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a b s t r a c t

We develop the a posteriori error analysis for mixed-primal and fully-mixed finite
element methods approximating the stress-assisted diffusion of solutes in elastic ma-
terials. The systems are formulated in terms of stress, rotation and displacements
for the elasticity equations, whereas the nonlinear diffusion is cast using either so-
lute concentration (leading to a four-field mixed-primal formulation), or the triplet
concentration – concentration gradient – and nonlinear diffusive flux (yielding the
six-field fully-mixed variational formulation). We have addressed the well-posedness
of these formulations in two recent works, also introducing discretisations based on
PEERS or Arnold–Falk–Winther elements for the linear elasticity and either Lagrange, or
Lagrange – Raviart-Thomas – Lagrange triplets for the approximation of the diffusion
equation. Here we advocate the derivation of two efficient and reliable residual-based a
posteriori error estimators focusing on the two-dimensional case. The proofs of reliability
depend on adequately formulated inf–sup conditions in combination with a Helmholtz
decomposition, and they also rely on the local approximation features of Clément and
Raviart–Thomas interpolations. The efficiency of the estimators results from classical
inverse and discrete trace inequalities together with localisation techniques based on
edge- and triangle-bubble functions. The theoretical properties of these error indicators
are confirmed through numerical tests, also serving to illustrate the performance of the
adaptive mesh refinement.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The interaction of transport phenomena and chemical reactions within deformable media is a phenomenon encoun-
ered in a vast variety of scientific and engineering applications, including damage in lithium ion batteries [1], sorption
n fibre-reinforced polymeric materials [2], diffusion of boron and arsenic in silicon [3], hydrogen diffusion in metals [4],
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anisotropy of cardiac dynamics [5], and several other effects. The modelling framework using continuum mechanics was
developed in the early works [6,7], and subsequently, a number of distinct models have been advanced [1,8]. Mathematical
analysis was provided in [9], while mixed formulations for these problems have been recently addressed in [10,11], where
we investigate steady systems where the main coupling variable is the Cauchy stress exerted by solid motion. In these
works we have used a mixed form for elasticity in terms of stress, rotation and displacement. For the diffusion problem we
have studied primal and mixed approaches: the first one in terms of the solute concentration, whereas the second one has
been formulated in terms of diffusive flux, solute concentration and its gradient. We have invoked regularity estimates
that only hold for the specific case of convex domains and in two spatial dimensions (see details on the assumptions
and their implications in [10, Section 2.2]). We have also formulated the nonlinear set of equations as a fixed-point
problem, analysing it using Schauder fixed-point theory and classical tools for saddle-point equations. The associated
methods use PEERS and Arnold–Falk–Winther elements for the elastostatics, and either Lagrange finite elements, or a
triplet of Raviart-Thomas elements and piecewise polynomials for the primal and mixed forms of the diffusion equation,
respectively.

It is well known that in order to rectify the convergence of numerical schemes in pathological situations (such as in
resence of singularities in the solutions, in the data, or in the domain geometry), one can introduce mesh adaptation
uided by a posteriori error estimators. These indicators are essentially global quantities Θ that are expressed in terms of
ocal estimators ΘK (fully computable as a function of the discrete solution and of the data) defined on each element of
given mesh. Then, Θ is said to be efficient (respectively, reliable) if there exists a constant Ceff > 0 (respectively, Crel),

ndependent of the meshsize, such that CeffΘ + h.o.t ≤ ∥error∥ ≤ CrelΘ + h.o.t, where h.o.t contains high-order terms.
Without knowing the exact solutions, these terms give an indication on which elements induce high errors (measured in a
suitable norm) and should be considered for local refinement, thus guaranteeing that the discretisation error is controlled.

Diverse a posteriori error analyses for linear elasticity can be found in the literature, including for instance traditional
primal schemes [12,13], mixed finite element methods in stress–displacement–rotation form [14–16], augmented mixed
approaches [17], pseudostress-based mixed formulations [18], mixed schemes with pure traction boundary condi-
tions [19], or methods specifically tailored for incompressible materials [20], among others. In turn, a posteriori error
analyses for elliptic equations have been widely investigated by many authors (see, e.g., [21–23] and the references
therein). Although adaptive meshes are of key usefulness in computing solutions to stress-and-strain assisted diffusion
of hydrogen in metals such as crack-capturing [4] and fatigue crack growth [24], a rigorous a posteriori error analysis
specifically tailored for such coupled problems is still not available in the literature.

The lack of robustness of the two-way coupling between mechanical deformation and the chemical transport can
affect the accuracy of the stress-assisted diffusion processes, especially under modelling peculiarities in either of the two
problems. For instance, solutions with high gradients could lead to generating an excessive distortion of the finite element
mesh. We therefore aim at developing robust and reliable a posteriori error estimators. Not many results are available
for this particular type of problems, but we can draw inspiration from results where the elasticity and diffusion problems
have been worked independently. Most of the a posteriori error estimators for elasticity in mixed form share similarities
with those available for elliptic problems in divergence form, and therefore it is possible to establish an adequate analysis
without the need of re-structuring the logical steps in the proofs of reliability and efficiency usually followed for classical
approaches [14,16,25–27], as well as some more recent references concerning transport coupled with incompressible flow
or related models as in, e.g., [28–32]. For the latter, one needs to carefully handle the coupling terms, invoking properties
of the nonlinear model functions (Lipschitz continuity, uniformly boundedness), as well as suitable regularity estimates.

The rest of this work is organised as follows. In Section 2 we introduce preliminary notation used throughout this
work, and then we recall the model problem and establish some assumptions on data. The corresponding mixed-primal
and fully-mixed variational formulations as well as their associated Galerkin schemes are presented in Section 3. Next, in
Section 4, we derive the corresponding reliable and efficient residual-based a posteriori error indicators for our Galerkin
schemes. Finally, in Section 5, our theoretical results are illustrated via some numerical examples, highlighting also the
good performance of the associated adaptive schemes and properties of the proposed indicators.

2. The stress-assisted diffusion problem

2.1. Preliminary notation

Let us denote by Ω ⊆ R2, a given convex domain with boundary Γ = ∂Ω , and denote by ν and s the outward unit
ormal and tangent vectors, respectively, on the boundary. We will adopt a fairly standard notation for Lebesgue and
obolev spaces: Lp(Ω) and Hs(Ω), respectively. Norms and seminorms for the latter will be written as ∥·∥s,Ω and | · |s,Ω .
he space H1/2(Γ ) contains traces of functions of H1(Ω), H−1/2(Γ ) denotes its dual, and ⟨·, ·⟩Γ stands for the duality
airing between them. In general, the notation M and M will refer to vectorial and tensorial counterparts of a generic
calar functional space M. Furthermore, by

∥w∥∞,Ω := max{∥wi∥∞,Ω}, and ∥ψ∥1,∞,Ω := max
(
ess sup |∂αψ(x)|

)
,

i=1,n α≤1 x∈Ω
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we will denote norms for the Banach spaces L∞(Ω) and W1,∞(Ω), respectively. Next we recall the definition of the
tensorial Hilbert space and its usual norm

H(div;Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ L2(Ω)

}
, ∥τ∥

2
div;Ω := ∥τ∥

2
0,Ω + ∥div τ∥

2
0,Ω ,

where div τ indicates the divergence operator acting along the rows of the tensor field τ. As usual, I stands for the identity
tensor in R2×2, and | · | denotes both the Euclidean norm in R2 and the Frobenius norm in R2×2. Finally, for any tensor
fields τ = (τij)i,j=1,2, and ζ = (ζij)i,j=1,2, we recall the transpose, trace, tensor product, and deviatoric splitting operators
defined respectively as

τt
:= (τji)i,j=1,2, tr(τ) :=

2∑
i=1

τii τ : ζ :=

2∑
i,j=1

τijζij, and τd
:= τ −

1
2
tr(τ)I.

.2. Governing equations

Let us consider the following system of partial differential equations, governing the diffusion of a solute interacting
ith the motion of an elastic solid occupying the domain Ω:

σ = λ trε(u) I + 2µε(u) and − div σ = f (φ) in Ω, u = uD on Γ ,

σ̃ = ϑ(σ)∇φ and − div σ̃ = g(u) in Ω, φ = 0 on Γ ,
(2.1)

here φ represents the local concentration of species; σ is the Cauchy solid stress; u is the displacement field; ε(u) :=
1
2

(
∇u + ∇ut

)
is the infinitesimal strain tensor; σ̃ is the diffusive flux; λ,µ > 0 are the Lamé constants; uD ∈ H1/2(Γ )

is the corresponding Dirichlet condition for the displacement; ϑ : R2×2
→ R2×2 is a tensorial diffusivity; f : R → R2

is a vector field of body loads (which will depend on the species concentration), and g : R2
→ R denotes an additional

source term depending locally on the solid displacement. In what follows we will suppose that ϑ is of class C1, uniformly
positive definite, uniformly bounded and Lipschitz continuous, meaning that there exist positive constants ϑ0, ϑ1, ϑ2 and
Lϑ , such that

ϑ(τ)w · w ≥ ϑ0|w|
2, ϑ1 ≤ |ϑ(τ)| ≤ ϑ2 ∀ w ∈ R2

∀ τ ∈ R2×2,

|ϑ(τ) − ϑ(ζ)| ≤ Lϑ |τ − ζ| ∀ τ, ζ ∈ R2×2.
(2.2)

Similar assumptions will be placed on the load and source functions f and g: we suppose that there exist positive constants
f1, f2, Lf , g1, g2 and Lg , such that

f1 ≤ |f (s)| ≤ f2, |f (s) − f (t)| ≤ Lf |s − t| ∀ s, t ∈ R, (2.3)

g1 ≤ g(w) ≤ g2, |g(v) − g(w)| ≤ Lg |v − w| ∀ v,w ∈ R2. (2.4)

Moreover, for each γ ∈ (0, 1), there exists a constant Cγ > 0, such that g(w) ∈ Hγ (Ω) for each w ∈ Hγ (Ω), and

∥g(w)∥γ ,Ω ≤ Cγ ∥w∥γ ,Ω .

Finally, we assume that for every φ ∈ H1(Ω), we have f (φ) ∈ H1(Ω).
We point out that the reader may refer to [5,6,8–10] for further details concerning different variants of the model

problem, as well as for specific examples of the nonlinear functions given above.

3. Continuous and discrete mixed formulations

In this section we recall the continuous and discrete mixed-primal and fully-mixed schemes for (2.1) derived in [10,
Section 2] and [11, Section 3], respectively, and state their well-posedness.

