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Abstract

We develop and analyse an adaptive fully mixed finite element method for stationary generalized biocon-
vective flows, in which the Navier—Stokes equations with concentration-dependent viscosity are coupled to
a conservation law for swimming microorganisms. The method introduces the trace-free velocity gradient,
a symmetric pseudo-stress tensor, the concentration gradient and a semi-advective microorganism flux,
the latter also enabling a consistent treatment of Robin-type boundary conditions for the concentration.
The variational formulation is developed within a Banach space framework that includes these auxil-
iary variables, in addition to the fluid’s velocity, pressure, and the microorganisms’ concentration. The
analysis progresses by examining the fixed-point operator, which reformulates the continuous problem’s
variational formulation equivalently. The existence of solutions is obtained by using Schauder’s theorem,
while uniqueness relies on particular data constraints. In the discrete setting, we utilize Raviart-Thomas
spaces and piecewise polynomials defined on macroelement-structured meshes. The existence of solutions
in this context is established with Brouwer’s theorem, and the uniqueness is guaranteed by the Banach
fixed point theorem in the case in which the viscosity is constant. An a priori error analysis yields op-
timal convergence estimates. Additionally, we derive a residual-based a posteriori error estimator whose
reliability is demonstrated using global inf-sup conditions, appropriate Helmholtz decompositions, and
properties of Raviart-Thomas and Clément projectors. The efficiency of the estimator is ensured through
localization techniques and classical bubble functions. A set of numerical experiments in two and three
dimensions confirms the predicted convergence rates, demonstrates the effectiveness of adaptive refine-
ment for singular solutions and complex geometries with inclusions, and illustrates the robustness of
the proposed formulation when applied to a time-dependent bioconvective benchmark exhibiting plume
formation, based on an Einstein—Batchelor-type viscosity law.
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1 Introduction

Bioconvection, or biological convection, encompasses the transport of substances or particles within a bio-
logical medium, driven by the active movement of microorganisms in response to external stimuli such as
gravity, light, oxygen, nutrient or temperature gradients, or some combination of these [44]. This motility of
microorganisms generates concentration gradients, leading to directed transport of substances through the
medium. Bioconvection phenomena are observed in various natural settings, including nutrient transport in
plants, cellular transport systems, blood circulation, and aquatic environments inhabited by bacteria, algae,
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and other cellular organisms. Their active movement induces water flow and creates concentration gradients
essential for nutrient and vital substance transport. Furthermore, bioconvection has been recognized for
its practical applications in biotechnology, medicine, and engineering, such as in controlled environments
like laboratories or cell culture facilities, biocombustible production processes, and wastewater treatment,
where understanding and controlling bioconvection mechanisms can enhance efficiency and effectiveness
[6, 39, 40, 48].

Based on the principles of hydrodynamics and mass transfer, a mathematical model for describing the
interaction between the fluid flow and microorganisms in a bioconvection phenomenon (see [42] and [43])
involves the fluid velocity w, the fluid pressure p, and the concentration ¢, of microorganisms within a
culture fluid Q ¢ R? (d = 2, 3), satisfying

—2div (p(pa)e(u)) + (w-V)u+Vp= f—g[l+ypal€q, divu =0 in

O (1.1)

—kApy +u -V, +U——=0 in Q and 1/gpa:a.
8l‘d |Q| Q

The first equation of (1.1) represents the momentum balance for the fluid flow within the domain, incor-
porating the effects of a concentration-dependent viscosity u(-) and the strain rate tensor e(u), convective
transport of momentum (w-V)wu, and the hydrostatic pressure gradient Vp. The term f refers to a
volume-distributed external force or source term, and —g [1 + y¢,] €4 models the buoyancy effects due to
the presence of microorganisms in the d—axis direction, represented by the unit vector €;. The constant g is
the acceleration due to gravity and the parameter v := po/pn,, — 1 stands for the relative density difference,
with pg being the density of the microorganisms and p,, being the density of the culture fluid. In turn, the
relation divu = 0, given by the second equation in (1.1) represents the fluid incompressibility constraint.

The third equation in (1.1) describes the mass transfer of microorganisms within the fluid, reflecting the
balance between diffusion, characterized by the diffusivity constant x, and advection by the fluid flow and
swimming motion of the microorganisms. The term u - Vi, accounts for the advection of microorganisms
by the fluid, while U ‘3%; represents the directed swimming of microorganisms in the d—axis direction, with U
being the swimming speed. This equation states the conservation of microorganisms in the domain, aligning
with the principle that the average concentration of microorganisms, denoted by «;, is preserved throughout
the fluid culture, according to the last equation in (1.1). Precise assumptions on the data and parameters
as well as the boundary conditions to be taken into consideration are presented in the next section.

Formal mathematical analyses of the model (1.1) have been conducted in references [2, 8, 23, 38]. In [38],
the authors focus on a scenario with constant viscosity, demonstrating the existence of solutions for the
stationary problem, the positivity of concentration, and deriving conditions necessary for the existence
of a global weak solution in the non-stationary case. Building upon this, [2] extends these findings by
determining convergence rates for the error associated with spectral Galerkin approximations. In contrast,
[8] approaches viscosity as a concentration—dependent variable, establishing the existence of both weak and
strong solutions. Finally, [23] explores the latter case under periodic conditions.

From a computational perspective, the system (1.1) gives rise to strongly coupled nonlinear dynamics and
may exhibit localized flow structures and sharp gradients in the microorganism concentration. These fea-
tures pose significant challenges for numerical simulation, since standard discretizations and uniform mesh
refinement may become inefficient or fail to accurately resolve the multiscale nature of bioconvective phe-
nomena. A variety of numerical techniques have been proposed for the simulation of bioconvection models,
including early finite-difference and spectral approaches focusing mainly on two-dimensional configurations
and constant viscosity assumptions [20, 32, 31, 33, 34, 35, 41, 46].

Finite element discretizations of (1.1) have been considered in [9, 15]. In particular, [9] establishes existence
and uniqueness of weak solutions and proposes standard finite element approximations, validated through
numerical experiments incorporating laboratory data. A fully mixed finite element formulation within a
Hilbert space setting is introduced in [15], where auxiliary variables such as the fluid strain tensor, vorticity
and a pseudo—concentration gradient are employed. By augmenting the weak formulation with Galerkin
penalization terms and reformulating the coupled system as a fixed—point problem, the authors prove well—
posedness and derive optimal a priori error estimates, supported by numerical results.

More recently, a growing body of work has developed mixed finite element methods for nonlinear problems
within a Banach space framework (see [4, 5, 13, 16, 17, 18, 19, 36], among others). A key advantage of



this approach lies in the natural incorporation of variables into their intrinsic functional settings, achieved
through tailored testing strategies and integration by parts, thus avoiding the additional stabilization or
penalization mechanisms required in Hilbert space formulations such as [15]. Moreover, this framework
allows for the direct computation or postprocessing of physically relevant quantities. Complementarily,
residual-based a posteriori error estimation techniques for mixed methods in Banach spaces have been
investigated in [14, 10, 28], where reliability and efficiency are established. Nevertheless, adaptive mixed
finite element methods of this type have not yet been developed for the bioconvection model (1.1).

Inspired by the above discussion and related developments in mixed formulations for nonlinear problems
in Banach spaces [16, 19, 36, 28], we develop an adaptive fully mixed finite element method for the biocon-
vection model (1.1). The proposed approach is formulated entirely within a Banach space setting and is
complemented by a residual-based a posteriori error analysis, enabling adaptive mesh refinement strategies
for the efficient numerical simulation of bioconvective flows. The main contributions of this work can be
summarized as follows:

(a) The trace—free velocity gradient and the concentration gradient are introduced as primary unknowns,
which allows the computation of physically meaningful quantities such as vorticity, shear stress tensors
and microorganism fluxes through standard postprocessing of discrete solutions.

(b) By suitably defining associated function spaces, the pressure variable is eliminated from the primary
computation and can subsequently be recalculated through a straightforward postprocessing step.

(c) The intrinsic skew—symmetry of the convective forms is preserved at both continuous and discrete
levels, leading to simplified a priori estimates and well-posedness results without the need for additional
stabilization or symmetry—preserving modifications.

(d) Unlike [15, 16, 17], we reformulate both the continuous and discrete problems as a fixed-point problem
involving a single operator. In those references, the authors address the coupled problem by defining
an operator for each subproblem and composing them, which requires additional data restrictions and
conditions. In contrast, we first derive a priori estimates to determine the solution set, then use a single
operator to handle the entire coupled problem, thus avoiding the need for restrictive data conditions.

(e) The method supports high-order approximations and provides optimal-order a priori error estimates
for both the primary variables and those obtained via postprocessing.

Outline

This paper is structured as follows: The rest of this introductory section sets the stage by defining standard
notations, describing the functional spaces, and specifying the assumptions about the data and the boundary
conditions under study. Section 2 is dedicated to presenting the fully mixed formulation of our problem.
Following that, in Section 3 we present the Galerkin scheme associated with our formulation along with the
corresponding Cea’s estimate and proving optimal a priori error estimates. In Section 4, we carry out an a
posteriori error analysis for our fully-mixed method. Section 5 concludes the paper with numerical examples
that demonstrate the efficacy of the fully mixed method and verify the theoretical results.

Preliminary notations and definitions

Domain. Let Q C R? (d = 2,3) be a bounded domain with polygonal /polyhedral boundary T' := 99, and
n denote the outward unit normal vector.

Vector and Tensor Operators. The notations A, A, and A are used to represent scalar, vector, and tensor
field spaces, respectively. For vector fields v = (v;)1<i<q and w = (w;)1<i<q, their gradient, divergence, and
dyadic product are defined as Vv := (0:,;vi)1<ij<d, dive = Zgzl Oz, 5, and v @ w = (v;wj)i<i j<d,
respectively. For tensor fields T = (74)1<i j<q and ¢ = ((ij)1<i,j<d, div T denotes the row-wise divergence,
and we define the transpose 7% := (7j;)1<; j<d, trace tr(r) := Zle Tii, tensor inner product 7 : { :=
szzl 7ij¢ij, and deviatoric part 79 := 7 — 2tr(7)I, with I being the d x d identity tensor.



Function Spaces. For any r € [1,+00) and s > 0, we denote the conventional Sobolev space by W*" ()
where both the functions and all their distributional derivatives up to order s are elements of the Lebesgue
space L"(€2). The norm and semi-norm in this space are denoted by || - ||srq and |- |5, q, respectively. In
particular, when r = 2, we simply write H*(Q) := W2(Q), || - [ls.0 := || - |s.2,0 and | - [s0 := | - |s.2,0. The
space of traces of functions in H'(Q) is denoted by H'/2(I"), while H='/2(T') represents its dual space, with
duality pairing denoted as (-,-), and H}(€) stands for the set of functions in H!({2) with trace zero on the
boundary T.

For functions with zero mean and involving first-order Sobolev spaces we set

L) := {q eL"(Q): / q= O} and H'Y(Q) := HY(Q) N Li(Q), (1.2)
Q

respectively. From the Friedrichs-Poincaré inequality, we recall the existence of a constant Cgp > 0 ensuring
that

[ll1.0 < Crpltha, Vi € H5(Q) or H(Q). (1.3)

Similarly, the Korn inequality is expressed as

1
le(w)l§ o > 5!’111@,9, Vw e Hy(9), (1.4)

with e(w) = 3(Vw + (Vw)") denoting the symmetric gradient or strain tensor.

To handle trace-free tensors we consider the space
L2(Q) = {r cL3(Q) : trr = o} . (1.5)

We will frequently utilize the following spaces

H:=L2(Q)xLYQ) and H:=L*Q)xLQ), (1.6)
with the corresponding natural norms given by

15]F = 1I(r, 0)l7 = |

botlvlliae  ¥8e H:=LE(Q) x LY(Q), (1.72)

and

101% = 1F )3 = IF13e + 1450 V4 € Hi=L3(Q) x Li(®). (1.7b)

For specific divergence and normal component conditions, we consider

Hr(div,; ) := {7’ € H(div,;Q): 7-n=0 on I‘} , (1.8a)
Ho(div,; Q) = {T € H(div,; Q) : / tr = 0} . (1.8b)
Q
Here, the set H(div,;Q) := {? € L2(Q) : divT € L”(Q)} (analogously for its tensorial version

H(div,;)) is a Banach space equipped with the norm
1713, 0 = T80 + IdivT 5,0, V7 € H(div; Q). (1.9)

Moreover, for r € [6/5,+00) the following integration-by-parts formula holds (see [11, Section 4.1] and [16,
Section 3.1])

<?-n,v)—/g{?-VU—i—vdiv?} W (7,0) € H(div,: Q) x H(Q). (1.10)

We further recall that the injections i : LI(Q) — L™(Q) (¢ > r) and 4, : H'(Q) — L"(Q) are both continuous
and satisfy

_ , r>1 ifd=2,
lore < 1YV Plloge and [[Ylora < llilllvlie  for {T

€[1,6] ifd=3. (L-11)
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Data assumptions and boundary conditions. In the model (1.1), we assume that the source term f
belongs to L%/ 3(Q2) and that the parameters g, s, U, v and « are given positive constants. Furthermore,
p( ) is a concentration dependent function assumed to be a Lipschitz continuous and bounded from above
and below; that is, for some constants L, > 0 and pu1, uz > 0, there hold

lu(s) — p(t)] < Lyls—tl, Vs, t >0, (1.12a)

< u(s) < pa, Vs > 0. (1.12b)
Additionally, the system (1.1) is supplemented with a non-slip boundary condition for the velocity and a

zero flux Robin-type condition for the micro-organisms on the boundary, that is
u=0 on T and k—m— —nqgUpq =0 on I'. (1.13)
n

The last condition given in (1.13) says that micro-organisms are not allowed to leave or enter the physical
domain; that is, the total mass of microorganisms remains constant and equals to a.

2 The fully-mixed formulation

In this section, we carry out the variational formulation of the problem of our interest (1.1) and (1.13). In
Section 2.1, we introduce auxiliary variables to set the original model into a first-order partial differential
system. Subsequently, Section 2.2 is dedicated to deriving a fully—mixed formulation within Banach spaces,
along with a discussion on the properties of the forms involved. Moving forward to Section 2.3, the focus
shifts to establishing the well-posedness of the problem. This involves exploiting the structure of the setting
and the properties of the forms to reformulate the weak formulation as a fixed—point problem.

2.1 The equivalent first-order system

The initial step prior to reformulating the model (1.1) in the context of first—order partial differential
equations involves a translation process employing the total mass condition. In fact, note that

1/ — /( )=10
=y a = a—«)=U,
Qf Jo” 0"

and thus, by considering the auxiliary concentration ¢ := ¢, — «, the system (1.1) and (1.13) reads

—2div (4 + a)e(w) + (u- V)u+Vp= f—g[l+1(¢+a)és, divu =0

9 in Q (2.1)
—kAp+u-Vo+U-—— =0
8xd
and 5
u=20 on I, /{i—ndUcp:ndUa on I and /cp:O. (2.2)
67?, Q

Next we incorporate some auxiliary variables. We start with the fluid equations by defining the velocity
gradient and the symmetric pseudo-stress tensors given by

1
t:=Vu in Q, and o =2u(p+ a)teym — §(u @u)—(p+cy)l in Q (2.3)

1
where tgy,, 1= §{t+tt} is the symmetric part of t and satisfies trtsy,, = 0 by the incompressibility condition

(second equation of (2.1)). In turn, the constant c,, is defined as

1
Cy 1= —Mm/ﬂtr(u Ru). (2.4)



Given this context, and since a unique pressure solution p for the system (2.1) is required to be in L3(Q)
(see (1.2)). The definition of o in (2.3), with ¢, as in (2.4), then translates the zero mean value condition
on p into the imposition on the trace of o as
/ tro=0.
Q

The second equation of (2.3) will be referred to as the constitutive law governing the behavior of the fluid.
To get the respective equilibrium relation, we take divergence there, and after using the first equation of
(2.1) we find that

1 ~
—diveo + §tu =f—gl+y(e+a)ey in Q,

where we have utilized that div(u®u) = (u-V)u when div w = 0. The latter also implies that trt = trt* = 0
and s0 t$,,,, = teym. Thus, after taking deviatoric part to o in (2.3), we find

1
o = 2u(p + a)tsym — 5 (u®u)? in Q,

and then the pressure can be removed from the original system (2.1), but it is possible to retrieve it using
the post-processing formula

1
p:—2—dtr(20+u®u)—cu in Q, (2.5)

which is obtained after taking trace to o in (2.3) and using the incompressibility condition once again.

