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Abstract

The numerical approximation of hyperelasticity must address nonlinear constitutive laws, geometric nonlinearities associated
ith large strains and deformations, the imposition of the incompressibility of the solid, and the solution of large linear

ystems arising from the discretisation of 3D problems in complex geometries. We adapt the three-field formulation for nearly
ncompressible hyperelasticity introduced in Chavan et al. (2007) to the fully incompressible case. The mixed formulation is
f Hu–Washizu type and it differs from other approaches in that we use the Kirchhoff stress, displacement, and pressure as
rincipal unknowns. We also discuss the solvability of the linearised problem restricted to neo-Hookean materials, illustrating
he interplay between the coupling blocks. We construct a family of mixed finite element schemes (with different polynomial
egrees) for simplicial meshes and verify its error decay through computational tests. We also propose a new augmented
agrangian preconditioner that improves convergence properties of iterative solvers. The numerical performance of the family
f mixed methods is assessed with benchmark solutions, and the applicability of the formulation is further tested in a model of
ardiac biomechanics using orthotropic strain energy densities. The proposed methods are advantageous in terms of physical
delity (as the Kirchhoff stress can be approximated with arbitrary accuracy and no locking is observed) and convergence
the discretisation and the preconditioners are robust and computationally efficient, and they compare favourably at least with
espect to classical displacement–pressure schemes).
c 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Mixed methods for nonlinear solid mechanics consider additional fields in the variational formulation, minimising
uitable energy functionals and using further constraints. Approaches based on the Hu–Washizu and Hellinger–
eissner principles are among the most popular choices, and they often lead to saddle-point problems where

uitable inf–sup conditions need to be satisfied (see, e.g., [1,2]). Recent variants of these methods include mixed
first Piola–Kirchhoff) stress tensor and displacement formulations, introduced in [3], and arising from inversion
f the constitutive relations; or assumed stress and similar approaches [4,5]. Also, a hybridisable discontinuous
alerkin method based on the minimisation of the potential energy has been analysed in [6], where the authors also
iscuss scenarios where the convergence is compromised, and propose a stabilisation strategy. Mixed formulations
nvolving pseudo-stress, displacement and pressure have been studied in [7]. Recent comparisons between different
iscontinuous approximations can be found in [8] and between least-squares mixed formulations in [9].

Mixed finite element methods are a natural remedy for schemes based on primal formulations that are prone to
oor performance and numerical artefacts for bending dominated and nearly incompressible regimes (in the sense
hat the computational results can differ substantially from what is expected from the physical and mathematical
tructure of the problem [10]), but other approaches also are available to improve the approximation of large
eformation problems. These alternatives include high-order pure displacement methods designed to be robust
n the nearly incompressible limit [11], reduced and selective integration [12], nonconforming displacement–
ressure [13], generalised schemes [14], projection methods [15], enhanced strain [16,17], methods based on
iorthogonal systems [18] or extended finite element approaches [19] (see also the general monographs and reviews
n [1,20,21]).

More pertinent to the present case, formulations in terms of Kirchhoff stress, displacement and pressure were
ntroduced in [22] and have been adapted to the study of cardiac electromechanics in [23,24]. Recasting the three-
eld formulation in this particular set of unknowns is very useful for modelling the physiological responses of
ardiac tissue, as the Kirchhoff stress tensor acts as the coupling field with the equations describing electrical
ropagation in stress-assisted diffusion models. It thus allows for the direct approximation of the variables of
nterest [24]. An additional key feature is that the formulation imposes symmetry of the stress without the need for
dditional reconstruction or complicated element choices. This approach is more efficient and natural than a mixed
nite element method based on weakly imposed symmetry for the stress [25,26], where an additional constraint
hould be introduced to impose the symmetry of the stress.

Solving the three-field formulation using a suitable discretisation also avoids volumetric locking. However, the
ize of the systems involved leads to rather high computational costs, thus making the adoption of robust and
fficient iterative solvers important. Apart from the references mentioned above, we stress that within the context
f cardiac mechanics, the present contribution complements the works defining strain-based formulations [27],
tabilised formulations [28,29], displacement–pressure discontinuous Galerkin [30], and pure displacement [31–34]
ethods. In clinically-oriented applications, the performance of numerical solvers is particularly crucial. The

rimary difficulties not only lie with the high spatial and temporal resolutions required by the simulations of
atient-specific physiological conditions, but also with the time constraints posed by clinical diagnosis. As a result,
he use of preconditioning techniques is mandatory for lowering the computational cost associated with diagnostic-
riented simulations. Some preconditioners tailored for achieving robustness in the numerical approximation of
yperelasticity of soft tissue have been advanced recently in [35–37]. They consist of augmented Lagrangian type,
f nested block factorisation decoupling mass from momentum balances, and of splitting the system matrix into a
mall block and a series of multigrid solves, respectively.

Let us recall that (left) preconditioning improves the spectral properties of a general linear system [38] by
re-multiplying both sides of the equation with a matrix P−1:

Au = b

H⇒ P−1Au = P−1b.

oughly speaking, the quality of a preconditioner depends on how closely P−1 can approximate the exact inverse
f A; the better the approximation, the higher the quality [39]. The choice of P−1 for block systems relies heavily
n knowledge about the block structure of A. For a general non-singular 2 × 2 block matrix with a non-singular
op-left block A,

A =

[
A B

]
, (1.1)
C D

2
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a popular class of preconditioners builds on the block factorisation formula [38,40–43]

A−1
≈ P−1

=

[
I − Â−1 B
0 I

] [
Â−1 0
0 Ŝ−1

] [
I 0

−C Â−1 I

]
,

here Â−1 and Ŝ−1 are respectively approximations of A−1 and S−1, with S = D − C A−1 B being the Schur
complement in (1.1). It is important to point out that in the context of the proposed formulation for hyperelasticity,
A acts on the displacement and Kirchhoff stress, while D acts on the pressure. Interpreting the inverse of a matrix
as the action of solving a linear system involving the original matrix, this block Gaussian elimination then reduces
the problem of solving the coupled preconditioned system to that of solving two separate smaller linear systems
involving matrices Â and Ŝ. As a result, the availability of fast approximate solvers for the two smaller linear
problems is crucial to the performance of the preconditioner.

Even if a robust approximation for the top-left block A is known, approximating the Schur complement S is
usually a challenging task, as it is typically dense [44]. An augmented Lagrangian approach which effectively
controls the Schur complement for the Oseen problem was introduced in [44]. The idea is to introduce an extra
term in the variational formulation that does not affect the overall continuous solution, but serves to ease the
approximation of the Schur complement [45]. This extra augmentation is weighted by a positive constant γ , and
is often regarded as the penalty term enforcing the constraint in the problem. Adding the augmented term leads
to changes in the linear system, in particular changes to the blocks of the matrix A, with Âγ and Ŝγ being the
ugmented versions of Â and Ŝ; by increasing the penalty parameter γ , Ŝγ becomes a better and better approximation

to Sγ , at the cost of making the operator Aγ more complex. In our context, the augmented Lagrangian strategy allows
s to apply direct factorisations to Aγ instead of A, substantially decreasing time to solution.

The outline of the paper is as follows. Section 2 summarises the equations of hyperelasticity for general
constitutive laws, and presents the continuous form of the three-field version of the problem in strong and weak
forms. In Section 3 we address the linearisation of the weak form and sketch its solvability analysis when restricted
to neo-Hookean materials. There we also discuss the minimisation of the general nonlinear variational form. A
mixed finite element discretisation and the construction of an augmented Lagrangian preconditioner are detailed
in Section 4. We numerically examine the properties of the formulation, the finite element scheme, and of the
preconditioner in Section 5. We conclude in Section 6 with a brief summary of our findings and also discussing
ongoing extensions of this work.