3.1. Mixed-primal approach

The construction of a mixed formulation for the elasticity equation in (2.1) follows closely those in [10,33]. Thus, from
Hooke’s law we have

C−1σ = ε(u) = ∇u − ρ, where ρ :=
1
2
(∇u − ∇ut), (3.1)

ith ρ ∈ L2
skew(Ω) := {η ∈ L2(Ω) : η + ηt

= 0}. Moreover, an application of the orthogonal decomposition
H(div;Ω) = H0(div;Ω) ⊕ RI, where

H0(div;Ω) :=

{
τ ∈ H(div;Ω) :

∫
tr(τ) = 0

}
,

Ω

3
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allows us to only seek the H0(div;Ω)-component of the stress, whereas the remaining displacement and rotation
unknowns are sought in the spaces L2(Ω) and L2

skew(Ω), respectively. On the other hand, the boundary condition for
φ indicates the appropriate trial and test space

H1
0(Ω) :=

{
ψ ∈ H1(Ω) : ψ = 0 on Γ

}
,

to deduce the corresponding primal formulation for the diffusion equation (second row of (2.1)). Therefore, denoting from
now on σ⃗ := (σ, u, ρ) ∈ H1 := H0(div;Ω) × L2(Ω) × L2

skew(Ω), the mixed-primal variational formulation for our model
problem (2.1) reads: Find (σ⃗, φ) ∈ H1 × H1

0(Ω), such that

a(σ, τ) + b(τ, (u, ρ)) = G(τ) ∀ τ ∈ H0(div;Ω),

b(σ, (v, η)) = Fφ(v, η) ∀ (v, η) ∈ L2(Ω) × L2
skew(Ω),

Aσ(φ,ψ) = Gu(ψ) ∀ψ ∈ H1
0(Ω),

(3.2)

where the bilinear forms a : H0(div;Ω) × H0(div;Ω) → R, b : H0(div;Ω) × (L2(Ω) × L2
skew(Ω)) → R and

Aσ : H1
0(Ω) × H1

0(Ω) → R are specified as

a(ζ, τ) :=

∫
Ω

C−1σ : τ =
1
2µ

∫
Ω

ζd
: τd

+
1

4(λ+ µ)

∫
Ω

tr(ζ) tr(τ),

b(τ, (v, η)) :=

∫
Ω

v · div τ +

∫
Ω

η : τ, Aσ(ϕ,ψ) :=

∫
Ω

ϑ(σ)∇ϕ · ∇ψ,

or ζ, τ ∈ H0(div;Ω), (v, η) ∈ L2(Ω) × L2
skew(Ω) and ϕ,ψ ∈ H1

0(Ω). In turn, the functionals Fφ ∈ (L2(Ω) × L2
skew(Ω))′,

∈ H0(div;Ω)′ and Gu ∈ H1
0(Ω)′ are given by

G(τ) := ⟨τν, uD⟩Γ , Fφ(v, η) := −

∫
Ω

f (φ) · v, and Gu(ψ) :=

∫
Ω

g(u)ψ,

or τ⃗ := (τ, v, η) ∈ H1 and ψ ∈ H1
0(Ω). Further details yielding the weak formulation (3.2) can be found in [10, Section

.1], whereas its solvability follows from the fixed-point strategy developed in [10, Theorem 2.9]. We point out that for
uture purposes and according to the new meaning of σ, the constitutive Eq. (3.1) now becomes

C−1σ + ρ +
1

2|Ω|

(∫
Γ

uD · ν

)
I = ∇u in Ω. (3.3)

In view of defining a Galerkin formulation, let us denote by Th a regular partition of Ω into triangles K of diameter
K , where h := max {hK : K ∈ Th} is the meshsize. Given an integer k ≥ 0, for each K ∈ Th we let Pk(K ) be the space of

polynomial functions on K of degree ≤ k and define the local Raviart–Thomas space of order k as

RTk(K ) := Pk(K ) ⊕ Pk(K ) x,

where Pk(K ) = [Pk(K )]2, and x is a generic vector in R2. Furthermore, using the above notation, we define the Brezzi–
Douglas–Marini space BDMk+1(K ) := [Pk+1(K )]2×2. Now, let bK be the element bubble function defined as the unique
polynomial in P3(K ) vanishing on ∂K with

∫
K bK = 1. Then, for each K ∈ Th we consider the bubble space of order k,

defined by

Bk(K ) := Pk(K )
(
∂bK
∂x2

,−
∂bK
∂x1

)
.

Now, denoting by σ⃗h := (σh, uh, ρh) ∈ H1,h := Hσ
h × Hu

h × Hρ

h , the Galerkin scheme for (3.2) is defined as: find
(σ⃗h, φh) ∈ H1,h × Hφh such that

a(σh, τh) + b(τh, (uh, ρh)) = G(τh) ∀ τh ∈ Hσ
h ,

b(σh, (vh, ηh)) = Fφh (vh, ηh) ∀ (vh, ηh) ∈ Hu
h × Hρ

h,

Aσh (φh, ψh) = Guh (ψh) ∀ψh ∈ Hφh ,

(3.4)

where the involved finite element spaces are defined similar to [10,11]. Thus, for the elasticity equation we consider the
classical PEERS elements [34]:

Hσ
h :=

{
τh ∈ H0(div;Ω) : τh|K ∈ [RTk(K )]2 ⊕ [Bk(K )]2 ∀ K ∈ Th

}
,

Hu
h :=

{
vh ∈ L2(Ω) : vh|K ∈ Pk(K ) ∀ K ∈ Th

}
,

Hρ

h :=
{
ηh ∈ L2

skew(Ω) : ηh ∈ C(Ω) and ηh|K ∈ Pk+1(K ) ∀ K ∈ Th
}
,

(3.5)

nd the Arnold–Falk–Winther elements [35]:
Hσ

h := {τh ∈ H0(div;Ω) : τh|K ∈ BDMk+1(K ) ∀ K ∈ Th} ,

Hu
h :=

{
vh ∈ L2(Ω) : vh|K ∈ Pk(K ) ∀ K ∈ Th

}
,

ρ { 2 } (3.6)

Hh := ηh ∈ Lskew(Ω) : ηh|K ∈ Pk(K ) ∀ K ∈ Th ,

4
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whereas the approximating space for the concentration is defined as

Hφh :=
{
ψh ∈ C(Ω) ∩ H1

0(Ω) ψh|K ∈ Pk+1(K ) ∀ K ∈ Th
}
.

The solvability and a priori error bounds for (3.2) and (3.4) are established in [10, Sections 2-3]. Denoting by cp the
Poincaré constant and defining the balls

W :=

{
φ ∈ H1

0(Ω) : ∥φ∥1,Ω ≤
c2p
ϑ0

g2|Ω|
1/2

}
and Wh :=

{
φh ∈ Hφh : ∥φh∥1,Ω ≤

c2p
ϑ0

g2|Ω|
1/2

}
,

e will assume through the rest of the paper that (σ⃗, φ) ∈ H1 × H1
0(Ω) with φ ∈ W , and (σ⃗h, φh) ∈ H1,h × Hφh with

h ∈ Wh, are the solutions of the continuous and discrete formulations (3.2) and (3.4), respectively. In addition, we recall
rom [10, Theorems 2.9 and 3.7] and [10, eq. (2.23)] the a priori estimates

∥σ⃗∥H1 ≤ cS
{
∥uD∥1/2,Γ + f2|Ω|

1/2} , ∥σ⃗h∥H1 ≤ C̃
{
∥uD∥1/2,Γ + f2|Ω|

1/2} , (3.7)

nd

∥φ∥1,∞,Ω ≤ C∞ cS
(
∥uD∥1/2,Γ + f2|Ω|

1/2) , (3.8)

espectively, where cS, C̃ and C∞ are positive constants independent of φ and φh.

.2. Fully-mixed approach

Having established in Section 3.1 the mixed formulation for the elasticity problem, it only remains to define a mixed
ormulation for the diffusion equation. Proceeding as in [11], we define t := ∇φ, and consider the following Galerkin-type
erms:

κ1

∫
Ω

{̃σ − ϑ(σ) t} · τ̃ = 0 ∀ τ̃ ∈ H(div;Ω),

κ2

∫
Ω

div σ̃ div τ̃ = − κ2

∫
Ω

g(u) div τ̃ ∀ τ̃ ∈ H(div;Ω),

κ3

∫
Ω

{∇φ − t} · ∇ψ = 0 ∀ψ ∈ H1
0(Ω),

here κ1, κ2 and κ3 are positive parameters to be suitably chosen. Let us group appropriately the unknowns and spaces
f the diffusion problem as follows: σ̃ := (̃σ, t, φ) ∈ H2 := H(div;Ω) × L2(Ω) × H1

0(Ω). We then have an augmented
ormulation for the diffusion problem: find σ̃ ∈ H2 such that

Aσ (̃σ, τ̃) = Gu (̃τ) ∀ τ̃ := (̃τ, s, ψ) ∈ H2,

where

Aσ (̃σ, τ̃) :=

∫
Ω

ϑ(σ) t · s −

∫
Ω

σ̃ · s +

∫
Ω

τ̃ · t +

∫
Ω

φ div τ̃ −

∫
Ω

ψ div σ̃

+ κ1

∫
Ω

{̃σ − ϑ(σ) t} · τ̃ + κ2

∫
Ω

div σ̃ div τ̃ + κ3

∫
Ω

{∇φ − t} · ∇ψ,

Gu (̃τ) :=

∫
Ω

ψ g(u) − κ2

∫
Ω

g(u) div τ̃.

Consequently, we arrive at the following augmented fully-mixed formulation to system (2.1): find (σ⃗, σ̃) ∈ H1 × H2,
uch that

a(σ, τ) + b(τ, (u, ρ)) = G(τ) ∀ τ ∈ H0(div;Ω),

b(σ, (v, η)) = Fφ(v, η) ∀ (v, η) ∈ L2(Ω) × L2
skew(Ω),

Aσ (̃σ, τ̃) = Gu (̃τ) ∀ τ̃ ∈ H2.

(3.9)

n turn, denoting from now on σ̃h := (̃σh, th, φh) ∈ H2,h := Hσ̃
h × Ht

h × Hφh , the associated Galerkin scheme reads: find
σ⃗h, σ̃h) ∈ H1,h × H2,h such that

a(σh, τh) + b(τh, (uh, ρh)) = G(τh) ∀ τh ∈ Hσ
h ,

b(σh, (vh, ηh)) = Fφh (vh, ηh) ∀ (vh, ηh) ∈ Hu
h × Hρ

h,

Aσh (̃σh, τ̃h) = Guh (̃τh) ∀ τ̃h := (̃τh, sh, ψh) ∈ H2,h,

(3.10)

here H1,h is as in Section 3.1, and the remaining spaces are:

Hσ̃
:= {̃τ ∈ H(div;Ω) : τ̃ | ∈ RT (K ) ∀ K ∈ T } ,
h h h K k h

5
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Ht
h :=

{
th ∈ L2(Ω) : th|K ∈ Pk(K ) ∀ K ∈ Th

}
, (3.11)

Hφh :=
{
ψh ∈ C(Ω) ∩ H1

0(Ω) : ψh|K ∈ Pk+1(K ) ∀ K ∈ Th
}
.

Finally, similarly as in Section 3.1, and defining the balls

W :=
{
φ ∈ H1

0(Ω) : ∥φ∥1,Ω ≤ c̃Sg2|Ω|
1/2} and Wh :=

{
φh ∈ Hφh : ∥φh∥1,Ω ≤ c̃Sg2|Ω|

1/2
}
,

where c̃S is a constant depending only on data and other constants, we let (σ⃗, σ̃) ∈ H1 × H2 with φ ∈ W , and
σ⃗h, σ̃h) ∈ H1,h × H2,h with φh ∈ Wh, be the solutions of the continuous and discrete formulations (3.9) and (3.10),
respectively. Additionally, we recall from [11, Theorems 3.9 and 4.7] that the following a priori estimates hold

∥̃σ∥H2 ≤ c̃Sg2|Ω|
1/2, ∥σ⃗∥H1 ≤ cS

{
∥uD∥1/2,Γ + f2|Ω|

1/2} ,
∥̃σh∥H2 ≤ c̃Sg2|Ω|

1/2, ∥σ⃗h∥H1 ≤ C̃
{
∥uD∥1/2,Γ + f2|Ω|

1/2} . (3.12)

. Residual-based a posteriori error estimators

The main goal of this section is to derive reliable and efficient residual-based a posteriori error estimators for the
alerkin schemes (3.4) and (3.10).