As for the equation modeling the micro-organisms concentration, we introduce as new variables the concen-
tration gradient and the semi-advective flux given by

~ ~ 1 N
t=Vy in Q, and a:/it—§cpu—U(g0+a)ed in Q, (2.6)

and upon applying the divergence operator to o in (2.6) and using that w is divergence-free in €, the last
equation of the system (2.1) transforms into

~ 1~
—dive + §t cu=0 in Q. (2.7)

Observe that the second equation of (2.6) and (2.7) represent the constitutive and equilibrium relationships
associated with the concentration equation, respectively. Also note from the boundary condition for u and
¢ in (2.2) that o satisfies

c-n=0 on I'. (2.8)

As a result, by combining (2.3)-(2.8), we restate our model problem (1.1) as a first-order system of PDEs.
The task is to find the tuple ((t,u), o, (t,¢), o) within appropriately defined spaces (see Section 2.2 below),
satisfying

1 1 .
t=Vu, o%=2u(p+tyn -5 (@wouw)®, —dive+ Jtu=f—gll+7(p+a)les

. » 1 2 1~ in Q
t=Vop, Gzﬁt—§¢u—U(g0+a)€d, —div5'+§t-u:0
(2.9a)
along with
u=0 on I', o-n=0 on T, /tra:() and /(p: . (2.9b)
Q Q

2.2 The fully mixed formulation

Before carrying out any testing, we realize from the constitutive and equilibrium equations in (2.9a) that
the variables o and o must be, at least, square-integrable with divergence in appropriate L"-Lebesgue
spaces. Moreover, from the second and third equations of (2.9b), it is then clear that o € Hy(div,; )
(cf. (1.8b)) and o € Hr(div,;Q) (cf. (1.8a)), for some r to be specified below. With this at hand, and



considering the condition (2.9b) on w and ¢, let us initially search for u € H}(Q) and ¢ € H'(Q). Thus, after
multiplying the opening equations in the first and second rows of (2.9a) by test functions 7 € Hy(div,; 2)
and 7 € Hp(div,;Q), and using the integration-by-parts formula (1.10) and its tensorial version, with
r € [6/5,+00), we find that

/t:T+/u-diVT:0 V1 € Hy(div,; Q), (2.10a)
Q Q

and
/E-?—i—/(pdiv?:o V7T € Hr(div,; Q), (2.10b)
Q Q

respectively, where we have used the homogeneous Dirichlet boundary condition for w and the fact that
7-n =0 on I'. Also, note from the Cauchy-Schwarz inequality that the first terms of (2.10a) and (2.10b)
are well-defined for t € L2 () (cf. (1.5) and since trt = divu = 0) and for t € L2(2). Let us then consider
respective test functions r € L2.(Q2) and 7 € L2(Q), to weakly rewrite the constituve relations (intermediate
equations from both the first and second row of (2.9a)) as

/0':7’:2/,u(g0+a)tsym:r—1/(u®u):r Vr cLZ(Q), (2.11)
Q 0 2 Ja

where we have used that /
Q

SO ~ . 1 - PO PO
/a-r:ﬁ/t-r—/apu-r—U/goed-r—aU/ed-r VF € L2(9). (2.12)
0 0 2 Ja Q0 0

From the Holder inequality, note that for the second terms at the right-hand side of (2.11) and (2.12),
involving the convective terms, to be well-defined, it is suffices to consider u € L*(Q) and ¢ € L3(Q).
Therefore, we now take v € L*(Q) and ¢ € L§(2) to test the equilibrium relations (last expressions of
(2.92)) yielding

O'd:r:/a:rand/(u@u)d:r:/(u@)u):rduetotrr:O,and
Q Q Q

. 1 .
—/Qd1v0'~v+2/Qtu-'v:/Q{f—g[l—kv(go—ka)]ed}-v Vo e LY(Q), (2.13a)

and

—/ﬁw&¢+1/u€¢=ovweﬁmy (2.13b)
Q 2 Ja

Therefore, applying the Holder inequality, the first terms of (2.13a) and (2.13b) are well-defined for r = 4/3,
aligning with the valid range for r specified in (1.10). Consequently, we end up finding o € Hy(div,/3; )
and 5’ S Hl"(diV4/3; Q)

Now, to simplify the notation, and according to (1.6), we set

~ —

i:=(tu), §:=(r) eH, and @i=(@y), ¢:=(F¢) cH

In this way, within this framework, from (2.11)+(2.13a), (2.10a), (2.12)4(2.13b) and (2.10b), we arrive
at the following fully-mixed variational formulation for the generalized bioconvective flows problem: Find
(d,0,8,0) € H x Ho(divy,3; ) x H x Hr(divy/3; Q) such that

(4, B) + C(u; 1, B) — B(V,0) = Fp(0)

Bu,T) =0
L L . (2.14)
A (3,9) +C(w; G.0) — B(,&) = F )

B(¢,7) =0,

for all (,7,1,7) € H x Ho(divy/3; ) x H x Hp (divy/s; Q). Here, o7, for a ¢ € L§(Q) given, and o are
the bilinear forms

d¢(ﬁ,ﬁ)—2/u(¢+a)tsym:r Vi, 5 cH, (2.152)
Q



'Q?Z@J):fi/;ﬁv-?U/cpéd-? v@ g eH. (2.15b)
Q Q
In turn, & and 2 are the bilinear forms defined as
BV, T) = / r.T —l—/ v-divr VdeH, V7 eHy(divys; ), (2.16a)
Q Q

~

B, T) = / ?-%+/ Ydivy V¢ e H, V7 e Hr(divysQ). (2.16b)
Q Q
In turn, the kernels V = ker(#) and V = ker(Z) of the bilinear forms % and %, are given by

Vi={3eLi(Q)xLYQ) : B@H7)=0 V7 eH(divysQ)}, (2.17a)

Vi= {d e LAQ) x L§(Q) : B, 7)=0 V7 € Hr(divys0) } . (2.17b)

On the other hand, for a given w € L*(Q), the forms € (w;-,-) and € (w;-,-) associated to the convective
nonlinear terms, are defined as

1
‘K(w;ﬁ,ﬁ):§ [/ tw-v—/rw-u} Vu,v € H, (2.18a)
Q Q

~ - ~

Awd) =y | [Ewp- [ Fwe] vaiem (2.150)

where we used that /
Q
Finally, Z4 (for a given ¢ € L§(2)) and 7 are the linear functionals defined by

rw-u = / r: (w ®u) to rewrite the last term defining €, coming from (2.11).
Q

%(6):/Q{f—g[1+v(¢+a)}ad}.v Vi cH, (2.19a)
Z () :aU/ad-F Vi € H. (2.19b)
Q

Moreover, from the application of the triangle, Holder, and Cauchy-Schwarz inequalities, in conjunction
with the norm definitions for H and H (cf. (1.7a) and (1.7b)), the functional %, (for each ¢ € L3(€2)) and

7 are bounded. Specifically,

1Z5@) < {Ifloaza + 90 +10)|QAY + 0119 2 [dlloan} Bl VEEH,  (2200)

and . L o
(W) < aU|Q2[|¢|lg Vi € H. (2.20b)

Below, we summarize the properties of the forms involved with the model (2.14). We begin with the following
result regarding the bilinear forms % and 4.

Lemma 2.1 The forms % : H x Ho(divy/3;Q) — R and % : H x Hr(divy/3;Q) — R defined in (2.16a)
and (2.16b), possess the following properties

(a) Continuity: B and % are bounded, that is

(B0, 7)| < 1Bl lITllaiv, 0  YOEH, VreHHo(divys;Q),

1B, 7)) < [0l | Fllaws0 VO €H, VFeHr(divys9Q).



(b) Inf-sup conditions: There exist positive constants 3 and B such that

BV, T .
sup 28T Blitldivy 50 V7T € Ho(divys; Q), (2.21a)
sen [U]u
0

BT~ B .
sup (ib ) > BT lldivy 50 VT € Hp(divys; Q). (2.21b)
ven [¥lg
P#0

(c) The kernels V and V of the forms % and B (cf. (2.17a) and (2.17h), respectively) are characterized
by the relations

T =(r,v) € VCLL(Q) x L(Q) — v € HY(Q) and r= Vo, (2.22a)
P=F V) eVCLAQ) xLiQ) =  ¢cHYQ) and 7=Vy. (2.22b)
Proof. The continuity of the bilinear forms £ and 2 is verified by applying the triangle, Holder, and Cauchy-
Schwarz inequalities, together with the norm definitions in spaces H, H, H(divy/3;(2), and H(div,/3;2)
(see (1.7a), (1.7b), and (1.9)). The inf-sup conditions, (2.21a) and (2.21b), along with the kernel properties,

(2.22a) and (2.22b), have been thoroughly proven in [36] and [16], albeit with slight variations in the specified
spaces concerning the bilinear form Z.

Given that Hr(divy/s, Q) C H(divy/s, ), the inf-sup condition (2.21b) is naturally satisfied due to the

subspace relationship. Concerning the kernel equivalence (2.22b), the condition that @E = (r,v) € V C
L2(Q) x L3() holds if and only if the following identity is satisfied for all 7 € Hrp(divy /35 )

@(ﬁ,?)z/ﬂ?-?—i—/ﬂwdiv?:& (2.23)

Choosing 7 € C3°(2) C Hp(divys; Q) in (2.23) implies that the term [, ¢ div 7 corresponds to the action
of the vectorial distribution —V on the test function 7. Consequently, (2.23) says that Vi) =r € L2(Q),
leading to v € HY(Q) = HY(Q) N L(Q) (see (1.2)). Unlike the approach in [16], the validity of (2.23)
exclusively in Hr(div,/3;(2) does not allow any conclusions about ¢ on I'. (Il

Next, we establish the following result concerning the bilinear forms .27, and .

Lemma 2.2 The bilinear forms o, : Hx H — R (for a given ¢ € L(2)) and o HxH-— R, as defined
in (2.15a) and (2.15b) respectively, have the following properties:

(a) Continuity: Both <7, and o are continuous, satisfying
| (1, D) < ||| |d||ulld]a Vi, d€H,
(8, 0) < | Gllg lvllg V& ¢ eH,
where || || := 2ua, with ps from (1.12b), and HJZZNH = 2 max{r, U|Q|/*}.

(b) Coercivity of o/y: The form <y is coercive on the kernel V of the bilinear form % (cf. (2.17a)), for
any ¢ € L§(QY). There exists a positive constant ay := %p1 min{1, Cp||ia| =2}, ensuring

Ay(6,8) > ay|vllfy VB EV, (2.24)
with w1, Crp, and ||i4]| from (1.12b), (1.3), and (1.11), respectively.

(c) Coercivity of o : Assuming the diffusive constant k and the mean velocity constant U satisfy

U . oy -
101 < min{1, Gl 2}, (2:25)



the form of is coercive on the kernel V of,%‘7 (cf. (2.17b)). Specifically, there exists a positive constant

Q= (mln{l Copllial =2} — U|Q‘/ ) such that
A (,0) > a0 VieV, (2.26)
with Crp and ||i4| from (1.3), and (1.11), respectively.

Proof. The continuity of the forms &/ and o can be established through the application of the Hoélder
inequality, combined with the boundedness of p (cf. (1.12b)), and the Cauchy-Schwarz inequality. Ad-
ditionally, the definitions of norms on the spaces H and ﬁ, as specified in (1.7a) and (1.7b) respectively,
are employed. The V—coercivity of o/ is shown in [16, Lemma 3.2] by using the characterization of V
stated in part (c) of Lemma (2.1), the lower bound on p (refer to (1.12b)), the Korn inequality (see (1.4)),
and the embedding provided by the continuous injection iz : H'(2) — L*(Q) (see (1.11)) along with the
Friedrichs-Poincaré inequality (cf. (1.3)).

We now proceed to show the coercivity of o over the kernel V in a similar way. Given ¢ = (r,) € V,in
light of (2.22b) we have that 7 = V¢ and ¢ € H}(Q). Using this characterization, in combination with the
Holder, Young and Friedrichs-Poincaré inequalities, the continuous injection is : H'(€2) — L*(Q) and the
norm definition on fI, we obtain

G =n |77V [ 087> 6l o~ Ulloaal@iloaallos
Ko~ - U ~

> 2713 g + 1718 ) — 5197 {11010+ 17130 }

_ B2 Ri=p2 U\ o1/ 72

= SR g+ SIFIE0 — S 101411

U .
o LR L

R 9. n— R~
> 5 Crpllial [ 4.0+ 5 IFII3

K. —21: =2 L1.712 U i1/ay.712 N2
> 2 min {1, Cedllial =2 IS — S 12111 2 a Al

. . —9: 1/4
As a result, the hypothesis (2.25) guarantees that o ; := § (mln{l, Coplliall =2} — %) > 0 and so the
{ﬁcoercivity of o/ follows with constant a g O
Remark 2.1 [t is noteworthy that, similar to the analyses presented in previous works [8, 9, 15, 58], a
comparable constraint to (2.25) is considered for ensuring the well-posedness of their respective models. In
our case, this condition is required for the coercivity of the bilinear form </, corresponding to the concentra-

tion equation. In all the cases, the restriction necessitates a sufficiently high diffusion rate k, while requiring
both the average upward swimming velocity U and the physical domain §2 to remain comparatively low.

Regarding the forms related to the convective terms, we have the following result.

Lemma 2.3 For each w € L*(Q), the bilinear forms €(w : -,-) : Hx H — R and ‘g(w, L):HxH->R
(cf. (2.18a) and (2.18b), respectively), satisfy the following properties:

(a) Continuity: Both € and € are bounded. Moreover,

6 (w: i, B)| < » Vi, e H

&l
Sl

cH.

)Y
<y

)

- 1 . .
(¢ (w; g, 4)] < Sllwlloas 1€lg 1YIg ¥

(b) Skew-symmetry: the bilinear forms satisfy skew-symmetry properties

¢ (w;ud,v) = —¢(w;v,4) Vu,veH
Clw;G.9) = —C(wid,d) Vg, deH.
In particular, _ o L
C(w;v,¥9) =0 VieH and €(w;y,y) =0 Vy e H. (2.27)



(¢) Boundedness properties: In addition,

dl
F

| (w1; 4, 3) — € (w2, 7)| < [lwr —wolloao|@lalldla  Vw,ws, e LY(Q),

—, —,

Vi
|6 (w13 5,0) — €(wy; 3,0)| < [wi —walloan|Flgldllg — Vwi,we,e L), Vi

dl
mz

Proof. The continuity of the bilinear forms €' (w;-,-) and € (w;-,-) (for each w € L*(Q)) is ensured by the
application of the Holder and Cauchy-Schwarz inequalities. The skew-symmetric nature of both 4 and %

is inherent to their definitions. Detailed demonstrations of the estimates presented in part (c) are found in
[16, Lemma 3.4]. O

Remark 2.2 Similar to the works found in [19, 36], our fully mizved formulation (2.14) adopts a Navier-
Stokes—type structure. Moreover, the skew—symmetry inherent in the forms € and €, related to the convective
terms, simplifies the mathematical analysis considerably. As will be detailed in Section 2.3, this skew—
symmetry, combined with the inf-sup condition met by B and B, facilitates transforming the problem into
one suitable for a fixed—point approach. This strategy proves crucial for deriving a priori estimates, which
are essential for establishing existence and uniqueness.

