v))Ω + 〈
(u ⊗ u)n, v

〉
ΓN

= (f , v)Ω + 〈g, v〉ΓN .

However, using the fact that e(v) = ∇v − ω(v), we can rewrite the first term of the latter as (T, ∇v)Ω −
(T,ω(v))Ω and then integrating by parts the term (T, ∇v)Ω , we get

−(div T, v)Ω + 〈Tn, v〉ΓN − 1

2
(as(T), curl (v))Ω + 〈u · n, u · v〉ΓN

= (f , v)Ω + 〈g, v〉ΓN . (3.4)

Above we have used the identity

〈(u ⊗ w)n, v〉ΓN
= 〈w · n, u · v〉ΓN

. (3.5)

Finally, to ensure the well-posedness of the resulting variational formulation, we proceed similarly
as in Camaño et al. (2017) and incorporate the following redundant terms arising from the constitutive
and equilibrium equations

κ1 (div T + f , div S)Ω = 0, (3.6)

κ2

(
Td − 2 νe(u) + (u ⊗ u)d, e(v)

)
Ω

= 0, (3.7)
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for all S ∈ H(div ; Ω) and v ∈ H1
ΓD

(Ω), respectively, where κ1 and κ2 are positive parameters to be
specified later.

According to the foregoing reasoning, defining the global space

X := H(div ; Ω) × H1
ΓD

(Ω),

endowed with the norm

‖(S, v)‖2
X := ‖S‖2

div ,Ω + ‖v‖2
1,Ω ∀ (S, v) ∈ X,

the forms

A
(
(T, u), (S, v)

)
:= (Td, Sd)Ω + κ1(div T, div S)Ω + 2 ν(u, div S)Ω − 2 ν(div T, v)

+ ν(curl (u), as(S))Ω − ν(as(T), curl (v)) − 2 ν 〈Sn, u〉ΓN
+ 2 ν 〈Tn, v〉ΓN

+ 2 ν κ2 (e(u), e(v))Ω − κ2

(
Td, e(v)

)
Ω

,

Cw

(
(T, u), (S, v)

)
:= ((u ⊗ w)d, S)Ω + 2 ν 〈w · n, u · v〉ΓN

− κ2

(
(u ⊗ w)d, e(v)

)
Ω

,
(3.8)

for all (T, u), (S, v) ∈ X and w ∈ H1
ΓD

(Ω) and the functional

F(S, v) := 2 ν(f , v)Ω − κ1(f , div S)Ω + 2 ν〈g, v〉ΓN ∀ (S, v) ∈ X, (3.9)

multiplying (3.4) by 2ν and summing up the equations (3.2), (3.4), (3.6) and (3.7), we arrive at our
variational problem: Given f ∈ L2(Ω) and g ∈ H−1/2

00 (ΓN), find (T, u) ∈ X, such that

A
(
(T, u), (S, v)

) + Cu

(
(T, u), (S, v)

) = F(S, v) ∀ (S, v) ∈ X. (3.10)

3.2 Analysis of the continuous problem

In what follows, we prove the existence and uniqueness of solution of problem (3.10) by means of a
fixed-point strategy and the classical Babuška–Brezzi theory. We begin by introducing the associated
fixed-point operator.

3.2.1 Fixed-point strategy. In view of the fixed-point strategy to be used in the proof of solvability
for problem (3.10), let us consider (1.1) and decompose the fluid nonlinear-pseudostress as

T = T0 + μ I with T0 ∈ H0(div ; Ω) and μ ∈ R. (3.11)

By doing that, (3.4) becomes

−(div T0, v)Ω +〈T0n, v〉ΓN
+μ 〈v · n, 1〉ΓN

− 1

2
(as(T0), curl (v))Ω +〈u · n, u · v〉ΓN

= (f , v)Ω +〈g, v〉ΓN ,

and equation (3.2) is rewritten as

(Td
0 , Sd)Ω + 2 ν(u, div S)Ω + ν(curl (u), as(S))Ω + ((u ⊗ u)d, S)Ω − 2 ν〈Sn, u〉ΓN = 0,

η 〈u · n, 1〉ΓN
= 0,
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for all (S, η) ∈ H0(div ; Ω) × R. Consequently, problem (3.10) can be rewritten equivalently as: Find
((T0, u), μ) ∈ X0 × R, such that

A
(
(T0, u), (S, v)

) + Cu

(
(T0, u), (S, v)

) + B
(
(S, v), μ

) = F(S, v),

B
(
(T0, u), η

) = 0,
(3.12)

for all ((S, v), η) ∈ X0 × R, where

X0 := H0(div ; Ω) × H1
ΓD

(Ω),

and B is the bilinear form defined as

B ((S, v), η) = 2 ν η 〈v · n, 1〉ΓN
∀ ((S, v), η) ∈ X × R. (3.13)

To be more precise, since (1.1) is an orthogonal decomposition, ((T0, u), μ) ∈ X0 × R is a solution to
(3.12), if and only if, (T, u) = (T0 + μI, u) ∈ X × R is a solution to (3.10).

Let us now introduce the bounded set

K :=
{

v ∈ H1
ΓD

(Ω) : ‖v‖1,Ω ≤ 2‖F|X0‖X′
0

αA

}
, (3.14)

and the mapping

J : K → K, w → J (w) = u, (3.15)

with u being the second component of ((T0, u), μ) ∈ X0 ×R, solution to the linearized version of problem
(3.12):

A
(
(T0, u), (S, v)

) + Cw

(
(T0, u), (S, v)

) + B
(
(S, v), μ

) = F
(
S, v
)
,

B
(
(T0, u), η

) = 0,
(3.16)

for all
(
(S, v), η

) ∈ X0 × R. It is easy to see that ((T0, u), μ) ∈ X0 × R is a solution to (3.12), if and only
if, J (u) = u. This step, together with the equivalence between (3.10) and (3.12), implies the following
relations:

J (u) = u ⇔ ((T0, u), μ) ∈ X0 × R satisfies (3.12) ⇔ (T0 + μI, u) ∈ X satisfies (3.10). (3.17)

In this way, in establishing the well-posedness of (3.10), or equivalently (3.12), it suffices to prove that
J has a unique fixed point. Before proceeding with the solvability analysis, we first state the stability of
the involved forms and the well-definiteness of the fixed-point operator J .

3.2.2 Stability results and well-definiteness of J . In this section, we establish adequate stability prop-
erties and verify the well-definiteness of J . Since this operator is defined through a saddle-point problem,
we proceed differently than in Camaño et al. (2017) and apply the Babuška–Brezzi theory.
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Downloaded from https://academic.oup.com/imajna/article-abstract/38/3/1452/4082917
by guest
on 17 July 2018



In the sequel, we make use of the following well-known estimates:

Cd‖S‖2
0,Ω ≤ ‖Sd‖2

0,Ω + ‖div S‖2
0,Ω ∀ S ∈ H0(div ; Ω), (3.18)

CK‖v‖2
1,Ω ≤ ‖e(v)‖2

0,Ω ≤ ‖v‖2
1,Ω ∀ v ∈ H1(Ω), (3.19)

with Cd and CK only depending on Ω (for (3.18), we refer to Lemma 3.1 in Arnold et al. (1984b) or
Chapter IV in Brezzi & Fortin (1991), whereas for (3.19) we refer to Girault & Raviart (1986)).

Let us start the discussion by deriving the continuity of the forms involved. First, employing the
right-hand side of (3.19), the continuity of the normal trace and simple computations, it can be deduced
that ∣∣A((T, u), (S, v)

)∣∣ ≤ CA‖(T, u)‖X‖(S, v)‖X ∀ (T, u), (S, v) ∈ X, (3.20)

with CA := 4 max{1, κ1, 2ν, 2νκ2, κ2}. In turn, employing the continuity of the embedding iΓ : H1/2(Γ ) →
L4(Γ ) and the continuity of the trace operator γ0 : H1(Ω) → L2(Γ ), it can be easily proved that

|〈w · n, u, v〉ΓN
| ≤ ‖iΓ ‖2‖γ0‖‖w‖1,Ω‖u‖1/2,Γ ‖v‖1/2,Γ .

