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Abstract

In this work, we propose and investigate a mixed virtual element method within a Banach space
framework to numerically study the unsteady motion of non-Newtonian pseudoplastic Stokes flows.
Given the increasing focus on non-Newtonian fluids problem where stress plays a critical role, our
approach introduces new unknowns such as the rate of strain and pseudostress tensors. This results
in a mixed variational formulation that including velocity and these additional unknowns within
a Banach space setting. We establish the well-posedness of weak solution and derive stability
bounds using classical results from nonlinear monotone operator theory. The discretization of
the problem in both space and time is carried out using an H(div)-conforming virtual element
method and the implicit Euler method, respectively. In particular, for the spatial discretization,
the pseudostress is approximated using a virtual element subspace of H(div;Ω), while piecewise
polynomial subspaces of degree j are employed to approximate the velocity and rate of strain tensor.
The scheme handles nonlinear terms implicitly, and its well-posedness and unconditional stability
have been proven. Furthermore, a convergence analysis is performed for all variables in their natural
norms, demonstrating optimal rates of convergence with respect to both spatial mesh size and time
step. Finally, we conduct several numerical experiments to validate the effectiveness and accuracy
of the proposed method.

1 Introduction
Flow problems are often influenced by the viscosity of the fluid, which varies from one fluid to another
depending on the relationship between shear stress and shear rate. Fluids can be categorized as either
Newtonian or non-Newtonian based on their response to shear stress; Newtonian fluids exhibit a linear
relationship between shear stress and shear rate, whereas non-Newtonian fluids show a non-linear
relationship between these variables. The latter group, which includes fluids used in the petroleum
industry, chemical-pharmaceutical processes, (bio)polymer manufacturing, and food production, is
often modeled using power-law and Carreau–Yasuda models. These applications have led to a growing
focus among researchers on developing numerical methods for non-Newtonian fluids across a wide
range of flow configurations and domains.

To the best of the authors’ knowledge, Baranger and Najib [3] were among the first to analyze finite
element methods (FEMs) for fluids with viscosity described by the Carreau or power law. Subsequently,
Du and Gunzburger [28] investigated FEMs for non-Newtonian flows with viscosity governed by the
Ladyzhenskaya law. Later, Barrett et al. [4, 5] established error bounds for velocity and pressure in
appropriate quasi-norms for non-Newtonian flow models with viscosity governed by either the Carreau
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or power law. These results were further improved in [12, 41] by proving optimal error estimates for
fluids exhibiting shear-thinning behavior, characterized by a power-law exponent 𝑟 < 2. In the context of
mixed FEMs for non-Newtonian flows, Gatica et al. [31, 32] proposed a mixed FEM for nonlinear Stokes
models in quasi-Newtonian fluids, introducing flux and the tensor gradient of velocity as unknowns,
and provided a priori and a posteriori error analyses for the associated lowest-order Galerkin scheme.
Howell [42] introduced a finite element technique for a dual-mixed formulation of Stokes and nonlinear
Stokes problems, incorporating the velocity gradient, velocity, and pseudostress, and also conducted an
error analysis. Other significant contributions to the numerical approximation of non-Newtonian flows
include [14, 21, 27, 33, 37, 40, 43].

In recent years, there has been growing interest within the scientific community in developing
numerical techniques to solve partial differential equations on polygonal and polytopal meshes in two-
and three-dimensional domains, respectively. One of the significant advancements in this area is the
virtual element method (VEM), initially introduced to address the primal conforming Poisson problem
in [6] as a more general approach compared to the traditional 𝐻1-conforming finite element method.
Later, the generalization of mixed finite elements [13] to H(div)-conforming vector fields, known as
the mixed virtual element method, was introduced in [17] and further developed in subsequent works
[7, 10]. Due to its strong theoretical foundation and ease of implementation, the mixed VEM has
been applied to solve various linear and nonlinear problems, particularly in fluid mechanics, using
velocity-pressure formulations [1, 2, 8, 9] and pseudostress-velocity-based approaches [18, 20, 30, 36].
Specifically, focusing on the latter approach, the authors in [18] introduced a mixed VEM for the Stokes
problem using a pseudostress-velocity formulation, extending the mixed formulation from [34] into
the virtual element framework. Similarly, in [20], this method was applied to the Brinkman equation
using a pseudostress-based formulation. Further studies have extended this approach to nonlinear fluid
mechanics models, such as quasi-Newtonian Stokes [19], Navier–Stokes [36], and Boussinesq equations
[30, 38, 39].

According to the above bibliographic discussion, the aim of this paper is to develop and analyse a
mixed virtual method within the Banach space framework for the unsteady motion of the non-Newtonian
Stokes equation. To achieve this, we introduce symmetric stress and rate of strain tensors as auxiliary
unknowns in the non-Newtonian Stokes equation. Subsequently, we eliminate the pressure variable
by applying the incompressibility condition and then compute it using a post-processing technique.
The discretization for the spatial variables type of additional and primal is based on the virtual and
non-virtual spaces in [30], respectively, whereas to discretize of time variable we employ the backward
Euler approach. It is worth mentioning that the discrete formulation is entirely independent of the
stabilization term, with only the discrete form being related to the inf-sup term. We also prove the
solvability of both the continuous and discrete schemes using classical results on nonlinear monotone
operators and establish stability estimates for all unknowns without making any assumptions about the
data. Unlike in [1], where the VEM is used for the steady motion of the non-Newtonian Stokes equation,
our analysis relies solely on the proof of inf-sup condition, which significantly simplifies the model’s
analysis. Furthermore, we obtain optimal error estimates in natural norms for all unknowns of the same
order, with particular attention to the case where 𝛿 = 0, corresponding to the power-law equation, which
is typically the most challenging regime. Combining the current findings with methods from references
[4, 5] would allow the results to be generalized to cases where 𝛿 > 0. To the best of the authors’
knowledge, this is the first arbitrary-order polytopal approximation method in the mixed framework for
non-Newtonian flow models in fluid mechanics.

The rest of the paper is organized as follows. Sec. 2 is devoted to introducing the non-Newtonian
Stokes model, providing the variational formulation. The solvability is analyzed using classical results
from nonlinear monotone operator theory in Sec. 3. Then, we introduce the mixed VEM in Sec. 4 by
following Ref. [36]. This has four main parts, starting with the basic assumption on the mesh, defining
the local and global mixed VE spaces, projection operators, and deriving the discrete version of bilinear
forms. In Sec. 5, we study the unique solvability of the proposed VEM using a discrete version of
nonlinear monotone operator theory developed in Sec. 3 for the continuous case, and then establish
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the stability bounds. In order to accomplish this, we derive the common estimates about the bilinear
forms, as well as the discrete inf-sup condition. In Sec. 6, we study a priori error analysis. Finally, the
method’s performance is illustrated in Sec. 7 through several numerical examples in 2D, both with and
without manufactured solutions, confirming the accuracy and flexibility of the proposed mixed VEM.

2 Continuous problem
In this section we introduce the model problem and derive its corresponding weak formulation.

2.1 The model problem
Let Ω ⊂ R𝑑 , where 𝑑 ∈ 2, 3, represents a bounded connected open polytopal domain (i.e., polygonal if
𝑑 = 2 and polyhedral if 𝑑 = 3) with boundary Γ which split as Γ = Γ𝐷 ∪ Γ𝑁 such that Γ𝐷 ∩ Γ𝑁 = ∅.
Consider given function 𝜇 : Ω → R. Throughout the subsequent discussion, we assume the existence
of real numbers 𝜇, 𝜇 such that, almost everywhere in Ω

0 < 𝜇 ≤ 𝜇 ≤ 𝜇 .

Let 𝑡𝐹 represent the final time, f : Ω × (0, 𝑡𝐹] → R𝑑 denotes volumetric source term. The unsteady
non-linear Stokes problem reads [1]: Find the velocity u : Ω × (0, 𝑡𝐹] → R𝑑 and the pressure
𝑝 : Ω × (0, 𝑡𝐹] → R such that

𝜕𝑡u − div
(
𝜇 (𝛿𝛼 + |𝜖 (u) |𝛼)

𝑟−2
𝛼 𝜖 (u)

)
+ ∇𝑝 = f in Ω𝑡 , (2.1a)

div (u) = 0 in Ω𝑡 , (2.1b)

𝝈n = 0 on Γ𝑁,𝑡 and u = 0 on Γ𝐷,𝑡 , (2.1c)

u(·, 0) = u0 in Ω , (2.1d)

where Ω𝑡 := Ω× (0, 𝑡𝐹], Γ𝐷,𝑡 = Γ𝐷 × (0, 𝑡𝐹], Γ𝑁,𝑡 = Γ𝑁 × (0, 𝑡𝐹], 𝛼, 𝑟 ∈ [1,∞), and 𝛿 ≥ 0 and 𝜺(u) is
the symmetric part of the velocity gradient tensor, which defined as 𝜺(u) =

(
∇u + (∇u)⊤

)
/2. Note that

the nonlinear shear stress-strain rate defined in the first term on the left-hand side of (2.1a) represents
the Carreau–Yasuda law, which generalizes the Carreau model for the case where 𝛼 = 2. In addition, the
classical power-law model can be derived from (2.1a) by considering 𝛿 = 0. Shear-thinning behavior,
which is observed in most real fluids described by a constitutive relation, corresponds to the case where
𝑟 < 2. It is clear that for 𝑟 = 2, problem (2.1) simplifies to the standard Stokes system for Newtonian
fluids. For brevity, we will focus on the pseudoplastic case where 𝑟 < 2, which is most commonly
encountered in practical applications and presents greater challenges for theoretical analysis. Even so,
similar results for the dilating case 𝑟 > 2 can be established by applying the arguments that follow.

Next, to attain a mixed formulation for (2.1), we follow the approach outlined in [35]. Specifically,
we introduce the strain rate and stress tensors defined as follows, respectively

t := ∇u , and 𝝈 := 𝜇
(
𝛿𝛼 + |tsym |𝛼

) 𝑟−2
𝛼 tsym − 𝑝I in Ω𝑡 . (2.2)

Thus, applying the trace operator to the tensor 𝝈, and using the condition (2.1b), we obtain

𝑝 = −1
2

tr(𝝈) in Ω𝑡 . (2.3)

Thus, substituting (2.3) back into (2.2) and performing some straightforward calculations, we find out
that the problem (2.1) can be equivalently rewritten as follows: Find (t,𝝈, u), belong to the appropriate
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spaces specified in the following section, such that

t = ∇u in Ω𝑡 , (2.4a)

𝝈d = 𝜇
(
𝛿𝛼 + |tsym |𝛼

) 𝑟−2
𝛼 tsym in Ω𝑡 , (2.4b)

𝜕𝑡u − div (𝝈) = f in Ω𝑡 , (2.4c)

u = 0 on Γ𝐷,𝑡 𝝈n = 0 on Γ𝑁,𝑡 , (2.4d)

u(·, 0) = u0 in Ω and
∫
Ω

tr
(
𝝈
)
= 0 . (2.4e)

We end this section by noting that the stress-strain law given by (2.4b) satisfies the following assumption
(see [14, Appendix A]).

Assumption 2.1. The shear stress-strain rate law 𝝈d presented in (2.4b) is a Caratheodory function that
satisfies 𝝈d(0) = 0, and for a fixed 𝑟 ∈ (1, 2] the following properties hold:

(𝑖) (Hölder continuity). there exists a constant 𝜎∗ > 0, depending only on 𝜇, 𝛼, 𝑟 , satisfying��𝝈d(tsym) − 𝝈d(ssym)
�� ≤ 𝜎∗

(
𝛿𝑟 + |tsym |𝑟 + |ssym |𝑟

) 𝑟−2
𝑟 ��tsym − ssym

�� , (2.5)

(𝑖𝑖) (Strong monotonicity). there exists a constant 𝜎∗ > 0, depending only on 𝜇, 𝛼, 𝑟 , satisfying(
𝝈d(tsym) − 𝝈d(ssym)

)
: (tsym − ssym) ≥ 𝜎∗

(
𝛿𝑟 + |tsym |𝑟 + |ssym |𝑟

) 𝑟−2
𝑟 ��tsym − ssym

��2 . (2.6)

2.2 The variational formulation
In this section, we focus on deriving our mixed variational formulation for the system. Specifically, by
multiplying (2.4a), (2.4b) and (2.4c) by appropriate test functions 𝝉, s and v, respectively, we get∫

Ω

t : 𝝉 =

∫
Ω

∇u : 𝝉 for a.e 𝑡 ∈ (0, 𝑡𝐹) , (2.7a)

−
∫
Ω

𝝈d : s +
∫
Ω

𝜇
(
𝛿𝛼 + |tsym |𝛼

) 𝑟−2
𝛼 tsym : s = 0 for a.e 𝑡 ∈ (0, 𝑡𝐹) , (2.7b)∫

Ω

𝜕𝑡u · v −
∫
Ω

div(𝝈) · v =

∫
Ω

f · v for a.e 𝑡 ∈ (0, 𝑡𝐹) , (2.7c)

We begin by (2.7b) as it involves a key expression. More precisely, by applying the Hölder inequality
and the continuity property given in (2.5) with s = 0, and denoting 𝑠 as the conjugate of 𝑟 defined by
𝑠 := 𝑟

𝑟−1 , we find that the second term of (2.7b) is bounded as follows��� ∫
Ω

𝜇
(
𝛿𝛼 + |tsym |𝛼

) 𝑟−2
𝛼 tsym : s

��� ≤ (∫
Ω

���𝜇 (
𝛿𝛼 + |tsym |𝛼

) 𝑟−2
𝛼 tsym

���𝑠)1/𝑠
∥s∥0,𝑟 ;Ω

≤ 𝜎∗

(∫
Ω

(
𝛿𝑟 + |tsym |𝑟

) 𝑠 (𝑟−2)
𝑟

��tsym��𝑠)1/𝑠
∥s∥0,𝑟 ;Ω .

(2.8)

We observe that, since 𝛿 is non-negative and 𝑟 < 2, the following inequality holds(
𝛿𝑟 + |tsym |𝑟

) 𝑟−2
𝑟 ≤

(
21−𝑟 |tsym |𝑟

) 𝑟−2
𝑟

.
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Then, applying the above result to bound the term on the right-hand side of (2.8), yields��� ∫
Ω

𝜇
(
𝛿𝛼 + |tsym |𝛼

) 𝑟−2
𝛼 tsym : s

��� ≤ 𝜎∗2𝑠 (𝑟−2) ∥tsym∥𝑟−1
0,𝑟 ;Ω ∥s∥0,𝑟 ;Ω , (2.9)

so we deduce that for 𝑡 ∈ J the second term in (2.7b) makes sense for t(𝑡), s ∈ L𝑟 (Ω), and
consequently, the first terms in (2.7a) and (2.7b) are well-defined provided that 𝝉 and 𝝈(𝑡) belong to
L𝑠 (Ω). Additionally, we deduce from (2.4a) that u should be initially sought in W1,𝑟 (Ω). Now, we
introduce the Banach space

H𝑠 (div;Ω) :=
{
𝝉 ∈ L𝑠 (Ω) : div 𝝉 ∈ L2(Ω)

}
,

which is endowed with the natural norm defined by

∥𝝉∥2
𝑠;div;Ω := ∥𝝉∥2

0,𝑠;Ω + ∥div(𝝉)∥2
0,Ω .

Then, proceeding as in [23, Theorem 2.2], it is easy to show that, given 𝑟, there holds

⟨𝝉n, v⟩Γ =

∫
Ω

{
𝝉 : ∇v + v · div(𝝉)

}
∀ (𝝉, v) ∈ H𝑠 (div;Ω) × W1,𝑟 (Ω) , (2.10)

where⟨·, ·⟩ stands for the duality pairing between W−1/𝑠,𝑠 (Γ) and W1/𝑠,𝑟 (Γ).
In this way, defining the subspace of H𝑠 (div;Ω) by

H𝑠Γ𝑁
(div;Ω) :=

{
𝝉 ∈ H𝑠 (div;Ω) : ⟨𝝉n, v⟩Γ = 0 ∀v ∈ W1,𝑟

0,Γ𝐷 (Ω)
}
,

and applying (2.10) for the given 𝝉 ∈ H𝑠
Γ𝑁

(div;Ω) and u ∈ W1,𝑟 (Ω), while employing the Dirichlet
boundary condition on u, (2.7a) can be rewritten as∫

Ω

t : 𝝉 +
∫
Ω

u · div(𝝉) = 0 , (2.11)

It is easy to notice that, the first term is well-defined, whereas the second term makes sense for u ∈ L2(Ω),
thanks to the Sobolev embeddings W1,𝑟 (Ω) ↩→ L𝑟 (Ω) when 𝑟 < 𝑑 and L2(Ω) ↩→ L𝑟 (Ω). In addition,
due to the second column of (2.4e), it follows that we should look for 𝝈 in H𝑠0,Γ𝑁

(div;Ω), where

H𝑠0,Γ𝑁
(div;Ω) :=

{
𝝉 ∈ H𝑠Γ𝑁

(div;Ω) :
∫
Ω

tr(𝝈) = 0
}
.

In turn, considering the free trace property of t, we look for these unknowns in L𝑟tr(Ω), where

L𝑟tr(Ω) :=
{
t ∈ L𝑟 (Ω) : tr(t) = 0

}
,

This implies that (2.7b) can be equivalently rewritten as

−
∫
Ω

𝝈 : s +
∫
Ω

𝜇
(
𝛿𝛼 + |tsym |𝛼

) 𝑟−2
𝛼 tsym : s = 0 ∀ s ∈ L𝑟tr(Ω) .