.1. Preliminaries

Further notation is needed for describing local information on elements and edges. Given K ∈ Th, we let Eh(K ) be the
et of its edges, and let Eh be the set of all edges of the triangulation Th, whose corresponding diameters are denoted by
e. Then, we write Eh = Eh(Ω) ∪ Eh(Γ ), where Eh(Ω) := {e ∈ Eh : e ⊆ Ω} and Eh(Γ ) := {e ∈ Eh : e ⊆ Γ }. Also, for each
dge e of Eh we fix a unit normal vector νe, and let se be the corresponding fixed unit tangential vector along e. When no
onfusion arises, we simply write ν and s instead of νe and se, respectively. Similarly, when referring to the unit normal
nd tangential vectors to ∂K for a given K ∈ Th, if no confusion arises we resort to the same notation ν and s, respectively.
hus, the usual jump operator [[·]] across an internal edge e ∈ Eh(Ω) is defined for piecewise continuous tensor, vector,
r scalar-valued functions ζ as

[[ζ]] = ζ|K+
− ζ|K−

,

here K− and K+ are the triangles of Th sharing the edge e. Additionally, given scalar, vector and tensor fields ϕ,
:= (ϕ1, ϕ2) and τ := (τij), respectively, we set

rot(ϕ) :=

(
∂ϕ

∂x2
−

∂ϕ

∂x1

)
, rot(ϕ) :=

∂ϕ2

∂x1
−
∂ϕ1

∂x2
,

curl(ϕ) :=

(
∂ϕ1
∂x2

−
∂ϕ1
∂x1

∂ϕ2
∂x2

−
∂ϕ2
∂x1

)
, and curl(τ) :=

(
∂τ12
∂x1

−
∂τ11
∂x2

∂τ22
∂x1

−
∂τ21
∂x2

)
.

Next, we collect a few preliminary definitions and results that we need in what follows. We begin by recalling the usual
Clément interpolation operator (cf. [36]) Ih : H1(Ω) → Xh, where

Xh :=
{
ϕh ∈ C(Ω) : ϕh|K ∈ P1(K ) ∀ K ∈ Th

}
.

vectorial version of Ih, say Ih : H1(Ω) → Xh := Xh ×Xh, which is defined component-wise by Ih, will be needed as well.
oreover, to satisfy homogeneous Dirichlet boundary conditions, we introduce the Clément-type interpolation operator

h : H1
0(Ω) → X̃h, where

X̃h :=
{
ϕh ∈ C(Ω) ∩ H1

0(Ω) : ϕh|K ∈ P1(K ) ∀ K ∈ Th
}
.

The following lemma provides the local approximation properties of Ih (for a proof, see [36]). Analogue estimates hold
or the operators Ih and Ĩh.

Lemma 4.1. There exist c1, c2 > 0, independent of h, such that for each ϕ ∈ H1(Ω), there holds

∥ϕ − Ih(ϕ)∥0,K ≤ c1hK ∥ϕ∥1,∆(K ) ∀ K ∈ Th, (4.1)

nd

∥ϕ − Ih(ϕ)∥0,e ≤ c2h1/2
e ∥ϕ∥1,∆(e) ∀ e ∈ Eh, (4.2)

here ∆(K ) := ∪{K ′
∈ T : K ′

∩ K ̸= 0} and ∆(e) := ∪{K ′
∈ T : K ′

∩ e ̸= 0}.
h h
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Moreover, we also introduce the usual Raviart–Thomas interpolator Πh : H1(Ω) → Hσ̃
h [33, Section 3.4.1], which, given

τ ∈ H1(Ω), is characterised by∫
e
Πh(τ) · νeΨ =

∫
e
τ · νeΨ , ∀ edge e ∈ Eh(Ω), ∀Ψ ∈ Pk(e), (4.3)∫

K
Πh(τ) · ξ =

∫
K

τ · ξ ∀ K ∈ Th, ∀ ξ ∈ Pk−1(K ), when k ≥ 1. (4.4)

Additionally, using (4.3) and (4.4), the commuting diagram property yields

div(Πh(τ)) = Ph(div τ) ∀ τ ∈ H1(Ω), (4.5)

where Ph is the L2(Ω)-orthogonal projector onto the space of piecewise scalar polynomials of degree ≤ k. Further
approximations properties of Πh are summarised in the following lemma (see a proof in e.g [33, Lemmas 3.16 and 3.18]).

Lemma 4.2. There exist C1, C2 > 0, independent of h, such that for all τ ∈ H1(Ω), there hold

∥τ −Πh(τ)∥0,K ≤ C1hK ∥τ∥1,K ∀ K ∈ Th, (4.6)

∥(τ −Πh(τ))νe∥0,e ≤ C2h1/2
e ∥τ∥1,Ke ∀ e ∈ Eh, (4.7)

here Ke in (4.7) is a triangle of Th containing the edge e on its boundary.

A tensor version of Πh, say Π h : H1(Ω) → RTk, (where RTk is the space of pure Raviart–Thomas tensors of order
k), which is defined row-wise by Πh, and a vector version of Ph, say, Ph which is the L2(Ω)-orthogonal projector onto
Hu

h (cf. (3.5), (3.6)), that is the space of piecewise vector valued polynomials of degree ≤ k, might also be required. For
simplicity of the presentation we have focused on the Raviart–Thomas interpolator. However, if we would like to use the
family (3.6), we might use the BDM interpolator, which also satisfies the approximation properties given above.

In addition, we recall a Helmholtz decomposition of H0(div;Ω), which will be essential in the subsequent analysis.
e refer to [37, Lemma 3.7] for further details.

emma 4.3. For each τ ∈ H0(div;Ω), there exist z ∈ H2(Ω) and Φ ∈ H1(Ω), such that

τ = ∇z + curlΦ in Ω, and ∥z∥2,Ω + ∥Φ∥1,Ω ≤ C ∥τ∥div;Ω . (4.8)

On the other hand, the main techniques involved below in the proof of efficiency include the localisation technique
based on element-bubble and edge-bubble functions. In view of this, we let ψe and ψK be the usual edge-bubble and
ace-bubble functions (see [23]), respectively, which satisfy ψe|K ∈ P2(K ), supp ψe ⊆ ωe := ∪{K ′

∈ Th : e ∈ Eh(K ′)},
e = 0 on ∂K\e and 0 ≤ ψe ≤ 1 in ωe, and ψK ∈ P3(K ), supp ψK ⊆ K , ψK = 0 on ∂K and 0 ≤ ψK ≤ 1 in K , respectively.
e also recall from [22] that, given k ∈ N∪{0}, there exists an extension operator L : C(e) → C(K ) satisfying L(p) ∈ Pk(K )

nd L(p)|e = p ∀ p ∈ Pk(e). A corresponding vector version of L, that is the component-wise application of L, is denoted
y L. Additional properties of ψe, ψK and L are collected in the following lemma (see e.g. [23]).

emma 4.4. Given k ∈ N ∪ {0}, there exist positive constants c3, c4 and c5, depending only on k, and the shape regularity of
he triangulations (minimum angle condition), such that for each K ∈ Th and e ∈ Eh(K ), there hold

∥q∥2
0,K ≤ c3∥ψ

1/2
K q∥2

0,K ∀ q ∈ Pk(K ), (4.9)

∥p∥2
0,e ≤ c4∥ψ1/2

e p∥2
0,e ∀ p ∈ Pk(e), (4.10)

∥ψe L(p)∥2
0,K ≤ ∥ψ1/2

e L(p)∥2
0,K ≤ c5 he ∥p∥2

0,e ∀ p ∈ Pk(e). (4.11)

Furthermore, we will also need the following inverse estimate (cf. [38, Theorem 3.2.6]) and discrete trace inequality
cf. [39, Theorem 3.10]), respectively.

emma 4.5. Let k, l, m ∈ N∪{0} such that l ≤ m. Then, there exists c6 > 0, depending only on k, l, m and the shape regularity
f the triangulations, such that for each K ∈ Th, there holds

|q|m,K ≤ c6 hl−m
K |q|l,K ∀ q ∈ Pk(K ).

emma 4.6. There exists c7 > 0, depending only on the shape regularity of the triangulations, such that for each K ∈ Th and
∈ Eh(K ), there holds

∥v∥2
0,e ≤ c7

{
h−1
e ∥v∥2

0,K + he|v|
2
1,K

}
∀ v ∈ H1(K ). (4.12)

Finally, the following lemma is applied next to the terms involving the curl and rot operators, and the tangential jumps
cross the edges of T . Its proof, which makes use of Lemmas 4.4 and 4.5, can be found in [17, Lemmas 4.3 and 4.4].
h
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Lemma 4.7. Let ξh ∈ L2(Ω) and rh ∈ L2(Ω) be piecewise polynomial tensor and vector, respectively, of degree k ≥ 0 on each
∈ Th, and let ξ ∈ L2(Ω) and r ∈ L2(Ω) be such that curl(ξ) = 0 and rot(r) = 0 in Ω . Then, there exist c8, c9, c10, c11 > 0,

independent of h, such thatcurl(ξh)0,K ≤ c8 h−1
K

ξ − ξh

0,K ,

[[ξhse]]0,e ≤ c9 h−1/2
e

ξ − ξh

0,ωe

∀ K ∈ Th, ∀ e ∈ Eh,

∥rot(rh)∥0,K ≤ c10 h−1
K ∥r − rh∥0,K , ∥[[rh · se]]∥0,e ≤ c11 h−1/2

e ∥r − rh∥0,ωe ∀ K ∈ Th, ∀ e ∈ Eh.

4.2. A posteriori error analysis for the mixed-primal scheme

In this section we derive a reliable and efficient residual-based a posteriori error estimator for (3.4). We begin by
defining for each K ∈ Th the local error indicator ΘK := ΘE,K + ΘD,K , where ΘE,K and ΘD,K are the corresponding
quantities associated with the elasticity and diffusion equations, respectively, which are given by:

Θ2
E,K := ∥f (φh) + div σh∥

2
0,K + ∥σh − σt

h∥
2
0,K + h2

K

∇uh −
(
C−1σh + ρh + cI

)2
0,K

+ h2
K

curl (C−1σh + ρh)
2
0,K +

∑
e∈Eh(Ω)∩Eh(K )

he
[[(C−1σh + ρh + cI)se]]

2
0,e

+

∑
e∈Eh(Γ )∩Eh(K )

he

{duD

ds
− (C−1σh + ρh + cI)s

2
0,e

+ ∥uD − uh∥
2
0,e

}
,

(4.13)

and

Θ2
D,K := h2

K ∥div (ϑ(σh)∇φh) + g(uh)∥2
0,K +

∑
e∈Eh(Ω)∩Eh(K )

he ∥[[ϑ(σh)∇φh · νe]]∥
2
0,e , (4.14)

here

c :=
1

2|Ω|

∫
Γ

uD · ν. (4.15)

e remark in advance that the above definition requires that duD
dse

∈ L2(e) for each e ∈ Eh(Γ ). This is fixed below assuming
hat uD ∈ H1(Γ ). Finally, we point out that the residual character of each term defining ΘE,K , ΘD,K , and hence ΘK , is
clear, and then, proceeding as usual, the global residual estimator can be defined as:

Θ :=

⎧⎨⎩∑
K∈Th

Θ2
K

⎫⎬⎭
1/2

.