This inequality, together with (3.19) and the continuity of the embedding i : H1(Ω) → L4(Ω), implies
that ∣∣Cw

(
(T, u), (S, v)

)∣∣ ≤ CC‖w‖1,Ω‖(T, u)‖X‖(S, v)‖X, (3.21)

with CC := ‖i‖2(1 + κ2
2 )1/2 + 2 ν‖iΓ ‖2‖γ0‖. Let us now observe also that F|X0 ∈ X′

0 and

‖F|X0‖X′
0

≤ (4 ν2 + κ2
1 )1/2‖f‖0,Ω + 2 ν ‖g‖−1/2,00,ΓN . (3.22)

We continue the discussion by establishing the ellipticity of the form A on X0.

Lemma 3.1 Assume that κ1 > 0 and 0 < κ2 < 4ν. Then, there exists αA > 0, such that

A
(
(S, v), (S, v)

) ≥ αA‖(S, v)‖2
X ∀ (S, v) ∈ X0. (3.23)

Proof. From the definition of A (cf. (3.8)), we have

A
(
(S, v), (S, v)

) = ‖Sd‖2
0,Ω + κ1‖div S‖2

0,Ω + 2 κ2ν‖e(v)‖2
0,Ω − κ2(Sd, e(v))Ω .

Then, we proceed analogously to the proof of Lemma 3.1 in Camaño et al. (2017) and apply inequalities

(3.18) and (3.19) to obtain (3.23), with αA := 1

2
min

{
min{1, κ1}, κ1, κ2 (4ν − κ2)CK

}
. �

Finally, we establish the inf–sup condition of the bilinear form B.

Lemma 3.2 There exists β > 0, such that

sup
(S,v)∈X0\{0}

B
(
(S, v), η

)
‖(S, v)‖X

≥ β|η| ∀η ∈ R. (3.24)
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Fig. 1. Choice of v0 for the (left) two- and (right) three-dimensional cases.

Proof. Let v0 ∈ H1
ΓD

(Ω) be a fixed element such that 〈v0 · n, 1〉ΓN
�= 0. Hence, given η ∈ R, it follows

that

sup
(S,v)∈X0\{0}

B
(
(S, v), η

)
‖(S, v)‖X

≥
∣∣B((0, v0), η

)∣∣
‖(0, v0)‖X

= 2ν 〈v0 · n, 1〉
‖v0‖1,Ω

|η|,

which implies the result with β = 2ν〈v0·n,1〉
‖v0‖1,Ω

.

Note that there is a very simple way of defining such an element v0. In fact, for the two-dimensional
case, if x1 and x2 are two points on Γ such that the line [x1, x2] ⊆ ΓN , then we let xm be the midpoint
of [x1, x2] and x3 be a point on Γ , or in the interior of Ω , in such a way two triangles T1 and T2 can be
constructed (see the left panel in Fig. 1). Then, we let v ∈ H1

ΓN
(Ω) be such that v|Ti ∈ P1(Ti) for i = 1, 2,

v(xm) = 1, v(xi) = 0 for i = 1, 2, 3 and v(x) = 0, for all x ∈ Ω̄ − {T1 ∪ T2}, and define v0 = vn, where n
is the normal vector on [x1, x2] (see Gatica et al., 2011a, Lemma 3.6 for a similar approach). Similarly,
for the three-dimensional case, given x1, x2, x3 three points on ΓN defining a triangle with barycentric xm

(see the right-hand side of Fig. 1) and x4 a point in the interior of Ω , or on an opposite piece of boundary,
chosen in such a way below x4 can be formed three tetrahedra T1, T2 and T3. Then we let v ∈ H1

ΓN
(Ω)

be such that v|Ti ∈ P1(Ti) for i = 1, 2, 3, v(xm) = 1, v(xi) = 0 for i = 1, 2, 3, 4 and v(x) = 0 for all
x ∈ Ω̄ − {T1 ∪ T2 ∪ T3} and define v0 = vn, where n is the normal vector on T1 ∪ T2 ∪ T3. �

We are now in position of establishing the well-definiteness of operator J .

Lemma 3.3 Assume that κ1 > 0 and 0 < κ2 < 4ν. Assume further that the body and traction forces f
and g satisfy

(4ν2 + κ2
1 )1/2‖f‖0,Ω + 2ν‖g‖−1/2,00,ΓN ≤ α2

A

4CC
(3.25)

with αA and CC being the constants in (3.23) and (3.21), respectively. Then, given w ∈ K, there exists a
unique u ∈ K, such that J (w) = u.
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Proof. Let w ∈ K. Notice first that, because of (3.22), (3.25) and the definition of K, it readily follows
that

‖w‖1,Ω ≤ αA

2 CC
. (3.26)

In turn, from (3.21) and (3.23), there holds

A
(
(S, v), (S, v)

)+ Cw

(
(S, v), (S, v)

) ≥ A
(
(S, v), (S, v)

) − ∣∣Cw

(
(S, v), (S, v)

)∣∣,
≥
(
αA − CC‖w‖1,Ω

)
‖(S, v)‖2

X ∀(S, v) ∈ X0,
(3.27)

which, together with (3.26), implies

A
(
(S, v), (S, v)

)+ Cw

(
(S, v), (S, v)

) ≥ αA

2
‖(S, v)‖2

X (S, v) ∈ X0, (3.28)

that is, the bilinear form A(·, ·) + Cw(·, ·) is elliptic on X0. Therefore, since the bilinear form B satisfies
(3.24), we can apply the classical Babuška–Brezzi theory to deduce that there exists a unique ((T0, u), μ) ∈
X0 × R satisfying (3.16). Moreover, since B((T0, u), μ) = 0, from the first equation of (3.16) and from
(3.28) we easily obtain that

αA

2
‖(T0, u)‖2

X ≤ A
(
(T0, u), (T0, u)

)+ Cw

(
(T0, u), (T0, u)

) = F(T0, u),

which implies that

‖u‖1,Ω ≤ ‖(T0, u)‖X ≤ 2

αA
‖F|X0‖X′

0
, (3.29)

and hence u ∈ K. �

3.2.3 The main result. The main result of this section states the unique solvability and stability
estimates for problem (3.10).

Theorem 3.4 Let f ∈ L2(Ω) and g ∈ H−1/2
00 (ΓN), such that

(4ν2 + κ2
1 )1/2‖f‖0,Ω + 2ν‖g‖−1/2,00,ΓN <

α2
A

4CC
. (3.30)

Assume that κ1 > 0 and 0 < κ2 < 4ν. Then, there exists a unique (T, u) ∈ X solution to (3.10). In
addition, the solution (T, u) satisfies the estimate

‖(T, u)‖X ≤ 2

(
1

αA
+ n1/2|Ω|1/2

(
1

β
+ CA

βαA

)) (
(4ν2 + κ2

1 )1/2‖f‖0,Ω + 2ν‖g‖−1/2,00,ΓN

)
. (3.31)

Proof. First, let us observe that assumption (3.30) ensures that Lemma 3.3 holds true (see assumption
(3.25)). To prove the well-posedness of (3.10), in what follows, we make use of the classical Banach’s
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fixed-point theorem and prove equivalently that the mapping J has a unique fixed point in K. To do that
we let z1, z2 and u1, u2 ∈ K, such that u1 = J (z1) and u2 = J (z2). From the definition of J , it follows
that

A((Ti, ui), (S, v)) + Czi((Ti, ui), (S, v)) + B
(
(S, v), μi

)= F(S, v) ∀ (S, v) ∈ X0,

B((Ti, ui), η) = 0 ∀ η ∈ R,
(3.32)

for i = 1, 2, where Ti ∈ H0(div ; Ω) and μi ∈ R are the elements that together with ui constitute the
unique solution of (3.16) with zi. Then, by subtracting equations (3.32) with i = 1, 2, choosing the test
function

(
(S, v), η

) = ((T1 −T2, u1 −u2), μ1 −μ2

) ∈ X0 ×R, applying the ellipticity of A(·, ·) + Cz2(·, ·)
on X0 (cf. (3.28)), the continuity of Cz1−z2 (cf. (3.21)) and the fact that ‖(T1, u1)‖X ≤ 2

αA
‖F|X0‖X′

0
(cf.

(3.29)), we proceed similarly as in the proof of Theorem 3.4 in Camaño et al. (2017) to obtain

‖u1 − u2‖1,Ω ≤ ‖(T1 − T2, u1 − u2)‖X ≤ 2CC

αA
‖(T1, u1)‖X‖z1 − z2‖1,Ω ≤ 4CC‖F|X0‖X′

0

α2
A

‖z1 − z2‖1,Ω .

