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A B S T R A C T 

We propose mixed finite element methods for the coupled Biot poroelasticity and Poisson–Nernst--Planck equations (modeling ion transport in 
deformable porous media). For the poroelasticity, we consider a primal-mixed, fou-field formulation in terms of the solid displacement, the fluid 
pressure, the Darcy flux, and the total pressure. In turn, the Poisson–Nernst--Planck equations are formulated in terms of the electrostatic potential, 
the electric field, the ionized particle concentrations, their gradients, and the total ionic fluxes. The weak formulation, posed in Banach spaces, 
exhibits the structure of a perturbed block-diagonal operator consisting of perturbed and generalized saddle-point problems for the Biot equations, a 
generalized saddle-point system for the Poisson equations, and a perturbed twofold saddle-point problem for the Nernst–Planck equations. One of the 
main novelties here is the well-posedness analysis, hinging on the Banach fixed-point theorem along with small data assumptions, the Babuška–Brezzi 
theory in Banach spaces, and a slight variant of recent abstract results for perturbed saddle-point problems, again in Banach spaces. The associated 
Galerkin scheme is addressed similarly, employing the Banach fixed-point theorem to yield discrete well-posedness. A priori error estimates are 
derived, and simple numerical examples validate the theoretical error bounds, and illustrate the performance of the proposed schemes.

1. Introduction

Scope. We study a mathematical model for the transport of electrolytes through an electrically charged fully saturated and 
deformable porous medium. The electro-hydrostatics are described by the Nernst–Planck relations (mass balance for the counterions) 
and a mixed Poisson problem (Gauss law) while the fluid movement of the electrolyte solution within the pores of the poroelastic 
structure are modeled with the Biot equations -- one of the most common models for coupled fluid flow and mechanical deformations of 
porous structures -- written in mixed form. Homogenized models of ion transport in poroelastic media can be found in [41,47] (see also 
[1] for theory and application in nuclear waste disposal in argillaceous rocks). Other applications of macroscopic models where fixed 
charges yield Debye layers include polymer gels, mechanical actuators for soft robotics, and charged proteoglycans in solid scaffolds 
of hydrated biological tissues such as articular cartilage [38,39,49,50,52]. As far as we know, no mixed finite element methods (that 
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is, formulations that include other variables of interest in addition to solid displacement, fluid pressure, electrostatic potential, and 
ionic concentrations) have been developed -- including formulation and theoretical analysis -- for this particular problem.

Mixed methods for poromechanical equations (and solving not just for the displacement-pressure pair) are abundant in the recent 
literature (see, for example, the very different formulations in [2,6,10,12,14,42,34,37,43,51,53] and the references therein). In this 
respect we focus on formulations that maintain robustness with respect to the Lamé parameters and permeability of the porous matrix. 
From those works we refer to [36,11] that use displacement, fluid pressure, total pressure and the relative fluid velocity (Darcy flux) 
as unknowns.

We also stress that the coupling of Biot equations in mixed form to other physical effects (interface contact, thermal properties, 
second- and fourth-order transport, etc.) can be substantially more difficult to analyze. Again, focusing on mixed methods, we refer, 
for example, to [13,33,45,44,48]. In some cases, augmented methods allow the recovery of a Hilbertian framework. For our problem, 
however, it is difficult to readily construct a Hilbert norm for the Darcy filtration velocity due to the advective coupling in the 
Nernst–Planck equations.

The problem we tackle here has similar components as in the aforementioned works, also including the Biot-heat equations 
analyzed in [17] based on a Banach spaces approach, which we follow herein. In this regard, we refer as well to similar multiphysics 
coupled problems addressed with generalizations of the fixed-point and saddle-point abstract framework to Banach spaces [16,18,20]. 
On the other hand, the analysis of fully mixed methods for the Poisson–Nernst--Planck equations coupled with Stokes and Navier--

Stokes equations has been recently advanced in [26,25], respectively, also using a Banach spaces framework. In contrast with these 
formulations, in the present model the linear momentum balance of the poroelasticity problem involves the gradients of the ionic 
concentrations, which suggests to use the gradient of the ionic concentrations as additional variable; yielding again a first-order 
structure of the coupled equations, but now exhibiting a twofold saddle point form. In general, the type of methods we propose here 
inherits appealing features such as more flexibility in data assumptions and solution regularity, obtaining all variables of interest 
without postprocessing, and preserving balance equations exactly. The analysis uses the Babuška–Brezzi and related theories including 
the extension to perturbed saddle-point problems, all in Banach spaces. These arguments are combined with the classical Banach 
theorem to establish the existence of a unique solution.

Most PNP–Stokes or Navier–Stokes formulations restrict the analysis to only space-dependent parameters and we have therefore 
followed that assumption. Some recent works [40] suggest a generalization to concentration-dependent density, viscosity, and per

mittivity. Extending that framework to the Biot–PNP system is still missing from the literature and this might be of the possible 
extensions of the current work. Finally, we note that the steady state regime presents a number of challenges that turn the analysis 
sufficiently long. We anticipate that extending this analysis to the transient case is possible but for it we would first require properties 
of invertibility of resolvents and similar arguments that we still need to address as done here in the steady case. The transient regime 
is briefly addressed in our numerical examples.

Plan of the paper. We have organized the contents of this paper as follows. In Section 2, we present the Biot–Poisson--Nernst--Planck 
equations. In particular, the auxiliary unknowns are introduced here. In Section 3, we establish the primal-mixed variational for

mulation of the problem by breaking down the analysis according to the three sets of equations comprising the coupled model. In 
Section 4, we employ a fixed-point strategy to examine the solvability of the continuous formulation. The Galerkin scheme is intro

duced in Section 5 and a fixed-point approach analogous to that of Section 4 is employed to investigate its well-posedness. Under 
appropriate stability conditions on the finite element subspaces used, the existence and uniqueness of the solution are proven by 
applying Banach’s fixed-point theorem, along with the discrete versions of the theories employed in the continuous analysis. The 
error analysis is also conducted there and a corresponding Céa estimate is derived. Next, in Section 6, we introduce specific finite 
element subspaces that meet the used assumptions. Rates of convergence of the resulting discrete scheme are also established. Finally, 
several numerical examples cofirming these theoretical findings and illustrating the good performance of the method are presented 
in Section 7.

Notation conventions and preliminaries. Throughout the paper Ω is an open and bounded Lipschitz-continuous domain of R𝑑 , 
𝑑 ∈ {2,3}, which satifies a uniform exterior ball condition, and whose outward unit normal on its boundary Γ is denoted 𝒏. We remark 
in advance that the above geometric assumption on Ω is a technical tool to be employed only to prove the continuous and discrete 
versions of a particular inf-sup condition arising from the analysis (cf. Lemmas 4.2 and 6.1). Standard notation will be adopted for 
Lebesgue spaces L𝑡(Ω), with 𝑡 ∈ [1, + ∞), and Sobolev spaces W𝓁,𝑡(Ω), with 𝓁 ≥ 0, whose corresponding norms and seminorms, either 
for the scalar, vector, or tensorial version, are denoted by ‖ ⋅‖0,𝑡;Ω, ‖ ⋅‖𝓁,𝑡;Ω, and | ⋅ |𝓁,𝑡;Ω, respectively. Note that W0,𝑡(Ω) = L𝑡(Ω), and 
that when 𝑡 = 2, we simply write H𝓁(Ω) instead of W𝓁,2(Ω), with its norm and seminorm denoted by ‖ ⋅ ‖𝓁,Ω and | ⋅ |𝓁,Ω, respectively. 
Now, letting 𝑡, 𝑡′ ∈ (1, + ∞) conjugate to each other, that is such that 1∕𝑡 + 1∕𝑡′ = 1, we let W1∕𝑡′ ,𝑡(Γ) and W−1∕𝑡′ ,𝑡′ (Γ) be the trace 
space of W1,𝑡(Ω) and its dual, respectively, and denote the duality pairing between them by ⟨⋅, ⋅⟩. In particular, when 𝑡 = 𝑡′ = 2, we 
simply write H1∕2(Γ) and H−1∕2(Γ) instead of W1∕2,2(Γ) and W−1∕2,2(Γ), respectively. Also, given any generic scalar functional space 
M, we let 𝐌 be its vector counterpart.

2. The model problem

Consider a homogeneous porous medium (a mixture of incompressible grains and charged interstitial fluid) occupying the do

main Ω. There, we assume the presence of positively and negatively charged ions (e.g., binary monovalent completely dissociated 
electrolytes Na+ and Cl−). For a given body force 𝒇 and mass source 𝑔, neglecting convective, gravitational, and inertial terms, the 
steady-state linear momentum balance for the mixture and mass balance for the fluid (using the modfied Darcy law) are expressed 
as
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−𝐝𝐢𝐯(𝝈) = 𝒇 in Ω and 𝑐0 𝑝 + 𝛼 div(𝒖) − div
(
𝜅

𝜈
∇𝑝
)

= 𝑔 in Ω, (2.1)

where 𝝈 is the Cauchy stress tensor of the mixture, 𝒖 is the unknown vector of displacement of the solid, and 𝑝 is the reference bulk 
pressure of the fluid. The remaining parameters are the permeability 𝜅, the constrained specific storage coefficient 𝑐0 , the Biot–Willis 
parameter 𝛼, and the viscosity of the pore fluid 𝜈. Following the modfied Terzaghi decomposition, the constitutive equation for 𝝈
is conformed by the effective poroelastic stress through Hooke’s law for ifinitesimal deformation and Biot’s consolidation, plus an 
active macroscopic stress tensor governing the electrochemical interaction between the electrolyte solution and charged molecules 
as follows (the dependence on the electric field -- known as Maxwell’s stress -- can be found in, e.g., [1,41,47], and that on the ionic 
concentrations in [50])

𝝈 = 2𝜇 𝜺(𝒖) + 𝜆 div(𝒖) 𝕀 − 𝛼 𝑝 𝕀 + 𝜀 ∇𝜒 ⊗∇𝜒 − 𝜀 
2
|∇𝜒|2 𝕀 − 𝛿(𝜉1 − 𝜉2) 𝕀 in Ω , (2.2)

where 𝜀 is the electric conductivity, 𝛿 is an osmotic parameter, 𝜺(𝒖) ∶= 1
2 (∇𝒖 + ∇𝒖𝚝) is the tensor of ifinitesimal strains, and 𝜆, 𝜇 are 

the Lamé constants of the solid. The fields 𝜉1 and 𝜉2 are the solute concentrations of positive and negatively charged ions, respectively, 
and 𝜒 is the macroscopic dimensionless electrostatic potential. They satisfy current conservation and mass balance of the charged 
species as follows

− div(𝜀 ∇𝜒) = 𝜉1 − 𝜉2 in Ω ,

𝜉1 − 𝜅
𝜈
∇𝑝 ⋅∇𝜉1 − div

(
𝜅1(∇𝜉1 + 𝑞1 𝜉1∇𝜒)

)
= 𝑓1 in Ω ,

𝜉2 − 𝜅
𝜈
∇𝑝 ⋅∇𝜉2 − div

(
𝜅2(∇𝜉2 + 𝑞2 𝜉2∇𝜒)

)
= 𝑓2 in Ω ,

(2.3)

where 𝑞1 = 1, 𝑞2 = −1, 𝑓1, 𝑓2 are external charge sources, and 𝜅1, 𝜅2 are the diffusivities of the cations and anions, respectively. 
Here we have assumed that the balance equations are scaled with the porosity (assumed constant) and the scaling is absorbed in the 
external sources. Note that the second term on the left-hand sides of the second and third rows of (2.3) is the advection using the 
filtration (Darcy’s seepage) flux, which indicates that the ionic particles diffuse in the mixture and are advected in the interstitial 
fluid.

We emphasize here that a recent study [17] addresses the fully-mixed coupling of Biot and convection-diffusion equations using the 
Darcy seepage velocity and the total stress. There, we employed a fully-mixed formulation (the Biot equation utilizes a mixed approach 
solving for total stress and displacement). Therefore, a natural progression from the findings of that study is to also incorporate a 
fully-mixed approach for the present Biot–Poisson--Nernst--Planck equations presented in this work.

Now, we follow [36,11] and, in order to maintain robustness in the regime of nearly incompressibility and to achieve mass 
conservativity, we adopt a fou-field formulation for the poroelasticity system (2.1) introducing the total pressure 𝜃, and the Darcy 
seepage velocity 𝒛 as the following additional unknowns

𝜃 ∶= −𝜆 div(𝒖) + 𝛼 𝑝 in Ω and 𝒛 ∶= − 𝜅
𝜈
∇𝑝 in Ω . (2.4)

We stress that the approach described above has been motivated by the fact that some of the targeted applications include mesoscale 
soft tissue, which are precisely nearly incompressible. In turn, we notice that for a sufficiently smooth vector function 𝒘 we have

𝐝𝐢𝐯(𝒘⊗𝒘) = (div𝒘) 𝒘 + (∇𝒘) 𝒘 and ∇(|𝒘|2) = 2 (∇𝒘)𝚝𝒘 .

Thus, since ∇𝒘 is symmetric for 𝒘 = ∇𝜒 , a combination of the first equation of (2.1) with (2.2) and the definition of the total 
pressure 𝜃 allows obtaining

−𝐝𝐢𝐯(2𝜇 𝜺(𝒖) − 𝜃 𝕀) − div(𝜀 ∇𝜒)∇𝜒 + 𝛿(∇𝜉1 − ∇𝜉2) = 𝒇 in Ω . (2.5)

Next, for the mass balance (cf. second equation of (2.1)) we use the definition of the total pressure 𝜃 and of the Darcy flux 𝒛 (cf. 
(2.4)) to have(

𝑐0 + 𝛼
2

𝜆 

)
𝑝− 𝛼

𝜆 
𝜃 + div(𝒛) = 𝑔 in Ω .

In addition, for sake of pressure uniqueness in the limiting cases when 𝑐0 = 0 and 𝜆→∞, we impose:

∫
Ω 
𝑝 = 0 . (2.6)

Likewise, we make use of the electric current 𝝋 ∶= 𝜀 ∇𝜒 , which, jointly with the first row of (2.3), gives

−div(𝝋) = 𝜉1 − 𝜉2 in Ω .

In turn, for each 𝑖 ∈ {1,2}, we dfine the ionic concentration gradients 𝒕𝑖, and total (diffusive plus advective) flux of ionic species 𝝈𝑖, 
which are dfined as follows

𝒕𝑖 ∶= ∇𝜉𝑖 in Ω and 𝝈𝑖 ∶= 𝜅𝑖(𝒕𝑖 + 𝑞𝑖𝜀−1𝜉𝑖𝝋) − 𝜉𝑖 𝒛 in Ω .
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This is similar to [26], where the 𝒕𝑖 are not used. Here we need these chemical fluxes to manage the last term on the right-hand side 
of the momentum balance (2.5). Finally, for each 𝑖 ∈ {1,2} we use the identity

div(𝜉𝑖 𝒛) = 𝒛 ⋅∇𝜉𝑖 + 𝜉𝑖 div(𝒛) ,

which, in combination with the second and third rows of (2.3), yields

𝜉𝑖 − div(𝝈𝑖) − 𝜉𝑖 div(𝒛) = 𝑓𝑖 in Ω .

In summary, the steps above lead to the following Biot–Poisson--Nernst--Planck equations in terms of the unknowns 𝒖, 𝜃, 𝒛, 𝑝, 𝝋, 𝜒 , 
𝒕𝑖, 𝝈𝑖 and 𝜉𝑖, 𝑖 ∈ {1,2}, as

−𝐝𝐢𝐯(2𝜇 𝜺(𝒖) − 𝜃 𝕀) + 𝜀−1 (𝜉1 − 𝜉2) 𝝋 + 𝛿(𝒕1 − 𝒕2) = 𝒇 in Ω , (2.7a)

𝜃 − 𝛼 𝑝 + 𝜆 div(𝒖) = 0 in Ω , (2.7b)

𝜈

𝜅
𝒛 + ∇𝑝 = 𝟎 in Ω , (2.7c)(

𝑐0 + 𝛼
2

𝜆 

)
𝑝 − 𝛼

𝜆 
𝜃 + div(𝒛) = 𝑔 in Ω , (2.7d)

𝝋 − 𝜀 ∇𝜒 = 𝟎 in Ω , (2.7e)

−div(𝝋) = 𝜉1 − 𝜉2 in Ω , (2.7f)

𝒕𝑖 − ∇𝜉𝑖 = 𝟎 in Ω , (2.7g)

−𝝈𝑖 + 𝜅𝑖𝒕𝑖 + 𝑞𝑖 𝜅𝑖 𝜀−1 𝜉𝑖𝝋 − 𝜉𝑖 𝒛 = 𝟎 in Ω , (2.7h)

𝜉𝑖 − div(𝝈𝑖) − 𝜉𝑖 div(𝒛) = 𝑓𝑖 in Ω . (2.7i)

We endow (2.7a)-(2.7d) with the following boundary conditions

𝒖 = 𝟎 and 𝒛 ⋅ 𝒏 = 0 on Γ , (2.8)

and Dirichlet boundary conditions with given data 𝜒𝙳, 𝜉𝑖,𝙳, 𝑖 ∈ {1,2}, are considered for (2.7e)-(2.7i):

𝜒 = 𝜒𝙳 and 𝜉𝑖 = 𝜉𝑖,𝙳 on Γ . (2.9)

3. The weak formulation

In this section, we derive a primal-mixed formulation of the system (2.7) - (2.9). To this end, we first provide some preliminaries, 
and then split the analysis according to the respective decoupled problems.

3.1. Preliminaries

We start by considering, for each 𝑡 ∈ [1, + ∞), the Banach spaces

𝐇(div𝑡;Ω) ∶= 
{
𝝉 ∈ 𝐋2(Ω) ∶ div(𝝉) ∈ L𝑡(Ω)

}
,

𝐇𝑡(div;Ω) ∶= 
{
𝝉 ∈ 𝐋𝑡(Ω) ∶ div(𝝉) ∈ L2(Ω)

}
,

𝐇𝑡(div𝑡;Ω) ∶= 
{
𝝉 ∈ 𝐋𝑡(Ω) ∶ div(𝝉) ∈ L𝑡(Ω)

}
,

which are endowed with the natural norms:

‖𝝉‖div𝑡;Ω ∶= ‖𝝉‖0;Ω + ‖div(𝝉)‖0,𝑡;Ω ∀ 𝝉 ∈𝐇(div𝑡;Ω) ,‖𝝉‖𝑡,div;Ω ∶= ‖𝝉‖0,𝑡;Ω + ‖div(𝝉)‖0;Ω ∀ 𝝉 ∈𝐇𝑡(div;Ω) ,‖𝝉‖𝑡,div𝑡;Ω ∶= ‖𝝉‖0,𝑡;Ω + ‖div(𝝉)‖0,𝑡;Ω ∀ 𝝉 ∈𝐇𝑡(div𝑡;Ω) .

