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Abstract

In this work, we propose and investigate a mixed virtual element method within a Banach space
framework to numerically study the unsteady motion of non-Newtonian pseudoplastic Stokes flows.
Given the increasing focus on non-Newtonian fluids problem where stress plays a critical role, our
approach introduces new unknowns such as the rate of strain and pseudostress tensors. This results
in a mixed variational formulation that including velocity and these additional unknowns within
a Banach space setting. We establish the well-posedness of weak solution and derive stability
bounds using classical results from nonlinear monotone operator theory. The discretization of
the problem in both space and time is carried out using an H(div)-conforming virtual element
method and the implicit Euler method, respectively. In particular, for the spatial discretization,
the pseudostress is approximated using a virtual element subspace of H(div; Q), while piecewise
polynomial subspaces of degree j are employed to approximate the velocity and rate of strain tensor.
The scheme handles nonlinear terms implicitly, and its well-posedness and unconditional stability
have been proven. Furthermore, a convergence analysis is performed for all variables in their natural
norms, demonstrating optimal rates of convergence with respect to both spatial mesh size and time
step. Finally, we conduct several numerical experiments to validate the effectiveness and accuracy
of the proposed method.

1 Introduction

Flow problems are often influenced by the viscosity of the fluid, which varies from one fluid to another
depending on the relationship between shear stress and shear rate. Fluids can be categorized as either
Newtonian or non-Newtonian based on their response to shear stress; Newtonian fluids exhibit a linear
relationship between shear stress and shear rate, whereas non-Newtonian fluids show a non-linear
relationship between these variables. The latter group, which includes fluids used in the petroleum
industry, chemical-pharmaceutical processes, (bio)polymer manufacturing, and food production, is
often modeled using power-law and Carreau—Yasuda models. These applications have led to a growing
focus among researchers on developing numerical methods for non-Newtonian fluids across a wide
range of flow configurations and domains.

To the best of the authors’ knowledge, Baranger and Najib [3] were among the first to analyze finite
element methods (FEMs) for fluids with viscosity described by the Carreau or power law. Subsequently,
Du and Gunzburger [28] investigated FEMs for non-Newtonian flows with viscosity governed by the
Ladyzhenskaya law. Later, Barrett et al. [4] 5] established error bounds for velocity and pressure in
appropriate quasi-norms for non-Newtonian flow models with viscosity governed by either the Carreau

*Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences, Amirkabir University of Technol-
ogy (Tehran Polytechnic), No. 424, Hafez Ave., 15914 Tehran, Iran. Email: |z90gharibi @aut.ac.ir

TDepartment of Applied Mathematics, Faculty of Mathematics and Computer Sciences, Amirkabir University of Technol-
ogy (Tehran Polytechnic), No. 424, Hafez Ave., 15914 Tehran, Iran. Email: mdehghan@aut.ac.ir

¥School of Mathematics, Monash University. 9 Rainforest Walk, 3800 Melbourne, Australia.  Email: ri-
cardo.ruizbaier @monash.edu.


mailto:z90gharibi@aut.ac.ir
mailto:mdehghan@aut.ac.ir
mailto:ricardo.ruizbaier@monash.edu
mailto:ricardo.ruizbaier@monash.edu

or power law. These results were further improved in 12} 41] by proving optimal error estimates for
fluids exhibiting shear-thinning behavior, characterized by a power-law exponent » < 2. In the context of
mixed FEMs for non-Newtonian flows, Gatica et al. [|31}[32]] proposed a mixed FEM for nonlinear Stokes
models in quasi-Newtonian fluids, introducing flux and the tensor gradient of velocity as unknowns,
and provided a priori and a posteriori error analyses for the associated lowest-order Galerkin scheme.
Howell [42] introduced a finite element technique for a dual-mixed formulation of Stokes and nonlinear
Stokes problems, incorporating the velocity gradient, velocity, and pseudostress, and also conducted an
error analysis. Other significant contributions to the numerical approximation of non-Newtonian flows
include [[14} 21}, 27,33}, 37, 140, 43]].

In recent years, there has been growing interest within the scientific community in developing
numerical techniques to solve partial differential equations on polygonal and polytopal meshes in two-
and three-dimensional domains, respectively. One of the significant advancements in this area is the
virtual element method (VEM), initially introduced to address the primal conforming Poisson problem
in [6] as a more general approach compared to the traditional H'-conforming finite element method.
Later, the generalization of mixed finite elements [13]] to H(div)-conforming vector fields, known as
the mixed virtual element method, was introduced in [17] and further developed in subsequent works
[7, [10]. Due to its strong theoretical foundation and ease of implementation, the mixed VEM has
been applied to solve various linear and nonlinear problems, particularly in fluid mechanics, using
velocity-pressure formulations [1} 2, (8, (9] and pseudostress-velocity-based approaches [18, 20} 30, 36].
Specifically, focusing on the latter approach, the authors in [[18] introduced a mixed VEM for the Stokes
problem using a pseudostress-velocity formulation, extending the mixed formulation from [34] into
the virtual element framework. Similarly, in [20], this method was applied to the Brinkman equation
using a pseudostress-based formulation. Further studies have extended this approach to nonlinear fluid
mechanics models, such as quasi-Newtonian Stokes [19], Navier—Stokes [36], and Boussinesq equations
(30,38}, 139].

According to the above bibliographic discussion, the aim of this paper is to develop and analyse a
mixed virtual method within the Banach space framework for the unsteady motion of the non-Newtonian
Stokes equation. To achieve this, we introduce symmetric stress and rate of strain tensors as auxiliary
unknowns in the non-Newtonian Stokes equation. Subsequently, we eliminate the pressure variable
by applying the incompressibility condition and then compute it using a post-processing technique.
The discretization for the spatial variables type of additional and primal is based on the virtual and
non-virtual spaces in [30], respectively, whereas to discretize of time variable we employ the backward
Euler approach. It is worth mentioning that the discrete formulation is entirely independent of the
stabilization term, with only the discrete form being related to the inf-sup term. We also prove the
solvability of both the continuous and discrete schemes using classical results on nonlinear monotone
operators and establish stability estimates for all unknowns without making any assumptions about the
data. Unlike in [[1]], where the VEM is used for the steady motion of the non-Newtonian Stokes equation,
our analysis relies solely on the proof of inf-sup condition, which significantly simplifies the model’s
analysis. Furthermore, we obtain optimal error estimates in natural norms for all unknowns of the same
order, with particular attention to the case where 6 = 0, corresponding to the power-law equation, which
is typically the most challenging regime. Combining the current findings with methods from references
[4} 15]] would allow the results to be generalized to cases where § > 0. To the best of the authors’
knowledge, this is the first arbitrary-order polytopal approximation method in the mixed framework for
non-Newtonian flow models in fluid mechanics.

The rest of the paper is organized as follows. Sec. [2]is devoted to introducing the non-Newtonian
Stokes model, providing the variational formulation. The solvability is analyzed using classical results
from nonlinear monotone operator theory in Sec. (3] Then, we introduce the mixed VEM in Sec. {4 by
following Ref. [36]. This has four main parts, starting with the basic assumption on the mesh, defining
the local and global mixed VE spaces, projection operators, and deriving the discrete version of bilinear
forms. In Sec. we study the unique solvability of the proposed VEM using a discrete version of
nonlinear monotone operator theory developed in Sec. (3| for the continuous case, and then establish



the stability bounds. In order to accomplish this, we derive the common estimates about the bilinear
forms, as well as the discrete inf-sup condition. In Sec. [6] we study a priori error analysis. Finally, the
method’s performance is illustrated in Sec. [7|through several numerical examples in 2D, both with and
without manufactured solutions, confirming the accuracy and flexibility of the proposed mixed VEM.

2 Continuous problem
In this section we introduce the model problem and derive its corresponding weak formulation.

2.1 The model problem

Let Q c RY, where d € 2, 3, represents a bounded connected open polytopal domain (i.e., polygonal if
d = 2 and polyhedral if d = 3) with boundary I" which split as I' = I'p U 'y such that I'p N 'y = 0.
Consider given function y : & — R. Throughout the subsequent discussion, we assume the existence
of real numbers u, i such that, almost everywhere in Q

O<pu<spu<np.

Let tr represent the final time, f : Q X (0,tr] — R4 denotes volumetric source term. The unsteady
non-linear Stokes problem reads [1]: Find the velocity u : Q x (0,zr] — R and the pressure
p: Qx(0,tp] — R such that

du = div (i (5% + [e(w)|*) = e()) +Vp = £ in Q, (2.1a)
div(u) =0 in Q, (2.1b)

on=0 on I'ny; and u=290 on Ip,, (2.1¢)

u(-,0) = ug in Q, (2.1d)

where Q; := QX (0, [F], FDJ =Ip X (0, [F], FN,t =Ty X (0, IF], a,r € [1, OO), and 6 > 0 and 8(11) is
the symmetric part of the velocity gradient tensor, which defined as &(u) = (Vu+ (Vu)T)/2. Note that
the nonlinear shear stress-strain rate defined in the first term on the left-hand side of (2.1a)) represents
the Carreau—Yasuda law, which generalizes the Carreau model for the case where @ = 2. In addition, the
classical power-law model can be derived from by considering 6 = 0. Shear-thinning behavior,
which is observed in most real fluids described by a constitutive relation, corresponds to the case where
r < 2. Itis clear that for r = 2, problem (2.1)) simplifies to the standard Stokes system for Newtonian
fluids. For brevity, we will focus on the pseudoplastic case where r < 2, which is most commonly
encountered in practical applications and presents greater challenges for theoretical analysis. Even so,
similar results for the dilating case r > 2 can be established by applying the arguments that follow.