2.3 Well-posedness of the continuous problem

Note that the eventual solutions 4 and ¢ to problem (2.14) belong to the kernels V and V of the forms 2
and A (cf. (2.17a) and (2.17b), respectively). From the inf-sup conditions established in Lemma 2.1, it can
be inferred that the problem (2.14) is equivalent to the kernel-constrained variant. The modified problem
seeks (U, §) € V x V that satisfies

(U, V) + € (u;4,9) = F,(V),
(2.28)

A (5.9) +C(w; G4) = F(W),
for all (v, 1/7) € V x V. This formulation enables us to derive the upcoming result.

Lemma 2.4 Assuming condition (2.25) holds, any solution (4, J) to problem (2.28) satisfies the a priori

estimates

where

Cr(,, £,9,00, U, Q) = o {IIf (1+7) | + gyIQ 2 Caler 5, U, ) | (2.292)

and

Co(a, k,U,Q) = a}aU!Q\% . (2.29b)

Proof. Let (1, @) be a solution of problem (2.28). By taking ¥ = 4 and ¢ = @ in (2.28) and applying the
skew—symmetry property of € y € (refers to (2.27) in Lemma 2.3), we obtain

Aol i) = F,(E)  ad (G P) = F (). (2.30)

Using the V- —coercivity of o and the continuity of T (as shown in (2.26) and (2.20b), respectively), we
derive

. o o ey LT
a AlE < (3@ <|F(P)] < alUlQ2||@llg -
leading to the estimate
1
I¢lg < a7aUQf2 = Coa,5,U,9Q), (2.31)

where de dependence of Ca(:) on x is implicit in the coercivity constant a ; (cf. Lemma 2.2, part (c)).
Regarding 4, from the first equation of (2.30), we apply the coercivity of &/ on V and the continuity of .7
(cf. (2.24) and (2.20a), respectively), with ¢ instead of ¢, to get

il < 1Zo(@)] < {1 Floass + 90+ 70| + 0712l pllo a0} il
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Which simplifies to
lille < a5 {IFlloa/s0 + 9(1 +70) QM + g7IQ12Cala, Uk, Q) } 1= Cr(n, 7, £,9,0,U, 5, 2)

after using that [|pllo4,0 < [[F]lg, (cf. (1.7b)), and the a priori bound (2.31) already obtained for ¢. Note
that the dependence of the constant C(-) on the viscosity stems from the p—dependence of o, as detailed
in part (a) of Lemma 2.2. O

Having established that solutions to the problem (2.28) adhere to specific a priori estimates, our next
objective is to prove the existence of solutions. This is achived by translating the kernel-reduced problem
(2.28) into a fixed—point framework, for which we employ Schauder’s Fixed—Point Theorem [21, Thm. 9.12-
1(b)], stated as follows.

Theorem 2.5 Let B be a closed convex subset of a Banach space X and let £ : B — B be a continuous
operator such that £(B) is compact. Then, £ has at least one fixed point.

In preparation to apply Theorem 2.5, we define a suitable subset B and an operator .. This operator
% will reformulate the solution to the kernel-reduced problem (2.28) as a fixed point of this operator. In
turn, thanks to Lemma (2.4), we specify the closed convex subset B of V x V by

B={(@,0eVxV/ [[#lu<Ci(nyf.0.050,9 and |dg<Colont0)}, (232

where C1(p,7, f,9,a,k,U,Q) and Ca(a, k,U, Q) defined in (2.29a) and (2.29b), respectively, come from the
a priori estimates.

On the other hand, for each pair (@ 5) eV x \7 we first address the uncoupled and linearized variant of
the problem (2.28): find (4, ) € V x V, such that

@@(ﬁ, U) + € (w;u,v) = 945(17) ,
A (3,0) +Cw;3,4) = F (@),

for all pairs (¥,v¢) € V x V. Subsequently, we introduce the operator .£ : V x V — V x V as the solution
mapping for (2.33), namely

(2.33)

L(W,¢) = (4,F) foragiven (,¢)eVxV (2.34)
where (4, §) is not but the solution of the uncoupled and linearized kernel-reduced problem (2.33). It then
becomes clear that

(4, Q) is a solution of (2.33) <«<— Z(u,p) = (4u,y). (2.35)

The ensuing result confirms the well-definedness of the operator .Z and its property of mapping B onto
itself.

Lemma 2.6 Under the assumption specified in (2.25), consider B to be the ball given in (2.32). The
operator £ : B CV xV — V xV, as detailed through (2.33)—(2.34), is well-defined. Furthermore, it holds
that £(B) C B

Proof. Given a pair (0, 5) within the ball B C 'V x \~7, the linear and uncoupled nature of the equations in
(2.33) permits a separate analysis. On the one hand, we focus on the problem of finding @ € V such that

(i, B) + € (w; i, T) = Fy(¥) YV EV. (2.36)

Drawing on the continuity of <7, and €, as established in part (a) of Lemma 2.2 and Lemma 2.3, respectively,
and the relation ||wljp4,0 < ||®||a (see (1.7a)), combined with the definition (2.32) of B, we arrive at

‘424, (4,v) + € (w; u,v)

,,bmmwm

{Mﬁ-aumf%aﬁvmbwmwm vE eV,

1
< {QMQ +
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confirming that the bilinear form .o7(-, -) + ¢ (w; -, -) is bounded. Moreover, considering the skew-symmetry
of € and the coercivity of &7, as indicated in (2.27) and (2.24), respectively, we have

Ay(.5) + C(w: T, 5) = Zy(5,5) > alld|i VEEV.

The latter says that the form @7(-,-) + €' (w;-,-) is V— coercive with constant o . In turn, in accordance
with (2.20a), the fact that ||¢||o.4.0 < ||qZ_>’||}~I and ¢ satisfies (2.32), it follows that

‘c%(ﬁ)

< {104z + 901 +10)[Q13 + 9310 2Cola, 5, U, )} |5l VE € V.

Then, from the Banach—Necas—Babuska Theorem (see e.g. [27, Theorem 1.1], [26, Lemma 2.8]), there exists
a unique solution 4 € V to (2.36) satisfying

e < o) {Hf 04730+ 9(1+ va)|Q* + gy|QY2Cy(a, 1, U, Q)} : (2.37)
For the concentration equation, the approach is similar to that of the fluid equation. We use the continuity
of the forms &/ and ¥, taking into account that w lies within B to get

—~ . ~ =

= - 1 1 - ? S P S
A (3.9) + Cw; §,9)| < {ﬂmax{n,vrmi} + 5017 £ 9,05, U, m} I8z oy védeV.

Utilizing the skew—symmetry of % as outlined in (2.27), together with the coercivity of o/ on the kernel {7,
as detailed in part (c) of Lemma 2.2 (which requires condition (2.25)), we find that

A (G, )) + C(wi i, )) = o (§,9) > a Fd|% VY eV.

In this way, @%N(-, ) —1—‘67(117; -,+) is continuous on V x V and V-coercive. Furthermore, the linear functional is
bounded with [|.Z| g < aU|Q/2, according to (2.19b). As a result, applying the Banach-Necas-Babuska

Theorem again, we conclude that there exists a unique ¢ € V, such that
S () + C(w; §,9) = F() VPeV,

satisfying the continuous dependence estimate

= -1 1/2
1Pl < o taU|Q2. (2.38)

Thus, we deduce that for any given (w0, q;) € V x V, there exists a unique corresponding (4, J) € V x v,
such that .Z(w, ¢) = (u,F). Moreover, by the definition of Ci(-) and Ca(-) in (2.29a) and (2.29b), along
with the estimates provided by (2.37) and (2.38) and the characterization of the ball B in (2.32), we can

readly infer that (¢, @) resides in B. This establishes that .Z(B) is a subset of B. O

To further our analysis, and in accordance with previous works [15, 16], we introduce an additional
regularity hypothesis. This hypothesis is essential for managing non-linear terms associated with the con-
centration dependence of the viscosity in the bilinear form .27 (see estimation (2.46) below). The assumption
is presented as follows.

-, —,

Regularity Hipothesis. Given (w0, ¢) € B, we assume that £} (w, ¢) = 4 = (t,u), satisfies that u €
W=4(Q) and t € L2.(Q) NHE(Q), with € € [1/2,1) (resp. € € [3/4,1)) when d = 2 (resp. d = 3). We further

assume the existence of a constant C. > 0, independent of the given pair (w, ¢), such that

[ullean + It

o2 < C{lIfloase + 9 +10)QY + Q2 dlloan} = Cro. (239)
We examine the Lipschitz continuity of the operator ., which is cornerstone for our analysis.

Lemma 2.7 Under the assumption specified in (2.25) and (2.39), £ exhibits Lipschitz continuity. Specifi-
cally, there exists a constant Cpip > 0 (refer to (2.50), below) ensuring that

-, -, -,

12 (@, ¢) — .2 (o, $0) | gy, 55 < Crip||(W, @) — (Wo, $0) gy i ¥ (@, 0), (Do, o) EBCV XV, (240)

where Cryp is dependent on data but remains independent of the pairs (W, (Z_;) and (W, (Z_;O).
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Proof. Given ('&’7,(5) and (1?)0,50) arbitrary pairs in the ball B C 'V X V, from Lemma 2.6, there exist
corresponding pairs (@, @) = (w0, ¢) and (i, Fo) = L (o, ¢y) in B C V x V, satisfying

||aHH7||ﬁ0HH < Cl(uvva‘f’gaaaﬁa U, Q) and H(ﬁHﬁaH(ﬁOHﬁ < 02(047/@ U, Q) (241)

Moreover, according to the definition of the operator .Z (see (2.33)-(2.34)), there holds

Ay(@,T) + € (w; @i, B) = Fy(¥) VTV, (2.42a)
A (G, ) +C(w; §,9) = F () VYPeV, (2.42b)
and
s, (o, B) + € (wo; o, T) = Fyo(¥) VTEV, (2.42¢)
A (Go, b)) + C(wo; Go, b)) = F(§)  VPeV, (2.424)

Since 4 — 1y € V, after applying the V—coercivity of @7 (cf. Lemma 2.2, part (b)) and the linearity in the
first component we get

— — —

OéiQyH’l_l,’ - ’ljoH%_I < JZ/¢(’& — ’1_1:0,’11 — ’u,()) = %¢(ﬁ,ﬁ — ’1_1:0) — JZfd)(’l_ljo, u — ’uo)

= Fy(t — 1) — € (w; 4,6 — o) — Zy(to, & — o),

where we have utilized the equation (2.42a) with ¥ = 4 — 1dg. Next, by strategically adding and subtracting
Ay, (o, d — Ug) on the right-hand side of the preceding inequality, and then using equation (2.42c¢) with
U — Ug instead of ¥, and carefully grouping the terms, we deduce that

| = oy < { T (@ — tho) — Ty (3 — i) | + {6 (wos o, @ — o) — € (w; &, @ — o) }
+{ 0, — i) — (o, G — o) | (2.43)
=:Fy + Ey + E3.

Next, we bound each of the expressions Ej;, (i = 1,2,3). To estimate E1, the definition of .#4 (refer to
(2.19a)) and a straightforward application of the Holder inequality yield

By = /997@5 — ¢0)eq - u — ug < gv[Q?)|¢ — olloaalld — dollw - (2.44)
Concerning the expresion Eg, we conveniently add and subtract the form %' (wg;d,u — 4dg). Using the
linearity, the skew—symmetry property and the continuity of ¢ (cf. (2.27) and part (a) of Lemma 2.3,
respectively), we ascertain that

Ey =€ (wy — w;d,u — tp) < *H’UHHHUJ wollo4,0||U — o - (2.45)

Regarding F3, after using the definitions of o7, (cf. (2.15a)), the Lipschitz-continuity property assumed for
p (cf.(1.12a)) and the Holder inequality

E3 :2/Q{M(¢O+a)_M(¢+a)}t0,sym:t_tO

2.4
< 2L,LL/ |¢ - ¢0| tO,sym it —to ( 6)
Q
allt —tolloq-
Here, p,q € [1,400) must satisfy % + 2%1 = % To fulfill this condition, we can select 2p = &*, where
e* = é for d = 2, and ¢* = 3%628 for d = 3. This choice ensures the validity of the continuous embedding

ic : HE(Q) — L () (cf. [I, Theorem 4.12], [26, Corollary B.43], [45, Theorem 1.3.4]). Consequently,
with to € L?(2), we have ||tollo.2p.0 < ||ic||[|[to]lc. This also implies that 2g = g, and thus the Lebesgue
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embedding i : L*(Q) — L4¥4(Q) is applicable (cf. (1.11)), given the epsilon ranges specified in the regularity
hypothesis (2.39). As a result,

. e_1
B3 < 2Lu[l¢ = ¢ollg a glltollo.eallt = tollo.o < 2Lp[li=[[[2[172 ¢ = dollo.anlltoll-lt —tollon-  (2.47)
Replacing back (2.44), (2.45) and (2.47) in (2.43) we get

sl ol < {10016 — bollo.so + 3 Il w0 — wollos.0 14 — i e

+ 2L, [ic 1237216 = olloselltoll-allt = tollo. -

Finally, using that ||t — to|loo < |4 — do||m and simplifying terms,

1
i — uo|rH<W{m|ﬂ|ar¢ Golloan + 3 il [ — wollos

o}

Our next step is to estimate the difference ¢ — Fp. In this case, we simply use the V- —ellipticity of the form
o (see (2.26)) and setting ¥ = @ — @y € V, along with employing the linearity property and applying
(2.42b) and (2.42d), with ¢ — @o in place of ¥, we derive

(2.48)
+2LyJic]||€f 2

a ¢~ ol < (3~ o, ¢~ o) = (8,8~ o) — (o, ¢ — %o)

where the last line results from adding and subtracting Cg(wo; @, @ — Po) in the previous step and utilizing
the skew-symmetric property of € (cf. (2.27)). Then, from the continuity of € (cf. Lemma (2.3), part (a))
and simplifying we get
S 1 -
16~ Gollg < 5o llw — wollo sl ¥l (2.9
o

Next, combining (2.48) and (2.49), and the fact that ||¢ — dollo.4,0. [w — wollo.an < [|(@ — @o,é — d0) g
we deduce that

—,

|Z (W, ¢) — £ (Wo, o) lggu g = I8 — 1o, & — ¢0) lgq = 1d — dollm + ¢ — ¥ollg
1 11, . e_1 IR Lo Lo
< o g1z + Slldlle + 2Lplz][[€2 472 [[to]l 0 +%||¢||ﬁ (@, ¢) — (Wo, ¢o) | g4 -

Drawing upon the additional regularity hypothesis (2.39), we are able to bound the term ||tol|c,. In turn, by
applying the estimates (2.41) to bound 4 and @ in the preceding expression, we conclude that the operator
2 fulfills the Lipschitz condition (2.40), with the constant

1 11 . e_1
CLIP = @ {g’y|Q|é + 501(/1/777.,:’9’0[7 K/?U7Q>|| + 2LMHZE|HQ|d écl,f} + CQ(O&,H, U7 Q) . (250)

1
2a 7
O
Now, we state and prove the compactness of m

Lemma 2.8 Under the assumption specified in (2.25) and (2.39), £(B) is compact.

Proof. Considering (2.32), any sequence { (w0, @’n)}n>1 C B C V x V is necessarily bounded. Consequently,
it admits a weakly convergent subsequence {( w,, ), cﬁ% ))}nzl converging to (wy, Po) € B. In particular, this

means that v — wp in H}(Q) and gZ)n 5 ¢y in HL(Q), as detailed in the characterization of V and
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V (see (2.22a) and (2.22b)). Moreover, since the inclusion i : H! () — L*(Q) is compact, we ensure the
strong convergence

n—oo n—oo

lwi) —wolloae ™3 0 and |6 —doloan =3 0. (2.51)
On the other hand, setting

@M, gV = 2@P,gY) and (i, Fo) = L (o, ¢0) ,

and proceeding exactly as in Lema 2.7 with (@, 4,0% )) instead of (w, @), we deduce from (2.48) and (2.49)
that

L) 71 1
1210, 61) = 2 (o, b0zt < 5~ 190 g I — wolloa

1 1 . e_1
+W{(m|mz+2Luqu||m|d 2HtoHa,n)H¢% ~ ollose + a0 [ —wo>||o4g}.
|z

Note that |
of (2.51), we then conclude that . (@) %)) —s L(Wy, o) as n — +00, and so Z(B) is compact. ]

n 9

[ % |l and [|to]|-. are bounded by data in accordance with (2.43) and (2.39). In virtue

At this point, we are in position to state the main result of this section.

