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Abstract

We analyse the solvability of a static coupled system of PDEs describing the diffusion of a solute into an elastic material, where
the process is affected by the stresses exerted in the solid. The problem is formulated in terms of solid stress, rotation tensor,
solid displacement, and concentration of the solute. Existence and uniqueness of weak solutions follow from adapting a fixed-
point strategy decoupling linear elasticity from a generalised Poisson equation. We then construct mixed-primal and augmented
mixed-primal Galerkin schemes based on adequate finite element spaces, for which we rigorously derive a priori error bounds. The
convergence of these methods is confirmed through a set of computational tests in 2D and 3D.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

This work is motivated by the mathematical and numerical investigation of stress-enhanced diffusion processes in
deformable solids. Starting from the early works by e.g. Truesdell [1], Podstrigach [2], or Aifantis [3], a number
of applicative studies and different models have been developed. Many of these contributions have focused on
the modelling of hydrogen diffusion in metals [4], damage of electrodes in lithium ion batteries [5], sorption
in fibre-reinforced polymeric materials [6], drying of liquid paint layers [7], gels and general-purpose solute
penetration [8,9], anisotropy of cardiac dynamics [10], and several other effects. Irrespective of the specific interaction
under consideration, the assumptions in these models convey that the species diffuses on the elastic medium obeying
a Fickean law enriched with additional contributions arising from local effects by exerted stresses.
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Although there exist numerous advances on the modelling considerations for stress-assisted and strain-assisted
diffusion problems, their counterparts from the viewpoint of mathematical and numerical analysis are still far behind.
A few punctual references include the study of plane steady solutions [11], asymptotic analysis [7,12], and the very
recent general well-posedness theory for static and transient problems in a primal formulation, developed in [13].
Our goal at this stage is to focus on a simple stationary problem that represents the main ingredients of diffusion–
deformation interaction models where the Cauchy stress acts as a coupling variable. We will concentrate on the regime
of linear elasticity, and we will further assume that there are no additional nonlinearities in the diffusion process other
than the coupling through stresses. In turn, it is supposed that the diffusing species affects the motion of the solid
skeleton through external forces, constituting a two-way coupled system.

Apart from stress and displacement, the elasticity equations will incorporate the tensor of solid rotations as
supplementary field variable, serving to impose symmetry of the Cauchy stress. This approach has been exploited in
several mixed formulations for elastostatics [14–16], and in our case has particular importance as the stress influences
directly the diffusion process. In contrast, we will use a primal formulation for the diffusion equation. Then, following
a similar approach to the one employed in [17] and [18], the existence and uniqueness of weak solutions to the
coupled system will be established invoking the Lax–Milgram lemma, the Babuška–Brezzi theory, suitable regularity
estimates, and fixed-point arguments permitting us to decouple the solid mechanics from the generalised Poisson
problem. Nevertheless, while there are in fact certain similarities with [17] and [18], it is important to remark that the
problems involved deal with very different models and that there are substantial differences between the respective
analyses. In particular, in [17] and [18] it was needed to assume, without proof, a regularity result, whereas in the
present paper the regularity estimates that are required for the analysis are either proved or available in the literature.
Also, in [17] and [18] the authors were able to show existence of solution for sufficiently small data only whereas in
the present paper this assumption is not required for that purpose. More specifically, Schauder’s fixed-point theorem
will yield existence of weak solutions, whereas Banach’s fixed-point theorem (in combination with assumptions on the
data) will give uniqueness of solution. Additionally, the Sobolev embedding and Rellich–Kondrachov compactness
theorems will constitute essential tools in the analysis of the continuous problem. In turn, the regularity estimates
needed for the uncoupled elasticity and diffusion problems will be adapted from those appearing in [19] and [20],
respectively. Even if these results are valid provided one restricts the analysis to convex domains in two spatial
dimensions, our computational tests indicate that this requirement may only be technical.

Regarding the numerical approximation of the problem, we propose two families of finite element discretisations:
one that will follow the same mixed-primal character as in the continuous case, and a second one that utilises
augmentation of the elasticity problem through redundant Galerkin contributions in order to achieve conformity and
well-definiteness of appropriate terms. As a consequence, the resulting augmented scheme allows more flexibility
in the choice of the finite element subspaces for the aforementioned problem. In addition, the Brouwer fixed-point
theorem will be utilised to establish existence of solutions to the associated Galerkin schemes. In this context, the
recent theory leading to the well-posedness of Stokes-transport coupled systems developed in [17,18] will be modified
accordingly. The convergence analysis in each case will be conducted using a blend of a Strang-type argument, Céa
estimates, and the approximation properties of specific finite element spaces. To the best of our knowledge, the results
presented in this paper constitute the first rigorous analysis of continuous and discrete mixed formulations for stress-
assisted diffusion problems. The structure of the paper is as follows. Required definitions and preliminary notation are
recalled in the remainder of this section, where we also present the governing equations in strong form together with
main assumptions on the model. The weak formulation stated in mixed-primal form, as well as its solvability analysis,
is provided in Section 2. We then provide a mixed-primal Galerkin method and derive existence of discrete solution
along with the corresponding a priori error estimates in Section 3. Section 4 is dedicated to the derivation and analysis
of an augmented mixed-primal formulation in continuous form, a suitable discretisation, and the derivation of error
bounds. We then present a set of numerical examples in Section 5 that illustrate the accuracy and applicability of the
proposed numerical schemes, and we close with summary and concluding remarks in Section 6.

Preliminaries. Let us denote by Ω ⊆ Rn , n ∈ {2, 3} a given bounded domain with polyhedral boundary Γ = ∂Ω , and
denote by ν the outward unit normal vector on the boundary. We will adopt a fairly standard notation for Lebesgue
and Sobolev spaces: L p(Ω ) and Hs(Ω ), respectively. Norms and seminorms for the latter will be written as ∥·∥s,Ω and
|·|s,Ω . The space H1/2(Γ ) contains traces of functions of H1(Ω ), and H−1/2(Γ ) denotes its dual. In general, the notation
M and M will refer to vectorial and tensorial counterparts of a generic scalar functional space M. Furthermore, by

∥w∥∞,Ω := max
i=1,n

{∥wi∥∞,Ω }, and ∥ψ∥1,∞,Ω := max
α≤1

(
ess sup

x∈Ω
|∂αψ(x)|

)
,
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we will denote norms for the Banach spaces L∞(Ω ) and W1,∞(Ω ), respectively. Next we recall the definition of the
tensorial Hilbert space and its usual norm

H(div,Ω ) :=
{
τ ∈ L2(Ω ) : div τ ∈ L2(Ω )

}
, ∥τ∥

2
div,Ω := ∥τ∥

2
0,Ω + ∥div τ∥

2
0,Ω ,

where div τ indicates the divergence operator acting along the rows of the tensor field τ . As usual, I stands for the
identity tensor in Rn×n, and |·| denotes both the Euclidean norm in Rn and the Frobenius norm in Rn×n . Finally, for
any tensor fields τ = (τi j )i, j=1,n, and ζ = (ζi j )i, j=1,n, we recall the transpose, trace, tensor product, and deviatoric
splitting operators defined respectively as

τ t
:= (τ j i )i, j=1,n, tr(τ ) :=

n∑
i=1

τi i τ : ζ :=

n∑
i, j=1

τi jζi j , and τ d
:= τ −

1
n

tr(τ )I.

A model for stress-assisted diffusion in elastic solids. The following system of partial differential equations
describes balance laws governing the motion of an elastic solid occupying the domain Ω and a diffusing solute
interacting with it:

σ = λ trε(u) I + 2µε(u) , − div σ = f (φ),

σ̃ = ϑ̃(ε(u))∇φ , − div σ̃ = g(u),
(1.1)

where φ represents the local concentration of species, σ is the Cauchy solid stress, u is the displacement field,
ε(u) :=

1
2

(
∇u + ∇ut

)
is the infinitesimal strain tensor (symmetrised gradient of displacements), σ̃ is the diffusive

flux, λ,µ > 0 are the Lamé constants (dilation and shear moduli) characterising the properties of the material,
ϑ̃ : Rn×n

→ Rn×n is a tensorial diffusivity function, f : R → Rn is a vector field of body loads (which will depend
on the species concentration), and g : Rn

→ R denotes an additional source term depending locally on the solid
displacement. Specific requirements on these functions will be given below. We note that system (1.1) describes the
constitutive relations inherent to linear elastic materials, conservation of linear momentum, the constitutive description
of diffusive fluxes, and the mass transport of the diffusive substance, respectively. It also assumes that diffusive time
scales are much lower than those of the elastic wave propagation, justifying the static character of the system (cf. [13]).

Hooke’s law [21, eq. (2.36)] asserts that C−1σ = ε(u), where C−1 is the fourth order compliance tensor. This
relation allows us to recast the strain-dependent diffusivity ϑ̃(ε(u)) as a stress-dependent diffusivity ϑ(σ ) := ϑ̃(C−1σ ).
Throughout this work we will suppose that ϑ is of class C1 and uniformly positive definite, meaning that there exists
ϑ0 > 0 such that

ϑ(τ )w · w ≥ ϑ0|w|
2

∀ w ∈ Rn, ∀ τ ∈ Rn×n. (1.2)

We will also require uniform boundedness and Lipschitz continuity: there exist positive constants ϑ1, ϑ2 and Lϑ , such
that

ϑ1 ≤ |ϑ(τ )| ≤ ϑ2, |ϑ(τ ) − ϑ(ζ )| ≤ Lϑ |τ − ζ | ∀ τ , ζ ∈ Rn×n. (1.3)

Similar assumptions will be placed on the load and source functions f and g: we suppose that there exist positive
constants f1, f2, L f , g1, g2 and Lg , such that

f1 ≤ |f (s)| ≤ f2, |f (s) − f (t)| ≤ L f |s − t | ∀ s, t ∈ R, (1.4)

g1 ≤ g(w) ≤ g2, |g(v) − g(w)| ≤ Lg|v − w| ∀ v,w ∈ Rn. (1.5)

Moreover, for each γ ∈ (0, 1), there exists a constant Cγ > 0, such that g(w) ∈ Hγ (Ω ) for each w ∈ Hγ (Ω ) and

∥g(w)∥γ,Ω ≤ Cγ ∥w∥γ,Ω . (1.6)

An additional assumption is that for every φ ∈ H1(Ω ), we have f (φ) ∈ H1(Ω ). Finally, given uD ∈ H1/2(Γ ), the
following Dirichlet boundary conditions complement (1.1): u = uD and φ = 0 on Γ . Thus, we arrive at the following
coupled system:

σ = λ trε(u) I + 2µε(u) and − div σ = f (φ) in Ω , u = uD on Γ ,

σ̃ = ϑ(σ )∇φ and − div σ̃ = g(u) in Ω , φ = 0 on Γ .
(1.7)
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Examples of specific constitutive relations for the tensor diffusivity in terms of stress appearing in the relevant
literature include exponential functions of the volumetric stress for lithiation of batteries [22], simple polynomial
relationships for biological materials [10], or Carreau-type laws

ϑ(σ ) = C0 exp(−tr σ )I, ϑ(σ ) = C0 I + C1σ + C2σ
2, ϑ(σ ) = (C0 + C1(1 − |σ |

2)−1/2)I,

respectively. Regarding the concentration-dependent body load we cite linear dependences modelling isotropic
swelling in composite materials [23], saturation-based descriptions for viscous layers [7], or concentration gradient
modulations for single-cell mechanics [24], adopting the form

f (φ) = Cφ, f (φ) = C(1 − φ)m−1, f (φ) = C0∇φ,

respectively, where C ∈ Rn,m > 1.

2. The mixed-primal formulation

In this section we derive a mixed-primal variational formulation for (1.7) and verify the hypotheses of Schauder’s
fixed-point theorem, implying existence of weak solutions. In turn, an application of Banach’s fixed-point theorem
will be employed to prove uniqueness of solution under the assumption of adequately small data.