Next, to attain a mixed formulation for (2.1]), we follow the approach outlined in [33]. Specifically,
we introduce the strain rate and stress tensors defined as follows, respectively

r-2
t:=Vu, and o = p (6% +|tsyn|?) * tsymn—pl in Q. (2.2)
Thus, applying the trace operator to the tensor o, and using the condition (2.1b), we obtain
1
p = ) tr(oc) in Q. (2.3)

Thus, substituting (2.3) back into (2.2)) and performing some straightforward calculations, we find out
that the problem (2.1)) can be equivalently rewritten as follows: Find (t, o, u), belong to the appropriate



spaces specified in the following section, such that

t = Vu in Q, (2.4a)
r2 .
o = g (57 + [tsym|®) @ tsym in Q, (2.4b)
ou—div (o) = f in Q;, (2.4¢)
u=0 on I'p; on=20 on Iy, (2.4d)
u(-,0) =uy in Q and /tr(()') =0. (2.4e)
Q

We end this section by noting that the stress-strain law given by (2.4b)) satisfies the following assumption
(see [[14), Appendix A]).

Assumption 2.1. The shear stress-strain rate law o presented in (2.4b) is a Caratheodory function that
satisfies 04(0) = 0, and for a fixed r € (1, 2] the following properties hold:

(i) (Hélder continuity). there exists a constant o, > 0, depending only on u, a, r, satisfying

r=2

7

|0-d(tsym) - O-d(ssym)| < O (5r + |tsym|r + |Ssym|r) tsym — Ssym| » (2-5)

(i) (Strong monotonicity). there exists a constant o* > 0, depending only on y, a, r, satisfying

r=2
r

2
tsym — Ssyn| - (2.6)

(o'd(tsym) - o'd(ssym)) ¢ (tsym — Ssym) > o (5r + |tsym|r + |Ssym|r)

2.2 The variational formulation

In this section, we focus on deriving our mixed variational formulation for the system. Specifically, by
multiplying (2.4d), (2.4b) and (2.4d) by appropriate test functions 7, s and v, respectively, we get

/tZTZ/VUZT foraer € (0,tF), (2.7a)
Q Q
r=2
—/a‘d (S + / (89 + [tsym|¥) @ tsym:s = 0 fora.e t € (0,tr), (2.7b)
Q Q
/ﬁzu-v—/div((r)-v = ff-v foraet € (0,tF), (2.7¢)
Q Q Q

We begin by (2.7b)) as it involves a key expression. More precisely, by applying the Holder inequality
and the continuity property given in (2.5) with s = 0, and denoting s as the conjugate of r defined by
s := -5, we find that the second term of is bounded as follows

r2 s\ /s
(/ '/,t (5a+ |tsym|a) @ tsym ) ||S||0,r;§2
Q

s(r-2) s 1/S
O (./Q (6r + |tsym|r) " |tsym’ ) ||S||0,r;£2-

We observe that, since ¢ is non-negative and r < 2, the following inequality holds

IA

ﬂ
"//J (6a + |tsym|0) @ tsym : S‘
Q 2.8)

IA

r=2 =2

(5’+|tsym|r) "< (2‘—’|tsym|’) .



Then, applying the above result to bound the term on the right-hand side of (2.8), yields

r=2 _ -
‘[zﬂ (6a+ |tsym|a) @ tsym : S’ < 025072 ”tsymH(r),r%Q lIsllo.r.0 (2.9)

so we deduce that for ¢+ € J the second term in (2.7b) makes sense for t(¢),s € L"(Q), and
consequently, the first terms in and are well-defined provided that T and o (¢) belong to
L*(Q). Additionally, we deduce from that u should be initially sought in W' (Q). Now, we
introduce the Banach space

HS (div; Q) := {T el¥(Q): divre LZ(Q)},
which is endowed with the natural norm defined by

2 2 . 2
”T”s;div;g = ”T”(),S;Q + ”le(T)H(),Q .

Then, proceeding as in [23| Theorem 2.2], it is easy to show that, given r, there holds
(rn, V) = / {r Vv div(‘r)} V (1, v) € H' (div: Q) x W' (Q) , (2.10)
Q

where(-, -) stands for the duality pairing between W~1/%5(I") and W'/5-" (T").
In this way, defining the subspace of H® (div; Q) by

Hf  (div; Q) := {T e H'(div;Q): (tn,v)r=0 Vve W(l)’lfD (Q)} ,

and applying (2.10) for the given 7 € Hf. (div; Q) and u € W (Q), while employing the Dirichlet
boundary condition on u, (2.7a)) can be rewritten as

/t:‘r+/u-div(‘r) =0, (2.11)
Q Q

Itis easy to notice that, the first term is well-defined, whereas the second term makes sense foru € L2 (Q),
thanks to the Sobolev embeddings W' (Q) < L"(Q) when r < d and L?(Q) — L"(Q). In addition,
due to the second column of (2.4¢), it follows that we should look for o~ in H |- (div; Q), where

Hp r, (div; Q) = {T € Hf, (div; Q) : ‘/Qtr((r) = 0}.
In turn, considering the free trace property of t, we look for these unknowns in L} (Q), where
LI (Q) := {t el (Q): tr(t) = O},
This implies that can be equivalently rewritten as
—/Q(r : s+/g,u (6% + [teyu®) ™ tym:s =0 VseLl(Q).

Consequently, the weak formulation (2.7)) is well defined if we choose the spaces Q := L{.(Q),
X :=Hj I'n (div; Q), Y := L?(Q), with their respective norms || - [lo.r.q. || - lls:divies || - llo.-

According to the above, we arrive at the variational problem: For a.e ¢ € J, find t(7) € L7.(Q),
o (1) € Hy 'y (div; Q) and u(r) € L?(Q), such that u(0) = ug and

[a(t),s] +[b1(8), o] = 0 Vs e L[ .(Q), (2.12a)
[b1(t), 7] +[ba(u), 7] = 0 V1e H(S)’FN (div; Q), (2.12b)
%[c(u), v] +[b2(v), o] =[F,v] Vv eL3(Q), (2.12¢)



where the operators a : Q — Q,, b :Q— X’, b Y —> X', c:Y—> Y/, are defined, respectively, as

[a(t), 7] = /gﬂ (5“+|tsym|“)%2tsym:s, (2.13a)
[D1(s), 7] = —/Qrzs, (2.13b)
(b2 7] = = [ div(e) v, 2.130)
[c(u),v] := /Qu-v, (2.13d)

forall (s,7,v) e Qx X xY.
In turn, F € Y is the bounded linear functional defined by

[F,v] = /f-v. (2.14)
Q

In all the terms above, [-, -] denotes the duality pairing induced by the corresponding operators. Let us
define the global unknown and space:

i= (ut) eV = L*(Q) xL(Q), (2.15)
where V is endowed with the norm
Iy = 1(v.9)ly = VG o+ lslg,.q  VYE:=(V.5)€V.

Now, thanks to the above notation, it is easy to see that (2.12)) can be rewritten equivalently as: Find
(W,0) : [0,1r] = V x Hj r, (div; Q) such that

%[C(ﬁ(r)),ﬂ + [A@()), V] + [BFV), 0 (1)] = [F(1),V] VVvev, (2.16a)

[B(u(1), 7]

0 VT eH) . (diviQ),  (2.16b)

where, the operators A:V -V ,8:V - X and C : V — V are defined by

[A(W),V] := [a(r,s)] Vw=(w,r),v=(v,s) €V, (2.17a)
[B(V), 1] := [b1(s), 7] + [b2(V), T] V(V,7)=((v,8),7) e VXX, (2.17b)
[C(W),¥] := [c(w), V] VW,vevV, (2.17¢)

whereas the functional F € V' is set as

[F.¥] = [F,v]. (2.18)

3 Well-posedness of the continuous problem

In this section we proceed similarly to [24] to establish existence of a solution to problem (2.16). More
precisely, we will recall several results that will be utilized in the upcoming analysis.

3.1 Some abstract results

We start by recalling the important result from [45, Theorem I'V.6.1(b)], which will help us demonstrate
the existence of a solution to problem (2.16).



Theorem 3.1. GivenV, a seminorm space, which obtained from a symmetric and non-negative bilinear
Jormn(-,-), welet N : 'V, — V,; be the bounded linear operator induced by n, which is defined by

Nx(y) = n(x,y) Vx,yeV,.

In addition, let D be a dense subspace of V,, M : D — V,’l be linear operator and N(N) and N (M)
be the respective null spaces of operators N and M. Assume that:

i) M is monotone, that is,

(Mx) = M(y),x—y] =0 Vx,yeD.

ity NON)ND c N(M)and N + M : D — V. _is onto.

Then for every f € Wh1(J; V,’l) and ug € D there exists a solution of 0;(Nu)(t) + Mu(t) = f(t),t > 0,
with (Nu)(0) = Nuy.

Furthermore, to establish hypothesis ii) in Theorem |3.1] we will need the following abstract result
from [22, Theorem 3.1].

Theorem 3.2. Let X1, X» and Y be separable and reflexive Banach spaces, X| and X, being uniformly
convex, and set X = X1 X Xy . Let A : X — X' be a nonlinear operator, B € L(X, Y’), and let K be
the kernel of B, that is,

K = {veX: [B(v),q] =0 quY}.
Assume that

(i) A is hemi-continuous, that is, for each u,v € X

J:R—>R, t—-J@)=[Au+tv),v] iscontinuous.

(ii) there exist constants L > 0 and p1, p> > 1, such that
2
Pj=2
1A = AWy < LY ey = vl + (Hagll, + vsllx,)” g = vl
J=1

forallu = (uy,uz), v=_(vy,v2) € X.

(i) the family of operators {ﬂ(- +1): VoV reX } is uniformly strictly monotone, that is
there existy > 0 and p1, pa > 1, such that

[Au+1) = AW+ =v] = y{llur =villf + luz = vl .

forallt € X, and for all u = (uy,uz), v=(vy,v2) € V.

(iv) there exist B > 0 such that
[B(v),4q]
sup ————

>pB VgevY.
vex Ivlix

Then, for each (F,G) € X' XY there exists a unique (u, p) € X X Y such that

[AQ),v] + [B(v),p] = F(v) VveX,
[B(u).q] = G(g) VgeY.