Consequently, the weak formulation (2.7) is well defined if we choose the spaces Q := L𝑟tr(Ω),
X := H𝑠0,Γ𝑁

(div;Ω), Y := L2(Ω), with their respective norms ∥ · ∥0,𝑟 ;Ω, ∥ · ∥𝑠;div;Ω, ∥ · ∥0,Ω.
According to the above, we arrive at the variational problem: For a.e 𝑡 ∈ J, find t(𝑡) ∈ L𝑟tr(Ω),

𝝈(𝑡) ∈ H𝑠0,Γ𝑁
(div;Ω) and u(𝑡) ∈ L2(Ω), such that u(0) = u0 and

[𝑎(t), s] +[𝑏1(s),𝝈] = 0 ∀ s ∈ L𝑟tr(Ω) , (2.12a)
[𝑏1(t), 𝝉] + [𝑏2(u), 𝝉] = 0 ∀ 𝝉 ∈ H𝑠0,Γ𝑁

(div;Ω), (2.12b)
𝜕

𝜕𝑡
[𝑐(u), v] + [𝑏2(v),𝝈] = [𝐹, v] ∀v ∈ L2(Ω) , (2.12c)
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where the operators 𝑎 : Q → Q
′ , 𝑏1 : Q → X

′ , 𝑏2 : Y → X
′ , 𝑐 : Y → Y′ , are defined, respectively, as

[𝑎(t), 𝝉] :=
∫
Ω

𝜇
(
𝛿𝛼 + |tsym |𝛼

) 𝑟−2
𝛼 tsym : s , (2.13a)

[𝑏1(s), 𝝉] := −
∫
Ω

𝝉 : s , (2.13b)

[𝑏2(v), 𝝉] := −
∫
Ω

div(𝝉) · v , (2.13c)

[𝑐(u), v] :=
∫
Ω

u · v , (2.13d)

for all (s, 𝝉, v) ∈ Q × X × Y.
In turn, 𝐹 ∈ Y′ is the bounded linear functional defined by

[𝐹, v] :=
∫
Ω

f · v . (2.14)

In all the terms above, [·, ·] denotes the duality pairing induced by the corresponding operators. Let us
define the global unknown and space:

®u := (u, t) ∈ V := L2(Ω) × L𝑟tr(Ω) , (2.15)

where V is endowed with the norm

∥®u∥2
V = ∥(v, s)∥2

V = ∥v∥2
0,Ω + ∥s∥2

0,𝑟 ;Ω ∀ ®u := (v, s) ∈ V .

Now, thanks to the above notation, it is easy to see that (2.12) can be rewritten equivalently as: Find
(®u,𝝈) : [0, 𝑡𝐹] → V × H𝑠0,Γ𝑁

(div;Ω) such that

𝜕

𝜕𝑡
[C(®u(𝑡)), ®v] + [A(®u(𝑡)), ®v] + [B(®v),𝝈(𝑡)] = [F (𝑡), ®v] ∀ ®v ∈ V , (2.16a)

[B(®u(𝑡)), 𝝉] = 0 ∀ 𝝉 ∈ H𝑠0,Γ𝑁
(div;Ω) , (2.16b)

where, the operators A : V → V′ , B : V → X
′ and C : V → V′ are defined by

[A( ®w), ®v] := [𝑎(r, s)] ∀ ®w = (w, r), ®v = (v, s) ∈ V , (2.17a)

[B(®v), 𝝉] := [𝑏1(s), 𝝉] + [𝑏2(v), 𝝉] ∀ (®v, 𝝉) = ((v, s), 𝝉) ∈ V × X , (2.17b)

[C( ®w), ®v] := [𝑐(w), v] ∀ ®w, ®v ∈ V , (2.17c)

whereas the functional F ∈ V′ is set as

[F , ®v] := [𝐹, v] . (2.18)

3 Well-posedness of the continuous problem
In this section we proceed similarly to [24] to establish existence of a solution to problem (2.16). More
precisely, we will recall several results that will be utilized in the upcoming analysis.

3.1 Some abstract results
We start by recalling the important result from [45, Theorem IV.6.1(b)], which will help us demonstrate
the existence of a solution to problem (2.16).
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Theorem 3.1. Given𝑉𝑛 a seminorm space, which obtained from a symmetric and non-negative bilinear
form 𝑛(·, ·), we let N : 𝑉𝑛 → 𝑉

′
𝑛 be the bounded linear operator induced by 𝑛, which is defined by

N𝑥(𝑦) = 𝑛(𝑥, 𝑦) ∀ 𝑥, 𝑦 ∈ 𝑉𝑛 .

In addition, let 𝐷 be a dense subspace of 𝑉𝑛, M : 𝐷 → 𝑉
′
𝑛 be linear operator and 𝑁 (N) and 𝑁 (M)

be the respective null spaces of operators N and M. Assume that:

𝑖) M is monotone, that is,

[M(𝑥) −M(𝑦), 𝑥 − 𝑦] ≥ 0 ∀ 𝑥, 𝑦 ∈ 𝐷 .

𝑖𝑖) 𝑁 (N) ∩ 𝐷 ⊂ 𝑁 (M) and N +M : 𝐷 → 𝑉
′
𝑚 is onto.

Then for every 𝑓 ∈ 𝑊1,1(J;𝑉 ′
𝑛) and 𝑢0 ∈ 𝐷 there exists a solution of 𝜕𝑡 (N𝑢) (𝑡) +M𝑢(𝑡) = 𝑓 (𝑡), 𝑡 > 0,

with
(
N𝑢

)
(0) = N𝑢0.

Furthermore, to establish hypothesis ii) in Theorem 3.1, we will need the following abstract result
from [22, Theorem 3.1].

Theorem 3.2. Let 𝑋1, 𝑋2 and 𝑌 be separable and reflexive Banach spaces, 𝑋1 and 𝑋2 being uniformly
convex, and set 𝑋 = 𝑋1 × 𝑋2 . Let A : 𝑋 → 𝑋

′ be a nonlinear operator, B ∈ L(𝑋,𝑌 ′), and let 𝐾 be
the kernel of B, that is,

𝐾 :=
{
𝑣 ∈ 𝑋 : [B(𝑣), 𝑞] = 0 ∀ 𝑞 ∈ 𝑌

}
.

Assume that

(𝑖) A is hemi-continuous, that is, for each 𝑢, 𝑣 ∈ 𝑋

𝐽 : R → R, 𝑡 → 𝐽 (𝑡) = [A(𝑢 + 𝑡𝑣), 𝑣] is continuous.

(𝑖𝑖) there exist constants 𝐿 > 0 and 𝑝1, 𝑝2 ≥ 1, such that

∥A(𝑢) − A(𝑣)∥𝑋′ ≤ 𝐿

2∑︁
𝑗=1

{
∥𝑢 𝑗 − 𝑣 𝑗 ∥𝑋 𝑗

+
(
∥𝑢 𝑗 ∥𝑋 𝑗

+ ∥𝑣 𝑗 ∥𝑋 𝑗

) 𝑝 𝑗−2
∥𝑢 𝑗 − 𝑣 𝑗 ∥𝑋 𝑗

}
,

for all 𝑢 = (𝑢1, 𝑢2), 𝑣 = (𝑣1, 𝑣2) ∈ 𝑋 .

(𝑖𝑖𝑖) the family of operators
{
A(· + 𝑡) : 𝑉 → 𝑉

′ : 𝑡 ∈ 𝑋

}
is uniformly strictly monotone, that is

there exist 𝛾 > 0 and 𝑝1, 𝑝2 ≥ 1, such that

[A(𝑢 + 𝑡) − A(𝑣 + 𝑡), 𝑢 − 𝑣] ≥ 𝛾

{
∥𝑢1 − 𝑣1∥ 𝑝1

𝑋1
+ ∥𝑢2 − 𝑣2∥ 𝑝2

𝑋2

}
,

for all 𝑡 ∈ 𝑋 , and for all 𝑢 = (𝑢1, 𝑢2), 𝑣 = (𝑣1, 𝑣2) ∈ 𝑉 .

(𝑖𝑣) there exist 𝛽 > 0 such that

sup
𝑣∈𝑋

[B(𝑣), 𝑞]
∥𝑣∥𝑋

≥ 𝛽 ∀ 𝑞 ∈ 𝑌 .

Then, for each (F ,G) ∈ 𝑋 ′ × 𝑌 ′ there exists a unique (𝑢, 𝑝) ∈ 𝑋 × 𝑌 such that

[A(𝑢), 𝑣] + [B(𝑣), 𝑝] = F (𝑣) ∀ 𝑣 ∈ 𝑋 ,
[B(𝑢), 𝑞] = G(𝑞) ∀ 𝑞 ∈ 𝑌 .

7



Then, we rewrite the problem (2.16) in notations of Theorem 3.1. Specifically, we define the
operators

N :=
(
C 0
0 0

)
: 𝑉𝑛 → 𝑉

′
𝑛 and M :=

(
A B′

−B 0

)
: 𝐷 → 𝑉

′
𝑛, (3.1)

with
𝑉𝑛 := V × X , 𝑢 :=

(
®u
𝝈

)
, 𝑉

′
𝑛 :=

(
L2(Ω) × {0}

)
× {0}, (3.2)

and
𝐷 :=

{
(®u,𝝈) ∈ 𝑉𝑛 : M(®u,𝝈) ∈ 𝑉 ′

𝑛

}
. (3.3)

Finally, we derive the stability properties of the operators N and M. First, we observe that the
operators B, C and functional F are linear. Additionally, employing Hölder and Cauchy–Schwarz
inequalities, we obtain��[B(®v), 𝝉]

�� ≤ ∥®v∥V ∥𝝉∥𝑠,div;Ω ∀ (®v, 𝝉) ∈ V × X , (3.4a)��[C( ®w), ®v]
�� ≤ ∥w∥0,Ω ∥v∥0,Ω ≤ ∥ ®w∥V ∥®v∥V , [C(®v), ®v] = ∥v∥2

0,Ω ∀ ®w, ®v ∈ V , (3.4b)��[F , ®v]�� ≤ ∥f∥0,Ω ∥®v∥V ∀ ®v ∈ V . (3.4c)

This means that B and F are bounded and continuous, whereas N is bounded, continuous, and
monotone. Additionally, by applying the estimate (2.9), it is clear that, the nonlinear operator A is
bounded with upper bound CA := 𝜎∗ 2𝑠 (𝑟−1) , that is��[A( ®w), ®v]

�� ≤ CA ∥t∥𝑟−1
0,𝑟 ;Ω ∥s∥0,𝑟 ;Ω ≤ CA ∥t∥𝑟−1

0,𝑟 ;Ω ∥®v∥V . (3.5)

This result, along with (3.4a), implies that M is bounded and continuous.
Next, we will verify the hypotheses 𝑖𝑖) of Theorem 3.1 to establish the well-posedness of (2.16). To

this end,let us consider the resolvent system associated with (2.16): Find (®u,𝝈) ∈ V × X such that

[(C + A)(®u), ®v] + [B(®v),𝝈] = [F , ®v] ∀ ®v ∈ V , (3.6a)

[B(®u), 𝝉] = 0 ∀ 𝝉 ∈ H𝑠0,Γ𝑁
(div;Ω) . (3.6b)

3.2 The well-posedness of (3.6)
In this section, we use Theorem 3.2 to show the existence of a unique solution to problem (3.6). First,
we note that, due to the uniform convexity and separability of L𝑟 (Ω) for 𝑟 ∈ (1, 2], the spaces V and X
also exhibit uniform convexity and separability.

Next, we proceed to verify hypothesis ii) of Theorem 3.2, which states a continuity bound for the
nonlinear operator C + A.

Lemma 3.3. Let 𝑟 ∈ (1, 2]. Then, there exists 𝐿nN, depending on 𝜎∗, 𝑠, 𝑟 , such that(C + A
)
(®u) −

(
C + A

)
(®v)

 ≤ 𝐿nN

{
∥u − v∥0,Ω +

(
∥t∥0,𝑟 ;Ω + ∥s∥0,𝑟 ;Ω

)𝑟−2 ∥t − s∥0,𝑟 ;Ω

}
. (3.7)

Proof. Let ®u = (u, t), ®v = (v, s) ∈ V = Y × Q. Then, due to the linearity of C, and by using the
definition of A (cf. (2.17a)) along with the boundedness estimate (3.4b), we obtain��[(C + A)(®u), ®w]

�� ≤ ��[C(®u − ®v), ®w]
�� + ��[A(®u) − A(®v), ®w]

��
≤ ∥u − v∥0,Ω ∥w∥0,Ω +

��[𝑎(t) − 𝑎(s), r]��. (3.8)
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To bound the second term, we now apply the definition of 𝑎 given by (2.13a) along with assumption 2.1,
which gives��[𝑎(t) − 𝑎(s), r]�� ≤

��� ∫
Ω

𝜇

( (
𝛿𝛼 + |tsym |𝛼

) 𝑟−2
𝛼 tsym −

(
𝛿𝛼 + |ssym |𝛼

) 𝑟−2
𝛼 ssym

)
: r

���
≤

(∫
Ω

𝜇

��� (𝛿𝛼 + |tsym |𝛼
) 𝑟−2

𝛼 tsym −
(
𝛿𝛼 + |ssym |𝛼

) 𝑟−2
𝛼 ssym

���𝑠)1/𝑠
∥r∥0,𝑟 ;Ω

≤ 𝜎∗

(∫
Ω

(
𝛿𝑟 + |tsym − ssym |𝑟

) 𝑠 (𝑟−2)
𝑟

��tsym − ssym
��𝑠)1/𝑠

∥r∥0,𝑟 ;Ω ,

form which, proceeding in a manner similar to the derivation of (2.9), we find that��[𝑎(t) − 𝑎(s), r]�� ≤ 𝜎∗ 2𝑠 (𝑟−2) ∥t − s∥𝑟−1
0,𝑟 ;Ω∥r∥0,𝑟 ;Ω

≤ 𝜎∗ 2𝑠 (𝑟−2) (
∥t∥0,𝑟 ;Ω + ∥s∥0,𝑟 ;Ω

)𝑟−2 ∥t − s∥0,𝑟 ;Ω ∥r∥0,𝑟 ;Ω .
(3.9)

Thus, replacing back (3.9) into (3.8), we obtain (3.7) with 𝐿nN := max
{
1, 𝜎∗ 2𝑠 (𝑟−2)}. □

Next, before examining hypothesis iii) of Theorem 3.2 for the operator C + A, let us note that,
proceeding similarly to [25], the kernel of B by K can be characterized as

K :=
{
®v ∈ V : ∇u = s and v ∈ W1,𝑟

0 (Ω)
}
. (3.10)

Lemma 3.4. Let 𝑟 ∈ (1, 2]. The family of operators
{
(C +A)(· + ®z) : K → K′ : ®z ∈ V

}
is uniformly

strictly monotone, that is, there exists a constant 𝛼nN > 0, depending on 𝜎∗, 𝑟 and |Ω|, such that

[(C + A)(®u + ®z) − (C + A)(®v + ®z), ®u − ®v] ≥ 𝛼nN

{
∥u − v∥2

0,Ω

+
(
𝛿𝑟 + ∥t∥𝑟0,𝑟 ;Ω + ∥s∥𝑟0,𝑟 ;Ω

) 𝑟−2
𝑟 ∥t − s∥2

0,𝑟 ;Ω

}
, (3.11)

for all ®z = (z, r) ∈ V and ®u = (u, t), ®v = (v, s) ∈ K.

Proof. Given ®z = (z, r) ∈ V and ®u = (u, t), ®v = (v, s) ∈ K, from the definitions of A, C (cf. (2.17a),
(2.17c)), we have

[(C + A)(®u + ®z) − (C + A)(®v + ®z), ®u − ®v] = ∥u − v∥2
0,Ω + [𝑎(t + r) − 𝑎(s + r), t − s] .

In order to find a lower bound for the second term on the right-hand side of the above expression, we
use Assumption 2.1 (cf. eq (2.6)) and the Hölder inequality with exponents ( 2

2−𝑟 ,
2
𝑟
) to obtain

𝜎∗ ∥tsym − ssym∥2
0,𝑟 ;Ω ≤ 𝜎∗

( ∫
Ω

(��tsym − ssym
��2)𝑟/2 )2/𝑟

≤
( ∫

Ω

(
𝛿𝑟 + |tsym |𝑟 + |ssym |𝑟

) 2−𝑟
2

(
𝝈d(tsym) − 𝝈d(ssym) : tsym − ssym

)𝑟/2 )2/𝑟

≤
( ∫

Ω

(
𝛿𝑟 + |tsym |𝑟 + |ssym |𝑟

) ) 2−𝑟
𝑟

( ∫
Ω

𝝈d(tsym) − 𝝈d(ssym) : tsym − ssym
)

≤
(
|Ω|𝛿𝑟 + ∥tsym∥𝑟0,𝑟 ;Ω + ∥ssym∥𝑟0,𝑟 ;Ω

) 2−𝑟
𝑟 [𝑎(t) − 𝑎(s), t − s] ,

which in turn gives

[𝑎(t) − 𝑎(s), t − s] ≥
(
|Ω|𝛿𝑟 + ∥tsym∥𝑟0,𝑟 ;Ω + ∥ssym∥𝑟0,𝑟 ;Ω

) 𝑟−2
𝑟

𝜎∗ ∥tsym − ssym∥2
0,𝑟 ;Ω. (3.12)
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On the other hand, we know from (3.10) that ∇v = s, ∇u = t and v ∈ W1,𝑟
0 (Ω). Hence, by applying

Körn’s inequality and the fact that 𝑟 < 2 we obtain(
|Ω|𝛿𝑟 + ∥tsym∥𝑟0,𝑟 ;Ω + ∥ssym∥𝑟0,𝑟 ;Ω

) 𝑟−2
𝑟

𝜎∗ ∥tsym − ssym∥2
0,𝑟 ;Ω

≥
(
|Ω|𝛿𝑟 + ∥t∥𝑟0,𝑟 ;Ω + ∥s∥𝑟0,𝑟 ;Ω

) 𝑟−2
𝑟

𝜎∗ ∥tsym − ssym∥2
0,𝑟 ;Ω

≥
(
|Ω|𝛿𝑟 + ∥t∥𝑟0,𝑟 ;Ω + ∥s∥𝑟0,𝑟 ;Ω

) 𝑟−2
𝑟

𝜎∗ ∥𝜖 (u − v)∥2
0,𝑟 ;Ω (3.13)

≥
(
|Ω|𝛿𝑟 + ∥t∥𝑟0,𝑟 ;Ω + ∥s∥𝑟0,𝑟 ;Ω

) 𝑟−2
𝑟 𝜎∗

2
|u − v|21,𝑟 ;Ω

≥
(
|Ω|𝛿𝑟 + ∥t∥𝑟0,Ω + ∥s∥𝑟0,Ω

) 𝑟−2
𝑟 𝜎∗

2
∥t − s∥2

0,𝑟 ;Ω.