2. Model description

2.1. Kinematics and constitutive relations

Let Ω ⊂ Rd (d ∈ {2, 3}) denote an open, connected Lipschitz domain with piecewise smooth boundary ∂Ω ,
representing the shape and position of a deformable body in its stress-free reference configuration, and denote by n
the outward unit normal vector on ∂Ω . The kinematic description of finite deformations is made precise as follows.

material point in Ω is denoted by x, whereas U : Ω → Rd will denote the displacement field defining its new
position x +U(x) in the deformed configuration. The tensor F := I+∇U is the gradient (applied with respect to the
fixed material coordinates) of the deformation map; its Jacobian determinant, denoted by J = det F = det(I +∇U),
measures the solid volume change during the deformation (where I denotes the second-order identity tensor); and
C = FtF is the right Cauchy–Green deformation tensor on which all strain measures will be based (here the
superscript (·)t denotes the transpose operator). The triplet ( f 0(x), s0(x), n0(x)) represents a coordinate system

ointing in the local preferential directions of motion with n0(x) = f 0(x) × s0(x), and the system is restricted
o ( f 0(x), s0(x)) in 2D. The first isotropic invariant ruling deviatoric effects is I1(C) = trC, and for generic unit
ectors f 0, s0, the scalars I4, f (C) = f 0 · (C f 0), I4,s(C) = s0 · (Cs0), I8, f s(C) = f 0 · (Cs0) are direction-dependent
seudo-invariants of C measuring direction-specific stretches.

Constitutive relations depend on the specific material under consideration and they are encoded through a strain
nergy density function Ψ (defined per unit volume in the reference configuration and representing the work per unit
eference volume done by the stress in deforming the material system) written solely in terms of the deformation
radient. We consider two cases: the generic neo-Hookean material law and the Holzapfel–Ogden law specifically
3
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designed for orthotropic myocardial tissue [46]. The strain energy densities read respectively

ΨNH(F) =
µ

2
(I1 − d), ΨHO(F) =

a
2b

eb(I1−d)
+

a f s

2b f s

[
eb f s I 2

8, f s − 1
]

+

∑
i∈{ f,s}

ai

2bi

[
ebi (I4,i −1)2

+ − 1
]
, (2.1)

here µ, a, b, ai , bi with i ∈ { f, s, f s} are material parameters and we have used the notation (s)+ := s if s > 0
r zero otherwise. Both specifications in (2.1) satisfy the condition of polyconvexity needed for minimisers of the
ree potential energy form of the problem to exist [47].

The first Piola–Kirchhoff stress tensor is

P =
∂Ψ

∂∇U
− P(I + ∇U)−t, (2.2)

where P denotes the solid hydrostatic pressure, which is the Lagrange multiplier used to impose the incompress-
ibility constraint in the finite strain regime, given by

det(I + ∇U) = 1,

nd which implies that J does not appear in (2.2). The symmetric Kirchhoff stress tensor (also referred to as effec-
ive Kirchhoff stress) is given by

Π = PFt
=

∂Ψ

∂∇U
(I + ∇U)t − PI. (2.3)

2.2. Force balance and boundary conditions

The constitutive relation, the balance of linear momentum, and the incompressibility constraint are then combined
(when posed in the inertial reference frame and under the static mechanical equilibrium configuration) in the
following strong form

Π −
∂Ψ

∂∇U
(I + ∇U)t + PI = 0 in Ω , (2.4a)

−divΠ (I + ∇U)−t
= ρ0b in Ω , (2.4b)

det(I + ∇U) − 1 = 0 in Ω , (2.4c)

here ρ0 is the reference medium density and b is a vector field of body loads (body force per unit undeformed
olume). The balance of angular momentum translates into the condition of symmetry of the Kirchhoff stress tensor
nd it is implicitly carried by the momentum and constitutive relations.

The governing equations (2.4) will be supplemented with mixed displacement and traction boundary conditions

U = 0 on ∂ΩD, and Π (I + ∇U)−tn = t on ∂ΩN , (2.5)

here ∂ΩD , ∂ΩN are a disjoint partition of the boundary ∂Ω and t is a prescribed traction. We assume that both b
nd t are sufficiently regular.

.3. Three-field weak formulation

We proceed to test (2.4a)–(2.4c) against suitable functions, integrating by parts only in (2.4b), and using (2.5),
o obtain the following nonlinear variational problem: Find (Π , U, P) ∈ L4

sym(Ω ) × W1,4
D (Ω ) × L4(Ω ) such that∫

Ω

[
Π −

∂Ψ

∂∇U
(I + ∇U)t + PI

]
: τ = 0 ∀τ ∈ L4

sym(Ω ), (2.6a)∫
Ω

Π (I + ∇U)−t
: ∇v =

∫
Ω

ρ0b · v +

∫
∂ΩN

t · v ∀v ∈ H1
D(Ω ), (2.6b)∫

Ω

[det(I + ∇U) − 1] q = 0 ∀q ∈ L4(Ω ), (2.6c)

here L4
sym(Ω ) := {τ ∈ L4(Ω ) : τ = τ t

}, W1,4
D (Ω ) = {v ∈ W1,4(Ω ) : v = 0 on ∂ΩD}, and H1

D(Ω ) = {v ∈
1 t
(Ω ) : v = 0 on ∂ΩD}. We have taken the usual notation for tensor–tensor scalar product σ : τ = tr(σ τ ), and

4
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we are implicitly assuming that the displacements are admissible in the sense that they have sufficient regularity
as made precise above, or they are in W1,d (Ω ) and they satisfy det(I + ∇U) > 0 (which implies that deformations
re continuous), see e.g. [48–50]. Such regularity for the displacement implies in particular that the integral in the
eft-hand side of (2.6b) is well-defined when the trial stress and test displacement belong to the spaces mentioned
bove.

The motivation for using three-field elasticity formulations is to avoid volumetric locking [18], and to provide
irect approximation of a variable of importance [23,24], nonetheless at a higher computational cost. As mentioned
n [7], capturing stress concentrations with the guarantee of stress convergence under mesh refinement is a
ey requirement that is very difficult to achieve in a point-wise manner simply by standard displacement-based
ormulations. A further advantage of using the Kirchhoff stress is that this tensor is symmetric and for simpler
aterial laws is a polynomial function of the displacement gradient, whereas first and second Piola–Kirchhoff

tresses are rational functions of it [22]. Existence of minimisers of the elastic energy in a given product space E⃗ is
not guaranteed in general. One can however assume growth conditions on Ψ and that the initial data maintains the
material in the hyperelastic range, in such a way that the product space L4

sym(Ω ) × W1,4
D (Ω ) × L4(Ω ) is contained

n E⃗ [51] (see also [28]). This is discussed further in what follows.

.4. Energy minimisation and an augmented Lagrangian form

Regarding the general case of nonlinear elasticity, let us denote by M3 the set of all 3 × 3 matrices, and

M3
+

= {A ∈ M3
: det(A) > 0}.

stored energy function Ψ : M3
+

→ R is said to be polyconvex if there exists a convex function G : M3
×M3

→ R
uch that

Ψ (F) = G(F, adj F), F ∈ M3
+
.

he function G is coercive if there exist a ∈ R, b > 0, p ≥ 2, and q ≥
p

p−1 such that

G(F, H) ≥ a + b(∥F∥
p
+ ∥H∥

q ), (F, H) ∈ M3
× M3,

here ∥F∥ is the Euclidean norm of the matrix F ∈ R3×3.
According to the right-hand side of (2.6b), let the linear functional M be defined by

M(v) =

∫
Ω

ρ0b · v +

∫
∂ΩN

t · v,

hich gives the contribution to the potential energy that corresponds to external applied body and surface loads in the
ystem. Recall that the standard energy approach for nonlinear elasticity is to find the solution of the minimisation
roblem

1
2

∫
Ω

Ψ (I + ∇U) − M(U), (2.7)

over a suitable space for displacements [52,53]. Existence of a solution of the minimisation problem using pure
Dirichlet boundary conditions has been proved in [54,55], and we recall here its application to (2.4).