Theorem 2.9 Under the assumption specified in (2.25) and (2.39), there exists at least one solution (U, J)
for (2.33), satisfying the a priori estimates

ldllm < Ci(p, v, £r9,0,5,U0,Q) - and ||z < Cala, w,U, Q). (2.52)

Proof. From Lemmas 2.6, 2.7, and 2.8, it follows that the operator .Z (cf. equations (2.33)—(2.34)) satisfies
all the conditions required by the Schauder Fixed Point Theorem (cf. Theorem 2.5), thereby guaranteeing
the existence of at least one fixed point for .. Furthermore, according to the relation in equation (2.35),
this fixed point corresponds to a solution of the problem described by equation (2.33). This solution must
also fulfill the a priori estimates presented in Lemma 2.4. (Il

Observe that if (d, @), (do, Po) are two solutions of problem (2.33), and therefore fixed points of operator
&, then from the L1psch1tz continuity (cf. Lemma 2.7), it follows that

[(t, §) — (o, o)l g, i = 1€ (4 &) — L (o, Po) gy < Crip (@, §) — (do, Fo)ll g »

and so
(1 = Curp) [|(4, @) — (do, o)l gy < 0-

Then (4, g) = (do, Po) whenever Crip < 1, as defined in (2.50). The following uniqueness result has been
then demonstrated.

Theorem 2.10 Under the hypothesis of Theorem 2.9, and assuming that the data are sufficiently small
such that the Lipschitz continuity constant (cf. (2.50)) satisfies Crip < 1, there exists a unique solution
(u, F) of problem (2.33).

As we conclude this section, it is pertinent to highlight some key observations that underpin the framework
of our analysis.

Remark 2.3 (a) The existence of the tensor o and the semi-advective flux vector & follows from the inf-
sup compatibility conditions satisfied by the bilinear forms A and A, as stated in part (b) of Lemma
2.1. Moreover, utilizing (2.14), the continuity of the forms #y(-,-), € (w;-,-), and Fy(-), with w = u
and ¢ = ¢ (cf. Lemma 2.2, Lemma 2.3, and estimate (2.20a)), as well as the a priori bounds (2.52)

1 B(G,0) 1 (U, T) + € (u; 6, D) — Fy (D)
|G |ldivy /50 < 5 SUp =" = — sup —~ =
Illatvess0 <5 00 T3l = 5 o0k, G

'u;éO v#0

1 - 1
< sl + 5 1 Z ol } < Coli,, f9, 05,0, 9)
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which corresponds to the following a priori estimate for o with
1
B
1 £llo.a/30 + 91 +70) QY + 112 Cola, 1, U, Q) }

1
Cs(p,v, f,9,0,k,U,Q) := {2u2 Ci(u, v, fr9,0,K,U,Q) + B Ci(p, 7, £, 9,0, 5, U, Q)2

Similarly, we obtain the a priori bound for o,
~ 1, =, 1 . —~
[0 ]ldiv, /5.0 < g{llﬂfﬂllwllﬁ + 5 lulloaelldllg + II%\ﬁ/} < Culp,v, f. 9,0, 5,U,Q)

with
C4(M7 s I, g,a,K,U, Q) = % {\/ﬁmax{/f, U‘Q’1/4} 02(a7 K, U, Q)

1
+5 Ci(p7: £,9,0,,U,2) Cal, ,U, Q) + aU|Q[ 2}

(b) The additional regularity (2.39) serves exclusively to bound the term Es, as indicated in (2.46), when
proving the Lipschitz condition for £. This is due to the viscosity u being concentration—dependent.
However, in analyses that consider constant viscosity — such as in [2, 20, 3/, 38, /6] — that assumption
is unnecessary. Under these circumstances, the only prerequisite for the existence of solutions (cf.
Theorem 2.9) is condition (2.25), and the Lipschitz constant (2.50) becomes

1 11 1
CLIP = 97’Q|2 + 701(/”’77) f?gu a, K, Uu Q) +
Oy 2 207

Cy(a, k,U, Q).

3 The Galerkin scheme

We now describe the discretization of the variational formulation (2.14). We start in Section 3.1 by in-
troducing the finite element spaces that serve as the basis for our discrete problem formulation along with
the properties of the forms involved. Next, in Section 3.2, we analyze the well-posedness of the discrete
problem, applying a fixed—point strategy similar to the one used in the continuous case. In Section 3.3 we
derive the corresponding Cea’s estimate and prove optimal order a priori error estimates

3.1 Discretization and Finite Element Spaces

Consider a regular triangulation 7, over ), consisting of simplices T, specifically, triangles for d = 2 and
tetrahedra for d = 3. We use 77}’ to represent the barycentric refinement of 7;,. Denote by hr the diameter
of each simplex T" in ’7;:’, and define h as the maximum diameter, h := max{hr : T € ’7;5’}, corresponding to
the mesh size for 7;:’.

For a given positive integer ¢, we define Pg(’];lb) as the set of scalar piecewise polynomial functions of degree
less than or equal to £ on ’77}’, that is

Pé(ﬁlb) = {ph : ph‘T € Pg(T) VT € Eb}

Consistent with the notations introduced in Section 1, we denote the spaces of vector—valued and tensor—
valued polynomials on T, by P,(T;®) and P,(T;), respectively. We also recall the local Raviart-Thomas
space of order £ defined as RT(T) := Py(T') © P;(T")x, where x is a generic vector in R and P;(T") denotes
the space of polynomials of degree £ on T' . Consequently, the global Raviart—Thomas space of order ¢ is
characterized by

RTy(T?) := {Th c H(div;Q) : cirplr € RTy(T), YceR, VYTe 7;5’} .
The finite element spaces for approximating the unknowns t, u, o, t, ¢, and o of problem (2.14) are then
given as
Hj, == LE(Q) NP(T?), Hp :=LYQ)NP(T), HY := Ho(divys; Q) NRT(Ty),

- _ 3.1
H}, = L*(Q) NPy(7), Hf :=LjQ) NP(T), Hf := Hp(divys; Q) NRT(T). 5-1)

17



Following the approach used in the continuous case, we simplify the notation by setting

Gp = (tp,up), Tp:=(rp,vp) € Hy = Hif x Hj,

Gn = (noon), U= (T, tn) € Hy :=HY x HY .

In turn, for each t; € H}l we identify tj sym and tp e as the symmetric and skew-symmetric parts,
respectively. The Galerkin scheme associated with problem (2.14) seeks to find (i, on, Pp,0n) € Hy ¥
HY x Hjy, x Hf satisfying

Ay, (Up, V) + € (up; Up, 0p) — B(Oh,0) = Fy, (Uh)

By, ) =0
. . _ . . . (3.2)
(P, 0n) + € (up; Gh, n) — B(n, on) = F (Vn)

B(Bn, 1) =0,

for all (U, Th, 75}1, T1) € Hy x Hg X ﬁh X Hg. Here, ”Q{d)h(" ), € (wp; -, +) : Hy xHy, — R (with ¢, and wy, in
place of ¢ and w, respectively), fsszv(-, ), ‘g(wh; o) H,xH, — R, (with wy, in place of w), % : Hy xH7 — R
and % : Hy, x HY? — R are the bilinear forms defined in (2.15a)-(2.18b) constrained to operate within the
respective finite—dimensional spaces.

In turn, #,, (with ¢ instead of ¢) and .# are the linear functionals defined in (2.19a) and (2.19h),
respectively, and satisfy

|, (07)| < {Hf||o,4/3,9 + g(1 +ya)|Q[*? +97|Q\1/2H¢h||0,4,9} |Unllm VUn € Hy, (3.3a)

and
—_ LS . ~
|7 ()| < aUIQ|2 [¢nllg YV on € Hy. (3.3b)

In the following, we outline the properties of the forms at the discrete level, starting with % and PB. We
emphasize that the extensive development and analysis of the finite element set (Hy,, HY) are detailed in [36]
for a dual-mixed formulation of the Navier—Stokes equations. That work states that if the discrete spaces
are constructed on meshes with a macroelement structure (such as 7;Lb) and if the polynomial degree ¢ meets
the condition £ > d — 1, then these spaces are inf-sup compatible and satisfy a discrete Korn’s inequality
(cf. (3.4a) and (3.5a)). These conditions are vital for ensuring the well-posedness of the discrete problem,
particularly with fluid equations. For similar properties of # (refer to equations (3.4b) and (3.5b)), please
see [16]. Consequently, we omit the proofs here.

Lemma 3.1 For { > d — 1, the forms % : H, x H] — R and % : Hy, x H? — R defined in (2.16a) and
(2.16Db), exhibit the following properties.

(a) Continuity: % and B are bounded, that is
(% (On, T)| < |Onllm [ Trlldivy 0 VO €Hp, V7 €HY,
| B(n, T1)| < [REA[E 17l divy 5.0 Vi, e Hy, Y7, e HY.

(b) Discrete inf-sup conditions: There exist positive constants B4 and Ed, independent of h, such that

%(’l_jh, Th)

sup —s5—— > /Bd ”Th”div4/3;Q VT € Hgv (3'43)
sneH, [|UnlH
) 40
By, T ~ - =
sup ZWmTh) BalTnllaivyae  V7r € HE (3.4b)
Gem,  [Unllg
Pp#0
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(c) There ezist positive constants Cyq and éd, independents of h, such that

|75, symllo.2 = Call (Ph,skw, vn)| VU, = (rp,vp) € Vi, (3.5a)

and
lo,0 = Ca l|¥nllo40 Vo = (Th,Yn) € Vi, (3.5b)

where Vy, and \~7h are the discrete kernels of the forms % and @, that is,

175

V= {17h€Hh : /Th:Th—l-/’l)h-diVTh:O ,\V/ThEHZ} s (3.6&)
Q Q
and
V), = {Jh cH, /?h.%ﬁ/ Ypdivi, =0 V7, € H{{} . (3.6b)
Q Q
Proof. See [36, Lemma 4.1] [16, Section 5] O

The discrete version of the Lemma (2.2) concerning the bilinear forms &7 and o is presented as follows

Lemma 3.2 The bilinear forms oy, : Hy, x H, — R (for a given ¢, € Hf} and o ﬁh X ﬁh — R, as
defined in (2.15a) and (2.15b) respectively, have the following properties:

(a) Continuity: Both @74, and o are continuous, satisfying

| Z, (i, On)| < ||| [[dnllm 1Ol ¥ tin, On € Ha,

| (Ghs ¥on)| < ||| [|Bnllgg [1¥nllg Y Bh,¥n € Hp,
with the same constants ||.</|| and ||42fNH from Lemma 2.2, part (a).

(b) Coercivity of <y, : The form oy, is coercive on the kernel Vi, of the bilinear form % (cf. (3.6a)),
for any ¢, € Hf. That is, there exists a positive constant o, = [ min{l,Cg}, independent of h,
such that

Ay, (On, Bn) 2 &y | Bnllf VY Oh € Vi, (3.7)

where the constant Cyq comes from (3.5a).

(¢) Coercivity of o : Assume the diffusive constant k and the mean velocity constant U satisfy
U Q1/4 : ~2
E’ |"/* < min{l,C3} (3.8)

where the constant é'd comes from (3.5b). Then, the form o is coercive on the kernel \~7h of,%’7 (cf.
(3.6b) ). Specifically, there exists a positive constant a;v := 5 min <1 — %, 5’3 — %]Q\l/‘l), independent
of h, such that . B

A (Ynyn) = S Onlg Vn € Vi (3.9)

Proof. The boundedness of the forms .7, and o is a direct consequence of the inclusions H;, ¢ H and
H;, C H, respectively. The coercivity of the form o7, with respect to V} has been established in [36] and
is further discussed in [16, Lemma 4.1]. As for the V,-coercivity of the form 7, it is suffices to utilize the

definition of 7 along with the application of Hélder’s and Young’s inequalities. Then, the property (3.5b)
and the norm defined on Hy, lead to the desired result, as follows

A (Cnon) = KlIFRlG o = Ullvalloasl@alloaslrn

0,0

K (- - U -
> 2{IFnl3a + I7nl3a b = 190 {lvnlZ a0 + I7nl3 0}
K - K~ U -
> 27l e + SCIvnlR 0 — 5190 Il
A 272 - Uion/a 2 . 17112
> Zmin {1,C3 }Inl% — SOVl = o Gl -
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where the constant oz’;; is clearly positive, thanks to the assumption (3.8), and independent of h. U

The following properties directly follows from the definitions of %3 and ‘JZ;;, paralleling the proof presented
for their continuous counterparts in Lemma 2.3, adjusted for the discrete spaces.

Lemma 3.3 For each wy, € H}, the bilinear forms € (wp;-,-) : H, x Hp — R and ‘g(wh; o) H, x H), —
R are endowed with the properties of continuity, skew-symmetry, and boundedness as in Lemma 2.5. In

particular, B L . _
%(’wh;’l_)'h,’l_fh) =0 V’Eh € H, and Cg(’wh;l/)h,wh) =0 Vl/Jh cH,. (3.10)

Remark 3.1 We conclude this section by highlightinhg that our fully mized finite element formulation (3.2)
naturally endows the forms € and €, corresponding to the convective terms, with inherent skew—symmetry at
discrete level. Consequently, the customary requisite for post—discretization modifications to maintain such
mathematical properties is unnecesarry in our framework. This inherent skew—symmetry, a direct advantage
of our formulation mathematical structure, plays a pivotal role in preserving the conservation of energy and
numerical stability.

3.2 Well-posedness of the discrete problem

Following the approach from Section 2.3, we find that the problem (3.2) is equivalent to a problem reduced to
the kernel of %, and %}, as defined in (3.6a) and (3.6b), respectively. The task is to find (dp, Gn) € Vi xVy,

such that Lo Lo ~
Ay, (U, Bp) + € (up; Up, Bp) = Py, (Uh),
(3.11)

— ~ —

A (P ) + € (un; G, V) = F (Un)
for all (6h,75h) €V X {7,1.

The discrete counterpart of Lemma 2.4 is presented below.

Lemma 3.4 Assuming the data satisfy (3.8), any solution (tp, Fp) to problem (3.11) satisfies the following
a priort estimates

”ﬁh”H < CT(M:’% f.9,a,k,U, Q) and H@h”ﬁ < CS(O‘7 Kk, U, Q)v (3'12)
where
* 1 *
Cilmy, £905.0,9) 1= — {IFloassa + 90 + 7)1 + 9110 2C5 (0, 1,1, )}, (3.13a)
o
C5 (0, 5,U,9Q) := (o) a9 (3.13b)

Proof. Proceeding similarly to the a priori estimates for the continuous problem, let (4, @) be a solution
to problem (3.11). Taking ¥}, = ), and ¥, = @), and utilizing the skew—symmetry property of the forms
¢ and € (refer to (3.10)), we find that

"(ZZPh (ﬁh, ﬁh) = 94/% (’l_l:h) and ﬂ/(gﬁh, (ﬁh) = 9(@%) . (3.14)

In particular, we use the Vj,—coercivity of &/ and the continuity of gg(cf. part (c) of Lemma 3.2 and (3.3b),
respectively), to get

* = = - o = 1 —
%;H%H% < A (Bh, Bn) < |-F(@n)| < U215l g -

Thus, after simplification, we readily obtain the a priori bound (3.12) for ), with the constant C5(«, x, U, 2)
as defined in (3.13b). Similarly, from the first equation in (3.14), we derive the corresponding a priori bound
for 4j. By using the coercivity of &7, (refer to Lemma 3.2, part (b)) and the continuity bound of the
functional .7, (see (3.3a)), we deduce that

o nllE < 1%, @] < {11 Floas + 91+ 702" + 61191 nllo.0 } e
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This immediately leads to the desired result upon simplifying, given that |¢p|lo4,0 < ||Fn ||, and considering
the estimate previously derived for Jj,. O

The next step involves transforming (3.11) into a fixed—point problem. Following a methodology inspired
by the continuous case, we first address a linearized and decoupled version of the problem. Thus, given
(W, dn) € Vi X Vi, we seek (Up, Gn) € Vi x V), that satisfies:

Mdm (ﬁh’ 'Bh) + (g(’wh; Up, 'Bh) = ﬁd’h ('Bh)7
(3.15)

A (Bnyn) + € (wp; G, bn) = F(Un),

for all ('D‘h,z;h) €V x ivfh.
With the help of the a priori estimates for discrete solutions derived in Lemma 3.4, we define the closed
convex subset By, of V;, x V), given by

By = {("I’h,égh) € Vi x Vit |[@nllu < Cf (17, £, 9., 5,U,Q)  and | énllg < C5 (5, U, Q)}, (3.16)
where C¥(u,7, f, 9, a, k, U, Q) and C5 (o, K, U, Q) are as defined in (3.13a) and (3.13b), respectively.
We then introduce the operator %, : By, — Vj, X \~7h, defined by
L (@, ) = (in, Bn)  V(Wn, ¢n) € B, (3.17)

where (up, Fp,) is the solution to the problem (3.15). It is evident that any solution of (3.11) corresponds
to a fixed—point of the operator %, i.e.,

(ﬁh76h) solves (3.11) < gh(ﬁha‘ﬁh) = (ﬁhySBh)- (3.18)

Certainly, the viability of this approach hinges on the wel-defined nature of .%},. This is addressed in the
ensuing discussion.