The remainder of this section advocates to show the existence of positive constants Ceff and Crel, independent of the
eshsizes and the continuous and discrete solutions, such that

CeffΘ ≤
(σ⃗, φ) − (σ⃗h, φh)

 ≤ CrelΘ . (4.16)

he efficiency of the global a posteriori error estimator (lower bound in (4.16)) is proved below in Section 4.2.2, whereas
he corresponding reliability (upper bound in (4.16)) is derived in Section 4.2.1.

In order to establish the reliability of the a posteriori error estimator Θ , we apply the global inf–sup condition and
he uniform ellipticity of some bilinear forms, together with smallness-of-data assumptions.

We begin with a preliminary estimate for the partial elasticity error ∥σ⃗ − σ⃗h∥H1 .

emma 4.8. There exists C1 > 0, independent of λ and h, such thatσ⃗ − σ⃗h

H1

≤ C1
{
∥RE

∥H0(div;Ω)′ + Lf ∥φ − φh∥1,Ω + ∥f (φh) + div σh∥0,Ω + ∥σh − σt
h∥0,Ω

}
, (4.17)

here the functional RE is defined by

RE(τ) := G(τ) − a(σh, τ) − b(τ, (uh, ρh)) ∀ τ ∈ H0(div;Ω). (4.18)

urthermore, there holds

RE(τh) = 0 ∀ τh ∈ Hσ
h . (4.19)

roof. We begin the derivation of (4.17) by recalling from [33, Section 2.4.3.1], that b satisfies the inf–sup condition and
hat a is elliptic in the kernel of b. Then, there exists C > 0, independent of h, such that for each ξ⃗ := (ξ,w, ζ) ∈ H1, the
ollowing global inf–sup condition holds (see [40, Proposition 2.36])

C∥ξ⃗∥H1 ≤ sup
τ⃗∈H1

a(ξ, τ) + b(τ, (w, ζ)) + b(ξ, (v, η))
∥τ⃗∥H1

.

τ⃗ ̸=0

8
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In particular, for the error ξ⃗ := σ⃗−σ⃗h, using the notation introduced by (4.18), and applying some algebraic manipulations,
e have

C∥σ⃗ − σ⃗h∥H1 ≤ sup
τ⃗∈H1
τ⃗ ̸=0

a(σ − σh, τ) + b(τ, (u − uh, ρ − ρh)) + b(σ − σh, (v, η))
∥τ⃗∥H1

≤ sup
τ∈H0(div;Ω)

τ ̸=0

|RE(τ)|
∥τ∥

+ sup
(v,η)∈L2(Ω)×L2skew(Ω)

(v,η)̸=0

|b(σ − σh, (v, η))|
∥(v, η)∥

.

(4.20)

ow, according to the definition of the bilinear form b, adding and subtracting suitable terms, and then, applying the
ipschitz continuity of f (cf. (2.3)), the Cauchy–Schwarz inequality, and the fact that

∫
Ω

σh : η =
1
2

∫
Ω
(σh − σt

h) : η, we get
or all (v, η) ∈ L2(Ω) × L2

skew(Ω)

|b(σ − σh, (v, η))| ≤ C̃
{
Lf ∥φ − φh∥1,Ω + ∥f (φh) + div σh∥0,Ω + ∥σh − σt

h∥0,Ω

}
∥(v, η)∥ ,

hich, together with (4.20), yields (4.17). Finally, it is readily seen that (4.19) follows directly from the first row of (3.4)
nd (4.18). □

We now derive an analogous preliminary bound for the error associated with ∥φ − φh∥1,Ω .

emma 4.9. There exists C2 > 0, independent of h, such that

∥φ − φh∥1,Ω ≤ C2

{
∥RD

∥H1
0(Ω)′ + Lϑ cS

(
∥uD∥1/2,Γ + f2|Ω|

1/2)
∥σ − σh∥div;Ω

+ ϑ2 ∥φ − φh∥1,Ω + Lg ∥u − uh∥0,Ω

}
,

(4.21)

here the functional RD is defined by

RD(ψ) := Guh (ψ) − Aσh (φh, ψ) ∀ψ ∈ H1
0(Ω). (4.22)

urthermore, there holds

RD(ψh) = 0 ∀ψh ∈ Hφh . (4.23)

roof. Similarly to the proof of Lemma 4.8, we first observe from the H1
0(Ω)-ellipticity of Aσ (cf. [10, Lemma 2.3]) that

he global inf–sup condition holds

α ∥ϕ∥1,Ω ≤ sup
ψ∈H10(Ω)
ψ ̸=0

Aσ(ϕ,ψ)
∥ψ∥1,Ω

∀ϕ ∈ H1
0(Ω), (4.24)

here α is the ellipticity constant of Aσ [10, eq. (2.18)]. Then, applying (4.24) to the error ϕ := φ − φh, bearing in mind
he definition (4.22), and adding and subtracting suitable terms, we find that

α ∥φ − φh∥1,Ω ≤ sup
ψ∈H10(Ω)
ψ ̸=0

RD(ψ) + Aσh (φh, ψ) − Aσ(φh, ψ) + Gu(ψ) − Guh (ψ)
∥ψ∥1,Ω

. (4.25)

Thus, applying the a priori estimate (3.8), we can deduce the following result

|Aσh (φh, ψ) − Aσ(φh, ψ)|
≤
{
∥φ∥1,∞,Ω Lϑ ∥σ − σh∥div;Ω + 2ϑ2 ∥φ − φh∥1,Ω

}
∥ψ∥1,Ω ,

≤
{
C∞ LϑcS

(
∥uD∥1/2,Γ + f2|Ω|

1/2)
∥σ − σh∥div;Ω + 2ϑ2 ∥φ − φh∥1,Ω

}
∥ψ∥1,Ω .

(4.26)

oreover, applying the Lipschitz continuity of g (cf. (2.4)), we get

|Gu(ψ) − Guh (ψ)| ≤ Lg ∥u − uh∥0,Ω ∥ψ∥0,Ω . (4.27)

hus, replacing (4.26) and (4.27) back into (4.25) we obtain (4.21). Finally, using the fact that

Guh (ψh) − Aσh (φh, ψh) = 0 ∀ψh ∈ Hφh ,

e get (4.23) and the proof concludes. □

Consequently, we can establish the following preliminary upper bound for the total error.
9
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Theorem 4.10. Assume that

C1Lf + C2
{
Lϑ cS

(
∥uD∥1/2,Γ + f2|Ω|

1/2)
+ ϑ2 + Lg

}
<

1
2
. (4.28)

hen, there exists C3 > 0, independent of λ and h, such that the total error satisfies

∥(σ⃗, φ) − (σ⃗h, φh)∥ ≤ C3

{
∥RE

∥H0(div;Ω)′ + ∥f (φh) + div σh∥0,Ω + ∥σh − σt
h∥0,Ω + ∥RD

∥H1
0(Ω)′

}
. (4.29)

roof. It follows as a straightforward application of (4.28) and Lemmas 4.8 and 4.9. □

It is clear from (4.29) that, in order to obtain an explicit estimate for the total error, it only remains to derive suitable
pper bounds for ∥RE

∥H0(div;Ω)′ and ∥RD
∥H1

0(Ω)′ . This is precisely the purpose of the next subsection.

.2.1. Reliability
With the aim of estimating ∥RE

∥H0(div;Ω)′ we now take an arbitrary τ ∈ H0(div;Ω) and consider the Helmholtz
ecomposition provided by (4.8) (cf. Lemma 4.3). Then, we denote Φh := Ih(Φ) and define τh := Π h(∇z) + curl(Φh) −

dh I ∈ RTk, with Π h the interpolator operator defined in Section 4.1, and where the constant dh, which is defined by

dh := −
1

2|Ω|

∫
Ω

tr(∇z − Π h(∇z) + curl(Φ − Φh)), (4.30)

is chosen so that τh belongs to Hσ
h (cf. (3.5)). It follows that τ − τh = ∇z − Π h(∇z) + curl(Φ − Φh) + dh I, and then,

pplying the tensor version of (4.5), we get

div(τ − τh) = div
(
∇z − Π h(∇z)

)
= (I − Ph)(div∇z) = (I − Ph)(div τ),

hich is L2(Ω)-orthogonal to Hu
h , and hence,∫

Ω

uh · div(τ − τh) =

∫
Ω

uh · (I − Ph)(div τ) = 0. (4.31)

urthermore, taking into account that σh ∈ Hσ
h and ρh ∈ Hρ

h , and recalling that c and dh are given by (4.15) and (4.30),
espectively, we deduce from the definition of RE (cf. (4.18)) that

RE(dhI) = dh

∫
Γ

uD · ν = −c
∫
Ω

tr
(
∇z − Π h(∇z) + curl(Φ − Φh)

)
= −

∫
Ω

cI :
(
∇z − Π h(∇z)

)
−

∫
Ω

cI : curl(Φ − Φh),
(4.32)

here for the second row in (4.32) we have applied the equality tr(ξ) = ξ : I. Thus, applying the null property (4.19), we
ind that

RE(τ) = RE(τ − τh) = RE(
∇z − Π h(∇z)

)
+ RE(curl(Φ − Φh)

)
+ RE(dhI),

rom which, replacing the last adding by (4.32), recalling the definition of RE (cf. (4.18)), and employing the identity
4.31), we deduce that RE(τ) can be decomposed as

RE(τ) = RE(τ − τh) = RE
1(z) + RE

2(Φ) ∀ τ ∈ H0(div;Ω) , (4.33)

here

RE
1(z) := RE(

∇z − Π h(∇z)
)
−

∫
Ω

cI :
(
∇z − Π h(∇z)

)
= ⟨

(
∇z − Π h(∇z)

)
ν, uD⟩Γ −

∫
Ω

(C−1σh + ρh + cI) :
(
∇z − Π h(∇z)

)
,

(4.34)

nd

RE
2(Φ) := RE(curl(Φ − Φh)) −

∫
Ω

cI : curl(Φ − Φh)

= ⟨curl(Φ − Φh)ν, uD⟩Γ −

∫
Ω

(C−1σh + ρh + cI) : curl(Φ − Φh).
(4.35)

The following two lemmas provide upper bounds for (4.34) and (4.35).
10
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Lemma 4.11. There exists C4 > 0, independent of λ and h, such that

|RE
1(z)| ≤ C4

⎧⎨⎩∑
K∈Th

h2
K

∇uh −
(
C−1σh + ρh + cI

)2
0,K +

∑
e∈Eh(Γ )

he ∥uD − uh∥
2
0,e

⎫⎬⎭
1/2

∥τ∥div;Ω .

Proof. It follows from an application of the tensor version of properties (4.3) and (4.4) to uh|e ∈ Pk(e) for each e ∈ Eh
and ∇uh|K ∈ Pk−1(K ) for each K ∈ Th, respectively, and approximation results (4.6) and (4.7), in conjunction with the
continuous dependence given by the Helmholtz decomposition (cf. (4.8)). We omit further details and refer to [18, Lemma
4.4]. □

Lemma 4.12. If uD ∈ H1(Γ ), then there exists C5 > 0, independent of λ and h, such that

|RE
2(Φ)| ≤ C5

⎧⎨⎩∑
K∈Th

h2
K

curl(C−1σh + ρh)
2
0,K +

∑
e∈Eh(Ω)

he
[[(C−1σh + ρh + cI)se]]

2
0,e

+

∑
e∈Eh(Γ )

he

duD

ds
− (C−1σh + ρh + cI)s

2
0,e

⎫⎬⎭
1/2

∥τ∥div;Ω .