Theorem 2.1. Let the stored energy function Ψ : M3
+

→ R be continuous and polyconvex with Ψ (F) = G(F, adj F)
on M3

+
, with G coercive. Let b ∈ L

p
p−1 (Ω ) and suppose that the set

Σ = {v ∈ W1,p(Ω ) : adj(∇v) ∈ Lq (Ω , M3
+

), det(∇v) = 1 a.e. in Ω , v = g on ∂Ω},

s not empty. Assume further that the total stored energy function S : Σ → R defined by

S(v) =

∫
Ω

Ψ (∇v) − M(v),

atisfies

inf S(v) < ∞.

v∈Σ

5
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Then the problem of finding U such that

U ∈ Σ and S(U) = inf
v∈Σ

S(v),

has at least one solution.

Using the three unknowns from our formulation we can recast the standard minimisation problem as a constrained
minimisation of (2.7) subject to the constraints

Π =
∂Ψ (I + ∇U)
∂(I + ∇U)

(I + ∇U)t − PI, (2.8a)

det(I + ∇U) = 1. (2.8b)

An augmented Lagrangian formulation is obtained by including a constraint in the minimisation formulation and
riting the constraints in weak form. This will subsequently be useful for controlling the Schur complement of the

inearised systems. We therefore minimise the potential energy functional
1
2

∫
Ω

Ψ (I + ∇U) + γ ∥ det(I + ∇U) − 1∥
2
0,Ω − M(U),

where γ ≥ 0 is the augmentation parameter that also influences the convergence of nonlinear solvers), subject to
he constraints defined by Eqs. (2.6a) and (2.6c).

Therefore the constrained minimisation results in the Euler–Lagrange equations, which after re-using (2.8a) and
plitting the volumetric and shear stress contributions, yields the augmented system∫

Ω

[
Π −

∂Ψ

∂∇U
(I + ∇U)t + PI

]
: τ = 0 ∀τ ∈ L4

sym(Ω ), (2.9a)∫
Ω

Π (I + ∇U)−t
: ∇v + γ

∫
Ω

[det(I + ∇U) − 1][det(I + ∇v) − 1] = M(v) ∀v ∈ H1
D(Ω ), (2.9b)∫

Ω

[det(I + ∇U) − 1] q = 0 ∀q ∈ L4(Ω ). (2.9c)

ote that the first term in (2.9b) is the same as the left-hand side of (2.6b), which arises from the weak formulation
f (2.4b). If γ = 0, the Euler–Lagrange equation of the minimisation of the potential energy functional also yields
his term on the left.

. Consistent linearisation and solvability

Apart from the discussion in Section 2.4, we do not address in detail the solvability of (2.4), but rather refer to the
iterature complementing the general theory for well-posedness of hyperelasticity found in e.g. [47,56]. Nevertheless,
e briefly address some properties of the Fréchet derivative of the solution operator to the original problem, at a

mooth regular exact solution.

.1. Definition

Consider the following set of coupled PDEs written in mixed form, and arising from a Newton–Raphson
inearisation of the equations of hyperelasticity in weak form (2.6): Starting from a sufficiently regular initial guess
Π k=0, Uk=0, Pk=0), for k = 0, 1, . . ., find stress, displacement and pressure increments (π k+1, uk+1, pk+1) such
hat ∫

Ω

[
π k+1

− 2 sym
(

∂Ψ k

∂Fk
·[∇uk+1]t

)
+ pk+1I

]
: τ =

∫
Ω

RRk
Π : τ ∀τ ∈ L2

sym(Ω ), (3.1a)∫
Ω

[
π k+1(Fk)−t

− Π k(Fk)−t[∇uk+1]t(Fk)−t
]

: ∇v =

∫
Ω

(RRk
U,1 : ∇v + Rk

U,2 · v) +

∫
∂ΩN

Rk
U,3 · v

∀v ∈ H1
D(Ω ), (3.1b)∫ (

J k(Fk)−t
: ∇uk+1) q =

∫
Rk

Pq ∀q ∈ L2(Ω ), (3.1c)

Ω Ω

6
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then update

Π k+1
= Π k

+ π k+1, Uk+1
= Uk

+ uk+1, Pk+1
= Pk

+ pk+1,

and stop once either the increments or the residuals, in absolute or relative norms, drop below a given tolerance.
Here

RRk
Π = Π k

−
∂Ψ k

∂Fk
(Fk)t + PkI, RRk

U,1 = Π k(Fk)−t, Rk
U,2 = −ρ0b, Rk

U,3 = −t, Rk
P = det(Fk) − 1,

re tensor, vector, and scalar residuals associated with the Newton–Raphson linearisation at the previous step k
including the body load term), and we have used the auxiliary notation Fk

= I + ∇Uk , J k
= det Fk and

ym(τ ) = (τ +τ t)/2 for a given tensor τ . As usual, these terms are supposed to be regular enough. In (3.1b)–(3.1c)
e have also used the following relations that arise from taking the Gâteaux derivatives of the solution operator in

the direction of the displacement increments u
d

d∇U
(I + ∇U)−t

⏐⏐
u = −(Fk)

−t
[∇u]t(Fk)

−t
,

d
d∇U

det(I + ∇U)
⏐⏐
u = J k (

(Fk)−t
: ∇u

)
I.

The boundary conditions associated with the linearisation of the strong form (2.4) translate into zero incremental
displacement on ∂ΩD and zero linearised normal stress on ∂ΩN . Note also that in (3.1a)–(3.1c) the incremental
solutions should now possess the following regularity

(π k+1, uk+1, pk+1) ∈ L2
sym(Ω ) × H1

D(Ω ) × L2(Ω ).

sing the strong form of (3.1a) and the symmetry of τ we can write

∇uk+1
=

[
2
∂Ψ k

∂Fk

]−1

(π k+1
+ pk+1I − RRk

Π ), (3.2)

hich implies that it is possible to rewrite (3.1c) as follows∫
Ω

(
J k(Fk)−t

:

[
2
∂Ψ k

∂Fk

]−1

(π k+1
+ pk+1I)

)
q =

∫
Ω

Rk
Pq +

∫
Ω

(
J k(Fk)−t

:

[
2
∂Ψ k

∂Fk

]−1

RRk
Π

)
q, (3.3)

or all q ∈ L2(Ω ).
As in [3,6] one can suppose that after each Newton step the quantities from the previous iteration and the overall

esiduals have enough regularity so that the integrals in (3.3) are well-defined.
We cannot continue much further without specifying the form of the strain energy density. In order to make

deas more precise we will focus in the rest of the section on the case of neo-Hookean materials defined by ΨNH

cf. (2.1)). Then, for the term in (2.6a), we have

∂ΨNH

∂∇U
= µ(I + ∇U).

oreover, the linearisation procedure was done starting from a generic initial guess of the Newton iterates. In case
ne commences with the stress-free and motionless initial guess, that is,

(Π k=0, Uk=0, Pk=0) = (0, 0, 0), (3.4)

we can simplify further by characterising the following bilinear forms and linear functionals

a1(π , τ ) =
1

2µ

∫
Ω

π : τ , a3(p, q) =
d

2µ

∫
Ω

pq, b1(u, τ ) = −

∫
Ω

∇u : τ , b2(p, τ ) =
1

2µ

∫
Ω

p tr(τ ),

F1(τ ) =

∫
Ω

RRΠ : τ , F2(v) =

∫
Ω

RRU,1 : ∇v +

∫
Ω

RU,2 · v +

∫
∂ΩN

RU,3 · v,

F3(q) =

∫
Ω

RPq +
1

2µ

∫
Ω

tr(RRΠ ) q,
7
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in such a way that the first iteration of (3.1) (for a neo-Hookean material) reduces to the symmetric variational
problem: Find (π , u, p) ∈ L2

sym(Ω ) × H1
D(Ω ) × L2(Ω ) such that

a1(π , τ ) + b1(u, τ )+ b2(p, τ ) = F1(τ ) ∀τ ∈ L2
sym(Ω ),

b1(v, π ) = F2(v) ∀v ∈ H1
D(Ω ), (3.5)

b2(q, π ) + a3(p, q) = F3(q) ∀q ∈ L2(Ω ),

here we have dropped the iteration index and employed the symmetry of τ . We recall that in displacement–pressure
ormulations for hyperelasticity one also ends up with symmetric tangent problems (see e.g. [30,56]).