Then, we rewrite the problem (2.16)) in notations of Theorem Specifically, we define the
operators

C 0 ’ ﬂ B, ’
N = (0 0).Vn—>Vn and M := (—B 0).D—>Vn, 3.1
with .
V, = VxX, u:= ((‘;) , Vo= (LZ(Q) ><{0}) x {0}, (3.2)
and
D = {(ﬁ, o)eV,: M@u,o) e Vn} (3.3)

Finally, we derive the stability properties of the operators N and M. First, we observe that the
operators B, C and functional ¥ are linear. Additionally, employing Holder and Cauchy—Schwarz
inequalities, we obtain

[B). 7| < IVIlvlI7lls.aive V(V,7) e VxX, (3.4a)
[[c(W).¥]] < Iwlloe IVl < IWlvINIv. [CF).¥] = [IVlgq VW,veV, (3.4b)
L7, V]| < Iifllo. lIVllv VveV. (3.4c)

This means that 8 and F are bounded and continuous, whereas N is bounded, continuous, and
monotone. Additionally, by applying the estimate (2.9), it is clear that, the nonlinear operator A is
bounded with upper bound C# := o* 257"~ that is

[A), 7| < Calltly o llsllore < Calltl; o ¥y (3.5)

This result, along with (3.4a)), implies that M is bounded and continuous.
Next, we will verify the hypotheses ii) of Theorem 3.1]to establish the well-posedness of (2.16). To
this end,let us consider the resolvent system associated with (2.16)): Find (4, 0") € V x X such that

[(C+A)@),V] +[B(),0] = [F,¥] VVeV, (3.62)
[B(0). 7]

0 V1 eHjp, (div;Q). (3.6b)

3.2 The well-posedness of (3.6)

In this section, we use Theorem [3.2]to show the existence of a unique solution to problem (3.6)). First,
we note that, due to the uniform convexity and separability of L" (Q2) for r € (1, 2], the spaces V and X
also exhibit uniform convexity and separability.

Next, we proceed to verify hypothesis ii) of Theorem [3.2] which states a continuity bound for the
nonlinear operator C + A.

Lemma 3.3. Let r € (1,2]. Then, there exists Lyy, depending on o, s, r, such that
- - -2
(€ +A)@) - €+ A)D| < Lux {Iu=Vloa+ (Itlo.r+ lslore) " It=slora} . G

Proof. Letu = (u,t), V= (v,s) € V=Y x Q. Then, due to the linearity of C, and by using the
definition of A (cf. (2.17a))) along with the boundedness estimate (3.4b)), we obtain
[[(C+A) (W), w]| < |[[C-V),W]|+]|[A®@) - AF),wW]|

(3.8)
< llu=vlloalwllo.g + |[a(t) - a(s), r][.



To bound the second term, we now apply the definition of a given by (2.13a)) along with assumption|2.1}
which gives

|[a(t) - a(s),r]| < |//~l (6a + |tsym|a)% tsym — (5a + |Ssym|a)r72 Ssym) 'r
-2 r=2 s\ /s
< (/ .U‘ 5%+ |tsym| )T sym — (6a + |Ssym|a/)T Ssym’ ”rHO,r;Q
s(r-2) 1/s
< 0% (‘/Q (6r + |tsym - Ssymlr) . |tsym - ssymls) ”r”O,r;Q s

form which, proceeding in a manner similar to the derivation of (2.9), we find that

[[a(t) —a(s),x]] < o202 it=slg g lrllo. o

_ -2
< 0 ZS(r 2 (”tHO,r;Q + “S”O,r;Q) “t - S”O,r;Q ”r”O,r;Q .

3.9

Thus, replacing back (3.9) into (3:8), we obtain (3.7) with Lyy := max {1, 0 252}, i

Next, before examining hypothesis iii) of Theorem for the operator C + A, let us note that,
proceeding similarly to [[25], the kernel of 8 by K can be characterized as

K = {VEV: Vu=s and VEW(I)’r(Q)}. (3.10)

Lemma 3.4. Letr € (1,2]. The family of operators {(C +A)(-+Z): K—>K : Ze V} is uniformly

strictly monotone, that is, there exists a constant aqy > 0, depending on o, r and |Q|, such that

[(C+A)(H+7) - (C+AVF+7),0-7] > am {||u-v||3Q

4 (618G 0+ I8 ) T lE=SIZ 0}, GBI
forallz = (z,r) € Vandu = (u,t),v = (v,s) € K.

Proof. GivenZ = (z,r) € Vandu = (u,t),V = (v,s) € K, from the definitions of A, C (cf. 2.174),
[2.17¢)), we have

[(C+A)(u+Z) - (C+A)(V+Z),u—-V] = ||u—v||(2m+ [a(t+r) —a(s+1),t—s].

In order to find a lower bound for the second term on the right-hand side of the above expression, we
use Assumption [2.1{(cf. eq (2.6)) and the Holder inequality with exponents (%, %) to obtain

- (/ (}tsym ~ Ssym|2)r/2 )2/r

o [[tsym — ssym”g rQ

r r L d d r/2\2/r
< (6" ol +Issyul’) 7 ( (toym) = T (Soym) * tsyn — Soym) )
< | / ettt sl ) 7 ([ 0 ta) ~ 0% ) o 50w

9,
< (1940 + ltsymlly .+ Iseynlly o) * [a(®) = a(s),t =],

which in turn gives

r=2
r

[a(t) - a(s), t=s] = (216" + lltsynlly .0 + Issymlly rq) * 0 lltoym = Soml - (B12)



On the other hand, we know from (3.10) that Vv =s, Va =tand v € W(l)’r (€2). Hence, by applying
Korn’s inequality and the fact that r < 2 we obtain

r=2
r 2
(1916" + litsynlly . + ssymlly ) o litsym = Seymll3

~

T 2
|Q|6r + ”t”(};,r,g + ||s||6,r’g) O-* ”tsyl'ﬂ - SSYm”O’r;Q

\

r—

(1906 + 11l .0+ 181, .0) ™ " e =13 . (3.13)

\%

\%

Q16" + 118115, + sl

r— *

v O

2

\%

2
(1906 + 11t o + sl o) ™ % it = sl ..

Thus, replacing (3-13) back into (3-12), implies (3-TT) with apy := min {Z-|Q|"=2/", 1}. o
Furthermore, the following lemma states that 8 satisfies the hypothesis iv) Theorem [3.2]

Lemma 3.5. There exists a constant B > 0, depending only |Q|, such that

[B(V), 7]
sup

—— > BlItlls.div:e V1 e H(div; Q) . (3.14)
osvev VIV

Proof. The proof is a modification of [25, Lemma 3.3]. More precisely, given 7% # 0 we sets :=
|74|5=279, and notice that ISl .0 = ||Td||(s) ;.o andtr(s) = |74)52tr(79) = 0, which says thats € L7 _(Q),
and additionally there holds

~ djs d
[ 75 = 17 = 1o oo (3.15)
Q

Then, employing (3.15]) we find that

[BE).T] _ [BU03).7] _ JFer

sup > —= = = = It%l0.5: - (3.16)
osvev  IVIlv IIsllo,r:q IIsllo,rq "
In turn, denoting by 7; the j-th row of T for j = 1,...,n, we now set V= (v,0) € V, with v :=
(div(t;))j=1.....n € L?(Q). Then, it follows that
BV), T B((v,0)), 1 )
sup BT BOOLT] iy o 0
ozvev Vv IVllo,0
which, together with (3.16) implies
BV), T .
sup BOETL S e o v diveolloa. (3.17)

osvev  IVIlv

Additionally, by appropriately adjusting the proof of [29, Lemma 2.3], it can be demonstrated that there
exists a positive constant cg, depending only on €, such that

calltllose < 17050 + 1div(T)llo.q - (3.18)
Finally, by combining (3.18)) and (3.17)) we arrive at (3.14) with 8 = min{%, . O

We are now ready to establish the main result of this section.
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Lemma 3.6. Let r € (1,2]. Then, for each f € L*(Q), there exists a unique solution (i,0) =
((u,t),0) € VxXto (3.6).

Proof. As a consequence of Lemmas and we conclude that the operators A + C and B
satisfy the hypotheses of Theorem [3.2] Therefore, through a straightforward application of this abstract
result, we arrive at the desired conclusion. O

We end this section by presenting an appropriate initial condition result, which is essential for
applying Theorem (3.1

Lemma 3.7. Let M be the subspace of W(l)’r (Q)
M = {v e WL (Q) 1 div(u (67 +]€(W)|) T e(v)) e LAQ) and div(v) = 0 in Q}, (3.19)

and assume that ug € Y NM. Then, there exists (ty, 0¢) € QXX such that iy = (g, to) and o satisfy

(ﬂ B

s 0) ((‘f;) e (L2@) x 0) x {0}. (3.20)

Proof. Givenuy € Y N M, we define

to ;= Vuyg and o := u (6% + |e(u0)|")% e(up), (3.21)

which satisfy
. . a ay =2
tr(to) = 0, div(og) = dlv(,u (6% + |e(up)|?) = e(uo)). (3.22)

Notice that tp € Q, and 09 € X. Next, by applying integration by parts to the identity ty = Vug and
following a similar approach to that used in (2.7a)), we get

[B(ug), 7] =0 VreX.

Therefore, given up € VN M, where M is defined in (3.19), by multiplying the second rows in (3.21)
and (3.22) by the respective test functions s € Q and v € Y, we find that

A B\ () _ (Fo
% Sl = (6) 62
where ﬁoz(fo,O) and
V) = — [ div(g (57 @)'5 v, 3.24
(o) = = [ div(e (67 +1e(u)) T efw) v (3.24

Also, we have
. r=2
[Gov)| < div(se (67 +1e(@o) )= ewn))| Vlloa.
Thus, Fy € L2(Q) x {0}, which implies (3.20)), completing the proof. ]

3.3 Main result

In this section, we establish the well-posedness of problem (2.16).