2.1. The continuous setting

The present treatment follows closely those in [17,21]. First we note that Hooke’s law can be recast in terms of the
rotation tensor as follows

C−1σ = ε(u) = ∇u − ρ, where ρ :=
1
2

(∇u − ∇ut),

and we observe that ρ ∈ L2
skew(Ω ) := {η ∈ L2(Ω ) : η + ηt

= 0}. The weak form associated with the first row of
(1.7) eventually reads: find (σ , (u, ρ)) ∈ H(div,Ω ) × (L2(Ω ) × L2

skew(Ω )) such that

a(σ , τ ) + b(τ , (u, ρ)) = G(τ ) ∀ τ ∈ H(div,Ω ),

b(σ , (v, η)) = Fφ(v, η) ∀ (v, η) ∈ L2(Ω ) × L2
skew(Ω ),

(2.1)

where the bilinear forms a : H(div,Ω )×H(div,Ω ) → R and b : H(div,Ω )× (L2(Ω )×L2
skew(Ω )) → R are specified

as

a(ζ , τ ) :=
1

2µ

∫
Ω

ζ : τ −
λ

2µ(n λ+ 2µ)

∫
Ω

tr(ζ ) tr(τ ), (2.2)

b(τ , (v, η)) :=

∫
Ω

v · div τ +

∫
Ω

η : τ , (2.3)

for ζ , τ ∈ H(div,Ω ) and (v, η) ∈ L2(Ω ) × L2
skew(Ω ). In turn, the functionals Fφ ∈ H(div,Ω )′ and G ∈

(L2(Ω ) × L2
skew(Ω ))′ are given by

G(τ ) := ⟨τν,uD⟩Γ and Fφ(v, η) := −

∫
Ω

f (φ) · v , (2.4)

for (τ , (v, η)) ∈ H(div,Ω ) × (L2(Ω ) × L2
skew(Ω )), where ν denotes from now on the unit outward normal on Γ , and

⟨·, ·⟩Γ stands for the duality pairing of H−1/2(Γ ) and H1/2(Γ ) with respect to the inner product in L2(Γ ).
From (2.2) and (2.3) it follows that, for any (τ , (v, η)) ∈ H(div,Ω ) × (L2(Ω ) × L2

skew(Ω )), there holds

a(I, τ ) =
1

n λ+ 2µ

∫
Ω

tr(τ ) and b(I, (v, η)) = 0. (2.5)

Algebraic manipulations then show that the bilinear form a can be recast as

a(ζ , τ ) =
1

2µ

∫
Ω

ζ d
: τ d

+
1

n(n λ+ 2µ)

∫
Ω

tr(ζ ) tr(τ ) ∀ ζ , τ ∈ H(div,Ω ).

On the other hand, we recall from [25] that H(div,Ω ) = H0(div,Ω ) ⊕ RI, where

H0(div,Ω ) :=

{
τ ∈ H(div,Ω ) :

∫
Ω

tr(τ ) = 0
}
,
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that is, for each τ ∈ H(div,Ω ) there exist unique

τ 0 := τ −

{
1

n|Ω |

∫
Ω

tr(τ )
}
I ∈ H0(div,Ω ) and d :=

1
n|Ω |

∫
Ω

tr(τ ) ∈ R,

such that τ = τ 0 + dI. In particular, we obtain from the first row of (1.7) that

tr (σ ) = (nλ+ 2µ) div u,

which yields σ = σ 0 + cI, where

σ 0 ∈ H0(div,Ω ) and c :=
nλ+ 2µ

n|Ω |

∫
Γ

uD · ν.

Then, replacing σ by the expression σ 0 +cI in (2.1), applying (2.5) and denoting from now on the remaining unknown
σ 0 ∈ H0(div,Ω ) simply by σ , we find that the mixed variational formulation for the elasticity problem (cf. first row
of (1.7)) reduces to: find (σ , (u, ρ)) ∈ H0(div,Ω ) × (L2(Ω ) × L2

skew(Ω )) such that

a(σ , τ ) + b(τ , (u, ρ)) = G(τ ) ∀ τ ∈ H0(div,Ω ),

b(σ , (v, η)) = Fφ(v, η) ∀ (v, η) ∈ L2(Ω ) × L2
skew(Ω ).

(2.6)

On the other hand, the boundary condition for φ indicates the appropriate trial and test space

H1
0(Ω ) :=

{
ψ ∈ H1(Ω ) : ψ = 0 on Γ

}
,

and Poincaré’s inequality implies that there exists cp > 0, depending only on Ω and Γ , such that

∥ψ∥1,Ω ≤ cp|ψ |1,Ω ∀ ψ ∈ H1
0(Ω ). (2.7)

We can then deduce a primal formulation for the diffusion equation: find φ ∈ H1
0(Ω ) such that

Aσ (φ,ψ) = Gu(ψ) ∀ψ ∈ H1
0(Ω ), (2.8)

where

Aσ (φ,ψ) :=

∫
Ω

ϑ(σ )∇φ · ∇ψ ∀ φ,ψ ∈ H1
0(Ω ), (2.9)

Gu(ψ) :=

∫
Ω

g(u)ψ ∀ ψ ∈ H1
0(Ω ). (2.10)

In this way, the mixed-primal formulation for (1.7) consists in (2.6) and (2.8), that is: find (σ , (u, ρ), φ) ∈

H0(div,Ω ) × (L2(Ω ) × L2
skew(Ω )) × H1

0(Ω ), such that

a(σ , τ ) + b(τ , (u, ρ)) = G(τ ) ∀ τ ∈ H0(div,Ω ),

b(σ , (v, η)) = Fφ(v, η) ∀ (v, η) ∈ L2(Ω ) × L2
skew(Ω ),

Aσ (φ,ψ) = Gu(ψ) ∀ψ ∈ H1
0(Ω ).

(2.11)

2.2. Fixed-point approach and well-posedness of the uncoupled problems

In this section, we proceed similarly as in [17] and utilise a fixed-point strategy to prove that (2.11) is uniquely
solvable. We first set H := H0(div,Ω ) × (L2(Ω ) × L2

skew(Ω )) and let S : H1
0(Ω ) → H be the operator defined by

S(φ) := (S1(φ), (S2(φ),S3(φ))) := (σ , (u, ρ)) ∀φ ∈ H1
0(Ω ),

where, for a given φ, the triple (σ , (u, ρ)) is the unique solution of (2.6). In turn, let S̃ : H0(div,Ω ) × L2(Ω ) →

H1
0(Ω ) be the operator defined by

S̃(σ ,u) := φ ∀ (σ ,u) ∈ H0(div,Ω ) × L2(Ω ),

where φ is the unique solution of (2.8), for a given pair (σ ,u). Then, we define the map T : H1
0(Ω ) → H1

0(Ω ) as

T(φ) := S̃(S1(φ),S2(φ)) ∀φ ∈ H1
0(Ω ),
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and one readily realises that solving (2.11) is equivalent to seeking a fixed point of the solution operator T, that is:
find φ ∈ H1

0(Ω ) such that

T(φ) = φ. (2.12)

The following technical lemma will serve to establish solvability of (2.6) for a given φ.

Lemma 2.1. There exists c1 > 0 such that

c1 ∥τ∥
2
0,Ω ≤ ∥τ d

∥
2
0,Ω + ∥div τ∥

2
0,Ω ∀τ ∈ H0(div,Ω ).

Proof. See [21, Lemma 2.3]. □

We now proceed to show that the uncoupled problems defined by S and S̃ are well-posed.

Lemma 2.2. For each φ ∈ H1
0(Ω ) the problem (2.6) has a unique solution S(φ) := (σ , (u, ρ)) ∈ H. Moreover, there

exists cS > 0 independent of φ, such that

∥S(φ)∥H = ∥(σ , (u, ρ))∥H ≤ cS
{
∥uD∥1/2,Γ + f2|Ω |

1/2} . (2.13)

Proof. Along the lines of [21, Section 2.4.3.1], we first observe that

|a(ζ , τ )| ≤
1
µ

∥ζ∥div,Ω ∥τ∥div,Ω ∀ ζ , τ ∈ H0(div,Ω ),

proving that A : H0(div,Ω ) → H0(div,Ω ), the operator induced by a, is bounded with ∥A∥ ≤
1
µ

. In turn we define
the operator induced by the bilinear form b as B : H0(div,Ω ) → L2(Ω ) × L2

skew(Ω ), with

B(τ ) :=

(
div τ ,

1
2

(τ − τ t)
)

∀τ ∈ H0(div,Ω ), (2.14)

from which one readily has that ∥B∥ ≤ 1. Next, from (2.14) we deduce that

V := N (B) =
{
τ ∈ H0(div,Ω ) : div τ = 0 in Ω , τ = τ t in Ω

}
.

Consequently, using Lemma 2.1, we find that

a(τ , τ ) ≥
1

2µ
∥τ d

∥
2
0,Ω ≥

c1

2µ
∥τ∥

2
0,Ω = α ∥τ∥

2
div,Ω ∀τ ∈ V, (2.15)

thus showing that a is V -elliptic with ellipticity constant α1 :=
c1
2µ . On the other hand, the surjectivity of B follows

exactly as in [21, Sect. 2.4.3.1]. Finally, from (2.4), we find that the functionals G and Fφ are bounded with

∥G∥ ≤ ∥uD∥1/2,Γ and
Fφ

 ≤ f2|Ω |
1/2. (2.16)

Therefore, a straightforward application of the Babuška–Brezzi theory [21, Thm. 2.3] guarantees that, for each
φ ∈ H1

0(Ω ), problem (2.6) has a unique solution (σ , (u, ρ)) ∈ H , and there holds

∥S(φ)∥H = ∥(σ , (u, ρ))∥H ≤ cS
{
∥uD∥1/2,Γ + f2|Ω |

1/2} ,
where cS is a constant depending on α1, µ and the inf–sup constant associated with the bilinear form b. □

The following result asserts the unique solvability of (2.8).

Lemma 2.3. For each (σ ,u) ∈ H0(div,Ω ) × L2(Ω ), the problem (2.8) has a unique solution φ := S̃(σ ,u) ∈ H1
0(Ω ).

Moreover, there exists a constant r > 0 depending on cp, ϑ0, g2 and Ω (cf. (2.7), (1.2), (1.5)), such that

∥̃S(σ ,u)∥1,Ω = ∥φ∥1,Ω ≤ r. (2.17)

Proof. We note from (2.9) that Aσ is a bilinear form. Next, from (1.3) and (2.9), we deduce that

|Aσ (φ,ψ)| ≤ ϑ2 ∥φ∥1,Ω ∥ψ∥1,Ω ∀φ,ψ ∈ H1
0(Ω ),
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which gives ∥Aσ∥ ≤ ϑ2, and thus Aσ is bounded independently of σ and u. Furthermore, from (1.2) and the estimate
(2.7), for each φ ∈ H1

0(Ω ), we find that

Aσ (φ, φ) =

∫
Ω

ϑ(σ )∇φ · ∇φ ≥
ϑ0

c2
p

∥φ∥
2
1,Ω , (2.18)

which proves that Aσ is H1
0(Ω )-elliptic with constant α2 :=

ϑ0
c2

p
, independently of σ and u as well. Now, using (1.5),

(2.10) and applying Cauchy–Schwarz’s inequality, we deduce that

|Gu(ψ)| ≤ g2|Ω |
1/2

∥ψ∥0,Ω ∀ψ ∈ H1
0(Ω ), (2.19)

which implies that Gu ∈ H1
0(Ω )′ and ∥Gu∥ ≤ g2|Ω |

1/2. Thus, a straightforward application of the Lax–Milgram
Lemma (see, e.g. [21], Thm. 1.1) proves that for each (σ ,u) ∈ H0(div,Ω ) × L2(Ω ), problem (2.8) has a unique
solution φ := S̃(σ ,u) ∈ H1

0(Ω ). Moreover, the corresponding continuous dependence on the data is formulated as

∥φ∥1,Ω ≤ r,

where

r :=
c2

p

ϑ0
g2|Ω |

1/2 . □ (2.20)

The next step consists in deriving regularity estimates for the problems defining S and S̃. The following theorem
(which summarises the respective analysis in [19]) is particularly crucial in the treatment for the operator S.

Theorem 2.4. Given a convex polygonal domain Ω ⊆ R2 and F ∈ L2(Ω ), we let u be the solution of the elasticity
problem

µ∆u + (µ+ λ)∇(∇ · u) = F in Ω ,

u = 0 on ∂Ω ,

where the Lamé moduli are bounded as µ ∈ [µ1, µ2] and λ ∈ [0,∞), with fixed constants µ1, µ2 > 0. Then, there
exists γ > 0 such that whenever F ∈ Hγ (Ω ), there holds u ∈ H2+γ (Ω ) and

∥u∥2+γ,Ω ≤ C̃1 ∥F∥γ,Ω ,

with a constant C̃1 independent of the Lamé coefficients.