Thus, replacing (3.13) back into (3.12), implies (3.11) with 𝛼nN := min
{
𝜎∗

2 |Ω| (𝑟−2)/𝑟 , 1
}
. □

Furthermore, the following lemma states that B satisfies the hypothesis 𝑖𝑣) Theorem 3.2.

Lemma 3.5. There exists a constant 𝛽 > 0, depending only |Ω|, such that

sup
0≠®v∈V

[B(®v), 𝝉]
∥®v∥V

≥ 𝛽 ∥𝝉∥𝑠,div;Ω ∀ 𝝉 ∈ H𝑠 (div;Ω) . (3.14)

Proof. The proof is a modification of [25, Lemma 3.3]. More precisely, given 𝝉d ≠ 0 we set s̃ :=
|𝝉d |𝑠−2𝝉d, and notice that ∥̃s∥𝑟0,𝑟 ;Ω = ∥𝝉d∥𝑠0,𝑠;Ω and tr (̃s) = |𝝉d |𝑠−2tr(𝝉d) = 0, which says that s̃ ∈ L𝑟tr(Ω),
and additionally there holds ∫

Ω

𝝉 : s̃ = ∥𝝉d∥𝑠0,𝑠 = ∥𝝉d∥0,𝑠;Ω ∥̃s∥0,𝑟 ;Ω . (3.15)

Then, employing (3.15) we find that

sup
0≠®v∈V

[B(®v), 𝝉]
∥®v∥V

≥ [B((0, s̃)), 𝝉]
∥̃s∥0,𝑟 ;Ω

=

∫
Ω

s̃ : 𝝉

∥̃s∥0,𝑟 ;Ω
= ∥𝝉d∥0,𝑠;Ω .

(3.16)

In turn, denoting by 𝝉 𝑗 the 𝑗-th row of 𝝉 for 𝑗 = 1, . . . , 𝑛, we now set ®̃v = (ṽ, 0) ∈ V, with ṽ :=
(div(𝝉 𝑗)) 𝑗=1, · · · ,𝑛 ∈ L2(Ω). Then, it follows that

sup
0≠®v∈V

[B(®v), 𝝉]
∥®v∥V

≥ [B((ṽ, 0)), 𝝉]
∥ṽ∥0,Ω

= ∥div(𝝉)∥0,Ω,

which, together with (3.16) implies

sup
0≠®v∈V

[B(®v), 𝝉]
∥®v∥V

≥ ∥𝝉d∥0,𝑠;Ω + ∥div(𝝉)∥0,Ω. (3.17)

Additionally, by appropriately adjusting the proof of [29, Lemma 2.3], it can be demonstrated that there
exists a positive constant 𝑐Ω, depending only on Ω, such that

𝑐Ω∥𝝉∥0,𝑠;Ω ≤ ∥𝝉d∥0,𝑠;Ω + ∥div(𝝉)∥0,Ω . (3.18)

Finally, by combining (3.18) and (3.17) we arrive at (3.14) with 𝛽 = min{ 1
2 ,
𝑐Ω
2 }. □

We are now ready to establish the main result of this section.
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Lemma 3.6. Let 𝑟 ∈ (1, 2]. Then, for each f ∈ L2(Ω), there exists a unique solution (®u,𝝈) =

((u, t),𝝈) ∈ V × X to (3.6).

Proof. As a consequence of Lemmas 3.3, 3.4 and 3.5, we conclude that the operators A + C and B
satisfy the hypotheses of Theorem 3.2. Therefore, through a straightforward application of this abstract
result, we arrive at the desired conclusion. □

We end this section by presenting an appropriate initial condition result, which is essential for
applying Theorem 3.1.

Lemma 3.7. Let M be the subspace of W1,𝑟
0 (Ω)

M :=
{
v ∈ W1,𝑟

0 (Ω) : div
(
𝜇 (𝛿𝛼 + |𝜖 (v) |𝛼)

𝑟−2
𝛼 𝜖 (v)

)
∈ L2(Ω) and div(v) = 0 in Ω

}
, (3.19)

and assume that u0 ∈ Y∩M. Then, there exists (t0,𝝈0) ∈ Q×X such that ®u0 := (u0, t0) and 𝝈0 satisfy(
A B′

−B 0

) (
®u0
𝝈0

)
∈

(
L2(Ω) × {0}

)
× {0}. (3.20)

Proof. Given u0 ∈ Y ∩ M, we define

t0 := ∇u0 and 𝝈0 := 𝜇 (𝛿𝛼 + |𝜖 (u0) |𝛼)
𝑟−2
𝛼 𝜖 (u0) , (3.21)

which satisfy
tr(t0) = 0 , div(𝝈0) = div

(
𝜇 (𝛿𝛼 + |𝜖 (u0) |𝛼)

𝑟−2
𝛼 𝜖 (u0)

)
. (3.22)

Notice that t0 ∈ Q, and 𝝈0 ∈ X. Next, by applying integration by parts to the identity t0 = ∇u0 and
following a similar approach to that used in (2.7a), we get

[B(®u0), 𝝉] = 0 ∀ 𝝉 ∈ X .

Therefore, given u0 ∈ V ∩ M, where M is defined in (3.19), by multiplying the second rows in (3.21)
and (3.22) by the respective test functions s ∈ Q and v ∈ Y, we find that(

A B′

−B 0

) (
®u0
𝝈0

)
=

( ®𝐹0
0

)
, (3.23)

where ®𝐹0 = ( 𝑓0, 0) and

( 𝑓0, v) := −
∫
Ω

div
(
𝜇 (𝛿𝛼 + |𝜖 (u0) |𝛼)

𝑟−2
𝛼 𝜖 (u0)

)
· v . (3.24)

Also, we have ��( 𝑓0, v)�� ≤ div
(
𝜇 (𝛿𝛼 + |𝜖 (u0) |𝛼)

𝑟−2
𝛼 𝜖 (u0)

)
0,Ω

∥v∥0,Ω .

Thus, ®𝐹0 ∈ L2(Ω) × {0}, which implies (3.20), completing the proof. □

3.3 Main result
In this section, we establish the well-posedness of problem (2.16).

Theorem 3.8. For each f ∈ 𝑊1,1(J; L2(Ω)) and every compatible initial data (®u0,𝝈0) = ((u0, t0),𝝈0)
derived in Lemma 3.7, there exists a unique (®u,𝝈) = ((u, t),𝝈) : [0, 𝑡𝐹] → V × X solution to (2.16),
such that u ∈ 𝑊1,∞(J; Y) and ((u(0), t(0)),𝝈(0)) = ((u0, t0),𝝈0).
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Proof. We note that the structure of problem (3.6) is the same as in Theorem 3.1, based on the definitions
given in (3.1)-(3.3). Additionally, the operatorN is linear, symmetric, and monotone due to the definition
of C (cf. (3.4b)), while M is monotone thanks to the strictly monotonicity of A (cf. Lemma 3.4).
Alternatively, Lemma 3.6 allows us to deduce that for the given (�̂�, 0) ∈ 𝑉 ′

𝑛 with �̂� = (f̂, 0), there exists
a unique (®u,𝝈) = ((u, t),𝝈) ∈ V × X such that

(�̂�, 0) = (N +M)(®u,𝝈),

which implies N +M : 𝐷 → 𝑉
′
𝑛 is onto, where 𝐷 is defined in (3.3). Lastly, by taking u0 ∈ Y ∩ M,

where M is defined in (3.19), a direct application of Lemma 3.7 allows us to determine (t0,𝝈0) ∈ Q×X
such that (®u0,𝝈0) ∈ 𝐷. Consequently, by utilizing Theorem 3.1, we can conclude that for each 𝑡 ∈ J
there exists a solution (®u(𝑡),𝝈(𝑡)) = ((u(𝑡), t(𝑡)),𝝈(𝑡)) ∈ V × X to (2.16) such that u ∈ 𝑊1,∞(J; Y),
with initial value u(0) = u0.

We will now establish the uniqueness of the solution to (2.16). To do this, consider (®u𝑖 ,𝝈𝑖) for
𝑖 ∈ {1, 2}, which are two solutions that correspond to the same input data. Then, considering test
functions (®v, 𝝉) = (®u1 − ®u2,𝝈1 − 𝝈2) to (2.16), we find that

1
2
𝜕𝑡 ∥u1 − u2∥2

0,Ω + [A(®u1) − A(®u2), ®u1 − ®u2] = 0,

from which using the fact that ®u1 − ®u2 ∈ K and the strict monotonicity of A (cf. (3.11)), we can
conclude that

1
2
𝜕𝑡 ∥u1 − u2∥2

0,Ω + 𝜎
∗

2

(
𝛿𝑟 + ∥t1 − t2∥𝑟0,𝑟 ;Ω

) (𝑟−2)/𝑟
∥t1 − t2∥0,𝑟 ;Ω ≤ 0. (3.25)

Next, we will consider two possible cases as follows

∥t1 − t2∥0,𝑟 ;Ω ≥ 𝛿 or ∥t1 − t2∥0,𝑟 ;Ω < 𝛿 .

In the first case, (3.25) yields

𝜕𝑡 ∥u1 − u2∥2
0,Ω + 𝜎∗2(𝑟−2)/𝑟 ∥t1 − t2∥𝑟0,𝑟 ;Ω ≤ 0 , (3.26)

whereas for the second case, we get

𝜕𝑡 ∥u1 − u2∥2
0,Ω + 𝜎∗2(𝑟−2)/2

𝛿2−𝑟 ∥t1 − t2∥2
0,𝑟 ;Ω ≤ 0 . (3.27)

Thus, by integrating (3.26) and (3.27) over time from 0 to 𝑡 ∈ (0, 𝑡𝐹], combining them, and utilizing the
condition u1(0) = u2(0), we obtain:

∥u1(𝑡) − u2(𝑡)∥2
0,Ω +

∫ 𝑡

0

(
∥t1(𝑠) − t2(𝑠)∥𝑟0,𝑟 ;Ω + ∥t1(𝑠) − t2(𝑠)∥2

0,𝑟 ;Ω

)
𝑑𝑠 ≤ 0. (3.28)

Thus, it can be concluded from (3.28) that u1(𝑡) = u2(𝑡) and t1(𝑡) = t2(𝑡) for all 𝑡 ∈ (0, 𝑡𝐹]. Next,
utilizing the inf-sup condition of the operator B (cf. (3.14)) along with the first equation of (2.16) yields

∥𝝈1 − 𝝈2∥𝑠,div;Ω ≤ 1
𝛽

sup
0≠®v∈V

[B(®v),𝝈1 − 𝝈2]
∥®v∥V

≤ 1
𝛽

sup
0≠®v∈V

− 𝜕
𝜕𝑡

[C(®u1 − ®u2), ®v] − [A(®u1) − A(®u2), ®v]

∥®v∥V
= 0 .

This implies that 𝝈1(𝑡) = 𝝈2(𝑡) for all 𝑡 ∈ (0, 𝑡𝐹], and consequently, (2.16) has a unique solution. □

The following result provides the stability bound for solution of (2.16).
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Theorem 3.9. Let 𝑟 ∈ (1, 2]. Assume that u0 ∈ Y ∩ M satisfies (3.20). Then, there exists a constant
Cstab, depending on 𝜎∗, 𝑟 , 𝛿, 𝛽, the norm of the continuous injections i𝑑𝑟/(𝑑−𝑟 ) : W1,𝑟 (Ω) → L𝑑𝑟/(𝑑−𝑟 )
and i2 : L𝑑𝑟/(𝑑−𝑟 ) → L2(Ω), such that

∥u(𝑡)∥2
0,Ω + ∥t(𝑡)∥𝑟0,𝑟 ;Ω +

∫ 𝑡

0

(
∥t(𝑠)∥𝑟0,𝑟 ;Ω + ∥u(𝑠)∥𝑟0,Ω + ∥𝝈(𝑠)∥2

𝑠,div;Ω

)
𝑑𝑠

≤ Cstab
{
∥u0∥2

0,Ω +
(
𝛿𝑟 + ∥u0∥𝑟1,𝑟 ;Ω

) 𝑟−2
𝑟 ∥u0∥2

1,𝑟 ;Ω

+
∫ 𝑡

0

(
∥f (𝑠)∥𝑟/(𝑟−1)

0,Ω + ∥f (𝑠)∥2
0,Ω

)
𝑑𝑠

}
:= N(f, u0) ,

(3.29)

Proof. We start by selecting (®v, 𝝉) = (®u,𝝈) in (2.16), to obtain

1
2
𝜕𝑡 ∥u∥2

0,Ω +
��[A(®u), ®u]

�� ≤ ��[F , ®u]�� .
As a result of the monotonicity of A (cf. (3.11)) and the boundedness of F (cf. (3.4c)), it is clear that

1
2
𝜕𝑡 ∥u∥2

0,Ω + 𝜎∗

2

(
𝛿𝑟 + ∥t∥𝑟0,𝑟 ;Ω

) 𝑟−2
𝑟 ∥t∥2

0,𝑟 ;Ω ≤ ∥f∥0,Ω ∥u∥0,Ω . (3.30)

We notice that for the term ∥t∥0,𝑟 there are two possibilities, namely,

∥t∥0,𝑟 ;Ω ≥ 𝛿 or ∥t∥0,𝑟 ;Ω < 𝛿 .

If the first case occurs, from (3.30), we conclude that

𝜕𝑡 ∥u∥2
0,Ω + 𝜎∗ 2 𝑟−2

𝑟 ∥t∥𝑟0,𝑟 ;Ω ≤ 2∥f∥0,Ω ∥u∥0,Ω . (3.31)

In turn, observing from the second row of (2.16) that ®u belongs to K (cf. (3.10)), we understand that
t = ∇u and u ∈ W1,𝑟

0 (Ω), which invoking the continuous injections i𝑑𝑟/(𝑑−𝑟 ) : W1,𝑟 (Ω) → L𝑑𝑟/(𝑑−𝑟 )

and i2 : L𝑑𝑟/(𝑑−𝑟 ) → L2(Ω), imply

1
2
𝜎∗ 2 𝑟−2

𝑟 ∥t∥𝑟0,𝑟 ;Ω =
1
2
𝜎∗ 2 𝑟−2

𝑟 ∥∇u∥𝑟0,𝑟 ;Ω

≥ 1
2∥i𝑑𝑟/(𝑑−𝑟 ) ∥𝑟

𝜎∗ 2 𝑟−2
𝑟 ∥u∥𝑟0,𝑑𝑟/(𝑑−𝑟 );Ω ≥ 1

2∥i𝑑𝑟/(𝑑−𝑟 ) ∥𝑟 ∥i2∥𝑟
𝜎∗ 2 𝑟−2

𝑟 ∥u∥𝑟0,Ω.
(3.32)

It then suffices to combine (3.32) with (3.31) and Young’s inequality

𝑎𝑏 ≤ 𝛼

𝑝
𝑎𝑝 + 𝛼

−𝑞/𝑝

𝑞
𝑏𝑞 ∀ 𝑝, 𝑞 ≥ 0 and

1
𝑝
+ 1
𝑞
= 1 , (3.33)

to arrive at

𝜕𝑡 ∥u∥2
0,Ω + 1

2∥i𝑑𝑟/(𝑑−𝑟 ) ∥𝑟 ∥i2∥𝑟
𝜎∗ 2

𝑟−2
𝑟 ∥u∥𝑟0,Ω + 1

2
𝜎∗ 2

𝑟−2
𝑟 ∥t∥𝑟0,𝑟 ;Ω ≤ 𝛼1

𝑟
∥u∥𝑟0,Ω+4

𝛼
−1/(𝑟−1)
1
𝑟/(𝑟 − 1) ∥f∥𝑟/(𝑟−1)

0,Ω .