We recall that, proceeding as in [28, eqn. (1.43), Section 1.3.4] (see also [23, Section 3.1]), one can prove that for each 𝑡 ∈{
(1, + ∞) in R2 ,

[6∕5, + ∞) in R3 ,
there holds

⟨𝝉 ⋅ 𝒏, 𝑣⟩ = ∫
Ω 

{
𝝉 ⋅∇𝑣 + 𝑣 div(𝝉)

}
∀ (𝝉 , 𝑣) ∈𝐇(div𝑡;Ω) × H1(Ω) , (3.2)
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where ⟨⋅, ⋅⟩ denotes the duality pairing between H1∕2(Γ) and H−1∕2(Γ). In turn, given 𝑡, 𝑡′ ∈ (1, + ∞) conjugate to each other, there 
also holds (cf. [27, Corollary B.57])

⟨𝝉 ⋅ 𝒏, 𝑣⟩ = ∫
Ω 

{
𝝉 ⋅∇𝑣 + 𝑣 div(𝝉)

}
∀ (𝝉 , 𝑣) ∈𝐇𝑡(div𝑡;Ω) ×W1,𝑡′ (Ω) , (3.3)

where ⟨⋅, ⋅⟩ denotes in (3.3) the duality pairing between W−1∕𝑡,𝑡(Γ) and W1∕𝑡,𝑡′ (Γ).
Note that handling the terms involving (𝜉1 −𝜉2) 𝝋, 𝜉𝑖𝝋, 𝜉𝑖 𝒛, and 𝜉𝑖 div(𝒛), will determine adequate Sobolev and Lebesgue exponents 

specifying trial and test spaces. Given test functions 𝒗, 𝒔𝑖 and 𝜂𝑖 associated with 𝒖, 𝒕𝑖 and 𝜉𝑖, respectively, an application of the Cauchy--

Schwarz and Hölder inequalities yield|||||||∫Ω 
(𝜉1 − 𝜉2) 𝝋 ⋅ 𝒗

||||||| ≤ ‖𝜉1 − 𝜉2‖0,2𝑙;Ω ‖𝝋‖0,2𝑗;Ω ‖𝒗‖0,Ω , (3.4a)

|||||||∫Ω 
𝜉𝑖𝝋 ⋅ 𝒔𝑖

||||||| ≤ ‖𝜉𝑖‖0,2𝑙;Ω ‖𝝋‖0,2𝑗;Ω ‖𝒔𝑖‖0,Ω , (3.4b)

|||||||∫Ω 
𝜉𝑖 𝒛 ⋅ 𝒔𝑖

||||||| ≤ ‖𝜉𝑖‖0,2𝑙;Ω ‖𝒛‖0,2𝑗;Ω ‖𝒔𝑖‖0,Ω , (3.4c)

|||||||∫Ω 
𝜉𝑖 div(𝒛) 𝜂𝑖

||||||| ≤ ‖𝜉𝑖‖0,2𝑙;Ω ‖div(𝒛)‖0,Ω ‖𝜂𝑖‖0,2𝑗;Ω , (3.4d)

where 𝑙, 𝑗 ∈ (1, + ∞) are conjugate to each other. In this way, denoting

𝑟 ∶= 2𝑗 , 𝑠 ∶= 2𝑗 
2𝑗 − 1

(conjugate of 𝑟) , 𝜌 ∶= 2𝑙 , 𝜚 ∶= 2𝑙 
2𝑙 − 1

(conjugate of 𝜌) , (3.5)

it follows that the above expressions are integrable for 𝜉𝑖 ∈ L𝜌(Ω), 𝝋 ∈ 𝐋𝑟(Ω), 𝒛 ∈𝐇𝑟(div;Ω), 𝒗 ∈ 𝐋2(Ω), 𝒔𝑖 ∈ 𝐋2(Ω) and, assuming that 
𝜌 > 𝑟 (a condition to be satified below in (3.6)), we can consider 𝜂𝑖 ∈ L𝜌(Ω). Moreover, since we aim to apply (3.2) to 𝝉 𝑖 ∈𝐇(div𝜚;Ω)
and 𝜉𝑖 ∈ L𝜌(Ω), we need that H1(Ω) is continuously embedded in L𝜌(Ω). The latter is guaranteed for 𝜌 ∈ [1, + ∞) when 𝑛 = 2, and 
𝜌 ∈ [1,6] when 𝑛 = 3.

On the other hand, in the forthcoming analysis we require a result on the W1,𝑟(Ω)-solvability of an auxiliary Poisson equation 
(in showing a continuous inf-sup condition). For this we need that 4∕3 ≤ 𝑟 ≤ 4 when 𝑛 = 2, and 3∕2 ≤ 𝑟 ≤ 3 when 𝑛 = 3. Thus, since 
𝑟 = 𝜌 

𝑙−1 , intersecting this with the previous restrictions on 𝜌, we find the following feasible ranges for 𝑟, 𝑠, 𝜌 and 𝜚:{
𝑟 ∈ (2,4] and 𝑠 ∈ [4∕3,2) if 𝑛 = 2 ,
𝑟 = 3 and 𝑠 = 3∕2 if 𝑛 = 3 ,

{
𝜌 ∈ [4, + ∞) and 𝜚 ∈ (1,4∕3] if 𝑛 = 2 ,

𝜌 = 6 and 𝜚 = 6∕5 if 𝑛 = 3 .
(3.6)

In turn, in view of the essential boundary conditions for displacement and Darcy flux in (2.8), we consider the following closed 
subspaces of Hilbert and Banach spaces

𝐇1
0(Ω) ∶= 

{
𝒗 ∈𝐇1(Ω) ∶ 𝒗|Γ = 𝟎 

}
, (3.7a)

𝐇𝑠
0(div𝑠;Ω) ∶= 

{
𝒘 ∈𝐇𝑠(div𝑠;Ω) ∶ (𝒘 ⋅ 𝒏)|Γ = 0 

}
, (3.7b)

𝐇𝑟
0(div;Ω) ∶= 

{
𝒘 ∈𝐇𝑟(div;Ω) ∶ (𝒘 ⋅ 𝒏)|Γ = 0 

}
. (3.7c)

The boundary specfication is to be understood in the sense of traces. In addition, for 𝑡 ∈ [1, + ∞) we dfine

L𝑡0(Ω) ∶= 
{
𝑞 ∈ L𝑡(Ω) ∶ ∫

Ω 
𝑞 = 0 
}
. (3.8)

As announced earlier, in what follows we rewrite each variational formulation of Biot, Poisson and Nernst–Planck equations 
independently, ending up with three systems whose coupling is carried out via a fixed-point iteration. We also provide preliminary 
properties of the corresponding bilinear forms.

3.2. Primal-mixed formulation of the poroelasticity equations

In this section, we follow very closely [36, Section 2] to derive the variational formulation of the poroelasticity equations 
(2.7a)-(2.7d) and (2.8), which, given 𝝋, 𝜉1, 𝜉2, 𝒕1, and 𝒕2, consist of finding 𝒖, 𝜃, 𝒛, and 𝑝, all the above in suitable spaces, such that
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−𝐝𝐢𝐯(2𝜇 𝜺(𝒖) − 𝜃 𝕀) + 𝜀−1 (𝜉1 − 𝜉2) 𝝋 + 𝛿(𝒕1 − 𝒕2) = 𝒇 in Ω , (3.9a)

𝜃 − 𝛼 𝑝 + 𝜆 div(𝒖) = 0 in Ω , (3.9b)

𝜈

𝜅
𝒛 + ∇𝑝 = 𝟎 in Ω , (3.9c)(

𝑐0 + 𝛼
2

𝜆 

)
𝑝 − 𝛼

𝜆 
𝜃 + div(𝒛) = 𝑔 in Ω , (3.9d)

𝒖 = 𝟎 and 𝒛 ⋅ 𝒏 = 0 on Γ . (3.9e)

We begin by testing (3.9a) against 𝒗 ∈𝐇1
0(Ω) (cf. (3.7a)), which satifies the bound given by (3.4a). In this way, applying (3.2) with 

𝑡 = 2, and employing the first boundary condition in (3.9e), we obtain

2𝜇∫
Ω 
𝜺(𝒖) ∶ 𝜺(𝒗) − ∫

Ω 
𝜃 div(𝒗) = ∫

Ω 

(
𝒇 − 𝜀−1(𝜉1 − 𝜉2) 𝝋 − 𝛿(𝒕1 − 𝒕2)

)
⋅ 𝒗 ∀ 𝒗 ∈𝐇1

0(Ω) . (3.10)

Thanks to the Cauchy–Schwarz’s inequality and (3.4a), each term in (3.10) makes sense for 𝒖 ∈ 𝐇1
0(Ω), 𝜃 ∈ L2(Ω), 𝒇 ∈ 𝐋2(Ω), 

𝝋 ∈ 𝐋𝑟(Ω), 𝜉𝑖 ∈ L𝜌(Ω), and 𝒕𝑖 ∈ 𝐋2(Ω), 𝑖 ∈ {1,2}. Next, we test (3.9b) against 𝜗 ∈ L2(Ω), which gives

−∫
Ω 
𝜗 div(𝒖) − 1 

𝜆 ∫
Ω 
𝜃 𝜗 + 𝛼

𝜆 ∫
Ω 
𝑝 𝜗 = 0 ∀ 𝜗 ∈ L2(Ω) . (3.11)

On the other hand, recalling from (3.4c) and (3.4d) that 𝒛 ∈𝐇𝑟(div;Ω), and bearing in mind the second boundary condition in (3.9e), 
we deduce that 𝒛 must be sought in 𝐇𝑟

0(div;Ω) (cf. (3.7b)), whence (3.9c) suggests to look originally for 𝑝 ∈W1,𝑟(Ω). In this way, 
testing (3.9c) against 𝒘 ∈𝐇𝑠

0(div𝑠;Ω) (cf. (3.7c)), and employing (3.3), we formally get

𝜈

𝜅 ∫
Ω 
𝒛 ⋅𝒘− ∫

Ω 
𝑝 div(𝒘) = 0 ∀ 𝒘 ∈𝐇𝑠

0(div𝑠;Ω) , (3.12)

from whose second term and (2.6), we notice that it suffices to look for the pressure 𝑝 in the space L𝑟0(Ω) (cf. (3.8)). In turn, since 
div(𝒛) belongs to L2(Ω), we test (3.9d) against 𝑞 ∈ L2

0(Ω) obtaining

𝛼

𝜆 ∫
Ω 
𝜃 𝑞 − ∫

Ω 
𝑞 div(𝒛) −

(
𝑐0 + 𝛼

2

𝜆 

)
∫
Ω 
𝑝 𝑞 = −∫

Ω 
𝑔 𝑞 ∀ 𝑞 ∈ L2

0(Ω) , (3.13)

which requires assuming that 𝑔 ∈ L2(Ω). In addition, knowing that 𝜗 ∈ L2(Ω), 𝑝 ∈ L𝑟0(Ω), and 𝑞 ∈ L2
0(Ω), and recalling from (3.6)

that 𝑟 > 2, which certainly yields L𝑟(Ω) ⊂ L2(Ω), we realize that the third terms of (3.11) and (3.13) make sense as well. According 
to the foregoing discussion, and aiming to conveniently rewrite the system of equations (3.10) - (3.13), we now introduce the spaces

𝐗 ∶=𝐇1
0(Ω) , 𝐗2 ∶= 𝐇𝑟

0(div;Ω) , 𝐗1 ∶= 𝐇𝑠
0(div𝑠;Ω) ,

𝐐 = L2(Ω) , 𝐐1 ∶= L𝑟0(Ω) , and 𝐐2 ∶= L2
0(Ω) ,

which are endowed, respectively, with the norms

‖𝒗‖𝐗 ∶= ‖𝒗‖1,Ω , ‖𝒛‖𝐗2
∶= ‖𝒛‖𝑟,div;Ω , ‖𝒘‖𝐗1

∶= ‖𝒘‖𝑠,div𝑠;Ω ,‖𝜗‖𝐐 ∶= ‖𝜗‖0,Ω , ‖𝑝‖𝐐1
∶= ‖𝑝‖0,𝑟;Ω , and ‖𝑞‖𝐐2

∶= ‖𝑞‖0,Ω .
In this way, given 𝝋 ∈ 𝐋𝑟(Ω), 𝝃 = (𝜉1, 𝜉2) ∈ L𝜌(Ω) × L𝜌(Ω), 𝒕 = (𝒕1, 𝒕2) ∈ 𝐋2(Ω) × 𝐋2(Ω), and 𝑝 ∈ L𝑟0(Ω), (3.10) and (3.11) can be 
reformulated as: Find (𝒖, 𝜃) ∈𝐗 ×𝐐 such that

𝐚𝑠(𝒖,𝒗) + 𝐛𝑠(𝒗, 𝜃) = 𝐅𝝋,𝝃,𝒕(𝒗) ∀ 𝒗 ∈𝐗 ,
𝐛𝑠(𝒖, 𝜗) − 𝐜𝑠(𝜃,𝜗) + 𝐞𝑠(𝑝,𝜗) = 0 ∀ 𝜗 ∈𝐐 ,

(3.14)

where the bilinear forms 𝐚𝑠 ∶ 𝐗 ×𝐗→ R, 𝐛𝑠 ∶ 𝐗 ×𝐐→ R, 𝐜𝑠 ∶𝐐 ×𝐐→ R, and 𝐞𝑠 ∶𝐐1 ×𝐐→ R, and the functional 𝐅𝝋,𝝃,𝒕 ∶ 𝐗→ R, 
are dfined, respectively, as

𝐚𝑠(𝒖,𝒗) ∶= 2𝜇∫
Ω 
𝜺(𝒖) ∶ 𝜺(𝒗) ∀ (𝒖,𝒗) ∈𝐗 ×𝐗 ,

𝐛𝑠(𝒗, 𝜗) ∶= −∫
Ω 
𝜗 div(𝒗) ∀ (𝒗, 𝜗) ∈𝐗 ×𝐐 ,

𝐜𝑠(𝜃,𝜗) ∶= 1 
𝜆 ∫

Ω 
𝜃 𝜗 ∀ (𝜃,𝜗) ∈𝐐 ×𝐐 ,

𝐞𝑠(𝑝,𝜗) ∶= 𝛼

𝜆 ∫
Ω 
𝑝 𝜗 ∀ (𝑝,𝜗) ∈𝐐1 ×𝐐 , and

(3.15)
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𝐅𝝋,𝝃,𝒕(𝒗) ∶= ∫
Ω 

(
𝒇 − 𝜀−1(𝜉1 − 𝜉2)𝝋 − 𝛿(𝒕1 − 𝒕2)

)
⋅ 𝒗 ∀ 𝒗 ∈𝐗 . (3.16)

Similarly, given 𝜃 ∈ L2(Ω), (3.12) and (3.13) can be reformulated as: Find (𝒛, 𝑝) ∈𝐗2 ×𝐐1 such that

𝐚𝑓 (𝒛,𝒘) + 𝐝1(𝒘, 𝑝) = 0 ∀ 𝒘 ∈𝐗1 ,

𝐝2(𝒛, 𝑞) + 𝐞𝑓 ((𝜃, 𝑝), 𝑞) = 𝐆(𝑞) ∀ 𝑞 ∈𝐐2 ,
(3.17)

where the bilinear forms 𝐚𝑓 ∶𝐗2 ×𝐗1 → R, 𝐝𝑖 ∶𝐗𝑖 ×𝐐𝑖 → R, 𝑖∈ {1,2}, and 𝐞𝑓 ∶ (𝐐×𝐐1) ×𝐐2 → R, and the functional 𝐆 ∶𝐐2 → R, 
are given, respectively, by

𝐚𝑓 (𝒛,𝒘) ∶= 𝜈

𝜅 ∫
Ω 
𝒛 ⋅𝒘 ∀ (𝒛,𝒘) ∈𝐗2 ×𝐗1 ,

𝐝𝑖(𝒘, 𝑞) ∶= −∫
Ω 
𝑞 div(𝒘) ∀ (𝒘, 𝑞) ∈𝐗𝑖 ×𝐐𝑖 ,

𝐞𝑓 ((𝜃, 𝑝), 𝑞) ∶= 𝛼

𝜆 ∫
Ω 
𝜃 𝑞 −
(
𝑐0 + 𝛼

2

𝜆 

)
∫
Ω 
𝑝 𝑞 ∀ ((𝜃, 𝑝), 𝑞) ∈ (𝐐 ×𝐐1) ×𝐐2 , and

𝐆(𝑞) ∶= ∫
Ω 
𝑔 𝑞 ∀ 𝑞 ∈𝐐2 .

(3.18)

Summarizing, given 𝝋 ∈ 𝐋𝑟(Ω), 𝝃 = (𝜉1, 𝜉2) ∈ L𝜌(Ω) × L𝜌(Ω), and 𝒕 = (𝒕1, 𝒕2) ∈ 𝐋2(Ω) × 𝐋2(Ω), the primal-mixed formulation for the 
poroelasticity equations (cf. (3.9)) reduces to gathering (3.14) and (3.17), that is: Find ((𝒖, 𝜃), (𝒛, 𝑝)) ∈ (𝐗×𝐐) × (𝐗2 ×𝐐1) such that

𝐚𝑠(𝒖,𝒗) + 𝐛𝑠(𝒗, 𝜃) = 𝐅𝝋,𝝃,𝒕(𝒗) ∀ 𝒗 ∈𝐗 ,
𝐛𝑠(𝒖, 𝜗) − 𝐜𝑠(𝜃,𝜗) + 𝐞𝑠(𝑝,𝜗) = 0 ∀ 𝜗 ∈𝐐 ,

𝐚𝑓 (𝒛,𝒘) + 𝐝1(𝒘, 𝑝) = 0 ∀ 𝒘 ∈𝐗1 ,

𝐝2(𝒛, 𝑞) + 𝐞𝑓 ((𝜃, 𝑝), 𝑞) = 𝐆(𝑞) ∀ 𝑞 ∈𝐐2 .

(3.19)

It is important to stress here that, ignoring the bilinear forms 𝐞𝑠 and 𝐞𝑓 , the left-hand side of (3.19) shows a block-diagonal structure 
with perturbed and generalized saddle-point problems, respectively, as the first and second block. We take advantage of this fact later 
on in Section 4.2.

Direct applications of the Hölder and Cauchy–Schwarz inequalities allow us to conclude that the above bilinear forms and the 
functional 𝐆 are bounded with positive constants given by

‖𝐚𝑠‖ ∶= 2𝜇 , ‖𝐛𝑠‖ ∶= 1, ‖𝐜𝑠‖ ∶= 1 
𝜆
, ‖𝐞𝑠‖ ∶= 𝐶𝑟(Ω) 

𝛼

𝜆 
, ‖𝐚𝑓‖ ∶= 𝜈

𝜅
,

‖𝐝1‖ ,‖𝐝2‖ ∶= 1 , ‖𝐞𝑓‖ ∶= max
{
𝛼

𝜆 
, 𝐶𝑟(Ω) 

(
𝑐0 +

𝛼2

𝜆 

)}
, and ‖𝐆‖ = ‖𝑔‖0,Ω , (3.20)

where 𝐶𝑟(Ω) ∶= |Ω| 𝑟−22𝑟 . In addition, for each 𝒗 ∈𝐗1 there holds

|𝐅𝝋,𝝃,𝒕(𝒗)| ≤ ‖𝐅‖{‖𝒇‖0,Ω + ‖𝝋‖0,𝑟;Ω ‖𝜉1 − 𝜉2‖0,𝜌;Ω + ‖𝒕1 − 𝒕2‖0,Ω}‖𝒗‖𝕏1
, with‖𝐅‖ ∶= max

{
1, 𝜀−1, 𝛿

}
.

(3.21)

3.3. Mixed formulation of the electrostatic potential equations

From (2.7e) - (2.7f) and the boundary condition for 𝜒 in (2.9) we recall

𝝋− 𝜀 ∇𝜒 = 𝟎 in Ω , −div(𝝋) = 𝜉1 − 𝜉2 in Ω , 𝜒 = 𝜒𝙳 on Γ . (3.22)

Then, following [26, Section 3.3], we set the trial and test spaces

X1 ∶=𝐇𝑠(div𝑠;Ω) , X2 ∶=𝐇𝑟(div𝑟;Ω) , M1 ∶= L𝑟(Ω) and M2 ∶= L𝑠(Ω) ,

which are provided with the norms

‖𝝍‖X1
∶= ‖𝝍‖𝑠,div𝑠;Ω , ‖𝝋‖X2

∶= ‖𝝋‖𝑟,div𝑟;Ω , ‖𝜒‖M1
∶= ‖𝜒‖0,𝑟;Ω and ‖𝛾‖M2

∶= ‖𝛾‖0,𝑠;Ω ,
and deduce that, given 𝝃 = (𝜉1, 𝜉2) ∈ L𝜌(Ω) × L𝜌(Ω), the weak formulation of (3.22) reduces to the generalized saddle-point problem: 
Find (𝝋, 𝜒) ∈ X2 ×M1 such that

𝑎(𝝋,𝝍) + 𝑏1(𝝍 , 𝜒) = 𝐺(𝝍) ∀ 𝝍 ∈X1 ,

𝑏2(𝝋, 𝛾) = 𝐹𝝃(𝛾) ∀ 𝛾 ∈M2 ,
(3.23)
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where the bilinear forms 𝑎 ∶ X2 × X1 → R, and 𝑏𝑖 ∶ X𝑖 × M𝑖 → R, with 𝑖 ∈ {1,2}, and the linear functionals 𝐺 ∶ X1 → R and 𝐹𝝃 ∶
M2 → R, are given, respectively, by

𝑎(𝝋,𝝍) ∶= ∫
Ω 
𝜀−1𝝋 ⋅𝝍 ∀ (𝝋,𝝍) ∈ X2 ×X1 ,

𝑏𝑖(𝝍 , 𝛾) ∶= ∫
Ω 
𝛾 div(𝝍) ∀ (𝝍 , 𝛾) ∈ X𝑖 ×M𝑖 , 𝑖 ∈ {1,2} ,

𝐺(𝝍) ∶= ⟨𝝍 ⋅ 𝒏, 𝜒𝙳⟩ ∀ 𝝍 ∈X1 ,

𝐹𝝃(𝛾) ∶= −∫
Ω 

(𝜉1 − 𝜉2) 𝛾 ∀ 𝛾 ∈M2 .