Theorem 3.8. For each f € W1 (J; L2(Q)) and every compatible initial data (tig, o7o) = ((ug, to), 070)
derived in Lemma there exists a unique (4,0) = ((u,t),0) : [0,1r] — V X X solution to [2.16)),
such that u € WH*(1;Y) and ((u(0), £(0)), o(0)) = ((ug, to), 079).
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Proof. We note that the structure of problem is the same as in Theorem 3.1} based on the definitions
givenin (3.1)-(3.3). Additionally, the operator A is linear, symmetric, and monotone due to the definition
of C (cf. (3.4b)), while M is monotone thanks to the strictly monotonicity of A (cf. Lemma [3.4).
Alternatively, Lemmaallows us to deduce that for the given (F, 0) € V,; with £ = (f,0), there exists
a unique (1, 0) = ((u,t), o) € V x X such that

(F,0) = (N +M)(4,0),

which implies N + M : D — V, is onto, where D is defined in (3.3). Lastly, by taking ug € Y N M,
where M is defined in (3.19), a direct application of Lemma([3.7]allows us to determine (to, 079) € Qx X
such that (ug, o7g) € D. Consequently, by utilizing Theorem [3.1] we can conclude that for each ¢ € J
there exists a solution (1(¢), o (¢)) = ((u(t),t(t)),o(t)) € V x X to (2.16) such that u € W>(J;Y),
with initial value u(0) = uy.

We will now establish the uniqueness of the solution to (2.16). To do this, consider (u;, ;) for
i € {1,2}, which are two solutions that correspond to the same input data. Then, considering test
functions (v, 7) = (i) — Uy, 071 — 072) to (2.16)), we find that

1 N N o
Eat”ul ~ml§ o + [A)) - A(W), 1 — 1] = 0,

from which using the fact that u; — U, € K and the strict monotonicity of A (cf. (B.11)), we can
conclude that

*

1 o (
Sl =l o + 2 (67 + It~ iy

e —tloe <0 (29)
Next, we will consider two possible cases as follows
lti —t2llo0 = 6 or |ty —t2flor0 < 6.
In the first case, yields
ollur —wl§ o + o 2"t~ talf . < O, (3.26)

whereas for the second case, we get

O_*2(r—2)/2

— It -l < 0. (3.27)
Thus, by integrating (3.26) and (3.27)) over time from O to z € (0, ¢ ], combining them, and utilizing the
condition u; (0) = u;(0), we obtain:

Ot |lay — llzll%,g +

s = w0l o+ [ (1665~ L)l 0+ 16() = L) ) ds < 0, (3.28)

Thus, it can be concluded from (3.28) that u;(z) = uy(z) and t;(¢) = ty(¢) for all # € (0,¢r]. Next,
utilizing the inf-sup condition of the operator B (cf. (3.14)) along with the first equation of (2.16) yields

[B(¥V), 01 — 03]

1
”0-1 _0-2||S,diV;Q < = sup

B osvev I¥llv
0 v o R 5\ o
1 —5,[C (1 — ), V] = [A(U) - A(t), V]
< — sup = =0.
B osvev Ivilv

This implies that 071 () = o,(¢) for all z € (0, ¢¢], and consequently, (2.16) has a unique solution. O

The following result provides the stability bound for solution of (2.16).
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Theorem 3.9. Let r € (1,2]. Assume that ug € Y N M satisfies (3.20). Then, there exists a constant
Cstab, depending on o*, r, 0, 3, the norm of the continuous injections iz j(a-r) : W“(Q) — Ldr/(d-r)
and iy : L¥/(@=1) 5 L2(Q), such that

t
(D12 o + IO .0+ /0 (I, 0+ (0 + 1072 i) s

d
r
< Cotab {0l o+ (67 + uolly ) ™ 001 .0 (3.29)

t
+ /O (IEIS" + IR o) ds} = N(E.w),
Proof. We start by selecting (V,7) = (4, o) in (2.16)), to obtain
1 oy o -
Eat“u”%,g + |[A@),u]| < |[F.4]].

As a result of the monotonicity of A (cf. (3.11))) and the boundedness of F (cf. (3.4d)), it is clear that
r=2

x r=2
%a,nuné,g + (0 15 0) T IR0 < Ifloo lloq. (3.30)
We notice that for the term ||t||o  there are two possibilities, namely,
Ithor.@ =6 or |tllo,e < 6.
If the first case occurs, from (3.30)), we conclude that
ailul g + o 27 It ¢ < 2llfllo.0 lullog- (3.31)

In turn, observing from the second row of (2.16) that u belongs to K (cf. (3.10)), we understand that
t = Vuand u € W (Q), which invoking the continuous injections iz,/(a-r) : W' (Q) — L4"/(d=1)
and iy : L4/(d=) 5 L.2(Q), imply

1 r-=2
=

; 1 2
50’ 2 = —0"27r ||Vu||6’r;Q

5 .0 = 5
| (3.32)

1 -
27 ull] -

D TTERE—T . el
2ligr/a-rll” 2ligrja-r 1" 12l

It then suffices to combine (3.32) with (3.31)) and Young’s inequality

re2
or2T “u”(r),dr/(d—r);Q =

-q/p 1 1
ab < ZaP+ 2 p1 Yp g0 and —+-=1, (3.33)
P q P q
to arrive at
-1/(r-1)
1 re2 1 r-2 | a, r/(r-1)
O llullg o+ = —0 27 |ullgo+z0 27 Ity ,.q < —lully o+4———=IIfll :
0L T g I N2 ]I 0272 O = W02 T (- 1) 10
1

. r=2 . .
From the above bound, by choosing a; such that @; < o* 2+ and integrating over

Miarja-r " i lI”
time from O to 7 € (0, tr], we obtain

t t
()12 ¢ + /O (I, + M)l 0) ds < 1 llwoll3 o + /0 IRl s} (334)

On the other hand, for the second case according to (3.30), and utilizing (3.32)) with r = 2 along
with the Young inequality again, we conclude

1
2lligra—rlI?1li2]1?

1
< asllulf g + I -

R 1 2
3t||u||(2),g + o257 62 ||ll||3’g + 50'*2 262 ||t||(2),,;g

13



1

r=2
- ——*27F 6”72 and
Mligr/(a-r IPli2]l?

where, by considering @; to be sufficiently small so that @, <

integrating from O to ¢ € (0, t¢], readily gives

t t
()12 ¢ + /0 (IR .+ 1) IF ) ds < Co{luolid g + /O I3 gds).  (339)

Thus, by combining estimates (3.34) and (3.35)), and using the fact that r < 2, imply

||“(t)||3,g+/0 (Ilt(s)||5r9+||u(s)||5,g) ds < 5{||uo||&Q
e [ (RIS + IR o) d5)

Lastly, to establish the a priori estimate of pseudostress, we employ the inf-sup condition of B
provided by (3.14)), along with the first row of (2.16) and the stability bounds of 7, C and A (cf. (3.4¢),

(3.4D)), (3.3)), which leads to

(3.36)

I o o
[B(¥), 0] [F.V] = o [C(@), V] - [AW), V]
Bllollsdgive < sup —="— = sup _

ozvev  IVIlv 0£VeV Ivllv

< Co (Ifllo.0 + lorullo.o + N1l;Lg) -

Then, taking squares, integrating from 0 to z € (0, 7¢], and (3.36), we get

t t
/0 I (I g ds < C2 /0 (I g + N o+ ()R ) ds. (3.37)

Next, to find an upper bound for the second term in (3.37)), we differentiate the second equation of
(2.16) with respect to time and take (V, o) = ((,u, d,t), o), which implies

2 [C@. ) + [AG), 38 = 79,51,

and this result, combined with the identity
sy oo 1 o o
[AW), o] = 6, [AW), ],

and the monotonicity of A given by (3.11), yields

r-=2

1 . G
9rull3 o + 701 (a (07 + 115 .0 ||t||é,,;g) < 3 (108 g + Nl o)

Integrating from O to ¢ € (0, rr] and proceeding similar with derivation (3.36)), we get
! 2 ! 2 rr;Z 2
/0 10 ()13 o ds + 1)1l ., < C /0 IE)3 0+ (67 + 16O 0) ™ IR} (338)
Then, substituting (3.38)) back into (3.37) and employing (3.36) yields
ﬂ
/ I (I v ds < Cafllwoll g+ (67 + IO .0)  ILOIR,0
- [ (IR + 18I o) o)

which, combined with the estimate in (3.36) and the fact that (u(0), t(0)) = (ug, ty), where ty = Vuy,
implies (3.29). |
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4 The discrete setting

In this section, we present a H(div)-conforming virtual element method to approximate the mixed
problem (2.4). To this purpose, we first specify the concept of polygonal decomposition of Q in Section
Subsequently, in Sections and we define a set of discrete spaces, projectors, and discrete
bilinear forms. With these foundational elements established, we proceed to propose our discrete
formulation in Section 4.3

4.1 Polygonal decomposition and notation

We begin by considering a sequence {Qj, },~o of partitions of Q into general polygons T, where each
polygon T has a diameter denoted by A7 and a number of edges denoted by dr, respectively. As usual,
we set h = maxregq, hr, and let de and Nzl be the number of edges and elements, respectively, and
n! be the unit outward normal on edge e C dT. Also, we denote the edges of 4T by e, its length by
he := |e| and the set of edges e of Q; by I';,. For any [ € N and any mesh object @ € Q) U Ty, let
P; (@), P;(w), P;(w) be the space of scalar, vectorial and matrix polynomials defined on @ of degree
less than or equal to /, respectively (with the extended notation P_; (w) = {0}). The dimension of such
spaces, foreach T € Qj and e € 'y, are

_ I+ 1)(1+2)

dim (P)(T)) = ¢t 5 ., dim (P(7)) = 2a¢t, dim (Pi(T)) = 478,

and
dim (Pi(e)) = 74 :=1+1, dim(Pi(e)) = 275, dim (Pi(e)) = 4n¢.

Also, for any / € N we introduce the broken space
Pr(Qy) = {v €LXQ): v|gpePi(E), VEEe Qh} :

In addition, we suppose that {Qj, }, satisfies the following mesh-regularity assumptions:

Assumption 4.1. There exists a positive constant p such that for any 7' € {Qp }5:

e T is star-shaped with respect to every point of a disk with radius > phr;

o every edge e C 0T of cell T has length > p k7.