(3.33)

Hence, employing (3.22) and assumption (3.30), from (3.33) we readily obtain that J is a contraction
mapping. In this way, by applying the Banach’s fixed-point theorem, we obtain that there exists a unique
u ∈ K such that J (u) = u, or equivalently, there exists a unique (T, u) ∈ X solution to (3.10).

Now, to deduce estimate (3.31), we consider the decomposition T = T0 + μI and recall that
((T0, u), μ) ∈ X0 × R is the unique solution of (3.12) (see (3.17)). Then, we first utilize the fact that
A(·, ·) + Cu(·, ·) is elliptic on X0, and proceed analogously as in the proof of Lemma 3.3 (see (3.29)), to
obtain

‖(T0, u)‖X ≤ 2

αA
‖F|X0‖X′

0
. (3.34)

Moreover, using (3.22) and (3.30) from (3.34), we also obtain

‖u‖1,Ω ≤ ‖(T0, u)‖X ≤ αA

2CC
. (3.35)

In turn, utilizing the inf–sup condition (3.24), the first equation of (3.12) and the continuity of F, A and
Cu, we get

β|μ| ≤ sup
(S,v)∈X0\{0}

B
(
(S, v), μ

)
‖(S, v)‖X

= sup
(S,v)∈X0\{0}

F(S, v) − A
(
(T0, u), (S, v)

)− Cu

(
(T0, u), (S, v)

)
‖(S, v)‖X

≤ ‖F|X0‖X′
0

+ CA‖(T0, u)‖X + CC‖u‖1,Ω‖(T0, u)‖X,

(3.36)

which combined with (3.34) and (3.35) yields

|μ| ≤ 1

β

(
1 + 2CA

αA
+ 2 CC‖u‖1,Ω

αA

)
‖F|X0‖X′

0
≤ 2

β

(
1 + CA

αA

)
‖F|X0‖X′

0
. (3.37)
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Therefore, recalling that ‖I‖2
div ,Ω = (n, 1)Ω = n|Ω|, from (3.34) and (3.37), we easily see that

‖(T, u)‖X ≤ ‖(T0, u)‖X + ‖(μI, 0)‖X ≤ 2

(
1

αA
+ n1/2|Ω|1/2

(
1

β
+ CA

βαA

))
‖F|X0‖X′

0
,

which, together with (3.22), implies (3.31). �

4. The Galerkin scheme

Most results in this section are simply inherited (or can be readily deduced) from their continuous
counterpart. Details will be therefore omitted whenever appropriate.

4.1 Discrete problem

We start by introducing the generic finite-dimensional subspaces

Hh(div ; Ω) ⊆ H(div ; Ω), H1
h,D(Ω) ⊆ H1

ΓD
(Ω). (4.1)

Then defining

Hh := {Sh ∈ H(div ; Ω) : ctSh ∈ Hh(div ; Ω) ∀ c ∈ R
n
} ⊆ H(div ; Ω),

H1
h,D := [H1

h,D(Ω)]n ⊆ H1
ΓD

(Ω),

Xh := Hh × H1
h,D ⊆ X,

(4.2)

our Galerkin scheme reads: Find (Th, uh) ∈ Xh, such that

A
(
(Th, uh), (Sh, vh)

) + Cuh

(
(Th, uh), (Sh, vh)

) = F(Sh, vh) ∀ (Sh, vh) ∈ Xh, (4.3)

with A, C and F defined in (3.8) and (3.9).
In the subsequent sections, we prove that under suitable assumptions on the finite-dimensional spaces

Hh(div ; Ω) and H1
h,D(Ω), problem (4.3) is well-posed. Our approach basically consists of adapting to the

present discrete case the arguments employed in the analysis of the continuous problem, mainly those
from the proofs of Lemmas 3.1, 3.2 and 3.3 and Theorem 3.4.

We begin the derivation of the aforementioned assumptions by observing that to perform the decom-
position (1.1), we need to eliminate multiples of the identity matrix from Hh. This request is certainly
satisfied if we assume that:

(H.0) P0(Ω) ⊆ Hh(div ; Ω).

In particular, it follows that I ∈ Hh for all h, and hence, there holds the decomposition:

Hh = Hh,0 ⊕ P0(Ω) I with Hh,0 := Hh ∩ H0(div ; Ω), (4.4)

and, analogously to the continuous case, problem (4.3) can be rewritten equivalently as: Find(
(Th,0, uh), μh

) ∈ Xh,0 × R, such that

A
(
(Th,0, uh), (Sh, vh)

) + Cuh

(
(Th,0, uh), (Sh, vh)

) + B
(
(Sh, vh), μh

)= F(Sh, vh),

B
(
(Th,0, uh), ηh

) = 0,
(4.5)
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for all ((Sh, vh), ηh) ∈ Xh,0 × R, where

Xh,0 := Hh,0 × H1
h,D,

and B is the bilinear form defined in (3.13).
Next, following the same arguments utilized in the proof of Lemma 3.2, we deduce that B satisfies

the discrete version of (3.24), namely,

sup
(Sh ,vh)∈Xh,0\{0}

B((Sh, vh), ηh)

‖(Sh, vh)‖X
≥ β̃|ηh| ∀ ηh ∈ R, (4.6)

with β̃ > 0, independent of the discretization parameter h, if and only if, there holds:

(H.1) There exists v̂0 ∈ H1
ΓD

(Ω), such that

v̂0 ∈ H1
h,D ∀ h > 0 and

〈
v̂0 · n, 1

〉
ΓN

�= 0. (4.7)

In fact, utilizing (H.1), it is clear that

sup
(Sh ,vh)∈Xh,0\{0}

B((Sh, vh), ηh)

‖(Sh, vh)‖X
≥ B((0, v̂0), ηh)

‖v̂0‖1,Ω
= β̃|ηh|,

with β̃ = 〈v̂0·n,1〉
‖v̂0‖1,Ω

independent of h.

We now adapt the fixed-point strategy from the continuous case to prove the well-posedness of (4.3).

4.2 Fixed-point strategy and well-posedness analysis

We begin by observing that, since Hh and H1
h,D are subspaces of H(div ; Ω) and H1

ΓD
(Ω), respectively,

the estimates (3.20), (3.21) and (3.22) are inherited, as well as the ellipticity of A on Xh,0.
Analogously to the continuous case, let us introduce the finite-dimensional bounded set

Kh :=
{

vh ∈ H1
h,D : ‖vh‖1,Ω ≤

2‖F|Xh,0‖X′
h,0

αA

}
,

where αA > 0 is the constant satisfying (3.23), and define the discrete version of J (cf. (3.15)):

Jh : Kh → Kh, wh → Jh(wh) = uh, (4.8)

with uh ∈ H1
h,D being the second component of ((Th,0, uh), μh) ∈ Xh,0 × R, solution to

A
(
(Th,0, uh), (Sh, vh)

) + Cwh

(
(Th,0, uh), (Sh, vh)

) + B
(
(Sh, vh), μh

)= F(Sh, vh),

B
(
(Th,0, uh), ηh

) = 0,
(4.9)

for all
(
(Sh, vh), ηh

) ∈ Xh,0 × R. Similar to the continuous case, the following equivalences hold:

J (uh) = uh ⇔ ((Th,0, uh), μh) ∈ Xh,0×R satisfies (4.5) ⇔ (Th,0+μhI, uh) ∈ Xh satisfies (4.3). (4.10)
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Lemma 4.1 Assume that (H.0) and (H.1) hold and that κ1 > 0 and 0 < κ2 < 4ν. Assume further that
the external forces f and g satisfy

(4ν2 + κ2
1 )1/2‖f‖0,Ω + 2ν‖g‖−1/2,00,ΓN ≤ α2

A

4CC
, (4.11)

with αA and CC being the constants in (3.23) and (3.21), respectively. Then, given wh ∈ Kh, there exists
a unique uh ∈ Kh, such that J (wh) = uh.

Proof. Similar to the proof of Lemma 3.3, it is easy to see that, under hypothesis (4.11), for all wh ∈ Kh,
the bilinear form A(·, ·) + Cwh(·, ·) is elliptic on Xh,0, that is,

A((Sh, vh), (Sh, vh)) + Cwh((Sh, vh), (Sh, vh)) ≥ αA

2
‖(Sh, vh)‖2

X (4.12)

for all (Sh, vh) ∈ Xh,0. Then, recalling that B satisfies (4.6), the result is a direct consequence of the
classical Babuška–Brezzi theory. �

We are now in a position of establishing the well-posedness of problem (4.3).