Straightforward applications of Hölder’s inequality allow us to conclude that 𝑎 and 𝑏𝑖, with 𝑖 ∈ {1,2}, are bounded with constants 
given by

‖𝑎‖ ∶= 𝜀−1 and ‖𝑏1‖, ‖𝑏2‖ ∶= 1 . (3.24)

By similar arguments there holds

|𝐹𝝃(𝛾)| ≤ ‖𝐹‖ ‖𝜉1 − 𝜉2‖0,𝜌;Ω ‖𝛾‖M2
∀ 𝛾 ∈M2 , with ‖𝐹‖ ∶= |Ω| 𝜌−𝑟𝜌𝑟 . (3.25)

In turn, regarding the boundedness of 𝐺, we invoke [27, Lemma A.36] and the surjectivity of the trace operator mapping W1,𝑟(Ω)
onto W1∕𝑠,𝑟(Γ), which imply the existence of a constant 𝑐𝑟 , such that for the given 𝜒𝙳 ∈W1∕𝑠,𝑟(Γ), there exists 𝑣𝙳 ∈W1,𝑟(Ω) satisfying 
𝑣𝙳|Γ = 𝜒𝙳 and the estimate ‖𝑣𝙳‖1,𝑟;Ω ≤ 𝑐𝑟 ‖𝜒𝙳‖1∕𝑠,𝑟;Γ, which, thanks to (3.3), yields

|𝐺(𝝍)| ≤ ‖𝐺‖ ‖𝝍‖X1
∀ 𝝍 ∈X1 , with ‖𝐺‖ ∶= 𝑐𝑟 ‖𝜒𝙳‖1∕𝑠,𝑟;Γ . (3.26)

3.4. Mixed formulation of the ionized particles concentration equations

In what follows we deduce the weak formulation of the Nernst–Planck equations (2.7g) - (2.7i), and the Dirichlet boundary 
condition for 𝜉𝑖 in (2.9), for 𝑖 ∈ {1,2}, which, given 𝝋 ∈𝐇𝑟(div𝑟;Ω) and 𝒛 ∈𝐇𝑟

0(div;Ω), consist in finding 𝒕𝑖 ∈ 𝐋2(Ω), 𝜉𝑖 ∈ L𝜌(Ω), and 
𝝈𝑖 in a suitable space to be made precise, such that

𝒕𝑖 −∇𝜉𝑖= 𝟎 in Ω , (3.27a)

−𝝈𝑖 + 𝜅𝑖 𝒕𝑖 + 𝑞𝑖 𝜅𝑖 𝜀−1 𝜉𝑖𝝋− 𝜉𝑖 𝒛= 𝟎 in Ω , (3.27b)

𝜉𝑖 − div(𝝈𝑖) − 𝜉𝑖 div(𝒛)= 𝑓𝑖 in Ω . (3.27c)

𝜉𝑖= 𝜉𝑖,𝙳 on Γ . (3.27d)

Note that the spaces to which 𝒕𝑖 and 𝜉𝑖 are indicated to belong, for 𝑖 ∈ {1,2}, were derived in Section 3.2 after analyzing the validity 
of (3.10). These belongings are cofirmed next, but we need to suppose momentarily that 𝜉𝑖 ∈H1(Ω), which implies assuming as well 
that 𝜉𝑖,𝙳 ∈H1∕2(Γ). Indeed, we begin by testing (3.27a) against 𝝉 𝑖 ∈𝐇(div𝜚;Ω), so that applying (3.2) with 𝑡 = 𝜚 to the aforementioned 
𝝉 𝑖 and 𝜉𝑖 ∈H1(Ω), and using the Dirichlet boundary condition for 𝜉𝑖 (cf. (3.27d)), we get

∫
Ω 
𝒕𝑖 ⋅ 𝝉 𝑖 + ∫

Ω 
𝜉𝑖 div(𝝉 𝑖) = ⟨𝝉 𝑖 ⋅ 𝒏, 𝜉𝑖,𝙳⟩ ∀ 𝝉 𝑖 ∈𝐇(div𝜚;Ω) , (3.28)

from which it suffices to look for 𝜉𝑖 in L𝜌(Ω), as previously announced. In turn, bearing in mind (3.4b) and (3.4c), we test (3.27b)

against 𝒔𝑖 ∈ 𝐋2(Ω), thus arriving at

𝜅𝑖 ∫
Ω 
𝒕𝑖 ⋅ 𝒔𝑖 − ∫

Ω 
𝝈𝑖 ⋅ 𝒔𝑖 + 𝑞𝑖 𝜀−1 𝜅𝑖 ∫

Ω 
𝜉𝑖𝝋 ⋅ 𝒔𝑖 − ∫

Ω 
𝜉𝑖 𝒛 ⋅ 𝒔𝑖 = 0 ∀ 𝒔𝑖 ∈ 𝐋2(Ω) , (3.29)

from where it only remains to observe that the second term on the left-hand side makes sense for 𝝈𝑖 ∈ 𝐋2(Ω). Furthermore, assuming 
that 𝑓𝑖 belongs to L𝜚(Ω), we test (3.27c) against 𝜂𝑖 ∈ L𝜌(Ω) and obtain

∫
Ω 
𝜂𝑖 div(𝝈𝑖) − ∫

Ω 
𝜉𝑖 𝜂𝑖 + ∫

Ω 
𝜉𝑖 div(𝒛) 𝜂𝑖 = −∫

Ω 
𝑓𝑖 𝜂𝑖 ∀ 𝜂𝑖 ∈ L𝜌(Ω) , (3.30)

whose first term on the left-hand side is well-defined if div(𝝈𝑖) belongs to L𝜚(Ω), whence we look for 𝝈 in 𝐇(div𝜚;Ω). In addition, 
being 𝜌 ≥ 𝑟 > 2 (cf. (3.6)), Cauchy–Schwarz and Hölder inequalities indicate that the second and third terms make sense as well. 
Consequently, we now introduce the spaces

1 ∶= 𝐋2(Ω) , 2 ∶= 𝐇(div𝜚;Ω) ,  ∶= L𝜌(Ω) ,
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which are endowed, respectively, with the norms

‖𝒔‖1
∶= ‖𝒔‖0,Ω ∀ 𝒔 ∈1 , ‖𝝉‖2

∶= ‖𝝉‖div𝜚;Ω ∀ 𝝉 ∈2 , ‖𝜂‖ ∶= ‖𝜂‖0,𝜌;Ω ∀ 𝜂 ∈ .

We also dfine

 ∶= 1 ×2 with product norm ‖𝒔⃗‖ ∶= ‖𝒔‖1
+ ‖𝝉‖2

∀ ⃗𝒔 ∶= (𝒔,𝝉) ∈ ,

and set the notations

𝒕⃗𝑖 ∶= (𝒕𝑖,𝝈𝑖) , 𝒓⃗𝑖 ∶= (𝒓𝑖,𝜻 𝑖) , 𝒔⃗𝑖 ∶= (𝒔𝑖,𝝉 𝑖) ∈ .

Then, adding (3.28) and (3.29), and gathering the result with (3.30), we conclude that, given (𝒛,𝝋) ∈𝐗2 ×X2, the mixed formulation 
of (3.27a) - (3.27d) reduces to: Find (𝒕⃗𝑖, 𝜉𝑖) ∈ × such that

(𝒕⃗𝑖, 𝒔⃗𝑖) + (𝒔⃗𝑖, 𝜉𝑖) + 𝒛,𝝋(𝒔⃗𝑖, 𝜉𝑖) = (𝒔⃗𝑖) ∀ ⃗𝒔𝑖 ∈ ,

(𝒕⃗𝑖, 𝜂𝑖) − (𝜉𝑖, 𝜂𝑖) + 𝒛(𝜉𝑖, 𝜂𝑖) =  (𝜂𝑖) ∀ 𝜂𝑖 ∈ ,
(3.31)

where the bilinear forms  ∶ × → R,  ∶ ×→ R,  ∶ ×, 𝒛 ∶ ×→ R, and 𝒛,𝝋 ∶ ×→ R, are dfined, 
respectively, as

(𝒕⃗𝑖, 𝒔⃗𝑖) ∶= 𝜅𝑖 ∫
Ω 
𝒕𝑖 ⋅ 𝒔𝑖 − ∫

Ω 
𝝈𝑖 ⋅ 𝒔𝑖 + ∫

Ω 
𝝉 𝑖 ⋅ 𝒕𝑖 ∀ ⃗𝒕𝑖, 𝒔⃗𝑖 ∈ ,

(𝒔⃗𝑖, 𝜂𝑖) ∶= ∫
Ω 
𝜂𝑖 div(𝝉 𝑖) ∀ (𝒔⃗𝑖, 𝜂𝑖) ∈ × ,

(𝜉𝑖, 𝜂𝑖) ∶= ∫
Ω 
𝜉𝑖 𝜂𝑖 ∀ 𝜉𝑖, 𝜂𝑖 ∈ ,

𝒛(𝜉𝑖, 𝜂𝑖) ∶= ∫
Ω 
𝜉𝑖 div(𝒛) 𝜂𝑖 ∀ 𝜉𝑖, 𝜂𝑖 ∈ , and

𝒛,𝝋(𝒔⃗𝑖, 𝜂𝑖) ∶= −∫
Ω 
𝜂𝑖 𝒛 ⋅ 𝒔𝑖 + 𝑞𝑖 𝜀−1 𝜅𝑖 ∫

Ω 
𝜂𝑖𝝋 ⋅ 𝒔𝑖 ∀ (𝒔⃗𝑖, 𝜂𝑖) ∈ × ,

(3.32)

whereas the functionals  ∶ → R and  ∶→ R are given, respectively, by

(𝒔⃗𝑖) ∶= ⟨𝝉 𝑖 ⋅ 𝒏, 𝜉𝑖,𝙳⟩ and  (𝜂𝑖) ∶= −∫
Ω 
𝑓𝑖 𝜂𝑖 .

We remark here that, ignoring the bilinear forms 𝒛,𝝋 and 𝒛, the structure of the left-hand side of (3.31) corresponds to a perturbed 
saddle-point problem.

Applying once again the Cauchy–Schwarz and Hölder inequalities, and using the continuous injection 𝑖𝜌 ∶ H1(Ω) → L𝜌(Ω), we 
readily show that the bilinear forms , , and , and the functionals  and  , are all bounded with respective constants given by

‖‖ ∶= max
{
𝜅𝑖,1
}
, ‖‖ ∶= 1 , ‖‖ ∶= |Ω| 𝜌−2𝜌 ,‖‖ ∶= 

(
1 + ‖𝑖𝜌‖)‖𝜉𝑖,𝙳‖1∕2,Γ , and ‖‖ ∶= ‖𝑓𝑖‖0,𝜚;Ω . (3.33)

Likewise, there hold

|𝒛(𝜉𝑖, 𝜂𝑖)| ≤ ‖‖ ‖𝒛‖𝐗2
‖𝜉𝑖‖ ‖𝜂𝑖‖ ∀ 𝜉𝑖, 𝜂𝑖 ∈ ,|𝒛,𝝋(𝒔⃗𝑖, 𝜂𝑖)| ≤ ‖‖ ‖(𝒛,𝝋)‖𝐗2×X2

‖𝒔⃗𝑖‖ ‖𝜂𝑖‖ ∀ (𝒔⃗𝑖, 𝜂𝑖) ∈ × ,
(3.34)

with

‖‖ ∶= 1 , and ‖‖ ∶= max
{
𝜀−1 𝜅𝑖,1

}
. (3.35)

3.5. Weak formulation of the full coupled problem

According to Sections 3.2, 3.3, and 3.4, we conclude that, under the assumption that 𝒇 ∈ 𝐋2(Ω), 𝑔 ∈ L2(Ω), 𝜒𝙳 ∈ W1∕𝑠,𝑟(Γ), 
𝜉𝑖,𝙳 ∈ H1∕2(Γ), and 𝑓𝑖 ∈ L𝜚(Ω), 𝑖 ∈ {1,2}, the primal-mixed formulation of the Biot–Poisson--Nernst--Planck problem (2.7a) - (2.9) is 
obtained by gathering (3.19), (3.23), and (3.31): Find (𝒖, 𝜃) ∈ 𝐗 ×𝐐, (𝒛, 𝑝) ∈ 𝐗2 ×𝐐1, (𝝋, 𝜒) ∈ X2 × M1 and (𝒕⃗𝑖, 𝜉𝑖) ∈ × such 
that
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𝐚𝑠(𝒖,𝒗) + 𝐛𝑠(𝒗, 𝜃) = 𝐅𝝋,𝝃,𝒕(𝒗) ∀ 𝒗 ∈𝐗 ,
𝐛𝑠(𝒖, 𝜗) − 𝐜𝑠(𝜃,𝜗) + 𝐞𝑠(𝑝,𝜗) = 0 ∀ 𝜗 ∈𝐐 ,

𝐚𝑓 (𝒛,𝒘) + 𝐝1(𝒘, 𝑝) = 0 ∀ 𝒘 ∈𝐗1 ,

𝐝2(𝒛, 𝑞) + 𝐞𝑓 ((𝜃, 𝑝), 𝑞) = 𝐆(𝑞) ∀ 𝑞 ∈𝐐2 ,

𝑎(𝝋,𝝍) + 𝑏1(𝝍 , 𝜒) = 𝐺(𝝍) ∀ 𝝍 ∈X1 ,

𝑏2(𝝋, 𝛾) = 𝐹𝝃(𝛾) ∀ 𝛾 ∈M2 ,

(𝒕⃗𝑖, 𝒔⃗𝑖) + (𝒔⃗𝑖, 𝜉𝑖) + 𝒛,𝝋(𝒔⃗𝑖, 𝜉𝑖) = (𝒔⃗𝑖) ∀ ⃗𝒔𝑖 ∈ ,

(𝒕⃗𝑖, 𝜂𝑖) − (𝜉𝑖, 𝜂𝑖) + 𝒛(𝜉𝑖, 𝜂𝑖) =  (𝜂𝑖) ∀ 𝜂𝑖 ∈ .

(3.36)

4. Continuous solvability analysis

We proceed similarly as in [26] (see also [20,31]), and adopt a fixed-point strategy to study the solvability of (3.36). To this end, 
we dfine operators solving the decoupled problems leading to a fixed-point equation equivalent to (3.36).

4.1. Fixed-point approach

Let us dfine the spaces 1 ∶= 1 ×1 and  ∶=  ×, endowed with the product norms

‖𝒓‖1
∶= ‖𝒓1‖1

+ ‖𝒓2‖1
, ‖𝜼‖ ∶= ‖𝜂1‖ + ‖𝜂2‖,

for all 𝒓 ∶= (𝒓1, 𝒓2) ∈1 and 𝜼 ∶= (𝜂1, 𝜂2) ∈, and additionally set the notations

𝒕 ∶= (𝒕1, 𝒕2) ∈1 and 𝝃 ∶= (𝜉1, 𝜉2) ∈ .

Now, let 𝐒 ∶ X2 × ×1 →𝐗2 be the operator dfined for each (𝝓,𝜼, 𝒓) ∈ X2 × ×1 by

𝐒(𝝓,𝜼, 𝒓) ∶= 𝒛, (4.1)

where ((𝒖, 𝜃), (𝒛, 𝑝)) ∈ (𝐗 ×𝐐) × (𝐗2 ×𝐐1) is the unique solution (cofirmed below) of (3.19) when 𝐅𝝋,𝝃,𝒕 is replaced by 𝐅𝝓,𝜼,𝒓 , that 
is

𝐚𝑠(𝒖,𝒗) + 𝐛𝑠(𝒗, 𝜃) = 𝐅𝝓,𝜼,𝒓(𝒗) ∀ 𝒗 ∈𝐗 ,
𝐛𝑠(𝒖, 𝜗) − 𝐜𝑠(𝜃,𝜗) + 𝐞𝑠(𝑝,𝜗) = 0 ∀ 𝜗 ∈𝐐 ,

𝐚𝑓 (𝒛,𝒘) + 𝐝1(𝒘, 𝑝) = 0 ∀ 𝒘 ∈𝐗1 ,

𝐝2(𝒛, 𝑞) + 𝐞𝑓 ((𝜃, 𝑝), 𝑞) = 𝐆(𝑞) ∀ 𝑞 ∈𝐐2 .

(4.2)

In turn, let 𝐒̃ ∶→X2 be the operator dfined for each 𝜼 ∈ by

𝐒̃(𝜼) ∶= 𝝋 ,

where (𝝋, 𝜒) ∈ X2 ×M1 is the unique solution (cofirmed below) of (3.23) with 𝐹𝜼 instead of 𝐹𝝃 , i.e.,

𝑎(𝝋,𝝍) + 𝑏1(𝝍 , 𝜒) = 𝐺(𝝍) ∀ 𝝍 ∈X1 ,

𝑏2(𝝋, 𝛾) = 𝐹𝜼(𝛾) ∀ 𝛾 ∈M2 .
(4.3)

Furthermore, we let T𝑖 ∶𝐗2 × X2 →1 and Ξ𝑖 ∶𝐗2 × X2 →, 𝑖 ∈ {1,2}, be the operators dfined for each (𝒘,𝝓) ∈𝐗2 × X2 by

T𝑖(𝒘,𝝓) ∶= 𝒕𝑖 and Ξ𝑖(𝒘,𝝓) ∶= 𝜉𝑖 ,

where (𝒕⃗𝑖, 𝜉𝑖) = ((𝒕𝑖,𝝈𝑖), 𝜉𝑖) ∈× is the unique solution (to be cofirmed below) of problem (3.31) when 𝒛,𝝋 and 𝒛 are replaced 
by 𝒘,𝝓 and 𝒘 , respectively, that is

(𝒕⃗𝑖, 𝒔⃗𝑖) + (𝒔⃗𝑖, 𝜉𝑖) + 𝒘,𝝓(𝒔⃗𝑖, 𝜉𝑖) = (𝒔⃗𝑖) ∀ ⃗𝒔𝑖 ∈ ,

(𝒕⃗𝑖, 𝜂𝑖) − (𝜉𝑖, 𝜂𝑖) + 𝒘(𝜉𝑖, 𝜂𝑖) =  (𝜂𝑖) ∀ 𝜂𝑖 ∈ .
(4.4)

As a consequence, we can set the operators 𝚵 ∶𝐗2 × X2 → and 𝐓 ∶𝐗2 × X2 →1 as

𝚵(𝒘,𝝓) ∶= (Ξ1(𝒘,𝝓),Ξ2(𝒘,𝝓)) = 𝝃 and 𝐓(𝒘,𝝓) ∶= (T1(𝒘,𝝓),T2(𝒘,𝝓)) = 𝒕,

for all (𝒘,𝝓) ∈𝐗2 × X2. Finally, we introduce the operator 𝚷 ∶𝐗2 × X2 →𝐗2 × X2 dfined for each (𝒘,𝝓) ∈𝐗2 × X2 by

𝚷(𝒘,𝝓) ∶= 
(
𝐒(𝝓,𝚵(𝒘,𝝓),𝐓(𝒘,𝝓)), 𝐒̃(𝚵(𝒘,𝝓))

)
, (4.5)

and realize that solving (3.36) is equivalent to finding a fixed point of 𝚷, that is, (𝒛,𝝋) ∈𝐗2 × X2 such that
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𝚷(𝒛,𝝋) = (𝒛,𝝋) . (4.6)

4.2. Well-definedness of the operator 𝐒

We first apply an abstract result on perturbed saddle-point problems (cf. [9, Theorem 4.3.1]) and the generalized Babuška–Brezzi 
theory (cf. [7, Theorem 2.1, Corollary 2.1]) to the bilinear form arising from (4.2) when 𝐞𝑠 and 𝐞𝑓 are dropped, and then employ the 
Banach–Nečas--Babuška theorem (cf. [27, Theorem 2.6]) to conclude that (4.2) is well-posed, which is equivalent to stating that 𝐒
(cf. (4.1)) is well-defined. For this purpose, we now introduce the spaces

𝕏 ∶= 𝐗 ×𝐐 ×𝐗2 ×𝐐1 and ℚ ∶= 𝐗×𝐐 ×𝐗1 ×𝐐2 ,

which are endowed with the norms‖𝒖⃗‖𝕏 ∶= ‖𝒖‖𝐗 + ‖𝜃‖𝐐 + ‖𝒛‖𝐗2
+ ‖𝑝‖𝐐1

∀ ⃗𝒖 ∶= (𝒖, 𝜃,𝒛, 𝑝) ∈𝕏 , and‖𝒗⃗‖ℚ ∶= ‖𝒗‖𝐗 + ‖𝜗‖𝐐 + ‖𝒘‖𝐗1
+ ‖𝑞‖𝐐2

∀ ⃗𝒗 ∶= (𝒗, 𝜗,𝒘, 𝑞) ∈ℚ .