According to Theorem 2.4, in what follows we should probably concentrate in the case where Ω is a convex
polygonal domain and n = 2. Nevertheless, it is easy to see that, assuming the regularity provided by this theorem,
the forthcoming analysis and all the associated results hold even for the non-convex or 3D cases. We then recall that
f (ψ) ∈ H1(Ω ) for each ψ ∈ H1

0(Ω ), and suppose from now on that uD ∈ H3/2+γ (Ω ). Then, applying the theorem
or the respective assumption, and recalling from the constitutive equation that the regularities of the unknowns are
connected, we immediately find that S(ψ) ∈ H0(div,Ω ) ∩ H1+γ (Ω ) × H2+γ (Ω ) × L2

skew(Ω ) ∩ H1+γ (Ω ).
In turn, for the operator S̃, we invoke [26, Remark (a)] and [20, Thm. 3.12], and observe that, for a given pair

(ζ ,w) := (S1(ψ),S2(ψ)) ∈ H0(div,Ω ) ∩ H1+γ (Ω ) × H2+γ (Ω ) (which denote the first and second components of
the unique solution produced by the operator S), the hypothesis given by relation (1.6) implies in particular that
g(w) ∈ Hγ (Ω ). If one further assumes that the coefficients ϑ(ζ )i j are in C1+γ (Ω ), then elliptic regularity results
(cf. [27,28]) guarantee that φ := S̃(ζ ,w) ∈ H1

0(Ω ) ∩ H2+γ (Ω ), and we conclude that there exists a constant C̃2 > 0
such that

∥̃S(ζ ,w)∥2+γ,Ω = ∥φ∥2+γ,Ω ≤ C̃2 ∥g(w)∥γ,Ω . (2.21)

On the other hand, the Sobolev embedding theorem (cf. [29], Thm. 4.12, [30], Thm. A.5) gives the continuous injection
iγ : H2+γ (Ω ) −→ C1(Ω ), with boundedness constant C̃γ . Then, using the aforementioned continuous injection and
applying (2.21), we deduce that

∥̃S(ζ ,w)∥1,∞,Ω = ∥φ∥1,∞,Ω ≤ C̃γ ∥φ∥2+γ,Ω ≤ C̃γ C̃2 ∥g(w)∥γ,Ω . (2.22)



418 G.N. Gatica et al. / Comput. Methods Appl. Mech. Engrg. 337 (2018) 411–438

Finally, using (1.6) and (2.13), we find that

∥̃S(ζ ,w)∥1,∞,Ω = ∥φ∥1,∞,Ω ≤ C∞ cS
{
∥uD∥1/2,Γ + f2|Ω |

1/2} , (2.23)

where C∞ is a positive constant depending on Cγ , C̃γ and C̃2 (cf. (1.6), (2.21), (2.22)).

2.3. Solvability of the fixed-point equation

In this section we address the solvability analysis of the fixed-point equation (2.12). To this end, we will verify the
hypotheses of the Schauder fixed-point theorem (see, e.g. [31, Thm. 9.12-1(b)]).

Lemma 2.5. Let r > 0 be the constant from (2.20) (cf. proof of Lemma 2.3). Then, for the closed ball W :={
φ ∈ H1

0(Ω ) : ∥φ∥1,Ω ≤ r
}
, it holds that T(W ) ⊆ W.

Proof. It suffices to recall the definition of T (cf. Section 2.2), and simply apply estimate (2.17). □

Lemma 2.6. There exists CS > 0 depending on µ, L f , α (cf. (1.1), (1.4), (2.15)) and the inf–sup constant of b, such
that

∥S(φ) − S(ϕ)∥H ≤ CS ∥φ − ϕ∥0,Ω ∀φ, ϕ ∈ H1
0(Ω ). (2.24)

Proof. Given φ, ϕ ∈ H1
0(Ω ), we let (σ , (u, ρ)), (ζ , (w,χ )) ∈ H be two solutions to (2.6), corresponding to φ and ϕ,

respectively. That is, (σ , (u, ρ)) = S(φ) and (ζ , (w,χ )) = S(ϕ). We then invoke the linearity of the forms a and b to
deduce (using both formulations arising from (2.6)) that

a(σ − ζ , τ ) + b(τ , (u, ρ) − (w,χ )) = 0 ∀ τ ∈ H0(div,Ω ),

b(σ − ζ , (v, η)) = (Fφ − Fϕ)(v, η) ∀ (v, η) ∈ L2(Ω ) × L2
skew(Ω ).

(2.25)

From (2.4), we readily note that
Fφ − Fϕ

 ≤ L f ∥φ − ϕ∥0,Ω . Consequently, and similarly to the proof of
Lemma 2.2, the Babuška–Brezzi theory implies that for each φ, ϕ ∈ H1

0(Ω ), problem (2.25) has a unique solution
(σ − ζ , (u − w, ρ − χ )) ∈ H , as well as the continuous dependence on the data

∥S(φ) − S(ϕ)∥H = ∥(σ , (u, ρ)) − (ζ , (w,χ ))∥H ≤ CS ∥φ − ϕ∥0,Ω ,

which gives (2.24) and concludes the proof. □

The following result is a consequence of Lemma 2.6.

Lemma 2.7. Assume that CS is as in Lemma 2.6. Then, for each φ, ϕ ∈ H1
0(Ω ), there holds

∥T(φ) − T(ϕ)∥1,Ω ≤
1
α2

CS
{

Lg + Lϑ ∥T(ϕ)∥1,∞,Ω

}
∥φ − ϕ∥0,Ω . (2.26)

Proof. Firstly we recall that T(φ) = S̃(S1(φ),S2(φ)) and T(ϕ) = S̃(S1(ϕ),S2(ϕ)) ∀φ, ϕ ∈ H1
0(Ω ). In view of

unifying the notation throughout the paper, we apply the following renaming

(σ ,u) := (S1(φ),S2(φ)) and (ζ ,w) := (S1(ϕ),S2(ϕ)),

where (σ ,u), (ζ ,w) ∈ H0(div,Ω ) × L2(Ω ). In addition, we let φ̃ := S̃(σ ,u) and ϕ̃ := S̃(ζ ,w), that is

Aσ (φ̃, ψ̃) = Gu(ψ̃) and Aζ (ϕ̃, ψ̃) = Gw(ψ̃) ∀ ψ̃ ∈ H1
0(Ω ).

Adding and subtracting appropriate terms, and appealing to the ellipticity of Aσ , we readily find that

α2∥φ̃ − ϕ̃∥
2
1,Ω ≤ Aσ (φ̃, φ̃ − ϕ̃) − Aσ (ϕ̃, φ̃ − ϕ̃)

= (Gu − Gw)(φ̃ − ϕ̃) + (Aζ − Aσ )(ϕ̃, φ̃ − ϕ̃).
(2.27)
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Next we use (2.9), (2.10), we apply Cauchy–Schwarz’s inequality, and exploit the assumptions (1.3) and (1.5), to
obtain the bounds

|(Gu − Gw)(φ̃ − ϕ̃)| =

⏐⏐⏐⏐∫
Ω

(g(u) − g(w))(φ̃ − ϕ̃)
⏐⏐⏐⏐

≤ Lg ∥u − w∥0,Ω ∥φ̃ − ϕ̃∥0,Ω ,

(2.28)

and

|(Aζ − Aσ )(ϕ̃, φ̃ − ϕ̃)| =

⏐⏐⏐⏐∫
Ω

(ϑ(ζ ) − ϑ(σ ))∇ϕ̃ · ∇(φ̃ − ϕ̃)
⏐⏐⏐⏐

≤ Lϑ∥∇ϕ̃∥∞,Ω ∥σ − ζ∥0,Ω |φ̃ − ϕ̃|1,Ω .

(2.29)

We then observe that the inequalities (2.27)–(2.29) imply that

∥φ̃ − ϕ̃∥1,Ω ≤
1
α2

{
Lg ∥u − w∥0,Ω + Lϑ ∥ϕ̃∥1,∞,Ω ∥σ − ζ∥0,Ω

}
. (2.30)

Next, according to the definitions given at the beginning of the proof, we can rewrite (2.30) as

∥̃S(S1(φ),S2(φ)) − S̃(S1(ϕ),S2(ϕ))∥1,Ω

≤
1
α2

{
Lg ∥S2(φ) − S2(ϕ)∥0,Ω + Lϑ ∥̃S(S1(ϕ),S2(ϕ))∥1,∞,Ω ∥S1(φ) − S1(ϕ)∥0,Ω

}
.

(2.31)

It is important to note here that the term ∥̃S(S1(ϕ),S2(ϕ))∥1,∞,Ω is bounded for each ϕ ∈ H1
0(Ω ), thanks to (2.23). In

this way, we are in a position to prove the Lipschitz continuity of T. In fact, from (2.24) and (2.31) we find that

∥T(φ) − T(ϕ)∥1,Ω = ∥̃S(S1(φ),S2(φ)) − S̃(S1(ϕ),S2(ϕ))∥1,Ω

≤
1
α2

{
Lg ∥S(φ) − S(ϕ)∥H + Lϑ∥T(ϕ)∥1,∞,Ω ∥S(φ) − S(ϕ)∥H

}
≤

1
α2

CS
{

Lg + Lϑ ∥T(ϕ)∥1,∞,Ω

}
∥φ − ϕ∥0,Ω ,

which gives (2.26) and completes the proof. □

Lemma 2.8. Let W be as in Lemma 2.5. Then, T : W → W is continuous and T(W ) is compact.

Proof. It follows analogously to the proof of [17, Lemma 3.12], and it is a consequence of the Rellich–Kondrachov
compactness Theorem [29, Thm. 6.3] in combination with (2.23), and the fact that every bounded sequence in a
Hilbert space has a weakly convergent subsequence. □

The main result of this section is stated next.

Theorem 2.9. The mixed-primal problem (2.11) has at least one solution (σ , (u, ρ), φ) ∈ H × H1
0(Ω ) satisfying the

bounds

∥φ∥1,Ω ≤ r (2.32)

and

∥(σ , (u, ρ))∥H ≤ cS
{
∥uD∥1/2,Γ + f2|Ω |

1/2} . (2.33)

Moreover, if the data is such that
1
α2

CS
{

Lg + LϑC∞cS
(
∥uD∥1/2,Γ + f2|Ω |

1/2)} < 1, (2.34)

then the solution φ is unique in W.

Proof. Thanks to Lemmas 2.5 and 2.8, the existence of solution is merely an application of the Schauder fixed-point
theorem. In turn, the estimates (2.32) and (2.33) follow from Lemmas 2.3 and 2.2, respectively. Furthermore, given
another solution ϕ ∈ W of (2.12), the estimate in (2.23) confirms (2.34) as a sufficient condition for concluding,
together with (2.26), that φ = ϕ. □
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As announced in the Introduction, we notice here that, differently from the analysis in [17] and [18], the existence
result provided by Theorem 2.9 does not require the data to be sufficiently small. However, we point out that the
existence of the fourth component φ of the solution is restricted to the ball W :=

{
φ ∈ H1

0(Ω ) : ∥φ∥1,Ω ≤ r
}
, whose

radius r depends on the data ϑ0 and g2 (cf. (2.20)).

3. A mixed-primal Galerkin scheme

In this section we define a first numerical approximation associated with (2.11). We derive general hypotheses on
the finite-dimensional subspaces defining the Galerkin finite element method, and ensuring that the discrete problem
is indeed well-posed. Existence of solutions will follow by means of Brouwer’s fixed-point theorem, and we will
derive adequate a priori error estimates.

3.1. The mixed-primal discrete formulation

Let Th be a regular partition of Ω into triangles K of diameter hK , where h := max {hK : K ∈ Th} is the meshsize.
Let us also consider arbitrary finite-dimensional subspaces

Hσ
h ⊆ H0(div,Ω ), Hu

h ⊆ L2(Ω ), Hρ
h ⊆ L2

skew(Ω ) and Hφ

h ⊆ H1
0(Ω ),

whose specification will be made clear later on, in Section 3.4. The corresponding Galerkin scheme can be already
defined as: find (σ h, (uh, ρh), φh) ∈ Hσ

h × (Hu
h × Hρ

h ) × Hφ

h such that

a(σ h, τ h) + b(τ h, (uh, ρh)) = G(τ h) ∀ τ h ∈ Hσ
h ,

b(σ h, (vh, ηh)) = Fφh (vh, ηh) ∀ (vh, ηh) ∈ Hu
h × Hρ

h ,

Aσ h (φh, ψh) = Guh (ψh) ∀ψh ∈ Hφ

h .

(3.1)

A discrete analogue to the fixed-point strategy from Section 2.2 will be presented in what follows.

3.2. Discrete fixed-point approach

Let us introduce the operator Sh : Hφ

h → Hσ
h × (Hu

h × Hρ
h ) defined by

Sh(φh) := (S1,h(φh), (S2,h(φh),S3,h(φh))) := (σ h, (uh, ρh)) ∀φh ∈ Hφ

h ,

where (σ h,uh, ρh) solves uniquely the problem

a(σ h, τ h) + b(τ h, (uh, ρh)) = G(τ h) ∀ τ h ∈ Hσ
h ,

b(σ h, (vh, ηh)) = Fφh (vh, ηh) ∀ (vh, ηh) ∈ Hu
h × Hρ

h ,
(3.2)

with Fφh defined in (2.4) with φ = φh . On the other hand, we define S̃h : Hσ
h × Hu

h → Hφ

h as

S̃h(σ h,uh) := φh ∀ (σ h,uh) ∈ Hσ
h × Hu

h,

where φh is the unique solution of

Aσ h (φh, ψh) = Guh (ψh) ∀ψh ∈ Hφ

h , (3.3)

with Aσ h and Guh being defined by (2.9) with σ = σ h and (2.10) with u = uh , respectively. Therefore, solving (3.1)
is equivalent to find φh ∈ Hφ

h such that

Th(φh) = φh,

where the fixed-point operator is characterised by

Th : Hφ

h → Hφ

h , Th(φh) := S̃h(S1,h(φh),S2,h(φh)) ∀φh ∈ Hφ

h .