Lemma 3.5 Under the assumption specified in (3.8), consider By, to be the ball given in (3.16). The
operator £y, : By, — Vi, X Vy,, as detailed through (3.15)—(3.17), is well-defined. Furthermore, it holds that
Zn(Br) € By,

Proof. Adapting the proof from Lemma 2.6 to the discrete setting of (3.15), consider any pair (w0, gi_;h) € Bp.
We begin with the fluid problem, seeking 4, € Vj, that satisfies
JZ{qsh (’l_l:h, 6h) + %(wh; iy, 6h) = g‘\d)h (ﬁh) YU, € Vy,. (319)

Given the continuity of <7, and €, and considering the coercivity of .27 and the skew—symmetry of € (cf.
(3.7) and (3.10)), the form <7, (-,-) + € (wp; -, -) is shown to be uniformly coercive on Vj,, independent of
(én, wy). Moreover, with %, € V}, we find

151

A <\ flloasz,0+g(1+ 7a) QY3 + gy [QV2C5 (v, 5, U, ),

where we have used that ||¢nllo4,0 < C5(a, k,U,Q) due to (ﬁh,gh) € Bj. The Banach—Necas—Babuska
Theorem assures the existence and uniqueness of 4y, solving (3.19), with

_ 1 x
lnln < = {IFlo.ass0+9(1 + 70| + 9190 /2C5 (0,1, U, )} (3.20)
o

For the concentration equation, the problem of finding &, € \th that satisfies
A (Bn,0n) + C(wn; Gn, 0n) = F(n)  Viu € Vi, (3.21)

follows a similar approach. The continuity and coercivity of o7 (cf. (3.9)), along with the skew-symmetry
of € (cf. (3.10)), and the boundedness of .%, allow to deduce that

o (D) + € wni b, tn) = oSl Von€ Vi, and [ F g, <aUQ"2.
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Again, Banach—Necas—Babuska Theorem gives the existence and uniqueness of @ solving (3.21), satisfying

I1Znllg < (a7) " aU|Q /2. (3.22)

Consequently, .7}, is well-defined. Note further from (3.20) and (3.22), the definition of C{(-) and Cj(x) in
(3.13a) and (3.13b), and the definition of By, in (3.16) that (up, ) € By, and therefore £, (Bp,) € By. O

We now turn to the Lipschitz continuity of .%},. We caution in advance that due to the characteristics
of finite element spaces, applying a continuous regularity hypothesis such as (2.39) directly to the discrete
context is impractical, as highlighted in references [15, 16]. The main reasons are that finite element spaces
inherently restrict the level of regularity that can be achieved, and the discretization process introduces
mesh—size—dependent estimates. Therefore, our analysis of %}, moves forward without relying on this type
of regularity assumption.

Lemma 3.6 Under the hypotheses from Lemma 3.1 and the condition (3.8), £}, exhibits Lipschitz continu-
ity. Specifically, there exists a constant Cfp > 0 (refer to (3.31), below) ensuring that

%3 (@, 1) — L3 (Do s bo.0) gy < Crae | (@ 1) — (@op, don) |l gni (3.23)

for all (W, b1), (Wop, bo,u) € Bp.
Proof. We adapt the proof of Lemma 3.6 and consider (w0, g;h) and (o p, ggo’h) arbitrary pairs in the ball
By, we denote by (U, §n) = Zh(Wn, ¢n) and (o n, Fon) = Ln(Wo n, Po.n) in By, satisfying

[dnl[a, 1ol < CT (v, f,9,0,6,U,Q) and  |Gullg, [|Ponllg < Cs(e, 5, U, Q). (3.24)
From the definition of the operator .}, (see (3.15)-(3.17)), it follows that

Ay, (Un, Op) + C(wh; Up, Oy) = Fy, (V) VU, € Vi,
A (Bn, ¥n) + € (whs Gy bn) = F () Vb € Vi,
and

"Q{%,h (ﬁo,hv 60,}1) + Cg(th; ﬁO,ha 'BO,h) = ‘g%,h (’807}1) Vﬁo,h € Vy,

—~

A (Bon, Yon) + E(won; Fon Pon) = F(Won)  Yon € Vi

The analogous estimatation to the continuous one in (2.43) becomes

ol — o lf < { Folii — o) = T (@ — o) |

+ {Cg(wo,h; U p, U — Ug,p) — C(wh; Uy, Uy, — ﬁo,h)}
(3.25)

+{%o,h(ﬁo,ha U — o) — Dy(Uo,n, U — ﬁo,h)}
— B + E + EX.

The expresions E] and E3 can be estimated straightforwardly from the respective counterparts E; and E»
(see (2.44) and (2.45)), respectively, which leads to

B} < gy|QY2 | 6n — donlloaelltn — Gopllm - (3.26)

and

1. I,
B3 < §||uh||H |wn — wonlloa0 ||t — donlm,- (3.27)

In turn, as anticipated, for bounding E3 we note that regularity assumption such as (2.39) is not available
in the present setting. Therefore, we will utilize a L* — L4 — L2 argument based on the Holder inequality in
the estimation (2.46), adapted to the discrete setting, to obtain that

B3 < 2L,[|¢n — don

lo.4.2llto.nlloallth —torloq- (3.28)
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Replacing back (3.26), (3.27) and (3.28) in (3.25), and symplifying, we get

07479} . (3.29)

~ ~ 1 1 1, .
g, — donl < . {(97|Q|2 + 2Lyt nllo,a0) |6n — Ponlloan + §||uh||H lwo,n, — wh|
o

To estimate the difference @y, — @y 1, we follow the same procedure to get (2.49) and easily deduce that

L 1 -
16h = Gonllg < 5 lwn = wonlloaelPnls- (3.30)
of

Next, combining (3.29) and (3.30), and the fact that ||¢n, — ¢o nllo4,0 and |Jwy, —wo 04,0 are both bounded
by ||(@Wn, ¢n) — (Wo,n, ¢o.n)||, we deduce that

1L (W, &) — L (Wo p, $o,h)\|HXﬁ

1 1
S{ i [(Q’HQ’? +2L,[[ton
Y%

1., 1 . Lo - -
lo.4.02) + 2HuhHH] + mH%Hﬁ} (@, ¢n) = (Wo,ns Po.0) |z -
o

Finally, by applying the estimates (3.24) to bound 4, and F} in the preceding expression, we conclude that
the operator %}, satisfies the Lipschitz condition (3.23), with the constant

L
*
207

Crip = — {(QV\QP + 2L, |[tonlloa0) + 3¢ (v, f.9,0,5,U,Q) } + C3(a,k,U0,Q).  (3.31)
of

O
It is important to highlight a few key points here.

Remark 3.2 (a) The determination of the constant Cfp is influenced by the term top, which represents
the first component of the pair (to n,won) = top = Zh1(Wo pn, go’h) within By,. Similar to the findings
in previous studies [15, 16], given that elements of ]HI%L are piecewise polynomial by components, we
can affirm that ||topllo4.0 is finite. However, we cannot assert that this finiteness is independent of
the discretization parameter h.

(b) Significantly, in scenarios where the viscosity is constant as analyzed in [2, 20, 3/, 38, /0], the term
E3 (see (3.25)), does not appear. This means that, with constant viscosity, the Lipschitz continuity
constant for the discrete operator £}, depends only on given data and is independent of the mesh size
h. More precisely, the constant Cip is defined as

1
*
2077

* 1 1 1 * *
CLIP = 047* {g/‘y’Q‘Q + 501 (u777 fug7 Q, R, U7 Q)} + C2 (Ck, K, U7 Q) (332)
o

We close the section with the main result establishing the well-posedness of the discrete problem (3.11).

Theorem 3.7 Under the hypotheses from Lemma 5.1 and the condition (3.8), there exists at least one
solution (up, Pp) for (3.11), satisfying the a priori estimates

Hﬂh”H < CT(/L,’% f,9,0,k,U, Q) and ”SBhHﬁ < C;(aa Kk, U, Q) :

Proof. From Lemmas 3.5 and 3.6, the operator %}, (refer to equations (3.15)—(3.17)) satisfies the Brouwer
Fixed Point Theorem criteria, ensuring at least one fixed point for .%3. Moreover, from (3.18), this fixed
point aligns with a solution for the problem outlined in equation (3.11), which also adheres to the a priori
estimates from Lemma 3.4. U

As we conclude this section, it is pertinent to highlight some key observations that underpin the framework
of our analysis.
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Remark 3.3 (a) Similar to the continuous scenario, the existence of oy, and o as well as the corre-
sponding bounds follow from the inf-sup compatibility of B and B, as outlined in part (b) of Lemma
3.1 (see Remark 2.3, part (a)).

(b) Due to the Lipschitz continuity constant (3.31)’s dependence on top, establishing a uniqueness result
for the discrete problem (3.2) is not straightforward. Nonetheless, as mentioned in Remark (3.2), for
constant viscosity the Lipschitz constant (3.32) of £, only depends on given data. Thus, the result
(3.7) can be improved to assure both the existence and uniqueness of the discrete solution, from the
Banach Fized-Point Theorem, by requiring £ to be a contraction. This implies the data must be
sufficiently small so that the Lipschitz constant (3.32) ensures Cfp < 1.

3.3 A priori error analysis

The objective of this section is to estimate the approximation error associated with the Galerkin scheme
presented by the fully-mixed finite element method (3.2), utilizing the discrete spaces specified in (3.1) and
under the conditions given in Theorems 2.9, 2.10, and 3.7. We aim to derive theoretical convergence rates
in terms of the discretization parameter h, providing a error estimate of the form

1, ) = (tn, o) [ Erxo (@ivaysi0) + 108, 6) = (Gn Tn) | g mp (div, i) S C 1

where (4,0,7,0) € H x Ho(divy/3; Q) x H x Hr(divy/3; Q) is the unique solution of the coupled problem

(2.14), (up,oh, Pr,on) € Hy x HY x Hy, x Hg is a solution of the discrete coupled problem (3.2), C' is a
positive constant independent of h, and s denotes the theoretical convergence rate.
According to the structure inherent in the respective variational formulations, we employ [16, Lemma 6.1].

This lemma provides a Strang—type estimate for a problem with a similar structure of ours. The lemma is
presented as follows.

Lemma 3.8 Let H and Q be reflexive Banach spaces, and let a : Hx H — R and b: Hx Q — R be
bounded bilinear forms such that a and b satisfy the hypotheses of [26, Theorem 2.34]. Furthermore, let
{Hh}h>0 and {Qh}h>0 be sequences of finite dimensional subspaces of H and @, respectively, and for each
h > 0 consider a bounded bilinear form ay : H x H — R, such that ap|m, xH, and blm,xq, satisfy the
hypotheses of [26, Theorem 2.34] as well, with discrete coercivity constant o and discrete inf-sup condition
constant B*, both independent of h. In turn, given F € H', G € Q)', and a sequence of functionals {Fh}h>0’
with Fy, € H} for each h > 0, we let (u,0) € H x Q and (up,0p) € Hp x Qy be the unique solutions,
respectively, to the problems

a(u,v) + b(v,0) = F(v) VveH,
bv,7) = G(1) V7reQ,
and
an(un,vp) + b(vn,0n) = Fr(vp) Voup € Hy,
b(Uh,Th) = G(Th) VT}L c Qh .

Then, there holds

|u—wupl| + [|o — onl| < Cs1dist(u, Hy) + Cspdist(o, Q)
(3.33)
+ Cos {IF = Fulla, + llalu,) = an(u ) }

where Cg;, 1 € {1,2,3}, are positive constants depending only on o, B*, and other constants, all of which
are independent of h.

With this at hand, we now separately address the fluid and concentration equations and estimate the

individual errors |[(d, o) — (@h, )| EHxHy(div, q:0) and [[(F,0) — (@hagh)||ﬁxHF(div4/3;Q)-
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Estimation for [|(4,0) — (tn, oh)|[1xH,(div,5:9)-

The fluid equations, as expressed in the first two rows of (2.14) and (3.2), can be equivalently rewritten as

Ay o(8,9) — B(V,0) =F,(v) VieH, (3.34)
Bu, ) =0 VT € Hy(divy/s; ), )
and o . B
Auh,goh ('U/h, 'Uh) - %(vhu Uh) = L0}\<Fh (vh> Vgph E Hh b (3 35)
r%('l_l:h,’Th) =0 VT}ZEHZ, ’
where A, , and A, , are the bilinear forms
Gy, o (W, V) 1= (W, V) + € (u; W, V) Vw,d e H
(3.36)
ﬂuh#ﬂh (lﬁh, ﬁh) = JZth (’lr)h, ’l_fh) + Cf(uh; ’lf)h, 6h) V’lf)h, v, € Hy, .
By proceding similarly as in (2.46)-(2.47) and using the regularity assumption (2.39), we find that
RN R . e_1 —
| o (1, Bn) — A, (1, Bn)| < 2LylJic 10172l = enlloacltollellvnlm, (337)

. e _ 1 —
< 2Ly licll[€2 a2 Crelle — enlloaelltnla, -

In turn, from the boundedness properties of ¢ and in part (c) of Lemmas 2.3 and 3.3 along with the a priori
(2.52) for 4, we find that

€ (w; 6, Tp) — € (wp; 6, 0y)| < |lu—upllogolldlu |6na

(3.38)
< Ci(, 7, f19.0,6,U, Q) [lu — up|lo,4,0]Bn]la -
Combining (3.37) and (3.38), and using the norm definition on Hj,
HAU,%O(ﬁ7 ) - ‘A’Uh,sﬁ’h (ﬁa )HH’h
€ 1 (339)
<L 2L, i[9 2 Crelle — erllogn + Ci(i, v, f,9, 0,5, U, Q) [u — uplloan-
In turn, similarly to the estimation F; in Lemma 2.7, we find that
1
| Zo = Fonllm, < 97120 — enlloan- (3.40)

Note that the hypotheses of Lemma 3.8 are satisfied for the bilinear forms Ay ,, Au, ., and %. Thus,
considering the estimates (3.39) and (3.40), then the Strang estimate (3.33) for problems (3.34) and (3.35),
is given by N

1(t, o) = (tn, on)l[ExHy(div, 50) < Cs1dist(d, Hy) + Cg 2 dist(o, Hf)

=+ 057301,€(M777f797047Q)"90 - ‘;Dh”0,4,Q (341)

+ CS,3CI(N7 7> f.9,0,K,U, Q) ||u - uh||07419 :

where Cg;, i € {1,2,3}, are positive constants independent of h and

1 . e_1
Ci(p,v, f,9,0,) := gv|Q2 + 2L, |3 ||| 472 Cc . (3.42)

Estimation for ||(&, o) — (&, &h>HﬁXHF(diV4/3;Q).