Then, as announced, we let 𝐀 ∶ 𝕏 ×ℚ→ R be the bounded bilinear form arising from (4.2) after adding the left-hand sides of its 
equations, but without including 𝐞𝑠 and 𝐞𝑓 , that is

𝐀(𝒖⃗, 𝒗⃗) ∶= 𝐚𝑠(𝒖,𝒗) + 𝐛𝑠(𝒗, 𝜃) + 𝐛𝑠(𝒖, 𝜗) − 𝐜𝑠(𝜃,𝜗) + 𝐚𝑓 (𝒛,𝒘) + 𝐝1(𝒘, 𝑝) + 𝐝2(𝒛, 𝑞), (4.7)

for all (𝒖⃗, 𝒗⃗) ∈ 𝕏 × ℚ. Note that the boundedness of 𝐀 follows from that of 𝐚𝑠, 𝐛𝑠, 𝐜𝑠, 𝐚𝑓 , 𝐝1, and 𝐝2 (cf. (3.20)). In addition, as 
remarked in Section 3.2, we note that 𝐀 shows the matrix representation

⎛⎜⎜⎜⎝
𝐚𝑠 𝐛′𝑠
𝐛𝑠 −𝐜𝑠

𝐚𝑓 𝐝′1
𝐝2

⎞⎟⎟⎟⎠ , (4.8)

whose block-diagonal structure, composed by the perturbed and generalized saddle-point matrix operators given, respectively, by (
𝐚𝑠 𝐛′𝑠
𝐛𝑠 −𝐜𝑠

)
and 
(
𝐚𝑓 𝐝′1
𝐝2

)
, is evident. This is an advantageous feature in proving global inf-sup conditions. More precisely, intro

ducing

1(𝒖⃗) ∶= sup 
𝒗⃗∈ℚ
𝒗⃗≠𝟎

𝐀(𝒖⃗, 𝒗⃗)‖𝒗⃗‖ℚ ∀ ⃗𝒖 ∈𝕏 and 2(𝒗⃗) ∶= sup 
𝒖⃗∈𝕏
𝒖⃗≠𝟎

𝐀(𝒖⃗, 𝒗⃗)‖𝒖⃗‖𝕏 ∀ ⃗𝒗 ∈ℚ ,

we aim to prove next the existence of a positive constant 𝜶𝐀 such that

1(𝒖⃗) ≥ 𝜶𝐀‖𝒖⃗‖𝕏 ∀ ⃗𝒖 ∈𝕏 , and, (4.9a)

2(𝒗⃗) ≥ 𝜶𝐀‖𝒗⃗‖ℚ ∀ ⃗𝒗 ∈ℚ . (4.9b)

To this end, and according to (4.8), we decompose 𝐀 as

𝐀(𝒖⃗, 𝒗⃗) ∶= 𝐀𝑠((𝒖, 𝜃), (𝒗, 𝜗)) +𝐀𝑓 ((𝒛, 𝑝), (𝒘, 𝑞)) ∀ (𝒖⃗, 𝒗⃗) ∈𝕏 ×ℚ , (4.10)

where 𝐀𝑠 ∶ (𝐗 ×𝐐) × (𝐗 ×𝐐)→ R and 𝐀𝑓 ∶ (𝐗2 ×𝐐1) × (𝐗1 ×𝐐2)→ R are dfined by

𝐀𝑠
(
(𝒖, 𝜃), (𝒗, 𝜗)

)
∶= 𝐚𝑠(𝒖,𝒗) + 𝐛𝑠(𝒗, 𝜃) + 𝐛𝑠(𝒖, 𝜗) − 𝐜𝑠(𝜃,𝜗),

for all (𝒖, 𝜃), (𝒗, 𝜗) ∈𝐗 ×𝐐, and

𝐀𝑓
(
(𝒛, 𝑝), (𝒘, 𝑞)

)
∶= 𝐚𝑓 (𝒛,𝒘) + 𝐝1(𝒘, 𝑝) + 𝐝2(𝒛, 𝑞),

for all 
(
(𝒛, 𝑝), (𝒘, 𝑞)

)
∈ (𝐗2 ×𝐐1) × (𝐗1 ×𝐐2). Thus, thanks to (4.10), it is straightforward to see that

1(𝒖⃗) ≥ 1
2

⎧⎪⎨⎪⎩ sup 
(𝒗,𝜗)∈𝐗×𝐐
(𝒗,𝜗)≠𝟎

𝐀𝑠((𝒖, 𝜃), (𝒗, 𝜗))‖(𝒗, 𝜗)‖𝐗×𝐐 + sup 
(𝒘,𝑞)∈𝐗1×𝐐2

(𝒘,𝑞)≠𝟎

𝐀𝑓 ((𝒛, 𝑝), (𝒘, 𝑞))‖(𝒘, 𝑞)‖𝐗1×𝐐2

⎫⎪⎬⎪⎭ ∀ ⃗𝒖 ∈𝕏 , (4.11)

whence, in order to prove (4.9a), it suffices to show that there exist positive constants 𝜶𝑠 and 𝜶𝑓 such that

sup 
(𝒗,𝜗)∈𝐗×𝐐
(𝒗,𝜗)≠𝟎

𝐀𝑠((𝒖, 𝜃), (𝒗, 𝜗))‖(𝒗, 𝜗)‖𝐗×𝐐 ≥ 𝜶𝑠 ‖(𝒖, 𝜃)‖𝐗×𝐐 ∀ (𝒖, 𝜃) ∈𝐗 ×𝐐 and (4.12a)
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sup 
(𝒘,𝑞)∈𝐗1×𝐐2

(𝒘,𝑞)≠𝟎

𝐀𝑓 ((𝒛, 𝑝), (𝒘, 𝑞))‖(𝒘, 𝑞)‖𝐗1×𝐐2

≥ 𝜶𝑓 ‖(𝒛, 𝑝)‖𝐗2×𝐐1
∀ (𝒛, 𝑝) ∈𝐗2 ×𝐐1 . (4.12b)

Because of the matrix representation of 𝐀𝑠 (cf. upper block in (4.8)), establishing (4.12a) is equivalent to proving that 𝐚𝑠, 𝐛𝑠 and 𝐜𝑠
satisfy the hypotheses of the abstract result in Hilbert spaces [9, Theorem 4.3.1]. Indeed, we first notice from (3.15) that 𝐚𝑠 and 𝐜𝑠
are clearly symmetric and positive semi-definite. In addition, applying the Körn and Poincaré inequalities, which say, respectively, 
that ‖𝜺(𝒗)‖20,Ω ≥ 1

2 |𝒗|21,Ω and |𝒗|21,Ω ≥ 𝐶𝑃 ‖𝒗‖21,Ω for all 𝒗 ∈𝐇1
0(Ω), where 𝐶𝑃 is a fixed positive constant, we readily deduce that

𝐚𝑠(𝒗,𝒗) = 2𝜇 ‖𝜺(𝒗)‖20,Ω ≥ 𝛼𝑠‖𝒗‖2𝐗 ∀ 𝒗 ∈𝐗 , (4.13)

with the constant 𝛼𝑠 = 𝜇 𝐶𝑃 , thus proving that 𝐚𝑠 is 𝐗-elliptic. Furthermore, we know from [32, Chapter I, eqn. (5.14)] that there 
exists a positive constant 𝛽𝑠 such that

sup 
𝒗∈𝐗
𝒗≠𝟎

𝐛𝑠(𝒗, 𝜗)‖𝒗‖𝐗 ≥ 𝛽𝑠 ‖𝜗‖𝐐 ∀ 𝜗 ∈𝐐 . (4.14)

Therefore, under the hypotheses of [9, Theorem 4.3.1], the estimates from [9, Proposition 2.11, eqn. (4.3.21)] imply that there exists 
a positive constant 𝜶𝑠, depending on ‖𝐚𝑠‖, ‖𝐜𝑠‖, 𝛼𝑠, and 𝛽𝑠, such that (4.12a) holds.

In turn, due to the matrix representation of 𝐀𝑓 (cf. lower block in (4.8)), we realize that proving (4.12b) is equivalent to verifying 
that 𝐚𝑓 , 𝐝1, and 𝐝2 satisfy the hypotheses of the generalized Babuška–Brezzi theory (cf. [7, Theorem 2.1]). In fact, we first observe 
that the kernels of the bilinear forms 𝐝𝑖 (cf. (3.18)), 𝑖 ∈ {1,2}, are given, respectively, by

𝐊1 ∶=
{
𝒘 ∈𝐇𝑠

0(div𝑠;Ω) ∶ div(𝒘) = 0 in Ω
}
, 𝐊2 ∶=

{
𝒘 ∈𝐇𝑟

0(div;Ω) ∶ div(𝒘) = 0 in Ω
}
.

Lemma 4.1. There exists a positive constant 𝛼𝑓 such that

sup 
𝒘∈𝐊1⧵{𝟎}

𝐚𝑓 (𝒛,𝒘)‖𝒘‖𝐗1

≥ 𝛼𝑓 ‖𝒛‖𝐗2
∀ 𝒛 ∈𝐊2 , and (4.15a)

sup 
𝒛∈𝐊2

𝐚𝑓 (𝒛,𝒘) > 0 ∀ 𝒘 ∈𝐊1 ,𝒘 ≠ 𝟎 . (4.15b)

Proof. A minor modfication of the proof of [30, Lemma 2.6], yields (4.15a) with 𝛼𝑓 ∶= 𝜈

𝜅‖𝐷𝑠‖ , where 𝐷𝑠 is the bounded linear 
operator dfined in [30, Lemma 2.3]. In turn, proceeding similarly, showing that

sup 
𝒛∈𝐊2

𝐚𝑓 (𝒛,𝒘) ≥ 𝜈
𝜅
‖𝒘‖𝑠0,𝑠;Ω ∀ 𝒘 ∈𝐊1,

gives (4.15b). □

Furthermore, the continuous inf-sup condition for 𝐝1 can be found in [30, Lemma 2.7], whereas the one for 𝐝2, to be commented 
next, uses a uniform exterior ball condition on Ω (cf. last paragraphs in Section 1). Lemmas 4.2 and 6.1 are the only places where 
this hypothesis is employed.

Lemma 4.2. There exists a constant 𝛽2 > 0 such that

sup 
𝒘∈𝐗2
𝒘≠𝟎

𝐝2(𝒘, 𝑞)‖𝒘‖𝐗2

≥ 𝛽2 ‖𝑞‖𝐐2
∀ 𝑞 ∈𝐐2 . (4.16)

Proof. Thanks to the aforementioned geometric assumption on Ω, we can use [35, Theorem 1.1], and then proceed similarly to the 
proof of [30, Lemma 2.7]. We omit further details and refer to [29, Lemma4.2]. □

Consequently, the required hypotheses of [7, Theorem 2.1] are satified, and hence the a priori estimates provided by [7, Corollary 
2.1] imply that there exists a positive constant 𝜶𝑓 , depending on ‖𝐚𝑓‖, 𝛼𝑓 , 𝛽1 (the constant of the continuous inf-sup condition for 
𝐝1 in [30, Lemma 2.7]), and 𝛽2, such that (4.12b) holds.

Thus, having proved (4.12a) and (4.12b), the required inf-sup condition (4.9a) follows straightforwardly from (4.11), which 
gives the constant 𝜶𝐀 ∶= 1

2 min
{
𝜶𝑠,𝜶𝑓

}
. Similarly, using that 𝐀𝑠 is symmetric, and that the transpose of 𝐀𝑓 , dfined as 

𝐀𝚝
𝑓

(
(𝒘, 𝑞), (𝒛, 𝑝)

)
∶= 𝐀𝑓

(
(𝒛, 𝑝), (𝒘, 𝑞)

)
, also satifies the hypotheses of the generalized Babuška–Brezzi theory, we can prove (4.9b)

by using analogue arguments to those yielding (4.9a). In particular, note that the matrix representation of 𝐀𝚝
𝑓

arises from the one of 

𝐀𝑓 after exchanging 𝐝1 and 𝐝2, that is 
(
𝐚𝑓 𝐝′2
𝐝1

)
, and hence the hypotheses of [7, Theorem 2.1, Section 2.1] are clearly attained.
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Now, we set the product spaces 𝕏 ∶= (𝐗×𝐐) × (𝐗2 ×𝐐1) and ℚ ∶= (𝐗×𝐐) × (𝐗1 ×𝐐2), so that, given (𝝓,𝜼, 𝒓) ∈ X2 ××1, 
(4.2) is equivalent to finding 𝒖⃗ = ((𝒖, 𝜃), (𝒛, 𝑝)) ∈𝕏 such that

𝐀(𝒖⃗, 𝒗⃗) + 𝐞𝑠(𝑝,𝜗) + 𝐞𝑓 ((𝜃, 𝑝), 𝑞) = 𝐅𝝓,𝜼,𝒓(𝒗) + 𝐆(𝑞) ∀ ⃗𝒗 = ((𝒗, 𝜗), (𝒘, 𝑞)) ∈ℚ . (4.17)

Hence, employing (4.9a), (4.9b), and the boundedness of ‖𝐞𝑠‖ and ‖𝐞𝑓‖ (cf. (3.20)), and assuming that

max
{‖𝐞𝑠‖,‖𝐞𝑓‖} ∶= 𝐶𝑟(Ω) max

{
𝑐0 +

𝛼2

𝜆 
,
𝛼

𝜆 

}
≤ 
𝜶𝐀
2 
, (4.18)

we deduce that

sup 
𝒗⃗∈ℚ⧵{𝟎}

𝐀(𝒖⃗, 𝒗⃗) + 𝐞𝑠(𝑝,𝜗) + 𝐞𝑓 ((𝜃, 𝑝), 𝑞)‖𝒗⃗‖ℚ ≥ 
𝜶𝐀
2 
‖𝒖⃗‖𝕏 ∀ ⃗𝒖 ∈𝕏 , and (4.19a)

sup 
𝒖⃗∈𝕏⧵{𝟎}

𝐀(𝒖⃗, 𝒗⃗) + 𝐞𝑠(𝑝,𝜗) + 𝐞𝑓 ((𝜃, 𝑝), 𝑞)‖𝒖⃗‖ℚ ≥ 
𝜶𝐀
2 
‖𝒗⃗‖ℚ ∀ ⃗𝒗 ∈ℚ . (4.19b)

Note that (4.18) becomes feasible for sufficiently small 𝑐0 and for the quasi-incompressible case (𝜆→ +∞).

We are now in a position to establish the well-definedness of 𝐒.

Lemma 4.3. Assume that the data satisfy (4.18). Then, for each (𝝓,𝜼, 𝒓) ∈ X2 ××1, there exists a unique ((𝒖, 𝜃), (𝒛, 𝑝)) ∈ (𝐗×𝐐) ×
(𝐗2 ×𝐐1) solution to (4.2), and hence we can dfine 𝐒(𝝓,𝜼, 𝒓) ∶= 𝒛 ∈𝐗2. Moreover, there exists a positive constant 𝐶𝐒, depending on 𝛼𝐀, 
𝜀, and 𝛿, such that‖𝐒(𝝓,𝜼, 𝒓)‖𝐗2

= ‖𝒛‖𝐗2
≤ ‖(𝒖, 𝜃)‖𝐗×𝐐 + ‖(𝒛, 𝑝)‖𝐗2×𝐐1

≤ 𝐶𝐒

{‖𝒇‖0,Ω + ‖𝑔‖0,Ω + ‖𝜼‖ ‖𝝓‖0,𝑟;Ω + ‖𝒓‖1

}
.

(4.20)

Proof. Thanks to the boundedness of 𝐀, 𝐞𝑠, and 𝐞𝑓 , and the global inf-sup conditions (4.19a) and (4.19b), a direct application of the 
Banach–Nečas--Babuška theorem (cf. [27, Theorem 2.6]) provides the existence of a unique solution to (4.2). The a priori estimate 
(4.20) follows from [27, eqn. (2.5)] along with the boundedness of 𝐅𝝓,𝜼,𝒓 (cf. (3.21)) and 𝐆 (cf. (3.20)). □

4.3. Well-definedness of the operator 𝐒̃

We now prove that (4.3) is well-posed (equivalently, that 𝐒̃ is well-defined) resorting to the analysis in [26, Section 4.2.2]. The 
inf-sup conditions for 𝑎, 𝑏1, and 𝑏2 that are required by the Babuška–Brezzi theory (cf. [7, Theorem 2.1, Corollary 2.1, Section 2.1]) 
for the unique solvability of (4.3), were established in [26, Lemmas 4.3 and 4.4] with constants that here we denote 𝛼, 𝛽1, and 𝛽2, 
respectively. In particular, recall that the analysis for 𝑎 involves the kernels 𝐾𝑖 of the forms 𝑏𝑖, 𝑖 ∈

{
1,2
}

. Thus, a simple application 
of the theory above implies the following result, which, up to minor differences, coincides with [26, Theorem 4.5].

Lemma 4.4. For each 𝜼 = (𝜂1, 𝜂2) ∈, there exists a unique (𝝋, 𝜒) ∈ X2 ×M1 solution to (4.3), and hence one can dfine ̃𝐒(𝜼) ∶= 𝝋 ∈X2. 
Moreover, there exist positive constants 𝐶𝐒̃ and 𝐶𝐒̃, which depend on 𝜀, 𝑐𝑟 (cf. (3.26)), |Ω|, 𝜌, 𝑟, 𝛼, 𝛽1, and 𝛽2, such that

‖𝐒̃(𝜼)‖X2
= ‖𝝋‖X2

≤ 𝐶𝐒̃

{‖𝜒𝙳‖1∕𝑠,𝑟;Γ + ‖𝜼‖0,𝜌;Ω}, and (4.21a)

‖𝜒‖M1
≤ 𝐶𝐒̃

{‖𝜒𝙳‖1∕𝑠,𝑟;Γ + ‖𝜼‖0,𝜌;Ω} . (4.21b)

Proof. We omit further details and just mention that the derivations of (4.21a) and (4.21b) make use of the boundedness of 𝐹𝜼 (cf. 
(3.25)) and 𝐺 (cf. (3.26)). □

4.4. Well-definedness of the operators 𝐓 and 𝚵

In this section, we follow the approaches from [20, Section 3.2.2] and [31, Section 3.3] to prove that the operators 𝐓 and 𝚵 are well

defined. More precisely, we first apply [7, Theorem 2.1] and [31, Theorem 3.2] to the formulation arising from (4.4) when 𝒘,𝝓 and 
𝒘 are dropped, and then employ the Banach–Nečas--Babuška theorem (cf. [27, Theorem 2.6]) to conclude that the full system (4.4)

is well-posed for each 𝑖 ∈ {1,2}. To this end, as announced above, and similarly as in Section 4.2, we let  ∶
(
×)×(×)→ R

be the bounded bilinear dfined by the sum of the left-hand sides of (4.4), excluding 𝒘 and 𝒘,𝝓 , that is

((𝒓⃗𝑖, 𝜉𝑖), (𝒔⃗𝑖, 𝜂𝑖)) ∶= (𝒓⃗𝑖, 𝒔⃗𝑖) + (𝒔⃗𝑖, 𝜉𝑖) + (𝒓⃗𝑖, 𝜂𝑖) − (𝜉𝑖, 𝜂𝑖) ∀(𝒓⃗𝑖, 𝜉𝑖), (𝒔⃗𝑖, 𝜂𝑖) ∈ ×, (4.22)

and proceed to show next that  is inf-sup stable with respect to its first and second components. Needless to say, the boundedness 
of  follows from those of , , and  (cf. (3.33)).
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It follows from (4.22) that the aforementioned property for  is equivalent to proving that the bilinear forms , , and , satisfy 
the hypotheses of [31, Theorem 3.2], which is actually a slight improvement of the original result for perturbed saddle-point problems 
provided by [24, Theorem 3.4]. In this regard, we first notice from (3.32) that  and  are positive semi-definite, that is

(𝒔⃗𝑖, 𝒔⃗𝑖) ≥ 𝜅𝑖‖𝒔𝑖‖20,Ω ≥ 0 ∀ ⃗𝒔𝑖 ∈ , and (𝜂𝑖, 𝜂𝑖) = ‖𝜂𝑖‖20,Ω ≥ 0 ∀ 𝜂𝑖 ∈ .

In turn, it is readily seen that  is symmetric, and that the null space 𝑉 of  is given by

𝑉 ∶=1 × 𝑉0 , where 𝑉0 ∶= 
{
𝝉 𝑖 ∈𝐇(div𝜚;Ω) ∶ div(𝝉 𝑖) = 0 in Ω

}
. (4.23)

In addition,  shows the matrix representation 
(
𝐴 𝐵1
𝐵2

)
, where 𝐴 ∶1 ×1 → R, 𝐵1 ∶1 ×2 → R, and 𝐵2 ∶1 ×2 → R are 

the bilinear forms dfined as

𝐴(𝒕𝑖,𝒔𝑖) ∶= 𝜅𝑖 ∫
Ω 
𝒕𝑖 ⋅ 𝒔𝑖 ∀ 𝒕𝑖,𝒔𝑖 ∈1

𝐵1(𝒔𝑖,𝝉 𝑖) ∶= −∫
Ω 
𝝉 𝑖 ⋅ 𝒔𝑖 ∀ (𝒔𝑖,𝝉 𝑖) ∈1 ×2 ,

𝐵2(𝒔𝑖,𝝉 𝑖) ∶= ∫
Ω 
𝝉 𝑖 ⋅ 𝒔𝑖 ∀ (𝒔𝑖,𝝉 𝑖) ∈1 ×2 .