The well-definition of Th then hinges on the well-posedness of S̃h and Sh . For the latter, we anticipate that further
hypotheses on the discrete spaces Hσ

h ,Hu
h and Hρ

h will be required. To this end, we now let Vh be the discrete kernel
of b, that is

Vh :=
{
τ h ∈ Hσ

h : b(τ h, (vh, ηh)) = 0 ∀ (vh, ηh) ∈ Hu
h × Hρ

h

}
,
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and assume the following discrete inf–sup conditions (which do hold for some finite element spaces, as those listed in
Section 3.4):

[H.0] There exists a constant α̂ > 0, independent of h, such that

sup
τh∈Vh
τh ̸=0

a(σ h, τ h)
∥τ h∥div,Ω

≥ α̂ ∥σ h∥div,Ω ∀ σ h ∈ Vh . (3.4)

[H.1] There exists a constant β̂ > 0, independent of h, such that

sup
τh∈Hσh
τh ̸=0

b(τ h, (vh, ηh))
∥τ h∥div,Ω

≥ β̂
(vh, ηh)


L2(Ω)×L2

skew(Ω) ∀ (vh, ηh) ∈ Hu
h × Hρ

h . (3.5)

Lemma 3.1. For each φh ∈ Hφ

h the problem (3.2) has a unique solution Sh(φh) := (σ h, (uh, ρh)) ∈ Hσ
h × (Hu

h ×Hρ
h ).

Moreover, there exists C̃ > 0, depending on µ, α̂, β̂, but independent of φh , such that

∥Sh(φh)∥H =
(σ h, (uh, ρh))


H ≤ C̃

{
∥uD∥1/2,Γ + f2|Ω |

1/2} .
Proof. It follows directly from the discrete Babuška–Brezzi theory [21, Thm. 2.4]. Indeed, the induced operators
for the forms a and b are bounded on subspaces of the corresponding continuous spaces. Furthermore, the linear
functional G restricted to Hσ

h is bounded as indicated in (2.16), and for each φh ∈ Hφ

h , the functional Fφh restricted
to Hu

h × Hρ
h is bounded as well. The remaining hypotheses are precisely [H.0] and [H.1], and hence the proof is

finished. □

Lemma 3.2. Let (σ h,uh) ∈ Hσ
h ×Hu

h . Then, there exists a unique φh := S̃h(σ h,uh) ∈ Hφ

h solution of (3.3). Moreover,
with the same constant r provided by Lemma 2.3, there holds

∥̃Sh(σ h,uh)∥1,Ω = ∥φh∥1,Ω ≤ r.

Proof. It suffices to note that for each (σ h,uh) ∈ Hσ
h × Hu

h , the operator Aσ h is elliptic on Hφ

h with the same constant
α2 from the proof of Lemma 2.3, and that Guh restricted to Hφ

h is bounded as in (2.19). Hence, the result is a direct
application of the Lax–Milgram Lemma. □

3.3. Solvability of the discrete fixed-point equation

The following steps verify the hypotheses of the Brouwer fixed-point theorem (see, e.g. [31, Thm. 9.9-2]).

Lemma 3.3. For the closed ball Wh :=

{
φh ∈ Hφ

h : ∥φh∥1,Ω ≤ r
}

, we have that Th(Wh) ⊆ Wh .

Proof. It is a straightforward consequence of Lemma 3.2. □

Lemma 3.4. There exists C > 0 depending on µ, L f , α̂ and β̂ (cf. (1.1), (1.4), (3.4), (3.5)) such that

∥Sh(φh) − Sh(ϕh)∥H ≤ C ∥φh − ϕh∥0,Ω ∀φh, ϕh ∈ Hφ

h .

Proof. It follows analogously to the proof of Lemma 2.6. □

Lemma 3.5. For each (σ h,uh), (ζ h,wh) ∈ Hσ
h × Hu

h , there holds

∥̃Sh(σ h,uh) − S̃h(ζ h,wh)∥1,Ω ≤
1
α2

{
Lg ∥uh − wh∥0,Ω + Lϑ∥∇S̃h(ζ h,wh)∥∞,Ω

σ h − ζ h


0,Ω

}
. (3.6)

Proof. Given (σ h,uh), (ζ h,wh) ∈ Hσ
h ×Hu

h , we let φh := S̃h(σ h,uh) and ϕh := S̃h(ζ h,wh).We then proceed similarly
to the proof of Lemma 2.7 to obtain

α2 ∥φh − ϕh∥
2
1,Ω ≤

{
Lg ∥uh − wh∥0,Ω + Lϑ∥∇ϕh∥∞,Ω

σ h − ζ h


0,Ω

}
∥φh − ϕh∥1,Ω ,



422 G.N. Gatica et al. / Comput. Methods Appl. Mech. Engrg. 337 (2018) 411–438

and realise that Hφ

h consists of piecewise polynomials (see Section 3.4) to conclude that ∥∇ϕh∥∞,Ω < +∞, and hence
(3.6) holds. □

The following result is a consequence of Lemmas 3.3–3.5.

Lemma 3.6. Let C be as in Lemma 3.4. Then, for all φh, ϕh ∈ Hφ

h , there holds

∥Th(φh) − Th(ϕh)∥1,Ω ≤
1
α2

C
(
Lg + Lϑ∥∇Th(ϕh)∥∞,Ω

)
∥φh − ϕh∥0,Ω .

Proof. It follows after recalling that Th(φh) = S̃h(S1,h(φh),S2,h(φh)) for all φh ∈ Hφ

h , and applying Lemmas 3.3–
3.5. □

Finally, thanks to Lemmas 3.3 and 3.6, a straightforward application of the aforementioned Brouwer fixed-point
theorem implies the main result of this section, stated as follows.

Theorem 3.7. The Galerkin scheme (3.1) has at least one solution (σ h, (uh, ρh), φh) ∈ Hσ
h × (Hu

h × Hρ
h ) × Hφ

h .
Furthermore, there exists a positive constant C̃, independent of the discretisation parameters, such that

∥φ∥1,Ω ≤ r and
(σ h, (uh, ρh))


H ≤ C̃

{
∥uD∥1/2,Γ + f2|Ω |

1/2} .
3.4. Specific finite element subspaces

Given an integer k ≥ 0, for each K ∈ Th we let Pk(K ) be the space of polynomial functions on K of degree
≤ k and recall the definition of the local Raviart–Thomas space of order k as RTk(K ) := Pk(K ) ⊕ Pk(K ) x, where
Pk(K ) = [Pk(K )]2, and x is the generic vector in R2. In addition, we let bK be the element bubble function defined as
the unique polynomial in Pk+1(K ) vanishing on ∂K with

∫
K bK = 1. Then, for each K ∈ Th we consider the bubble

space of order k, by

Bk(K ) := Pk(K )
(
∂bK

∂x2
,−
∂bK

∂x1

)
.

Appropriate finite element subspaces approximating the elasticity unknowns are as follows

Hσ
h := {τ h ∈ H0(div,Ω ) : τ h |K ∈ RTk(K ) ⊕ Bk(K ) ∀ K ∈ Th} , (3.7)

Hu
h :=

{
vh ∈ L2(Ω ) : vh |K ∈ Pk(K ) ∀ K ∈ Th

}
, (3.8)

Hρ
h :=

{
ηh ∈ L2

skew(Ω ) : ηh ∈ C(Ω ) and ηh |K ∈ Pk+1(K ) ∀ K ∈ Th
}
. (3.9)

The discrete product space Hσ
h × Hu

h ×Hρ
h constitutes the classical PEERS elements introduced in [14] for the mixed

finite element approximation of Dirichlet linear elasticity. In contrast, the approximation of the diffusion problem will
be carried out using Lagrange finite elements of degree ≤ k + 1, that is

Hφ

h :=
{
ψh ∈ C(Ω ) ∩ H1

0(Ω ) ψh |K ∈ Pk+1(K ) ∀ K ∈ Th
}
. (3.10)

Useful approximation properties of these spaces are listed as follows (see e.g. [21,25]):

(APσh ) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each σ ∈

Hs(Ω ) ∩ H0(div,Ω ) with div (σ ) ∈ Hs(Ω ), there holds

dist(σ ,Hσ
h ) := inf

τh∈Hσh
∥σ − τ h∥div,Ω ≤ Chs {

∥σ∥s,Ω + ∥div (σ )∥s,Ω
}
.

(APu
h) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each u ∈ Hs(Ω ), there

holds

dist(u,Hu
h) := inf

vh∈Hu
h

∥u − vh∥0,Ω ≤ Chs
∥u∥s,Ω .
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(APρh ) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each ρ ∈ Hs(Ω ), there
holds

dist(ρ,Hρ
h ) := inf

ηh∈Hρh
∥ρ − ηh∥0,Ω ≤ Chs

∥ρ∥s,Ω .

(APφh ) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each φ ∈ Hs+1(Ω ), there
holds

dist(φ,Hφ

h ) := inf
ψh∈Hφh

∥φ − ψh∥1,Ω ≤ Chs
∥φ∥s+1,Ω .

Next, we recall from [21, Sect. 4.5] that the discrete kernel of b is given by

Vh :=

{
τ h ∈ Hσ

h : div τ h = 0 in Ω and
∫
Ω

ηh : τ h = 0 ∀ ηh ∈ Hρ
h

}
,

and according to (2.15) and Lemma 2.1, the bilinear form a is Vh-elliptic, implying that [H.0] is satisfied. Concerning
assumption [H.1] we have the following result, proven in [21, Sect. 4.5].

Lemma 3.8. There exists β̂ > 0 such that

sup
τh∈Hσh \{0}

b(τ h, (vh, ηh))
∥τ h∥div,Ω

≥ β̂
(vh, ηh)


L2(Ω)×L2

skew(Ω) ∀ (vh, ηh) ∈ Hu
h × Hρ

h .

3.5. A priori error analysis

Let (σ , (u, ρ), φ) ∈ H0(div,Ω ) × (L2(Ω ) ×L2
skew(Ω )) × H1

0(Ω ) with φ ∈ W , and (σ h, (uh, ρh), φh) ∈ Hσ
h × (Hu

h ×

Hρ
h ) × Hφ

h with φh ∈ Wh ; be the solutions of (2.11) and (3.1), respectively. That is,

a(σ , τ ) + b(τ , (u, ρ)) = G(τ ) ∀ τ ∈ H0(div,Ω ),

b(σ , (v, η)) = Fφ(v, η) ∀ (v, η) ∈ L2(Ω ) × L2
skew(Ω ),

a(σ h, τ h) + b(τ h, (uh, ρh)) = G(τ h) ∀ τ h ∈ Hσ
h ,

b(σ h, (vh, ηh)) = Fφh (vh, ηh) ∀ (vh, ηh) ∈ Hu
h × Hρ

h

(3.11)

and

Aσ (φ,ψ) = Gu(ψ) ∀ψ ∈ H1
0(Ω ),

Aσ h (φh, ψh) = Guh (ψh) ∀ψh ∈ Hφ

h .
(3.12)

Next, we recall a generalised Strang inequality (cf. [32, Thm. 11.2]), to be applied in (3.11).

Lemma 3.9. For Hilbert spaces X, Y , let a : X × X → R, b : X × Y → R be bounded bilinear forms and
F ∈ X ′,G ∈ Y ′ satisfying the hypotheses of the Babuška–Brezzi theory. Furthermore, let {Xh}h>0 and {Yh}h>0 be
sequences of finite-dimensional subspaces of X and Y , respectively, and suppose that a, b and Fh ∈ X ′

h,Gh ∈ Y ′

h
satisfy the hypotheses of the discrete Babuška–Brezzi theory uniformly on Xh and Yh , that is, there exist positive
constants α and β independent of h, such that

sup
φh∈Vh
φh ̸=0

a(ψh,φh)φh


X

≥ α
ψh


X ∀ψh ∈ Vh and sup

ψh∈Xh
ψh ̸=0

b(ψh, µh)ψh


X

≥ β ∥µh∥Y ∀µh ∈ Yh, (3.13)

where Vh is the discrete kernel of b. Then, there exists a constant CST dependent only on ∥a∥ , ∥b∥ , α and β such that
if (ϕ, λ) ∈ X × Y and (ϕh, λh) ∈ Xh × Yh are solutions to

a(ϕ,ψ) + b(ψ, λ) = F(ψ) ∀ ψ ∈ X,

b(ϕ,µ) = G(µ) ∀ µ ∈ Y,
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and

a(ϕh, ψh) + b(ψh, λh) = Fh(ψh) ∀ ψh ∈ Xh,

b(ϕh, µh) = Gh(µh) ∀ µh ∈ Yh,

respectively, then for each h > 0, there holds

∥ϕ − ϕh∥X + ∥λ− λh∥Y ≤ CST

⎧⎪⎨⎪⎩ inf
ψh∈Xh
ψh ̸=0

∥ϕ − ψh∥X + inf
µh∈Yh
µh ̸=0

∥λ− µh∥Y

+ sup
φh∈Xh
φh ̸=0

|F(φh) − Fh(φh)|
∥φh∥X

+ sup
ηh∈Yh
ηh ̸=0

|G(ηh) − Gh(ηh)|
∥ηh∥Y

⎫⎪⎬⎪⎭ .
In addition to the notations introduced in the approximation properties given in Section 3.4, we now define

dist
(
(σ , (u, ρ)),Hσ

h × (Hu
h × Hρ

h )
)

:= inf
(τh ,(vh ,ηh ))∈Hσh ×(Hu

h×Hρh )

(σ , (u, ρ)) − (τ h, (vh, ηh))


H ,

or, equivalently,

dist
(
(σ , (u, ρ)),Hσ

h × (Hu
h × Hρ

h )
)

:= dist(σ ,Hσ
h ) + dist(u,Hu

h) + dist
(
ρ,Hρ

h

)
.