The system (3.5) results from exploiting the linearised counterpart of (3.2), that is

π − 2µ sym(∇u) + pI = M,

which implies tr(π ) − 2µ div u + d p = trM), where M contains any additional linearisation terms and therefore
trM)I is absorbed as part of RRΠ and appears in F3(q), exactly as in (3.3). Otherwise, in the last equation in (3.5)
nstead of b2(q, π ) and a3(p, q), we should have (as we do have in (3.1c)) a block associated with a bilinear form
3(u, q) =

∫
Ω q div u, which would make the problem not block-symmetric:

a1(π , τ ) + b1(u, τ )+ b2(p, τ ) = F1(τ ) ∀τ ∈ L2
sym(Ω ),

b1(v, π ) = F2(v) ∀v ∈ H1
D(Ω ), (3.6)

b3(u, q) = F3(q) ∀q ∈ L2(Ω ).

ote also that system (3.6) corresponds to the weak form of the Navier equations written in terms of the Cauchy
tress, the displacement, and the pressure

π − 2µ sym(∇u) + pI = RRΠ ,

−div π = RU,2, (3.7)

div u = RP .

It is important to remark that if instead of the stress-free initial state (3.4) we take only a motionless state
representing for instance a residual stress present in the system, as typical in soft tissue applications), e.g.

(Π k=0, Uk=0, Pk=0) = (I, 0, 0),

hen an additional term appears in (3.7), resulting in the system

π − 2µ sym(∇u) + pI = RRΠ ,

−div(π − ∇ut) = RU,2, (3.8)

div u = RP .

nd similarly as above, after defining the bilinear form

a2(u, v) =

∫
Ω

(∇u)t : ∇v = 2
∫
Ω

sym(∇u) : sym(∇v) −

∫
Ω

∇u : ∇v,

he weak forms (3.5) and (3.6) are modified as

a1(π , τ ) + b1(u, τ )+ b2(p, τ ) = F1(τ ) ∀τ ∈ L2
sym(Ω ),

b1(v, π ) + a2(u, v) = F2(v) ∀v ∈ H1
D(Ω ), (3.9)

b2(q, π ) + a3(p, q) = F3(q) ∀q ∈ L2(Ω ),
8
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and

a1(π , τ ) + b1(u, τ )+ b2(p, τ ) = F1(τ ) ∀τ ∈ L2
sym(Ω ),

b1(v, π ) + a2(u, v) = F2(v) ∀v ∈ H1
D(Ω ), (3.10)

+ b3(u, q) = F3(q) ∀q ∈ L2(Ω ),

espectively.

.2. Solvability analysis for a linearised and simplified problem

In this section we prove the well-posedness of (3.5). To that end, after simple computations we first observe that
3.5) can be rewritten as:

â1(π , τ ) + b1(u, τ ) +
1

2µ

∫
Ω

(
1
d

tr(π ) + p
)

tr(τ ) = F1(τ ) ∀τ ∈ L2
sym(Ω ),

b1(v, π ) = F2(v) ∀v ∈ H1
D(Ω ),

1
2µ

∫
Ω

(
1
d

tr(π ) + p
)

q =
1
d

F3(q) ∀q ∈ L2(Ω ),

ith

â1(π , τ ) =
1

2µ

∫
Ω

πd
: τ d,

where, for a given tensor field τ , τ d is its deviatoric part, that is, τ d
= τ −

1
d tr(τ )I. For a given c ∈ R,

π , u, p) = (cI, 0, −c) is a solution to the homogeneous version of (3.5), and as a result the system does not
ave a unique solution. To fix this from now on we seek the unknown π in L2

0,sym(Ω ), defined by

L2
0,sym(Ω ) :=

{
τ ∈ L2

sym(Ω ) :

∫
Ω

tr(τ ) = 0
}

,

hich satisfies L2
sym(Ω ) = L2

0,sym(Ω ) ⊕ RI. Then, since tr(L2
0,sym(Ω )) = L2

0(Ω ), with

L2
0(Ω ) :=

{
q ∈ L2(Ω ) :

∫
Ω

q = 0
}

,

atisfying L2(Ω ) = L2
0(Ω ) ⊕ R, we readily obtain that, after restricting the trial and test spaces associated with the

nknown π to L2
0,sym(Ω ), (3.5) is equivalent to the problem: Find (π , u) ∈ L2

0,sym(Ω ) × H1
D(Ω ) such that

â1(π , τ ) + b1(u, τ ) = F1(τ ) −
1
d

F3(tr(τ )) ∀τ ∈ L2
0,sym(Ω ),

b1(v, π ) = F2(v) ∀v ∈ H1
D(Ω ). (3.11)

e prove that (3.11) is well-posed to prove the well-posedness of (3.5). To do that, we establish the following
echnical result.

emma 3.1. There exists C > 0 such that

∥τ d
∥0,Ω ≥ C∥τ∥0,Ω , ∀τ ∈ Ker (b1) := {τ ∈ L2

0,sym(Ω ) :

∫
Ω

∇v : τ = 0 ∀ v ∈ H1
D(Ω )}.

roof. We proceed similarly to the proof of [57, Lemma 2.3]. In fact, we let τ ∈ Ker(b1) and observe that since

Ω tr(τ ) = 0, there exists z ∈ H1
D(Ω ) such that (see [58, Corollary 2.4])

div z = −tr(τ ) in Ω and ∥z∥1,Ω ≤ C∥tr(τ )∥0,Ω .

t follows that

∥tr(τ )∥2
0,Ω =

∫
tr(τ ) div z =

∫
∇ z : (tr(τ )I).
Ω Ω

9
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Then, since tr(τ )I = d(τ − τ d) and
∫
Ω ∇ z : τ = 0, it readily follows that

∥tr(τ )∥2
0,Ω =

∫
Ω

∇ z : τ d
≤ ∥z∥1,Ω∥τ d

∥0,Ω ≤ C∥tr(τ )∥0,Ω∥τ d
∥0,Ω ,

which together with the fact that ∥z∥1,Ω ≤ C∥tr(τ )∥0,Ω , implies

∥tr(τ )∥0,Ω ≤ C∥τ d
∥0,Ω .

This estimate, and the identity ∥τ∥
2
0,Ω = ∥τ d

∥
2
0,Ω +

1
d ∥tr(τ )∥2

0,Ω , imply the result. □

Now we are in position of proving the well-posedness of (3.5).

heorem 3.1. There exists a unique solution (π , u, p) ∈ L2
0,sym(Ω ) × H1

D(Ω ) × L2(Ω ) to (3.5).

roof. According to the above, in what follows we prove equivalently that problem (3.11) is well-posed by means
f the Babuška–Brezzi theory.

We begin by noticing that the ellipticity of â1(π , τ ) on Ker(b1) is a direct consequence of Lemma 3.1. Now,
iven v ∈ H1

D(Ω ), we let τ̃ = −sym(∇v) and observe that∫
Ω

tr(τ̃ ) = −

∫
Ω

div v = −

∫
∂Ω

v · n = 0,

hich implies that τ̃ ∈ L2
0,sym(Ω ). In addition, the well-known Korn and Poincaré inequalities (see, e.g.,

59, Corollaries 9.2.22, 9.2.25 and Proposition 5.3.5]) imply that

∥τ̃∥0,Ω = ∥sym(∇v)∥0,Ω ≥ C∥v∥1,Ω . (3.12)

hen observing that τ̃ : ∇v = −τ̃ : τ̃ , it follows that

sup
τ∈L2

0,sym(Ω)

τ ̸=0

b1(v, τ )
∥τ∥0,Ω

≥
b1(v, τ̃ )
∥τ̃∥0,Ω

= ∥τ̃∥0,Ω ,

which, in combination with (3.12), implies that b1 satisfies the required inf–sup condition, thus finishing the
proof. □

We end this section by observing that if we employ the same techniques used to establish well-posedness of
(3.9) to study (3.10), then the results hold under a restriction on the bulk modulus.