(4.36)

Proof. We begin by applying the result given by [37, Lemma 3.8], to obtain

⟨curl (Φ − Φh)ν, uD⟩Γ = −

⟨
duD

ds
,Φ − Φh

⟩
Γ

= −

∑
e∈Eh(Γ )

∫
e
(Φ − Φh)

duD

ds
. (4.37)

n turn, integrating by parts the second term on the right-hand side of (4.35), we get∫
Ω

(C−1σh + ρh + cI) : curl(Φ − Φh) =

∑
K∈Th

∫
K
curl(C−1σh + ρh + cI) · (Φ − Φh)

−

∑
e∈Eh(Ω)

∫
e
[[(C−1σh + ρh + cI)se]] · (Φ − Φh) −

∑
e∈Eh(Γ )

∫
e
(C−1σh + ρh + cI)s · (Φ − Φh),

hich together with (4.37) yields

⟨curl(Φ − Φh)ν, uD⟩Γ −

∫
Ω

(C−1σh + ρh + cI) : curl(Φ − Φh)

= −

∑
K∈Th

∫
K
curl(C−1σh + ρh + cI) · (Φ − Φh) +

∑
e∈Eh(Ω)

∫
e
[[(C−1σh + ρh + cI)se]] · (Φ − Φh)

−

∑
e∈Eh(Γ )

∫
e

{
duD

ds
− (C−1σh + ρh + cI)s

}
· (Φ − Φh).

Finally, employing the Cauchy–Schwarz inequality, the vector version of estimates (4.1) and (4.2), the fact that the
cardinalities of the sets ∆(K ) and ∆(e) are uniformly bounded, and the continuous dependence (4.8), we obtain (4.36). □

With the above two results, and bearing in mind the decomposition (4.33), we are in a position to complete an upper
bound for ∥RE

∥H0(div;Ω)′ .

Lemma 4.13. Assume that uD ∈ H1(Γ ). Then, there exists Ĉ1 > 0, independent of λ and h, such that

∥RE
∥H0(div;Ω)′ ≤ Ĉ1

⎧⎨⎩∑
K∈Th

h2
K

∇uh −
(
C−1σh + ρh + cI

)2
0,K +

∑
K∈Th

h2
K

curl(C−1σh + ρh)
2
0,K

+

∑
e∈Eh(Γ )

he

(duD

ds
− (C−1σh + ρh + cI)s

2
0,e

+ ∥uD − uh∥
2
0,e

)

+

∑
e∈Eh(Ω)

he
[[(C−1σh + ρh + cI)se]]

2
0,e

⎫⎬⎭
1/2

.

In turn, we now provide an upper bound for ∥RD
∥ 1 .
H0(Ω)′

11
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Lemma 4.14. There exists a constant Ĉ2 > 0, independent of h, such that

∥RD
∥H1

0(Ω)′ ≤ Ĉ2

⎧⎨⎩∑
K∈Th

h2
K ∥div (ϑ(σh)∇φh) + g(uh)∥2

0,K +

∑
e∈Eh(Ω)

he ∥[[ϑ(σh)∇φh · νe]]∥
2
0,e

⎫⎬⎭
1/2

. (4.38)

roof. Given ψ ∈ H1
0(Ω), we let Ψh := Ĩh(ψ) ∈ Hφh . Thus, recalling the null property (4.23), the definition of the involved

esidual (cf. (4.22)), and integrating by parts, we obtain

RD(ψ − Ψh) =

∫
Ω

g(uh)(ψ − Ψh) −

∫
Ω

ϑ(σh)∇φh · ∇(ψ − Ψh)

=

∑
K∈Th

∫
K

{
g(uh) + div (ϑ(σh)∇φh)

}
(ψ − Ψh) −

∑
e∈Eh(Ω)

∫
e
[[ϑ(σh)∇φh · νe]](ψ − Ψh).

inally, applying the Cauchy–Schwarz inequality and the estimates given by Lemma 4.1, we deduce the bound

|RD(ψ − Ψh)| ≤ Ĉ2

⎧⎨⎩∑
K∈Th

h2
K ∥g(uh) + div (ϑ(σh)∇φh)∥2

0,K +

∑
e∈Eh(Ω)

he ∥[[ϑ(σh)∇φh · νe]]∥
2
0,e

⎫⎬⎭
1/2

∥ψ∥1,Ω ,

hich yields (4.38), concluding the proof. □

Finally, we point out that the reliability of the operator Θ (cf. upper bound in (4.16)) essentially follows from
heorem 4.10, and Lemmas 4.13 and 4.14.

.2.2. Efficiency
The goal of this section is to show the efficiency of Θ . In other words, we now provide upper bounds depending on the

ctual errors for the nine terms defining the local indicator ΘK . We begin by establishing the main result of this section.

heorem 4.15. There exists Ceff > 0, independent of λ and h, such that

CeffΘ ≤
(σ⃗, φ) − (σ⃗h, φh)

 . (4.39)

Throughout this section, as well as Section 4.3.3, we assume for simplicity that the nonlinear functions f , g and ϑ are
uch that f (φh), g(uh) and ϑ(σh), are all piecewise polynomials. The same is assumed for the data uD. If this is not the
ase, but f , g , ϑ and uD are sufficiently smooth, higher order terms given by the errors arising from suitable polynomial
pproximations would appear on the right-hand side of (4.39), (4.64) and (4.68).
In order to prove (4.39), in the rest of this section we derive suitable upper bounds for the terms defining the local

rror indicator ΘK (cf. (4.13)–(4.14)). We begin by observing, thanks to the fact that −div σ = f (φ) in Ω , that there hold

∥f (φh) + div σh∥
2
0,K ≤ 2 ∥f (φ) − f (φh)∥2

0,K + 2 ∥div (σ − σh)∥2
0,K

≤ 2L2f ∥φ − φh∥
2
0,K + 2 ∥div (σ − σh)∥2

0,K ,
(4.40)

nd

∥σh − σt
h∥

2
0,K ≤ 4 ∥σ − σh∥

2
0,K . (4.41)

The following lemmas provide the corresponding upper bounds for the remaining estimates required to obtain the
fficiency of Θ .

emma 4.16. There exist C3, C4 > 0, independent of λ and h, such that

h2
K

curl (C−1σh + ρh)
2
0,K ≤ C3

{
∥σ − σh∥

2
0,K +

ρ − ρh

2
0,K

}
∀ K ∈ Th, (4.42)

nd

he
[[(C−1σh + ρh + cI)se]]

2
0,e ≤ C4

{
∥σ − σh∥

2
0,ωe

+
ρ − ρh

2
0,ωe

}
∀ e ∈ Eh(Ω).

roof. It suffices to apply Lemma 4.7 with ξh := C−1σh + ρh + cI and ξ := C−1σ + ρ + cI. □

emma 4.17. There exists C5 > 0, independent of λ and h, such that for each K ∈ Th, there holds

h2
∇u −

(
C−1σ + ρ + cI

)2 ≤ C
{
∥u − u ∥

2
+ h2

∥σ − σ ∥
2

+ h2
ρ − ρ

2 }
.
K h h h 0,K 5 h 0,K K h 0,K K h 0,K

12
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Proof. It follows from an application of (4.9) with q := ∇uh − (C−1σh + ρh + cI), the estimate (3.3) and then, the use of
Lemma 4.5. We refer to [18, Lemma 4.12] and [14, Lemma 6.6] for further details. □

Lemma 4.18. There exists C6 > 0, independent of λ and h, such that for each e ∈ Eh(Γ ), there holds

he

duD

dse
− (C−1σh + ρh + cI)se

2
0,e

≤ C6

{
∥σ − σh∥

2
0,Ke +

ρ − ρh

2
0,Ke

}
,

here Ke is a triangle of Th having e as an edge.

roof. We begin by defining ξ, ξh as in the proof of Lemma 4.16, and then, given e ∈ Eh(Γ ), we denote χe :=
duD
ds − ξhs on e. Thus, applying the inequality (4.10) to χe, the extension operator L : C(e) → C(K ) and the fact that
duD
ds = ∇us, we obtainχe

2
0,e ≤ c4∥ψ1/2

e χe∥
2
0,e = c4

∫
e
ψe χe ·

{
duD

dse
− ξhse

}
= c4

∫
∂Ke
ψe L(χe) ·

{
(∇u − ξh)se

}
.

hen, we integrate by parts and use that ξ = ∇u in Ω (cf. (3.3)), to obtain∫
∂Ke
ψe L(χe) ·

{
(∇u − ξh)se

}
=

∫
Ke
(ξ − ξh) : curl(ψe L(χe)) +

∫
Ke

curl(ξh) · L(χe)ψe.

inally, by exploiting the Cauchy–Schwarz inequality, Lemmas 4.5 and 4.7, and then, invoking the estimates (4.11) and
4.42), we obtain the desired result. □

emma 4.19. There exists C7 > 0, independent of λ and h, such that for each e ∈ Eh(Γ ), there holds

he ∥uD − uh∥
2
0,e ≤ C7

{
∥u − uh∥

2
0,Ke + h2

Ke ∥σ − σh∥
2
0,Ke + h2

Ke

ρ − ρh

2
0,Ke

}
.

roof. It follows from an application of the discrete trace inequality (4.12), the estimate (3.3) and the fact that u = uD
n Γ . We refer to [18, Lemma 4.14] for further details. □

emma 4.20. There exists C8 > 0, independent of h, such that for each K ∈ Th, there holds

h2
K ∥div (ϑ(σh)∇φh) + g(uh)∥2

0,K ≤ C8
{
h2
K ∥u − uh∥

2
0,K + ∥σ − σh∥

2
0,K + ∥φ − φh∥

2
1,K

}
.

roof. Proceeding as in [31, Lemma 4.4], given K ∈ Th, we define

χK := div (ϑ(σh)∇φh) + g(uh) on K .

hus, applying (4.9) with q = χK , using that div (ϑ(σ)∇φ) = −g(u) in Ω , and integrating by parts, we readily find that

∥χK∥
2
0,K ≤ c3∥ψ

1/2
K χK∥

2
0,K = c3

∫
K
(g(uh) − g(u))ψKχK +

∫
K
(ϑ(σ)∇φ − ϑ(σh)∇φh) · ∇(ψKχK ).

ow, applying the Cauchy–Schwarz inequality, the Lipschitz continuity of g (cf. (2.4)) together with estimate (4.26), we
educe that there exists C̃8 > 0, depending only on data and other constants, all of them independent of h, such that

∥χK∥
2
0,K ≤ C̃8

{
∥u − uh∥0,K ∥ψKχK∥0,K +

(
∥σ − σh∥0,K + ∥φ − φh∥1,K

)
|ψKχK |1,K

}
.

ext, using the inverse inequality provided by Lemma 4.5 and the fact that 0 ≤ ψK ≤ 1 in K , we can assert that

∥χK∥
2
0,K ≤ C̃8

{
∥u − uh∥0,K + c6 h−1

K

(
∥σ − σh∥0,K + ∥φ − φh∥1,K

)}
∥χK∥0,K ,

hich gives

h2
K ∥χK∥

2
0,K ≤ C8

{
h2
K ∥u − uh∥

2
0,K + ∥σ − σh∥

2
0,K + ∥φ − φh∥

2
0,K

}
,

ompleting the proof. □

emma 4.21. There exists C9 > 0, independent of h, such that for each e ∈ Eh(Ω), there holds

he ∥[[ϑ(σh)∇φh · νe]]∥
2
0,e ≤ C9

∑
Ke∈ωe

{
h2
Ke ∥u − uh∥

2
0,Ke + ∥σ − σh∥

2
0,Ke + ∥φ − φh∥

2
1,Ke

}
, (4.43)

here ω is the set conformed by the two triangles in T having e as an edge.
e h

13
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Proof. Proceeding analogously as in the proof of [31, Lemma 4.5], given e ∈ Eh(Ω), we define