Theorem 4.2 Assume that (H.0) and (H.1) hold and that κ1 > 0 and 0 < κ2 < 4ν. Assume further that
the external forces f and g satisfy

(4ν2 + κ2
1 )1/2‖f‖0,Ω + 2ν‖g‖−1/2,00,ΓN <

α2
A

4CC
, (4.13)

with αA and CC being the constants in (3.23) and (3.21), respectively. Then, there exists a unique (Th, uh) ∈
Xh solution to (4.3). In addition, the solution (Th, uh) satisfies the estimate

‖(Th, uh)‖X ≤ 2

(
1

αA
+ n1/2|Ω|1/2

(
1

β̃
+ CA

β̃αA

)) (
(4ν2 + κ2

1 )1/2‖f‖0,Ω + 2ν‖g‖−1/2,00,ΓN

)
. (4.14)

Proof. According to (4.10), it is clear that for proving the existence and uniqueness of solution of problem
(4.3), it suffices to prove that Jh possesses a unique fixed point in Kh. To do that, we proceed analogously
to the proof of Theorem 3.4, that is, we make use of hypothesis (4.13) to deduce that Jh is a contraction
mapping in Kh and apply the well-known Banach’s fixed-point theorem to complete the result. Since
that the deduction is straightforward, we omit further details. In turn, by applying the ellipticity of
A(·, ·) + Cwh(·, ·), with wh = uh, the inf–sup condition (4.6) and proceeding exactly as in the proof
Theorem 3.4, we can obtain

‖uh‖1,Ω ≤ ‖(Th,0, uh)‖X ≤ 2

αA
‖F|Xh,0‖X′

h,0
and |μh| ≤ 2

β

(
1 + CA

αA

)
‖F|Xh,0‖X′

h,0
, (4.15)

which together with the fact that

‖F|Xh,0‖X′
h,0

≤ (4 ν2 + κ2
1 )1/2‖f‖0,Ω + 2 ν ‖g‖−1/2,00,ΓN , (4.16)

yield (4.14). �
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4.3 Céa’s estimate

Theorem 4.3 Assume that hypotheses of Theorem 4.2 hold. Let (T, u) ∈ X and (Th, uh) ∈ Xh be the
unique solutions of the continuous and discrete problems (3.10) and (4.3). Then, there exists Ccea > 0,
independent of h, such that

‖(T, u) − (Th, uh)‖X ≤ Ccea inf
(Sh ,vh)∈Xh

‖(T, u) − (Sh, vh)‖X. (4.17)

Proof. Let, μ ∈ R, T0 ∈ H0(div ; Ω) and μh ∈ R, Th,0 ∈ Hh,0, such that T = T0+μI and Th = Th,0+μhI,
respectively, and define

φ = (T0, u) ∈ X0, φh = (Th,0, uh) ∈ Xh,0, eφ = φ − φh and eμ = μ − μh.

According to (4.4), in what follows, we equivalently prove that there exists C > 0, independent of h,
such that

‖eφ‖X + |eμ| ≤ C
{‖φ − ψh‖X + |μ − ηh|

} ∀ψh ∈ Xh,0, ∀ ηh ∈ R. (4.18)

To do that we let,

Kerh(B) := {ψh := (Sh, vh) ∈ Xh,0 : B(ψh, ηh) = 0 ∀ ηh ∈ R},

and recall that the following identity holds

inf
ψh∈Kerh(B)

‖φ − ψh‖X ≤ C‖φ − ψh‖X ∀ψh ∈ Xh,0, (4.19)

with C > 0 independent of h (Gatica, 2014, estimate (2.89)).
First, given arbitrary ψ̂h := (Ŝh, v̂h) ∈ Kerh(B) and η̂h ∈ R, let us decompose eφ and eμ into

eφ = ξφ + χφ with ξφ := φ − ψ̂h, χφ := ψ̂h − φh,

eμ = ξμ + χμ with ξμ := μ − η̂h, χμ := η̂h − μh.
(4.20)

In turn, recalling that (φ, μ) ∈ X0 × R and (φh, μh) ∈ Xh,0 × R are solutions of (3.12) and (4.5),
respectively (cf. (3.17), (4.10)), by subtracting the first equations of (3.12) and (4.5), we readily get

A(eφ ,ψh) + [
Cu(φ,ψh) − Cuh

(
φh,ψh

)]+ B(ψh, eμ) = 0 ∀ψh = (Sh, vh) ∈ Xh,0, (4.21)

which, after straightforward manipulations, yields

A(eφ ,ψh) + Cuh(eφ ,ψh) + Cu−uh(φ,ψh) + B(ψh, eμ) = 0 ∀ψh = (Sh, vh) ∈ Xh,0. (4.22)

In particular, taking ψh = χφ ∈ Kerh(B) in (4.22) and using (4.20), it follows that

A(χφ ,χφ) + Cuh(χφ ,χφ) = −A(ξφ ,χφ) − Cu−uh(φ,χφ) − Cuh(ξφ ,χφ),
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and then, using the ellipticity of A(·, ·) + Cuh(·, ·) on Xh,0 (cf. (4.12)), and employing the continuity
of A and Cw, with w = u − uh, and w = uh (cf. (3.20) and (3.21)) and the fact that ‖u − uh‖1,Ω ≤
‖ξφ‖X + ‖χφ‖X, we obtain

αA

2
‖χφ‖X ≤

(
CA + CC‖uh‖1,Ω + CC‖φ‖X

)
‖ξφ‖X + CC‖φ‖X‖χφ‖X,

which, together with (3.34) and (4.15), implies(αA

2
− CC‖F|X0‖X′

0

)
‖χφ‖X ≤

(
CA + 2CC

αA
‖F|Xh,0‖X′

h,0
+ 2CC

αA
‖F|X0‖X′

0

)
‖ξφ‖X. (4.23)

The latter, along with assumption (4.13), estimates (3.22), (4.16) and the triangle inequality, implies that
there exists C1 > 0, independent of h, such that

‖eφ‖X ≤ ‖ξφ‖X + ‖χφ‖X ≤ C1‖ξφ‖X. (4.24)

On the other hand, using the inf–sup condition (4.6) and (4.22), it is easy to see that

β̃|χμ| ≤ sup
ψh∈Xh,0\{0}

B(ψh, χμ)

‖ψh‖X
= sup

ψh∈Xh,0\{0}

−A(eφ ,ψh) − Cuh(eφ ,ψh) − Cu−uh(φ,ψh) − B(ψh, ξμ)

‖ψh‖X
,

which combined with the continuity of A, B and Cw, with w = uh and w = u − uh, and estimates (3.34),
(4.15) and (4.24) yield

|χμ| ≤ C{‖ξφ‖X + |ξμ|},

which clearly implies

|eμ| ≤ C2{‖ξφ‖X + |ξμ|}. (4.25)

Therefore, from (4.19), (4.24), (4.25) and the fact that ψ̂h ∈ Kerh(B) and η̂h ∈ R are arbitrary, we easily
obtain (4.18) and conclude the proof. �

We conclude this section by observing that, provided the solution (Th, uh) ∈ Xh of problem (4.3), we
can approximate the pressure p and the shear stress σ by using the following post-processing formulas:

ph = −1

n
(tr (Th) + tr (uh ⊗ uh)) and σ h = Th + uh ⊗ uh. (4.26)

The following corollary establishes the approximation result for this post-processing procedure.

Corollary 4.4 Assume that the hypotheses of Theorem 4.2 hold true. Let (T, u) ∈ X and (Th, uh) ∈ Xh

be the unique solutions of the continuous and discrete problems (3.10) and (4.3), respectively. Let ph and
σ h be given by (4.26). Then there exists Ĉ > 0, independent of h, such that

‖p − ph‖0,Ω + ‖σ − σ h‖0,Ω ≤ Ĉ inf
(Sh ,vh)∈Xh

‖(T, u) − (Sh, vh)‖X. (4.27)
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Proof. Using estimates (3.35), (4.15) and the fact that H1 is continuously embedded into L4, it is not
difficult to see that

‖u ⊗ u − uh ⊗ uh‖0,Ω ≤ ‖(u − uh) ⊗ u‖0,Ω + ‖uh ⊗ (u − uh)‖0,Ω

≤ C
{‖(u − uh)‖1,Ω‖u‖1,Ω + ‖(u − uh)‖1,Ω‖uh‖1,Ω

}
≤ Ĉ ‖(u − uh)‖1,Ω .