From the above bound, by choosing 𝛼1 such that 𝛼1 ≤ 1
4∥i𝑑𝑟/(𝑑−𝑟 ) ∥𝑟 ∥i2∥𝑟

𝜎∗ 2 𝑟−2
𝑟 and integrating over

time from 0 to 𝑡 ∈ (0, 𝑡𝐹], we obtain

∥u(𝑡)∥2
0,Ω +

∫ 𝑡

0

(
∥t(𝑠)∥𝑟0,𝑟 ;Ω + ∥u(𝑠)∥𝑟0,Ω

)
𝑑𝑠 ≤ 𝐶1

{
∥u0∥2

0,Ω +
∫ 𝑡

0
∥f (𝑠)∥𝑟/(𝑟−1)

0,Ω 𝑑𝑠

}
. (3.34)

On the other hand, for the second case according to (3.30), and utilizing (3.32) with 𝑟 = 2 along
with the Young inequality again, we conclude

𝜕𝑡 ∥u∥2
0,Ω + 1

2∥i𝑑𝑟/(𝑑−𝑟 ) ∥2∥i2∥2𝜎
∗ 2 𝑟−2

𝑟 𝛿𝑟−2 ∥u∥2
0,Ω + 1

2
𝜎∗ 2 𝑟−2

2 𝛿𝑟−2 ∥t∥2
0,𝑟 ;Ω

≤ 𝛼2∥u∥2
0,Ω + 1

𝛼2
∥f∥2

0,Ω ,
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where, by considering 𝛼2 to be sufficiently small so that 𝛼2 ≤ 1
4∥i𝑑𝑟/(𝑑−𝑟 ) ∥2∥i2∥2𝜎

∗ 2 𝑟−2
𝑟 𝛿𝑟−2 and

integrating from 0 to 𝑡 ∈ (0, 𝑡𝐹], readily gives

∥u(𝑡)∥2
0,Ω +

∫ 𝑡

0

(
∥t(𝑠)∥2

0,𝑟 ;Ω + ∥u(𝑠)∥2
0,Ω

)
𝑑𝑠 ≤ 𝐶2

{
∥u0∥2

0,Ω +
∫ 𝑡

0
∥f (𝑠)∥2

0,Ω 𝑑𝑠
}
. (3.35)

Thus, by combining estimates (3.34) and (3.35), and using the fact that 𝑟 < 2, imply

∥u(𝑡)∥2
0,Ω +

∫ 𝑡

0

(
∥t(𝑠)∥𝑟0,𝑟 ;Ω + ∥u(𝑠)∥𝑟0,Ω

)
𝑑𝑠 ≤ 𝐶

{
∥u0∥2

0,Ω

+
∫ 𝑡

0

(
∥f (𝑠)∥𝑟/(𝑟−1)

0,Ω + ∥f (𝑠)∥2
0,Ω

)
𝑑𝑠

}
.

(3.36)

Lastly, to establish the a priori estimate of pseudostress, we employ the inf-sup condition of B
provided by (3.14), along with the first row of (2.16) and the stability bounds of F , C and A (cf. (3.4c),
(3.4b), (3.5)), which leads to

𝛽 ∥𝝈∥𝑠,div;Ω ≤ sup
0≠®v∈V

[B(®v),𝝈]
∥®v∥V

= sup
0≠®v∈V

[F , ®v] − 𝜕

𝜕𝑡
[C(®u), ®v] − [A(®u), ®v]

∥®v∥V

≤ 𝐶0

(
∥f∥0,Ω + ∥𝜕𝑡u∥0,Ω + ∥t∥𝑟−1

0,𝑟 ;Ω

)
.

Then, taking squares, integrating from 0 to 𝑡 ∈ (0, 𝑡𝐹], and (3.36), we get∫ 𝑡

0
∥𝝈(𝑠)∥2

𝑡 ,div;Ω 𝑑𝑠 ≤ 𝐶2
0

∫ 𝑡

0

(
∥f (𝑠)∥2

0,Ω + ∥𝜕𝑡u(𝑠)∥2
0,Ω + ∥t(𝑠)∥2(𝑟−1)

0,𝑟 ;Ω

)
𝑑𝑠. (3.37)

Next, to find an upper bound for the second term in (3.37), we differentiate the second equation of
(2.16) with respect to time and take (®v,𝝈) = ((𝜕𝑡u, 𝜕𝑡 t),𝝈), which implies

𝜕

𝜕𝑡
[C(®u), 𝜕𝑡 ®u] + [A(®u), 𝜕𝑡 ®u] = [F , 𝜕𝑡 ®u],

and this result, combined with the identity

[A(®u), 𝜕𝑡 ®u] =
1
2
𝜕𝑡 [A(®u), ®u] ,

and the monotonicity of A given by (3.11), yields

∥𝜕𝑡u∥2
0,Ω + 1

4
𝜕𝑡

(
𝜎∗

(
𝛿𝑟 + ∥t∥𝑟0,𝑟 ;Ω

) 𝑟−2
𝑟 ∥t∥2

0,𝑟 ;Ω

)
≤ 1

2

(
∥f∥2

0,Ω + ∥𝜕𝑡u∥2
0,Ω

)
.

Integrating from 0 to 𝑡 ∈ (0, 𝑡𝐹] and proceeding similar with derivation (3.36), we get∫ 𝑡

0
∥𝜕𝑡u(𝑠)∥2

0,Ω 𝑑𝑠 + ∥t(𝑡)∥𝑟0,𝑟 ;Ω ≤ 𝐶3

{ ∫ 𝑡

0
∥f (𝑠)∥2

0,Ω +
(
𝛿𝑟 + ∥t(0)∥𝑟0,𝑟 ;Ω

) 𝑟−2
𝑟 ∥t(0)∥2

0,𝑟 ;Ω

}
. (3.38)

Then, substituting (3.38) back into (3.37) and employing (3.36) yields∫ 𝑡

0
∥𝝈(𝑠)∥2

𝑠,div;Ω 𝑑𝑠 ≤ 𝐶4

{
∥u0∥2

0,Ω +
(
𝛿𝑟 + ∥t(0)∥𝑟0,𝑟 ;Ω

) 𝑟−2
𝑟 ∥t(0)∥2

0,𝑟 ;Ω

+
∫ 𝑡

0

(
∥f (𝑠)∥𝑟/(𝑟−1)

0,Ω + ∥f (𝑠)∥2
0,Ω

)
𝑑𝑠

}
which, combined with the estimate in (3.36) and the fact that (u(0), t(0)) = (u0, t0), where t0 = ∇u0,
implies (3.29). □
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4 The discrete setting
In this section, we present a H(div)-conforming virtual element method to approximate the mixed
problem (2.4). To this purpose, we first specify the concept of polygonal decomposition of Ω in Section
4.1. Subsequently, in Sections 4.2 and 4.3, we define a set of discrete spaces, projectors, and discrete
bilinear forms. With these foundational elements established, we proceed to propose our discrete
formulation in Section 4.5.

4.1 Polygonal decomposition and notation
We begin by considering a sequence {Ωℎ}ℎ>0 of partitions of Ω into general polygons 𝑇 , where each
polygon 𝑇 has a diameter denoted by ℎ𝑇 and a number of edges denoted by 𝑑𝑇 , respectively. As usual,
we set ℎ := max𝑇∈Ωℎ

ℎ𝑇 , and let 𝑁ed
ℎ

and 𝑁el
ℎ

be the number of edges and elements, respectively, and
n𝑇𝑒 be the unit outward normal on edge 𝑒 ⊂ 𝜕𝑇 . Also, we denote the edges of 𝜕𝑇 by 𝑒, its length by
ℎ𝑒 := |𝑒 | and the set of edges 𝑒 of Ωℎ by Γℎ. For any 𝑙 ∈ 𝑁 and any mesh object 𝜛 ∈ Ωℎ ∪ Γℎ, let
P𝑙 (𝜛), P𝑙 (𝜛), P𝑙 (𝜛) be the space of scalar, vectorial and matrix polynomials defined on 𝜛 of degree
less than or equal to 𝑙, respectively (with the extended notation P−1(𝜛) = {0}). The dimension of such
spaces, for each 𝑇 ∈ Ωℎ and 𝑒 ∈ Γℎ, are

dim
(
P𝑙 (𝑇)

)
= 𝜋el𝑙 :=

(𝑙 + 1) (𝑙 + 2)
2

, dim
(
P𝑙 (𝑇)

)
= 2 𝜋el𝑙 , dim

(
P𝑙 (𝑇)

)
= 4 𝜋el𝑙 ,

and
dim

(
P𝑙 (𝑒)

)
= 𝜋ed𝑙 := 𝑙 + 1 , dim

(
P𝑙 (𝑒)

)
= 2 𝜋ed𝑙 , dim

(
P𝑙 (𝑒)

)
= 4 𝜋ed𝑙 .

Also, for any 𝑙 ∈ 𝑁 we introduce the broken space

Pℓ (Ωℎ) :=
{
𝑣 ∈ 𝐿2(Ω) : 𝑣 |𝐸 ∈ Pℓ (𝐸), ∀ 𝐸 ∈ Ωℎ

}
.

In addition, we suppose that {Ωℎ}ℎ satisfies the following mesh-regularity assumptions:

Assumption 4.1. There exists a positive constant 𝜌 such that for any 𝑇 ∈ {Ωℎ}ℎ:

• 𝑇 is star-shaped with respect to every point of a disk with radius ≥ 𝜌ℎ𝑇 ;

• every edge 𝑒 ⊂ 𝜕𝑇 of cell 𝑇 has length ≥ 𝜌 ℎ𝑇 .

We note that the above assumptions, while generally not too restrictive in many practical scenarios,
could potentially be further relaxed by combining the current analysis with the research presented in
[11, 15, 16].

4.2 Projection operators
In this section, we follow very closely [30, Section 3.1] to introduce the polynomial projection, which is
a key ingredient in the set up of VEM. We start with introducing L1-projection operator P𝑇

ℓ
: L1(𝑇) →

Pℓ (𝑇), which satisfies the following variational problem for any function 𝑣 ∈ L1(𝑇):∫
𝑇

(
P𝑇ℓ (𝑣) − 𝑣

)
𝑞 = 0 ∀ 𝑞 ∈ Pℓ (𝑇) . (4.1)

Thanks to Assumption 4.1, the boundedness and approximation properties of 𝑃𝑇
ℓ

are stated as follows
[36, Lemma 3.1].

Lemma 4.2. Let 𝑝 > 1, and ℓ, 𝑠, 𝑚 be integers such that ℓ ≥ 0 and 0 ≤ 𝑚 ≤ 𝑠 ≤ ℓ + 1. It holds, for all
𝑣 ∈ W𝑠, 𝑝 (𝑇), and 𝑇 ∈ Ωℎ:

• 𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝑛𝑒𝑠𝑠. there exists a constant 𝑀ℓ , depending only on ℓ and 𝜌, such that there holds

|P𝑇
ℓ
(𝑣) |𝑠, 𝑝;𝑇 ≤ 𝑀ℓ |𝑣 |𝑠, 𝑝;𝑇 . (4.2)
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• 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛. there exists a constant 𝐶ℓ , depending only on ℓ and 𝜌, and hence independent
of 𝑇 , such that

|𝑣 − P𝑇
ℓ
(𝑣) |𝑚,𝑝;𝑇 ≤ 𝐶ℓ ℎ

𝑠−𝑚
𝐾

|𝑣 |𝑠, 𝑝;𝑇 . (4.3)

We remark that scaled projector 𝑃𝑇
ℓ

can be generalized for vector and tensor versions, and denoted
by P

𝑇
ℓ : L1(𝑇) → Pℓ (𝑇) and PP𝑇

ℓ
: L1(𝑇) → Pℓ (𝑇), respectively. In addition, the estimates (4.2) and

(4.3) remain valid for P𝑇
ℓ and PP𝑇

ℓ
.

Finally, for any element 𝑇 ∈ Ωℎ and functions 𝑣 ∈ L1(Ω), 𝜼 ∈ L1(Ω), 𝝉 ∈ L1(Ω), the global
projection operators Pℎ

ℓ
, Pℎ

ℓ and PPℎ
ℓ

are defined by

Pℎℓ (𝑣) |𝑇 = P𝑇ℓ (𝑣 |𝑇 ) , P
ℎ
ℓ (𝜼) |𝑇 = P

𝑇
ℓ (𝜼 |𝑇 ) and PPℎℓ (𝝉) |𝑇 = PP𝑇ℓ (𝝉 |𝑇 ) .

4.3 Discrete spaces
We now present the H(div)-conforming virtual element subspace discussed in [36]. In this regard, we
first recall the following notations:

• rot(𝝉) :=
(
𝜕𝑥1𝜏12 − 𝜕𝑥2𝜏11, 𝜕𝑥1𝜏22 − 𝜕𝑥2𝜏21

)⊤
.

• Gℓ (𝑇) := ∇Pℓ+1(𝑇) ⊂ Pℓ (𝑇).

• Pℓ (𝑇) = Gℓ (𝑇) ⊕ Gℓ (𝑇)⊥, where Gℓ (𝑇)⊥ is the 𝐿2 orthogonal of Gℓ (𝑇) in Pℓ (𝑇).

For integer 𝑘 ≥ 0, we define

X𝑇
𝑘

:=
{
𝝉 ∈ H𝑠 (div;𝑇) ∩ H(rot;𝑇) : (𝝉n𝑇𝑒 ) |𝑒 ∈ P𝑘 (𝑒) for each edge e of 𝜕𝑇

div(𝝉) ∈ P𝑘 (𝑇) and rot(𝝉) ∈ P𝑘−1(𝑇)
}
.

Next, for 𝝉 ∈ X𝑇
𝑘

, we introduce the following local degrees of freedom:

• the edge moments

D1(𝝉) :=
∫
𝑒

𝝉n𝑇𝑒 · q ∀q ∈ P𝑘 (𝑒) , (4.4a)

• the element moments of the gradient

D2(𝝉) :=
∫
𝑇

𝝉 : 𝝃 ∀ 𝝃 ∈ G𝑘−1(𝑇) , (4.4b)

• the element moments
D3(𝝉) :=

∫
𝑇

𝝉 : 𝝃 ∀ 𝝃 ∈ G𝑘 (𝑇)⊥ . (4.4c)

As shown in [18], the degrees of freedom D1-D3 given by (4.4a)-(4.4c) guarantee unisolvency for
every function in X𝑇

𝑘
, and quantities

PP𝑇𝑘 (𝝉) and div(𝝉) ∀ 𝝉 ∈ X𝑇𝑘 ,

are computable thanks to the degrees of freedom D1-D3. The global virtual element subspace of X is
defined as

Xℎ :=
{
𝝉 ∈ X : 𝝉 |𝑇 ∈ X𝑇𝑘 ∀𝑇 ∈ Ωℎ

}
.

Focusing on approximating strain rate tensor, and velocity, we use piecewise polynomial spaces as
follow

Qℎ := P𝑘 (Ωℎ) ∩ L𝑟tr(Ω) , and Yℎ = P𝑘 (Ωℎ) .
We end this section by upgrading of notations provided by (2.15) in the discrete type as

®vℎ := (uℎ, tℎ) ∈ Vℎ := Yℎ × Qℎ .
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4.4 Interpolation estimates
In order to define an interpolation operator in the local space X𝑘 (𝑇), for each element 𝑇 ∈ Ωℎ we denote
by 𝝌𝑇

𝑖
the operator associated to the 𝑖-th local degree of freedom, 𝑖 = 1, · · · , 𝑛𝑇

𝑘
. From the definition

of this space, it is easily seen that for every smooth enough function 𝝉 ∈ W1,1(𝑇) there exists a unique
operator 𝚷𝚷𝑇

𝑘
(𝝉) ∈ H𝑘 (𝑇) such that

𝝌𝑇
𝑖

(
𝝉 −𝚷𝚷𝑇

𝑘
(𝝉)

)
= 0 ∀ 𝑖 = 1, · · · , 𝑛𝑇

𝑘
. (4.5)

In addition, following the discussion of [18] (also see [36]), we have the standard interpolation
estimate

∥𝝉 −𝚷𝚷𝑇𝑘 (𝝉)∥0,𝑇  ℎ
𝑗

𝑇
|𝝉 | 𝑗 ,𝑇 ∀ 𝝉 ∈ H 𝑗 (𝑇) . (4.6)

We also recall the following commutative property

div(𝚷𝚷𝑇
𝑘
(𝝉)) = PP𝑇

𝑘
(div(𝝉)) ∀ 𝝉 ∈ W1,1(𝑇) . (4.7)

Now, from Lemma 4.2 (cf. (4.3)) and (4.7) we deduce, for each 𝝉 ∈ W1,1(𝐸) such that div(𝝉) ∈
H 𝑗 (𝑇), with 𝑗 ∈ [0, 𝑘 + 1], there holds (see, e.g., [36, eq. (3.14)])

∥div
(
𝝉 −𝚷𝚷𝑇𝑘 (𝝉)

)
∥0,𝑇  ℎ

𝑗

𝑇
|div(𝝉) | 𝑗 ,𝑇 . (4.8)

As a consequence of the local approximation properties stated by (4.6), (4.8), and Lemma 4.2, we
easily derive for each integer 𝑗 ∈ [1, 𝑘 + 1] the following global ones:

(APt
ℎ
) for any t ∈ L𝑟tr ∩W 𝑗 ,𝑟 (Ω) there hold

∥t − PPℎ𝑘 (t)∥0,𝑟 ;Ω  ℎ 𝑗 |t| 𝑗 ,𝑟 ;Ω ,

(AP𝝈
ℎ
) for any 𝝉 ∈ Xℎ ∩W 𝑗 ,𝑠 (Ω) such that div(𝝉) ∈ H 𝑗 (Ω), there hold

∥𝝉 −𝚷𝚷𝑘 (𝝉)∥𝑠,div;Ω  ℎ 𝑗
{
|𝝉 | 𝑗 ,𝑠;Ω + |div(𝝉) | 𝑗 ,Ω

}
,

(APu
ℎ
) for any v ∈ L2(Ω) ∩ H 𝑗 (Ω) there hold

∥v − P
ℎ
𝑘 (v)∥0,Ω  ℎ 𝑗 |v| 𝑗 ,Ω ,

4.5 The fully-discrete scheme
To formulate the discrete scheme for problem (2.12), we proceed by introducing computable discrete
versions of the operators involving the virtual space, as needed. In particular, we observe initially from
the definitions of the discrete spaces and the linear (and nonlinear) operators (cf. (2.13)) and functionals
(cf. (2.14)) that it is necessary to define only the discrete version of the inf-sup term. This term is
discretized by the operator B𝑇

ℎ
: Vℎ → X

′
ℎ

such that[
B𝑇ℎ (®vℎ), 𝝉ℎ

]
:= −

∫
𝑇

div(𝝉ℎ) · vℎ −
∫
𝑇

PP𝑇𝑘 𝝉ℎ : sℎ . (4.9)

In addition, as usual we define the global operator by[
Bℎ (sℎ), 𝝉ℎ

]
:=

∑︁
𝑇∈Ωℎ

[
B𝑇ℎ (sℎ), 𝝉ℎ

]
.