(4.24)

According to the above, and similarly as in Section 4.2, we deduce that in order for  to satisfy the inf-sup conditions specfied in 
[31, eqns. (3.31) and (3.32)], we just need to prove that 𝐴, 𝐵1, and 𝐵2 verify the hypothesis of [7, Theorem 2.1]. In particular, it is 
easily seen that 𝐴 is 1-elliptic since

𝐴(𝒔𝑖,𝒔𝑖) = 𝜅𝑖 ‖𝒔𝑖‖20,Ω ∀ 𝒔𝑖 ∈1 , (4.25)

and hence 𝐴 satifies the assumptions of [7, Theorem 2.1, eqns. (2.8) and (2.9)]. Note that this holds irrespective of the conditions 
defining the kernels 𝑗 of 𝐵𝑗 |𝐋2(Ω)×𝑉0 , 𝑗 ∈ {1,2}, which, due to the fact that 𝐵1 = −𝐵2, are given by

1 = 2 =  ∶= 
{
𝒔𝑖 ∈1 ∶ ∫

Ω 
𝒔𝑖 ⋅ 𝝉 𝑖 = 0 ∀ 𝝉 𝑖 ∈ 𝑉0

}
. (4.26)

Indeed, all what is needed is that  be contained in 1. Furthermore, regarding the bilinear forms 𝐵1 and 𝐵2, we now consider 
𝝉 𝑖 ∈ 𝑉0 (cf. (4.23)), that is 𝝉 𝑖 ∈𝐇(div𝜚;Ω) such that div(𝝉 𝑖) = 0 in Ω, and observe that, bounding by below with 𝒔𝑖 = −𝝉 𝑖 (for 𝐵1) 
and 𝒔𝑖 = 𝝉 𝑖 (for 𝐵2), there holds for each 𝑗 ∈ {1,2}

sup 
𝒔𝑖∈1⧵{𝟎}

𝐵𝑗 (𝒔𝑖,𝝉 𝑖)‖𝒔𝑖‖1

= sup 
𝒔𝑖∈𝐋2(Ω)⧵{𝟎}

𝐵𝑗 (𝒔𝑖,𝝉 𝑖)‖𝒔𝑖‖0,Ω ≥ ‖𝝉 𝑖‖0,Ω = ‖𝝉 𝑖‖2
∀ 𝝉 𝑖 ∈ 𝑉0 . (4.27)

Hence, thanks to (4.25) and (4.27), we can apply [7, Theorem 2.1] to conclude that there exists a positive 𝛼, depending only on 𝜅𝑖, 
such that the whole bilinear form  satifies

sup 
𝒔⃗𝑖∈𝑉 ⧵{𝟎}

(𝒓⃗𝑖, 𝒔⃗𝑖)‖𝒔⃗𝑖‖ ≥ 𝛼 ‖𝒓⃗𝑖‖ ∀ ⃗𝒓𝑖 ∈ 𝑉 . (4.28)

Moreover, exchanging the roles of 𝐵1 and 𝐵2, and applying again [7, Theorem 2.1], we conclude that

sup 
𝒓⃗𝑖∈𝑉 ⧵{𝟎}

(𝒓⃗𝑖, 𝒔⃗𝑖)‖𝒓⃗𝑖‖ ≥ 𝛼 ‖𝒔⃗𝑖‖ ∀ ⃗𝒔𝑖 ∈ 𝑉 .

On the other hand, we know from [30, Lemma 2.9] (see also [20, eqn. (3.23)]) that  (cf. (3.32)) satifies the required continuous 
inf-sup condition, which means that there exists a positive constant 𝛽 such that

sup 
𝒔⃗𝑖∈⧵{𝟎}

(𝒔⃗𝑖, 𝜂𝑖)‖𝒔⃗𝑖‖ ≥ 𝛽 ‖𝜂𝑖‖0,𝜌,Ω ∀ 𝜂𝑖 ∈ .

Thus, having , , and  satified the hypotheses of [31, Theorem 3.2], we deduce the existence of a positive constant 𝜶, 
depending only on 𝛼, 𝛽, ‖‖, and ‖‖, such that

sup 
(𝒔⃗𝑖,𝜂𝑖)∈×

(𝒔⃗𝑖 ,𝜂𝑖)≠𝟎

((𝒓⃗𝑖, 𝜉𝑖), (𝒔⃗𝑖, 𝜂𝑖))‖(𝒔⃗𝑖, 𝜂𝑖)‖×
≥ 𝜶 ‖(𝒓⃗𝑖, 𝜉𝑖)‖× ∀ (𝒓⃗𝑖, 𝜉𝑖) ∈ × , and (4.29a)
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sup 
(𝒓⃗𝑖 ,𝜉𝑖)∈×

(𝒓⃗𝑖 ,𝜉𝑖)≠𝟎

((𝒓⃗𝑖, 𝜉𝑖), (𝒔⃗𝑖, 𝜂𝑖))‖(𝒓⃗𝑖, 𝜉𝑖)‖×
≥ 𝜶 ‖(𝒔⃗𝑖, 𝜂𝑖)‖× ∀ (𝒔⃗𝑖, 𝜂𝑖) ∈ × . (4.29b)

Going back to (4.4) with the given (𝒘,𝝓) ∈𝐗2 ×X2, we let 𝒘,𝝓 ∶ ( ×) × ( ×)→ R be the bounded bilinear form arising 
after adding its left-hand sides, that is (cf. (4.22))

𝒘,𝝓((𝒓⃗𝑖, 𝜉𝑖), (𝒔⃗𝑖, 𝜂𝑖)) ∶= ((𝒓⃗𝑖, 𝜉𝑖), (𝒔⃗𝑖, 𝜂𝑖)) + 𝒘,𝝓(𝒔⃗𝑖, 𝜉𝑖) + 𝒘(𝜉𝑖, 𝜂𝑖), (4.30)

for all (𝒓⃗𝑖, 𝜉𝑖), (𝒔⃗𝑖, 𝜂𝑖) ∈ ×. In this way, (4.4) is rewritten as: Find (𝒕⃗𝑖, 𝜉𝑖) ∈ × such that

𝒘,𝝓((𝒕⃗𝑖, 𝜉𝑖), (𝒔⃗𝑖, 𝜂𝑖)) = (𝒔⃗𝑖) +  (𝜂𝑖) ∀ (𝒔⃗𝑖, 𝜂𝑖) ∈ × . (4.31)

Note that the boundedness of , 𝒘,𝝓 , and 𝒘 (cf. (3.33), (3.34), and (3.35)) guarantees that 𝒘,𝝓 is bounded as well. In turn, 
bearing in mind (4.30), (4.29a), (4.29b), and again the boundedness of 𝒘,𝝓 and 𝒘, and assuming that

‖(𝒘,𝝓)‖𝐗2×X2
≤ 𝚁 ∶= 

𝜶

2 max
{‖‖,‖‖} , (4.32)

we conclude that

sup 
(𝒔⃗𝑖,𝜂𝑖)∈×

(𝒔⃗𝑖 ,𝜂𝑖)≠𝟎

𝒘,𝝓((𝒓⃗𝑖, 𝜉𝑖), (𝒔⃗𝑖, 𝜂𝑖))‖(𝒔⃗𝑖, 𝜂𝑖)‖×
≥ 
𝜶

2 
‖(𝒓⃗𝑖, 𝜉𝑖)‖× ∀ (𝒓⃗𝑖, 𝜉𝑖) ∈ × , and (4.33)

sup 
(𝒓⃗𝑖 ,𝜉𝑖)∈×

(𝒓⃗𝑖 ,𝜉𝑖)≠𝟎

𝒘,𝝓((𝒓⃗𝑖, 𝜉𝑖), (𝒔⃗𝑖, 𝜂𝑖))‖(𝒓⃗𝑖, 𝜉𝑖)‖×
≥ 
𝜶

2 
‖(𝒔⃗𝑖, 𝜂𝑖)‖× ∀ (𝒔⃗𝑖, 𝜂𝑖) ∈ × . (4.34)

The well-definedness of the components of 𝐓 and 𝚵, and hence of themselves, can be stated now.

Lemma 4.5. For each 𝑖 ∈ {1,2}, and for each (𝒘,𝝓) ∈ 𝐗2 × X2 satisfying (4.32), there exists a unique (𝒕⃗𝑖, 𝜉𝑖) =
(
(𝒕𝑖,𝝈𝑖), 𝜉𝑖

)
∈ ×

solution of (4.4), and hence we can dfine T𝑖(𝒘,𝝓) ∶= 𝒕𝑖 ∈1 and Ξ𝑖(𝒘,𝝓) ∶= 𝜉𝑖 ∈. Moreover, there exists a positive constant 𝐶𝐓, 
independent of (𝒘,𝝓), such that

‖T𝑖(𝒘,𝝓)‖1
+ ‖Ξ𝑖(𝒘,𝝓)‖ = ‖𝒕𝑖‖1

+ ‖𝜉𝑖‖
≤ ‖(𝒕⃗𝑖, 𝜉𝑖)‖× ≤ 𝐶𝐓

{‖𝜉𝑖,𝙳‖1∕2,Γ + ‖𝑓𝑖‖0,𝜚;Ω} . (4.35)

Proof. Thanks to (4.33) and (4.34), the proof reduces to a direct application of [27, Theorem 2.6], where the derivation of the a 
priori estimate (4.35) makes use of the expressions for ‖‖ and ‖‖ given by (3.33). □

4.5. Solvability analysis of the fixed-point equation

Knowing that 𝐒, 𝐒̃, 𝐓, 𝚵 (and hence 𝚷 as well) are well-defined, we address the solvability of the fixed-point equation (4.5) by 
means of the Banach fixed-point theorem. First we dfine the ball

W(𝚁) ∶= 
{
(𝒘,𝝓) ∈𝐗2 × X2 ∶ ‖(𝒘,𝝓)‖𝐗2×X2

≤ 𝚁 
}
, (4.36)

where 𝚁 > 0 is dfined in (4.32), and provide next a condition on the data ensuring that 𝚷 maps W(𝚁) into itself. In fact, bearing in 
mind the definition of 𝚷 (cf. (4.5)), and employing the a priori estimates for 𝐒, ̃𝐒, 𝐓, and 𝚵 (cf. (4.20), (4.21a), and (4.35), we deduce 
the existence of a positive constant 𝐶(𝚁), depending only on 𝐶𝐒, 𝐶𝐒̃, 𝐶𝐓, and 𝚁, such that for each (𝒘,𝝓) ∈W(𝚁) there holds

‖𝚷(𝒘,𝝓)‖𝐗2×X2
≤ 𝐶(𝚁) 

{‖𝒇‖0,Ω + ‖𝑔‖0,Ω + ‖𝜒𝙳‖1∕𝑠,𝑟;Γ + 
2 ∑
𝑖=1 

(‖𝜉𝑖,𝙳‖1∕2,Γ + ‖𝑓𝑖‖0,𝜚;Ω)} . (4.37)

A straightforward consequence of (4.37) implies the following result.

Lemma 4.6. Assume that the data are sufficiently small so that

𝐶(𝚁) 
{‖𝒇‖0,Ω + ‖𝑔‖0,Ω + ‖𝜒𝙳‖1∕𝑠,𝑟;Γ + 

2 ∑
𝑖=1 

(‖𝜉𝑖,𝙳‖1∕2,Γ + ‖𝑓𝑖‖0,𝜚;Ω)} ≤ 𝚁 . (4.38)

Then, 𝚷
(
W(𝚁)
)
⊆ W(𝚁).
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Our following goal is to show that 𝚷 is Lipschitz-continuous, for which it suffices to show that 𝐒, 𝐒̃, 𝚵, and 𝐓 satisfy suitable 
continuity properties. We begin with the corresponding result for 𝐒.

Lemma 4.7. There exists a positive constant 𝐿𝐒, depending on 𝜀, 𝛿, and 𝜶𝐀, such that

‖𝐒(𝝋,𝝃, 𝒕) − 𝐒(𝝓,𝜼, 𝒓)‖𝐗2
≤ 𝐿𝐒

{‖𝝃‖ ‖𝝋−𝝓‖X2
+ ‖𝝓‖X2

‖𝝃 − 𝜼‖ + ‖𝒕− 𝒓‖1

}
, (4.39)

for all (𝝋, 𝝃, 𝒕), (𝝓,𝜼, 𝒓) ∈ X2 × ×1.

Proof. It follows in the usual way, namely defining 𝐒(𝝋, 𝝃, 𝒕) and 𝐒(𝝓,𝜼, 𝒓) in terms of the respective solutions of (4.2), and then 
applying the global inf-sup condition (4.19a). We omit further details and refer to the preprint version of the present work (cf. [29, 
Lemma 4.7]). □

Next, we resort to a result proven in [26, Lemma 4.9] to establish the continuity of 𝐒̃.

Lemma 4.8. There exists 𝐿𝐒̃ > 0, depending only on Ω, the inf-sup constants 𝛼 and 𝛽2 (cf. Section 4.3), and ‖𝑎‖ (cf. (3.24)), such that

‖𝐒̃(𝝃) − 𝐒̃(𝜼)‖X2
≤ 𝐿𝐒̃ ‖𝝃 − 𝜼‖ ∀ 𝝃, 𝜼 ∈ . (4.40)

Recalling that W(𝚁) is the closed ball dfined by (4.36), we now prove the continuity of 𝐓 and 𝚵.

Lemma 4.9. There exists 𝐿𝐓 > 0, depending only on 𝜶, 𝐶𝐓, 𝜀, and 𝜅𝑖, 𝑖 ∈
{
1,2
}

, such that

‖𝐓(𝒛,𝝋) −𝐓(𝒘,𝝓)‖1
+ ‖𝚵(𝒛,𝝋) − 𝚵(𝒘,𝝓)‖

≤ 𝐿𝐓

2 ∑
𝑖=1 

{‖𝜉𝑖,𝙳‖1∕2,Γ + ‖𝑓𝑖‖0,𝜚;Ω}‖(𝒛,𝝋) − (𝒘,𝝓)‖𝐗2×X2
,

(4.41)

for all (𝒛,𝝋), (𝒘,𝝓) ∈W(𝚁).

Proof. Given (𝒛,𝝋), (𝒘,𝝓) ∈W(𝚁), we let for each 𝑖 ∈ {1,2}

T𝑖(𝒛,𝝋) ∶= 𝒕𝑖 ∈1 , Ξ𝑖(𝒛,𝝋) ∶= 𝜉𝑖 ∈ , T𝑖(𝒘,𝝓) ∶= 𝒓𝑖 ∈1 , and Ξ𝑖(𝒘,𝝓) ∶= 𝜘𝑖 ∈ ,

where (𝒕⃗𝑖, 𝜉𝑖) =
(
(𝒕𝑖,𝝈𝑖), 𝜉𝑖

)
, (𝒓⃗𝑖,𝜘𝑖) = ((𝒓𝑖, 𝜻 𝑖),𝜘𝑖) ∈  × are the respective solutions of (4.31), that is

𝒛,𝝋

(
(𝒕⃗𝑖, 𝜉𝑖), (𝒔⃗𝑖, 𝜂𝑖)

)
= (𝒔⃗𝑖) +  (𝜂𝑖) and 𝒘,𝝓((𝒓⃗𝑖,𝜘𝑖), (𝒔⃗𝑖, 𝜂𝑖)) = (𝒔⃗𝑖) +  (𝜂𝑖) ,

for all (𝒔⃗𝑖, 𝜂𝑖) ∈ ×. It follows from the foregoing identities and the definitions of the bilinear forms 𝒘,𝝓 (cf. (4.22), (4.30)), and 
𝒘,𝝓 and 𝒘 (cf. (3.32)), that

𝒛,𝝋

(
(𝒕⃗𝑖, 𝜉𝑖) − (𝒓⃗𝑖,𝜘𝑖), (𝒔⃗𝑖, 𝜂𝑖)) = 𝒛,𝝋

(
(𝒕⃗𝑖, 𝜉𝑖), (𝒔⃗𝑖, 𝜂𝑖)

)
−𝒛,𝝋

(
(𝒓⃗𝑖,𝜘𝑖), (𝒔⃗𝑖, 𝜂𝑖))

= 𝒘,𝝓

(
(𝒓⃗𝑖,𝜘𝑖), (𝒔⃗𝑖, 𝜂𝑖))−𝒛,𝝋

(
(𝒓⃗𝑖,𝜘𝑖), (𝒔⃗𝑖, 𝜂𝑖))

= 𝒘−𝒛,𝝓−𝝋(𝒔⃗𝑖,𝜘𝑖) + 𝒘−𝒛(𝜘𝑖, 𝜂𝑖) .
(4.42)

Hence, applying the global inf-sup condition (4.33) to the bilinear form 𝒛,𝝋 and the vector (𝒕⃗𝑖, 𝜉𝑖) − (𝒓⃗𝑖,𝜘𝑖), and employing (4.42)

and the boundedness of 𝒘,𝝓 and 𝒘 (cf. (3.34)), we find that

‖(𝒕⃗𝑖, 𝜉𝑖) − (𝒓⃗𝑖,𝜘𝑖)‖× ≤ 2 
𝜶

sup 
(𝒔⃗𝑖 ,𝜂𝑖)∈×

(𝒔⃗𝑖 ,𝜂𝑖)≠𝟎

𝒘−𝒛,𝝓−𝝋(𝒔⃗𝑖,𝜘𝑖) + 𝒘−𝒛(𝜘𝑖, 𝜂𝑖)‖(𝒔⃗𝑖, 𝜂𝑖)‖×

≤ 
2 max

{‖‖,‖‖}
𝜶

‖𝜘𝑖‖0,𝜌,Ω ‖(𝒛,𝝋) − (𝒘,𝝓)‖𝐗2×X2
,

from which, along with the a priori estimate (4.35) for ‖𝜘𝑖‖0,𝜚,Ω, 𝑖 ∈ {1,2}, and the expressions for ‖‖ and ‖‖ (cf. (3.35)), we 
conclude (4.41) with 𝐿𝐓 as indicated. □

Given (𝒛,𝝋), (𝒘,𝝓) ∈W(𝚁), the Lipschitz-continuity of 𝐒 (cf. (4.39)), ̃𝐒 (cf. (4.40)), 𝐓 and 𝚵 (cf. (4.41)), the a priori estimate for ‖𝚵(𝒛,𝝋)‖ (cf. (4.35)), and the fact that ‖𝝓‖ ≤ 𝚁, we deduce the existence of a positive constant 𝐿𝚷 , depending only on 𝐿𝐒, 𝐶𝐓, 𝐿𝐒̃, 
𝐿𝐓, and 𝚁, such that

‖𝚷(𝒛,𝝋) −𝚷(𝒘,𝝓)‖ ≤ 𝐿𝚷

2 ∑
𝑖=1 

{‖𝜉𝑖,𝙳‖1∕2;Γ + ‖𝑓𝑖‖0,𝜚;Ω}‖(𝒛,𝝋) − (𝒘,𝝓)‖ . (4.43)

Computers and Mathematics with Applications 186 (2025) 53–83 

68 



G.N. Gatica, C. Inzunza and R. Ruiz-Baier 

As a consequence of (4.43), we state next the main result of this section.

Theorem 4.10. Besides (4.18) and (4.38), assume that the data satisfy

𝐿𝚷

2 ∑
𝑖=1 

{‖𝜉𝑖,𝙳‖1∕2;Γ + ‖𝑓𝑖‖0,𝜚;Ω} < 1 . (4.44)

Then, the fixed-point equation (4.6) has a unique solution (𝒛,𝝋) ∈ W(𝚁). Equivalently, the coupled problem (3.36) has a unique solution (
(𝒖, 𝜃), (𝒛, 𝑝)

)
∈ (𝐗 ×𝐐) × (𝐗2 ×𝐐1), (𝝋, 𝜒) ∈ X2 ×M1, and (𝒕⃗𝑖, 𝜉𝑖) ∈ ×, 𝑖 ∈ {1,2}. Moreover, the following a priori estimates hold 

true

‖(𝒖, 𝜃)‖𝐗×𝐐 + ‖(𝒛, 𝑝)‖𝐗2×𝐐1
≤ 𝐶𝐒

{‖𝒇‖0,Ω + ‖𝑔‖0,Ω + 
2 ∑
𝑖=1 

(‖𝜉𝑖,𝙳‖1∕2;Γ + ‖𝑓𝑖‖0,𝜚;Ω)} ,
‖(𝝋, 𝜒)‖X2×M1

≤ 𝐶𝐒̃

{‖𝜒𝙳‖1∕𝑠,𝑟;Γ + 
2 ∑
𝑖=1 

(‖𝜉𝑖,𝙳‖1∕2;Γ + ‖𝑓𝑖‖0,𝜚;Ω)} ,
‖(𝒕⃗𝑖, 𝜉𝑖)‖× ≤ 𝐶𝐓

{‖𝜉𝑖,𝙳‖1∕2,Γ + ‖𝑓𝑖‖0,𝜚;Ω} , 𝑖 ∈ {1,2} ,

where 𝐶𝐒 and 𝐶𝐒̃ are positive constants depending only on 𝐶𝐒, 𝐶𝐒̃, 𝐶𝐓, and 𝚁.