We note that the above assumptions, while generally not too restrictive in many practical scenarios,
could potentially be further relaxed by combining the current analysis with the research presented in
(11,150 [16].

4.2 Projection operators

In this section, we follow very closely [30, Section 3.1] to introduce the polynomial projection, which is
a key ingredient in the set up of VEM. We start with introducing L'-projection operator SD[T LNT) —
P, (T), which satisfies the following variational problem for any function v € L!(T):

/T(PeT(V) -v)g =0 VqgeP(T). 4.1

Thanks to Assumption the boundedness and approximation properties of P; are stated as follows
[36, Lemma 3.1].

Lemma 4.2. Let p > 1, and €, s, m be integers such that £ > 0 and 0 < m < s < €+ 1. It holds, for all
veWSP(T),and T € Qp:

e Boundedness. there exists a constant My, depending only on € and p, such that there holds

|P[T(V)|s,p;T < M€ |v|s,p;T . (4-2)
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o Approximation. there exists a constant Cy, depending only on € and p, and hence independent
of T, such that

v — P(T(V)lm,p;T < Ce h;gm |V|s,p;T . 4.3)

We remark that scaled projector P? can be generalized for vector and tensor versions, and denoted
by 7)? : LY(T) — Py(T) and PET : LY(T) — P,(T), respectively. In addition, the estimates (#.2)) and
(@3) remain valid for P} and P/

Finally, for any element 7 € €, and functions v € L'(Q), n € L'(Q), T € L'(Q), the global
projection operators P, SD? and 1";’ are defined by

PrO)Ir = PLvIr), Pimlr = Pr(lr) and PP(7)|r = P/ (tIr).

4.3 Discrete spaces

We now present the H(div)-conforming virtual element subspace discussed in [36]. In this regard, we
first recall the following notations:

o rot(7) = (Ox,T12 — Ox,T11, Ox, T22 — 5x2T21)T
* Ge(T) = VP (T) C Pe(T).
o Po(T) = Ge(T) ® Ge(T)*, where G, (T)* is the L? orthogonal of G (T) in P, (T).
For integer k > 0, we define
Xz = {T € H*(div;T) N H(rot;T) :  (tnl)|, € Pr(e) for each edge e of T
div(r) € P(T) and rot(r) € Py, (T)} .
Next, for T € X{, we introduce the following local degrees of freedom:

* the edge moments

Di(7) := / ™m!.q VqeP(e), (4.4a)
¢ the element moments of the gradient

D2(7) := /TT ¥ Vé e G (T), (4.4b)
* the element moments

D3(7) = /TT D€ VEe G(T)*. (4.4¢)

As shown in [18], the degrees of freedom D1-D3 given by (4.4a)-(4.4c) guarantee unisolvency for
every function in X7, and quantities

1",{(1’) and div(7) V1 e Xg,

are computable thanks to the degrees of freedom D1-D3. The global virtual element subspace of X is
defined as
X = f{reX: rhreX VTe.

Focusing on approximating strain rate tensor, and velocity, we use piecewise polynomial spaces as
follow
Qp = Pk(Qh) ﬂL{r(Q) , and Y, = Pk(Qh) .

We end this section by upgrading of notations provided by (2.13) in the discrete type as

Vi = (up,ty) € Vi =Y, XQp.
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4.4 Interpolation estimates

In order to define an interpolation operator in the local space X (T), for each element T € €, we denote
by X,-T the operator associated to the i-th local degree of freedom, i =1, - -- n£ From the definition
of this space, it is easily seen that for every smooth enough function T € W!!(T) there exists a unique
operator I} (1) € H(T) such that

xH(r-M (7)) =0 Vi=1,-- .y (4.5)

In addition, following the discussion of [18] (also see [36]]), we have the standard interpolation
estimate . 4
It - (Dllor 3 hpltlr YT eH/(T). (4.6)

We also recall the following commutative property
div(II] (1)) = Pl (div(r)) VreW'I(T). 4.7

Now, from Lemma [4.2] (cf. (@23)) and we deduce, for each 7 € WEI(E) such that div(r) €
H/(T), with j € [0, k + 1], there holds (see, e.g., [36, eq. (3.14)])

ldiv( - X} (7)) llo.r 3 A7 |div(T)]).7 . (4.8)

As a consequence of the local approximation properties stated by (#.6), (8], and Lemma we
easily derive for each integer j € [1, k + 1] the following global ones:

(AP!) foranyt e L' N'W/"(Q) there hold
h y tr

”t - P}?(t)llo,r;ﬂ 3 hj |t|j,r;§2 s
(APy) forany T € X, N W5 (Q) such that div(r) € H/(Q), there hold

T = () |ls.aiv:e 3 Y {|T|j,s;9 + |diV(7)|j,Q} ,

(AP}) foranyv € L?(Q) N H/(Q) there hold

Iv=PiW o 3 1 Vlq,

4.5 The fully-discrete scheme

To formulate the discrete scheme for problem (2.12)), we proceed by introducing computable discrete
versions of the operators involving the virtual space, as needed. In particular, we observe initially from
the definitions of the discrete spaces and the linear (and nonlinear) operators (cf. (2.13)) and functionals
(cf. (2.14)) that it is necessary to define only the discrete version of the inf-sup term. This term is
discretized by the operator BZ V- X'h such that

[BZ(?’h),Th] = - / diV(Th) “Vp — / PZTh S Sh. (4.9)
T T
In addition, as usual we define the global operator by

[Bu(si) 7] = D) [Bh(sw).7a]

TeQy,

Finally, by discretizing in time using the backward Euler method, which include introducing a sequence
of time steps t, = nAt, n = 1,--- , N with constant step-size At = tr/N and denoting " := f(-,1,),
8:f™ = (f" — ")/ At for a generic function f, combined to mixed VEM with considering the above
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discrete form, we construct the following fully-discrete mixed VE scheme: Find (ﬁz, O'Z, ) € Vi x Xy,
foreachn =1,---, N, such that

[C(6:u}), Vil + [A(U}), Vil + [Br(V1), 0} ]
[Bn(u}), 7]

[F",Vh] VYV, €Vy, (4.10a)
0 Vt,eXy. (4.10b)

We set the iﬂnitial condition by taking (ﬁ%, 0'2) = ((“2’ t(;l), 0'2) € V;, x X, as an appropriate approxi-
mation of (Ug, o7g) that satisfying

-

[AQ), V4] + [Bu(Va), 0] = [F°, V4] VYV, €V,

. @.11)
[Bp(u,),Th] = 0 Vtn € Xy,

with FO € L2(Q) x {0} defined in (3.24). The purpose of this choice is to ensure that the discrete initial
datum is compatible with Lemma 3.7] in order to apply Theorem 3.1

S Discrete solvability analysis

In this section, we proceed similarly to Section 3] and establish the well-posedness of the fully-discrete
scheme (@.10)) by employing the discrete versions of Theorems [3.1] and In this regard, since By, is
the only discrete operator in (.10)), we will first discuss the stability properties of this discrete operator.

5.1 Discrete inf-sup condition

Here, we focus on deriving the discrete inf-sup condition for 8B;. To achieve this, we first recall the
abstract result established in [25, Lemmas 5.1 and 5.2], which will serve as an essential tool for the
aforementioned purpose.

Lemma 5.1. Let U,V,Vy,V, and W be reflexive Banach spaces with V| and V, being closed subspaces
of V such that V. = V| ® V,, and assume that the norm of V can be redefined, equivalently, but with
constants independent of Vi and V,, as ||v|| := ||[vil| + [|v2ll for any v € V, with v; € V; fori € {1,2}. In
addition, let B : L(U x V,W') be a linear operator, and define the following subspaces:

Z = {(u,v)EUXV: [B(u,v),w] =0 VWEW}, and

(5.1)
Wy = {w eW: [B(u,vy),w] =0 V(u,v) € UXVZ} .
The the following statements are equivalents
(i) there exists positive constants B, 2 such that
B b b
sup B g vwew,
oxuvyeuxy V)l
and
lurll = Boll(u, vl V(u,v) € Z.
(it) there exist positive constants B3, B4 such that
B b b
sup LBUY WL syl V) €Ux Vs, and
oewew Wl 52)
B(0,v1), .
sup [5(0.vi), w] > Ba|lwl] YweW.
0£vi eV ||V1||

The following lemma provides sufficient conditions for the inf-sup condition of 8 € L(U x V5, W')
(cf. the first row of (5.2))).
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Lemma 5.2. In addition to the hypotheses and notations of Lemma we introduce the subspace
W = {w ewW: [Bu,0),w] =0 VYue U},

and assume that there exist positive constants Bs, B¢ such that

B(u,0),
sup [B.0),w] > Bs ||lull YuelU, and
ozwew  Iwll 53)
B(0,vy),w '
sup Byl Vimew.
O#weW, lwl|

Then, there holds the inf-sup condition given in the first row of (5.2).