Finally, by discretizing in time using the backward Euler method, which include introducing a sequence
of time steps 𝑡𝑛 = 𝑛Δ𝑡, 𝑛 = 1, · · · , 𝑁 with constant step-size Δ𝑡 = 𝑡𝐹/𝑁 and denoting 𝑓 𝑛 := 𝑓 (·, 𝑡𝑛),
𝛿𝑡 𝑓

𝑛 := ( 𝑓 𝑛 − 𝑓 𝑛−1)/Δ𝑡 for a generic function 𝑓 , combined to mixed VEM with considering the above
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discrete form, we construct the following fully-discrete mixed VE scheme: Find (®u𝑛
ℎ
,𝝈𝑛

ℎ
, ) ∈ Vℎ × Xℎ,

for each 𝑛 = 1, · · · , 𝑁 , such that

[C(𝛿𝑡 ®u𝑛ℎ), ®vℎ] + [A(®u𝑛ℎ), ®vℎ] + [Bℎ (®vℎ),𝝈𝑛ℎ] = [F 𝑛, ®vℎ] ∀ ®vℎ ∈ Vℎ , (4.10a)

[Bℎ (®u𝑛ℎ), 𝝉ℎ] = 0 ∀ 𝝉ℎ ∈ Xℎ . (4.10b)

We set the initial condition by taking (®u0
ℎ
,𝝈0

ℎ
) = ((u0

ℎ
, t0
ℎ
),𝝈0

ℎ
) ∈ Vℎ × Xℎ as an appropriate approxi-

mation of (®u0 ,𝝈0) that satisfying

[A(®u0
ℎ
), ®vℎ] + [Bℎ (®vℎ),𝝈0

ℎ
] = [𝐹0, ®vℎ] ∀ ®vℎ ∈ Vℎ ,

[Bℎ (®u0
ℎ
), 𝝉ℎ] = 0 ∀ 𝝉ℎ ∈ Xℎ ,

(4.11)

with 𝐹0 ∈ L2(Ω) × {0} defined in (3.24). The purpose of this choice is to ensure that the discrete initial
datum is compatible with Lemma 3.7, in order to apply Theorem 3.1.

5 Discrete solvability analysis
In this section, we proceed similarly to Section 3 and establish the well-posedness of the fully-discrete
scheme (4.10) by employing the discrete versions of Theorems 3.1 and 3.2. In this regard, since Bℎ is
the only discrete operator in (4.10), we will first discuss the stability properties of this discrete operator.

5.1 Discrete inf-sup condition
Here, we focus on deriving the discrete inf-sup condition for Bℎ. To achieve this, we first recall the
abstract result established in [25, Lemmas 5.1 and 5.2], which will serve as an essential tool for the
aforementioned purpose.

Lemma 5.1. Let𝑈,𝑉,𝑉1, 𝑉2 and𝑊 be reflexive Banach spaces with 𝑉1 and 𝑉2 being closed subspaces
of 𝑉 such that 𝑉 = 𝑉1 ⊕ 𝑉2, and assume that the norm of 𝑉 can be redefined, equivalently, but with
constants independent of 𝑉1 and 𝑉2, as ∥𝑣∥ := ∥𝑣1∥ + ∥𝑣2∥ for any 𝑣 ∈ 𝑉 , with 𝑣𝑖 ∈ 𝑉𝑖 for 𝑖 ∈ {1, 2}. In
addition, let B : L(𝑈 ×𝑉,𝑊 ′) be a linear operator, and define the following subspaces:

𝑍 :=
{
(𝑢, 𝑣) ∈ 𝑈 ×𝑉 : [B(𝑢, 𝑣), 𝑤] = 0 ∀𝑤 ∈ 𝑊

}
, and

𝑊0 :=
{
𝑤 ∈ 𝑊 : [B(𝑢, 𝑣2), 𝑤] = 0 ∀ (𝑢, 𝑣2) ∈ 𝑈 ×𝑉2

}
.

(5.1)

The the following statements are equivalents

(𝑖) there exists positive constants 𝛽1, 𝛽2 such that

sup
0≠(𝑢,𝑣) ∈𝑈×𝑉

[B(𝑢, 𝑣), 𝑤]
∥(𝑢, 𝑣)∥ ≥ 𝛽1 ∥𝑤∥ ∀𝑤 ∈ 𝑊 ,

and
∥𝑢1∥ ≥ 𝛽2 ∥(𝑢, 𝑣2)∥ ∀ (𝑢, 𝑣) ∈ 𝑍 .

(𝑖𝑖) there exist positive constants 𝛽3, 𝛽4 such that

sup
0≠𝑤∈𝑊

[B(𝑢, 𝑣2), 𝑤]
∥𝑤∥ ≥ 𝛽3 ∥(𝑢, 𝑣2)∥ ∀ (𝑢, 𝑣2) ∈ 𝑈 ×𝑉2 , and

sup
0≠𝑣1∈𝑉1

[B(0, 𝑣1), 𝑤]
∥𝑣1∥

≥ 𝛽4 ∥𝑤∥ ∀𝑤 ∈ 𝑊0 .

(5.2)

The following lemma provides sufficient conditions for the inf-sup condition of B ∈ L(𝑈 ×𝑉2,𝑊
′)

(cf. the first row of (5.2)).

18



Lemma 5.2. In addition to the hypotheses and notations of Lemma 5.1, we introduce the subspace

𝑊1 :=
{
𝑤 ∈ 𝑊 : [B(𝑢, 0), 𝑤] = 0 ∀𝑢 ∈ 𝑈

}
,

and assume that there exist positive constants 𝛽5, 𝛽6 such that

sup
0≠𝑤∈𝑊

[B(𝑢, 0), 𝑤]
∥𝑤∥ ≥ 𝛽5 ∥𝑢∥ ∀𝑢 ∈ 𝑈 , and

sup
0≠𝑤∈𝑊1

[B(0, 𝑣2), 𝑤]
∥𝑤∥ ≥ 𝛽6 ∥𝑣2∥ ∀ 𝑣2 ∈ 𝑉2 .

(5.3)

Then, there holds the inf-sup condition given in the first row of (5.2).

Now, we are ready to utilize the two results above for establishing discrete inf-sup condition for Bℎ.
We begin with defining spaces𝑈, 𝑉 , and𝑊 in Lemmas 5.1 and 5.2 by

𝑈 := Yℎ , 𝑉 := Qℎ, and 𝑊 := Xℎ , (5.4)

and letting

Qℎ,sym :=
{
s ∈ Qℎ : s⊥ − s = 0

}
and Qℎ,skw :=

{
s ∈ Qℎ : s⊥ + s = 0

}
,

we proceed to split the space Qℎ as Qℎ = Qℎ,sym +Qℎ,skw, and realize from the orthogonality of spaces
Qℎ,sym and Qℎ,skw that for any s = ssym + sskw ∈ Qℎ, there holds

∥s∥0,𝑟 ;Ω = ∥ssym∥0,𝑟 ;Ω + ∥sskw∥0,𝑟 ;Ω,

from which, we deduce that the space 𝑉 – as well as the other spaces 𝑈 and 𝑊 given by (5.4) – satisfy
the hypotheses of Lemmas 5.1 and 5.2. In this way, considering the product spaces and setting notations

®v1 := (v, sskw) ∈ V1,ℎ := Yℎ × Qℎ,skw and

®v2 := (0, ssym) ∈ V2,ℎ := {0} × Qℎ,sym ,
(5.5)

respectively, according to Lemma 5.1, in order to establish the discrete inf-sup condition for Bℎ :
L(Vℎ,X

′
ℎ
) we need to show the discrete inf-sup conditions of Bℎ : L(V1,ℎ,X

′
ℎ
) and Bℎ : L(V2,ℎ,𝑊

′
0)

(cf. (5.2)), where𝑊0 is the kernel of Bℎ : L(V1,ℎ,X
′
ℎ
) and using (5.1), (5.4)-(5.5) redefine it as:

𝑊0 :=
{
𝝉 ∈ Xℎ : [Bℎ (®v1), 𝝉] = 0 ∀ ®v1 ∈ V1,ℎ

}
=

{
𝝉 ∈ Xℎ :

∫
Ωℎ

PP𝑟 (𝝉) : sskw = 0 and
∫
Ωℎ

v · div𝝉 = 0 ∀ ®v1 = (v, sskw) ∈ V1,ℎ

}
.

(5.6)

On the other hand, invoking Lemma 5.2 with notations given by

®v3 := (v, 0) ∈ V3,ℎ := Yℎ × {0} and ®v4 := (0, sskw) ∈ V4,ℎ := {0} × Qℎ,skw, (5.7)

we conclude that to obtain the discrete inf-sup condition Bℎ : L(V1,ℎ,X
′
ℎ
), we just need to prove inf-sup

conditions of Bℎ : L(V3,ℎ,X
′
ℎ
) and Bℎ : L(V1,ℎ,𝑊

′
1) provided by (5.3), where

𝑊1 :=
{
𝝉 ∈ Xℎ : [Bℎ (®v3), 𝝉] = 0 ∀ ®v3 = (v, 0) ∈ V3,ℎ

}
.

It follows from (5.4) and notations (5.7) that𝑊1 can be redefined as

𝑊1 =

{
𝝉 ∈ Xℎ :

∫
Ωℎ

v · div𝝉 = 0 ∀v ∈ Y
}
. (5.8)
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We note that as a consequence of div(Xℎ) ⊆ Vℎ and the orthogonality of PP𝑟 (cf. tensor version of
(4.1)) we easily deduce from (5.6) and (5.8) that

𝑊0 =

{
𝝉 ∈ Xℎ :

∫
Ωℎ

PP𝐾𝑟 𝝉 : sskw = 0 ∀ sskw ∈ Qℎ,skw , and div 𝝉 = 0 in Ω

}
,

𝑊1 =

{
𝝉 ∈ Xℎ : div 𝝉 = 0 in Ω

}
.

(5.9)

As a summation of the above discussion, to prove discrete inf-sup condition Bℎ ∈ L(Vℎ,X
′
ℎ
) it is

sufficient to obtain the inf-sup conditions Bℎ ∈ L(V3,ℎ,X
′
ℎ
), Bℎ ∈ L(V2,ℎ,𝑊

′
0) and Bℎ ∈ L(V4,ℎ,𝑊

′
1).

We begin with the following lemma establishing the first case, for which we recall preliminary result,
which recently established in [36, Lemma 4.8].

Lemma 5.3. For 𝑟 < 2, there exist a constant 𝐶sta such that

∥𝚷𝚷𝑘 (𝝉)∥0,Ω ≤ 𝐶sta ∥𝝉∥1,𝑟 ;Ω ∀𝝉 ∈ W1,𝑟 (Ω) . (5.10)

We are now in position to establish discrete inf-sup condition for Bℎ : V3,ℎ → X
′
ℎ
.

Lemma 5.4. There exists a positive constant 𝛽5,d, independent of ℎ, such that

sup
𝝉ℎ∈Xℎ

[Bℎ (vℎ, 0), 𝝉ℎ]
∥𝝉ℎ∥𝑠,div;Ω

≥ 𝛽5,ℎ ∥vℎ∥0,Ω ∀ ®v3,ℎ = (vℎ, 0) ∈ V3,ℎ , (5.11)

Proof. Due to (3.14), it is sufficient to show the existence of a Fortin operator. More precisely, we need
to construct a 𝝉ℎ ∈ Xℎ such that

[Bℎ (vℎ, 0), 𝝉ℎ] = [B(vℎ, 0), 𝝉] ∀vℎ ∈ Yℎ ,

with
∥𝝉ℎ∥𝑠,div;Ω ≤ 𝐶 ∥𝝉∥𝑠,div;Ω ,

for some constant 𝐶 > 0, independent of ℎ. To do that, we proceeds analogously to the proof of [29,
Lemma 4.4]. Given 𝝉 ∈ H𝑠0(div;Ω), we set

h𝝉 :=

{
div(𝝉) in Ω ,

0 in 𝒟 \Ω ,

where 𝒟 is an open ball containing Ω̄. Since h𝝉 ∈ L2(Ω), a well-known result on regularity of elliptic
problems implies that there exists a unique weak solution w ∈ H1

0(𝒟) ∩ H2(𝒟) of the boundary value
problem

𝚫w = h𝝉 in 𝒟 , w = 0 on 𝜕𝒟 ,

that satisfies
∥w∥2,𝒟 ≤ 𝐶 ∥h𝝉 ∥0,𝒟.

Then, setting �̂� = −∇w, implies

div(�̂�) = div(𝝉) in Ω and ∥�̂�∥1,Ω ≤ 𝐶 ∥div(𝝉)∥0,Ω . (5.12)

We can now define the Fortin operator 𝚷ℱ : H1(Ω) → Xℎ as

𝚷ℱ (𝝉) := 𝚷𝚷𝑘 (�̂�) −
( 1
2Ω|

∫
Ω

𝚷𝚷𝑘 (�̂�)
)
I ,
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where I is the identity matrix in R𝑑 . In turn, employing the estimate (5.10) given by Lemma 5.3, the
inequality from (5.12), along with the Sobolev embeddings ofL𝑠 (Ω) ↩→ L2(Ω) andH1(Ω) ↩→ W1,𝑟 (Ω),
where 1

𝑟
+ 1
𝑠
= 1, we obtain𝚷ℱ (𝝉)


0,𝑠;Ω ≤

𝚷𝚷𝑘 (�̂�)


0,𝑠;Ω ≤ |Ω| 1
𝑠
− 1

2
𝚷𝚷𝑘 (�̂�)


0,Ω

≤ |Ω| 1
𝑠
− 1

2 𝐶sta ∥�̂�∥1,𝑟 ,Ω ≤ |Ω| 1
𝑠
+ 1
𝑟
−1𝐶sta ∥�̂�∥1,Ω

= 𝐶sta ∥�̂�∥1,Ω ≤ 𝐶 ∥div(𝝉)∥0,Ω.

(5.13)

On the other hand, an application of identities (4.7) and (5.12) gives

div
(
𝚷ℱ (𝝉)

)
= div

(
𝚷𝚷𝑘 (�̂�)

)
= P𝑘

(
div(�̂�)

)
= P𝑘

(
div(𝝉)

)
, (5.14)

which thanks to (4.2) also givesdiv
(
𝚷ℱ (𝝉)

)
0,Ω ≤ 𝑀𝑘 ∥div(𝝉)∥0,Ω . (5.15)

Now, taking square in (5.13) and (5.15), then adding two resulting inequalities, we arrive at

∥𝚷ℱ (𝝉)∥𝑠,div;Ω ≤
(
𝐶 + 𝑀𝑘

)
∥𝝉∥𝑠,div;Ω . (5.16)

Finally, from (5.14) and (5.16), we find

sup
𝝉ℎ∈Xℎ

[Bℎ (vℎ, 0), 𝝉ℎ]
∥𝝉ℎ∥𝑠,div;Ω

≥ sup
𝝉∈X

[Bℎ (vℎ, 0),𝚷ℱ (𝝉)]
∥𝚷ℱ (𝝉)∥𝑠,div;Ω

≥ sup
𝝉∈X

1
𝐶 + 𝑀𝑘

∫
Ω

P𝑘

(
div(𝝉)

)
· vℎ

∥𝝉∥𝑠,div;Ω
= sup

𝝉∈X

1
𝐶 + 𝑀𝑘

[B(vℎ, 0), 𝝉]
∥𝝉∥𝑠,div;Ω

,

which gives (5.11) with 𝛽5,d := 𝛽/
(
𝐶 + 𝑀𝑘

)
. □

We are now in position of establishing the next result, that is, the discrete inf-sup condition of
Bℎ ∈ L(V2,ℎ,𝑊

′
0), where V2,ℎ and 𝑊 ′

0 are given by the first and second rows of (5.5) and (5.9),
respectively.

Lemma 5.5. There exists a positive constant 𝛽4,d, independent of ℎ, such that

sup
0≠sℎ,sym∈Qℎ,sym

[Bℎ (0, sℎ,sym), 𝝉ℎ]
∥sℎ,sym∥0,𝑟 ;Ω

≥ 𝛽4,d ∥𝝉ℎ∥𝑠,div;Ω ∀ 𝝉ℎ ∈ 𝑊0 . (5.17)

Proof. First, we observe from the first identity given in (5.9), that is div(𝝉ℎ) = 0 in Ωℎ, implies the
existence function 𝝓 ∈ H1(𝑇) for each 𝑇 ∈ Ωℎ, such that there holds

𝝉ℎ = curl(𝝓) in 𝑇 .