χe := [[ϑ(σh)∇φh · νe]] on e.

hus, we apply (4.10) with p = χe, and the integration by parts formula on each Ke ∈ ωe, to obtain

∥χe∥
2
0,e ≤ c4∥ψ1/2

e χe∥
2
0,e = c4

∫
e
[[ϑ(σh)∇φh · νe]]ψe L(χe) = c4

∑
Ke∈ωe

∫
∂Ke
ϑ(σh)∇φh · νe ψe L(χe)

= c4
∑
Ke∈ωe

{∫
Ke
ϑ(σh)∇φh · ∇(ψe L(χe)) +

∫
Ke

div(ϑ(σh)∇φh)ψe L(χe)
}
.

ext, using that div (ϑ(σ)∇φ) = −g(u) in Ω and then, integrating by parts once more, we get

∥χe∥
2
0,e ≤ c4

∑
Ke∈ωe

{∫
Ke
(ϑ(σh)∇φh − ϑ(σ)∇φ) · ∇(ψe L(χe))

+

∫
Ke
(g(u) − g(uh))ψe L(χe) +

∫
Ke
(div (ϑ(σh)∇φh) + g(uh))ψe L(χe)

}
.

hen, employing the Cauchy–Schwarz inequality, the Lipschitz continuity of g , the inverse inequality provided by
emma 4.5, the fact that 0 ≤ ψe ≤ 1 in ωe, and the estimate (4.11), we see that

∥χe∥
2
0,e ≤ C̃9

∑
Ke∈ωe

{
h−1
Ke ∥ϑ(σh)∇φh − ϑ(σ)∇φ∥0,K + ∥u − uh∥0,K + ∥div (ϑ(σh)∇φh) + g(uh)∥0,K

}
h1/2
e ∥χe∥0,e,

rom which, noting that he ≤ hKe , and applying the estimate given by (3.8), we deduce that there exists Ĉ9 > 0, depending
nly on data and other constants, all of them independent of h, such that

he ∥χe∥
2
0,e ≤ Ĉ9

∑
Ke∈ωe

{
∥σ − σh∥

2
0,Ke + ∥φ − φh∥

2
1,Ke + h2

Ke ∥u − uh∥
2
0,Ke + h2

Ke ∥div (ϑ(σh)∇φh) + g(uh)∥2
0,Ke

}
. (4.44)

Finally, (4.44) and the efficiency estimate given by Lemma 4.20 imply (4.43), completing the proof. □

We end this section by observing that the efficiency of the a posteriori error indicator Θ follows straightforwardly
rom the estimates (4.40) and (4.41), and Lemmas 4.16–4.21.

.3. A posteriori error analysis for the fully-mixed scheme

In this section we derive two reliable and efficient residual-based a posteriori error estimators for the Galerkin scheme
3.10). We introduce the global a posteriori error estimators

Θ̃ :=

⎧⎨⎩∑
K∈Th

Θ̃
2
K

⎫⎬⎭
1/2

and Θ̂ :=

⎧⎨⎩∑
K∈Th

Θ̂
2
K

⎫⎬⎭
1/2

,

here we define for each K ∈ Th

Θ̃
2
K := Θ2

E,K + ∥̃σh − ϑ(σh)th∥2
0,K + ∥g(uh) + div σ̃h∥

2
0,K + ∥∇φh − th∥2

0,K ,

Θ̂
2
K := Θ̃

2
K + h2

K∥rot(th)∥2
0,K +

∑
e∈Eh(K )

he ∥[[th · se]]∥2
0,e , (4.45)

ith Θ2
E,K defined by (4.13).

The main goal of this section is to establish, under suitable assumptions, the existence of positive constants Crel, Ceff,
rel, ceff, independent of the meshsizes and the continuous and discrete solutions, such that

CeffΘ̃ ≤ ∥(σ⃗, σ̃) − (σ⃗h, σ̃h)∥ ≤ CrelΘ̃, and ceffΘ̂ ≤ ∥(σ⃗, σ̃) − (σ⃗h, σ̃h)∥ ≤ crelΘ̂ . (4.46)

.3.1. A general a posteriori error estimate
We now focus here on the mixed diffusion equation. Applying the uniform ellipticity of the bilinear form Aσ , we

conclude a preliminary upper bound for the total error under smallness-of-data assumptions. More precisely, we begin
with the following auxiliary result.
14
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Lemma 4.22. There exists C2 > 0, independent of h, such that̃σ − σ̃h


H2

≤ C2
{

∥RD
∥H(div;Ω)′ + ∥g(uh) + div σ̃h∥0,Ω + ∥̃σh − ϑ(σh)th∥0,Ω

+ ∥∇φh − th∥0,Ω + Lϑ cS
(
∥uD∥1/2,Γ + f2|Ω|

1/2)
∥σ − σh∥div;Ω

+ ϑ2 ∥t − th∥0,Ω + Lg ∥u − uh∥0,Ω
}
,

(4.47)

here the functional RD is defined by

RD (̃τ) := −κ2

∫
Ω

(g(uh) + div σ̃h) · div τ̃ −

∫
Ω

th · τ̃ −

∫
Ω

φhdiv τ̃ − κ1

∫
Ω

(̃σh − ϑ(σh)th) · τ̃, (4.48)

or each τ̃ ∈ H(div;Ω). Furthermore, there holds

RD (̃τh) = 0 ∀ τ̃h ∈ Hσ̃
h . (4.49)

roof. We proceed similar as in the proof of Lemma 4.9, applying the global inf–sup condition to the error between σ̃
and σ̃h, to obtain

α
̃σ − σ̃h


H2

≤ sup
τ̃∈H2
τ̃ ̸=0

Gu (̃τ) − Aσ (̃σh, τ̃)
∥̃τ∥H2

, (4.50)

here α is the ellipticity constant of Aσ given in [11, eq. (3.18)]. Now, adding and subtracting terms appropriately, we
an write

Gu (̃τ) − Aσ (̃σh, τ̃) = Guh (̃τ) − Aσh (̃σh, τ̃) + Aσh (̃σh, τ̃) − Aσ (̃σh, τ̃) + Gu (̃τ) − Guh (̃τ). (4.51)

In this way, by using the definitions of Aσ , Aσh , Gu, and Guh , we notice that

|(Aσh − Aσ)(̃σh, τ̃)| ≤ C̃2
{
LϑcS(∥uD∥1/2,Γ + f2|Ω|

1/2)∥σ − σh∥0,Ω + ϑ2 ∥t − th∥0,Ω
} ̃τH2

, (4.52)

|(Gu − Guh )(̃τ)| ≤ Ĉ2Lg ∥u − uh∥0,Ω ∥̃τ∥H2 , (4.53)

and

|Guh (̃τ) − Aσh (̃σh, τ̃)| ≤ C2
{
|RD (̃τ)| + ∥g(uh) + div σ̃h∥0,Ω + ∥̃σh − ϑ(σh)th∥0,Ω + ∥∇φh − th∥0,Ω

}
∥̃τ∥H2 . (4.54)

hus, (4.47) follows after replacing (4.52), (4.53) and (4.54) back into (4.51), and then inserting the resulting estimate in
4.50). Finally, using the fact that Guh (̃τh) − Aσh (̃σh, τ̃h) = 0 ∀ τ̃h ∈ H2,h, and taking in particular sh = 0 and ψh = 0, we
rrive at (4.49), which completes the proof. □

Consequently, we can establish the following preliminary upper bound for the total error.

heorem 4.23. Assume that

C1Lf + C2
{
LϑcS

(
∥uD∥1/2,Γ + f2|Ω|

1/2)
+ ϑ2 + Lg

}
<

1
2
. (4.55)

hen, there exists C3 > 0, independent of λ and h, such that the total error satisfies

∥(σ⃗, σ̃) − (σ⃗h, σ̃h)∥ ≤ C3
{
∥RE

∥H0(div;Ω)′ + ∥f (φh) + div σh∥0,Ω + ∥σh − σt
h∥0,Ω + ∥RD

∥H(div;Ω)′

+ ∥g(uh) + div σ̃h∥0,Ω + ∥̃σh − ϑ(σh)th∥0,Ω + ∥∇φh − th∥0,Ω
}
.

roof. It follows as a straightforward application of (4.55) and Lemmas 4.8 and 4.22. □

We end this section by rewriting equivalently the residual RD. In fact, given τ̃ ∈ H(div;Ω), we apply integration by
arts to the third term on the right-hand side of (4.48), to obtain

RD (̃τ) = −κ2

∫
Ω

(g(uh) + div σ̃h) · div τ̃ +

∫
Ω

(∇φh − th) · τ̃ − κ1

∫
Ω

(̃σh − ϑ(σh)th) · τ̃. (4.56)

.3.2. Reliability of the a posteriori error estimators
The main goal of this section is to establish an upper bound for the residual RD in its respective norm. This task is

ctually performed in two different ways, which leads to the reliability of the a posteriori error estimators Θ̃ and Θ̂ . We
egin with the upper bound for the first inequality in (4.46).

emma 4.24. There exists a constant Crel > 0, independent of λ and h, such that

∥(σ⃗, σ̃) − (σ⃗ , σ̃ )∥ ≤ C Θ̃ .
h h rel

15
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Proof. The proof follows straightforwardly from the application of the Cauchy–Schwarz inequality to the residual RD (cf.
4.56)), Lemma 4.13, and the definition of Θ̃ . □

In turn, we now aim at establishing an upper bound for the second inequality in (4.46). For that, we will apply the
ector form of the Helmholtz decomposition in Lemma 4.3, to bound ∥RD

∥H(div;Ω)′ . In fact, given τ̃ ∈ H(div;Ω), there
xist z ∈ H2(Ω) and Φ ∈ H1(Ω) such that

τ̃ = ∇z + rotΦ ∈ Ω, and ∥z∥2,Ω + ∥Φ∥1,Ω ≤ C ∥̃τ∥div;Ω , (4.57)

nd then, denoting Φh := Ih(Φ), we define τ̃h := Πh(∇z)+rot(Φh) ∈ Hσ̃
h . In this way, noticing from (4.49) that RD (̃τh) = 0,

t readily follows that RD (̃τ) can be decomposed as

RD (̃τ) = RD (̃τ − τ̃h) = RD(
∇z −Πh(∇z)

)
+ RD(rot(Φ −Φh)

)
. (4.58)

n the following two lemmas, we provide upper bounds for the terms on the right-hand side of (4.58).

emma 4.25. There exists C > 0, independent of h, such that for each z ∈ H2(Ω), there holds

|RD(
∇z −Πh(∇z)

)
| ≤ C

{ ∑
K∈Th

(
∥g(uh) + div σ̃h∥

2
0,K + h2

K∥∇φh − th∥2
0,K

+ h2
K ∥̃σh − ϑ(σh)th∥2

0,K

)}
1/2

∥z∥2,Ω .