Now, we are ready to utilize the two results above for establishing discrete inf-sup condition for Bj,.
We begin with defining spaces U, V, and W in Lemmas [5.1]and [5.2] by

U:=Yy, V:=Qp and W :=X,, (5.4)

and letting

Qn.sym := {sth: sl—s:O} and  Qp skw = {sth: sL+s:0},

we proceed to split the space Q as Q, = Qp, sym + Qn,sku» and realize from the orthogonality of spaces
Qpn,sym and Qp, sky that for any s = Sgyn + Sskw € Qp, there holds

”SHO,r;Q = ”Ssym”O,r;Q + ”Sskw”O,r;Q,

from which, we deduce that the space V — as well as the other spaces U and W given by (5.4) — satisfy
the hypotheses of Lemmas[5.1|and[5.2] In this way, considering the product spaces and setting notations

Vi == (v,Sskw) € Vi == Y X Qpskw  and 5.5)
i’)2 = (0, Ssym) € V2,h = {0} X Qh,sym, ‘

respectively, according to Lemma [5.1] in order to establish the discrete inf-sup condition for By, :
L(Vy, X;ﬂ we need to show the discrete inf-sup conditions of By, : L(Vy p, X’h) and By, : L(Va.p, W(;)

(cf. (5.2))), where Wj is the kernel of B, : L(V n, X,h) and using (5.1)), (3.4)-(5.5)) redefine it as:

Wy := {TEX;,: [Br(V1),T] =0 VvV, €V1,h}

(5.6)

= {‘r e Xy : P.(1):Sskw =0 and / v-divt =0 VV| = (V,Sskw) € Vl,h}.
Qp

Qp

On the other hand, invoking Lemma [5.2] with notations given by
Vi = (v,0) € V3, := Y x {0} and V4 := (0,Sskw) € Va = {0} X Qsiws  (5.7)

we conclude that to obtain the discrete inf-sup condition By, : L(Vy p, X’h), we just need to prove inf-sup
conditions of By, : L(V3 p, X;ﬂ and By : L(Vyp, W{) provided by (5.3)), where

W, = {T e Xy [Bh(i’}),‘l'] =0 V?’g = (V,O) (S V3’h} .
It follows from (5.4) and notations (5.7)) that W; can be redefined as

W, = {TEXhi / v-divr = 0 VVEY}. (5.8)
QI‘L
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We note that as a consequence of div(Xy;) C Vj, and the orthogonality of %, (cf. tensor version of

#@.1))) we easily deduce from (5.6) and (5.8) that

Wo = {TeXh: PET Sy =0 VSskw € Quskw, and  divr = 0 inQ},

Q 5.9)
W, = {TeXh: divr = 0 insz}.

As a summation of the above discussion, to prove discrete inf-sup condition B;, € L(Vh,X'h) it is
sufficient to obtain the inf-sup conditions B;, € L(V3 j, X;l), By € L(Vap, W(’)) and By, € L(Vap, Wi).
We begin with the following lemma establishing the first case, for which we recall preliminary result,
which recently established in [36, Lemma 4.8].

Lemma 5.3. Forr < 2, there exist a constant Csia such that
M (Dlloe < Cstalltlhne Y7 e W (Q). (5.10)
We are now in position to establish discrete inf-sup condition for By, : V3 5 — X;l.

Lemma 5.4. There exists a positive constant s q, independent of h, such that

Bn(Vh, 0), Th -
sup L5 0 7al -, Bs.nlIvello.e  VVan = (Vh,0) € Vi, (5.1D)
TheXy ”Th”s,div;s’z

Proof. Due to (3.14)), it is sufficient to show the existence of a Fortin operator. More precisely, we need
to construct a 75, € X, such that

[Br(Vi,0),74] = [B(v1,0),7] Vv, €Y,

with
HTh“s,div;Q <C “T”s,div;Q’

for some constant C > 0, independent of 4. To do that, we proceeds analogously to the proof of [29,
Lemma 4.4]. Given 7 € Hj(div; Q), we set

div(t) in Q,
T o0 in 9\Q,

where 9 is an open ball containing Q. Since h; € L?(Q), a well-known result on regularity of elliptic
problems implies that there exists a unique weak solution w € H(l)(EJZ) N H?(D) of the boundary value
problem

Aw =h; in 9, w=0 on 09,

that satisfies
Iwll2,2 < Clhello,2.

Then, setting T = —Vw, implies
div(t) = div(r) in Q and ||7]0 < C|ldiv(7)|o.q- (5.12)

We can now define the Fortin operator IT7 : H'(Q) — X, as

07 () = W) - (37 [ M),
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where I is the identity matrix in R¢. In turn, employing the estimate (5.10) given by Lemma the

inequality from (5.12)), along with the Sobolev embeddings of L* (Q) — L?(Q) and H' (Q) — W1 (Q),

where % + % = 1, we obtain

07 (@0 < M@0 < 1972 M@
< Q172 Cora [Tl < 1Q15* 7 Cota [Tl (5.13)

= Csta Tl < Clldiv() 0.
On the other hand, an application of identities (4.7) and gives
div(I17 (1)) = div(I(7)) = Pi(div(7)) = Pr(div(r)), (5.14)
which thanks to (4.2) also gives
Hdiv(Hg(T))Hoﬂ < My ||div(T)]o.q - (5.15)

Now, taking square in (5.13) and (5.15)), then adding two resulting inequalities, we arrive at
”Hg (T)”s,diV;Q < (5+ Mk) ”T”s,div;ﬂ . (516)

Finally, from (5.14) and (5.16)), we find

[B1(vi,0), T4] [B1, (v, 0), 117 (1)]
sup ———————= > su

TheXy ”Th”S,diV;Q B TeX ||Hg(T)”s,div;Q
di .
A L [800.0).7)
> Sup — = sup —=
rex C + My, ITlls.div:a rex C+ My ITlls.aivie
which gives (5.11)) with Bs 4 := ﬁ/(5+ Mg). |

We are now in position of establishing the next result, that is, the discrete inf-sup condition of
By € L(V2,,W,), where V5, and W, are given by the first and second rows of (5:3) and (5.9),
respectively.

Lemma 5.5. There exists a positive constant 4 4, independent of h, such that

[Bh(oa sh,sym), Th]
sup

0% meQoyn  |1Sh,symllo,r

> Baallthllsaive  YTh €W, (5.17)

Proof. First, we observe from the first identity given in (5.9), that is div(ty) = 0 in Qj, implies the
existence function ¢ € H!(T) for each T € Q, such that there holds

Tp = curl(¢) in T.
In turn, applying the operator rot to the above equation we find that
rot(t,) = rot(curl(¢)) = A¢ in T. (5.18)

Consequently, noting that T, € X (T), so necessarily rot(t;) € Pr_;(T) which implies that A¢ €
P;_1(T). On the other hand, by recalling from [7, third proposition of eq. (2.10)] that the rotation
operator rot is an isomorphism from G;- to the whole Px_;, where

Gr = {Zk = V(vis1) with vey € Pk+1}, Py = Gk ® Gy, -
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Then, for given A¢ € P;_;(K) there exists a unique z; € g,j such that
rot(zy) = A¢ in T. (5.19)

Therefore, from (5.18)) and (5.19) we deduce that Tj, € P (7). This result combined with the first

equation given in (5.9), that is th 742 Sp sk = 0, allow us set Sj, syn 1= |79*727%. It is easy to see that

”gh,SYmHS,r;Q = ||T?z”8,s;9 ’ '[I‘(E) = |T(}iz|s_2tr(72) =0 and Gh,sym)J_ = gh,sym s

which says that 'Sy, sym € Qp,sym, and additionally there holds

/Th Zgh,sym = ”Tz”(s)s = ”72”0,5;(2 ”gh,sym”O,r;Q- (5.20)
Q

Then, bounding from below the supremum in (5.17) with'sj, sym, and employing (5.20), we obtain

Eh, . Th
(81 (0. Shsym). Th] >/Q >

sup > = = It llo.s2»
057, syn € Q. sym ISk, synllo,r:0 ISk, syllo, ;0
from which, using (3.18) and the fact that div(t) = 0, it follows (5.17) with B4.4 = cq. i

The following result, which is a slight modification of the proof of [39, Lemma 5.6], state the discrete
inf-sup condition for B, € L(Van, W{), where V4 j, and W, are given by (5.7) and (5.9), respectively.

Lemma 5.6. There exists a constant 53 g4 such that

[Bh (07 sh,SkW) 2 Th]

sup > Ba.dllsnskullore YVan = (0,8h sku) € Vap .
ThEW) ”Th ”s,div;Q
Proof. It reduces to a minor variation of the proof of [39, Lemma 5.6]. O

We are now in position to establish the main result of this section. More precisely, we have the
following lemma.

Lemma 5.7. Let Ky, be the kernel of By, that is,
K, = {‘rh €eXp: [Bu(Vn),th] =0 VV, €V, }

Then there exist positive constants 31 4, 2.4, independent of h, satisfying

[B1(Vh), Tl

sup ———=——— = Bralltallsaive  YTh€Xy, (5.21a)
0£VeV), IVall
and
s, synllo.r@ = Baall(Va,Snska)llv - YV € Kpy. (5.21b)
Proof. 1t is a direct consequence of Lemmas m|

5.2 The main result

We begin by observing from (5.21a)) that discrete operator 8, verifies the hypothesis iv) of Theorem
.2l In addition, the Lipschitz-continuity of C + A (cf. Lemma [3.3)), is also valid on V}, X X, which
means that, with the same constant Ly, there hold

[(C+A) (iip)— (C+A) (V)| < LnN{”uh_vh”O,Q"'(“thHO,r;Q+||sh||0,r;Q)r_2 ”th—shHO,r;Q}e (5.22)

for all uy,, vy € Vy,.
Next, we address the discrete counterpart of Lemma (3.4
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Lemma 5.8. Let r < 2 and Ky, be defined as in Lemma The family of operators {(C +A)(-+17Zp) :

K, — K,h : Zp € Vh} is uniformly strictly monotone, i.e., there exists any.q, independent of h, such
that

[(C+A) (i +Zp) — (C+ A) (Vi +Zp), iy, — Vi)
r-2 (5.23)

,
> annalllwn = Vil g + (67 + 1Ay g+ ISl 0) ~ lith = sl3 .0}

for all zj, = (zy,vp,) € Vy and iy, = (Up, t3), ¥y, = (Vi 8p) € K.