The following lemma provides an estimate for
(σ , (u, ρ)) − (σ h, (uh, ρh))


H .

Lemma 3.10. There exists CST > 0, depending on µ, α̂ and β̂ (cf. (1.1), (3.4), (3.5)), such that(σ , (u, ρ)) − (σ h, (uh, ρh))


H ≤ CST
{
dist

(
(σ , (u, ρ)),Hσ

h × (Hu
h × Hρ

h )
)
+ L f ∥φ − φh∥0,Ω

}
. (3.14)

Proof. We clearly observe that (3.4) and (3.5) imply that the hypothesis (3.13) in Lemma 3.9 is satisfied. Then, a
straightforward application of Lemma 3.9 to (3.11), readily gives(σ , (u, ρ)) − (σ h, (uh, ρh))


H

≤ CST

{
∥(Fφ − Fφh )|Hu

h×Hρh
∥ + dist

(
(σ , (u, ρ)),Hσ

h × (Hu
h × Hρ

h )
)}
.

(3.15)

Next, and analogously to the proof of Lemma 2.6, we can assert that

∥(Fφ − Fφh )|Hu
h×Hρh

∥ ≤ L f ∥φ − φh∥0,Ω , (3.16)

and finally, by replacing (3.16) back into (3.15), we get the desired result. □

Lemma 3.11. Let α2 be the ellipticity constant of the bilinear form Aσ (cf. (2.18)). Then, there holds

∥φ − φh∥1,Ω ≤
Lg

α2
∥u − uh∥0,Ω +

(
1 +

ϑ2

α2

)
dist(φ,Hφ

h ) +
Lϑ
α2

∥φ∥1,∞,Ω ∥σ − σ h∥0,Ω . (3.17)

Proof. We first observe by triangle inequality that

∥φ − φh∥1,Ω ≤ ∥φ − ψh∥1,Ω + ∥φh − ψh∥1,Ω ∀ψh ∈ Hφ

h . (3.18)

Then, applying the ellipticity of Aσ h and adding and subtracting the expression Guh (φh − ψh) = Aσ h (φh − ψh),
(cf. (3.12)) we find that

α2 ∥φh − ψh∥
2
1,Ω ≤ Aσ h (φh − ψh, φh − ψh)

≤ |Guh (φh − ψh) − Gu(φh − ψh)| + |Aσ (φ, φh − ψh) − Aσ h (ψh, φh − ψh)|.
(3.19)

Next, analogously to (2.28), we get

|Guh (φh − ψh) − Gu(φh − ψh)| ≤ Lg ∥uh − u∥0,Ω ∥φh − ψh∥0,Ω . (3.20)
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In turn, adding and subtracting
∫
Ω ϑ(σ h)∇φ · ∇(φh −ψh), and applying the upper bound of ϑ (cf. (1.3)), we arrive at

|Aσ (φ, φh − ψh) − Aσ h (ψh, φh − ψh)|

≤ ϑ2|φ − ψh |1,Ω |φh − ψh |1,Ω + Lϑ ∥∇φ∥∞,Ω ∥σ − σ h∥0,Ω |φh − ψh |1,Ω .
(3.21)

Thus, the inequalities (3.19), (3.20) and (3.21), imply that

∥φh − ψh∥1,Ω ≤
Lg

α2
∥u − uh∥0,Ω +

ϑ2

α2
∥φ − ψh∥1,Ω +

Lϑ
α2

∥φ∥1,∞,Ω ∥σ − σ h∥0,Ω . (3.22)

Finally, replacing (3.22) back into (3.18) and taking the infimum on ψh ∈ Hφ

h , completes the proof. □

To derive the Céa estimation for the total error ∥φ − φh∥1,Ω +
(σ , (u, ρ)) − (σ h, (uh, ρh))


H , we combine the

inequalities provided by Lemmas 3.10 and 3.11. For sake of notational convenience we introduce the following
constants

C1 :=
Lg

α2
CST, C2 :=

Lϑ
α2

C∞CST, C3 := 1 +
ϑ2

α2
. (3.23)

Hence, replacing the bound for ∥u − uh∥0,Ω and ∥σ − σ h∥0,Ω into (3.17), applying (2.23), and performing algebraic
manipulations, we can deduce the bounds

∥φ − φh∥1,Ω ≤ C1
{
dist

(
(σ , (u, ρ)),Hσ

h × (Hu
h × Hρ

h )
)
+ L f ∥φ − φh∥0,Ω

}
+ C3 dist(φ,Hφ

h )

+ C2 cS
{
∥uD∥1/2,Γ + f2|Ω |

1/2}{dist
(
(σ , (u, ρ)),Hσ

h × (Hu
h × Hρ

h )
)
+ L f ∥φ − φh∥0,Ω

}
≤

{
C1 + C2 cS

(
∥uD∥1/2,Γ + f2|Ω |

1/2)} {
dist

(
(σ , (u, ρ)),Hσ

h × (Hu
h × Hρ

h )
)}

+ L f
{
C1 + C2 cS

(
∥uD∥1/2,Γ + f2|Ω |

1/2)}
∥φ − φh∥1,Ω + C3 dist (φ,Hφ

h ).

(3.24)

Consequently, we can establish the following result which provides the complete Céa estimate.

Theorem 3.12. Assume that the data satisfy

L f
{
C1 + C2 cS

(
∥uD∥1/2,Γ + f2|Ω |

1/2)} < 1
2
. (3.25)

Then, there exist positive constants C4 and C5 independent of h, such that

∥φ − φh∥1,Ω +
(σ , (u, ρ)) − (σ h, (uh, ρh))


H

≤ C4 dist (φ,Hφ

h ) + C5 dist
(
(σ , (u, ρ)),Hσ

h × (Hu
h × Hρ

h )
)
.

(3.26)

Proof. The estimate for ∥φ − φh∥1,Ω follows from (3.24) and (3.25), and the proof is complete after inserting the
bound back into (3.14). □

Theorem 3.13. In addition to the hypotheses of Theorems 2.9, 3.7 and 3.12, assume that there exists s > 0 such that
σ ∈ Hs(Ω ), div (σ ) ∈ Hs(Ω ), u ∈ Hs(Ω ), ρ ∈ Hs(Ω ) and φ ∈ H1+s(Ω ). Then, there exists Ĉ > 0, independent of
h, such that, with the finite element subspaces defined by (3.7), (3.8), (3.9) and (3.10), there holds

∥φ − φh∥1,Ω +
(σ , (u, ρ)) − (σ h, (uh, ρh))


H

≤ Ĉhmin{s,k+1}
{
∥σ∥s,Ω + ∥div σ∥s,Ω + ∥u∥s,Ω + ∥ρ∥s,Ω + ∥φ∥1+s,Ω

}
.

(3.27)

Proof. It follows as a combination of the Céa estimate (3.26), and the approximation properties (APσh ), (APu
h), (APρh )

and (APφh ). □

4. An augmented mixed-primal formulation

In this section we follow the approach from previous works (see, e.g. [15,17,33] and the references therein) and put
forward an augmented mixed-primal formulation for (1.7), which, as shown below, allows more freedom for choosing
the finite element subspaces. We establish the augmented mixed-primal variational formulation of (1.1) and show that
it is well-posed. Next, we define the corresponding Galerkin scheme, prove its solvability, introduce a specific mixed
finite element method, and finally we establish the corresponding a priori error estimate.
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4.1. The continuous setting

In order to increase flexibility in choosing discrete spaces for the approximation of the elasticity problem, we
incorporate the following redundant terms in the variational formulation (2.6):

κ1

∫
Ω

(
ε(u) − C−1σ

)
: ε(v) = 0 ∀ v ∈ H1(Ω ),

κ2

∫
Ω

div σ · div τ = − κ2

∫
Ω

f (φ) · div τ ∀ τ ∈ H0(div,Ω ),

κ3

∫
Ω

(ρ − (∇ u − ε(u))) : η = 0 ∀ η ∈ L2
skew(Ω ),

κ4

∫
Γ

u · v = κ4

∫
Γ

uD · v ∀ v ∈ H1(Ω ),

(4.1)

where (κ1, κ2, κ3, κ4) is a vector of positive parameters to be specified later on. It is important to observe here that the
above terms now require that the displacement u live in H1(Ω ).

Then, and alternatively to (2.6), we may consider the following augmented mixed formulation for the elasticity
problem: find (σ ,u, ρ) ∈ H0(div,Ω ) × H1(Ω ) × L2

skew(Ω ) such that

B̃((σ ,u, ρ), (τ , v, η)) = F̃φ(τ , v, η) ∀(τ , v, η) ∈ H0(div,Ω ) × H1(Ω ) × L2
skew(Ω ), (4.2)

where the multilinear form and the associated right hand side functional are defined as

B̃((σ ,u, ρ), (τ , v, η)) := a(σ , τ ) + b(τ , (u, ρ)) − b(σ , (v, η)) + κ1

∫
Ω

(
ε(u) − C−1σ

)
: ε(v)

+ κ2

∫
Ω

div σ · div τ + κ3

∫
Ω

(ρ − (∇ u − ε(u))) : η + κ4

∫
Γ

u · v, (4.3)

F̃φ(τ , v, η) := G(τ ) − Fφ(v, η) − κ2

∫
Ω

f (φ) · div τ + κ4

∫
Γ

uD · v. (4.4)

Hence, the augmented mixed-primal formulation for (1.7) reduces to (2.8) and (4.2), i.e.: find (σ ,u, ρ, φ) ∈

H0(div,Ω ) × H1(Ω ) × L2
skew(Ω ) × H1

0(Ω ) such that

B̃((σ ,u, ρ), (τ , v, η)) = F̃φ(τ , v, η) ∀ (τ , v, η) ∈ H0(div,Ω ) × H1(Ω ) × L2
skew(Ω ),

Aσ (φ,ψ) = Gu(ψ) ∀ψ ∈ H1
0(Ω ).

(4.5)

We proceed to adapt the approach from Sections 2.2 and 2.3. Since now u ∈ H1(Ω ), we can define

S : H1
0(Ω ) → H0(div,Ω ) × H1(Ω ) × L2

skew(Ω ), S(φ) := (S1(φ),S2(φ),S3(φ)) := (σ ,u, ρ),

where (σ ,u, ρ) is the unique solution of (4.2) with a given φ ∈ H1
0(Ω ). In turn, we define the operator

S̃ : H0(div,Ω ) × H1(Ω ) → H1
0(Ω ), S̃(σ ,u) := φ ∀ (σ ,u) ∈ H0(div,Ω ) × H1(Ω ),

where φ is the unique solution of (2.8) with the given (σ ,u). Next, the definition of T and the fixed-point strategy
follow exactly as in Section 2.2. The analysis of S̃ can be therefore omitted.

The following lemma will be instrumental in showing the well-posedness of (4.2) for a given φ.

Lemma 4.1. There exists c2 > 0 such that

∥ε(v)∥2
1,Ω + ∥v∥2

0,Γ ≥ c2 ∥v∥2
1,Ω ∀v ∈ H1(Ω ).

Proof. See [15, Lemma 3.1 and (3.9)]. □

Lemma 4.2. Assume that κ1 ∈ (0, 4δµ) and κ3 ∈
(
0, 2c2κ1δ̃

(
1 −

δ
2

))
with δ, δ̃ ∈ (0, 2), and that κ2, κ4 > 0. Then,

for each φ ∈ H1
0(Ω ), problem (4.2) has a unique solution S(φ) := (σ ,u, ρ) ∈ H := H0(div,Ω ) × H1(Ω ) ×L2

skew(Ω ).
Moreover, there exists kS > 0, independent of φ, such that

∥S(φ)∥H = ∥(σ ,u, ρ)∥H ≤ kS
{
∥uD∥1/2,Γ + f2|Ω |

1/2}
∀φ ∈ H1

0(Ω ).
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Proof. We first observe from (4.3) that B is a bilinear form. Next, applying Cauchy–Schwarz’s inequality together
with the trace theorem (with constant c3), we can assert that

|B̃((σ ,u, ρ), (τ , v, η))| ≤
1
µ

∥σ∥0,Ω∥τ∥0,Ω + ∥u∥0,Ω ∥div τ∥0,Ω + ∥ρ∥0,Ω ∥τ∥0,Ω + ∥v∥0,Ω ∥div σ∥0,Ω

+ ∥η∥0,Ω ∥σ∥0,Ω + κ1 ∥ε(u)∥0,Ω ∥ε(v)∥0,Ω +
κ1

µ
∥σ∥0,Ω ∥ε(v)∥0,Ω + κ2 ∥div σ∥0,Ω ∥div τ∥0,Ω

+ κ3 ∥ρ∥0,Ω ∥η∥0,Ω + κ3|u|1,Ω ∥η∥0,Ω + κ3 ∥ε(u)∥0,Ω ∥η∥0,Ω + κ4c2
3 ∥u∥1,Ω ∥v∥1,Ω .