Regarding the concentration equations, given as the two last rows of (2.14) and (3.2), they can be expressed

)

(75 7)

. ~

Au(@,) — B(

B

FW) VéeH,
0 V7~' S H[‘(diV4/3;Q),

(3.43)

€, Sy
N N
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and .

A (B 0) — B, &1) = F () Yoy € Hy, (3.44)
BB Tr) =0 vTh € HY,

where .Zu and ;lu,“ are the bilinear forms

C(w;d ) Vo eH,

— —~ -

Au(8,0) := o (6, 9) +

~ . B _ (3.45)
Ay, (On, n) == A (dn, ¥n) + € (un; On,¥n)  Von, ¥ € Hy .
From the boundedness properties of % and the a priori estimate (2.52) for ¢, we find that
[Au(B.40n) = Au, (8.0 = | € (w; G, 0n) — € ans G, 0n)|
< Jlu = unllosel@lgldllg < Cala, 5, U, Q) llu — unlloaolldnllg »
and so B B
[Aw(B, ) = Au, (8, )l < Cales 5, U, Q) lu —unlloan - (3.46)

The bilinear forms (./Zlvu,cp, %) and (/Tuh,%, B) satisfy the Lemma 3.8s criteria. Then, the Strang estimate
(3.33) applied to problems (3.43) and (3.44), together with the bound (3.46), is given by

1(8.6) = (& Tl crt (v, ) < Csia dist( Hy) + Cs.a dist (5, HY)

_ (3.47)
+Cs302(a, k, U, Q) ||u — upl|o4,0
where 55,1-, i € {1,2,3}, are positive constants independent of h.
Estimation for the total error.
Finally, we bound ||¢ — ¢pllo4,0 in (3.41) by using equation (3.47) to get
1(t, o) = (tn, on) [ xHo (divy 5:0) + (8, 0) — (@h,&h)uﬁxﬂr(dm/g;g)
< Cg, dist(d, Hy) + Csp dist(o, HY)
+Cs3Cs1C1 (1,7, f1 g, 0, Q)dist (5, Hp) (3.48)
+Cs3Cs2C1 (1,7, f, 9, 0, Q)dist (&, HY)
+Coc(p, 7, £,9,0,5,U,Q) [lu — uplloan
where C' . is given in (3.42) and
Coc(1,7: £,9,0: 1, U, Q) 1= Cisg{ CsgCalo 1, U, Q) C1i, 7, £, 9.0, 2) 19)

+C1(H,’77f79a047’ia U’ Q)} .

We are now in a position to establish the main result of this section, which provides the theoretical
convergence rates for the numerical approximation of our fully-mixed formulation.

Theorem 3.9 Assume that the hypotheses of Theorems 2.9, 2.10, and 3.7 hold, and the data is sufficiently
small so that
(3.50)

)

N

CQ,&(M777 fag7 a, R, U7 Q) S

where Cac(+) is defined in (3.49). Suppose further that the solution satisfies u € W4(Q), t € H(Q) N
LZ.(Q), o € H*(Q) N Ho(divys;Q), dive € WH3(Q), o € Ws(Q) NL§(Q), t € H¥(Q), 7 € H(Q) N
Hr(divy/3;Q) and dive € We4/3(Q), for some s € [0, + 1]. Then the errors satisfy

H(ﬁa 0) - (ﬁha a-h)HHXH()(diV4/3;Q) + H((/_ja &) - (6h’&h)“ﬁXHF(diV4/3;Q) < Chrate h° (3.51)
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where the constant Crate > 0, independent of h, depends on the data and high-order norms of the solution
(cf. (3.52)), but is independent of h.

Proof. The hypothesis (3.50) applied to (3.48) gives the Cea estimate
1(t, o) — (tn, on) [ xHy (divy 5:0) + (8, 0) — (<5h73h)HﬁxHF(diV4/3;Q)
<C {dist(ﬁ, H,) + dist(o, Y ) + dist(&, H,) + dist(5, H;f)} .

Then, from the regularity of the solution and the approximation properties of the finite dimensional subspaces
[16, Sections 5.2 and 5.5], we obtain

1, ) — (@, 00) sasso(aivasn + 15 8) = (G030 sy v ey < C1° {nuuz,m + lelle

l,4/3;Q} )

which gives the desired result. ([

(3.52)

+lolle + Idivelasa + leliae + [[tle + |5 + |dive

Remark 3.4 From the identities (2.5) and (2.4), we recall that

1 1
p:—ﬁtr(QU—i-u@u)—Cu, with Cu;:—m/gtr(u@)u),

which suggests to define the discrete pressure as
1 , 1
pp = —ﬁtr( 20 + up @uUp ) — Cyy, s With  Cy, = —m ; tr(up, ® up) .

Then it is straightforward to demonstrate the existence of a positive constant C, which is independent of h,
such that

Ip = pullo.c < C{llo = Fullaiv. o + 1w = unlloo } -

Note that the rate of convergence of py, is the same of the rest of variables as in (3.51).

4 A posteriori error analysis

In contrast to the a priori error analysis (cf. Section 3.3), which provides theoretical convergence rates and
estimates the error based on the discretization parameter h, this section is dedicated to the a posteriori error
analysis for the fully mixed finite element method (3.2). The goal is to establish error bounds that depend
on the computed solution and provide practical error estimates for adaptive refinement. Specifically, we aim
to show the existence of positive constants Ceg and Ci such that the following inequality holds

Cet ©® < H(ﬁa U) - (ﬁ:ha Uh)||HXH0(div4/3;Q) + H((er a-) - ((ﬁha &h)||ﬁ><Hp(div4/3;Q) < Ca O, (41)

where ©® represents the a posteriori error indicator. This approach allows for the assessment of the error
based on the actual computed solution, enabling effective adaptive mesh refinement strategies to improve
the solution accuracy. In Section 4.1, we establish and review the necessary notations and results to define,
derive, and analyze the a posteriori error estimator. The residual-based indicator is then introduced in
Section 4.2, where its reliability (upper bound of (4.1)) is also demonstrated. Finally, the efficiency property
(lower bound of (4.1)) is established in Section 4.3.

4.1 Preliminary results for the a posteriori error analysis

Mesh faces, jumps, curl operator, and tangential/normal components. Consider a barycentric
refinement mesh ﬁlb. We denote by Fj, the set of all facets (edges or faces, applicable for d = 2 or d = 3),
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with their respective diameters represented as hrp. We categorize the facets into internal and boundary
subsets as _
Fl={FeF:FcQ and F:={FecF,:FcCTl}.

For any element T' € T,°, let Fnr denote its set of facets. These can be further classified into
Fpp={FCOT:FeF} and Fpyp:={FCOT:FeF}
The unit normal vector np on each facet and the tangential vector sp on each edge are defined as
ng:=(ni,...,ng)" VFe€F, and sp:=(-ng,n)" VF € F,.

For simplicity, when the context is clear, we will use n and s instead of ng and sg. Let ¢ be a sufficiently
smooth scalar-valued function to admit on all F' € ]:,i possibly two-valued trace, we define the jump on F
as

[Wlp = (@]p)|p— @],)|, where F=0TT"NoT~ and T, T™ €7Ty.
For vector/matrix-valued functions, the above jump operator act component-wise on the function and when-
ever no confusion can arise, we write [-] instead of [-] 5.

Finally, let ¢ be a scalar field, v := (v1,...,v4)" a vector field, and 7 := (71,...,7a)" = (745)1<i j<d a tensor
field, all of which possess partial distributional derivatives 0,,. We define for d = 2,

1 t
curl(V) i= Oryth =00 0)' . curl(v) = Oryva ~ Oy, curl(r) = (ST ) (o) =
and for d = 3
curl(7q)" TIXN
curl(v) :=V xwv, curl(r):= [curl(T1)' |, ~(7):=|7T2xmn
curl(rs)" T3IX N
Raviart-Thomas Intepolator. For each p > dZ—fQ, we set

H,:= {7 € H(div);Q): 7lp € W(T) VI e TP},
and let
), H, — Hy = {7 € H(div;Q) : 7l e RT(T) VT e TP},

be the Raviart-Thomas intepolation operator defined by the following properties

/(HZ(T)-n)fz/(r-n)f VEePy(F) VYFeF,, when (>0, and (4.2)
F F

/HZ(TV?Z/T'?ﬁ Vip e Py_(T) YT €T, when £>1.
T K

Particularly, from [26, Lemma B.67, Lemma 1.101] and [16, Lemma 5.3, eq. (5.38)], there exists a positive
and h—independent constant C such that Hi satisfies the local approximation property

|7 =14 (T lopr < CRE Tlh1pr, VT € WHLP(T), 0<Kk<¢, and VT €TP,

T 4.3
I = T () loasr < OVl 4sr, Vo € WHA(T), YT eTh (4:3)

The tensorial version of HfL is denoted by HfL and operates row-wise as Hfb.

Clément Interpolator. Consider the space Hl = {v, € C(Q) : vp|r € Py (T) VT € T,°}. Let I, : HY(Q) —
H} be the well-known Clément interpolation operator. According to [22] (see also [26, Lemma 1.127]), for
any ¢ € H'(Q), there exist positive constants ¢; and co independent of h, such that the following local
approximation properties hold

1 = Wlor < erbrllélham YTETY and [ —Tubllor < eshyl ||t

where A(T') and A(F') are the sets of elements intersecting T and F', respectively. The vector version of I,
denoted by I, : HY(2) — H}, is defined component-wise by Ij,.

1,A(F) VF € Fp, (4.4)

Hembholtz Decompositions. Based on [10, Lemma 4.4] and [14, Lemma 4.4], we recall the following
results regarding the existence of stable Helmholtz decompositions applicable to the spaces Hy(div,;{2) and
Hr(divy; ), respectively. These results are established as follows.
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Lemma 4.1 Let p > 1. Then, for each 7 € H(div,; Q) there exist
a) n € WHP(Q) and &€ € HY(Q) such that T = n + curl(§) when d = 2,
a) 1€ WHP(Q) and & € HY(Q) such that T = n + curl(€¢) when d = 3.

In addition, in both cases,
Inllpe + 1€lLe < CralTllaiv,e

where C'ye 18 a positive constant independent of all the foregoing variables.

Lemma 4.2 Assume that there exists a convex domain B such that Q C B and let I'n C I' such that
I'n € OB, and let p > 1. Then, for each T € H(divy/3,Q) such that T-n =0 on I'x there exist

a) 1€ WHP(Q) and € € Hll“N (Q) such that ¥ = 7 + curl(€) when d =2,
a) 7€ WHP(Q) and € € Hy (Q) such that T =7 + curl(€) when d = 3,
where H%N(Q) ={y e HY(Q): |ry =0}. In addition, in both cases,

17l[1p,0 + €10 < CHellT |l div,:0

where C'ye 18 a positive constant independent of all the foregoing variables.

Bubble functions. Given T € 7,°, we let ¢7 be the usual element-bubble function, satisfying (cf. [47])
or € P3(T), supp(épr) C T, g = 0 on 9T, and 0 < ¢p < 1 in T. Additionally, there exists C' > 0,

independent of h, such that
1/2

(4.5)

4.2 Residual-based a posteriori error estimator reliability

In this section, we introduce and demonstrate the reliability property (upper bound of (4.1)) of the a
posteriori error indicator ®. The global a posteriori error estimator is formulated as

1/2 3/4
:{ 3y ®2T} +{ 3 (:)4T/3} : (4.6)

TeTP TeTp

where, for each T € 7;Lb, the local error indicators © and © are defined as

_ _ 2 1 2
G‘); = h% d/Qch - VU}L 0 5 ('Uzh & Uh)d H

d
T + Hcrh — 2u(pn + a)thsym + or

2
+hi d/2ch—V90hH +H0h—/~”~th+ @huh+U(@h+a)edH or
(4.7)
b eurien)|, + e )l
+ hip||curl(ty Z F[[»y*hOF
sifen@)] 4 3 el
FEF} 1
and
0}° = |ai L nun + F — gl + (o + )6 H4/3 [ L (4.8)
= 1Vvoy, — — u e IVO' — = . .
h— 5 htn g Y(en + @ do,4/3,T h— 5t h0’4/37T

Remark 4.1 (a) Note that © provides a quantitative measure of the discretization error based on the
computed solution from our method (3.2). It is evidently a residual-based indicator, as can be recognized
by a simple inspection of each term defined in the continuous problem (2.9a)-(2.9b).
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(b) Differently from [28], our a posteriori error indicator (4.6) involves the residual terms h%_d/Qch —

2
Vun| and b )
0,7

Eh — chthT instead of h‘j{ch — VuhHéA’T and h%HEh — V(thgA’T. In this way,

® offers a more refined control by using the L? norm and considering the dimension d, which can yield
sharper error estimates in higher dimensions. Also, the tensor t and the vector t in our formulation
are sought in L?, making the use of the L? norm a theoretically consistent choice that aligns with the
function space in which these variables reside.

Before presenting the main result of this section, it is important to note that, for a given (w,¢) €
L*(Q) x L(Q2), thanks to the properties satisfied by the bilinear forms (-, ) + € (w;-,-) and %(-,-) and

() + €(w;-,-) and B(-,-) (cf. Lemmas 2.1, 2.2 and 2.3), it follows (see [26, Proposition 2.36], for
instance) that there exist positive constants p, p > 0 such that the global inf-sup conditions hold

sup = > p ZaC ivy/3;82)» 4.9a
(8,7)EHXHo (divy)5:9) (0, 7)o (diva5:02) 12 Ollercsso(aivy .0 (4.92)
Jﬁv@; +gwaﬁvﬁ_<@7@;)g_@ﬁa; ~1 /=
sup 7.9) + @00 1.8) = B ) =PRI 5 5, Dllgpgroaion s (49D)
b7 iva/si 1. T) g ; reays:
(¥, 7)€EHxHr (divy,3;) ’ HxHrp(divy3;0)

for all (Z,() € H x Ho(divy/3;(2) and for all (7, Z) € H x Hr(divy/s; ), respectively. These properties are
crucial to establish the main result of this section which is stated as follows.

Theorem 4.3 Under the hypotheses of Theorems 2.10 and 5.7, and assuming that the data is sufficiently
small so that

2 max {/5_101%/% s .fv g, kK, Ua Q) + 5_10;(057 K, U7 Q)v 10_101,6(,“? s f7ga «, Q)} <1 ’ (410)

where the constants C{(-) C5(-), C1(-), p and p are given by (3.13a), (3.13b) (3.42), (4.9a) and (4.9b),
respectively. There exists Cre) > 0, independent of h, such that © defined by (4.6) satisfies

H(ﬁa U) - (ﬁha o'h)"HxHo(diV4/3;Q) + H(‘/_ja &> - ((ﬁha &h)HIfIXHF(ding) < Ca ©. (4'11)

The proof of Theorem 4.3 is carried out in this subsection through consecutive steps. We begin with the
following result, which provides a preliminary upper bound for the total error.