4. Mixed finite element scheme and preconditioner

4.1. A Galerkin method

Let us denote by Th a regular partition of Ω into simplices (triangles or tetrahedra) K of maximum diameter hK ,
and define the mesh size as h := max{hK : K ∈ Th}. The set of facets (the skeleton of the mesh) will be denoted Eh .
In the lowest-order case, the specific finite element method we choose here is based on solving the discrete weak
form of the hyperelasticity equations using piecewise constant approximations of the symmetric Kirchhoff stress
tensor, piecewise linear approximation of displacements, and piecewise constant approximation of solid pressure.
More generally, for ℓ ∈ N ∪ {0} we use the finite dimensional spaces Hh ⊂ L2

sym(Ω ), Vh ⊂ H1(Ω ), Qh ⊂ L2(Ω )
efined as follows:

Hh := {τ h ∈ L2
sym(Ω ) : τ h |K ∈ Pℓ(K )d×d

∀K ∈ Th},

Vh := {vh ∈ H1(Ω ) : vh |K ∈ Pℓ+1(K )d
∀K ∈ Th, vh |∂ΩD = 0},

Qh := {qh ∈ L2(Ω ) : qh |K ∈ Pℓ(K ) ∀K ∈ Th},

(4.1)
here Pr (R) denotes the space of polynomial functions of degree s ≤ r defined on the set R.

10
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The Galerkin scheme associated with (3.9) is then defined as

a1(πh, τ h) + b1(uh, τ h) + b2(ph, τ h) = F1(τ h) ∀τ h ∈ Hh,

b1(vh, πh) + a2(uh, vh) = F2(vh) ∀vh ∈ Vh, (4.2)

b2(qh, πh) + a3(ph, qh) + β
∑
e∈Eh

∫
e

heJphKJqhK = F3(qh) ∀qh ∈ Qh,

here the discrete spaces are defined as in (4.1) and where β is a positive, pressure stabilisation parameter
ndependent of the mesh size, required in this simplicial counterpart of the finite element method for quadrilaterals
tudied in [22]. The symbol JqK denotes the jump of the generic scalar field q over a given facet e ∈ Eh .

.2. An augmented Lagrangian preconditioner

Augmented Lagrangian preconditioners can be applied either on the continuous level (modifying the variational
ormulation) or the discrete level (manipulating matrices after assembly). These strategies sometimes coincide, but
re in general distinct. In this work we employ the continuous strategy, solving (2.9). However, to build intuition for
ow adding an augmented Lagrangian helps control the Schur complement, it is easier to begin with an explanation
f the discrete formulation.

The discrete form of the general tangent problem (3.1) can be written as

M

⎛⎝πh

uh

ph

⎞⎠ =

⎡⎣A1 B1 B2

B̃1 A2 O
B̃2 O A3

⎤⎦ ⎛⎝πh

uh

ph

⎞⎠ =

⎛⎝F1
F2
F3

⎞⎠ . (4.3)

n order to fit (4.3) into the preconditioning framework described previously in Section 1, it is desirable to rearrange
as a 2 × 2 block matrix. We therefore treat (πh, uh) together as one field and ph as another.

The linear system after splitting becomes

A
(
U h

ph

)
=

(
κ

b̃

)
, (4.4)

here[
A B
C D

]
:= A,

ith A being a 2 × 2 block matrix, B being a 2 × 1 block matrix, C being a 1 × 2 block, D = A3, and

U h =

(
πh

uh

)
, κ =

(
F1
F2

)
, b̃ = F3.

e recall that the constraint imposed on the mechanical problem is J − 1 = 0, so the augmentation added to the
eak form of the variational formulation is the Fréchet derivative of the term

γ

2

∫
Ω

(J − 1)2.

he larger the value we take for γ , the more we penalise violation of the constraint. In fact, if γ is taken large
enough, it provides an alternative to the use of the Lagrange multiplier p for enforcing the constraint, although the
augmented Lagrangian approach is preferable to this pure penalty formulation. Following from the similar ideas
in [60], the linear system (4.4) after discrete augmentation then becomes

Aγ

(
U h

ph

)
=

[
Aγ B
C D

] (
U h

ph

)
=

(
κ

b̃

)
,

where

Aγ = A + γ B M−1
p C,

and Mp is the pressure mass matrix. We construct the preconditioner based on the block factorisation formula

P−1
=

[
I − Â−1

γ B
0 I

] [
Â−1

γ 0
0 Ŝ−1

] [
I 0

−C Â−1 I

]
. (4.5)
γ γ

11
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The smaller sparse linear system associated with the top-left block Âγ (i.e. the approximation of Aγ ) is solved
directly by the standard LU factorisation. The dense Schur complement approximation Ŝγ in (4.5), on the other
hand, requires more consideration. Following from the definition of the Schur complement, Sγ can be expressed as

Sγ = D − C A−1
γ B = D − C(A + γ B M−1

p C)−1 B,

nd can be simplified by the Sherman–Morrison–Woodbury inverse formula [61]:

Sγ = D + (−(C A−1 B)−1
− γ M−1

p )−1. (4.6)

By increasing the value of γ we are able to capture the dominating term in (4.6). An adequate approximation Ŝγ

is thus obtained simply by neglecting the dominated terms. The resulting Schur complement approximation is then
given by

Ŝγ = D + (−γ M−1
p )−1

= −
1
γ

Mp + D.

In the simplified setting of (3.9) (and of (3.10)), and exploiting the fact that the same discrete space is used for
he pressure and for the components of the stress, the augmentation consists of adding a term

γ

4µ2

∫
Ω

tr(π )tr(τ ),

o the stress–stress block. Strikingly, the continuous augmentation instead adds a term to the displacement-
isplacement block. This structural distinction does not occur in other problems, such as in stress–velocity–pressure
ormulations for non-Newtonian flow [62]; here it is caused by the fact that the pressure appears in the equation for
he stress (2.9a), rather than the equation for the displacement (2.9b). Nevertheless, the continuous augmentation
lso successfully controls the Schur complement of the linearised systems [63, Lemma 3].

The processes of solving the separate linear systems associated with Âγ and Ŝγ (with either the continuous or
discrete augmentation) are known as the inner solves, and the process of solving the overall coupled system after
preconditioning is called the outer solve. We adopt a single GMRES iteration preconditioned by direct factorisations
of Âγ and Ŝγ for the inner solves, and use standard FGMRES iteration for the outer solve [64]. Multigrid algorithms
for the augmented block are complicated by the addition of a term with a large kernel. The iterative solution of the
augmented block, following the general principles of multigrid for nearly singular problems [65], will be investigated
in future work.

5. Numerical examples

In this section we present a set of computational tests that serve as verification of the convergence of the
mixed method in the linear and nonlinear cases. We also explore the applicability of the formulation in computing
some benchmark solutions [8]. All routines have been implemented using the open source finite element libraries
FEniCS [66] and Firedrake [67].