It follows that there exists ∥B̃∥ > 0 depending on µ, κ1, κ2, κ3, κ4 and c3, such that

|B̃((σ ,u, ρ), (τ , v, η))| ≤ ∥B̃∥ ∥(σ ,u, ρ)∥H ∥(τ , v, η)∥H ∀ (σ ,u, ρ), (τ , v, η) ∈ H,

implying that B̃ is bounded independently of φ ∈ H1
0(Ω ). The H -ellipticity analysis of B̃ will be conducted as in the

proof of [16, Thm. 3.1]. For each (τ , v, η) ∈ H , Young’s inequality yields

B̃((τ , v, η), (τ , v, η)) =

∫
Ω

C−1τ : τ + κ1 ∥ε(v)∥2
0,Ω − κ1

C−1τ


0,Ω ∥ε(v)∥0,Ω + κ2 ∥div τ∥
2
0,Ω

+ κ3 ∥η∥2
0,Ω − κ3 ∥∇v − ε(v)∥0,Ω ∥η∥0,Ω + κ4 ∥v∥2

0,Γ

=

∫
Ω

C−1τ : τ −
κ1

2δ

C−1τ
2

0,Ω + κ1 ∥ε(v)∥2
0,Ω −

κ1δ

2
∥ε(v)∥2

0,Ω + κ2 ∥div τ∥
2
0,Ω

+ κ3 ∥η∥2
0,Ω −

κ3

2̃δ
∥∇v − ε(v)∥2

0,Ω −
κ3δ̃

2
∥η∥2

0,Ω + κ4 ∥v∥2
0,Γ ,

from which, taking δ, δ̃, κ1, κ2, κ3, κ4 as stated in the hypotheses, applying Lemmas 2.1 and 4.1, and using the relation
∥∇v − ε(v)∥2

0,Ω = |v|21,Ω − ∥ε(v)∥2
0,Ω , we can deduce that

B̃((τ , v, η), (τ , v, η)) ≥
1

2µ

(
1 −

κ1

4δµ

)
∥τ d

∥
2
0,Ω + κ2 ∥div τ∥

2
0,Ω + κ1

(
1 −

δ

2

)
∥ε(v)∥2

0,Ω

+ κ3

(
1 −

δ̃

2

)
∥η∥2

0,Ω −
κ3

2̃δ
|v|21,Ω + κ4 ∥v∥2

0,Γ

= α̃2 ∥τ∥
2
div,Ω +

(
c2α̃3 −

κ3

2̃δ

)
∥v∥2

1,Ω + κ3

(
1 −

δ̃

2

)
∥η∥2

0,Ω ,

where α̃1 := min{
1

2µ

(
1 −

κ1
4δµ

)
,
κ2
2 }, α̃2 := min{c1α̃1,

κ2
2 }, and α̃3 := min{κ1

(
1 −

δ
2

)
, κ4}. In this way, defining

α̃ := min{̃α2, c2α̃3 −
κ3
2̃δ , κ3

(
1 −

δ̃
2

)
}, which depends on µ, δ, δ̃, κ1, κ2, κ3, κ4, c1 and c2, we conclude that

B̃((τ , v, η), (τ , v, η)) ≥ α̃ ∥(τ , v, η)∥2
H ∀ (τ , v, η) ∈ H. (4.6)

Next, given φ ∈ H1
0(Ω ), we look at the functional F̃φ , which is certainly linear. Similarly to the proof of [17, Lemma

3.4], there exists a positive constant ∥F̃∥ depending on κ2, κ4 and c3, such that

|F̃φ(τ , v, η)| ≤ ∥F̃∥
{
∥uD∥1/2,Γ + f2|Ω |

1/2}
∥(τ , v, η)∥H . (4.7)

The foregoing inequality shows the boundedness of F̃φ with

∥F̃φ∥ ≤ ∥F̃∥
{
∥uD∥1/2,Γ + f2|Ω |

1/2} . (4.8)

Finally, a straightforward application of the Lax–Milgram Lemma proves that for each φ ∈ H1
0(Ω ), problem (4.2) has

a unique solution S(φ) := (σ ,u, ρ) ∈ H. Moreover, the corresponding continuous dependence result together with
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the estimates (4.6) and (4.7) give

∥S(φ)∥H = ∥(σ ,u, ρ)∥H ≤
1
α̃

∥F̃φ∥H ′ ≤ kS
{
∥uD∥1/2,Γ + f2|Ω |

1/2} ,
with kS :=

∥F̃∥

α̃
, thus completing the proof. □

Lemma 4.3. Let α̃ be the ellipticity constant provided in Lemma 4.2. Then, there exists KS > 0 depending on L f , κ2

and α̃ (cf. (1.4), (4.1), (4.6)), such that

∥S(φ) − S(ϕ)∥H ≤ KS ∥φ − ϕ∥0,Ω ∀φ, ϕ ∈ H1
0(Ω ). (4.9)

Proof. We follow [17, Lemma 3.9], and fix φ, ϕ ∈ H1
0(Ω ). We then take (σ ,u, ρ) = S(φ) and (ζ ,w,χ ) = S(ϕ), that

is

B̃((σ ,u, ρ), (τ , v, η)) = F̃φ(τ , v, η) and B̃((ζ ,w,χ ), (τ , v, η)) = F̃ϕ(τ , v, η) ∀(τ , v, η) ∈ H.

Exploiting the ellipticity of B̃ we readily get

α̃ ∥(σ ,u, ρ) − (ζ ,w,χ )∥2
H ≤ B̃((σ ,u, ρ), (σ ,u, ρ) − (ζ ,w,χ )) − B̃((ζ ,w,χ ), (σ ,u, ρ) − (ζ ,w,χ ))

= (F̃φ − F̃ϕ)((σ ,u, ρ) − (ζ ,w,χ )),
(4.10)

and the definition of F̃φ in combination with Cauchy–Schwarz’s inequality and (1.4) implies that

|(F̃φ − F̃ϕ)((σ ,u, ρ) − (ζ ,w,χ ))|

=

⏐⏐⏐⏐∫
Ω

(f (φ) − f (ϕ)) · (u − w) − κ2

∫
Ω

(f (φ) − f (ϕ)) · div(σ − ζ )
⏐⏐⏐⏐

≤ L f (1 + κ2
2 )1/2

∥φ − ϕ∥0,Ω ∥(σ ,u, ρ) − (ζ ,w,χ )∥H .

(4.11)

Back substitution of (4.11) into (4.10) then yields

α̃ ∥(σ ,u, ρ) − (ζ ,w,χ )∥2
H ≤ L f (1 + κ2

2 )1/2
∥φ − ϕ∥0,Ω ∥(σ ,u, ρ) − (ζ ,w,χ )∥H ,

which finally gives (4.9). □

Lemma 4.4. Let W be the closed ball defined in Lemma 2.5 and KS be as in Lemma 4.3. Then, for each φ, ϕ ∈ H1
0(Ω ),

there holds

∥T(φ) − T(ϕ)∥1,Ω ≤
1
α2

KS
(
Lg + Lϑ ∥T(ϕ)∥1,∞,Ω

)
∥φ − ϕ∥0,Ω .

Proof. The definition of T together with Lemma 2.3 imply that T(W ) ⊆ W . The remainder of the proof proceeds
exactly as the one of Lemma 2.7. □

Theorem 4.5. The mixed-primal problem (2.11) has at least one solution (σ ,u, ρ, φ) ∈ H0(div,Ω ) × H1(Ω ) ×

L2
skew(Ω ) × H1

0(Ω ), satisfying

∥φ∥1,Ω ≤ r and ∥(σ ,u, ρ)∥H ≤ kS
{
∥uD∥1/2,Γ + f2|Ω |

1/2} .
Moreover, if the data satisfy

1
α2

KS
{

Lg + LϑC∞ kS
(
∥uD∥1/2,Γ + f2|Ω |

1/2)} < 1,

then the solution φ is unique in W.

Proof. It follows as in the proof of Theorem 2.9. □
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4.2. The discrete scheme

We begin by observing that, thanks to the ellipticity of the bilinear forms B̃ and Aσ , we can consider arbitrary finite
dimensional-subspaces

Hσ
h ⊆ H0(div,Ω ), Hu

h ⊆ H1(Ω ), Hρ
h ⊆ L2

skew(Ω ) and Hφ

h ⊆ H1
0(Ω ),

for the augmented mixed-primal formulation. In particular, given an integer k ≥ 0, we can define

Hσ
h :=

{
τ h ∈ H0(div,Ω ) : ctτ h |K ∈ RTk(K ) ∀ c ∈ Rn, ∀ K ∈ Th

}
,

Hu
h := {vh ∈ C(Ω ) vh |K ∈ Pk+1(K ) ∀ K ∈ Th} ,

Hρ
h :=

{
ηh ∈ L2

skew(Ω ) ηh |K ∈ Pk(K ) ∀ K ∈ Th
}
,

Hφ

h :=
{
ψh ∈ C(Ω ) ∩ H1

0(Ω ) ψh |K ∈ Pk+1(K ) ∀ K ∈ Th
}
.

(4.12)

Then, a Galerkin scheme for (4.5) reads: find (σ h,uh, ρh, φh) ∈ Hσ
h × Hu

h × Hρ
h × Hφ

h such that

B̃((σ h,uh, ρh), (τ h, vh, ηh)) = F̃φh (τ h, vh, ηh) ∀ (τ h, vh, ηh) ∈ Hσ
h × Hu

h × Hρ
h , (4.13)

Aσ h (φh, ψh) = Guh (ψh) ∀ψh ∈ Hφ

h . (4.14)

We can now proceed analogously to Section 4.1 and define a fixed-point scheme for the analysis of the coupled
problem (4.13)–(4.14). For this purpose, we define Sh : Hφ

h → Hσ
h × Hu

h × Hρ
h as

Sh(φh) := (S1,h(φh),S2,h(φh),S3,h(φh)) := (σ h,uh, ρh) ∀φh ∈ Hφ

h ,

where the triple (σ h,uh, ρh) is the unique solution of (4.13), with B̃ and F̃φh defined by (4.3) and (4.4), respectively,
with φ = φh . In turn, the operators S̃h and Th are defined as in Section 3.2.

As the analysis of the operator S̃h follows verbatim from Section 3.2, we can omit the details here. Concerning Sh ,
we start by investigating the well-posedness of (4.13).

Lemma 4.6. Assume that κ1 ∈ (0, 4δµ) and κ3 ∈
(
0, 2c2κ1δ̃

(
1 −

δ
2

))
with δ, δ̃ ∈ (0, 2), and that κ2, κ4 > 0. Then,

for each φh ∈ Hφ

h the problem (4.13) has a unique solution S(φh) := (σ h,uh, ρh) ∈ Hσ
h × Hu

h × Hρ
h . Moreover, with

the same constant kS > 0 provided by Lemma 4.2, there holds

∥Sh(φh)∥H =
(σ h,uh, ρh)


H ≤ kS

{
∥uD∥1/2,Γ + f2|Ω |

1/2}
∀φh ∈ Hφ

h .

Proof. It suffices to note that for each φh ∈ Hφ

h , the multilinear form B̃ is elliptic on Hσ
h × Hu

h × Hρ
h with the same

constant α̃ from Lemma 4.2 and that ∥F̃φh ∥
(
Hσh ×Hu

h×Hρh
)′ is bounded as in (4.8) with φh in place of φ. Hence, the result

follows from a direct application of the Lax–Milgram Lemma. □

We now provide the discrete analogues of Lemmas 4.3, 4.4 and Theorem 4.5, whose proofs, which are almost
verbatim of the corresponding continuous ones, are omitted.

Lemma 4.7. Let KS be the constant provided by Lemma 4.3. Then, there holds

∥Sh(φh) − Sh(ϕh)∥H ≤ KS ∥φh − ϕh∥0,Ω ∀φh, ϕh ∈ Hφ

h .

Lemma 4.8. Let Wh be as in Lemma 3.3. Then

∥Th(φh) − Th(ϕh)∥1,Ω ≤
1
α2

KS
(
Lg + Lϑ ∥∇Th(ϕh)∥∞,Ω

)
∥φh − ϕh∥0,Ω ∀φh, ϕh ∈ Hφ

h .