(4.28)

Then, the result follows from (4.17), (4.28) and equations (2.3), (2.4) and (4.26). �

4.4 A particular choice of discrete spaces

Let Th be a regular family of triangulations of the polyhedral region Ω by triangles K in R
2 or tetrahedra

in R
3 of diameter hK such that Ω = ∪{K : K ∈ Th} and define h := max{hK : K ∈ Th}. For each integer

k ≥ 0 and for each K ∈ Th, we define the local Raviart–Thomas space of order k (see, for instance, Brezzi
& Fortin, 1991):

RTk(K) := Pk(K) ⊕ Pk(K)x,

where x := (x1, . . . , xn)
t is a generic vector of R

n. Then, we specify the discrete spaces in (4.1) by:

Hh(div ; Ω) := {s = (s1, . . . , sn) ∈ H(div ; Ω) : s|K ∈ RTk(K), ∀ K ∈ Th},
H1

h,D(Ω) := {v ∈ C(Ω̄) : v|K ∈ Pk+1(K), ∀ K ∈ Th and v|ΓD = 0
}
.

(4.29)

It is not difficult to see that these spaces satisfy hypotheses (H.0) and (H.1) (see Section 4.1). In particular,
(H.1) is easy to verify if the sequence of subspaces is nested or if we are able to find a coarser space
where (H.1) holds. Then, v̂0 can be constructed exactly as explained at the end of the proof of Lemma
3.2. In turn, it is well known that these subspaces satisfy the following approximation properties (see,
e.g., Ciarlet, 1978; Gatica, 2014):

For each r > 0 and for each s = (s1, . . . , sn) ∈ Hr(Ω), with div s ∈ Hr(Ω), there exists
sh ∈ Hh(div ; Ω), such that

‖s − sh‖div ,Ω ≤ Chmin{r,k+1} {‖s‖r,Ω + ‖div s‖r,Ω

}
. (4.30)

For each r > 0 and for each v ∈ Hr+1(Ω) ∩ H1
ΓD

(Ω), there exists vh ∈ H1
h,D(Ω) such that

‖v − vh‖1,Ω ≤ Chmin{r,k+1}‖v‖r+1,Ω . (4.31)

The theoretical rate of convergence for (4.3) with spaces as in (4.29) is stated in the following result.

Theorem 4.5 Let Xh = Hh ×H1
h,D defined in terms of the spaces (4.29). Let (T, u) ∈ X and (Th, uh) ∈ Xh

be the unique solutions of the continuous and discrete problems (3.10) and (4.3), respectively. In addition
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Table 1 Local degrees of freedom for the lowest order
method (k = 0)

Bernardi–Raugel MINI-element RT0 − P1

Local Dof 10 11 12

to the hypotheses of Theorem 4.2, let us assume that T ∈ H
r(Ω), div T ∈ Hr(Ω), and u ∈ Hr+1(Ω), for

some r > 0. Then, there exists Crate > 0, independent of h, such that

‖(T, u) − (Th, uh)‖X ≤ Crateh
min{r,k+1} {‖T‖r,Ω + ‖div T‖r,Ω + ‖u‖r+1,Ω

}
. (4.32)

Proof. The result is a straightforward application of Theorem 4.3 and properties (4.30) and (4.31). �

We now provide the rate of convergence for the post-processing introduced in (4.26).

Corollary 4.6 There exists C̃ > 0, independent of h, such that

‖p − ph‖0,Ω + ‖σ − σ h‖0,Ω + ≤ C̃hmin{r,k+1}
{
‖T‖r,Ω + ‖div T‖r,Ω + ‖u‖r+1,Ω

}
. (4.33)

Proof. The result is a direct application of Theorem 4.5 and Corollary 4.4. �

Remark 4.7 In Table 1, we compare the local degrees of freedom (Dof) of our method, considering
k = 0 and n = 2, with the corresponding local Dof of the velocity–pressure formulation discretized by
the Bernardi–Raugel element and the MINI-element (see Chapter III in Girault & Raviart, 1986). We
observe there that, although our formulation possesses considerably more unknowns (six unknowns
in two-dimension) than the velocity–pressure formulation (three unknowns in two dimensions), the
computational cost is not considerably increased.

5. A posteriori error analysis

For each K ∈ Th, we let E(K) be the set of edges (faces) of K and we denote by Eh the set of all edges
(faces) of Th, subdivided as follows:

Eh = Eh(Ω) ∪ Eh(ΓD) ∪ Eh(ΓN),

where Eh(Ω) := { e ∈ Eh : e ⊆ Ω }, Eh(ΓD) := { e ∈ Eh : e ⊆ ΓD } and Eh(ΓN) := { e ∈ Eh : e ⊆
ΓN }. In what follows, he stands for the diameter of a given edge (face) e ∈ Eh. Also, we fix a unit normal
vector ne to the edge (face) e (its particular orientation is not relevant). However, when no confusion
arises, we will simply write n instead of ne.

Now, let (T, u) ∈ X and (Th, uh) ∈ Xh be the unique solutions of the continuous and discrete problems
(3.10) and (4.3), respectively. Then, we introduce the global a posteriori error estimator

Θ :=
⎧⎨⎩∑

K∈Th

Θ2
K

⎫⎬⎭
1/2

, (5.1)
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defined locally (for each K ∈ Th) as

Θ2
K := ‖f + div Th‖2

0,K + ‖Td
h − 2ν e(uh) + (uh ⊗ uh)

d‖2
0,K +

∑
e∈E(K)∩Eh(ΓN )

he ‖g − Thn − (uh ⊗ uh)n‖2
0,e.

(5.2)

5.1 Reliability of the a posteriori error estimator

The main result of this section is stated as follows.

Theorem 5.1 Let (T, u) ∈ X and (Th, uh) ∈ Xh be the unique solutions of the continuous and discrete
problems (3.10) and (4.3), respectively. Assume that g ∈ L2(ΓN) and that

(4ν2 + κ2
1 )1/2‖f‖0,Ω + 2ν‖g‖−1/2,00,ΓN ≤ Cglob

4CC

(
1

αA
+ n1/2|Ω|1/2

(
1

β̃
+ CA

β̃αA

))−1

(5.3)

with Cglob being the positive constant in (5.6) below. Then, there exists Crel > 0, independent of h, such
that

‖(T − Th, u − uh)‖X ≤ CrelΘ . (5.4)

We begin the derivation of (5.4) by observing that, since (A+Cu)(·, ·) is elliptic on X0 and B satisfies
the inf–sup condition (3.24), then the following global inf–sup condition holds (Ern & Guermond, 2004,
Proposition 2.36)

Cglob(‖(R, z)‖X + |λ|) ≤ sup
((S,v),η)∈(X0×R)\{0}

(A + Cu)((R, z), (S, v)) + B((R, z), η) + B((S, v), λ)

‖(S, v)‖X + |η| ,

for all ((R, z), λ) ∈ X0 × R, with

Cglob := αAβ2

(αA + β + CC + CA) (1 + β + CC + CA)
, (5.5)

which according to (1.1), implies

Cglob‖(R, z)‖X ≤ sup
(S,v)∈X\{0}

(A + Cu)((R, z), (S, v))

‖(S, v)‖X
∀ (R, z) ∈ X. (5.6)

Remark 5.2 Recalling that CA = 4 max{1, κ1, 2ν, 2νκ2, κ2}, CC = ‖i‖2(1 + κ2
2 )1/2 + 2 ν‖iΓ ‖2‖γ0‖,

β = 2ν〈v0·n,1〉
‖v0‖1,Ω

and αA = 1
2 min

{
min{1, κ1}, κ1, κ2 (4ν − κ2)CK

}
, taking κ1 = κ2 = 2ν, for sufficiently

small ν we observe that αA ≈ ν2, CC ≈ 1 + ν, β ≈ ν, CA can be seen as a constant independent of ν,
and then

Cglob ≈ ν4

(ν2 + ν + 1)(1 + ν)
.
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Therefore, since Crel ≈ C−1
glob, the reliability of the estimator Θ might be affected if ν is close to 0 (see

(5.11) below).