In turn, applying the operator rot to the above equation we find that

rot(𝝉ℎ) = rot(curl(𝝓)) = Δ𝝓 in 𝑇 . (5.18)

Consequently, noting that 𝝉ℎ ∈ X𝑘 (𝑇), so necessarily rot(𝝉ℎ) ∈ P𝑘−1(𝑇) which implies that Δ𝝓 ∈
P𝑘−1(𝑇). On the other hand, by recalling from [7, third proposition of eq. (2.10)] that the rotation
operator rot is an isomorphism from G⊥

𝑟 to the whole P𝑘−1, where

G𝑟 =

{
z𝑘 := ∇(𝑣𝑘+1) with 𝑣𝑘+1 ∈ P𝑘+1

}
, P𝑘 = G𝑘 ⊕ G⊥

𝑘 .
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Then, for given Δ𝝓 ∈ P𝑘−1(𝐾) there exists a unique z𝑘 ∈ G⊥
𝑘

such that

rot(z𝑘) = Δ𝝓 in 𝑇 . (5.19)

Therefore, from (5.18) and (5.19) we deduce that 𝝉ℎ ∈ P𝑘 (𝑇). This result combined with the first
equation given in (5.9), that is

∫
Ωℎ

𝝉d
ℎ

: sℎ,skw = 0, allow us set s̃ℎ,sym := |𝝉d
ℎ
|𝑠−2𝝉d

ℎ
. It is easy to see that

∥̃sℎ,sym∥𝑟0,𝑟 ;Ω = ∥𝝉dℎ∥
𝑠
0,𝑠;Ω , tr (̃s) = |𝝉dℎ |

𝑠−2tr(𝝉dℎ) = 0 and (̃sℎ,sym)⊥ = s̃ℎ,sym ,

which says that s̃ℎ,sym ∈ Qℎ,sym, and additionally there holds∫
Ω

𝝉ℎ : s̃ℎ,sym = ∥𝝉dℎ∥
𝑠
0,𝑠 = ∥𝝉dℎ∥0,𝑠;Ω ∥̃sℎ,sym∥0,𝑟 ;Ω . (5.20)

Then, bounding from below the supremum in (5.17) with s̃ℎ,sym, and employing (5.20), we obtain

sup
0≠sℎ,sym∈Qℎ,sym

[Bℎ (0, sℎ,sym), 𝝉ℎ]
∥sℎ,sym∥0,𝑟 ;Ω

≥

∫
Ω

s̃ℎ,sym : 𝝉ℎ

∥̃sℎ,sym∥0,𝑟 ;Ω
= ∥𝝉d

ℎ
∥0,𝑠;Ω ,

from which, using (3.18) and the fact that div(𝝉) = 0, it follows (5.17) with 𝛽4,d = 𝑐Ω. □

The following result, which is a slight modification of the proof of [39, Lemma 5.6], state the discrete
inf-sup condition for Bℎ ∈ L(V4,ℎ,𝑊

′
1), where V4,ℎ and𝑊1 are given by (5.7) and (5.9), respectively.

Lemma 5.6. There exists a constant 𝛽3,d such that

sup
𝝉ℎ∈𝑊1

[Bℎ (0, sℎ,skw), 𝝉ℎ]
∥𝝉ℎ∥𝑠,div;Ω

≥ 𝛽3,d ∥sℎ,skw∥0,𝑟 ;Ω ∀ ®v4,ℎ = (0, sℎ,skw) ∈ V4,ℎ .

Proof. It reduces to a minor variation of the proof of [39, Lemma 5.6]. □

We are now in position to establish the main result of this section. More precisely, we have the
following lemma.

Lemma 5.7. Let Kℎ be the kernel of Bℎ, that is,

Kℎ :=
{
𝝉ℎ ∈ Xℎ : [Bℎ (®vℎ), 𝝉ℎ] = 0 ∀ ®vℎ ∈ Vℎ

}
.

Then there exist positive constants 𝛽1,d, 𝛽2,d, independent of ℎ, satisfying

sup
0≠®v∈Vℎ

[Bℎ (®vℎ), 𝝉ℎ]
∥®vℎ∥

≥ 𝛽1,d ∥𝝉ℎ∥𝑠,div;Ω ∀ 𝝉ℎ ∈ Xℎ , (5.21a)

and
∥sℎ,sym∥0,𝑟 ;Ω ≥ 𝛽2,d ∥(vℎ, sℎ,skw)∥V ∀ ®vℎ ∈ Kℎ . (5.21b)

Proof. It is a direct consequence of Lemmas 5.1-5.6. □

5.2 The main result
We begin by observing from (5.21a) that discrete operator Bℎ verifies the hypothesis 𝑖𝑣) of Theorem
3.2. In addition, the Lipschitz-continuity of C + A (cf. Lemma 3.3), is also valid on Vℎ × Xℎ, which
means that, with the same constant 𝐿nN, there hold(C+A

)
(®uℎ)−

(
C+A

)
(®vℎ)

 ≤ 𝐿nN

{
∥uℎ−vℎ∥0,Ω+

(
∥tℎ∥0,𝑟 ;Ω + ∥sℎ∥0,𝑟 ;Ω

)𝑟−2 ∥tℎ−sℎ∥0,𝑟 ;Ω

}
, (5.22)

for all ®uℎ, ®vℎ ∈ Vℎ.
Next, we address the discrete counterpart of Lemma 3.4.
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Lemma 5.8. Let 𝑟 < 2 and Kℎ be defined as in Lemma 5.7. The family of operators
{
(C +A)(· + ®zℎ) :

Kℎ → K′
ℎ

: ®zℎ ∈ Vℎ
}

is uniformly strictly monotone, i.e., there exists 𝛼nN,d, independent of ℎ, such
that

[(C + A)(®uℎ + ®zℎ) − (C + A)(®vℎ + ®zℎ), ®uℎ − ®vℎ]

≥ 𝛼nN,d

{
∥uℎ − vℎ∥2

0,Ω +
(
𝛿𝑟 + ∥tℎ∥𝑟0,𝑟 ;Ω + ∥sℎ∥𝑟0,𝑟 ;Ω

) 𝑟−2
𝑟 ∥tℎ − sℎ∥2

0,𝑟 ;Ω

}
,

(5.23)

for all ®zℎ = (zℎ, rℎ) ∈ Vℎ and ®uℎ = (uℎ, tℎ), ®vℎ = (vℎ, sℎ) ∈ Kℎ.

Proof. Let ®zℎ = (zℎ, rℎ) ∈ Vℎ and ®uℎ = (uℎ, tℎ), ®vℎ = (vℎ, sℎ) ∈ Kℎ. Similar to derivation of (3.12) in
Lemma 3.4, we have

[(C + A)(®uℎ + ®zℎ) − (C + A)(®vℎ + ®zℎ), ®uℎ − ®vℎ]

≥ ∥uℎ − vℎ∥2
0,Ω +

(
|Ω|𝛿𝑟 + ∥tℎ,sym∥𝑟0,𝑟 ;Ω + ∥sℎ,sym∥𝑟0,𝑟 ;Ω

) 𝑟−2
𝑟

𝜎∗ ∥tℎ,sym − sℎ,sym∥2
0,𝑟 ;Ω .

(5.24)

To find the lower bound of the second term, we first use the fact that 𝑟 < 2 to conclude that(
|Ω|𝛿𝑟 + ∥tℎ,sym∥𝑟0,𝑟 ;Ω + ∥sℎ,sym∥𝑟0,𝑟 ;Ω

) 𝑟−2
𝑟 ≤

(
|Ω|𝛿𝑟 + ∥tℎ∥𝑟0,𝑟 ;Ω + ∥sℎ∥𝑟0,𝑟 ;Ω

) 𝑟−2
𝑟

, (5.25)

and then apply inequality (5.21b) to arrive at

𝜎∗ ∥tℎ,sym − sℎ,sym∥2
0,𝑟 ;Ω ≥ 𝜎∗

2
∥tℎ,sym − sℎ,sym∥2

0,𝑟 ;Ω

+ 𝜎∗

2
𝛽2

2,d

(
∥tℎ,skw − tℎ,skw∥2

0,𝑟 ;Ω + ∥uℎ − vℎ∥2
0,Ω

)
≥ 𝜎∗

2
min

{
1, 𝛽2

2,d
}
∥®uℎ − ®vℎ∥2 .

(5.26)

Therefore, replacing back (5.25) and (5.26) into (5.24) implies (5.23) with the specification 𝛼nN,d :=

min
{
1,
𝜎∗

2
min

{
1, 𝛽2

2,d
}}

, thus completing the proof. □

We are now ready to provide the fully discrete counterpart of Theorems 3.8 and 3.9.

Theorem 5.9. Let 𝑟 < 2. For every f𝑛 ∈ L2(Ω), for 𝑛 = 1, · · · , 𝑁 and each (®u0
ℎ
,𝝈0

ℎ
) = ((uℎ,0, tℎ,0),𝝈ℎ,0)

satisfying (4.11), there exists a unique solution (®u𝑛
ℎ
,𝝈𝑛

ℎ
) = ((u𝑛

ℎ
, t𝑛
ℎ
),𝝈𝑛

ℎ
) ∈ Vℎ × Xℎ to the virtual

scheme (4.10). Moreover, under a suitable extra regularity assumption on the data, there exists a
constant Cd.stab, independent of ℎ, such that

∥uℎ∥2
𝐿∞ (J;Y) + ∥tℎ∥2

𝐿∞ (J;Q) + Δ𝑡

𝑛∑︁
𝑚=1

∥u𝑚ℎ ∥
2
0,Ω + Δ𝑡

𝑛∑︁
𝑚=1

∥t𝑚ℎ ∥
𝑟
0,𝑟 ;Ω + Δ𝑡

𝑛∑︁
𝑚=1

∥𝝈𝑚ℎ ∥
2
𝑠,div;Ω

≤ Cd.stab
{
∥uℎ,0∥H1 (Ω) + Δ𝑡

∑𝑛
𝑚=1

(
∥f𝑚∥𝑟/(𝑟−1)

0,Ω + ∥f𝑚∥2
0,Ω

)}
:= Ndis(f𝑛, u0).

(5.27)

Proof. The well-posedness of the fully discrete scheme (4.10) at every time step, for 𝑛 = 1, · · · , 𝑁 , can
be established using arguments analogue to those in the proof of Lemma 3.6. Furthermore, to prove the
second part, we start by taking (®vℎ, 𝝉ℎ) = (®u𝑛

ℎ
,𝝈𝑛

ℎ
) in (4.10), using the identity∫

Ω

𝛿𝑡u𝑛ℎ · u𝑛ℎ =
1
2
𝛿𝑡 ∥u𝑛ℎ∥

2
0,Ω + 1

2
Δ𝑡∥𝛿𝑡u𝑛ℎ∥

2
0,Ω ,

and the discrete strict monotonicity of A ((5.23)), to obtain

1
2
𝛿𝑡 ∥u𝑛ℎ∥

2
0,Ω + 1

2
Δ𝑡∥𝛿𝑡u𝑛ℎ∥

2
0,Ω + 𝛼nN,d

(
𝛿𝑟 + ∥t𝑛ℎ∥

𝑟
0,𝑟 ;Ω

) 𝑟−2
𝑟 ∥t𝑛ℎ∥

2
0,𝑟 ;Ω ≤ ∥f𝑛∥0,Ω∥u𝑛ℎ∥0,Ω . (5.28)
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Similar to the proof of Theorem 3.9, if ∥t𝑛
ℎ
∥0,𝑟 ;Ω ≥ 𝛿 occurs, we conclude from (5.28) that

1
2
𝛿𝑡 ∥u𝑛ℎ∥

2
0,Ω + 1

2
Δ𝑡∥𝛿𝑡u𝑛ℎ∥

2
0,Ω + 𝛼nN 2(𝑟−2)/𝑟 ∥t𝑛ℎ∥

𝑟
0,𝑟 ;Ω ≤ ∥f𝑛∥0,Ω∥u𝑛ℎ∥0,Ω . (5.29)

In turn, an application of (5.21b) implies

1
2
𝛼nN 2(𝑟−2)/𝑟 ∥t𝑛ℎ∥

𝑟
0,𝑟 ;Ω ≥ 1

2
𝛼nN 2(𝑟−2)/𝑟 ∥t𝑛ℎ,sym∥

𝑟
0,𝑟 ;Ω ≥ 1

2
𝛼nN 2(𝑟−2)/𝑟 𝛽𝑟2,d ∥u𝑛ℎ∥

𝑟
0,Ω ,

which, combined with (5.29) and employ the Young inequality (3.33) gives

1
2
𝛿𝑡 ∥u𝑛

ℎ
∥2

0,Ω + 1
2
Δ𝑡∥𝛿𝑡u𝑛ℎ∥

2
0,Ω

+ 1
2
𝛼nN 2(𝑟−2)/𝑟

(
∥t𝑛
ℎ
∥𝑟0,𝑟 ;Ω + 𝛽𝑟2,d ∥u𝑛

ℎ
∥𝑟0,Ω

)
≤ 𝛼1

𝑟
∥u𝑛
ℎ
∥𝑟0,Ω + 𝐶 (𝛼1)∥f𝑛∥𝑟/(𝑟−1)

0,Ω .

(5.30)

Now, by the suitable choosing 𝛼1 in (5.30), summing up over the time index 𝑛 = 1, · · · , 𝑚, with
𝑚 = 1, · · · , 𝑁 , and multiplying by Δ𝑡, we get

∥u𝑚
ℎ
∥2

0,Ω + (Δ𝑡)2
𝑚∑︁
𝑛=1

∥𝛿𝑡u𝑛ℎ∥
2
0,Ω +

𝑚∑︁
𝑛=1

Δ𝑡

(
∥t𝑛ℎ∥

𝑟
0,𝑟 ;Ω + ∥u𝑛ℎ∥

𝑟
0,Ω

)
≤ 𝐶1

(
∥u0
ℎ
∥2

0,Ω +
𝑚∑︁
𝑛=1

∥f𝑛∥𝑟/(𝑟−1)
0,Ω

)
.

(5.31)

Whereas in the case ∥t𝑛
ℎ
∥0,𝑟 ;Ω < 𝛿, by proceeding analogously, one can deduce that

∥u𝑚ℎ ∥
2
0,Ω + (Δ𝑡)2

𝑚∑︁
𝑛=1

∥𝛿𝑡u𝑛ℎ∥
2
0,Ω +

𝑚∑︁
𝑛=1

Δ𝑡

(
∥t𝑛ℎ∥

2
0,𝑟 ;Ω + ∥u𝑛ℎ∥

2
0,Ω

)
≤ 𝐶2

(
∥u0
ℎ∥

2
0,Ω +

𝑚∑︁
𝑛=1

∥f𝑛∥2
0,Ω

)
.

Therefore, from (5.31) and (5.25), and the fact that 𝑟 < 2 we infer that

∥u𝑚
ℎ
∥2

0,Ω + (Δ𝑡)2
𝑚∑︁
𝑛=1

∥𝛿𝑡u𝑛ℎ∥
2
0,Ω +

𝑚∑︁
𝑛=1

Δ𝑡

(
∥t𝑛ℎ∥

𝑟
0,𝑟 ;Ω + ∥u𝑛ℎ∥

𝑟
0,Ω

)
≤ 𝐶

(
∥u0
ℎ
∥2

0,Ω +
𝑚∑︁
𝑛=1

(
∥f𝑛∥𝑟/(𝑟−1)

0,Ω + ∥f𝑛∥2
0,Ω

))
.

(5.32)

On the other hand, employing the discrete inf-sup condition of Bℎ (cf. (5.21a)) and the first row of
(4.10), we conclude that

∥𝝈𝑛ℎ∥
2
𝑠,div;Ω ≤ 𝐶

{
∥f𝑛∥2

0,Ω + ∥𝛿𝑡u𝑛ℎ∥
2
0,Ω + ∥t𝑛ℎ∥

2(𝑟−1)
0,𝑟 ;Ω

}
, (5.33)

In turn, using Young’s inequality (cf. (3.33)) and fact that 𝑟 − 1 < 1, we readily obtain

∥t𝑛ℎ∥
2(𝑟−1)
0,𝑟 ;Ω ≤ 𝑟 − 1

𝑟
∥t𝑛ℎ∥

𝑟
0,𝑟 ;Ω + 1

𝑟
∥t𝑛ℎ∥

𝑟 (𝑟−1)
0,𝑟 ;Ω ≤ ∥t𝑛ℎ∥

𝑟
0,𝑟 ;Ω,

which, combined with (5.33), and then summing over 𝑛 and employing (5.32), yields

Δ𝑡

𝑚∑︁
𝑛=1

∥𝝈𝑛ℎ∥
2
𝑠,div;Ω ≤ 𝐶Δ𝑡

{ 𝑚∑︁
𝑛=1

∥f𝑛∥2
0,Ω +

𝑚∑︁
𝑛=1

∥𝛿𝑡u𝑛ℎ∥
2
0,Ω +

𝑚∑︁
𝑛=1

∥t𝑛ℎ∥
𝑟
0,𝑟 ;Ω

}
≤ 𝐶

{
Δ𝑡

𝑚∑︁
𝑛=1

∥𝛿𝑡u𝑛ℎ∥
2
0,Ω + ∥u0

ℎ∥
2
0,Ω + Δ𝑡

𝑚∑︁
𝑛=1

(
∥f𝑛∥𝑟/(𝑟−1)

0,Ω + ∥f𝑛∥2
0,Ω

)}
.

(5.34)
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Next, in order to bound the first term in (5.34), we choose (®vℎ, 𝝉ℎ) = ((𝛿𝑡u𝑛ℎ, 𝛿𝑡 t
𝑛
ℎ
),𝝈𝑛

ℎ
) in (4.10),

perform some algebraic manipulations, and use the Cauchy–Schwarz inequality to obtain

∥𝛿𝑡u𝑛ℎ∥
2
0,Ω +

𝛼nN,d

2
𝛿𝑡

( (
𝛿𝑟 + ∥t𝑛ℎ∥

𝑟
0,𝑟 ;Ω)

(𝑟−2)/𝑟 ∥t𝑛ℎ∥
2
0,𝑟 ;Ω

)
≤ 1

2

(
∥f𝑛∥2

0,Ω + ∥𝛿𝑡u𝑛ℎ∥
2
0,Ω

)
.