Lemma 4.4 Under the same hypothesis of Theorem /.3, there exists Cq := 2max{p~!,p~ 1} > 0 (cf. (4.9a)
and (4.9b)), independent of h, such that

1, @) — (i, o)ty vy + 1) = (B30 gt i

N (4.12)
L8[ P——

where R : H x Hy(divy,3;2) — R and R : H x Hr(divy/3;Q) — R are the linear functionals given,
respectively, by

R(V, T) = Fy, (V) — A, (Un, V) — € (up, Up, V) + B(V,01) + B(Un, T) (4.13)
and o . - . B _ o B
R, T) = F () — A (Pn,n) — C(un, $n, V) + B(Y,01) + B(Pn, T) - (4.14)
Proof. Taking (w, ¢) = (u, ) and (7,¢) = (i, &) — (iin, op) in (4.92), we get
p (@, 0) = (Gn, on) [HxH(div,5:0)

_ Ay — iy, 0) + C(w; b — iy, B) — BB, 0 — o) — B(d — i, T) (4.15)
sup

T (@,7)€HxHo(div, 5:) (T, 7)1 8o (divy 3:)
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From the linearity of the forms, using the first and second equations of (2.14), and after adding and sub-
tracting Z,, (V), 4, (up, V), and € (up; dp, V), we find that

Ay — i, B) + C(w; i — i, B) — BB, 0 — 0y) — B — dip, 7)

(4.16)
= R(V,7) + [F(V) = T, (0)] + [, (U, B) — Hp(tin, V)] + €' (w — up; i, U)
where R( ) is defined by (4.13). By proceeding as in (2.44), we have that
. . 1
Fo(V) = F, (V) < 97|
(4.17)
(0, 7)o (divy /5:0) 5
and from part (c) of Lemma 2.3 and the a priori bound (3.12) for iy, we have that
(g(u uhauh, )

(4.18)

< Cik(:u'v g fa g, Q, K, U, Q)Hu - uh”074,9||(177 T)HHXHo(div4/3;Q) .

In turn, by adding and subtracting <7, (4, ¥) and <7, (4, ¥), grouping terms conveniently, using the definition
of &(-,-) (cf. (2.15a)), the upper bound for p (cf. (1.12a)), and proceeding as in (2.46)—(2.47) along with
the regularity hypothesis (2.39), we find that

T i, T) — 7 (G, )
[y (@i, B) — S (@) + [y, (. 9) — 7, (8, )] + [,(8,5) — (i, )]
<2 | lulon+ ) = 1o + )t i 7 (4.19)
Q

. e_1
< 2Ly J4c[|€2] llo.2

. e_1 -
< 2L, [Jic[|[21472 Crelle — enlloaell (T, T)l[Exmydivy5:0) -

Gathering (4.17), (4.18), and (4.19) together and replacing them back in (4.16), we find from (4.15) after
simplifying and using the norm definition in [H x Ho(div,/3, )] that

pll(d, o) — (ﬁhaah)HHxﬂo(divm;Q) < HRH[HxHO(divm,Q)]' (4.20)

+Cf(,u’7 v .f7 9,0, K, U7 Q)Hu - uh”0,4,Q + Cl,E(lu’v v .fa g, Q)”QD - @h||0,4,Q .

where C'1 () is the constant defined in (3.42).

Next, to obtain an upper preliminary bound for the error associated with the concentration variables, we
proceed similarly. In (4.9b), we now take w = w, and (7, Z) = (@, 0)— (&h, 1), use the last two equations of
(2.14), and after adding ans subtracting % (up; G, %) and using the norm definition in [H x Hr (divy/3; Q)]
it follows that

FI(Z,3) = B ) ety s i)

A (G — Gy D) +C(w; G — G, ¥) — B, & — &) — B(GF — P, T)

< sup :
(J,?)GITIXHp(divM:;;Q) H(¢ )”HXHF(d1V4/3,) (4 21)
C (wn, — w; Bn, V)
HRHH Hr(di + sup ST
Hrl@vasOl = sm Wl

HRH [FixHy (divy gi)) T C2(0 8, U, Q)llu —unlloan

where we have bounded ¢ according to part (c) of Lemma 2.3 and used the a priori bound (3.12) for Jj, in
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the last inequality. Finally, by combining (4.20) and (4.21), we get
12, )~ (i, 3 et o) + 1 (5) — (B9 sty s )

< p|R] [ xHo(divy5,Q)) T ﬁ_lHﬁH[ﬁxHF(divm;Q)y
+(10_101 (Ma Y, ,fa 9,0, R, U7 Q) =+ ﬁ_lcg(aa K, U7 Q)) Hu’ - uh||0,4,Q

+,071C'1’5(M, v f7 g, Q) ||<10 - (Ph||074,Q .

If the data satisfy (4.10),
left-hand side of the previous estimate to finally get (4.12) with the constant C7 = 2max{p~!,p~1} > 0.

O

We focus now on bounding the functionals R and R defined by (4.13) and (4.14). Note that we can write
them as

~ — ~

R(B,7) = Ri(B) + Ro(r) and R4, 7) = Ri(¢) + Ra(F),

where
Rl ('ﬁ) = y‘ﬁh (’17) - 'd‘Ph (ﬁh, 'l_f) — %(uh, ’ﬁh, ’l_}) + %(’6, O'h) and RQ(T) = %(ﬁh, T) y (4.22)
for all ¥ € H and T € Ho(divy/3; ), and
Ri(P) = F () — o (@, Un) — € (up, @, 0) + B(0,61) and  Ra(T) = B(Fh, 7). (4.23)

for all ) € H and 7 € Hr(divy/s; 2). Therefore, (4.12) becomes

1, @) — (i o)ty v + 15 8) = B30 gt v

cl{umum IR iy + 1Rl + H@HHF(MW} -

The estimations of Ry and Ry are obtained straightforwardly by applying the definitions of the forms and
utilizing the Holder inequality, which immediately gives the following result.

Lemma 4.5 There exist positive constants Co and Cs, independent of h, such that

o <02 {‘

1
ot 30t t ~ S,

. 1 _
HRl dlvah—ithuh+f—g[1+’y(<ph+a)}edu

0,4/3,0

IRi]

1~
_ <C Hd' 5 — =t - H
H - 3{ W Th = 5 bh - Uh 0,4/3,Q

_ ~ 1 ~
+ Hdh — Kty + senun + Ulen + a)edH } .
2 0,2

It is clear from their definitions of Ry and Ry in (4.22) and (4.2 3), as well as the second and fourth equations
of (3.2), that Ra(74) = Ra(Fp) = 0 for all 7, € HZ and 75, € HY. Therefore,

RQ(T) = RQ(T — Th) and RQ(;) = RQ(; — ;h) (4.24)
These properties are used in Lemmas 4.6 and 4.7 to establish the bounds for the functionals.
Lemma 4.6 There exists a positive constant Cy > 0, independent of h, such that

1/2
—2
HR2HH0(div4/3;Q)' < Cy { Z ®1vT} ) (4.25)
TeTp

where, for all T € T,°,

O 7 = hy Pltn = Vunllop + Wi feurln) o+ D0 kel el o -
FE]'-h,T
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Proof. We first address the three-dimensional case. According to Lemma 4.1 part (b), for any 7 €
Ho(divy; ) there exists n € WHP(Q) and € € H'(Q) such that 7 = n + curl(§). Let us then define
T as the discrete Helmholtz decomposition

=T (n) + curl(14(€)) + L BY where c= -z [ 6(fm) + curlTy(€).  (420)
319 Ja

Therefore, since Ra(cI) = 0 we find that

Ra(T = 73) = Ra(n — j,(n)) + Ra(curl (€ —1n(8))). (4:27)

On the one hand, using the definition of Ro (cf. (4.22)) and integrating by parts on each element, we get

Rao(n — IO}, (n)) =/ L —Mpm) + Y /uh div(n — II},(n))

TeTp

(4.28)
. 14 u II 'n — Vu T[ IIZ
/th~("7Hh() Eb{ EE / h* "7 n(n / h ())}

However, since uy, € Py(F), the integrals on the facets in (4.28) vanish due to the property of the Raviart-
Thomas interpolator (cf. (4.2)). Combining this with the Cauchy-Schwarz inequality, the local approxima-
tion property of the Raviart-Thomas interpolator (cf. (4.3)), the discrete Holder inequality, and the stability
of the Helmholtz decomposition in Lemma 4.1, we obtain

Ro(n=T5m) = 3 [ (tn=Vun) s (n =T m)

TeTp

< Z [tn — VuhHo,THn - Hfz(n)Ho,T
TeTp

o (4.29)
<C Z hy ||t — VuhHQT 1nl14/37
TeTp

1/2
c{ > h%d”uth—VuhuaT} -

TeTP

On the other hand, again using the definition of Ry (cf. (4.22)), the fact that div(%rl(ﬁ — Ih(ﬁ))) =0,
an element-wise integration by parts formula, the Cauchy-Schwarz inequality in .?(7) and L?(F), the local
approximation properties of the Clément interpolator (cf. (4.4)), the discrete Cauchy-Schwarz inequality,
the uniform boundedness of the number of triangles in the macroelement A(7T') and A(F'), and the stability
of the Helmholtz decomposition in Lemma 4.1, we have

Ra(curl (¢ — 1,(€))) = /Q s curl(€ — T,(6))

=Y /curl ty): (€ —In(€ Z/ Y (t1)] : (€ —Tn(8))

TeTP Fery
< Z H%rl(th)H(LTHg_Ih(g)H(),T + Z H[[’Y*(th)]] E)HO,F

TeTP FeF, (4.30)
=< Z ClhTHCLrl(th)Ho,THSHLA(T) + Z C2h¥2”[['Y*(th)]]Ho,FHSHO,A(F)

TEW FeF,

1/2
C{ Z h%“HCLI'l(th)H?)’T + Z hFH[['Y*(th)]]H(Z),F} ||’7-HdiV4/3§Q
TE'Thb FeFy

Finally, the estimate (4.25) for Ry follows from the definition of the dual norm in Hyg(div,/s; ), utilizing
the identity (4.24) with 7, as defined in (4.26), which yields (4.27) and the corresponding bounds (4.29)
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and (4.30). For the case d = 2, it suffices to employ the corresponding Helmholtz decomposition provided
by Lemma 4.1, part (a), which involves the curl of the vector-valued function & € H(2) and a respective
integration-by-parts formula used in (4.30). O

The following result gives the bound for 7%2.

Lemma 4.7 There exists a positive constant Cs > 0, independent of h, such that

1/2
~ —o
ol < € { 5 @} |

TeT,?
where, for all T € T,
O = hy e~ Venllor + Mllaml@nllor + D bl T @IS -

FeF]

Proof. 1t follows by the same arguments as in the previous lemma, utilizing the Helmholtz decomposition
for the space Hr(div,/3; ) (cf. Lemma 4.2), and noting that the respective component £ has zero trace on

', and so does its discrete version I (€). Consequently, after applying integration by parts in the analogous
estimate (4.30), the integrals on the boundary faces vanish. ]

As a result, the reliability of ® (cf. Theorem 4.3) is ensured by Lemmas 4.4, 4.5, 4.6, and 4.7.

4.3 Residual-based a posteriori error estimator efficiency

The objective of this section is to show the efficiency property of the error indicator ® defined by (4.6)-
(4.7)-(4.8). The result is presented as follows.

Theorem 4.8 There exists Cogg > 0, independent of h, such that © defined by (4.6) satisfies
Cot © < [|(d; o) = (dn, o) Bty (diva j5:0) + 18, 0) = (Gs Tn) | by v,
Most of term defining the a posteriori error indicator the error indicator ® appear in related works
addressing a posteriori error analysis based on Banach spaces-based mixed finite element methods. The
following result summarize the estimated of these terms in term of local error approximation.

Lemma 4.9 There ezist positive constants C;, i € {1,2,...,10}, all of them independent of h, such that

1
(a) o = 2n(on + tnym — 5 (wn@w)* | < {lu—unloar + It =tallor + o = onlloa.r |

- ~ 1 =N SO ~ ~
(0) || = Ktn + Sentun +Ulpn + Oé)edHO S0 {HU = nllaivaysr + [w—wnlloar + ([t = trllor +[le— <Ph||1,fz}

. 1 .
(c) |[diven = Stuun + £ = g1l +7(en + a)Jéd|

0,4,T}

.~ 1~ -~ o~ ~ ~
(d) HleO'h - ith .UhHOAL/ST <Oy {||CT — O nlldivys,r + lu—wnllosr + (It — th||0,T}

<Gy {||U — Ohlldivasr + w = wnlloar + It = thlor +

0,4/3,T

e —on

2 ~ 2
(e) hp|leurlits)|| < Collt = tullor and b [ewl(®)| < Coll6 = tullor, for al T € TP

2 ~ ~ o~
(9) | lve (el < Crllt = tallowe and hel| [ @), < Cs I8 = Ralloswr, for all F € Fi.

(h) hp 'y*(fh)HO . < Oy ||E_EhHO,TF7 for all F € FE, where Tr is the element T for which F € FE’T.

)

34



Proof. Estimates (a)-(d) are detailed in [28, Lemma 3.14] for slightly different residual terms, utilizing their
continuous counterparts, Holder’s inequality, and a priori bounds. Estimates (e) and (f) are found in [28,
Lemma 3.15] (see also [7, Lemmas 4.3 and 4.4]). Finally, estimate (h) follows as in [7, Lemma 3.15] (see also
[29, Lemma 4.15]). O

For the remaining terms, we have the following result.

Lemma 4.10 There exist positive constants Cg and C11, independent of h, such that

2}

0 1, <

)

1-d/4||7 ~ ~
) by [ = en|| Cu{lle - enlloas + IE - Bullon}

Proof. Define x7 =t — Vuy, in T and recall that t = Vau in Q. Thus, using the element bubble function
properties as stated in (4.5), local integration by parts, and the inverse inequality (cf. [26, Lemma 1.138])
withl=1,p=4/3, m =0, and g = 2, we find

Ixzl3e < Cloxple = C / brxr : (tn — Van)
/ VX (VU Vuh / VrXT th — t)}

C{ /T div(Yrxr) - (u— up) / brXr th—t)}

IN

< c{lrxrlasale — wiloss + lérxrloslt — tulon }

< C{h_1+d/4 t—th||o,ﬂ},

After using the first inequality of (4.5), simplifying and multiplying both sides by h 4/ 4, we obtain the

desired result. Note that estimate (b) follows by the same arguments. O

5 Numerical results

This section presents a suite of numerical experiments illustrating the performance of the proposed fully
mixed finite element formulation (3.2), corroborating the theoretical convergence rates established in Theo-
rem 3.9. To ensure the stability of the pair (Hy, HY), as established in Theorem 3.1, the computations are
performed on barycentric-refined meshes 7,, derived from regular triangulations 7, of the domain Q. The
discrete spaces for approximating u, t, o, gD,fE, and o are constructed as specified in (3.1), suitable for order
£>d—1.

All computations were performed using the FEniCS finite element environment [3] (legacy version 2019.1.0),
with mesh generation and barycentric refinements carried out in Gmsh [30] (version 4.10.3). We first assess
the theoretical convergence rates by means of manufactured smooth solutions in two and three space dimen-
sions. We then investigate the performance of the residual-based a posteriori error estimator for non-smooth
solutions on an L-shaped domain, comparing uniform and adaptive mesh refinement strategies. Next, we
consider a steady bioconvective flow in a square cavity with inclusions, illustrating the robustness of the
adaptive method in complex geometries. Finally, we study a time-dependent bioconvective benchmark with
an Einstein—Batchelor-type viscosity law in a two-dimensional configuration, where the method is shown to
capture the formation of bioconvective plume patterns.