Proof. Lemma 4.6 guarantees that 𝚷 maps W(𝚁) into itself. Hence, by virtue of the equivalence between (3.36) and (4.6), the 
Lipschitz-continuity of 𝚷 (cf. (4.43)) and the hypothesis (4.44), we have that Banach’s fixed-point theorem implies the well-posedness 
of (4.6) and equivalently of (3.36). In addition, the a priori estimates follow straightforwardly from (4.20), (4.21a), (4.21b), (4.35), 
and bounding ‖𝝋‖0,𝑟;Ω, which appears in the original version of the first estimate above (cf. (4.20)), by 𝚁. □

5. A Galerkin scheme

We now introduce a Galerkin scheme for (3.36), and analyze its well-posedness by means of the discrete analogue of the fixed-point 
approach developed in Section 4. In particular, for the discrete solvability associated with the decoupled problems from Sections 4.2, 
4.3, and 4.4, we employ [9, Theorem 4.3.1], and the discrete versions of [27, Theorem 2.6], [7, Theorem 2.1, Corollary 2.1], and 
[24, Theorem 3.4], which are given by [27, Theorem 2.22], [7, Corollary 2.2], and [24, Theorem 3.5], respectively.

5.1. Preliminaries

Let us consider arbitrary finite element subspaces of the continuous spaces indicated as follows

𝐗ℎ ⊆𝐇1
0(Ω), 𝐐ℎ ⊆ L2(Ω), 𝐗2,ℎ ⊆𝐇𝑟

0(div;Ω), 𝐗1,ℎ ⊆𝐇𝑠
0(div𝑠;Ω), 𝐐1,ℎ ⊆ L𝑟0(Ω), 𝐐2,ℎ ⊆ L2

0(Ω),

X2,ℎ ⊆X2 , X1,ℎ ⊆X1 , M1,ℎ ⊆M1 , M2,ℎ ⊆M2, 1,ℎ ⊆1 , 2,ℎ ⊆2 , and ℎ ⊆ .

Hereafter, ℎ stands for both the sub-index of each foregoing subspace and the size of a regular triangulation ℎ of Ω̄ made up of 
triangles 𝐾 (when 𝑛 = 2) or tetrahedra 𝐾 (when 𝑛 = 3) of diameter ℎ𝐾 , i.e., ℎ ∶= max

{
ℎ𝐾 ∶ 𝐾 ∈ ℎ}. Specific finite element 

subspaces satisfying the stability conditions to be introduced along the analysis will be provided later on in Section 6. Then, setting 
the notation

𝒕⃗𝑖,ℎ ∶= (𝒕𝑖,ℎ,𝝈𝑖,ℎ) , 𝒓⃗𝑖,ℎ ∶= (𝒓𝑖,ℎ,𝜻 𝑖,ℎ) , and 𝒔⃗𝑖,ℎ ∶= (𝒔𝑖,ℎ,𝝉 𝑖,ℎ) ∈ℎ ∶= 1,ℎ ×2,ℎ ,

the Galerkin scheme associated with (3.36) reads: Find (𝒖ℎ, 𝜃ℎ) ∈ 𝐗ℎ × 𝐐ℎ, (𝒛ℎ, 𝑝ℎ) ∈ 𝐗2,ℎ × 𝐐1,ℎ, (𝝋ℎ,𝜒ℎ) ∈ X2,ℎ × M1,ℎ, and 
(𝒕⃗𝑖,ℎ, 𝜉𝑖,ℎ) ∈ℎ ×ℎ, 𝑖 ∈ {1,2}, such that

𝐚𝑠(𝒖ℎ,𝒗ℎ) + 𝐛𝑠(𝒗ℎ, 𝜃ℎ) = 𝐅𝝋ℎ,𝝃ℎ,𝒕ℎ (𝒗ℎ) ,
𝐛𝑠(𝒖ℎ, 𝜗ℎ) − 𝐜𝑠(𝜃ℎ, 𝜗ℎ) + 𝐞𝑠(𝑝ℎ, 𝜗ℎ) = 0 ,

𝐚𝑓 (𝒛ℎ,𝒘ℎ) + 𝐝1(𝒘ℎ, 𝑝ℎ) = 0 ,
𝐝2(𝒛ℎ, 𝑞ℎ) + 𝐞𝑓 ((𝜃ℎ, 𝑝ℎ), 𝑞ℎ) = 𝐆(𝑞ℎ) ,

𝑎(𝝋ℎ,𝝍ℎ) + 𝑏1(𝝍ℎ,𝜒ℎ) = 𝐺(𝝍ℎ) ,
𝑏2(𝝋ℎ, 𝛾ℎ) = 𝐹𝝃ℎ (𝛾ℎ) ,

(𝒕⃗𝑖,ℎ, 𝒔⃗𝑖,ℎ) + (𝒔⃗𝑖,ℎ, 𝜉𝑖,ℎ) + 𝒛ℎ,𝝋ℎ (𝒔⃗𝑖,ℎ, 𝜉𝑖,ℎ) = (𝒔⃗𝑖,ℎ) ,
(𝒕⃗𝑖,ℎ, 𝜂𝑖,ℎ) − (𝜉𝑖,ℎ, 𝜂𝑖,ℎ) + 𝒛ℎ

(𝜉𝑖,ℎ, 𝜂𝑖,ℎ) =  (𝜂𝑖,ℎ) ,

(5.1)

for all (𝒗ℎ, 𝜗ℎ) ∈𝐗ℎ ×𝐐ℎ, (𝒘ℎ, 𝑞ℎ) ∈𝐗1,ℎ ×𝐐2,ℎ, (𝝍ℎ, 𝛾ℎ) ∈ X1,ℎ ×M2,ℎ, and (𝒔⃗𝑖,ℎ, 𝜂𝑖,ℎ) ∈ℎ ×ℎ.
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5.2. Discrete fixed-point approach

In order to analyze the solvability of (5.1), we introduce next the discrete version of the strategy employed in Section 4.1. We 
begin by adopting the notation

𝒕ℎ ∶= (𝒕1,ℎ, 𝒕2,ℎ) , 𝒓ℎ ∶= (𝒓1,ℎ, 𝒓2,ℎ) ∈ 1,ℎ ∶= 1,ℎ ×1,ℎ ,

𝝃ℎ ∶= (𝜉1,ℎ, 𝜉2,ℎ) , 𝜼ℎ ∶= (𝜂1,ℎ, 𝜂2,ℎ) ∈ ℎ ∶= ℎ ×ℎ ,

and by letting 𝐒ℎ ∶ X2,ℎ ×ℎ ×1,ℎ →𝐗2,ℎ be the operator dfined by

𝐒ℎ(𝝓ℎ,𝜼ℎ, 𝒓ℎ) ∶= 𝒛ℎ ∀ (𝝓ℎ,𝜼ℎ, 𝒓ℎ) ∈ X2,ℎ ×ℎ ×1,ℎ ,

where (𝒖ℎ, 𝜃ℎ) ∈ 𝐗ℎ ×𝐐ℎ and (𝒛ℎ, 𝑝ℎ) ∈ 𝐗2,ℎ ×𝐐1,ℎ constitute the unique solution (to be cofirmed) of the first four rows of (5.1)

with 𝐅𝝓ℎ,𝜼ℎ,𝒓ℎ instead of 𝐅𝝋ℎ,𝝃ℎ,𝒕ℎ . Similarly, we dfine 𝐒̃ℎ ∶ℎ →X2,ℎ as

𝐒̃ℎ(𝜼ℎ) ∶= 𝝋ℎ ∀ 𝜼ℎ ∈ℎ ,

where (𝝋ℎ,𝜒ℎ) ∈ X2,ℎ ×M1,ℎ is the unique solution (to be cofirmed) of the fifth and sixth rows of (5.1) with 𝐹𝜼ℎ instead of 𝐹𝝃ℎ . 
Furthermore, we let T𝑖,ℎ ∶ 𝐗2,ℎ × X2,ℎ →1,ℎ and Ξ𝑖,ℎ ∶ 𝐗2,ℎ × X2,ℎ →ℎ, 𝑖 ∈

{
1,2
}

, be the operators given for each (𝒘ℎ,𝝓ℎ) ∈
𝐗2,ℎ ×X2,ℎ by

T𝑖,ℎ(𝒘ℎ,𝝓ℎ) ∶= 𝒕𝑖,ℎ and Ξ𝑖,ℎ(𝒘ℎ,𝝓ℎ) ∶= 𝝃𝑖,ℎ ,

where (𝒕⃗𝑖,ℎ, 𝜉𝑖,ℎ) =
(
(𝒕𝑖,ℎ,𝝈𝑖,ℎ), 𝜉𝑖,ℎ

)
∈ℎ ×Mℎ is the unique solution (to be cofirmed) of the last two rows of (5.1) with 𝒘ℎ,𝝓ℎ and 

𝒘ℎ
instead of 𝒛ℎ,𝝋ℎ and 𝒛ℎ

, respectively. Hence, we can set the operators 𝐓ℎ ∶𝐗2,ℎ ×X2,ℎ →1,ℎ and 𝚵ℎ ∶𝐗2,ℎ ×X2,ℎ →ℎ as

𝐓ℎ(𝒘ℎ,𝝓ℎ) ∶= (T1,ℎ(𝒘ℎ,𝝓ℎ),T2,ℎ(𝒘ℎ,𝝓ℎ)) = 𝒕ℎ , and

𝚵ℎ(𝒘ℎ,𝝓ℎ) ∶= (Ξ1,ℎ(𝒘ℎ,𝝓ℎ),Ξ2,ℎ(𝒘ℎ,𝝓ℎ)) = 𝝃ℎ ,

for all (𝒘ℎ,𝝓ℎ) ∈𝐗2,ℎ ×X2,ℎ. Finally, introducing the operator 𝚷ℎ ∶𝐗2,ℎ ×X2,ℎ →𝐗2,ℎ ×X2,ℎ dfined as

𝚷ℎ(𝒘ℎ,𝝓ℎ) ∶= 
(
𝐒ℎ(𝝓ℎ,𝚵ℎ(𝒘ℎ,𝝓ℎ),𝐓ℎ(𝒘ℎ,𝝓ℎ)), 𝐒̃ℎ(𝚵ℎ(𝒘ℎ,𝝓ℎ))

)
∀ (𝒘ℎ,𝝓ℎ) ∈𝐗2,ℎ ×X2,ℎ ,

we see that solving (5.1) is equivalent to finding a fixed-point of 𝚷ℎ, i.e., (𝒛ℎ,𝝋ℎ) ∈𝐗2,ℎ ×X2,ℎ such that

𝚷ℎ(𝒛ℎ,𝝋ℎ) = (𝒛ℎ,𝝋ℎ) . (5.2)

5.3. Well-definedness of the operator 𝐒ℎ

In what follows we proceed as in Section 4.2. In fact, we first observe that the symmetry, positive semi-definiteness, and ellipticity 
of 𝐚𝑠 and 𝐜𝑠 remain valid in the discrete context. In particular, 𝐚𝑠 is 𝐗ℎ-elliptic with the same constant 𝛼𝑠 ∶= 𝜇 𝐶𝑃 (cf. (4.13)). Next, 
in order to continue the analysis, we need to assume the discrete version of (4.14):

(H.1) there exists a positive constant 𝛽𝑠,d, independent of ℎ, such that

sup 
𝒗ℎ∈𝐗ℎ
𝒗ℎ≠𝟎

𝐛𝑠(𝒗ℎ, 𝜗ℎ)‖𝒗ℎ‖𝐐 ≥ 𝛽𝑠,d ‖𝜗ℎ‖𝐐 ∀ 𝜗ℎ ∈𝐐ℎ .

Thanks to this, we can apply again [9, Theorem 4.3.1] to deduce the discrete analogue of (4.12a) with a positive constant 𝜶𝑠,d, 
depending on ‖𝐚𝑠‖, ‖𝐜𝑠‖, 𝛼𝑠, and 𝛽𝑠,d.

On the other hand, we now introduce the discrete kernels of 𝐝𝑖, 𝑖 ∈
{
1,2
}

, namely

𝐊1,ℎ ∶= 
{
𝒘ℎ ∈𝐗1,ℎ ∶ 𝐝1(𝒘ℎ, 𝑞ℎ) = 0 ∀ 𝑞ℎ ∈𝐐1,ℎ

}
and

𝐊2,ℎ ∶= 
{
𝒘ℎ ∈𝐗2,ℎ ∶ 𝐝2(𝒘ℎ, 𝑞ℎ) = 0 ∀ 𝑞ℎ ∈𝐐2,ℎ

}
,

and consider the following additional hypotheses:

(H.2) there exists a positive constant 𝛼𝑓,d, independent of ℎ, such that

sup 
𝒘ℎ∈𝐊1,ℎ
𝒘ℎ≠𝟎

𝐚𝑓 (𝒛ℎ,𝒘ℎ)‖𝒘ℎ‖𝐗1

≥ 𝛼𝑓,d ‖𝒛ℎ‖𝐗2
∀ 𝒛ℎ ∈𝐊2,ℎ, sup 

𝒛ℎ∈𝐊2,ℎ

𝐚𝑓 (𝒛ℎ,𝒘ℎ) > 0 ∀ 𝒘ℎ ∈𝐊1,ℎ ⧵ {𝟎} , and

(H.3) for each 𝑖 ∈ {1,2} there exists a positive constant 𝛽𝑖,d, independent of ℎ, such that
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sup 
𝒘ℎ∈𝐗𝑖,ℎ
𝒘ℎ≠𝟎

𝐝𝑖(𝒘ℎ, 𝑞ℎ)‖𝒘ℎ‖𝐗𝑖 ≥ 𝛽𝑖,d‖𝑞ℎ‖𝐐𝑖 ∀ 𝑞ℎ ∈𝐐𝑖,ℎ .

These assumptions and [7, Corollary 2.2, Section 2.2] yield the discrete version of (4.12b) with a constant 𝜶𝑓,d > 0 depending 
only on ‖𝐚𝑓‖, 𝛼𝑓,d, 𝛽1,d, and 𝛽2,d Then, a direct application of [27, Proposition 2.42], along with the discrete version of (4.11), imply, 
in turn, the discrete version of (4.9a) with constant 𝜶𝐀,d ∶= 1

2 min
{
𝜶𝑠,d,𝜶𝑓,d

}
. Moreover, using again the symmetry of 𝐀𝑠 and 𝐀𝚝

𝑓
(as in the continuous analysis), we can prove the discrete analogue of (4.9b). Consequently, under the discrete counterpart of (4.18), 
i.e.,

max
{‖𝐞𝑠‖,‖𝐞𝑓‖} ∶= 𝐶𝑟(Ω) max

{
𝑐0 +

𝛼2

𝜆 
,
𝛼

𝜆 

}
≤ 
𝜶𝐀,d
2 

, (5.3)

we arrive at the discrete versions of (4.19a) and (4.19b), and hence we can state the following result.

Lemma 5.1. Assume that the data satisfy (5.3). Then, for each (𝝓ℎ,𝜼ℎ, 𝒓ℎ) ∈ X2,ℎ ×ℎ ×1,ℎ, there exists a unique ((𝒖ℎ, 𝜃ℎ), (𝒛ℎ, 𝑝ℎ)) ∈
(𝐗ℎ ×𝐐ℎ) × (𝐗2,ℎ ×𝐐1,ℎ) solution of the first four rows of (5.1), and hence one can dfine 𝐒ℎ(𝝓ℎ,𝜼ℎ, 𝒓ℎ) ∶= 𝒛ℎ ∈ 𝐗2,ℎ. Moreover, there 
exists a positive constant 𝐶𝐒,d, depending only on 𝜶𝐀,d, 𝜀, and 𝛿, such that

‖𝐒ℎ(𝝓ℎ,𝜼ℎ, 𝒓ℎ)‖𝐗2
= ‖𝒛ℎ‖𝐗2

≤ ‖(𝒖ℎ, 𝜃ℎ)‖𝐗×𝐐 + ‖(𝒛ℎ, 𝑝ℎ)‖𝐗2×𝐐1

≤ 𝐶𝐒,d

{‖𝒇‖0,Ω + ‖𝑔‖0,Ω + ‖𝜼ℎ‖ ‖𝝓ℎ‖0,𝑟;Ω + ‖𝒓ℎ‖1

}
.

(5.4)

Proof. Similarly to the proof of Lemma 4.3, the result follows as a direct application of the discrete Banach–Nečas--Babuška Theorem 
(cf. [27, Theorem 2.22]). □

5.4. Well-definedness of the operator 𝐒̃ℎ

We begin by letting 𝐾𝑖,ℎ be the discrete kernel of 𝑏𝑖, 𝑖 ∈
{
1,2
}

, that is

𝐾𝑖,ℎ ∶= 
{
𝜓ℎ ∈X𝑖,ℎ ∶ 𝑏𝑖(𝜓ℎ, 𝛾ℎ) = 0 ∀ 𝛾 ∈M𝑖,ℎ

}
,

and by assuming the following hypotheses

(H.4) there exists a positive constant 𝛼d, independent of ℎ, such that

sup 
𝜓ℎ∈𝐾1,ℎ
𝜓ℎ≠𝟎 

𝑎(𝜙ℎ,𝜓ℎ)‖𝜓ℎ‖X1

≥ 𝛼d ‖𝜙ℎ‖X2
∀ 𝜙ℎ ∈𝐾2,ℎ ,

sup 
𝜙ℎ∈𝐾2,ℎ

𝑎(𝜙ℎ,𝜓ℎ) > 0 ∀ 𝜓ℎ ∈𝐾1,ℎ , 𝜓ℎ ≠ 𝟎 , and

(H.5) for each 𝑖 ∈
{
1,2
}

there exists a positive constant 𝛽𝑖,d, independent of ℎ, such that

sup 
𝜓ℎ∈X𝑖,ℎ
𝜓ℎ≠𝟎 

𝑏𝑖(𝜓ℎ, 𝛾ℎ)‖𝜓ℎ‖X𝑖 ≥ 𝛽𝑖,d ‖𝛾ℎ‖M𝑖
∀ 𝛾ℎ ∈M𝑖,ℎ .

As a consequence of (H.4) and (H.5) we are able to state now the discrete version of Lemma 4.4

Lemma 5.2. For each 𝜼ℎ = (𝜂1,ℎ, 𝜂2,ℎ) ∈ℎ, there exists a unique (𝝋ℎ,𝜒ℎ) ∈ X2,ℎ ×M1,ℎ solution of the fifth and sixth rows of (5.1), and 
hence one can dfine 𝐒̃ℎ(𝜼ℎ) ∶= 𝝋ℎ ∈ X2,ℎ. Moreover, there exist positive constants 𝐶𝐒̃,d and 𝐶𝐒̃,d, which depend on 𝜀, 𝑐𝑟 (cf. (3.26)), |Ω|, 
𝜌, 𝑟, 𝛼d, 𝛽1,d, and 𝛽2,d, such that

‖𝐒̃ℎ(𝜼ℎ)‖X2
= ‖𝝋ℎ‖X2

≤ 𝐶𝐒̃,d

{‖𝜒𝙳‖1∕𝑠,𝑟;Γ + ‖𝜼ℎ‖0,𝜌;Ω}, and (5.5a)

‖𝜒ℎ‖M1
≤ 𝐶𝐒̃,d

{‖𝜒𝙳‖1∕𝑠,𝑟;Γ + ‖𝜼ℎ‖0,𝜌;Ω} . (5.5b)

Proof. It reduces to a direct application of [7, Corollary 2.2, eqns. (2.24), (2.25)]. □

5.5. Well-definedness of the operators 𝐓ℎ and 𝚵ℎ

We proceed as in Section 4.3. Firstly, the positive semi-definiteness and symmetry of  and  are also valid in the discrete context. 
In turn, it is easily seen that the discrete Kernel 𝑉ℎ of  is given by
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𝑉ℎ ∶= 1,ℎ × 𝑉0,ℎ , where 𝑉0,ℎ ∶= 
{
𝝉 𝑖,ℎ ∈2,ℎ ∶ ∫

Ω 
𝜂𝑖,ℎ div(𝝉 𝑖,ℎ) = 0 ∀ 𝜂𝑖,ℎ ∈ℎ

}
.