Therefore, by summing over the time index 𝑛 = 1, · · · , 𝑚 with 𝑚 = 1, · · · , 𝑁 and multiplying by Δ𝑡, we
obtain

Δ𝑡

𝑚∑︁
𝑛=1

∥𝛿𝑡u𝑛ℎ∥
2
0,Ω + ∥t𝑛ℎ∥

𝑟
0,𝑟 ;Ω ≤ 𝐶

( (
𝛿𝑟 + ∥t0

ℎ∥
𝑟
0,𝑟 ;Ω)

(𝑟−2)/𝑟 ∥t0
ℎ∥

2
0,𝑟 ;Ω + Δ𝑡

𝑚∑︁
𝑛=1

∥f𝑛∥2
0,Ω

)
.

Combining this with (5.34), the fact that t0
ℎ
= tℎ,0, and (5.32), leads to the desired result (5.27). □

6 A priori error analysis
In this section, we now focus on proving an optimal a priori error estimates for ®u, 𝝈 in the norms V and
H𝑠 (div;Ω), respectively. To this end, given the Sobolev exponent 𝑟 ∈ (1, 2] and 𝑎 > 0, we define the
convex function 𝜑𝑎 by

𝜑𝑎 (𝑡) :=
∫ 𝑡

0

(
𝑎 + 𝑠

)𝑟−2
𝑠 𝑑𝑠 .

The following Lemma provides important properties of the shifted function 𝜑𝑎.

Lemma 6.1. (Young-type inequality). For all 𝜖 > 0 there exists 𝐶 (𝜖) > 0 only depending on 𝑟 and 𝛿
such that for all 𝑠, 𝑡, 𝑎, 𝛿 ≥ 0 there holds

𝑠𝜑
′
𝑎 (𝑡) + 𝑡𝜑

′
𝑎 (𝑠) ≤ 𝜖𝜑𝑎 (𝑠) + 𝐶 (𝜖)𝜑𝑎 (𝑡) . (6.1)

Proof. See [26, Lemmata 28-32]. □

The following result, which demonstrates the equivalence of various quantities, is closely connected
to the continuity and monotonicity assumptions outlined in Assumption 2.1.

Lemma 6.2. Let 𝝈 satisfy (2.5) and (2.6) for 𝑟 ∈ (1, 2] and 𝛿 ≥ 0. Then, uniformly for all 𝝉, 𝜼 ∈ R𝑑×𝑑

there hold ��𝝈d(𝝉) − 𝝈d(𝜼)
��  (

𝛿 + |𝝉 | + |𝜼 |
)𝑟−2 |𝝉 − 𝜼 | ≃ 𝜑

′

𝛿+|𝝉 |
(
|𝝉 − 𝜼 |

)
, (6.2a)(

𝝈d(𝝉) − 𝝈d(𝜼)
)

: (𝝉 − 𝜼) 
(
𝛿 + |𝝉 | + |𝜼 |

)𝑟−2 |𝝉 − 𝜼 |2 ≃ 𝜑𝛿+|𝝉 | (
��𝝉 − 𝜼

��) . (6.2b)

Proof. See [41, Section 2.3]. □

We continue the analysis with defining

e𝑛t := t𝑛 − t𝑛ℎ , e𝑛𝝈 := 𝝈𝑛 − 𝝈𝑛ℎ , and e𝑛u := u𝑛 − u𝑛ℎ ,

and write the above errors as follows

e𝑛t :=
(
t𝑛 − PPℎ𝑘 (t

𝑛)
)
+

(
PPℎ𝑘 (t

𝑛) − t𝑛ℎ
)
=: 𝝑𝑛t + 𝜽𝑛t ,

e𝑛𝝈 :=
(
𝝈𝑛 −𝚷𝚷ℎ (𝝈𝑛)

)
+

(
𝚷𝚷ℎ (𝝈𝑛) − 𝝈𝑛ℎ

)
=: 𝝑𝑛𝝈 + 𝜽𝑛𝝈 ,

e𝑛u :=
(
u𝑛 − P

ℎ
𝑘 (u

𝑛)
)
+

(
P
ℎ
𝑘 (u

𝑛) − ®u𝑛ℎ
)
=: 𝝑𝑛u + 𝜽𝑛u ,
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where 𝝑𝑛t , 𝝑𝑛𝝈 and 𝝑𝑛u are estimated according to properties (APt
ℎ
), (AP𝝈

ℎ
) and (APu

ℎ
), respectively.

Next, we proceed to estimate 𝜽𝑛t , 𝜽𝑛𝝈 and 𝜽𝑛u . By making use of the definition of Bℎ (cf. (4.9)),
commuting diagram property given by (4.7) and the identity (4.5), we get

[Bℎ (®vℎ),𝚷𝚷ℎ
𝑘𝝈] = −

∫
Ωℎ

div(𝚷𝚷ℎ
𝑘𝝈) · vℎ −

∫
Ωℎ

PPℎ𝑘 (𝚷𝚷
ℎ
𝑘𝝈) : sℎ

= −
∫
Ωℎ

PPℎ𝑘 (div(𝝈)) · vℎ −
∫
Ωℎ

𝚷𝚷ℎ
𝑘𝝈 : PPℎ𝑘 sℎ

= −
∫
Ωℎ

div(𝝈) · vℎ −
∫
Ωℎ

𝝈 : PPℎ𝑘 sℎ

= [B(®vℎ),𝝈] .

(6.3)

On the other hand, a straightforward application of the discrete and continuous problems (4.10) and
(2.12), along with identities (6.3), (3.21) gives

𝛿𝑡 [C(𝜽𝑛®u), ®vℎ] + [
(
A(®u𝑛ℎ) − A(Pℎ

𝑘
®u𝑛)

)
, ®vℎ] + [Bℎ (®vℎ), 𝜽𝑛𝝈]

= −
∫
Ω

(𝜕𝑡u𝑛 − 𝛿𝑡u𝑛) · vℎ − 𝛿𝑡 [C(𝝑𝑛®u), ®vℎ] + [
(
A(®u𝑛) − A(Pℎ

𝑘
®u𝑛)

)
, ®vℎ] , (6.4a)

[Bℎ (𝜽𝑛®u), 𝝉ℎ] = 0 . (6.4b)

Consequently, thanks to (6.4) we are in position to establish the rates of convergence.

Theorem 6.3. Let (t,𝝈, ®u) ∈ L2
tr(Ω) × H𝑠0,Γ𝑁

(div;Ω) × V and (tℎ,𝝈ℎ, ®uℎ) ∈ Qℎ × Xℎ × Vℎ be the
unique solutions of (2.12) and (4.10), respectively, whose existences are guaranteed by Theorems 3.9
and 5.9, respectively. Furthermore, given an integer 𝑘 ≥ 0, assume that there exist 𝑗 ∈ [0, 𝑘 + 1] and
𝑙 ∈ [1, 𝑘 + 1] such that t ∈ W 𝑗 ,𝑟 (Ω), 𝝈 ∈ W𝑙,𝑠 (Ω), div(𝝈) ∈ H𝑙 (Ω), u ∈ H 𝑗 (Ω). Then, there exists a
positive constant Copt, independent of ℎ, such that

∥𝜽𝑛u ∥2
0,Ω + Δ𝑡

𝑚∑︁
𝑛=1

(
∥𝜽𝑛t ∥2

0,𝑟 ;Ω + ∥𝜽𝑛u ∥2
0,Ω + ∥𝜽𝑛𝝈 ∥2

𝑠,div;Ω
)
≤ Copt

(
Δ𝑡2 + ℎmin{ 𝑗 ,𝑙}𝑟

)
. (6.5)

Proof. We begin by considering (®vℎ, 𝝉ℎ) := ((𝜽𝑛u , 𝜽𝑛t ), 𝜽𝑛𝝈) ∈ Vℎ × Xℎ, and adding two resulting
equations to arrive at

1
2
𝛿𝑡 ∥𝜽𝑛u ∥2

0,Ω + [
(
A(®u𝑛ℎ) − A(Pℎ

𝑘
®u𝑛)

)
, 𝜽𝑛®u]

≤
��� ∫

Ω

(𝜕𝑡u𝑛 − 𝛿𝑡u𝑛) · 𝜽𝑛u − 𝛿𝑡 [C(𝝑𝑛®u), 𝜽
𝑛
®u]

��� + ��[ (A(®u𝑛) − A(Pℎ
𝑘
®u𝑛)

)
, 𝜽𝑛®u]

��
=:

3∑︁
𝑖=1

𝐸𝑖 .

(6.6)

We now aim to bound each one of the terms appearing on the right-side of (6.6). The first and
second terms can be estimated exactly as for standard finite elements, see for instance [48]:��𝐸1

�� = ���� ∫
Ω

(𝜕𝑡u𝑛 − 𝛿𝑡u𝑛) · 𝜽𝑛u
���� ≤ 𝜕𝑡u𝑛 − 𝛿𝑡u𝑛0,Ω

𝜽𝑛u0,Ω

≤
(∫ 𝑡𝑛

𝑡𝑛−1

∥𝜕𝑡𝑡u(𝑠)∥0,Ω 𝑑𝑠

) 𝜽𝑛u0,Ω ≤ Δ𝑡1/2
(∫ 𝑡𝑛

𝑡𝑛−1

∥𝜕𝑡𝑡u(𝑠)∥2
0,Ω 𝑑𝑠

)1/2 𝜽𝑛u0,Ω ,

and ��𝐸2
�� = ��𝛿𝑡 [C(𝝑𝑛®u), 𝜽𝑛®u]�� ≤ ∥𝛿𝑡𝝑𝑛u ∥0,Ω ∥𝜽𝑛u ∥0,Ω

≤ 1
Δ𝑡

 ∫ 𝑡𝑛

𝑡𝑛−1

𝜕𝑠𝝑u(𝑠) 𝑑𝑠


0,Ω
∥𝜽𝑛u ∥0,Ω ≤ Δ𝑡−1/2∥𝜕𝑡𝝑u∥𝐿2 (J𝑛 ,L2 (Ω) ) ∥𝜽𝑛u ∥0,Ω .
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In addition, by employing the definition of A given by (2.17a) and inequalities (6.1), (6.2a), and (6.2b)
with 𝛿 = 0, we easily obtain��𝐸3

�� ≤ ∫
Ω

���𝜇 ( (
𝛿𝛼 + |t𝑛sym |𝛼

) 𝑟−2
𝛼 t𝑛sym −

(
𝛿𝛼 + |PPℎ𝑘 t𝑛sym |𝛼

) 𝑟−2
𝛼 PPℎ𝑘 t𝑛sym

) ��� ��𝜽𝑛t ��


∫
Ω

𝜑
′

| PPℎ
𝑘

t𝑛sym |
(��PPℎ𝑘 t𝑛sym − t𝑛sym

��) ��𝜽𝑛t ��
 𝜖

∫
Ω

𝜑 | PPℎ
𝑘

t𝑛sym | (𝜽
𝑛
t ) + 𝐶 (𝜖)

∫
Ω

𝜑 | PPℎ
𝑘

t𝑛sym |
(��PPℎ𝑘 t𝑛sym − t𝑛sym

��)
 𝜖

(
𝝈d(t𝑛ℎ,sym) − 𝝈d(PPℎ𝑘 t𝑛sym) , 𝜽𝑛t

)
0,Ω + 𝐶 (𝜖)

∫
Ω

(
|PPℎ𝑘 t𝑛sym | + |t𝑛sym |

)𝑟−2��PPℎ𝑘 t𝑛sym − t𝑛sym
��2

 𝜖 [
(
A(®u𝑛ℎ) − A(Pℎ

𝑘
®u𝑛)

)
, 𝜽𝑛®u] + 𝐶 (𝜖) ∥𝝑𝑛t,sym∥𝑟0,𝑟 ;Ω ,

(6.7)

where the fact
(
|PPℎ

𝑘
t𝑛sym | + |t𝑛sym |

)𝑟−2 ≤
��PPℎ
𝑘

t𝑛sym − t𝑛sym
��𝑟−2, for 𝑟 < 2, was used in the last step.

Consequently, considering 𝜖 = 1
2 in (6.7), and then replacing the estimates from (6.7) up to (3.22)

back into (6.6), implies that

1
2
𝛿𝑡 ∥𝜽𝑛u ∥2

0,Ω + 1
2
[
(
A(®u𝑛ℎ) − A(Pℎ

𝑘
®u𝑛)

)
, 𝜽𝑛®u]

≤ 𝐶 ∥𝝑t∥𝑟0,𝑟 ;Ω +
(
Δ𝑡1/2∥𝜕𝑡𝑡u∥𝐿2 (J𝑛;Y) + Δ𝑡−1/2∥𝜕𝑡𝝑u∥𝐿2 (J𝑛;Y)

)
∥𝜽𝑛u ∥0,Ω .

(6.8)

Now, to derive a lower bound for the second term on the right-hand side of (6.8), we employ the
monotonicity of A (cf. (5.23)) and triangle inequality, which yields

[
(
A(®u𝑛ℎ) − A(Pℎ

𝑘
®u𝑛)

)
, 𝜽𝑛®u] ≥ 𝛼nN,d

(
∥tℎ∥𝑟0,𝑟 ;Ω + ∥PPℎ𝑘 t𝑛∥𝑟0,𝑟 ;Ω

) (𝑟−2)/𝑟 ∥𝜽𝑛t ∥2
0,𝑟 ;Ω

≥ 𝛼nN,d
(
∥t𝑛ℎ∥

𝑟
0,𝑟 ;Ω + ∥t𝑛∥𝑟0,𝑟 ;Ω + ∥t𝑛 − PPℎ𝑘 t𝑛∥𝑟0,𝑟 ;Ω

) (𝑟−2)/𝑟 ∥𝜽𝑛t ∥2
0,𝑟 ;Ω

≥ 𝛼nN,d
(
∥t𝑛ℎ∥

𝑟
0,𝑟 ;Ω + ∥t𝑛∥𝑟0,𝑟 ;Ω

) (𝑟−2)/𝑟 ∥𝜽𝑛t ∥2
0,𝑟 ;Ω .

(6.9)

Substituting back into (6.8), gives

1
2
𝛿𝑡 ∥𝜽𝑛u ∥2

0,Ω + 1
2
𝛼nN,d

(
∥t𝑛ℎ∥

𝑟
0,𝑟 ;Ω + ∥t𝑛∥𝑟0,𝑟 ;Ω

) (𝑟−2)/𝑟 ∥𝜽𝑛t ∥2
0,𝑟 ;Ω

≤ 𝐶 ∥𝝑t∥𝑟0,𝑟 ;Ω +
(
Δ𝑡1/2∥𝜕𝑡𝑡u∥𝐿2 (J𝑛;Y) + Δ𝑡−1/2∥𝜕𝑡𝝑u∥𝐿2 (J𝑛;Y)

)
∥𝜽𝑛u ∥0,Ω .

(6.10)

In turn, from (5.21b) we have

1
2
∥𝜽𝑛t ∥2

0,𝑟 ;Ω ≥ 1
2
∥𝜽𝑛t,sym∥2

0,𝑟 ;Ω ≥ 1
2
𝛽2

2,d∥𝜽
𝑛
u ∥2

0,Ω,

which combined with (6.10), then summing up over the time index 𝑛 = 1, · · · , 𝑚, with 𝑚 = 1, · · · , 𝑁 ,
and multiplying by Δ𝑡, we obtain

∥𝜽𝑛u ∥2
0,Ω + Δ𝑡

𝑚∑︁
𝑛=1

(
∥t𝑛ℎ∥

𝑟
0,𝑟 ;Ω + ∥t𝑛∥𝑟0,𝑟 ;Ω

) (𝑟−2)/𝑟 (∥𝜽𝑛t ∥2
0,𝑟 ;Ω + ∥𝜽𝑛u ∥2

0,Ω
)

≤ 𝐶
{
∥𝜽0

u∥2
0,Ω + Δ𝑡

𝑚∑︁
𝑛=1

∥𝝑t∥𝑟0,𝑟 ;Ω + Δ𝑡

𝑚∑︁
𝑛=1

(
Δ𝑡∥𝜕𝑡𝑡u∥2

𝐿2 (J𝑛;Y) + Δ𝑡−1∥𝜕𝑡𝝑u∥2
𝐿2 (J𝑛;Y)

)
+ 𝜖Δ𝑡

𝑚∑︁
𝑛=1

∥𝜽𝑛u ∥2
0,Ω

}
.

Then, after bounding the terms ∥t∥𝐿∞ (J𝑛 ,Q) and ∥tℎ∥𝐿∞ (J𝑛 ,Q) by estimates (3.29) and (5.27), respectively,
and choosing 𝜖 < 1

2
(
N(f𝑛, u0),Ndis(f𝑛, u0)

) (𝑟−2)/𝑟 we deduce the existence of a positive constant 𝐶1,
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depending on 𝑟 , 𝜎∗, 𝛽1,d, 𝛽2,d, 𝛿, N(f𝑛, u0), Ndis(f𝑛, u0), such that there holds

∥𝜽𝑛u ∥2
0,Ω + Δ𝑡

𝑚∑︁
𝑛=1

(
∥𝜽𝑛t ∥2

0,𝑟 ;Ω + ∥𝜽𝑛u ∥2
0,Ω

)
≤ 𝐶

{
∥𝜽0

u∥2
0,Ω + Δ𝑡

𝑚∑︁
𝑛=1

∥𝝑t∥𝑟0,𝑟 ;Ω

+Δ𝑡
𝑚∑︁
𝑛=1

(
Δ𝑡∥𝜕𝑡𝑡u∥2

𝐿2 (J𝑛;Y) + Δ𝑡−1∥𝜕𝑡𝝑u∥2
𝐿2 (J𝑛;Y)

) }
.