5.1. Accuracy verification

On the domain Ω = (0, 1)2 we consider the following closed-form displacement and pressure solving the
onlinear problem (2.4)

U = 0.1(y2, y3)t, P = x4
− y4,

and Π is computed with these solutions using (2.3). We consider both neo-Hookean and Holzapfel–Ogden materials
and prescribe the interpolant of the exact displacement on the whole boundary. The mean value of pressure is fixed
through a real Lagrange multiplier. These solutions satisfy the incompressibility constraint, and the body load is
manufactured from the exact solutions and (2.4b). The material parameter for the neo-Hookean energy is µ = 100,
whereas the model parameters for the Holzapfel–Ogden energy are (see, e.g., [68–71])

a = 0.496, b = 0.041, a f = 0.193, b f = 0.176, as = 0.123, bs = 0.209,

a f s = 0.162, b f s = 0.166, f 0 = (1, 0)t, s0 = (0, −1)t.
12
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Table 5.1
Test 1: Error history for Kirchhoff stress, displacement, and pressure; associated with the mixed finite element method using
different polynomial degrees ℓ ∈ {0, 1} and for neo-Hookean and Holzapfel–Ogden material laws.

DoF h |Π − Π h |0,Ω rate |U − Uh |1,Ω rate |P − Ph |0,Ω rate

neo-Hookean with ℓ = 0

51 0.707 65.20 – 0.057 – 32.22 –
179 0.353 27.81 1.229 0.029 0.997 12.31 1.388
675 0.176 12.61 1.143 0.014 1.002 5.222 1.237

2,627 0.088 6.004 1.069 0.007 1.002 2.412 1.114
10,371 0.044 2.938 1.031 0.003 1.001 1.165 1.050
41,219 0.022 1.455 1.014 0.001 1.000 0.573 1.023

neo-Hookean with ℓ = 1

147 0.707 3.483 – 0.005 – 1.035 –
547 0.353 0.795 2.130 0.001 2.047 0.143 2.848

2,115 0.176 0.193 2.042 3.5e−4 2.012 0.023 2.624
8,323 0.088 0.047 2.014 8.7e−5 2.003 0.004 2.345

33,027 0.044 0.011 2.005 2.1e−5 2.001 0.001 2.143
131,587 0.022 0.004 2.001 5.1e−6 2.000 2.5e−4 2.056

Holzapfel–Ogden with ℓ = 0

51 0.707 0.966 – 0.058 – 0.512 –
179 0.353 0.434 1.154 0.029 0.992 0.213 1.259
675 0.176 0.198 1.133 0.014 1.012 0.093 1.191

2,627 0.088 0.093 1.084 0.007 1.009 0.043 1.115
10,371 0.044 0.045 1.045 0.004 1.005 0.021 1.059
41,219 0.022 0.022 1.022 0.002 1.003 0.010 1.029

Holzapfel–Ogden with ℓ = 1

147 0.707 0.164 – 0.006 – 0.088 –
547 0.353 0.041 2.007 0.001 2.001 0.021 2.074

2115 0.176 0.010 1.999 3.7e−4 2.082 0.005 2.021
8323 0.088 0.002 2.001 8.9e−5 2.062 0.001 2.007

33,027 0.044 6.3e−4 2.001 2.2e−5 2.025 3.2e−4 2.004
131,587 0.022 1.6e−4 1.999 5.2e−6 2.001 7.9e−5 2.002

Table 5.2
Test 1: Error history for stress, displacement, and pressure in the linear regime (3.8), with β = 10−4.

DoFs h |π − πh |0,Ω rate |u − uh |1,Ω rate |p − ph |0,Ω rate

Linear, block symmetric (4.2) with ℓ = 0

51 0.707 22.87 – 0.051 – 13.86 –
179 0.353 9.849 1.216 0.025 0.996 5.632 1.299
675 0.176 4.503 1.129 0.012 1.000 2.466 1.192

2627 0.088 2.151 1.066 0.006 1.000 1.148 1.103
10,371 0.044 1.052 1.032 0.003 1.000 0.553 1.052
41,219 0.022 0.525 1.016 0.001 1.000 0.272 1.026

164,355 0.011 0.259 1.008 8.0e−4 1.000 0.135 1.013

Linear, block symmetric (4.2) with ℓ = 1

147 0.707 4.358 – 0.004 – 2.843 –
547 0.353 0.806 2.433 0.001 2.022 0.499 2.351

2115 0.176 0.178 2.177 2.6e−4 2.013 0.107 2.225
8323 0.088 0.042 2.075 6.5e−5 2.006 0.025 2.099

33,027 0.044 0.010 2.032 1.6e−5 2.003 0.006 2.043
131,587 0.022 0.002 2.015 4.1e−6 2.001 0.001 2.019

The stabilisation parameter in the neo-Hookean test is β = 10−4 and in the Holzapfel–Ogden case is β = 10−2.

hese constants are chosen heuristically.
13
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We implement a Newton–Raphson method that stops whenever a residual absolute tolerance of 10−8 is attained,
nd where at each iteration the discrete version of the linear system (3.1) is solved with the Multifrontal Massively
arallel Sparse direct Solver (MUMPS). We then do uniform mesh refinement and on each level we compute errors
etween approximate and exact solutions and record the absolute errors and convergence rates in Table 5.1, which
ndicate optimal error decay for the first- and second-order cases.

We also conduct an experimental convergence test for the linearised Galerkin scheme (4.2). Now the exact
olutions satisfying (3.8) are

u = 0.1(y2, y3)t, p = x4
− y4, π = 2µsym(∇u) − pI,

and the external load is b = −
1
ρ0

div(π−∇ut). We again take µ = 100 and the error history is displayed in Table 5.2,
where we use β = 10−4. We observe the expected rates of convergence. Unreported numerical experiments indicate
that the discretisation of the nonsymmetric formulation arising from (3.10) obtains the same results.

5.2. Inhomogeneous compression benchmark in 2D

We study the deformation of a rectangular block that undergoes a pressure load (here implemented as a traction)
applied on the centre of the top edge. The domain is Ω = (0, 20) × (0, 10) (in mm2), the shear modulus is
µ = 240.565/(2(1 + 0.4999)) MPa and the applied pressure is P0 = 400 MPa. On the top surface we prescribe
zero tangential displacement, on the bottom we set zero normal displacement, and on the vertical boundaries we
impose zero traction. As in [8], we record the vertical displacement on the centre of the top boundary for different
levels of mesh resolution, for different polynomial degrees, and different values of the stabilisation parameter. The
results are portrayed in the right plot of Fig. 5.1. We observe how the output converges to the value −5.63, which
agrees with the results from [8]. We can also see that for the first and second-order methods, the value β = 0.001
performs best. In the higher-order case the result is insensitive to the stabilisation, while in the lowest-order case the
convergence with e.g. β = 0.1 is very poor. The number of Newton iterations is not shown as it practically coincides
n all cases, and it varies between 5–6 steps. Classical strain enhancing methods may exhibit the so-called hourglass
nstability for this compression test (see, e.g., [16,72]), and this is not observed in the present set of simulations.

.3. Compression test in 3D

We consider the example of a hollow cylinder deforming under compression and shear in 3D [6, Sect. 5.3.2]. As
n the previous example we employ an isotropic and incompressible neo-Hookean material now with shear modulus

= 50, and consider a hollow cylinder of height 4 cm, inner radius 0.75 cm and outer radius 1 cm. The domain
s discretised into 23,946 tetrahedral elements yielding, for the lowest-order scheme, a total of 180,134 DoFs. The
tabilisation is set to β = 0.1. The surface defined by z = 0 is clamped and the surface at z = 4 undergoes an
ncreasing deformation. In contrast with Test 2, here we apply an incremental load taking 10 intermediate steps
nd progressively reaching a maximal displacement on the top surface of magnitude 1.5, and acting only in the
irections x and z, equally. On the inner and outer radii we prescribe zero traction. The deformations induced by
hear are seen from Fig. 5.2, where we plot Kirchhoff stress components and pressure on the deformed domain,
howing the undeformed configuration with opacity. The overall behaviour of the simulation agrees with the results
rom [6].