Thus, assuming the hypothesis

(H.6) div(2,ℎ) ⊆ ℎ,

we readily deduce that 𝑉0,ℎ ∶=
{
𝝉 𝑖,ℎ ∈2,ℎ ∶ div(𝝉 𝑖,ℎ) = 0 in Ω

}
, which constitutes the discrete version of (4.23). In addition, 

since the 1-ellipticity of 𝐴 (cf. (4.25)) is naturally inherited by the subspace 1,ℎ, we conclude that the required discrete inf-sup 
conditions are clearly satified by 𝐴. Next, we assume that

(H.7) 𝑉0,ℎ ⊆1,ℎ,

which allows to prove that 𝐵1 and 𝐵2 satisfy the discrete inf-sup condition specfied in [7, eqn. (2.22)]. It remains to assume the 
discrete inf-sup condition for , namely

(H.8) there exists a positive constant 𝛽,d, independent of ℎ, such that

sup 
𝒔⃗𝑖,ℎ∈𝐇ℎ
𝒔⃗𝑖,ℎ≠𝟎

(𝒔⃗𝑖,ℎ, 𝜉𝑖,ℎ)‖𝒔⃗𝑖,ℎ‖ ≥ 𝛽,d ‖𝜉𝑖,ℎ‖ ∀ 𝜉𝑖,ℎ ∈ℎ .

Since 𝐴, 𝐵1 and 𝐵2 satisfy the hypotheses of [7, Corollary 2.2], we conclude the discrete analogue of (4.28) for  with the 
same constant 𝛼. This inequality, along with (H.8), imply the discrete inf-sup condition for 𝒘ℎ,𝝓ℎ

, which is satified by each 
(𝒘ℎ,𝝓ℎ) ∈𝐗2,ℎ ×X2,ℎ such that

‖(𝒘ℎ,𝝓ℎ)‖𝐗2×X2
≤ 𝚁d ∶= 

𝜶,d

2max{‖‖,‖‖} , (5.6)

where 𝜶,d is a positive constant depending only on 𝛼, 𝛽,d, ‖‖, and ‖‖.
Consequently, we can state the well-definedness of the components of 𝐓ℎ and 𝚵ℎ as follows.

Lemma 5.3. For each 𝑖∈ {1,2}, and for each (𝒘ℎ,𝝓ℎ) ∈𝐗2,ℎ ×X2,ℎ satisfying (5.6), there exists a unique (𝒕⃗𝑖,ℎ, 𝜉𝑖,ℎ) =
(
(𝒕𝑖,ℎ,𝝈𝑖,ℎ), 𝜉𝑖,ℎ

)
∈

ℎ ×ℎ solution of the seventh and eighth rows of (5.1), and hence we can dfine T𝑖,ℎ(𝒘ℎ,𝝓ℎ) ∶= 𝒕𝑖,ℎ ∈1,ℎ and Ξ𝑖,ℎ(𝒘ℎ,𝝓ℎ) ∶= 𝜉𝑖,ℎ ∈ℎ. Moreover, there exists a positive constant 𝐶𝐓,d, independent of (𝒘ℎ,𝝓ℎ), such that

‖T𝑖,ℎ(𝒘ℎ,𝝓ℎ)‖1
+ ‖Ξ𝑖,ℎ(𝒘ℎ,𝝓ℎ)‖ = ‖𝒕𝑖,ℎ‖1

+ ‖𝜉𝑖,ℎ‖
≤ ‖(𝒕⃗𝑖,ℎ, 𝜉𝑖,ℎ)‖× ≤ 𝐶𝐓,d

{‖𝜉𝑖,𝙳‖1∕2,Γ + ‖𝑓𝑖‖0,𝜚;Ω} . (5.7)

Proof. It is a straightforward application of [27, Theorem 2.22]. □

5.6. Solvability analysis of the discrete fixed-point equation

Let us introduce the ball

W(𝚁d) ∶= 
{
(𝒘ℎ,𝝓ℎ) ∈𝐗2,ℎ ×X2,ℎ ∶ ‖(𝒘ℎ,𝝓ℎ)‖𝐗2×X2

≤ 𝚁d
}
.

Then, analogously to the derivation of Lemma 4.6, we deduce that 𝚷ℎ maps W(𝚁d) into itself under the same assumption (4.38), 
except that 𝐶(𝚁) is replaced by a constant 𝐶(𝚁d) depending on 𝐶𝐒,d, 𝐶𝐒̃,d, 𝐶𝐓,d and 𝚁d. Moreover, as in the continuous case, we are 
able to prove the continuity of 𝐒ℎ, ̃𝐒ℎ, 𝐓ℎ, and 𝚵ℎ, with corresponding constants denoted by 𝐿𝐒,d, 𝐿𝐒̃,d, and 𝐿𝐓,d, respectively. Hence, 
there exists a positive constant 𝐿𝚷,d, depending only on 𝐿𝐒,d, 𝐿𝐒̃,d, 𝐿𝐓,d, and 𝚁d, such that

‖𝚷ℎ(𝒛ℎ,𝝋ℎ) −𝚷ℎ(𝒘ℎ,𝝓ℎ)‖ ≤ 𝐿𝚷,d

2 ∑
𝑖=1 

{‖𝜉𝑖,𝙳‖1∕2;Γ + ‖𝑓𝑖‖0,𝜚;Ω}‖(𝒛ℎ,𝝋ℎ) − (𝒘ℎ,𝝓ℎ)‖ . (5.8)

for all (𝒛ℎ,𝝋ℎ), (𝒘ℎ,𝝓ℎ) ∈W(𝚁d).
According to the above, the main result of this section is established as follows.

Theorem 5.4. Assume that the data satisfy (5.3) and the discrete version of (4.38), that is

𝐶(𝚁d) 
{‖𝒇‖0,Ω + ‖𝑔‖0,Ω + ‖𝜒𝙳‖1∕𝑠,𝑟;Γ + 

2 ∑
𝑖=1 

(‖𝜉𝑖,𝙳‖1∕2,Γ + ‖𝑓𝑖‖0,𝜚;Ω)} ≤ 𝚁d . (5.9)

In addition, assume that

𝐿𝚷,d

2 ∑
𝑖=1 

{‖𝜉𝑖,𝙳‖1∕2;Γ + ‖𝑓𝑖‖0,𝜚;Ω} < 1 . (5.10)
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Then, the discrete fixed point equation (5.2) has a unique solution (𝒛ℎ,𝝋ℎ) ∈ W(𝚁d). Equivalently, the coupled problem (5.1) has a unique 
solution 

(
(𝒖ℎ, 𝜃ℎ), (𝒛ℎ, 𝑝ℎ)

)
∈ (𝐗ℎ ×𝐐ℎ) × (𝐗2,ℎ ×𝐐1,ℎ), (𝝋ℎ, 𝜉ℎ) ∈ X2,ℎ ×M1,ℎ, and (𝒕⃗𝑖, 𝜉𝑖) ∈ℎ ×ℎ, 𝑖 ∈ {1,2}. Moreover, there hold 

the following a priori estimates

‖(𝒖ℎ, 𝜃ℎ)‖𝐗×𝐐 + ‖(𝒛ℎ, 𝑝ℎ)‖𝐗2×𝐐1
≤ 𝐶𝐒,d

{‖𝒇‖0,Ω + ‖𝑔‖0,Ω + 
2 ∑
𝑖=1 

(‖𝜉𝑖,𝙳‖1∕2;Γ + ‖𝑓𝑖‖0,𝜚;Ω)} ,
‖(𝝋ℎ, 𝜉ℎ)‖X2×M1

≤ 𝐶𝐒̃,d

{‖𝜒𝙳‖1∕𝑠,𝑟;Γ + 
2 ∑
𝑖=1 

(‖𝜉𝑖,𝙳‖1∕2;Γ + ‖𝑓𝑖‖0,𝜚;Ω)} ,
‖(𝒕⃗𝑖, 𝜉𝑖)‖× ≤ 𝐶𝐓,d

{‖𝜉𝑖,𝙳‖1∕2,Γ + ‖𝑓𝑖‖0,𝜚;Ω} , 𝑖 ∈ {1,2} ,

where 𝐶𝐒,d and 𝐶𝐒̃,d are positive constants depending only on 𝐶𝐒,d, 𝐶𝐒̃,d, 𝐶𝐓,d, and 𝚁d.

Proof. We recall that (5.9) guarantees that 𝚷ℎ maps W(𝚁d) into itself, and knowing from (5.8) and (5.10) that 𝚷ℎ ∶W(𝚁d)→W(𝚁d)
is a contraction, a straightforward application of the Banach fixed-point theorem yields the unique solvability of (5.2) and of (5.1). 
Finally, the a priori estimates are consequence of (5.4), (5.5a), (5.5b), (5.7), and the fact that ‖𝝋ℎ‖0,𝑟;Ω ≤ 𝚁d. □

We end the section by stressing that the assumption (5.10) could be dropped from the statement of Theorem 5.4, in which case 
Brouwer’s fixed-point theorem (cf. [22, Theorem 9.9-2]) would imply only existence of solution of (5.2) (and hence of (5.1)).

5.7. A priori error analysis

In this section, we derive an a priori error estimate for the Galerkin scheme (5.1) with arbitrary finite element subspaces satisfying 
the hypotheses introduced in Sections 5.3, 5.4, and 5.5. More precisely, recalling that 

(
(𝒖, 𝜃), (𝒛, 𝑝)

)
∈ (𝐗×𝐐)×(𝐗2×𝐐1), (𝝋, 𝜒) ∈ X2×

M1, and (𝒕⃗𝑖, 𝜉𝑖) ∈ ×, 𝑖 ∈ {1,2}, with (𝒛,𝝋) ∈W(𝚁), constitute the unique solution of (3.36), and that, in turn, 
(
(𝒖ℎ, 𝜃ℎ), (𝒛ℎ, 𝑝ℎ)

)
∈ (𝐗ℎ ×𝐐ℎ) × (𝐗2,ℎ ×𝐐1,ℎ), (𝝋ℎ, 𝜉ℎ) ∈ X2,ℎ ×M1,ℎ, and (𝒕⃗𝑖, 𝜉𝑖) ∈ℎ ×ℎ, 𝑖 ∈ {1,2}, with (𝒛ℎ,𝝋ℎ) ∈ W(𝚁d), is the unique solution 
of (5.1), we establish a Céa estimate for the global error split as

𝙴 ∶= 𝙴1 + 𝙴2 + 𝙴3 ,

where

𝙴1 ∶= ‖𝒖− 𝒖ℎ‖𝐗 + ‖𝜃 − 𝜃ℎ‖𝐐 + ‖𝒛− 𝒛ℎ‖𝐗2
+ ‖𝑝− 𝑝ℎ‖𝐐1

,

𝙴2 ∶= ‖𝝋−𝝋ℎ‖X2
+ ‖𝜒 − 𝜒ℎ‖M1

, and 𝙴3 ∶= 
2 ∑
𝑖=1 

{‖𝒕⃗𝑖 − 𝒕⃗𝑖,ℎ‖ + ‖𝜉𝑖 − 𝜉𝑖,ℎ‖} .
In what follows, given a subspace 𝑍ℎ of a generic Banach space (𝑍,‖ ⋅ ‖𝑍 ), we set

dist(𝑧,𝑍ℎ) ∶= inf 
𝑧ℎ∈𝑍ℎ
‖𝑧− 𝑧ℎ‖𝑍 ∀ 𝑧 ∈𝑍 .

We begin the analysis by applying the Strang estimate from [27, Lemma 2.27] to the first four rows of equations (3.36) and 
(5.1). As a consequence, we obtain that there exists a positive constant 𝐶1(𝙴), depending on 𝜶𝐀,d, ‖𝐀‖ (cf. (4.7)), ‖𝐞𝑠‖, and ‖𝐞𝑓‖ (cf. 
(3.20)), such that there holds

𝙴1 ≤ 𝐶1(𝙴) 
{
dist((𝒖, 𝜃),𝐗ℎ ×𝐐ℎ) + dist((𝒛, 𝑝),𝐗2,ℎ ×𝐐1,ℎ) + ‖𝐅𝝋,𝝃,𝒕 − 𝐅𝝋ℎ,𝝃ℎ,𝒕ℎ‖𝐗′

ℎ

}
. (5.11)

Then, bearing in mind the definition of 𝐅𝝓,𝜼,𝒓 (cf. (3.16)), and proceeding as in the proof of Lemma 4.7 (cf. [29, eqs. (4.43), (4.44), 
and (4.45) in proof of Lemma 4.7]), we find that

‖𝐅𝝋,𝝃,𝒕 − 𝐅𝝋ℎ,𝝃ℎ,𝒕ℎ‖𝐗′
ℎ
≤ max

{
𝜀−1, 𝛿
}{‖𝝃‖‖𝝋−𝝋ℎ‖X2

+ ‖𝝋ℎ‖X2
‖𝝃 − 𝝃ℎ‖ + ‖𝒕− 𝒕ℎ‖1

}
,

which, replaced back into (5.11), yields

𝙴1 ≤ 𝐶1(𝙴) 
{
dist((𝒖, 𝜃),𝐗ℎ ×𝐐ℎ) + dist((𝒛, 𝑝),𝐗2,ℎ ×𝐐1,ℎ)

+ ‖𝝃‖ ‖𝝋−𝝋ℎ‖X2
+ ‖𝝋ℎ‖X2

‖𝝃 − 𝝃ℎ‖ + ‖𝒕− 𝒕ℎ‖1

}
,

(5.12)

with 𝐶1(𝙴) ∶= 𝐶1(𝙴) max
{
1, 𝜀−1, 𝛿

}
. Next, applying again [27, Lemma 2.27], but now to the fifth and sixth rows of equations (3.36)

and (5.1), and using that (cf. (3.25), see also [26, eqn. (95)])

‖𝐹𝝃 − 𝐹𝝃ℎ‖M′
2
= ‖𝐹𝝃−𝝃ℎ‖M′

2
≤ |Ω|(𝜌−𝑟)∕𝜌𝑟 ‖𝝃 − 𝝃ℎ‖ ,

we arrive at
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𝙴2 ≤ 𝐶2(𝙴) 
{
dist((𝝋, 𝜒),X2,ℎ ×M1,ℎ) + ‖𝝃 − 𝝃ℎ‖} , (5.13)

with a positive constant 𝐶2(𝙴) depending only on 𝜀, 𝛼d, 𝛽1,d, 𝛽2,d, |Ω|, 𝜌, and 𝑟. For the last two rows of (3.36) and (5.1), we employ 
the same Strang estimate from [27, Lemma 2.27] to conclude the existence of a positive constant 𝐶3(𝙴), depending only on 𝜶, ‖‖, ‖‖, and ‖‖ (cf. (3.33)), such that

𝙴3 ≤ 𝐶3(𝙴) 
2 ∑
𝑖=1 

{
dist((𝒕⃗𝑖, 𝜉𝑖),ℎ ×ℎ) + ‖𝒛,𝝋(⋅, 𝜉𝑖) − 𝒛ℎ,𝝋ℎ (⋅, 𝜉𝑖,ℎ)‖′

ℎ

+ ‖𝒛(𝜉𝑖, ⋅) −𝒛ℎ
(𝜉𝑖,ℎ, ⋅)‖′

ℎ

}
.

(5.14)

In turn, from the definitions of 𝒛,𝝋 and 𝒛 (cf. (3.32)), we readily get that

‖𝒛,𝝋(⋅, 𝜉𝑖) − 𝒛ℎ,𝝋ℎ (⋅, 𝜉𝑖,ℎ)‖′
ℎ
≤ ‖‖ {‖𝜉𝑖,ℎ‖0,𝜌;Ω (‖𝝋−𝝋ℎ‖𝑟,div𝑟;Ω + ‖𝒛− 𝒛ℎ‖0,𝑟;Ω)

+ 
(‖𝒛‖0,𝑟;Ω + ‖𝝋‖𝑟,div𝑟;Ω)‖𝜉𝑖 − 𝜉𝑖,ℎ‖0,𝜌;Ω} ,

and

‖𝒛(𝜉𝑖, ⋅) −𝒛ℎ
(𝜉𝑖,ℎ, ⋅)‖′

ℎ
≤ ‖‖ {‖div(𝒛)‖0,Ω ‖𝜉𝑖 − 𝜉𝑖,ℎ‖0,𝜌;Ω + ‖𝜉𝑖,ℎ‖0,𝜌;Ω ‖div(𝒛) − div(𝒛ℎ)‖0,Ω} ,

which, jointly with (5.14), imply

𝙴3 ≤ 𝐶3(𝙴) 
2 ∑
𝑖=1 

{
dist((𝒕⃗𝑖, 𝜉𝑖),ℎ ×ℎ) + ‖𝜉𝑖,ℎ‖ (‖𝝋−𝝋ℎ‖X2

+ ‖𝒛− 𝒛ℎ‖𝐗2

)
+ 
(‖𝒛‖𝐗2

+ ‖𝝋‖X2

)‖𝜉𝑖 − 𝜉𝑖,ℎ‖} , (5.15)

with a positive constant 𝐶3(𝙴) depending only on 𝐶3(𝙴), ‖‖, and ‖‖. Consequently, adding (5.12), (5.13), and (5.15), performing 
algebraic manipulations, and employing the bounds for ‖𝒛‖𝐗2

, ‖𝝋‖X2
, ‖𝝃‖, ‖𝝋ℎ‖X2

, and ‖𝜉𝑖,ℎ‖ provided by Theorems 4.10 and 
5.4, we deduce the existence of a positive constant 𝐶(𝙴), depending only on 𝐶𝐒, 𝐶𝐒̃, 𝐶𝐓, 𝐶𝐒,d, 𝐶𝐒̃,d, and 𝐶𝐓,d, and hence independent 
of ℎ, such that

𝙴 ≤ 𝐶(𝙴) 
{
dist((𝒖, 𝜃),𝐗ℎ ×𝐐ℎ) + dist((𝒛, 𝑝),𝐗2,ℎ ×𝐐1,ℎ)

+ dist((𝝋, 𝜒),X2,ℎ ×M1,ℎ) +
2 ∑
𝑖=1 

dist((𝒕⃗𝑖, 𝜉𝑖),ℎ ×ℎ)
}

+ 𝐶(𝙴) 
{‖𝒇‖0,Ω + ‖𝑔‖0,Ω + ‖𝜒𝙳‖1∕𝑠,𝑟;Γ + 2 ∑

𝑖=1 

(‖𝜉𝑖,𝙳‖1∕2,Γ + ‖𝑓𝑖‖0,𝜚;Ω)}𝙴 .
(5.16)

We summarize our findings with the next result, following straightforwardly from (5.16) and (5.17).

Theorem 5.5. In addition to the hypotheses of Theorems 4.10 and 5.4, assume that

𝐶(𝙴) 
{‖𝒇‖0,Ω + ‖𝑔‖0,Ω + ‖𝜒𝙳‖1∕𝑠,𝑟;Γ + 2 ∑

𝑖=1 

(‖𝜉𝑖,𝙳‖1∕2,Γ + ‖𝑓𝑖‖0,𝜚;Ω)} ≤ 1
2
. (5.17)

Then, letting 𝐶(𝙴) ∶= 2 𝐶(𝙴), there holds

𝙴 ≤ 𝐶(𝙴) 
{
dist((𝒖, 𝜃),𝐗ℎ ×𝐐ℎ) + dist((𝒛, 𝑝),𝐗2,ℎ ×𝐐1,ℎ)

+ dist((𝝋, 𝜒),X2,ℎ ×M1,ℎ) + 
2 ∑
𝑖=1 

dist((𝒕⃗𝑖, 𝜉𝑖),ℎ ×ℎ)
}
.

(5.18)

6. Specific finite element subspaces

In this section, we dfine specific finite element subspaces satisfying the conditions (H.1) - (H.8) introduced in Sections 5.3, 5.4, 
and 5.5, collect their respective approximation properties, and provide the associated rates of convergence of the resulting method.

6.1. Preliminaries

Given an integer 𝓁 ≥ 0 and 𝐾 ∈ ℎ, we let P𝓁(𝐾) (resp. P̃𝑘(𝐾)) be the space of polynomials of degree ≤ 𝑘 (resp. = 𝑘) dfined on 
𝐾 , and denote its vector version by 𝐏𝓁(𝐾). In addition, we let 𝐑𝐓𝓁(𝐾) = 𝐏𝓁(𝐾) + P̃𝓁(𝐾) 𝐱 be the local Raviart–Thomas space of 
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order 𝓁 dfined on 𝐾 , where 𝐱 stands for a generic vector in R𝑑 . In turn, we let P𝓁(ℎ), 𝐏𝓁(ℎ), and 𝐑𝐓𝓁(ℎ) be the corresponding 
global versions of P𝓁(𝐾), 𝐏𝓁(𝐾) and 𝐑𝐓𝓁(𝐾), respectively, that is

P𝓁(ℎ) ∶= 
{
𝜃ℎ ∈ L2(Ω) ∶ 𝜃ℎ|𝐾 ∈ P𝓁(𝐾) ∀ 𝐾 ∈ ℎ

}
,

𝐏𝓁(ℎ) ∶= 
{
𝒗ℎ ∈ 𝐋2(Ω) ∶ 𝒗ℎ|𝐾 ∈ 𝐏𝓁(𝐾) ∀ 𝐾 ∈ ℎ

}
, and

𝐑𝐓𝓁(ℎ) ∶= 
{
𝒒ℎ ∈𝐇(div;Ω) ∶ 𝒒ℎ|𝐾 ∈𝐑𝐓𝓁(𝐾) ∀ 𝐾 ∈ ℎ

}
.