Proof. LetZzy, = (zp,ry) € V and iy, = (up, ty), Vi = (v, sp) € K. Similar to derivation of (3:12)) in
Lemma|3.4] we have

[(C+A) Uy +Zy) — (C+A)(Vp, +Zp), Up — Vi)
= (5.24)

> flwn = ValZ g + (146" + 1tn.symlly 0+ ISnsymlly ) & lthsym = Shsyml3 -

To find the lower bound of the second term, we first use the fact that » < 2 to conclude that

r=2 r=2

7

T
(1946 + l1tn.symlly 0+ Isn.symlly ) < (12467 + Wl g+ Isnlly0) 0 (5:25)

and then apply inequality (5.21D) to arrive at

*

2 g 2
o’ II1tr, sym — Sh,sym”o,r;g 2 5 17, sym — Sh,sym“o,r;g

O_*
+ 7 Bgd (”th,skw - th,skw”(z)’r;g + ||llh - Vh||%Q) (5.26)
o 2 V5. o2
> > min {l,ﬁz’d}lluh = 1
Therefore, replacing back (5.25)) and (5.26) into (5.24) implies (5.23) with the specification any.q :=
min { 1, % min {1, ﬁ% d}}, thus completing the proof. O

We are now ready to provide the fully discrete counterpart of Theorems [3.8]and [3.9]

Theorem5.9. Letr < 2. Foreveryf" € L>(Q), forn=1,--- , N and each (ﬁ%, 0'2) = ((up,0,t1.0) Th0)
satisfying @.T1)), there exists a unique solution (@}, o) = ((w},t}),07) € V, X Xy, to the virtual
scheme @.I0). Moreover, under a suitable extra regularity assumption on the data, there exists a

constant Cq_stab, independent of h, such that

n n n
2 2
A2 gy + Ital2e iy + AT D IUNG o + AL DTG g + AL D o2 v
m=1 m=1 m=1 (527)

< Castan {I1wnolliw @) + A Sy (IE 175 +1E713 o)} = Nass (£, o).

Proof. The well-posedness of the fully discrete scheme (4.10) at every time step, forn =1,--- , N, can
be established using arguments analogue to those in the proof of Lemma|[3.6] Furthermore, to prove the
second part, we start by taking (V;, 7j,) = (i}, o)) in #.10), using the identity

1 2 1 2
'/Q‘St“Z’“Z = §5t”“2”0,9 + 5At||5tu';l||0’g,

and the discrete strict monotonicity of A ((5.23)), to obtain

1 2 1 2 % 2
SR g + FA6 IR g + anna (67 + 165115 0) ~ 1613, 0 < I loallufllon.  (5:28)
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Similar to the proof of Theorem if ||t} ||o,r.0 > 0 occurs, we conclude from (5.28) that

1 1
SOl I5 .0 + SAISLIG o + @ 272 IGG 0 < I loallhlon.  (5.29)
In turn, an application of (5.21b) implies
1 1 1 _
S 20NN o > Sem 20 DN Ll o > 5am 2 B ul g

which, combined with (5.29)) and employ the Young inequality (3.33) gives

1 1
—5t||ll’;,||§,g + —At||5tllZ||2

1 1 (5.30)
+5am 2020 (62150 + Byl o) < SHIGHG o + Clan iy ™
Now, by the suitable choosing @; in (5.30), summing up over the time index n = 1,---,m, with
m=1,---, N, and multiplying by At, we get
1 + <Ar>22 I3 o + ZAz (1215, + 315 )
(5.31)
r/(r-1
< ¢ (I3 +Z 1”116/ ))
Whereas in the case ||t} [[o,-.o < 6, by proceeding analogously, one can deduce that
m m
I3 g + (A0 D ISR o + A (G130 + U313 0)
n=1 n=1
m
) (||u2||3,g+z ||f"||3,9) .
n=1
Therefore, from (5.31)) and (5.25)), and the fact that » < 2 we infer that
m m
2., + (Ar)zz I5:u2l2 ¢ + Zm (1215, + 130 )
n= (5.32)

1
< c(nuzn +Z (1"l sy~ >+||f"||3,g)).

On the other hand, employing the discrete inf-sup condition of By, (cf. (5.21a))) and the first row of
(@.10), we conclude that

2(r—-1
1512 aiver < CLIE"IE o+ 15311 o+ 11000} (5.33)

In turn, using Young’s inequality (cf. @) and fact that r — 1 < 1, we readily obtain

r(r-1)

2 1
e < AE (11 .

0,r;Q — _”t ”

which, combined with (5.33)), and then summing over n and employing (5.32)), yields

Atz loh 12 iy cm{z ||f"||og+z ||atuh||og+2 Al

1
< c{ArZ||6zuh||m+||uh||og+mz (1617 )+||f"||0,9)}.

(5.34)
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Next, in order to bound the first term in (3.34), we choose (V4,71) = ((6,u},6,t}), o) in @.I0),
perform some algebraic manipulations, and use the Cauchy—Schwarz inequality to obtain

anN,d _ 1
18uil 0 + <526 (67 + 131150 " UGS ) < 5 (1E71F 0+ N0 )

Therefore, by summing over the time index n = 1,--- ,m withm = 1,--- , N and multiplying by Az, we
obtain

m m
MY ISR o + I 0 < C((67 +I1G,.0) "2 IR 0 + A D IEIE )
n=1 n=1

Combining this with (5.34), the fact that t) = t;, o, and (5.32), leads to the desired result (5.27). i

6 A priori error analysis

In this section, we now focus on proving an optimal a priori error estimates for u, o in the norms V and
H* (div; Q), respectively. To this end, given the Sobolev exponent r € (1,2] and a > 0, we define the
convex function ¢, by

t
0a(t) = / (a+ s)r_zs ds.
0
The following Lemma provides important properties of the shifted function ¢,.

Lemma 6.1. (Young-type inequality). For all € > O there exists C(€) > 0 only depending on r and §
such that for all s,t,a, > 0 there holds

sgo,a(t) + tgo,a(s) < €pa(s) +C(e)pa(t). 6.1)
Proof. See [26, Lemmata 28-32]. m]

The following result, which demonstrates the equivalence of various quantities, is closely connected
to the continuity and monotonicity assumptions outlined in Assumption

Lemma 6.2. Let o satisfy (2.9) and @.6)) for r € (1,2] and § > 0. Then, uniformly for all T, € R4*4
there hold

lo(r) = )| 3 (6 + el +Inl) Pl -0l = ¢y (7= 7l), (6.2a)
()=o) s (r=m) 3 (5 + el +Inl) Pl =0 = gsue (T —n)). (6.2b)
Proof. See [41, Section 2.3]. O

We continue the analysis with defining

n .__ n n n .__ n n n ._ n n
e =t'—-t,, e =0"-0,, and e, = u" —u,,

and write the above errors as follows
ef = (" =PI + (PI(tY) - t)) = I} + 67,
ey = (0" —My(a") + (Mp(0") — o) = 5 + 65,

el = (0 - Pr") + (Pr") -u}) = ¥ + 67,

25



where d¢, ¥7. and ¢}, are estimated according to properties (AP}Z), (AP}) and (AP}), respectively.
Next, we proceed to estimate 6}, 6 and 6. By making use of the definition of B, (cf. @.9)),
commuting diagram property given by and the identity (4.3), we get

(B, (Vy), M}o] = - / div(ll}o) v, — | PII}o) sy
Q'h Q‘h
= — #’,ﬁl(div(a')) -Vp — ]IZO' : P,?sh
Qp Qp (6.3)
= —/ div(o) - vp, —/ o ?,ﬁlsh
Qh Qh
= [B(Va), 0] .

On the other hand, a straightforward application of the discrete and continuous problems (4.10) and

(2.12)), along with identities (6.3), (3.21)) gives
5:[C(63), V] + [(A() — A(PLE")), Vil + [B1(Vn), 6]

= - /Q (B0 = 6,0") - vy, = 5, [C(H), V] + [(A@") = APIT), V4], (6.4a)

[Br(65).Tr] = 0. (6.4b)

Consequently, thanks to (6.4) we are in position to establish the rates of convergence.

Theorem 6.3. Let (t, 0, 1) € L2.(Q) X H; - (div; Q) X V and (ty, oy, 6,) € Qu X X, X Vy, be the
unique solutions of (2.12) and (A.10), respectively, whose existences are guaranteed by Theorems 3.9
and 5.9 respectively. Furthermore, given an integer k > 0, assume that there exist j € [0,k + 1] and
1 €[1,k+1] such that t € W/ (Q), o0 € Wh(Q), div(o) € H (Q), u € H/ (Q). Then, there exists a
positive constant Copt, independent of h, such that

m
1051, + At 3 (16713, + 192113+ 1611 i) < Cope (A2 + A7) - (6.5)
n=1
Proof. We begin by considering (V4,7s) = ((0},67),0)) € V; x X, and adding two resulting
equations to arrive at
1

501 103115.0 + [(AG) - APLE"). 7]

IA

’/Q((?,u" —5u") - 07 —5,[CH), 07]| + |[(A@") - APLIE™), 67|

3
. ZE,‘ .
i=1

We now aim to bound each one of the terms appearing on the right-side of (6.6). The first and
second terms can be estimated exactly as for standard finite elements, see for instance [48|]:

(6.6)

HE

/ (0" —6,u") - 0
Q

th th 1/2
< ( / ||5tt“(s)||0,9ds) 03]l < A2 ( / ||anu<s>||3,gds) 1631100
n—1 th-1

< ”8!“n - 5t“n”0,g ”03”0’9

and

|Ea| = |6, [C(9D), 02| < 1169210, 162 110.0
L [
/ 0,9 (s) ds

< —
At || Ji,

10ullo.e < At_l/z||3t0u||L2(Jn,L2(Q)) 16 llo.c -
0,Q
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In addition, by employing the definition of A given by (2.174) and inequalities (6.1)), (6.24), and
with § = 0, we easily obtain

r=2 r=2
|E3| < /Q‘u(((s‘fﬂt’;ym f’) St - (5“+|P,§t’;ym ") P ||0 |

h
ﬁ /SOI’)htn I |Pk sym sym !0 |
n n 6.7
ﬁ ‘/‘10|Pht" |(0 ) + C(E)/(plphtsym ?ft tsym) ( )
n n n n r=2 n n 12
3 € (0Nt o) — TUPLELL) 07 ) g o + ClE) /Q(I”;i’tsymlﬂtsym) [Pt — o

N

e [(Ay) - APLE"), 02] + C(6) 19 symllfy 0+

where the fact (|P£t | + [tgym |7"htSym = toym r—2, for r < 2, was used in the last step.
Consequently, cons1der1ng € = 2 in (6.7), and then replacing the estimates from up to (3.22)
back into (6.6)), implies that
SOOI o + SU(AG) - APLE), 03]
(6.8)
< Clldly o + (A 20ull g, + A7 2108l 2,03 ) 1620