(4.59)

roof. Given z ∈ H2(Ω), we first notice, from the definition of RD (cf. (4.56)), that there holds

RD(
∇z −Πh(∇z)

)
= −κ2

∫
Ω

(g(uh) + div σ̃h) · div (∇z −Πh(∇z))

+

∫
Ω

(∇φh − th) · (∇z −Πh(∇z)) − κ1

∫
Ω

(̃σh − ϑ(σh)th) · (∇z −Πh(∇z)).
(4.60)

or the first term on the right-hand side of (4.60) we proceed as in [28, Lemma 3.10], whereas for the remaining terms,
e simply apply the Cauchy–Schwarz inequality, and subsequently use the approximation properties of Πh provided by
emma 4.2. □

emma 4.26. There exists C > 0, independent of h, such that for each Φ ∈ H1(Ω), there holds

|RD(rot(Φ −Φh)
)
|

≤ C

⎧⎨⎩∑
K∈Th

(
∥̃σh − ϑ(σh)th∥2

0,K + h2
K∥rot(th)∥2

0,K +

∑
e∈Eh(K )

he ∥[[th · se]]∥2
0,e

)⎫⎬⎭
1/2

∥Φ∥1,Ω .

roof. Given Φ ∈ H1(Ω), we notice from the original definition of RD (cf. (4.48)) that there holds

RD(rot(Φ −Φh)
)

= −κ1

∫
Ω

(̃σh − ϑ(σh)th) · rot(Φ −Φh) −

∫
Ω

th · rot(Φ −Φh). (4.61)

or the first term, we proceed as in the proof of [37, Lemma 3.9], applying the boundedness of Ih : H1(Ω) → H1(Ω)
cf. [40, Lemma 1.127]), and the Cauchy–Schwarz and triangle inequalities, to deduce that⏐⏐⏐⏐κ1 ∫

Ω

(̃σh − ϑ(σh)th) · rot(Φ −Φh)
⏐⏐⏐⏐ ≤ C1∥̃σh − ϑ(σh)th∥0,Ω ∥Φ∥1,Ω . (4.62)

ow, for the second term, we proceed as in the proof of [32, Lemma 3.9], to obtain

⏐⏐⏐⏐∫
Ω

th · rot(Φ −Φh)
⏐⏐⏐⏐ ≤ C2

⎧⎨⎩∑
K∈Th

(
h2
K∥rot(th)∥2

0,K +

∑
e∈Eh(K )

he ∥[[th · se]]∥2
0,e

)⎫⎬⎭
1/2

∥Φ∥1,Ω . (4.63)

inally, the desired result follows by replacing (4.62) and (4.63) back into (4.61). □
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As a consequence of Lemmas 4.25 and 4.26, the identity (4.58), and the stability result given by (4.57), we can deduce
he required upper bound for ∥RD

∥H(div;Ω)′ , that is

∥RD
∥H(div;Ω)′ ≤ C

⎧⎨⎩∑
K∈Th

(
∥g(uh) + div σ̃h∥

2
0,K + h2

K∥∇φh − th∥2
0,K + h2

K ∥̃σh − ϑ(σh)th∥2
0,K

+ ∥̃σh − ϑ(σh)th∥2
0,K + h2

K∥rot(th)∥2
0,K +

∑
e∈Eh(K )

he ∥[[th · se]]∥2
0,e

)⎫⎬⎭
1/2

,

here C is a positive constant independent of h.
Finally, we point out that the existence of a constant crel > 0, such that

∥(σ⃗, σ̃) − (σ⃗h, σ̃h)∥ ≤ crelΘ̂,

follows from Theorem 4.23, and Lemmas 4.13, 4.25 and 4.26, after observing that, for sufficiently small elements, the terms
h2
K∥∇φh − th∥2

0,K and h2
K ∥̃σh −ϑ(σh)th∥2

0,K in (4.59), are dominated by ∥∇φh − th∥2
0,K and ∥̃σh −ϑ(σh)th∥2

0,K , respectively.

4.3.3. Efficiency of the a posteriori error estimators
Let us begin with the efficiency estimate for Θ̃ .

Lemma 4.27. There exists Ceff > 0, independent of λ and h, such that

CeffΘ̃ ≤ ∥(σ⃗, σ̃) − (σ⃗h, σ̃h)∥. (4.64)

roof. We recall that g(u) = −div σ̃ in Ω . In this way, it is clear that

∥g(uh) + div σ̃h∥
2
0,K ≤ 2 ∥div(̃σ − σ̃h)∥2

0,K + 2L2g ∥u − uh∥
2
0,K . (4.65)

oreover, since σ̃ = ϑ(σ)t in Ω , applying the Lipschitz continuity of ϑ , the regularity estimate [10, eq. (2.23)], and the
auchy–Schwarz inequality, we deduce

∥̃σh − ϑ(σh)th∥2
0,K ≤ C

{
∥̃σ − σ̃h∥

2
0,K + ∥σ − σh∥

2
0,K + ∥t − th∥2

0,K

}
. (4.66)

dditionally, since t = ∇φ in Ω , we get

∥∇φh − th∥2
0,K ≤ C1

{
∥φ − φh∥

2
1,K + ∥t − th∥2

0,K

}
. (4.67)

herefore, the result follows from the definition of Θ̃ , estimates (4.40), (4.41), (4.65), (4.66) and (4.67), and Lemmas 4.16–
.19. □

Finally, we derive the efficiency of the estimator Θ̂ . In fact, the required upper bounds for the second and third terms
n the right-hand side of (4.45) are obtained simply by taking r = t and rh = th in Lemma 4.7. Then, the resulting
stimates along with (4.40), (4.41), (4.65), (4.66) and (4.67), and Lemmas 4.16–4.19, allow us to conclude the desired
nequality, which is stated as follows.

emma 4.28. There exists a ceff > 0, independent of λ and h, such that

ceffΘ̂ ≤ ∥(σ⃗, σ̃) − (σ⃗h, σ̃h)∥. (4.68)

5. Numerical results

In this section we present some numerical results illustrating the properties of the estimator introduced in Section 4
and showing the behaviour of the associated adaptive algorithm. The individual errors and rates of convergence of the
unknowns will be computed as usual

e(σ) = ∥σ − σh∥div;Ω , e(u) = ∥u − uh∥0,Ω , e(ρ) =
ρ − ρh


0,Ω , e(̃σ) = ∥̃σ − σ̃h∥div;Ω ,

e(t) = ∥t − th∥0,Ω , e(φ) = ∥φ − φh∥1,Ω , r(·) =
log(e(·)/̂e(·))

log(h/̂h)
,

here e and ê denote errors computed on two consecutive meshes of sizes h and ĥ. When the adaptive algorithm is
pplied, the expression log(h/̂h) appearing in the computation of the above rates is replaced by −0.5 log(N/N̂), where N
nd N̂ , denote the corresponding degrees of freedom of each triangulation. In addition, given the total errors

e =
{
[e(σ)]2 + [e(u)]2 + [e(ρ)]2 + [e(φ)]2

}
, and e = {e + e[(t)]2 + e[(̃σ)]2},
1 2 1

17
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Table 5.1
Example 1: Degrees of freedom, individual absolute errors, rates of convergence, and effectivity index for the first- and
second-order mixed-primal finite element methods.
N e(σ ) r(σ ) e(u) r(u) e(ρ) r(ρ) e(φ) r(φ) eff(Θ)

Lowest-order mixed-primal method

346 0.372 – 8.4e−6 – 3.3e−5 – 5.8e−2 – 1.00
1298 0.191 1.00 4.2e−6 1.03 1.6e−5 1.05 2.8e−2 1.10 0.99
5026 0.096 1.01 2.1e−6 1.01 8.4e−6 1.02 1.4e−2 1.01 0.99

19778 0.048 1.00 1.0e−6 1.01 4.2e−6 1.01 7.0e−3 1.01 0.99
78466 0.024 1.00 5.3e−7 1.00 2.1e−6 1.00 3.5e−3 1.00 0.99

312578 0.012 1.00 2.6e−7 1.00 1.0e−6 1.00 1.7e−3 1.00 0.99

Second-order mixed-primal method

898 0.0825 – 1.7e−6 – 7.6e−6 – 8.2e−3 – 0.99
3458 0.0213 2.00 4.4e−7 2.01 1.9e−6 2.03 2.1e−3 2.02 0.98

13570 0.0053 2.01 1.1e−7 2.01 4.8e−7 2.02 5.2e−4 2.00 0.98
53762 0.0013 2.01 2.8e−8 2.01 1.2e−7 2.01 1.3e−4 2.01 0.98

214018 0.0003 2.00 7.0e−9 2.00 3.0e−8 2.00 3.2e−5 2.00 0.98

Table 5.2
Example 1: Degrees of freedom, individual absolute errors, rates of convergence, and effectivity indexes for the first- and second-order augmented
fully-mixed finite element methods.
Lowest-order augmented fully-mixed scheme

N e(σ ) r(σ ) e(u) r(u) e(ρ) r(ρ) e(σ̃ ) r(σ̃ ) e(t) r(t) e(φ) r(φ) eff(Θ̃) eff(Θ̂)

466 3.728 – 8.4e−5 – 3.3e−4 – 1.9e−2 – 4.5e−2 – 5.6e−2 – 1.001 1.000
1762 1.918 0.99 4.2e−5 1.02 1.6e−4 1.05 9.6e−3 1.02 2.3e−2 0.99 2.7e−2 1.08 0.999 0.999
6850 0.965 1.01 2.1e−5 1.01 8.4e−5 1.02 4.7e−3 1.03 1.1e−2 1.00 1.4e−2 0.99 0.999 0.998

27010 0.483 1.00 1.0e−5 1.00 4.2e−5 1.01 2.3e−3 1.01 5.8e−3 1.00 7.0e−3 0.99 0.999 0.998
107266 0.242 1.00 5.3e−6 1.00 2.1e−5 1.00 1.1e−3 1.00 2.9e−3 1.00 3.5e−3 1.00 0.999 0.998
427522 0.121 1.00 2.6e−6 1.00 1.0e−5 1.00 5.9e−4 1.00 1.4e−3 1.00 1.7e−3 1.00 0.999 0.998

Second-order augmented fully-mixed scheme

1266 0.825 – 1.7e−5 – 7.6e−5 – 2.4e−3 – 6.6e−3 – 7.4e−3 – 1.000 0.997
4898 0.213 1.99 4.4e−6 2.00 1.9e−5 2.02 6.2e−4 2.04 1.7e−3 1.99 1.9e−3 1.96 0.999 0.996

19266 0.053 2.01 1.1e−6 2.01 4.8e−6 2.02 1.5e−4 2.02 4.3e−4 2.01 5.0e−4 1.98 0.999 0.996
76418 0.013 2.00 2.8e−7 2.00 1.2e−6 2.01 3.9e−5 2.01 1.0e−4 2.00 1.2e−4 1.98 0.999 0.996

304386 0.003 2.00 7.0e−8 2.00 3.0e−7 2.00 9.8e−6 2.00 2.7e−5 2.00 3.2e−5 1.99 0.999 0.996

the effectivity indexes associated with Θ , Θ̃ , and Θ̂ are defined, respectively, as

eff(Θ) =
e1
Θ
, eff(Θ̃) =

e2
Θ̃
, and eff(Θ̂) =

e2
Θ̂
.

The linearisation of the systems associated with the assembled forms of (3.4) and (3.10) is carried out by Newton’s method.
In turn, the solution of the resulting linear systems at each Newton step is conducted using the Multifrontal Massively
Parallel Sparse direct solver (MUMPS). In addition, the examples use a classical adaptive mesh refinement procedure based
on the equi-distribution of the error indicators, where the diameter of each element in the new adapted mesh (contained
in a generic element K on the initial coarse mesh) is proportional to the diameter of the initial element times the ratio
Θ̂h/ΘK , where Θ̂h is the mean value of a given indicator Θ over the initial mesh (cf. [22]).