(6.11)

Next, in order to bound the first term in (6.11), we subtract the continuous and discrete initial condition
problems (3.23) and (4.11), to obtain the error system:

[
(
A(®uℎ,0) − A(®u0)

)
, ®vℎ] + [Bℎ (®vℎ),𝝈ℎ,0 − 𝝈0] = 0 ∀ ®vℎ ∈ Vℎ ,

[Bℎ (®uℎ,0 − ®u0), 𝝉ℎ] = 0 ∀ 𝝉ℎ ∈ Xℎ .

Then, proceeding as in (6.10), recalling from Theorems 3.8 and 5.9 that (u(0), t(0)) = (u0, t0) and
(uℎ (0), tℎ (0)) = (uℎ,0, tℎ,0), respectively, we get

∥𝜽 t(0)∥2
0,𝑟 ;Ω ≤ 𝐶 ∥𝝑t(0)∥𝑟0,𝑟 ;Ω

(
∥tℎ (0)∥𝑟0,𝑟 ;Ω + ∥t(0)∥𝑟0,𝑟 ;Ω

) (2−𝑟 )/𝑟
. (6.12)

Replacing back (6.12) into (6.11) and involving the approximation projections from (4.3), we arrive at

∥𝜽𝑛u ∥2
0,Ω + Δ𝑡

𝑚∑︁
𝑛=1

(
∥𝜽𝑛t ∥2

0,𝑟 ;Ω + ∥𝜽𝑛u ∥2
0,Ω

)
≤ 𝐶

(
Δ𝑡2 + ℎ 𝑗𝑟

)
.

On the other hand, to get the pseudostress estimate, we observe that from the discrete inf-sup
condition of Bℎ (cf. (5.21a)), the first equation of (6.4), and the continuity of A (cf. (5.22)), there holds

𝛽1,d∥𝜽𝑛𝝈 ∥𝑠,div;Ω ≤ sup
0≠®vℎ∈Vℎ

[Bℎ (®vℎ), 𝜽𝑛𝝈]
∥®v∥V

= sup
0≠®vℎ∈Vℎ

−𝛿𝑡 [C(𝜽𝑛®u), ®vℎ] − [
(
A(®u𝑛

ℎ
) − A(®u𝑛)

)
, ®vℎ] −

∫
Ω

(𝜕𝑡u𝑛 − 𝛿𝑡u𝑛) · vℎ − 𝛿𝑡 [C(𝝑𝑛®u), ®vℎ]

∥®v∥V

≤ 𝐶

(
∥𝛿𝑡𝜽𝑛u ∥0,Ω +

(
∥t𝑛
ℎ
∥0,𝑟 ;Ω + ∥t𝑛∥0,𝑟 ;Ω

)𝑟−2∥e𝑛t ∥0,𝑟 ;Ω

+Δ𝑡1/2∥𝜕𝑡𝑡u∥𝐿2 (J𝑛;Y) + Δ𝑡−1/2∥𝜕𝑡𝝑u∥𝐿2 (J𝑛;Y)

)
.

Then, taking square in the above inequality, summing up over the time index𝑛 = 1, · · · , 𝑚, with
𝑚 = 1, · · · , 𝑁 , multiplying by Δ𝑡, we deduce that

Δ𝑡

𝑚∑︁
𝑛=1

∥𝜽𝑛𝝈 ∥2
𝑠,div;Ω ≤ 𝐶

{
Δ𝑡

𝑚∑︁
𝑛=1

∥𝛿𝑡𝜽𝑛u ∥2
0,Ω +

(
∥tℎ∥𝐿∞ (J𝑛;Q) + ∥t∥𝐿∞ (J𝑛;Q)

)2(𝑟−2)
Δ𝑡

𝑚∑︁
𝑛=1

∥e𝑛t ∥2
0,𝑟 ;Ω

+ Δ𝑡

𝑚∑︁
𝑛=1

(
Δ𝑡∥𝜕𝑡𝑡u∥2

𝐿2 (J𝑛;Y) + Δ𝑡−1∥𝜕𝑡𝝑u∥2
𝐿2 (J𝑛;Y)

) }
. (6.13)

Next, in order to bound the first term in the right-hand side, we differentiate in time the second equation
of (6.4), then choose (®vℎ, 𝝉ℎ) = ((𝛿𝑡𝜽𝑛u , 𝛿𝑡𝜽𝑛t ), 𝜽𝑛𝝈), to find that

∥𝛿𝑡𝜽𝑛u ∥2
0,Ω + [

(
A(®u𝑛ℎ) − A(Pℎ

𝑘
®u𝑛)

)
, 𝛿𝑡𝜽

𝑛
®u] ≤ ∥𝝑𝑛t ∥𝑟0,𝑟 ;Ω + Δ𝑡∥𝜕𝑡𝑡u∥2

𝐿2 (J𝑛;Y) + Δ𝑡−1∥𝜕𝑡𝝑u∥2
𝐿2 (J𝑛;Y) ,

which, using the identity

[
(
A(®u𝑛ℎ) − A(Pℎ

𝑘
®u𝑛)

)
, 𝛿𝑡𝜽

𝑛
®u] =

1
2
𝛿𝑡 [

(
A(®u𝑛ℎ) − A(Pℎ

𝑘
®u𝑛)

)
, 𝜽𝑛®u],
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and the estimate (6.9), yields

∥𝛿𝑡𝜽𝑛u ∥2
0,Ω + 𝛼nN,d 𝛿𝑡

( (
∥t𝑛ℎ∥

𝑟
0,𝑟 ;Ω + ∥t𝑛∥𝑟0,𝑟 ;Ω

) (𝑟−2)/𝑟 ∥𝜽𝑛t ∥2
0,𝑟 ;Ω

)
≤ ∥𝝑𝑛t ∥𝑟0,𝑟 ;Ω + Δ𝑡∥𝜕𝑡𝑡u∥2

𝐿2 (J𝑛;Y) + Δ𝑡−1∥𝜕𝑡𝝑u∥2
𝐿2 (J𝑛;Y) .

Then, summing up on 𝑛 and employing (6.12) gives

Δ𝑡

𝑚∑︁
𝑛=1

∥𝛿𝑡𝜽𝑛u ∥2
0,Ω + 𝛼nN,d

( (
∥t𝑛ℎ∥

𝑟
0,𝑟 ;Ω + ∥t𝑛∥𝑟0,𝑟 ;Ω

) (𝑟−2)/𝑟 ∥𝜽𝑛t ∥2
0,𝑟 ;Ω

)
≤ Δ𝑡

𝑚∑︁
𝑛=1

∥𝝑𝑛t ∥𝑟0,𝑟 ;Ω + 𝛼nN,d

( (
∥t0
ℎ∥
𝑟
0,𝑟 ;Ω + ∥t0∥𝑟0,𝑟 ;Ω

) (𝑟−2)/𝑟 ∥𝜽0
t ∥2

0,𝑟 ;Ω

)
+ Δ𝑡2

𝑚∑︁
𝑛=1

∥𝜕𝑡𝑡u∥2
𝐿2 (J𝑛;Y) + Δ𝑡

𝑚∑︁
𝑛=1

∥𝜕𝑡𝝑u∥2
𝐿2 (J𝑛;Y)

≤ Δ𝑡

𝑚∑︁
𝑛=1

∥𝝑𝑛t ∥𝑟0,𝑟 ;Ω + ∥𝝑t(0)∥𝑟0,𝑟 ;Ω + Δ𝑡2
𝑚∑︁
𝑛=1

∥𝜕𝑡𝑡u∥2
𝐿2 (J𝑛;Y) + Δ𝑡

𝑚∑︁
𝑛=1

∥𝜕𝑡𝝑u∥2
𝐿2 (J𝑛;Y) ,

which, replacing back into (6.13) implies

Δ𝑡

𝑚∑︁
𝑛=1

∥𝜽𝑛𝝈 ∥2
𝑠,div;Ω ≤ 𝐶

{
Δ𝑡

𝑚∑︁
𝑛=1

∥𝝑𝑛t ∥𝑟0,𝑟 ;Ω + ∥𝝑t(0)∥𝑟0,𝑟 ;Ω

+
(
∥tℎ∥𝐿∞ (J𝑛;Q) + ∥t∥𝐿∞ (J𝑛;Q)

)2(𝑟−2)
Δ𝑡

𝑚∑︁
𝑛=1

(
∥𝜽𝑛t ∥2

0,𝑟 ;Ω + ∥𝝑𝑛t ∥2
0,𝑟 ;Ω

)
+Δ𝑡

𝑚∑︁
𝑛=1

(
Δ𝑡∥𝜕𝑡𝑡u∥2

𝐿2 (J𝑛;Y) + Δ𝑡−1∥𝜕𝑡𝝑u∥2
𝐿2 (J𝑛;Y)

) }
.

Then, bounding the terms ∥t∥𝐿∞ (J𝑛 ,Q) and ∥tℎ∥𝐿∞ (J𝑛 ,Q) by estimates (3.29) and (5.27), respectively, and

employing (6.11) to bound Δ𝑡

𝑚∑︁
𝑛=1

∥𝜽𝑛t ∥2
0,𝑟 ;Ω we arrive at (6.5), thus completing the proof. □

7 Numerical results
In this section, we conduct several numerical tests using the publicly available software MATLAB R2024a
to validate the theoretical analysis and demonstrate the scheme’s effectiveness. In all tests, the Picard
method is employed, and its iterations are halted when either the absolute or relative ℓ2-norm of the
residuals falls below 1e-6. Absolute errors for each variable are computed in the following way

𝑒(t𝑛) := ∥t𝑛 − t𝑛ℎ∥0,𝑟 ;Ω , 𝑒(𝝈𝑛) := ∥𝝈𝑛 − 𝝈𝑛ℎ∥𝑠,div;Ω , 𝑒(u𝑛) := ∥u𝑛 − u𝑛ℎ∥0,Ω and

𝑒(𝑝𝑛) := ∥𝑝𝑛 − 𝑝𝑛
ℎ
∥0,Ω .

The examples discussed in this section are as follows: In the first example, we solve a two-dimensional
problem with manufactured exact solutions to validate the theoretical error estimates for the strain of
rate, pseudostress, velocity, vorticity, and pressure presented in this study. Examples 2 and 3 are used to
assess the effectiveness of the discrete scheme by simulating practical problems for which no analytical
solutions are available.

7.1 Example 1: Accuracy assessment
In the present example we consider problem (2.1) with parameters 𝜇 = 1, 𝛼 = 1 and the following exact
solution, velocity field and pressure term

u(𝑥1, 𝑥2, 𝑡) = cos(𝑡)
(

sin( 𝜋2 𝑥1) cos( 𝜋2 𝑥2)
− sin( 𝜋2 𝑥2) cos( 𝜋2 𝑥1)

)
𝑝(𝑥1, 𝑥2, 𝑡) = cos(𝑡)

(
− sin( 𝜋2 𝑥1) sin( 𝜋2 𝑥2) + 4

𝜋2

)
,
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(a) HEXAGON (b) NONCONVEX

Figure 7.1: Example of the adopted polygonal meshes.

for all (𝑥1, 𝑥2)⊤ ∈ Ω := (0, 1)2 and 𝑡 ∈ [0, 𝑡𝐹] := [0, 0.3]. In addition, the external force and
non-homogeneous Dirichlet boundary condition are taken in accordance with the above manufactured
solution. The domain Ω is partitioned with the following sequences of polygonal meshes: HEXAGON and
NONCONVEX meshes (cf. Fig. 7.1), which are generated by PolyMesher package [47]. For each family
of meshes, we take the sequence with diameter ℎ = 1/4 , 1/8 , 1/6 , 1/32. In Figs. 7.2 and 7.3, we
display the errors 𝑒(𝝈), 𝑒(u), 𝑒(𝜸), 𝑒(𝑝), considering parameter 𝑟 ∈ {1.1, 1.15, 1.25, 1.5, 1.75, 2}, the
degree 𝑗 = 1 and the time step Δ𝑡 = ℎ, for two values 𝛿 = 1 and 𝛿 = 0, respectively. In addition, the
errors considering the degree 𝑗 = 2 and Δ𝑡 = ℎ2, for two values 𝛿 = 1 and 𝛿 = 0 are displayed in Figs.
7.4 and 7.5, respectively. It can be seen from Figs. 7.2 and 7.4 that all the unknowns converge to the
discrete solutions with optimal order for all 𝑟 ∈ {1.1, 1.15, 1.25, 1.5, 1.75, 2}, whereas Figs. 7.3 and 7.5
show that optimal convergence occurs as 𝑟 increases, which agree with the theoretical result proposed in
Theorem 6.3. All results indicate the optimal convergence of order 𝑂 (ℎ 𝑗𝑟 ) for all the unknowns and for
each one of the utilized decompositions of Ω with considering Δ𝑡 = ℎ 𝑗 , which agree with the theoretical
result proposed in Theorem 6.3.

7.2 Example 2: Lid driven cavity flow
This classic problem is a key benchmark for evaluating the numerical algorithms performance across
various flow problems and has been studied within the Navier-Stokes framework in [46, 49]. The
problem is set in a unit square domain Ω = (0, 1)2, where a unit tangential velocity g = (1, 0) is applied
along the top edge (i.e. 𝑥2 = 1), while wall boundary conditions are applied along the remaining edges.
In addition, we consider the initial value u0 = [0, 0]t, time step Δ𝑡 = 1e-2 and the final time 𝑡𝐹 = 0.5. In
the first row of Figure 7.6, we display the stream function, while in the second row, we plot the horizontal
component 𝑢1ℎ of the velocity along the vertical centreline 𝑥1 = 0.5 and the vertical component 𝑢2ℎ
along the horizontal centreline 𝑥2 = 0.5.

7.3 Example 3: Flow past a cylinder
This well-known test problem has been studied extensively by various researchers [27, 44, 46]. The
geometry is illustrated in Fig. 7.7, focusing on the fluid dynamics around a cylinder. The cylinder
is placed in an incompressible flow, with its center located at (0.25, 0.2) and a diameter of 0.1. The
boundary conditions for inflow and outflow are applied at the left and right edges, respectively, as follow

g =


(

0.3
0.412 4𝑥2(0.41 − 𝑥2), 0

)t
on Γin ∪ Γout ,

0 on Γ \ (Γin ∪ Γout) .

For this test, we consider the physical and discretization parameters 𝜇 = 0.1, 𝛿 = 1, 𝛼 = 1, 𝑗 = 1,
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Figure 7.2: Convergence results with HEXAGON mesh, 𝛿 = 1, 𝑗 = 1 and Δ𝑡 = ℎ.

Δ𝑡 = 3e-2, 𝑡𝐹 = 0.5. In Figs. 7.8 and 7.9 we have portrayed the approximate solutions generated with
the first-order mixed virtual element family for two values 𝑟 = 1.25 and 𝑟 = 2.25, respectively. All plots
are consistent with those obtained in [27] and what is expected to be observed from the physical point
of view, in accordance to [46].
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Stokes systems”. In: SIAM J. Numer. Anal. 50.2 (2012), pp. 373–397. doi: 10.1137/10080436X.

[13] D. Boffi, F. Brezzi, and M. Fortin. Mixed finite element methods and applications. Vol. 44.
Springer Ser. Comput. Math. Berlin: Springer, 2013. doi: 10.1007/978-3-642-36519-5.

[14] M. Botti, D. C. Quiroz, D. A. Di Pietro, and A. Harnist. “A hybrid high-order method for creeping
flows of non-Newtonian fluids”. In: ESAIM, Math. Model. Numer. Anal. 55.5 (2021), pp. 2045–
2073. doi: 10.1051/m2an/2021051.

[15] S. C. Brenner, Q. Guan, and L.-Y. Sung. “Some estimates for virtual element methods”. English.
In: Comput. Methods Appl. Math. 17.4 (2017), pp. 553–574. doi: 10.1515/cmam-2017-0008.

34

https://doi.org/10.1142/S021820251750052X
https://doi.org/10.1137/10080436X
https://doi.org/10.1007/978-3-642-36519-5
https://doi.org/10.1051/m2an/2021051
https://doi.org/10.1515/cmam-2017-0008


Figure 7.6: Numerical results for the test case of Section 5.2. Top: velocity magnitude contours
computed on a Cartesian mesh of size 32 × 32 with 𝑗 = 2. Bottom: horizontal component 𝑢1ℎ of the
velocity along the vertical centreline 𝑥1 = 0.5 and vertical component 𝑢2,ℎ of the velocity along the
horizontal centreline 𝑥2 = 0.5.

Figure 7.7: Example 3. An illustration of the mesh.

Figure 7.8: Example 3. Snapshots of the numerical solution for 𝑟 = 1.25.

35



Figure 7.9: Example 3. Snapshots of the numerical solution for 𝑟 = 2.25.

[16] S. C. Brenner and L.-Y. Sung. “Virtual element methods on meshes with small edges or faces”.
English. In: Math. Models Methods Appl. Sci. 28.7 (2018), pp. 1291–1336. doi: 10.1142/
S0218202518500355.

[17] F. Brezzi, R. S. Falk, and L. D. Marini. “Basic principles of mixed virtual element methods”. In:
ESAIM, Math. Model. Numer. Anal. 48.4 (2014), pp. 1227–1240. doi: 10.1051/m2an/2013138.
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