Now, to derive a lower bound for the second term on the right-hand side of (6.8)), we employ the
monotonicity of A (cf. (5.23)) and triangle inequality, which yields

- - r=2
[(A@) - APLE"), 07] = anwa (Inlly,.0 + 1PEE; o) " 167112,

-2
> amna (16150 + €15 .0 + 1€ =PI )" 2167120
2
> aawa (1615 0+ 1E15,0) """ 16713 0 -
(6.9)
Substituting back into (6.8)), gives
1 1 )
50:10ulG 0 + Famna (16115 0+ 1€15,.0) """ 16715 -0
(6.10)

< CllG 0 + (A2 100l 2,0x) + A7 210l 2,0 ) 1600

In turn, from (5.21b) we have

2
||0n”0r9 z 2”0t syulld 0 = Eﬁz,d”‘gﬁ”o,g’

which combined with (6.10), then summing up over the time indexn = 1,--- ,m, withm =1,--- ,N,
and multiplying by A¢, we obtain

m
2 (r=2)/r 2 2
103115 o + A7 >~ (611G 00+ 1E"115 ) (16712 . + 1162112 )

n=1

m
< c{16313 A S I+ A S (ArldnuliZs gy, + r—lnatﬂunimn;y)) +ehr ) 16313 o
n=1

n=1 n=1

Then, after bounding the terms [|t|| (5, @) and [|tx]| = (1, @) by estimates (3.29) and (5.27)), respectively,

and choosing € < 5 (N (f",ugp), Nais (", uo)) (r=2)/" e deduce the existence of a positive constant Cy,

27



depending on r, o, B1.4, B2.4- 6, N(£",u0), Nais(f", up), such that there holds

m m
1031 + At ) (167130 + 192113.0) < C {16813 0+ Ar )" 19411,
n=l n=l (6.11)

m
+A0 Y (Ml )+ A N0 ) |-
n=1

Next, in order to bound the first term in (6.11)), we subtract the continuous and discrete initial condition
problems (3.23) and (4.T1)), to obtain the error system:

[(A(Un,0) — A()), Vil + [Br(Vh), on0 — 070] 0 VYV, €V,
[Bh(ﬁh,o—ﬁo),‘rh] =0 Vtn € X

Then, proceeding as in (6.10), recalling from Theorems and [5.9] that (u(0), t(0)) = (uop, ty) and
(un(0),t,(0)) = (up.0, tno), respectively, we get

2,
1002, < ClUFOI .0 (16O ,.c0 + IEO)IG,0) " (6.12)

Replacing back (6.12)) into (6.11)) and involving the approximation projections from (4.3)), we arrive at

m
10313 6+ At > (16711 .+ 16313 g) < € (A% +4T7) .

n=1

On the other hand, to get the pseudostress estimate, we observe that from the discrete inf-sup
condition of By, (cf. (5.214)), the first equation of (6.4), and the continuity of A (cf. (5.22))), there holds

[Br(Vh), 0]
BrallOxllsgivie < sup ——=——"
0£V, eV, ”VHV

~5:[C(O7), %] - [(AGE) - AG)), V4] - /Q (80" = 6,0") - vy — 5, [C(@2), V]

T oy, ¥llv
<C (||5t0.'}||0,9 + (It + ||t"||o,r;9)r_2||e{l||o,r;g
+ A0, 25,0y + AP0 20,0 )
Then, taking square in the above inequality, summing up over the time indexn = 1,---,m, with

m=1,---, N, multiplying by Az, we deduce that

m m m
2(r-2
B Y 6L g, < C{AE D I883IR o+ (Itnll o + El=0,000)> A0 D el
n=1 n=1

n=1

m
+ At At||dull?,, . o + A0, . (6.13)
L%(J,;Y) L*(J,;Y)

n=1

Next, in order to bound the first term in the right-hand side, we differentiate in time the second equation
of (6.4), then choose (V4, T,) = ((6,0},6,6Y7),02), to find that
16:04115.0 + [(AWR) — APLE), 6,051 < (9115, + At”attunizun;y) +Ar7! ”atﬂu”iz(]n;Y)’

which, using the identity
" S 1 S "
[(AG) - APLE")), 6:05] = 6, [(AGW) - A(PLE")), 03],
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and the estimate (6.9), yields

2 (r=2)/r 2
160513 ¢ + nna 0 (15115 + 11, .0) " 160713 1)

2 -1 2
< ”ﬂ?H(};,r,g + At”attu||L2(]n;Y) + At ”aﬂ?“”Lz(J,,;Y)'

Then, summing up on n and employing (6.12)) gives

m
2 (r=2)/r 2
At Y 1168318 o+ v (€115 .0+ 187115 -0) "> 16713 .0
n=1

m
0 0 (r=2)/r 190112
< A Y B + v (115,04 11 .0) > 1601 .0

n=1

m m
+ AP N0ull7o gy + A D I0Bla g
n=1 n=1

m m m
< A NG g + 10O gy + A D 10022y 3+ A D 0llZas s
n=1

n=1 n=1

which, replacing back into (6.13)) implies
m m
A Y 10312 gy, < C{AE D 191G 0 + 19O .
n=1 n=1

m
2(r-2
+(1tnllo i) + Mt 0,0)* 280 Y (16715 + 197150

n=1
A y At|d;ul|? A8, 812
+ Al t” ttu”LZ(Jn;Y)-i' ! || t ““LZ(J,,;Y) .
n=1

Then, bounding the terms ||t|| .~ (5, o) and ||t || =, q) by estimates (3:29) and (3:27)), respectively, and
m

employing (6.11)) to bound At Z |6y ||(2),r;£2 we arrive at (6.9)), thus completing the proof. O

n=1

7 Numerical results

In this section, we conduct several numerical tests using the publicly available software MATLAB R2024a
to validate the theoretical analysis and demonstrate the scheme’s effectiveness. In all tests, the Picard
method is employed, and its iterations are halted when either the absolute or relative £>-norm of the
residuals falls below 1e-6. Absolute errors for each variable are computed in the following way

e(t") = It" - tllore. e(0") = [lo" - opllsagiva, e”) = [u" —uwjloo and
e(p”) = lIp" = phllo.a-

The examples discussed in this section are as follows: In the first example, we solve a two-dimensional
problem with manufactured exact solutions to validate the theoretical error estimates for the strain of
rate, pseudostress, velocity, vorticity, and pressure presented in this study. Examples 2 and 3 are used to
assess the effectiveness of the discrete scheme by simulating practical problems for which no analytical
solutions are available.

7.1 Example 1: Accuracy assessment
In the present example we consider problem (2.1)) with parameters ¢ = 1, @ = 1 and the following exact

solution, velocity field and pressure term

sin(Fx1) cos(5x2)

_ . . 4
~sin(Zxy) cos(Zx) p(xi,x3,t) = cos(z) (— sin(Zx1) sin(5x2) + ?) ,

u(xy,x2,1) = cos(t) (
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Figure 7.1: Example of the adopted polygonal meshes.

for all (x1,x2)T € Q := (0,1)> and 7 € [0,¢¢] := [0,0.3]. In addition, the external force and
non-homogeneous Dirichlet boundary condition are taken in accordance with the above manufactured
solution. The domain € is partitioned with the following sequences of polygonal meshes: HEXAGON and
NONCONVEX meshes (cf. Fig. [7.1]), which are generated by PolyMesher package [47]]. For each family
of meshes, we take the sequence with diameter 2 = 1/4, 1/8, 1/6, 1/32. In Figs. and [7.3] we
display the errors e(0), e(u), e(y), e(p), considering parameter » € {1.1,1.15,1.25,1.5,1.75, 2}, the
degree j = 1 and the time step At = h, for two values 6 = 1 and d = 0, respectively. In addition, the
errors considering the degree j = 2 and At = h?, for two values § = 1 and ¢ = 0 are displayed in Figs.
and respectively. It can be seen from Figs. and [7.4] that all the unknowns converge to the
discrete solutions with optimal order for all » € {1.1, 1.15, 1.25, 1.5, 1.75, 2}, whereas Figs. and
show that optimal convergence occurs as r increases, which agree with the theoretical result proposed in
Theorem All results indicate the optimal convergence of order O (h/") for all the unknowns and for
each one of the utilized decompositions of Q with considering At = i/, which agree with the theoretical
result proposed in Theorem

7.2 Example 2: Lid driven cavity flow

This classic problem is a key benchmark for evaluating the numerical algorithms performance across
various flow problems and has been studied within the Navier-Stokes framework in [46, 49]]. The
problem is set in a unit square domain Q = (0, 1)?, where a unit tangential velocity g = (1, 0) is applied
along the top edge (i.e. x, = 1), while wall boundary conditions are applied along the remaining edges.
In addition, we consider the initial value ug = [0, 0]*, time step At = le-2 and the final time 7z = 0.5. In
the first row of Figure[7.6] we display the stream function, while in the second row, we plot the horizontal
component u1; of the velocity along the vertical centreline x; = 0.5 and the vertical component uyj,
along the horizontal centreline x; = 0.5.

7.3 Example 3: Flow past a cylinder

This well-known test problem has been studied extensively by various researchers [27, 44, |46]. The
geometry is illustrated in Fig. focusing on the fluid dynamics around a cylinder. The cylinder
is placed in an incompressible flow, with its center located at (0.25,0.2) and a diameter of 0.1. The
boundary conditions for inflow and outflow are applied at the left and right edges, respectively, as follow

0.412
0 on I'\ (I'in UTout).

t
( 0.3 4x,(0.41 — xp), 0) on I'inVUTlout,

For this test, we consider the physical and discretization parameters u = 0.1, 6 = l,a =1, j =1,
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Figure 7.2: Convergence results with HEXAGON mesh, 6 = 1, j = 1 and Ar = A.

At = 3e-2, tp = 0.5. In Figs. [7.8|and [7.9] we have portrayed the approximate solutions generated with

the first-order mixed virtual element family for two values r = 1.25 and r = 2.25, respectively. All plots
are consistent with those obtained in and what is expected to be observed from the physical point

of view, in accordance to [46].
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