On the other hand, thanks to (3.10) and additional algebraic manipulations, we easily find that

(A+Cu)((T−Th, u−uh), (S, v)) = F(S, v)−(A+Cuh)((Th, uh), (S, v))+Cuh−u((Th, uh), (S, v)). (5.7)

In addition, we recall from (3.21) that

|Cuh−u((Th, uh), (S, v))| ≤ CC‖uh − u‖1,Ω‖(Th, uh)‖X‖(S, v)‖X,

which, thanks to (4.14) and (5.3), and the fact that ‖uh − u‖1,Ω ≤ ‖(T − Th, u − uh)‖X, yields

|Cuh−u((Th, uh), (S, v))| ≤ Cglob

2
‖(T − Th, u − uh)‖X‖(S, v)‖X.

Thus, taking (R, z) = (T − Th, u − uh) in (5.6) and using (5.7) and the previous inequality, we arrive at

Cglob

2
‖(T − Th, u − uh)‖X ≤ sup

(S,v)∈X\{0}

|R(S, v)|
‖(S, v)‖X

, (5.8)

where R : X → R is the residual functional defined by

R(S, v) := F(S, v) − (A + Cuh)((Th, uh), (S, v)) ∀ (S, v) ∈ X.

More precisely, according to (2.6), (3.1), (3.5) and (4.3) and the definitions of A, B, Cuh and F (cf. (3.8)
and (3.9)), we find that for any (S, v) ∈ X, there holds

R(S, v) = R1(S) + R2(v), (5.9)

where

R1(S) := −κ1 (f +div Th, div S)Ω − (Td
h +2νω(uh)+ (uh ⊗uh)

d, S)Ω −2ν(uh, div S)Ω +2ν〈Sn, uh〉ΓN ,

and

R2(v) := 2ν (f + div Th, v)Ω + κ2 (Td
h − 2ν e(uh) + (uh ⊗ uh)

d, e(v))Ω

+ 2ν (Th,ω(v))Ω + 2ν 〈g − Thn − (uh ⊗ uh)n, v〉ΓN
.

(5.10)

Hence, the supremum in (5.8) can be bounded in terms of R1 and R2, which yields

Cglob

2
‖(T − Th, u − uh)‖X ≤ ‖R1‖H(div ;Ω)′ + ‖R2‖H1

ΓD
(Ω)′ . (5.11)

Throughout the rest of this section we provide suitable upper bounds for each one of the terms on the
right-hand side of (5.11). We begin with the upper bound of R1.
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Lemma 5.3 There holds

‖R1‖H(div ;Ω)′ ≤ {κ2
1 ‖f + div Th‖2

0,Ω + ‖Td
h − 2ν e(uh) + (uh ⊗ uh)

d‖2
0,Ω

}1/2

=
⎧⎨⎩∑

K∈Th

κ2
1 ‖f + div Th‖2

0,K + ‖Td
h − 2ν e(uh) + (uh ⊗ uh)

d‖2
0,K

⎫⎬⎭
1/2

.
(5.12)

Proof. Similarly, as in Gatica et al. (2016, Section 3.3), we integrate by parts (div S, uh)Ω and utilize the
fact that e(uh) = ∇uh − ω(uh) to observe that R1 can be rewritten as follows:

R1(S) = −κ1 (f + div Th, div S)Ω − (Td
h − 2ν e(uh) + (uh ⊗ uh)

d, S)Ω . (5.13)

Then (5.12) follows straightforwardly from (5.13) and the Cauchy–Schwarz inequality. �

To derive the estimate for R2, we need to introduce the well-known Clément operator Ih : H1(Ω) →
Yh := {v ∈ C(Ω̄) : v|K ∈ P1(K), ∀ K ∈ Th}, which approximate optimally nonsmooth functions by
continuous piecewise linear functions. Of this operator, we will only use the following approximation
properties (see Clément, 1975 for details): there exist constants c1, c2 > 0, independent of h, such that
for all v ∈ H1(Ω),

‖v − Ihv‖0,K ≤ c1hK‖v‖1,Δ(K) ∀ K ∈ Th, (5.14)

‖v − Ihv‖0,e ≤ c h1/2
e ‖v‖1,Δ(e) ∀ e ∈ Eh, (5.15)

where

Δ(K) := ∪{K ′ ∈ Th : K ′ ∩ K �= ∅} and Δ(e) := ∪{K ′ ∈ Th : K ′ ∩ e �= ∅}.
The following lemma provides the upper bound for R2.

Lemma 5.4 There exists C > 0, independent of h, such that

‖R2‖H1
ΓD

(Ω)′ ≤ C

⎧⎨⎩∑
K∈Th

Θ̂2
K

⎫⎬⎭
1/2

, (5.16)

where, for each K ∈ Th:

Θ̂2
K := h2

K‖f +div Th‖2
0,K +‖Td

h −2ν e(uh)+ (uh ⊗uh)
d‖2

0,K +
∑

e∈E(K)∩Eh(ΓN )

he ‖g − Thn − (uh ⊗ uh)n‖2
0,e.

Proof. Given v ∈ H1
ΓD

(Ω), we set v̂h = Ih(v) ∈ H1
h,D, with Ih being the vector version of Ih, which is

defined componentwise by Ih, and observe from (4.3) with Sh = 0 and the fact that 1
2 (as(Th), curl (v̂h))Ω =

(Th,ω(v̂h))Ω , that

2ν
〈
g − Thn − (uh ⊗ uh)n, v̂h

〉
ΓN

= −2ν (f + div Th, v̂h)Ω − 2ν (Th,ω(v̂h))Ω

− κ2 (Td
h − 2ν e(uh) + (uh ⊗ uh)

d, e(v̂h))Ω .
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Then, combining the latter with the definition of R2 (cf. (5.10)), and using the fact that (Th,ω(z))Ω =
(Td

h ,ω(z))Ω and (− 2ν e(uh) + (uh ⊗uh)
d,ω(z))Ω = 0 for any z, we observe that R2(v) can be expressed

as follows:

R2(v) = 2ν (f + div Th , v − v̂h)Ω + κ2 (Td
h − 2ν e(uh) + (uh ⊗ uh)

d , e(v − v̂h))Ω

+ 2ν(Td
h − 2νe(uh) + (uh ⊗ uh)

d,ω(v − v̂h))Ω + 2ν
〈
g − Thn − (uh ⊗ uh)n, v − v̂h

〉
ΓN

.

(5.17)

Therefore, noticing that the boundedness of Ih (Ern & Guermond, 2004, Lemma 1.127, p. 69) implies

‖e(v − v̂h)‖0,Ω ≤ C‖v‖1,Ω and ‖ω(v − v̂h)‖0,Ω ≤ C‖v‖1,Ω ,

using the Cauchy–Schwarz inequality, estimates (5.14) and (5.15) (for the first and last terms in (5.17)),
the fact that the numbers of triangles (tetrahedra) in Δ(K) and Δ(e) are bounded and recalling that
g ∈ L2(ΓN), from (5.17), we obtain (5.16), which concludes the proof. �

We finally observe that reliability (cf. (5.4)) is a direct consequence of Lemmas 5.3 and 5.4.

5.2 Efficiency of the a posteriori error estimator

Theorem 5.5 Let (T, u) ∈ X and (Th, u) ∈ Xh be the unique solutions of the continuous and discrete
problems (3.10) and (4.3), respectively, and assume that g is piecewise polynomial. Then, there exists
Ceff > 0, independent of h, such that

CeffΘ ≤ ‖(T − Th, u − uh)‖X. (5.18)

To prove Theorem 5.5, in what follows, we make extensive use of the original system of equations
(2.8), which is recovered from the augmented continuous formulation (3.10) by choosing suitable test
functions and integrating by parts backwardly the corresponding equations. We begin with the estimates
of the zero-order terms appearing in the definition of ΘK (cf. (5.2)).

Lemma 5.6 There hold

‖f + div Th‖0,K ≤ ‖T − Th‖div ,K ∀ K ∈ Th

and ∑
K∈Th

‖Td
h − 2ν e(uh) + (uh ⊗ uh)

d‖2
0,K ≤ C1

{‖T − Th‖2
div ,Ω + ‖u − uh‖2

1,Ω

}
,

where C1 > 0 is independent of h.