.4. Twist and contraction of left ventricle

Next we conduct a simple test on a patient-specific left ventricular geometry segmented from CT-scans. The basal
egion (the top surface) corresponds to ∂ΩD where normal displacements are set to zero, whereas the epicardium
nd endocardium constitute ∂ΩN . On the endocardium we set an incremental traction increasing from 0 to 3n
where n is the normal vector on the boundary), which represents the variation of endocardial pressure from zero
o 3 kPa in a sub-stage of the ejection phase. On the epicardium we simply set zero traction. The directions of
bre and sheetlet orientation are generated with a Laplace–Dirichlet rule-based method in mixed form as described

n [24] (its primal counterpart was proposed in [73] and other variants used in, e.g., [74]), and the resulting

uscle fibres have an orientation varying transmurally from the epicardial surface to the endocardial surface with
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Fig. 5.1. Test 2: inhomogeneous compression of a neo-Hookean block. Left: vertical displacement on the top-centre of the domain according
to the number of degrees of freedom and for different values of the pressure stabilisation. Right: yy-component of the Kirchhoff stress and
pressure distribution plotted on the deformed configuration, computed with ℓ = 0 and β = 0.001. For this case the displacement on the
entre of the top edge is u = (0, −5.71)t.

difference of 120 degrees, whereas the collagen sheetlets have a radial distribution relative to the ventricular
entreline. This ventricular centreline is aligned with the z-axis, the apex-to-base distance is 10.13 cm, and the
aximal circumferential radius is 3.94 cm. We generate a tetrahedral mesh of 94,269 cells and 22,193 vertices on
hich we implement the mixed scheme with ℓ = 1 and β = 50. We employ the Holzapfel–Ogden material law
ith the constitutive parameters used in Example 1. The active contraction of the ventricle is incorporated through

he so-called active strain approach (see, e.g., [23]) where the activation function ξ is incremented together with the
ndocardial pressure up to a maximal activation of 12%. In order to achieve sufficient torsion and thickening of the
entricular wall, we also use an algebraic relation between the activation and the myocyte shortening that models
liding myofilaments of collagen and a transmurally heterogeneous activation that modulates different values of ξ

n each direction (see details in [75,76])

ξ f = ξ, ξn = (1 − ζ )k0ξ + ζ [(1 − ξ )−1/2
− 1], ξs = (1 + ξ )−1(1 + ξn)−1

− 1,

here ζ is a smooth indicator function going from 0 on the endocardium to 1 on the epicardium, and we choose
mild orthotropic activation parameter of k0 = 3.
In Fig. 5.3 we plot two snapshots of the obtained solutions, one at the beginning of the diastolic phase and the

econd one for the end-diastolic configuration. Stresses and pressure concentrate in the vicinity of the interface
etween the basal region and the endocardium, and we see the expected apex-to-base contraction together with a
eformation following the fibre orientation and producing a more pronounced wall thickening towards the basal
picardium. In some regions the mesh is not visible because the deformed geometry has moved in the positive

x-direction.
It is worth remarking that fine-mesh simulations for realistic and patient-specific geometries are not possible

sing only direct solvers due to the excessive memory usage. This issue intensifies in more complex models such
s electromechanical tests. Adopting the augmented Lagrangian strategy, even with direct solvers for the top-left

lock, enables larger-scale and more complex computations.
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T
c

Fig. 5.2. Test 3: compressing a neo-Hookean hollow cylinder for three incremental loadings (from left to right), using ℓ = 0 and β = 0.1.
op: zz-component of the Kirchhoff stress. Middle: displacement magnitude and arrows. Bottom: pressure distribution plotted on the deformed
onfiguration.
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r

Fig. 5.3. Test 4: contraction of an orthotropic cardiac ventricle for two and seven incremental steps of active strain loading (top and bottom,
espectively). The Holzapfel–Ogden material law has been used. Left: xx-component of the Kirchhoff stress. Middle: displacement magnitude

and arrows. Right: pressure distribution plotted on the deformed configuration.

5.5. Performance of the preconditioner

We employ a set of computational benchmark problems introduced in [77] for cardiac biomechanics, as examples
where we examine the accuracy and the performance of the augmented Lagrangian solvers. These tests have been
used in [35] in the context of preconditioning. Detailed descriptions of the problems can be found therein. Here
we simulate only the first two tests (namely the beam deflection problem and the ellipsoid inflation problem), since
the equivalence of the contraction problem has already been considered in Section 5.4. Quantitative results (i.e. the
deflection and inflation magnitudes), which allow us to validate the accuracy of the discretisation and preconditioner
are given in the recent work [35], and the performance of the preconditioner can be examined by looking at the
average number of outer Krylov iterations per Newton step and total runtime.

The first problem (Test 5) considers a deflecting cuboidal beam whose geometry is defined by x ∈ [0, 10],
y ∈ [0, 1], z ∈ [0, 1] mm, with the fibre direction being constant along the x-axis. To match the benchmark test
in [77], the transversely isotropic constitutive law is characterised by the strain energy density proposed by Guccione
17
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Fig. 5.4. Test 5. (a) deflection of the beam geometry with pressure distribution; (b) plot of deflection magnitudes at (10, 0.5, 1) against the
umber of degrees of freedom (DoFs) for different values of γ at β = 10; (c) plot of deflection magnitudes at (10, 0.5, 1) against the number
f degrees of freedom (DoFs) for different values of β at γ = 10. The green horizontal line marks the reference value of 4.165 mm. (For
nterpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5.5. Test 5. Deflection of the beam using the first and second order mixed Kirchhoff stress methods as well as three discretisations of
he classical displacement–pressure formulation of hyperelasticity.

t al. [78]:

ΨGCM = a/2(eQ
− 1), (5.1)

with Q = b f E2
f f + bt (E2

ss + E2
nn + E2

sn + E2
ns) + b f s(E2

f s + E2
s f + E2

f n + E2
n f ), where a = 2 kPa, b f = 8, bt = 2,

f s = 4, and the Ei j denote entries of the Green–Lagrange strain tensor E, rotated with respect to a local coordinate
ystem aligned with f 0, s0, n0.

The face x = 0 is fixed in all directions and a pressure of 0.004 kPa is applied to the bottom face z = 0. The
z-coordinate of the end point (10, 0.5, 1.0) after deflection, according to [35], is around 4.165 mm, consistent with
he average of the values computed by the participants in the benchmark study [77].

Fig. 5.4 portrays the convergence in deflection magnitudes for different values of penalty parameter γ and
ressure stabilisation constant β. The limits agree with the findings in [35,77] (where the green horizontal line
arks the reference value), thus validating the accuracy of the discretisation and preconditioner. The performance
f the preconditioner at different values of β and γ is illustrated in Tables 5.3–5.4.

18
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Table 5.3
Test 5. Average number of Krylov iterations per Newton iteration at
different values of β, fixing γ = 10.

# refinements DoFs Stabilisation constant (β)

0.1 1 10

1 1.8 × 104 3.55 2.95 2.50
2 1.4 × 105 3.86 2.86 2.45
3 4.6 × 105 3.96 2.86 2.73
4 1.4 × 106 4.29 3.14 2.73

Table 5.4
Test 5. Average number of Krylov iterations per Newton iteration at different values
of γ , fixing β = 10, where NF denotes the convergence failure of the outer Newton
solve. Increasing γ improves the approximation of the Schur complement and reduces
the number of outer Krylov iterations, but makes the nonlinear problem more difficult
to solve.