Theorem 4.9. Let Wh be as in Lemma 3.3. Then, the Galerkin scheme (4.13)–(4.14) has at least one solution
(σ h,uh, ρh, φh) ∈ Hσ

h × Hu
h × Hρ

h × Hφ

h , and there holds

∥φh∥1,Ω ≤ r and
(σ h,uh, ρh)


H ≤ kS

{
∥uD∥1/2,Γ + f2|Ω |

1/2} .
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4.3. A priori error analysis

The goal of this section is to derive an estimate for
(σ ,u, ρ) − (σ h,uh, ρh)


H , where (σ ,u, ρ) and (σ h,uh, ρh)

are the solutions to the problems

B̃((σ ,u, ρ), (τ , v, η)) = F̃φ(τ , v, η) ∀ (τ , v, η) ∈ H0(div,Ω ) × H1(Ω ) × L2
skew(Ω ),

B̃((σ h,uh, ρh), (τ h, vh, ηh)) = F̃φh (τ h, vh, ηh) ∀ (τ h, vh, ηh) ∈ Hσ
h × Hu

h × Hρ
h ,

(4.15)

respectively. For this purpose, we recall (again from [32]) a Strang-type lemma, which will be applied to (4.15).

Lemma 4.10. Let H be a Hilbert space, F ∈ H ′ and a : H × H → R be a bounded and elliptic bilinear form. In
addition, let {Hh}h>0 be a sequence of finite dimensional subspaces of H and for each h > 0 consider a bounded
bilinear form ah : Hh × Hh → R and a functional Fh ∈ H ′

h . Assume that the family {ah}h>0 is uniformly elliptic, that
is, there exists a constant α > 0, independent of h, such that

ah(vh, vh) ≥ α ∥vh∥
2
H ∀ vh ∈ Hh, ∀ h > 0.

In turn, let u ∈ H and uh ∈ Hh such that

a(u, v) = F(v) ∀ v ∈ H and ah(uh, vh) = Fh(vh) ∀ vh ∈ Hh .

Then, for each h > 0, there holds

∥u − uh∥H

≤ C̃ST

⎧⎪⎨⎪⎩ sup
wh∈Hh
wh ̸=0

|F(wh) − Fh(wh)|
∥wh∥H

+ inf
vh∈Hh
vh ̸=0

⎛⎜⎝∥u − vh∥V + sup
wh∈Hh
wh ̸=0

|a(vh, wh) − ah(vh, wh)|
∥wh∥H

⎞⎟⎠
⎫⎪⎬⎪⎭ .

where C̃ST := α−1 max{1, ∥a∥}.

Proof. See [32, Thm. 11.1]. □

As in Sections 3.4 and 3.5, we now set

dist
(
(σ ,u, ρ),Hσ

h × Hu
h × Hρ

h

)
:= inf

(τh ,vh ,ηh )∈Hσh ×Hu
h×Hρh

(σ ,u, ρ) − (τ h, vh, ηh)


H ,

or, equivalently

dist
(
(σ ,u, ρ),Hσ

h × Hu
h × Hρ

h

)
:= dist(σ ,Hσ

h ) + dist(u,Hu
h) + dist

(
ρ,Hρ

h

)
,

where, having in mind that now Hu
h ⊆ H1(Ω ), we set dist(u,Hu

h) := infvh∈Hu
h
∥u − vh∥1,Ω . The other two distances

are exactly as defined in Section 3.4.

Lemma 4.11. Let C̃ST := α̃−1 max{1, ∥B̃∥}, where α̃ is the constant yielding the ellipticity of B̃ (cf. (4.6)). Then,
there holds(σ ,u, ρ) − (σ h,uh, ρh)


H

≤ C̃ST
{
dist

(
(σ ,u, ρ),Hσ

h × Hu
h × Hρ

h

)
+ L f (1 + κ2

2 )1/2
∥φ − φh∥0,Ω

}
.

(4.16)

Proof. We note that the bilinear form B̃ and the functionals F̃φ and F̃φh satisfy the hypotheses of Lemma 4.10. Then,
a straightforward application of Lemma 4.10 to the context (4.15) gives(σ ,u, ρ) − (σ h,uh, ρh)


H

≤ C̃ST

{
∥(F̃φ − F̃φh )|Hσh ×Hu

h×Hρh
∥ + dist

(
(σ ,u, ρ),Hσ

h × Hu
h × Hρ

h

)}
.

(4.17)

Next, similarly as in the proof of Lemma 4.3, we deduce that

∥(F̃φ − F̃φh )|Hσh ×Hu
h×Hρh

∥ ≤ L f (1 + κ2
2 )1/2

∥φ − φh∥0,Ω . (4.18)

Finally, by replacing (4.18) back into (4.17), we get (4.16) and the lemma follows. □
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At this point, we realise that in the present context the estimate for ∥φ − φh∥1,Ω stays exactly as in (3.17).
Consequently, the corresponding Céa estimate for the total error

∥φ − φh∥1,Ω +
(σ , (u, ρ)) − (σ h, (uh, ρh))


H

is derived by combining (3.17) and (4.16). By virtue of the aforementioned, we can establish the analogues of
Theorems 3.12 and 3.13, whose proofs are omitted.

Theorem 4.12. Let C1 and C2 be the constants defined in (3.23), and assume that the data satisfy

L f (1 + κ2
2 )1/2 {

C1 + C2 kS
(
∥uD∥1/2,Γ + f2|Ω |

1/2)} < 1
2
.

Then, there exist positive constants C6 and C7, independent of h, such that

∥φ − φh∥1,Ω +
(σ ,u, ρ) − (σ h,uh, ρh)


H

≤ C6 dist (φ,Hφ

h ) + C7 dist
(
(σ ,u, ρ),Hσ

h × Hu
h × Hρ

h

)
.

Theorem 4.13. In addition to the hypotheses of Theorems 4.5, 4.9 and 4.12, assume that there exists s > 0 such that
σ ∈ Hs(Ω ), div (σ ) ∈ Hs(Ω ), u ∈ H1+s(Ω ), ρ ∈ Hs(Ω ) and φ ∈ H1+s(Ω ). Then, there exists Ĉ > 0, independent of
h, such that, with the finite element subspaces defined by (4.12), there holds

∥φ − φh∥1,Ω +
(σ ,u, ρ) − (σ h,uh, ρh)


H

≤ Ĉhmin{s,k+1}
{
∥σ∥s,Ω + ∥div σ∥s,Ω + ∥u∥1+s,Ω + ∥ρ∥s,Ω + ∥φ∥1+s,Ω

}
.

(4.19)

5. Numerical results

In this section we provide a set of computational tests. The first one serves to illustrate the convergence rates
anticipated by our previous analysis for the mixed-primal and the augmented Galerkin schemes, whereas the remaining
examples address a few cases not covered by our analysis (mixed boundary conditions, non-convex domains, and the
3D case).

Example 1: Error history for a constructed solution in 2D. We consider (1.7) in the unit square Ω = (0, 1)2 and
propose exact solutions and coupling terms (tensorial diffusivity, body load, and diffusive source) as follows

u =

⎛⎜⎜⎝ d1 sin(πx1) cos(πx2) +
x2

1

2λ

−d1 cos(πx1) sin(πx2) +
x2

2

2λ

⎞⎟⎟⎠ , σ = λ trε(u) I + 2µε(u) , ρ = ∇u − ε(u),

φ = x1 (1 − x2) x2 (1 − x2), ϑ(σ ) = D0 I + D2σ
2, f (φ) = d2

(
cos2(φ)
− sin(φ)

)
, g(u) = d2

(
1 +

1
1 + |u|

)
.

(5.1)

These closed-form solutions satisfy the boundary conditions uD = u on Γ and φ = 0 on Γ . Moreover, the elasticity
and diffusion equations are considered non-homogeneous and the extra source terms are chosen according to (5.1).
This treatment does not compromise the continuous and discrete analyses, as the smoothness of the exact solution
provides right-hand sides with terms in L2(Ω ), thus only requiring a slight modification of the functionals in the
variational formulation. We note that the forcing and source terms satisfy (1.4)–(1.5). Additionally, we pick out the
following value to the model parameters: displacement and forcing term scalings d1 = 0.05, d2 = 0.1; Young’s
modulus E = 1e3; Poisson’s ratio ν = 0.4; the constants specifying ϑ given by D0 = 1.0 and D2 = 0.1, and the
Lamé constants λ = Eν(1 + ν)−1(1 − 2ν)−1 and µ = E/(2 + 2ν). We consider a heuristic value for Korn’s constant
(cf. Lemma 4.1) as c2 = 0.1; and using the proof of Lemma 4.2, the stabilisation parameters assume the values
δ = δ̃ = 1, κ1 = 2µ, κ2 = 0.5µ, κ3 = 0.1µ, and κ4 = µ. We generate a sequence of uniformly refined meshes and
proceed to define errors and convergence rates as usual:

e(σ ) = ∥σ − σ h∥div,Ω , e(u) = ∥u − uh∥ j,Ω , e(ρ) =
ρ − ρh


0,Ω , e(φ) = ∥φ − φh∥1,Ω ,

r (·) =
log(e(·)/̂e(·))

log(h/ĥ)
,
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Table 1
Example 1: Degrees of freedom, meshsizes, errors, rates of convergence, and number of Picard iterations for the mixed-primal PEERS-P1 and
augmented RTk − Pk+1 − Pk − Pk+1 approximations of the coupled problem with k = 0, 1, and using ν = 0.4 and κ2 = 0.5µ, κ4 = µ. In the
first block of the table, the displacement error is measured in the L2-norm.

N h e(σ ) r (σ ) e(u) r (u) e(ρ) r (ρ) e(φ) r (φ) iter

Mixed-primal PEERS-Lagrange scheme with k = 0

129 0.7071 124.43 – 1.72e−2 – 5.49e−2 – 0.1125 – 4
457 0.3536 65.778 0.91 9.11e−3 0.92 2.87e−2 0.94 6.72e−2 0.74 5

1713 0.1768 33.305 0.98 4.61e−3 0.98 1.45e−2 0.98 3.81e−2 0.82 6
6625 0.0883 16.703 0.99 2.32e−3 0.99 7.26e−3 0.99 1.87e−2 1.02 6

26049 0.0441 8.3584 0.99 1.15e−3 0.99 3.63e−3 0.99 8.35e−3 1.16 6
103297 0.0221 4.1802 0.99 5.78e−4 0.99 1.81e−3 0.99 3.91e−3 1.09 6

Augmented scheme with k = 0

67 0.7071 132.53 – 0.1043 – 0.1120 – 0.1105 – 5
219 0.3536 70.733 0.91 0.0643 0.69 0.1036 0.61 0.0708 0.64 5
787 0.1768 35.492 0.99 0.0323 0.99 0.0789 0.93 0.0427 0.82 6

2979 0.0883 17.604 1.01 0.0157 1.04 0.0463 0.97 0.0230 0.99 6
11587 0.0441 8.7683 1.00 0.0077 1.01 0.0242 0.93 0.0108 1.08 6
45699 0.0221 4.3792 1.00 3.86e−3 1.00 0.0129 0.98 4.62e−3 1.23 6

Augmented scheme with k = 1

195 0.7071 38.856 – 0.0309 – 0.0169 – 0.0358 – 6
691 0.3536 10.373 1.90 0.0088 1.81 0.0074 1.49 0.0100 1.83 6

2595 0.1768 2.6473 1.97 0.0023 1.93 0.0029 1.53 0.0024 2.01 6
10051 0.0883 0.6637 1.99 0.0005 1.97 0.0009 1.67 0.0006 2.03 6
39555 0.0441 0.1658 2.00 0.0001 1.99 0.0002 1.86 0.0001 2.02 8

156931 0.0221 0.0414 2.00 3.72e−5 1.99 6.65e−5 1.94 3.68e−5 2.03 6

where e and ê denote errors computed on two consecutive meshes of sizes h and ĥ; and where j = 0, 1 will be used
to measure the displacement error for the mixed-primal and augmented mixed-primal schemes, respectively.

On each refinement level we generate approximate solutions with the lowest-order PEERS-Lagrange elements
indicated in Section 3.4, and also with the RTk − Pk+1 − Pk − Pk+1 scheme specified in Section 4.2, for k = 0, 1.
The output of this error study is collected in Table 1 (where we tabulate errors, experimental convergence rates,
and iteration count). We observe an asymptotic O(hk+1) convergence for all individual errors (stress, displacement,
rotation, and concentration), which agrees with the theoretical error bounds derived in Section 3.5 (cf. (3.27)) and
Section 4.3 (cf. (4.19)). Around six Picard iterations are necessary to reach the prescribed tolerance Tol=1e−6 imposed
on the ℓ∞-norm of the total residual. At each fixed-point step the resulting linear systems were solved with the
direct method SuperLU. For completeness, we also depict in Fig. 5.1 the obtained numerical solutions computed
with the lowest-order augmented method. We also mention that the proposed methods maintain their accuracy
in the incompressibility limit. This is confirmed by replicating the same experimental analysis, now considering
ν = 0.49999. The error history for this case is displayed in Table 2, where we observe that the magnitude of errors
and convergence rates are comparable to those in Table 1. However, if the stabilisation parameters are kept as in the
first case, then the number of Picard iterations needed to achieve the prescribed tolerance for the augmented schemes
is considerably higher. Similar iteration counts as those in the non-augmented case can be obtained with much smaller
values of κ2 and κ4: here we choose κ2 = κ4 = 0.001µ.