Proof. For the first term, it suffices to recall that div T = −f in Ω , whereas for the second one we use
the relation Td − 2ν e(u) + (u ⊗ u)d = 0 in Ω , the Cauchy–Schwarz inequality and estimates (3.19)
and (4.28). �

AUGMENTED MIXED-FEM FOR NAVIER–STOKES WITH MIXED BC 1475

Downloaded from https://academic.oup.com/imajna/article-abstract/38/3/1452/4082917
by guest
on 17 July 2018



To derive the estimate for the third term appearing in Θ (cf. (5.2)), in what follows, we make use of
an inverse inequality and the localization technique based on edge-bubble or face-bubble functions. To
this end, we now introduce further notations and preliminary results. Given K ∈ Th and e ∈ E(K), we
let φe be the usual edge-bubble or face-bubble function (Verfürth, 1996), which satisfies φe|K ∈ P2(K),
supp φe ⊆ ωe := ∪{K ′ ∈ Th : e ∈ E(K ′)}, φe = 0 on ∂K \ e and 0 ≤ φe ≤ 1 in ωe. We also recall
from Verfürth (1994) that, given k ∈ N ∪ {0}, there exists an extension operator L : C(e) → C(K)

satisfying L(p) ∈ Pk(K) and L(p)|e = p ∀ p ∈ Pk(e). A corresponding vector version of L, that is the
componentwise application of L, is denoted by L. Additional properties of φe and L are collected in the
following lemma.

Lemma 5.7 Given k ∈ N∪{0}, there exist positive constant c1 and c2, depending only on k and the shape
regularity of the triangulations (minimum angle condition), such that for each K ∈ Th and e ∈ E(K),
there hold

‖q‖2
0,e ≤ c1‖φ1/2

e q‖2
0,e ∀ q ∈ Pk(e), (5.19)

‖φeL(q)‖2
0,K ≤ ‖φ1/2

e L(q)‖2
0,K ≤ c2he‖q‖2

0,e ∀ q ∈ Pk(e). (5.20)

Proof. See Lemma 1.3 in Verfürth (1994). �

The aforementioned inverse estimate to be utilized next is established now. For its proof, we refer the
reader to Ciarlet (1978, Theorem 3.2.6).

Lemma 5.8 Let k, l, m ∈ N ∪ {0} such that l ≤ m. Then, there exists c > 0, depending only on k, l m
and the shape regularity of the triangulations, such that for each K ∈ Th there holds

|q|m,K ≤ chl−m
T |q|l,K ∀ q ∈ Pk(K). (5.21)

Now, we provide the final estimate.

Lemma 5.9 Assume that g is piecewise polynomial. Then, there exists C2 > 0, independent of h, such
that

∑
e∈E(ΓN )

he ‖g − Thn − (uh ⊗ uh)n‖2
0,e ≤ C2

⎧⎨⎩ ∑
e∈E(ΓN )

‖T − Th‖2
div ,Ke

+ h ‖u − uh‖2
1,Ω

⎫⎬⎭ , (5.22)

for all e ∈ Eh(ΓN), where Ke is the triangle of Th having e as an edge.

Proof. Given e ∈ E(ΓN), we let Ke be the element of Th having e as an edge or face, and define
ve := g − Thn − (uh ⊗uh)n on e. Then, we proceed similar to the proof of Gatica et al. (2011b, Lemma
3.16), that is, we apply (5.19), recall that φe = 0 on ∂Ke \ e, extend φe L(ve) by zero in Ω \ Ke so that the
resulting function belongs to H1(Ω), use that g = Tn + (u ⊗ u)n on ΓN , integrate by parts in Ω and
make use of (5.20) and (5.21) to arrive at

‖ve‖0,e ≤ Ch1/2
e

{
h−1

Te
‖T − Th‖0,Ke + ‖div (T − Th)‖0,Ke

} + C‖(u ⊗ u)n − (uh ⊗ uh)n‖0,e, (5.23)
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which implies

he ‖ve‖2
0,e ≤ C

{‖T − Th‖2
div ,Ke

+ he ‖(u ⊗ u)n − (uh ⊗ uh)n‖2
0,e

}
. (5.24)

In turn, using estimates (3.3), (3.35) and (4.15) and the fact that H1/2(Γ ) is continuously embedded into
L4(Γ ), and proceeding similarly as in (4.28), we easily obtain that∑

e∈E(ΓN )

‖(u ⊗ u)n − (uh ⊗ uh)n‖2
0,e = ‖(u ⊗ u)n − (uh ⊗ uh)n‖2

0,ΓN
≤ C‖u − uh‖2

1,Ω .

From this estimate, (5.24) and the fact that he ≤ h, we obtain (5.22), which concludes the proof. �

We conclude by observing that the efficiency of Θ follows straightforwardly from Lemmas 5.6 and 5.9.

6. Numerical results

The subsequent examples serve to test the performance of the proposed scheme, to confirm the conver-
gence rates anticipated by Theorem 4.5 and to illustrate the efficiency and reliability of the a posteriori
error estimators.
Test 1. In the first example, we consider n = 2 and manufacture the following exact solutions to (2.8)
with mixed boundary conditions, defined on the rectangular domain Ω = (0, 3/2) × (0, 1)

u =
(−2x2(x − 1)2y(y − 1)(2y − 1)

2y2(y − 1)2x(x − 1)(2x − 1)

)
, p = x3 − y4 − 1.54

4
+ 1

5
, T = 2νe(u) − u ⊗ u − pI.

These functions satisfy the analized regularity and are employed to set up the external load f , and the
nonhomogeneous boundary traction g defined on the right wall of the rectangle, which constitutes ΓN .
Notice that the exact displacements vanish on ΓD (conformed by the bottom, top, and left edges of the
domain). The fluid viscosity is taken as ν = 1 and the augmentation constants are set as κ1 = κ2 = 2ν = 2.
Following the structure of the linearization used to establish the solvability of both continuous and discrete
problems, here we employ a fixed-point algorithm, and at each Picard iteration, the linear systems are
solved with the multifrontal direct solver MUMPS. We proceed to study the accuracy of the finite element
schemes of order k ∈ {0, 1} by solving the discrete problem on a sequence of successively refined
triangulations of Ω and computing errors for stress and velocity in their natural norms. The error history
is collected in Table 2, which indicates that the method converges optimally to the exact solutions.
Accordingly, we observe effectivity indexes (defined in (6.1), below) that approach very closely the
optimal value 1. The fixed-point iterates are terminated when the residual attains a fixed tolerance of
1e−9, and the table shows that a maximum of five iterations are required. For reference, we also include
in Fig. 2 the flow patterns obtained with the lowest order method on a structured mesh with 50438
elements.

We also investigate the robustness of the formulation with respect to the viscosity value. From the
structure of the closed form solutions, we observe that both velocity and pressure do not depend on
ν. So we repeat the convergence study above concentrating on the accuracy of the stress approxi-
mation and the number of fixed-point iterations when we refine the mesh and when we decrease the
viscosity. In Table 3, we observe that smaller viscosities produce a deterioration of the convergence
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Table 2 Test 1A: Errors, convergence rates and effectivity index associated to the a posteriori error
indicator and Picard iteration count for the RTk − Pk+1 approximation of the Navier–Stokes equations
in mixed form. The error history for the post-processed pressure (projected onto the space of discontinuous
Pk+2 elements) is also displayed

Dof h e(T) rate e(u) rate e(p) rate eff(θ) Iter

k = 0

70 0.7071 1.8092 — 0.2599 — 0.4709 — 0.9736 4
126 0.5017 1.3970 0.7534 0.2258 0.4108 0.3515 0.8519 1.0000 5
330 0.2931 0.8680 0.8854 0.1546 0.7040 0.2069 0.9861 1.0207 5

1026 0.1601 0.4868 0.9569 0.0899 0.8970 0.1153 0.9673 1.0540 5
3570 0.0840 0.2577 0.9857 0.0479 0.9741 0.0608 0.9902 1.0573 5

13266 0.0430 0.1325 0.9956 0.0246 0.9957 0.0311 1.0015 1.0676 5
51090 0.0218 0.0671 0.9986 0.0124 0.9996 0.0157 1.0021 1.0677 5

200466 0.0109 0.0338 0.9995 0.0062 1.0000 0.0079 1.0012 1.0700 5

k = 1

210 0.7071 0.5802 — 0.1341 — 0.0786 — 0.9579 5
394 0.5017 0.3287 1.6555 0.0780 1.5796 0.0476 1.4608 0.9611 5

1078 0.2931 0.1236 1.8195 0.0308 1.7273 0.0185 1.7541 0.9676 5
3454 0.1601 0.0384 1.9348 0.0098 1.8819 0.0058 1.9043 0.9987 5

12238 0.0840 0.0107 1.9756 0.0028 1.9441 0.0016 1.9424 1.0107 5
45934 0.0430 0.0028 1.9900 0.0007 1.9718 0.0004 1.9620 1.0228 5

177838 0.0218 0.0007 1.9955 0.0002 1.9856 0.0001 1.9774 1.0308 5
699694 0.0109 0.0001 1.9979 0.0001 1.9926 3.0e-5 1.9876 1.0402 5

(both in terms of error decay of the stress approximation and iteration count), especially for coarser
meshes.