# refinements DoFs Penalty parameter (γ )

0.1 1 10 100

1 1.2 × 104 16.0 6.21 2.50 1.36
2 1.4 × 105 17.4 6.60 2.45 NF
3 4.6 × 105 18.0 7.20 2.73 NF
4 1.0 × 106 18.4 7.60 2.73 NF

Although the goal of this manuscript is not to compare a Kirchhoff stress formulation against other primal or
ixed forms of hyperelasticity, for illustrative purposes we employ Test 5 to show the deflection obtained with

lassical displacement–pressure formulations using continuous and discontinuous pressures. Sparse direct solvers
re employed in this case, and we set β = 10. Similarly as in Fig. 5.4(c), we display in the semi-log plot of Fig. 5.5
he outcome of the runs using the first and second order Kirchhoff stress methods together with the deflections
roduced by piecewise quadratic and continuous displacement approximations in combination with either affine
nd continuous pressure (Taylor–Hood elements), piecewise linear discontinuous pressures, and piecewise constant
ressures. The figure shows that for a given number of degrees of freedom, the proposed schemes outperform
he displacement–pressure methods. We also mention that for a given mesh partition, the memory usage and the
ssociated CPU time required indicate that the lowest-order Kirchhoff stress method is more convenient than the
2 − Pdisc

1 scheme and only slightly more expensive than the other two displacement–pressure methods (while
elivering higher accuracy).

The second problem (Test 6) considers the inflation of an ellipsoid-like geometry, simulating the deformation
attern of the left ventricle. As in Test 5, the constitutive relation (5.1) is adopted. The base plane z = 5 mm is fixed
n all directions, and a pressure of 10 kPa is applied to the endocardial surface. Again by [35], the y-coordinate of
he epicardial apex (0, −23, 0) after inflation is around −28.8 mm.

We observe from Table 5.3 a slight decrease in the number of Krylov iterations as we increase the value of the
tabilisation parameter, indicating that our preconditioner is robust to the pressure stabilisation employed. On the
ther hand, Table 5.4 illustrates a large decrease in the number of Krylov iterations as we increase γ . The failure of
ewton solve is a direct consequence of the increasing nonlinearity of the problem as γ increases, as the constraint

s nonlinear.
Table 5.5 allows us to see how the computational efficiency has improved after adopting the augmented

agrangian preconditioner. We observe that at each mesh refinement, the average runtime after preconditioning
s substantially reduced compared to that of solving the test problem using LU factorisation. We expect to see a
arger amount of time saved for more complex simulations (i.e. as the number of degrees of freedom increases).

For Test 6, we observe from Fig. 5.6 the convergence in inflation magnitudes at the apex for different values of
and β. Again, the limits agree with the results obtained in [35], thus validating the accuracy of the discretisation

nd preconditioner.
We observe from Table 5.6 a moderate decrease in the iteration count as we take larger stabilisation parameters,
howing that the performance of the preconditioner is robust with respect to the pressure stabilisation employed.
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Fig. 5.6. Test 6. (a) inflation of the ellipsoid, pressure is shown by the colour bar; (b) plot of inflation magnitudes at epicardial apex (0,
−23, 0) against the number of degrees of freedom (DoFs) for different values of γ at β = 50; (c) plot of inflation magnitudes at epicardial
apex (0, −23, 0) against the number of degrees of freedom (DoFs) for different values of β at γ = 1. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Table 5.5
Test 5. Average runtime of solving the problem with LU factorisation (direct solver) applied to the full system,
and using the augmented Lagrangian (AL) preconditioner with LU applied to the top-left block A, at β = 10
and γ = 10.

Degrees of freedom (DoFs)

1.4 × 105 4.6 × 105 1.4 × 106

Direct solver for A 3 min 09 s 24 min 07 s 3 h 12 min 02 s
AL preconditioner with direct solver for A 2 min 25 s 17 min 31 s 1 h 55 min 01 s
Speedup 1.30× 1.38× 1.67×

Table 5.6
Test 6. Average number of Krylov iterations per Newton iteration at
different values of β, fixing γ = 1.

# refinements DoFs Stabilisation constant (β)

0.5 5 50

1 5.1 × 104 7.26 5.19 4.18
2 1.1 × 105 7.55 5.38 4.25
3 3.0 × 105 8.65 5.75 4.47
4 6.4 × 105 9.02 6.19 4.57

As in Test 5, Table 5.7 shows a considerable reduction in the number of Krylov iterations as we take larger values
of γ .

Table 5.8 illustrates the average runtime of solving test 6 before and after the adoption of the augmented
agrangian preconditioner at different mesh refinements. We observe that the computational efficiency of fine
imulations is increased by roughly 10%–20% compared to that of applying LU factorisation to the whole system.
s remarked at the end of Section 5.4, for cardiac electromechanics a much higher mesh resolution is required, and
sing solely direct solvers for A is ruled out.
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Table 5.7
Test 6. Average number of Krylov iterations per Newton iteration at
different values of γ , fixing β = 5.

# refinements DoFs Penalty parameter (γ )

0.1 1 10

1 5.1 × 104 14.7 5.19 2.47
2 1.1 × 105 15.4 5.38 2.51
3 3.0 × 105 16.6 5.75 2.58
4 6.4 × 105 17.2 6.19 2.66

Table 5.8
Test 6. Average runtime of solving the problem with LU factorisation (direct solver) applied to the full system, and using the
augmented Lagrangian (AL) preconditioner with LU applied to the top-left block A, at β = 50 and γ = 10.

Degrees of freedom (DoFs)

1.1 × 105 43.0 × 105 6.4 × 105

Direct solver for A (serial) 27 min 11 s 2 h 27 min 58 s 11 h 23 min 42 s
AL preconditioner with direct solver for A (serial) 24 min 32 s 2 h 10 min 58 s 9 h 59 min 5 s
Direct solver for A (8 cores) 6 min 41 s 34 min 16 s 2 h 37 min 0 s
AL preconditioner with direct solver for A (8 cores) 6 min 3 s 30 min 59 s 2 h 20 min 21 s
Direct solver for A (16 cores) 4 min 24 s 22 min 13 s 1 h 49 min 32 s
AL preconditioner with direct solver for A (16 cores) 4 min 22 s 19 min 51 s 1 h 29 min 59 s

6. Summary and concluding remarks

In this paper we have proposed an extension of a formulation for nonlinear hyperelasticity in the incompressible
egime, which uses the Kirchhoff stress as one of the field variables. By recasting the continuous mixed problem
n this way, the resulting formulation presents some advantages related to the straightforward imposition of stress
ymmetry, usability in recent models for stress-assisted diffusion, and discretisation using classical conforming
olynomial spaces of arbitrary degree. We have discussed the solvability and stability of the linearised problem,
nd have proposed an augmented Lagrangian preconditioner. The use of exact Newton–Raphson Jacobians permits
uadratic convergence to regular solutions in the nonlinear iterations. Several numerical examples have demonstrated
he performance of the formulation and the robustness of the preconditioner in the solution of a number of
enchmark problems and some tests arising in cardiac biomechanics. These methods are competitive when compared
o classical displacement–pressure-based schemes. Nevertheless, further comparisons against other state-of-the-art
tress-based methods should be conducted in future studies.

While the present family of methods exhibits appealing features as mentioned above, a drawback, shared
ith other stabilised methods for hyperelasticity (see, e.g., [28–30]), is that the stabilisation constant required

or the lowest-order method needs to be chosen heuristically. For this we could explore different formulations
sing Kirchhoff stress, for instance applying integration by parts differently in the derivation of the variational
ormulation, and leading to divergence-conforming approximations of stress. This has been used successfully in

number of three-field formulations for linear elasticity using the Cauchy stress [21,25,79,80], but the principle
s not straightforwardly carried over to the hyperelastic framework. Some formulations are available [3–5] in that
ontext, but they consider the first Piola–Kirchhoff stress and displacement or adequate stress reconstructions from
isplacement and pressure [26]. In any case, also the preconditioning framework should be carefully restructured
fter changing the variational formulation.

Ongoing extensions of this work include the analysis of time-dependent formulations of hyperelasticity and
nderstanding how the preconditioner should be adapted. We also plan to derive suitable a posteriori error estimators.
nother important extension is the study of inner iterative solvers for the augmented Kirchhoff stress–displacement
lock in the preconditioner.

Generalising the analysis to include natural model extensions is also part of our goals, notably to the case of
ully coupled electromechanics [24,31], as well as the introduction of contact and friction.
21
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