The nonlinear systems are solved using the Newton—Raphson method with the SNES framework from

PETSc and linear systems solved with the MUMPS direct solver. The Newton initial guess is set to

<u20)7 cph,t(o)) = (0,0,0). Successive approximations are generated at each iteration, denoted as

coeft™) = (™) () G m) Fm) Zomy g s
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Table 5.1: Example 1. Convergence history for the 2D manufactured-solution test on barycentrically refined
meshes with the finite element approximation P; — P; — RT; — P; — P; — RT; (with polynomial degree
¢ =1). Here, N represents the number of degrees of freedom associated with each barycentric-refined mesh

b
T
N h ew)  rlw)  elt)  w@t)  elo)  r(e)  elp)  rlp)  et)  rt)  e(@) r(@) elp) rlp) eff it

962 1414 4.64e-01 -~  3.88¢+00 —  555e+00 -~ 42201 -~  204e+00 - 153e+01 -~  6.54e 01 -~ 053
3794 0707 1.65c-01 1.49 1.85c+00 1.07 2.24e+00 1.31 1.08¢-01 1.96 4.85¢-01 207 2.62¢+00 2.55 2.3le-01 1.50 0.43
15074 0.354 4.26e-02 1.95 9.08e-01 1.03 6.49e01 179 27202 199 1.29e-01 1.91 6.50e-01 2.0l 570e-02 2.02 0.37
60098 0.177 1.09e-02 1.97 3.98¢-01 1.19 2.08¢-01 1.64 6.94e-03 1.97 3.33¢-02 196 1.6le-01 2.01 1.33¢-02 210 0.36

240002 0.088 2.59¢-03 2.07 1.43e-01 147 6.27¢02 1.73 1.74e-03 1.99 8.40e-03 1.99 4.02¢-02 2.00 3.20e-03 2.06 0.36
959234 0.044 6.22¢-04 2.06 4.21e-02 1.77 1.72¢-02 1.87 4.36e-04 2.00 2.10e-03 2.00 1.00e-02 2.00 7.87e-04 2.03 0.35

[ A

where coeff” € RV, with N representing the total number of degrees of freedom across the finite element
family (HY, Ht, HY, HY, H!, HY). Convergence is assessed using the relative error between two successive
approximation vectors, coeff”*! and coeff™, as follows:

|coeff™ 1 — coeff™ |2
|coeff™ 1|2

< tol,

where tol denotes a predefined tolerance level set to 10~7 for both absolute and relative errors and | - [|;2
is the Euclidean norm in RY. The zero-mean condition for tro and ¢ is enforced via two real Lagrange
multipliers.

Convergence is typically achieved in four iterations for all refinement levels. All volume and surface
integrals are evaluated using fourth-order quadrature rules. The a posteriori error indicators are computed
locally in piecewise constant spaces and accumulated according to the residual decomposition defined in
Section 4.

For the convergence tests in both uniform and adaptive mesh refinement, barycentric (Alfeld) refinements
are generated via the command gmsh -barycentric_refine file.msh -o file-bary.msh -format msh2,
and subsequently converted into FEniCS-compatible .xml meshes using dolfin-convert.

The individual errors associated with the main unknowns are calculated as
e(u) = lu—uplogo, et):=|t—tuloq, elo):=o—0onld, 0

e(p) = o — enlloaa, et) =t —tulloe, @)=~ Tnlldiv, 0

and the error associated with the postprocessed pressure as

e(p) :== [lp — pal 0,2 -

Furthermore, for any * € {u,t, o, o, t, o,p}, we let r(x), we define the experimental convergence rate,

r(x), as
1 x) /€ (%
o o g "B )
log(N/N')
where N and N’ represent the total degrees of freedom of two successive meshes, and e(x) and ¢() are the

corresponding errors associated with x on these meshes, respectively.

Finally, the effectivity index associated to the global error estimator ® is defined as

eff = egt’ where et = {e(u)2 + €(t) +€(0')2+ e(QO)Q + ea_:) +e(&)2 }1/2 ‘

Example 1: convergence for smooth solutions in 2D and 3D

We first assess the theoretical convergence rates on the square domain 2 = (—1,1)? for the steady biocon-
vection system (1.1). The parameters are fixed as

e =(0,1), plp)=e% k=1, g=1, y=a=05 U=0.01



Table 5.2: Example 1. Convergence history and iteration count for the fully mixed approximation Py — Py —
RT3 — Py — Py — RTy (¢ = 2).

N h elw) r(u) e(t)  rt)  elo) (o) ely)  rle)  e(®)  r(®)  e(@) (@) elp)  r(p) eff it

1946 1414 1.88¢ 01 -~  18le400 — 146e+00 -~ 15801 — 826e 01 — 1.93e+00 — 346e 0l — 0.15

7706 0.707 2.57e-02 2.87 50301 1.85 27901 239 121e02 3.70 6.48e-02 3.67 1.02-01 425 6.8le02 235 0.13

30674 0.354 3.64e 03 2.82 14de 01 1.80 6.44e 02 211 1.38¢ 03 3.14 864c 03 291 1.3% 02 287 1.37e 02 231 0.17

122402 0177 3.44e-04 3.40 24202 257 9.83e-03 271 1.69¢-04 303 1.08-03 2.99 1.62-03 310 1.91e-03 2.85 0.19

489026 0.088 3.37e-05 3.35 3.24e-03 2.90 1.29e-03 294 2.10e-05 3.01 1.34e-04 3.02 191e-04 3.08 2.45e-04 2.96 0.19
1954946 0.044 3.84e-06 3.14 4.13e-04 297 1.63e-04 2.98 2.62e-06 3.00 1.66e-05 3.00 2.33e-05 3.03 3.08¢-05 2.99 0.19

e

A manufactured smooth solution with the following primary unknowns

cos(mx) sin(my) . . .
— = == 1
u(z,y) (_ sin(ra) cos(ry) ) p(z,y) = sin(7z) cos(my), ¢(r,y) = 1+ sin(7z) sin(7y),
is used to derive analytic forms of the mixed variables, the forcing terms and boundary data, ensuring
exact satisfaction of the governing equations. Non-homogeneous Dirichlet conditions are applied for u, and
natural flux conditions for ¢.

The mixed finite element spaces employ Raviart—Thomas elements RT, for flux variables and discontin-
uous Galerkin elements DGy for all remaining fields, with £ > d — 1. The meshes are successively refined
barycentrically, yielding characteristic sizes h from approximately 1.4 down to 4.4 x 10~2. The total number
of degrees of freedom ranges from fewer than 103 to almost two million on the finest grid.

Tables 5.1 and 5.2 provide a summary of the errors and associated convergence rates for finite element
approximations using Py — Py — RT, — P, — P, — RT, families for / = 1 and ¢ = 2, respectively. Table
5.1 particularly says that, when using ¢ = 1, the error magnitudes exhibit quadratic convergence rates
with respect to the mesh size h for all the variables, aligning with the theoretical expectations in Theorem
3.9. The effectivity index of the residual-based estimator stabilises around 0.35, and the nonlinear iteration
count remains mesh-independent, achieving the prescribed tolerance in four iterations. Additionally, Table
5.2 illustrates that, by elevating the polynomial order to ¢ = 2, the method now achieves almost third-
order convergence for all primal variables, while the stress and flux approximations approach the same
asymptotic order O(h3). This observation not only demonstrates superior convergence performance but
also corroborates the theoretical predictions. The residual-based error indicator remains asymptotically
efficient (the effectivity index decreases slightly compared to the lower order case but still reaches a constant
value), reflecting the higher resolution of the discrete solution relative to the estimator for nonlinear coupled
problems of this kind.

In Figure 5.1, we present the approximate solutions generated by our fully mixed technique on a barycentric—
refined mesh with N = 1954946 degrees of freedom.

We further confirm the convergence properties in 3D by examining the approximate solutions of the
bioconvection system with the following manufactured solutions defined on the unit cube domain € = (0, 1)3:

sin(mx) cos(my) cos(mz)
u(z,y,z) = | —2cos(mx)sin(my) cos(rz) | , p(z,y,z) = sin(nzx) cos(my) sin(wz),
cos(mx) cos(my) sin(mz)

o(z,y, z) = sin(nzx) sin(7y) sin(7wz) + 1.

We use the polynomial degree ¢ = 2 (we recall that ¢ = 1 is not sufficient for the 3D case) and set the
coefficients for this case as k = g =1, v = a« = 0.5, U = 0.01. The observed rates confirm the optimal
approximation properties of the mixed finite element spaces under barycentric refinement. However it seems
that the effectivity index decreases with h. The number of required nonlinear iterations to converge is 4 in
all mesh refinements. We also note from Figure 5.2 that even for a relatively coarse mesh all fields are very
accurate, since the number of degrees of freedom is quite large (more than 3M).
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Figure 5.1: Example 1. Approximate solutions for the 2D manufactured problem with ¢ = 2: velocity line
integral contours, strain rate magnitude, pseudostress magnitude, concentration profile, diffusive flux and
total flux magnitudes, and postprocessed pressure.

Table 5.3: Example 1. Convergence history for the 3D steady bioconvection test with polynomial degree
=2

N h ew) r(w) et)  r(t)  elo) (o) elp) rlp) e(t) r(®) e(@) (@)  elp) rlp) eff it
6050 1.732 2.26e-01 -  1.89e+00 -  1.05e+00 -  1.05¢-01 -  3.36e-01 - 190e+00 -  1.65e-01 -  0.094 4
47810 1.225 4.93e-02 440 574e-01 343 244e01 422 18802 498 6.10e-02 4.93 21le-01 6.34 3.97e-02 411 0.048 4
380162 0.612 7.81e-03 2.66 1.50e-01 1.94 5.38¢02 218 2.91e-03 2.69 87903 279 2.64e02 3.00 7.97¢-03 232 0.020 4

3032066 0.306 9.67c-04 3.01 2.65¢-02 250 8.71e-03 2.63 3.84c-04 292 1.16e-03 2.93 3.37¢-03 297 1.12¢03 2.83 0.0049 4

Example 2: convergence for non-smooth solutions under uniform and adaptive mesh
refinement

We perform convergence tests for the mixed finite element scheme for the bioconvection equations using the
non-regular Verfiirth manufactured solutions on an L-shaped domain (see, e.g., [12]):

. / 7.)\—1
u(rs0) = (Gt Lt )« ) = T (L X2 0) 467 0))

o(r,0) = r3 sin(%@),

in polar coordinates centered at the origin (r,6) € (0,00) x (0, 2F), where

sin((1 + X)) cos(Aw) ~sin((1 = A)f) cos(Aw)

P(0) = T —cos((1 4+ N)h) ToX + cos((1 — \)6).
Here A = 220399 ~ (.5444837 is the smallest positive solution of sin(Aw)+ Asin(w) = 0, and we take w = 2I.

Second-order derivatives for velocity (and first order derivatives for pressure and vorticity) are not square
integrable, and therefore these solutions do not have higher regularity. Nevertheless, the exact boundary
velocity is zero on the reentrant edges (at § = 0 and 6 = 37”) and so the boundary data oscillation can be

considered of high order. The parameters are taken adimensional and fixedto k =g=7y=a=U = 1.

In the computation pipeline we follow [28, Algorithm 1]. Adaptive refinement employs Dorfler marking
with 8 = 0.5 and follows the classical solve—estimate—mark-refine cycle, applied to a two-level macro—bary-
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Figure 5.2: Example 1. Approximate solutions for the 3D manufactured problem with ¢ = 2: velocity
streamlines, strain rate magnitude, pseudostress magnitude, slices of concentration profile, diffusive flux

and total flux streamlines, and slices of postprocessed pressure.

centric mesh hierarchy. Finite element spaces are defined on the barycentrically refined mesh. Then we
compute the approximate solution. Local estimators are first computed on the barycentric mesh and pro-
jected onto the macro mesh to mark elements for refinement. Barycentric refinement then regenerates the
next barycentric mesh for the next finite element spaces. Cells exceeding a fraction of the maximum indicator
are refined iteratively until the prescribed tolerance is reached.

Figure 5.3 reports convergence histories for polynomial degrees £ = 1 and ¢ = 2, including errors in
velocity e(u), gradient e(t), stress e(o), concentration e(y), auxiliary fluxes e(t) and e(&), pressure e(p),
and total error egor. The results demonstrate suboptimal convergence for all fields (even sub-linear) for the
case of uniform refinement while optimal or superconvergent behaviour is restored under adaptive mesh
refinement. Effectivity indices remain between 0.035 and 0.4, and we note that for the adaptive refinement
case these numbers reach a plateau. Figure 5.4 shows adaptively refined meshes and approximate solutions
obtained with the scheme using ¢ = 2. Local contributions of © accurately identify regions of high residuals
near the reentrant corner, where steep gradients in pressure, velocity, and microorganism concentration

occur.

Example 3: adaptive mesh refinement in a square cavity with inclusions

Next, we consider bioconvective flow in a square domain with two square inclusions. The geometry follows
the configuration used in [37] for thermo-bioconvection of gyrotactic micro-organisms. The square has base
10 cm with two inclusions of 2.5 cm per side. While for the flow we consider no-slip boundary conditions
everywhere, the boundary conditions for the concentration equations are different than those analyzed in
the paper. We set ¢ = a on the outer left edge and ¢ = 1+ « on the outer right sub-boundary, and impose
o -n = 0 on the outer top and bottom as well as on the boundaries of the inclusions. Then we no longer
require to enforce the mean value of the concentration. The remaining parameters are as follows:

a €{0,0.01,0.2,0.3}, pu(p)=poe ¥% ¢g=98 ~y=rk=01, U=0.01, po=1.

We generate a coarse macro mesh and its corresponding barycentric refinement, and we solve for each value
of a and for seven steps of adaptive mesh refinement with the Dorfler agglomeration coefficient set to 8 = 0.2
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Figure 5.3: Example 2. Convergence for each field variable against non-smooth solutions on an L-shaped
domain using uniform and adaptive mesh refinement with barycentrically refined meshes. The bottom right

plot shows effectivity indexes for all cases. For reference we show triangles indicating linear and cubic slopes.

(for the previous examples we had taken 0.5). For the case of higher o the Newton—Raphson algorithm takes
six iterations to reach the prescribed tolerance, irrespective of the mesh refinement level. For this example
we are using the polynomial degree £ = 1. We show in Figure 5.5 three samples of adapted grids and we also
show approximate solutions (we only include velocity, concentration and flux) for the case of a = 0.3. The
mesh plots indicate a much more marked refinement near the reentrant corners of the square inclusions as

well as near the right edge of the domain — which is where the high gradient of concentration is. All fields
show very well resolved profiles.

Example 4: application to time-dependent bioconvective flows

Finally, we consider a physically motivated benchmark that exhibits strong bioconvection coupling. The
flow is driven by density differences arising from microorganism concentration gradients. We use the Ein-
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Figure 5.4: Example 2. Approximate solutions for the 2D manufactured problem on an L-shaped domain
with ¢ = 2 and rendered on a coarse mesh: velocity line integral contours, strain rate magnitude, pseu-
dostress magnitude, slices of concentration profile, diffusive flux and total flux line integral contours, and
postprocessed pressure. The bottom row shows four adaptively refined meshes.

stein/Batchelor motivated model as in [9]

(

1o, or < 0,
po(l+25¢, +5.3¢2%), 0< ¢, <0.10,
/J’(SO) = Pr = QP/SOmaxa
2.5y
moexp| ——— |, 0.10 < ¢ < 0.60,
1—1.4¢,
110 exp(9.375), @r > 0.60,

with pg = 0.01[cm?/s] (reference viscosity), and ¢@max = 7 - 10°. These choices follow the modelling and
numerical examples in [25] and use the model parameters

k=001 [em?/s], U =0.1[cm/s], g¢g=980.665[cm?/s], ~=5-10"" [em?/cells].

The computational domain is the rectangle Q@ = (0,L) x (0, H), with L = 16cm and H = 2cm. We
use a time-dependent variant of the model problem, including simply a backward Euler discretization of the
acceleration and concentration rate terms with a constant time step of At = 0.25s. The boundary conditions
for velocity are different than those analyzed in the paper: we impose no-slip conditions on the bottom and
vertical walls, whereas we set a slip condition w - n = 0 and a zero shear traction on the top boundary.
We run the simulations until the final time 7' = 150s. The results of the computations (using again ¢ = 1
in this case) are shown in Figure 5.6. For earlier times the solution is essentially quiescent: u ~ 0 except
near the top boundary and ¢ varies only slowly in the vertical direction (no pattern). For larger times, we
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Figure 5.5: Example 3. Bioconvection of micro-organisms on a cavity with square inclusions and mixed
boundary conditions. Velocity line integral contours, concentration profile, and total flux line integral
contours for the case & = 0.3. The bottom row shows three samples of adaptively refined meshes.
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Figure 5.6: Example 4. Snapshots of the numerical solution (showing here only velocity, stress magnitude,
flux, and concentration) at t = 75s (left) and ¢ = 150 (right).

observe that bioconvective patterns develop: concentrated rising plumes or cellular recirculations appear,
with strong vertical gradients of concentration and localised shear in velocity. This is in agreement with the
simulations reported in [25, Example 2].
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