On the other hand, we recall that given the Young modulus E and the Poisson ratio ν of an isotropic linear elastic
olid, the corresponding Lamé parameters are defined as λ = Eν(1 + ν)−1(1 − 2ν)−1 and µ = E/(2 + 2ν). Thus, in the
ollowing examples, we will consider E = 1.0e3 and ν = 0.4.

Moreover, we point out that given D0 = D1 = 0.1, the nonlinear functions

ϑ(σ) = (D0 + D1(1 + |σ|
2)−0.5) I, f (φ) =

(
− sin(φ)
cos(φ)

)
, and g(u) = 2 +

1
1 + |u|

2 ,

satisfying (2.2)–(2.4), will be used in the following computational tests, and remark that for the examples described below,
the elasticity and diffusion equations are considered non-homogeneous and the extra source terms are chosen according
to the given exact solutions. This treatment does not compromise the analysis, as the regularity of the exact solution
provides sufficiently smooth right-hand sides, thus only requiring a slight modification of the functionals in the variational
formulation.
18
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Fig. 5.1. Example 1: Approximation of the stress magnitude |σh| (a), displacement magnitude |uh| (b), rotation magnitude |ρh| (c), diffusive flux
magnitude |̃σh| (d), concentration of the diffusive substance φh (e), and concentration gradient magnitude |th| (f), by using the lowest-order augmented
fully-mixed scheme with adaptive refinement according to Θ̃ .

Table 5.3
Example 2: Degrees of freedom, individual absolute errors, rates of convergence, and effectivity index for the lowest-order
mixed-primal finite element method.
N e(σ ) r(σ ) e(u) r(u) e(ρ) r(ρ) e(φ) r(φ) eff(Θ)

Lowest-order mixed-primal scheme upon uniform refinement

346 136.2 – 3.4e−5 – 2.2e−4 – 1.54 – 1.13
1298 77.45 0.85 2.4e−5 0.50 2.6e−4 −0.23 1.10 0.50 1.06
5026 56.68 0.46 1.1e−5 1.19 1.8e−4 0.48 0.81 0.45 1.00

19778 42.11 0.43 4.3e−6 1.37 9.9e−5 0.93 0.66 0.30 0.99
78466 26.29 0.68 1.8e−6 1.21 4.3e−5 1.19 0.56 0.24 0.99

312578 14.25 0.88 8.8e−7 1.08 1.8e−5 1.24 0.41 0.42 0.99

Lowest-order mixed-primal scheme with adaptive refinement according to Θ

346 136.2 – 3.4e−5 – 2.2e−4 – 1.54 – 1.13
898 77.45 1.18 2.3e−5 0.81 2.1e−4 0.46 1.10 0.71 1.06

2239 56.68 0.68 1.0e−5 1.76 1.5e−4 0.70 0.80 0.67 1.00
4985 42.06 0.74 4.5e−6 2.08 8.5e−5 1.56 0.65 0.52 0.99

10968 25.83 1.23 2.8e−6 1.15 4.0e−5 1.88 0.54 0.44 0.99
27366 13.32 1.44 1.7e−6 1.07 1.9e−5 1.62 0.40 0.66 0.99
77382 6.484 1.38 1.1e−6 0.75 9.4e−6 1.36 0.24 0.94 0.99

244093 3.190 1.23 6.5e−7 1.05 4.7e−6 1.21 0.13 1.08 0.99
19
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Table 5.4
Example 2: Degrees of freedom, individual absolute errors, rates of convergence, and effectivity indexes for the lowest-order augmented fully-mixed
finite element method.
N e(σ ) r(σ ) e(u) r(u) e(ρ) r(ρ) e(σ̃ ) r(σ̃ ) e(t) r(t) e(φ) r(φ) eff(Θ̃) eff(Θ̂)

Lowest order augmented fully-mixed scheme upon uniform refinement

466 136.2 – 3.2e−5 – 2.2e−4 – 130.1 – 17.2 – 48.1 – 1.14 1.11
1762 77.46 0.84 2.1e−5 0.64 2.5e−4 −0.22 91.73 0.52 6.85 1.39 17.1 1.55 1.09 1.08
6850 56.68 0.46 1.0e−5 1.08 1.8e−4 0.46 65.41 0.49 2.84 1.29 6.64 1.39 1.05 1.04

27010 42.11 0.43 4.1e−6 1.28 9.8e−5 0.92 48.19 0.44 1.53 0.89 3.16 1.08 1.02 1.02
107266 26.29 0.68 1.8e−6 1.16 4.3e−5 1.18 37.02 0.38 0.95 0.69 1.66 0.93 1.00 1.00
427522 14.25 0.88 8.9e−7 1.07 1.8e−5 1.24 26.99 0.45 0.56 0.74 0.79 1.07 1.00 0.99

Lowest order augmented fully-mixed scheme with adaptive refinement according to Θ̃

466 136.2 – 3.2e−5 – 2.2e−4 – 130.1 – 17.2 – 48.1 – 1.14
1762 77.45 0.84 2.1e−5 0.58 2.1e−4 0.10 91.72 0.52 0.73 1.28 18.0 1.47 1.09
6014 56.68 0.50 9.8e−6 1.29 1.5e−4 0.52 65.41 0.55 3.02 1.44 7.04 1.53 1.05

13206 42.06 0.75 4.1e−6 2.20 8.5e−5 1.58 48.19 0.77 1.61 1.59 3.35 1.88 1.02
24044 25.83 1.62 2.2e−6 2.10 4.0e−5 2.47 37.02 0.88 0.98 1.64 1.74 2.17 1.00
48542 13.32 1.88 1.4e−6 1.25 1.9e−5 2.12 26.99 0.89 0.57 1.51 0.81 2.17 1.00

127678 6.484 1.49 1.0e−6 0.68 9.4e−6 1.47 16.97 0.95 0.31 1.25 0.33 1.81 1.00
423282 3.190 1.18 6.3e−7 0.78 4.6e−6 1.16 9.344 0.99 0.16 1.09 0.14 1.41 1.00

Lowest order augmented fully-mixed scheme with adaptive refinement according to Θ̂

466 136.2 – 3.2e−5 – 2.2e−4 – 130.1 – 17.2 – 48.1 – 1.11
1762 77.45 0.84 2.1e−5 0.58 2.1e−4 0.11 91.72 0.52 7.34 1.28 18.0 1.47 1.08
6708 56.68 0.46 9.8e−6 1.19 1.5e−4 0.48 65.41 0.50 3.02 1.32 7.04 1.40 1.05

14956 42.06 0.74 4.1e−6 2.18 8.5e−5 1.55 48.19 0.76 1.61 1.56 3.35 1.85 1.02
26122 25.83 1.74 2.1e−6 2.34 4.0e−5 2.66 37.02 0.94 0.98 1.76 1.74 2.34 1.00
52180 13.32 1.91 1.3e−6 1.37 1.9e−5 2.15 26.99 0.91 0.57 1.53 0.81 2.20 0.99

128846 6.484 1.59 9.1e−7 0.83 9.3e−6 1.58 16.97 1.02 0.31 1.33 0.33 1.94 0.99
431240 3.190 1.17 6.3e−7 0.60 4.6e−6 1.14 9.344 0.98 0.16 1.09 0.14 1.40 0.99

Finally, for the nonlinear diffusivity, the parameters appearing in (2.2) are given by: ϑ0 = D0, ϑ2 =
√
2(D0 + D1),

nd then, according to [11, eq. (3.20)], the stabilisation parameters for the fully-mixed scheme (3.10) can be taken as
1 = ϑ0/ϑ

2
2 , κ2 = ϑ0/(2ϑ2

2 ) and κ3 = ϑ0/2.

Example 1. In the first example, we consider the following exact solutions to (2.1):

u =
1
λ

(
d1 cos(πx1) sin(2πx2)
−d1 sin(πx1) cos(πx2)

)
, φ = 1.0 − e−x1(x1−1)x2(x2−1), (5.1)

defined on the unit square Ω = (0, 1)2, satisfying the boundary conditions uD = u on Γ and φ = 0 on Γ . The involved
oefficient in (5.1) is taken as d1 = 0.05.

The manufactured solutions on the considered domain are smooth, and the a posteriori error indicators show effectivity
ndexes close to one. The results reported in Tables 5.1 and 5.2 indicate optimal convergence rates for the two lowest-order
ethods. Approximate solutions obtained after seven steps of uniform refinement are depicted in Fig. 5.1.

xample 2. In our second example we design a mesh convergence test using a closed-form solution, and performing
niform and adaptive mesh refinements. Thus, we consider the same computational domain as the one given in Example 1,
nd propose the following exact solutions

u =
1
λ

⎛⎝ −d1 sin(x1) cos(x2)
(x2 + 0.02)2 + (x1 + 0.02)2

−d1 cos(x1) sin(2x2)

⎞⎠ , φ =
x1(x1 − 1)x2(x2 − 1)

(10x1 + 0.1)2
, (5.2)

where the manufactured displacement is used as Dirichlet datum on Γ , and the involved coefficient in (5.2) is taken as
in Example 1. Notice that the first component of the displacement, and the concentration, in (5.2), exhibit singularities
just outside the domain, at (0, 0) and the line x1 = −0.01, respectively, therefore, high gradients are also expected
in the approximation of these fields, and optimal convergence is no longer evidenced under uniform mesh refinement
(see second row of Tables 5.3 and 5.4). In Tables 5.3 and 5.4, we show the individual errors, the effectivity indexes and
experimental rates of convergence for the uniform and adaptive refinements of the mixed-primal and augmented fully-
mixed schemes. As expected, we observe that the errors decrease faster through the adaptive procedure, and that in each
case, the effectivity indexes remain bounded, which confirms the reliability and efficiency of Θ , Θ̃ and Θ̂ , in the cases of
non-smooth solutions. Moreover, although super-convergence of the concentration can be seen when the adaptive scheme
20
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Fig. 5.2. Example 2: From left to right, three snapshots of successively refined meshes according to the indicators Θ (a,b,c), Θ̃ (d,e,f), and Θ̂ (g,h,i).

s applied for the augmented fully-mixed system (see the last two blocks of Table 5.4), we notice from Fig. 5.3(a) that the
lobal rate of convergence remains optimal. Furthermore, it is important to remark that when the adaptive algorithms are
pplied, optimal convergence can be restored, as shown in the last block of Table 5.3 and the last two blocks of Table 5.4.
dditionally, we display in Fig. 5.2 some adapted meshes obtained during the adaptive refinements according to Θ , Θ̃
nd Θ̂ , and observe that they are concentrated around (0, 0) and the line x1 = −0.01, which shows how the method is
ble to identify the regions in which the accuracy of the numerical approximation is deteriorated. Finally, approximation
olutions are shown in Fig. 5.3(b–e) after eight steps of adaptive refinement according to the indicator Θ .
21
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Fig. 5.3. Example 2: Plot of the total error versus the number of degrees of freedom N associated with the uniform mesh refinement and adaptive
algorithms according to Θ̃ and Θ̂ (a); and approximate stress magnitude (b), rotation magnitude (c), displacement magnitude (d), and solute
concentration (e) computed using the lowest-order scheme where mesh adaptation is done via the estimator Θ after eight steps of refinement.
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