Test 2. For our second numerical example, we perform the classical test of flow over a backward-facing
step. The problem set up consists of a channel of a dimensional length 5 and height 1, expanding abruptly
to a height of 2. Channels shorter than usual can be easily studied since outflow conditions can be readily
incorporated with the present formulation. Recirculating flows are expected just after the step, whose
shape and size depend on the Reynolds number (in this case, Re = DU/ν = 200, where ν = 0.01 is the
kinematic viscosity, D = 2 is twice the inlet height and U = 1/2 is the mean inlet velocity). A parabolic
inflow velocity profile is imposed on the left part of the domain u = (2x2(1 − x2), 0)T , a zero stress
condition is set on the right end of the channel (corresponding to consider g = 0) and no-slip velocities
are set on the remainder of ∂Ω . After constructing a coarse unstructured triangular mesh, the problem
is solved using the proposed mixed finite element scheme, the local a posteriori error estimator (5.2) is
computed, and elements are marked for refinement according to the classical maximal error strategy. Then
a new mesh is generated and the adaptive process is repeated seven times. Numerical results obtained
on the finest level are portrayed in the first three rows of Fig. 3. Well-resolved profiles are obtained for
stresses and the velocity components with streamlines show the presence of the expected reattaching
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Table 3 Test 1B: accuracy of the stress approximation and iteration
count produced with a lowest order method, for different viscosity values

Dof e(T) rate eff(θ) Iter

ν = 0.1

70 1.3048 — 1.1975 6
126 0.9550 0.9095 1.2383 7
330 0.5630 0.9829 1.2075 7

1026 0.3082 0.9968 1.1564 7
3570 0.1617 0.9996 1.1286 6

13266 0.0829 1.0001 1.1183 7
51090 0.0419 1.0001 1.1150 7

200466 0.0223 1.0000 1.0536 7

ν = 0.01

70 4.9397 — 1.1637 11
126 4.5050 0.1394 1.4477 11
330 3.8334 0.4758 1.3101 12

1026 0.6837 2.8530 1.6875 10
3570 0.1624 2.2279 1.9585 11

13266 0.0814 1.0326 1.7924 11
51090 0.0410 1.0076 1.3378 11

200466 0.0230 1.0021 1.1391 11

ν = 0.001

70 11.704 — 1.2354 15
126 7.9093 0.4422 1.0702 17
330 5.1204 0.7083 1.0017 15

1026 1.0865 0.6041 1.2241 16
3570 0.6933 0.7980 1.8104 16

13266 0.1320 1.3775 1.8634 16
51090 0.0749 0.9607 0.8227 17

200466 0.0482 0.7691 0.9253 17

flow behaviour. The last row of the figure depicts adaptively refined meshes at intermediate steps of the
algorithm. They indicate a clear clustering of elements near the re-entrant corner of the domain, as well
as near the zones of high velocity gradients and stress concentration. Notice that the magnitude of T11

dominates all other individual fields, which results in the fact that this quantity also dictates where the
mesh refinement is applied. For this example, we used a Newton method with a fixed tolerance of 1e-7
and the linear systems were solved with the UMFPACK solver.

Test 3. Next we turn to the testing of the scheme and the adaptive algorithm in a three-dimensional scenario.
We want to compute errors produced by our mixed method, satisfying precisely the analysed boundary
conditions, but considering a nonconvex domain. We take a computational domain defined as Ω =
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Fig. 2. Test 1A: approximate numerical solutions computed with the lowest order method. Velocity components, post-processed
pressure and total stress components.

Fig. 3. Test 2: Approximate numerical solutions of the backward-facing step benchmark computed with a method of order k = 1.
Total stress components (top panels), velocity components and streamlines and post-processed pressure (middle row), and three
snapshots of meshes after one, three and five adaptive refinement steps according to the a posteriori error estimator (bottom).

(0, 1)3 \ [0.5, 1]3 and we manufacture the following exact solutions of the Navier–Stokes equations (2.8)

u =
⎛⎝ sin2(πx1) sin(πx2) sin(2πx3)

sin(πx1) sin2(πx2) sin(2πx3)

−[sin(2πx1) sin(πx2) + sin(πx1) sin(2πx2)] sin2(πx3)

⎞⎠ ,

T = 2νe(u) − u ⊗ u − 1 − x2
1 − x2

2 − x2
3

(x1 − 0.55)2 + (x2 − 0.55)2 + (x3 − 0.55)2
I,

1480 J. CAMAÑO ET AL.
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Table 4 Test 3: errors, convergence rates, effectivity indexes and fixed-point steps to converge for the
RT0 − P1 approximation of the Navier–Stokes equations in mixed form under uniform nonnested (top
rows) and adaptive (bottom rows) refinement according to the proposed a posteriori error estimator

Dof h e(T) rate e(u) rate e(p) rate eff(θ) Iter

Uniform, nonnested refinement

402 0.7071 161.4696 — 4.5341 — 161.5333 — 0.9548 3
2655 0.3536 148.2176 0.0907 3.2936 0.3387 148.2542 0.0909 0.8627 5
8400 0.2357 130.4515 0.2217 2.5345 0.4549 130.4762 0.2218 0.8820 5

19275 0.1768 128.6967 0.1092 2.0552 0.5047 128.7125 0.1090 0.8237 6
36918 0.1414 121.6633 0.2903 1.7212 0.5458 121.6754 0.2903 0.9037 5
62967 0.1179 110.4270 0.3630 1.4844 0.5544 110.4370 0.3630 0.8644 5

146835 0.0884 93.9559 0.4198 1.1782 0.5399 93.9633 0.4198 0.9734 6

Adaptive refinement

402 0.7071 161.4696 — 4.5341 — 161.5333 — 0.9548 3
1575 0.6270 106.6375 0.8559 2.0084 0.8805 106.7010 0.8557 0.9638 5
9000 0.3138 87.0510 0.9215 1.0573 0.9493 87.0769 0.9211 0.9863 5

40629 0.2789 60.8049 0.9397 0.8174 0.9531 60.8231 0.9396 0.9878 5
130518 0.2608 40.8514 0.9936 0.5849 0.9346 40.8761 0.9932 0.9904 5
413919 0.2500 17.1690 1.0186 0.3311 1.0598 17.2243 1.0149 0.9857 5

which may appear contrived, but their specific form obeys to satisfaction of homogeneous Dirichlet
conditions for the velocity on ΓD (the sides lying on the unit cube (0, 1)3), and which we also employ
to specify the forcing term and the nonhomogeneous normal stress condition on ΓN (the remainder of
the boundary). Notice that the singularity of the stress near the re-entrant quadrant at (0.55, 0.55, 0.55)

anticipates that the convergence will be affected if uniform refinement is applied. We define the total
error and the effectivity index associated to the a posteriori error estimator as

e := {[e(T)]2 + [e(u)]2
}1/2

and eff(θ) := e θ−1, (6.1)

respectively. The viscosity is taken as ν = 1 and two runs of the error analysis are performed: one with
uniform mesh refinement (however, we do not apply a nested refinement, as we only consider partitions
with 2m points on a given edge, on each refinement step m = 1, . . .), and one under adaptive mesh
refinement based on a distribution of the local error indicators so that the marked elements represent a
70% of the total error. Table 4 shows the obtained error history, indicating sub-optimal convergence rates
and oscillating effectivity indexes for the constantly refined meshes, while both the expected optimal
convergence and the steady effectivity indexes are restored under adaptive refinement.

We present in Fig. 4 examples of approximate solutions along with snapshots of a few adaptive meshes
generated following the a posteriori error estimator. Elements are concentrated near the origin and on
regions of high stress, and even with rather coarse meshes, the produced stress and velocity profiles are
well resolved.
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Fig. 4. Test 3: Approximate numerical solutions computed with a method of order k = 0. Total stress magnitude, velocity stream-
lines and post-processed pressure (top panels), velocity components (middle row) and three snapshots of meshes after one, three
and five adaptive refinement steps according to the a posteriori error estimator (bottom).
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