Example 2: Convergence in a non-convex domain. The goal of this example is to observe the behaviour of
the numerical method producing solutions on a non-convex domain (we recall that convexity was required in the
analysis of the fixed-point operators defining the coupled continuous problem). To this end we consider a ring-
shaped membrane bounded by an outer circle of radius 1 and an inner circle of radius 0.5. Initial guesses for
stress, displacement, and concentration are zero. Differently from Example 1, we now apply the following tensorial
diffusivity, body load, source of species, and prescribed boundary displacement on the outer ring

ϑ(σ ) = D0 I + D1σ + D2σ
2, f (φ) = d2

(
φ

φ(1 − φ)

)
, g(u) = d3|u|, uD =

(
d1 sin(πx1) cos(πx2)

−d1 cos(πx1) sin(πx2)

)
,
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Fig. 5.1. Example 1: RT0 − P1 − P0 − P1 approximation of stress magnitude |σ h | (a), displacement magnitude |uh | (b), relevant component of
the rotation tensor ρh (c), and concentration of the diffusive substance φh (d); using ν = 0.4. All fields are plotted on the deformed domain.

Table 2
Example 1: Error history produced using a higher Poisson ratio ν = 0.49999 and setting κ2 = κ4 = 0.001µ. In the first block of the table, the
displacement error is measured in the L2-norm.

N h e(σ ) r (σ ) e(u) r (u) e(ρ) r (ρ) e(φ) r (φ) iter

Mixed-primal PEERS-Lagrange scheme with k = 0

129 0.7071 9189.7 – 6.05e−2 – 0.1477 – 1.9940 – 6
457 0.3536 605.93 2.98 9.14e−3 2.72 2.88e−2 2.35 9.59e−2 4.37 6

1713 0.1768 30.604 4.30 4.61e−3 0.98 1.45e−2 0.99 3.67e−2 1.30 6
6625 0.0883 15.390 0.99 2.31e−3 0.99 7.26e−3 0.99 1.89e−2 0.96 6

26049 0.0441 7.7948 0.98 1.15e−3 0.99 3.63e−3 0.99 8.41e−3 1.17 6
103297 0.0221 3.9011 0.99 5.78e−4 0.99 1.81e−3 0.99 3.91e−3 1.10 6

Augmented scheme with k = 0

67 0.7071 5525.5 – 1.6922 – 7.7691 – 0.1523 – 4
219 0.3536 853.17 5.02 0.1672 3.41 0.9461 4.14 8.05e−2 0.72 5
787 0.1768 33.563 4.62 7.50e−2 1.29 0.3937 1.25 3.75e−2 1.04 6

2979 0.0883 16.784 0.99 3.39e−2 1.04 0.1467 1.16 1.97e−2 0.92 6
11587 0.0441 8.2505 1.02 1.95e−2 0.93 7.43e−2 0.94 1.03e−2 0.94 6
45699 0.0221 4.0961 1.01 9.73e−3 0.99 3.73e−2 0.98 4.54e−3 1.18 6

Augmented scheme with k = 1

195 0.7071 172.52 – 1.2010 – 1.4012 – 7.34e−2 – 10
691 0.3536 9.4288 3.94 2.33e−2 5.68 2.28e−2 5.93 1.84e−2 1.44 6

2595 0.1768 1.8711 2.59 2.36e−3 3.30 2.86e−3 2.99 4.19e−3 2.04 6
10051 0.0883 0.8375 2.14 5.90e−4 1.99 9.05e−4 1.69 7.26e−4 1.90 6
39555 0.0441 0.1559 2.24 1.48e−4 1.99 2.52e−4 1.84 1.49e−4 2.12 6

156931 0.0221 3.91e−2 1.99 3.72e−5 1.99 6.65e−5 1.92 3.79e−5 1.97 6

whereas on the inner ring the structure is clamped. We impose a concentration of 1 on the outer ring and zero on
the inner boundary. The coefficients defining the problem assume the values D0 = d1 = 0.1, D1 = D2 = 0.05,
d2 = 0.025, d3 = −1, E = 100 and ν = 0.33, and the numerical solutions generated with the lowest-order PEERS-
Lagrange scheme are presented in Fig. 5.2(a).

In view of assessing the convergence of the lowest-order primal-mixed method, and in the absence of a closed-form
expression for the solution of this problem, we consider a reference solution computed in a highly refined mesh (of
around 50 K elements) and proceed to compute approximate solutions on coarser meshes. The obtained errors (with
respect to the reference solutions projected to each coarse mesh) and convergence rates are shown in Fig. 5.2(b),
where one sees that all fields exhibit an O(h) accuracy, and note that the stress error is dominant. For all refinement
levels the fixed-point algorithm took less than five iterations to converge.

We exploit the same setting to study the influence of different values for the additional diffusion parameters
D1 = D2 (representing scenarios where the stress-assisted diffusion decreases in intensity). Fig. 5.3 compares three
different cases, where a substantial difference is observed in the generated diffusion patterns. A similar effect as the
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(a). (b).

Fig. 5.2. Example 2: Approximate solutions (stress components, displacement magnitude with directions, rotation, and concentration) using
a lowest order PEERS-Lagrange scheme displayed on the undeformed domain (a); and individual errors computed with respect to a reference
solution (b).

(a) D1 = D2 = 0.05. (b) D1 = D2 = 0.001. (c) D1 = D2 = 0.0001.

Fig. 5.3. Example 2: Concentration profiles of the diffusive substance φh plotted on the deformed domain, for different values of the additional
diffusivity constants.

one produced with very low values of D1 and D2 (the profiles in Fig. 5.3(c) show a very smooth diffusion going
uniformly from φ = 1 on the outer circle, to φ = 0 on the inner boundary) can be achieved by softening the material,
prescribing a Young modulus of E = 1.

Example 3: Stress-assisted diffusion and experimental convergence on a 3D slab. In much the same way as in
Example 2, here we will confirm that the other assumption in Theorem 2.4 (the restriction to two spatial dimensions)
can be obviated at the implementation stage, and that it does not compromise the behaviour of the proposed methods.
Focusing on an applicative test, let us regard a porous block occupying the domain Ω = (0, 250) × (0, 250) × (0, 50)
and construct an unstructured tetrahedral mesh of 55K elements. The stress-dependent diffusivity is considered as in
Example 2: ϑ(σ ) = D0 I + D1σ + D2σ

2, the concentration-dependent body load is f (φ) = d2(φ, φ, φ(1 − φ))t,
and the displacement-dependent source is now g(u) = d3 div u. We will take the parameter values D0 = 0.5,
D1 = 0.025, D2 = −0.015, d2 = 0.1, d3 = 0.25, E = 1e4, and ν = 0.49. Boundary conditions for the elasticity
problem differ from the ones analysed in the paper: The block is clamped on the surface x1 = 0, a normal traction
force is imposed on the surface x1 = 250, σν = 3/4µν, and zero normal stresses are considered elsewhere on the
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Fig. 5.4. Example 3: Augmented mixed-primal approximation of stress magnitude |σ h | (a), displacement magnitude |uh | (b), rotation tensor
magnitude |ρh | (c), and concentration of the diffusive substance φh (d); all plotted on the deformed domain and showing the undeformed, skeleton
mesh.

boundary, σν = 0. On the surface x1 = 0 we fix the concentration φ = x2(250 − x2)x3(50 − x3)/(25 · 125)2, we
impose zero-flux boundary conditions on the face x1 = 250, σ̃ · ν = 0; and consider an homogeneous Dirichlet
boundary condition for concentration on the remainder of ∂Ω . Once again we consider the augmented mixed-primal
method of lowest order, for which the penalisation constants adopt the values κ1 = 2µ, κ2 = 0.5µ, κ3 = 0.01µ,
and κ4 = 1. The linear systems encountered at each Picard step are solved with the GMRES method preconditioned
with an incomplete LU factorisation. The computational results are summarised in Fig. 5.4, indicating that stresses are
concentrated on the corners of the boundaries where Dirichlet conditions are set for displacements, and rotations are
higher in the vicinities of the rectangles at x1 = 0 and x1 = 250. For this case the Picard method takes eight iterations
to converge.

We also assess the accuracy of the method through an experimental error analysis. Since, for this particular problem
configuration, a closed form solution to (1.1) is not available, we produce an approximate solution using a highly
refined mesh (of 290K elements) and consider it as a reference solution for error computation. We also generate
a sequence of much coarser quasi-uniformly refined meshes (but not necessarily nested) on which we compute
approximate solutions. The result of this error analysis is collected in Table 3. The observed convergence rates, here
only presented for the lowest-order augmented scheme, approach the optimal values as the number of degrees of
freedom increases. In addition, the fixed-point iteration count remains near the base case (of eight steps) for all levels
of mesh refinement.

Next we investigate the effect of the stress–diffusion coupling (which is actually encoded in the magnitude of
the parameters D1, D2 and d2, d3) on the performance of the fixed-point iteration count. We conduct six rounds of
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Table 3
Example 3: Experimental error history against a reference (fine mesh) solution, and number of Picard iterations per refinement level. Lowest-order
augmented method.

N e(σ ) r (σ ) e(u) r (u) e(ρ) r (ρ) e(φ) r (φ) iter

487 1968.2 – 20.384 – 1.0379 – 0.2571 – 7
2837 639.81 0.64 6.9320 0.76 0.2825 0.93 0.0842 0.84 8

22156 204.12 0.79 2.1943 0.80 0.0873 0.92 0.0293 0.83 7
150109 70.451 0.95 0.7904 0.92 0.0315 0.79 0.0096 0.90 8
907803 25.298 0.94 0.2246 0.93 0.0102 0.89 0.0034 0.92 8

(a) With D1 = 0.025, D2 = −0.015. (b) With d2 = 0.1, d3 = 0.25.

Fig. 5.5. Example 3: Iteration count produced when varying the coupling parameters defining the concentration-dependent body load and
displacement-dependent source (a), and the stress-assisted diffusivity parameters (b).

simulations, first fixing the tensorial diffusivity constants D1, D2 and increasing d2, d3; and then fixing d2, d3 and
decreasing D1, D2 (large contributions from stresses will only increase diffusion, therefore making the generalised
Poisson problem more stable). Fig. 5.5 presents the response of the method in terms of number of fixed-point iterations
needed to reach the tolerance Tol=1e−6. We observe that as the coupling terms depart from the base case, the solver
performs a larger number of steps.

6. Concluding remarks

Stress-enhanced or stress-assisted diffusion effects constitute the main mechanism in many applicative problems.
Here we have focused on a coupled system consisting of the three-field equations of linear elastostatics imposing
weakly the symmetry of the Cauchy stress, and a generalised diffusion problem where the diffusion tensor depends
nonlinearly on the stress. We have analysed the mathematical properties of this system (existence, uniqueness, and
regularity of weak solutions) by means of fixed-point theory and the classical theory for elliptic and saddle-point PDEs.
We have also introduced two main families of finite element schemes for the discretisation of the model problem: one
that adopts the mixed-primal character of the set of governing equations, and another one based on augmentation and
penalisation. The properties of the resulting discrete problems were also established, and we have rigorously proved
convergence estimates under suitable assumptions. Finally, we have presented some 2D and 3D tests that exemplify
the accuracy of the methods under different regimes.

A number of generalisations are envisaged at this point. First, the physical context of Example 3 was motivated
by the study of stress-assisted diffusion in actively deforming hyperelastic media (see e.g. [10,34]). The analysis
of this class of problems constitutes one of the forthcoming extensions of the present work, where the regime of
nonlinear elasticity and the difficulties associated to nearly incompressible and incompressible material poses a great
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challenge. Secondly, it is left to investigate other constitutive relations for the tensor diffusivity ϑ , possibly depending
also on the concentration and entailing the study of non-monotone operators and embedded fixed-point schemes [35].
The regularity assumptions and the structure of the mixed-primal formulations will also need to be rewritten once
we incorporate concentration gradient modulations of the body loads f (φ) = O(∇φ), as in [24]. We also plan to
derive suitable a posteriori error estimates, and state a multiscale counterpart of (1.1) together with suitable finite
element schemes of special interest in the modelling of lithium batteries. Finally we mention that extensions dealing
with different treatment of boundary conditions, mixed–mixed formulations, and time-dependent generalisations are
currently under development.

Acknowledgements

This work was partially supported by CONICYT-Chile through BASAL project PFB03 CMM, Universidad
de Chile, and the Becas-Chile Programme for foreign students through grant number 21170275; by Centro de
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