For each 𝑡 ∈ (1, + ∞), the inclusions P𝓁(ℎ) ⊆ L𝑡(Ω), 𝐏𝓁(ℎ) ⊆ 𝐇1(Ω), 𝐑𝐓𝑘(ℎ) ⊆ 𝐇(div𝑡;Ω), 𝐑𝐓𝓁(ℎ) ⊆ 𝐇𝑡(div;Ω), and 𝐑𝐓𝓁(ℎ) ⊆
𝐇𝑡(div𝑡;Ω), are implicitly utilized below. Indeed, bearing in mind the notation from Section 5.1, and given an integer 𝑘 ≥ 0, we now 
dfine

𝐗ℎ ∶= 𝐏𝑘 + 2(ℎ) ∩𝐇1
0(Ω), 𝐐ℎ ∶= P𝑘 + 1(ℎ) ∩ (Ω) ,

𝐗2,ℎ ∶= 𝐑𝐓𝑘(ℎ) ∩𝐇𝑟
0(div;Ω) , 𝐗1,ℎ ∶= 𝐑𝐓𝑘(ℎ) ∩𝐇𝑠

0(div𝑠;Ω) ,

𝐐1,ℎ ∶= P𝑘(ℎ) ∩ L𝑟0(Ω) , 𝐐2,ℎ ∶= P𝑘(ℎ) ∩ L2
0(Ω) ,

X2,ℎ = X1,ℎ ∶= 𝐑𝐓𝑘(ℎ) , M1,ℎ = M2,ℎ ∶= P𝑘(ℎ) ,
1,ℎ ∶= 𝐏𝑘(ℎ) , 2,ℎ ∶= 𝐑𝐓𝑘(ℎ) , and ℎ ∶= P𝑘(ℎ) .

(6.1)

6.2. Verfication of the stability conditions

In what follows we verify that the spaces (6.1) satisfy (H.1) - (H.8). The inf-sup condition (H.1) for 
(
𝐗ℎ,𝐐ℎ

)
has been proved 

in [8] for the two and three-dimensional cases. In turn, the proof of (H.2) for 2D was established in [30, Lemma 4.3], thanks to 
the boundedness of the L2-type projector onto the discrete kernel of the bilinear forms 𝐝1 and 𝐝2. Whether this boundedness holds 
in 3D, remains still an open question up to the authors’ knowledge. As we will see in what follows, all other hypotheses hold in 
both dimensions. Regarding (H.3), the discrete inf-sup condition for 𝐝1 is available in [30, Lemma 4.4], whereas that for 𝐝2, which 
is stated next, is proved employing some results provided in [20, Appendix A]. We omit its proof here and refer for details to the 
preprint version of the present work (cf. [29, Lemma 6.1]).

Lemma 6.1. There exists a positive constant 𝛽2,d, independent of ℎ, such that

sup 
𝒛ℎ∈𝐗2,ℎ
𝒛ℎ≠𝟎

𝐝2(𝒛ℎ, 𝑞ℎ)‖𝒛ℎ‖𝐗2,ℎ

≥ 𝛽2,d ‖𝑞ℎ‖𝐐2,ℎ
∀ 𝑞ℎ ∈𝐐2,ℎ . (6.2)

For (H.4) we refer to [21, Lemma 5.2] (the preprint version of [20]). That proof follows analogously to that of [30, Lemma 4.3], 
with the exception that the operator is instead dfined as a slight modfication of the one derived in [20, Lemma 3.3]. In turn, the 
proofs of the discrete inf-sup conditions required by (H.5), which adapt the continuous analysis from [26, Lemma 4.4] to the present 
discrete setting, reduce basically to slight modfications of those of [30, Lemma 4.5] (or [20, Lemma 5.3]). On the other hand, we 
readily observe from (6.1) that div(2,ℎ) ⊆ℎ and 𝑉0,ℎ ⊆ 1,ℎ, which cofirms the verfication of (H.6) and (H.7). Finally, we 
notice that (H.8) is proved in [30, Lemma 4.5].

6.3. Rates of convergence

Here we provide the rates of convergence of the Galerkin schemes (5.1) with the specific finite element subspaces introduced in 
Section 6.1.

Theorem 6.2. Let ((𝒖, 𝜃), (𝒛, 𝑝)) ∈ (𝐗 ×𝐐) × (𝐗2 ×𝐐1), (𝝋, 𝜒) ∈ X2 × M1, and (𝒕⃗𝑖, 𝜉𝑖) ∈ ×, be the unique solution of (3.36), with 
(𝒛,𝝋) ∈ W(𝚁), and let ((𝒖ℎ, 𝜃ℎ), (𝒛ℎ, 𝑝ℎ)) ∈ (𝐗ℎ ×𝐐ℎ) × (𝐗2,ℎ ×𝐐1,ℎ), (𝝋ℎ, 𝜉ℎ) ∈ X2,ℎ ×M1,ℎ, and (𝒕⃗𝑖,ℎ, 𝜉𝑖,ℎ) ∈ℎ ×ℎ, be the unique 
solution of (5.1), with (𝒛ℎ,𝝋ℎ) ∈W(𝚁d), which is guaranteed by Theorems 4.10 and 5.4, respectively. Assume the hypotheses of Theorem 5.5, 
and that there exist 𝑠, 𝑙 ∈ [1, 𝑘 + 1], such that 𝒖 ∈𝐇𝑠+2(Ω), 𝜃 ∈H𝑠+1(Ω) 𝒛 ∈𝐖𝑙,𝑟(Ω), div(𝒛) ∈ H𝑙(Ω), 𝑝 ∈H𝑙(Ω), 𝝋 ∈𝐖𝑙,𝑟(Ω), div(𝝋) ∈
W𝑙,𝑟(Ω), 𝜒 ∈W𝑙,𝑟(Ω), 𝒕𝑖 ∈𝐇𝑙(Ω), 𝝈𝑖 ∈𝐇𝑙(Ω), div(𝝈𝑖) ∈ W𝑙,𝜚(Ω), and 𝜉𝑖 ∈W𝑙,𝜌(Ω), 𝑖 ∈ {1,2}. Then, there exists a positive constant 𝐶 , 
independent of ℎ, such that

𝙴 ≤ ℎmin{𝑠 + 1,𝑙}
{‖𝒖‖𝑠 + 2,Ω + ‖𝜃‖𝑠 + 1,Ω + ‖𝒛‖𝑙,𝑟;Ω + ‖div(𝒛)‖𝑙,Ω + ‖𝑝‖𝑙,𝑟;Ω + ‖𝝋‖𝑙,𝑟;Ω

+ ‖div(𝝋)‖𝑙,𝑟;Ω + ‖𝜒‖𝑙,𝑟;Ω + 
2 ∑
𝑖=1 

(‖𝒕𝑖‖𝑙,Ω + ‖𝝈𝑖‖𝑙,Ω + ‖div(𝝈𝑖)‖𝑙,𝜚;Ω + ‖𝜉𝑖‖𝑙,𝜌;Ω)} .
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Table 7.1

Example 1. Error history for the primal-mixed scheme in 2D, showing here the Biot, mixed Poisson, and PNP unknowns (while DoF refers to the total number of 
degrees of freedom). The last block of the table shows the total error (exactly the same for both Picard and Newton–Raphson schemes), experimental convergence 
rate, and number of nonlinear solver iterations required to reach the prescribed tolerance set to each approach.

Biot unknowns

DoF ℎ 𝑒(𝒖) 𝑟(𝒖) 𝑒(𝜃) 𝑟(𝜃) 𝑒(𝒛) 𝑟(𝒛) 𝑒(𝑝) 𝑟(𝑝)
155 0.7071 1.09e+0 ⋆ 9.75e-01 ⋆ 6.52e+0 ⋆ 3.54e-01 ⋆

605 0.3536 2.76e-01 1.983 2.26e-01 2.109 3.48e+0 0.907 1.60e-01 1.141

2393 0.1768 6.83e-02 2.014 5.56e-02 2.024 1.76e+0 0.979 7.78e-02 1.042

9521 0.0884 1.70e-02 2.008 1.41e-02 1.982 8.85e-01 0.995 3.86e-02 1.011

37985 0.0442 4.26e-03 1.994 3.70e-03 1.928 4.43e-01 0.999 1.93e-02 1.003

151745 0.0221 1.08e-03 1.976 1.02e-03 1.965 2.22e-01 1.000 9.63e-03 1.001

Mixed Poisson unknowns

DoF ℎ 𝑒(𝝋) 𝑟(𝝋) 𝑒(𝜒) 𝑟(𝜒)
155 0.7071 6.60e+0 ⋆ 2.79e-01 ⋆

605 0.3536 3.56e+0 0.890 1.51e-01 0.888

2393 0.1768 1.81e+0 0.978 7.66e-02 0.978

9521 0.0884 9.08e-01 0.994 3.85e-02 0.994

37985 0.0442 4.54e-01 0.999 1.93e-02 0.999

151745 0.0221 2.27e-01 1.000 9.63e-03 1.000

Nernst–Planck unknowns

DoF ℎ 𝑒(𝒕1) 𝑟(𝒕1) 𝑒(𝒕2) 𝑟(𝒕2) 𝑒(𝝈1) 𝑟(𝝈1) 𝑒(𝝈2) 𝑟(𝝈2) 𝑒(𝜉1) 𝑟(𝜉1) 𝑒(𝜉2) 𝑟(𝜉2)
155 0.7071 1.54e+0 ⋆ 1.38e+0 ⋆ 1.17e+1 ⋆ 1.03e+1 ⋆ 4.21e-01 ⋆ 3.56e-01 ⋆

605 0.3536 7.65e-01 1.012 7.83e-01 0.812 5.33e+0 1.134 6.53e+0 0.659 2.18e-01 0.950 2.13e-01 0.741

2393 0.1768 3.84e-01 0.995 3.91e-01 1.002 2.65e+0 1.009 3.24e+0 1.010 1.09e-01 0.994 1.09e-01 0.969

9521 0.0884 1.92e-01 0.998 1.95e-01 1.001 1.32e+0 1.001 1.63e+0 0.991 5.48e-02 0.998 5.47e-02 0.992

37985 0.0442 9.62e-02 0.999 9.77e-02 1.000 6.62e-01 1.000 8.16e-01 1.000 2.74e-02 0.999 2.74e-02 0.998

151745 0.0221 4.81e-02 1.000 4.88e-02 1.000 3.31e-01 1.000 4.08e-01 1.000 1.37e-02 1.000 1.37e-02 0.999

Total error and nonlinear solver iteration count

DoF ℎ 𝑒total 𝑟total 𝚒𝚝Newton 𝚒𝚝Picard
155 0.7071 6.08e+1 ⋆ 4 10

605 0.3536 3.04e+1 0.996 5 12

2393 0.1768 1.54e+1 0.995 4 13

9521 0.0884 7.65e+0 1.016 4 14

37985 0.0442 3.82e+0 1.003 4 14

151745 0.0221 1.91e+0 1.000 4 14

Proof. It follows directly from the (5.18), properties of the Raviart–Thomas interpolator (see, e.g., [30, Section 4.1, eqs. (4.6) and 
(4.7)] and [20, Appendix A]), the scalar and vector L2-type projector onto piecewise polynomials ([27, Proposition 1.135]), and 
interpolation estimates of Sobolev spaces. □

7. Numerical tests

For the computational results that verify the error estimates from Section 6 we employ the open source finite element library 
GridapDistributed [5]. We solve numerically the coupled systems using two approaches: a) separating the coupled problem 
by fixed-point iterations between three subproblems, and b) solving the nonlinear algebraic system (5.1) with Newton–Raphson’s 
method with exact Jacobian. For the Picard fixed-point scheme we set a tolerance of 10−8 on the norm of the incremental solutions 
(monitoring only the coupling variables 𝒛,𝝋, 𝒕𝑖, 𝜉𝑖), whereas for the Newton method we set a tolerance of 10−8 on either the 𝓁∞

norm of the nonlinear residual or the 𝓁2-norm of the incremental solution vector. All resulting linear systems are solved with the 
unsymmetric multifrontal direct method for sparse matrices UMFPACK.

Remark. Following the approach in [15, Section 5.2], the convergence of a Newton–Raphson method for (5.1) can be established 
using the Kantorovich Theorem (cf. [4, Theorem 5]). The arguments use again data smallness assumptions similarly to Theorem 5.4. 
Further details are presented in Appendix 6.2.

Example 1. We carry out the error history associated with the family of discretizations specfied in Section 6.1, using the lowest order 
polynomial degree (additional tests conducted with higher polynomial degrees, and using the Stokes inf-sup pair 𝐏𝑘+2 − P0 elements 
for displacement and total pressure, Brezzi–Douglas--Marini elements for the Darcy flux, electric field and ionic fluxes, not shown 
here, showed the same qualitative behavior as the one reported here). We take the unit square and unit cube domains Ω = (0,1)𝑑
(𝑑 = 2,3), with unity model parameters. The Lebesgue exponents in (3.5) are chosen as 𝑟 = 3, 𝑠 = 3

2 , 𝜌 = 6, 𝜚 = 6
5 (and they are valid 

for both 2D and 3D cases). We manufacture the right-hand side and non-homogeneous boundary data 𝒇 , 𝑔, 𝑓𝑖, 𝜒𝙳, 𝜉𝑖,𝙳 in such a way 
that the governing equations have the following smooth exact solutions to the primal strong form (2.1)-(2.3)
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Fig. 7.1. Error history for the primal-mixed scheme in 3D, showing the convergence of all individual errors for the Biot, mixed Poisson, and Nernst–Planck sub-systems 
(left, center, and right panels, respectively).

in 2D: 
⎧⎪⎨⎪⎩
𝒖ex(𝑥, 𝑦) =

(
sin(𝜋[𝑥 + 𝑦])

cos(𝜋[𝑥2 + 𝑦2])

)
, 𝑝ex(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦), 𝜒ex(𝑥, 𝑦) = cos(𝜋𝑥) cos(𝜋𝑦),

𝜉1,ex(𝑥, 𝑦) = cos(𝜋[𝑥 + 𝑦]), 𝜉2,ex(𝑥, 𝑦) = sin(𝜋[𝑥 + 𝑦]),

in 3D: 

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝒖ex(𝑥, 𝑦, 𝑧) =
⎛⎜⎜⎜⎝

sin(𝜋[𝑥 + 𝑦 + 𝑧])
cos(𝜋[𝑥2 + 𝑦2 + 𝑧2])
cos(𝜋[𝑥 + 𝑦 + 𝑧])

⎞⎟⎟⎟⎠ , 𝑝ex(𝑥, 𝑦, 𝑧) = sin(𝜋𝑥) sin(𝜋𝑦) sin(𝜋𝑧),

𝜒ex(𝑥, 𝑦, 𝑧) = cos(𝜋𝑥) cos(𝜋𝑦) cos(𝜋𝑧), 𝜉1,ex(𝑥, 𝑦, 𝑧) = cos(𝜋[𝑥 + 𝑦 + 𝑧]),
𝜉2,ex(𝑥, 𝑦, 𝑧) = sin(𝜋[𝑥 + 𝑦 + 𝑧]),

and the exact values of the mixed variables are assigned from the primal ones as

𝜃ex = 𝛼 𝑝ex − 𝜆 div𝒖ex, 𝒛ex = −𝜅
𝜈
∇𝑝ex, 𝝋ex = 𝜀∇𝜒ex, 𝒕𝑖 =∇𝜉𝑖,ex,

𝝈𝑖,ex = 𝜅𝑖∇𝜉𝑖,ex + 𝑞𝑖 𝜅𝑖∇𝜒ex + 𝜅
𝜈
𝜉𝑖,ex∇𝑝ex.

For the convergence tests we use (possibly non-homogeneous) Dirichlet boundary conditions (2.8)-(2.9). We construct a sequence 
of six successively rfined structured grids 𝑙 = 0,1,… of maximum mesh size ℎ𝑙 = 2−𝑙

√
2 (in 2D) on which we generate approximate 

solutions, and we compute errors for each unknown 𝑒𝑙(⋅) and experimental orders of convergence

𝑟𝑙 + 1(⋅) = log(𝑒𝑙 + 1(⋅)∕𝑒𝑙(⋅))[log(ℎ𝑙 + 1∕ℎ𝑙)]−1, 𝑙 = 0,1,…

Table 7.1 portrays the error history in 2D (we break it into Biot, mixed Poisson, and Nernst–Planck unknowns), from which we can 
readily cofirm a convergence of 𝑂(ℎ𝑘+2) for the Biot unknowns and 𝑂(ℎ𝑘 + 1) for all remaining field variables. The symbol ⋆ in 
the first rfinement level indicates that no convergence rate is computed. For every mesh rfinement and polynomial degree, the 
Newton–Raphson (resp. Picard) algorithm has taken around four (resp. fourteen) iterations to achieve the desired converge criterion. 
Both cases produce the same individual errors. We can also observe that the error associated with the Raviart–Thomas vector fields 
of Darcy flux, electric field, and ionic fluxes (𝒛,𝝋,𝝈𝑖) are slightly higher than that in the remaining unknowns. Convergence results 
are also optimal in the 3D case, which we report in Fig. 7.1 for the second-order method (using again Taylor–Hood elements for 
displacement-total pressure pair), where we see agreement with Theorem 6.2. Sample approximate solutions are depicted in Fig. 7.2.

Example 2. After the numerical verfication of optimal convergence rates we address the simulation of electrochemically coupled 
poroelasticity in radially uncofined compression. This type of tests are typical in poromechanics [3,19,42], and have also been used 
for coupling with PNP equations in [39,46,50] (where that model includes additional mechanical nonlinearities). The domain is the 
2D cut of a disk of cartilage tissue cofined between two impermeable rigid plates, giving Ω = (0,1.5) × (0,0.5) mm2. Differently 
than in the previous example, here we employ mixed boundary conditions (which were not analyzed in the paper) since this is the 
cofiguration usually employed in poroelastic benchmarks. On the radial surface (the right edge of the 2D domain) we set zero fluid 
pressure, zero electrostatic potential, prescribe the potential and ionic concentrations, as well as zero normal total stress. This allows 
free flow of fluid and current along that boundary. On the left edge we impose zero normal displacement, zero tangential total stress, 
and zero ionic fluxes and electric field. On the bottom plate we set zero normal displacement, zero tangential stress, and zero fluxes, 
whereas on the top plate we prescribe a given normal traction 𝝈𝒏 = (0,−𝑀)𝚝 with 𝑀 = 0.1 N/mm2, together with zero fluxes. 
The model parameters are as follows 𝐸Y = 0.5 N/mm2, 𝜈P = 0.1 (Young modulus and Poisson ratio), 𝜅 = 10−9 mm2 (permeability), 
𝜅1 = 1.28 × 10−2 mm2/s, 𝜅1 = 1.77 × 10−2 mm2/s (ionic diffusivities), 𝛼 = 0.8 (Biot–Willis coefficient), 𝑐0 = 4 × 10−4 1/(N/mm2) 
(storativity), 𝜈 = 10−4 N/mm2 s (fluid viscosity). As outputs, in Fig. 7.3 we report on the total stress tensor magnitude, cation and 
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Fig. 7.2. Example 1. Sample of approximate solutions for the convergence test in 3D. 

Fig. 7.3. Example 2. Uncofined compression of poroelastic material between impermeable plates. Sample of approximate solutions (displacement, Darcy flux, fluid 
pressure, electrostatic potential, cation and anion fluxes, and cation and anion concentration shown on the deformed cofiguration).

anion fluxes, and electric field. All quantities are plotted on the deformed domain. We see the typical deformation of the rightmost 
part of the domain and the Darcy flux moving in the horizontal direction. For this test we have used the second-order scheme (setting 
𝑘 = 1).

Example 3. Finally, we simulate the ion spreading and the poromechanical response of a fully saturated deformable porous structure. 
For this we adapt the cofiguration in [25] and [40, Section 5.2] to the poroelastic regime and use the domain Ω= (0,1)×(0,2), which 
we discretize into a structured mesh of 10’000 triangles. The boundary conditions are as follows: for the solid phase we set clamped 
conditions 𝒖 = 𝟎 on the left boundary (𝑥 = 0) for the fluid phase we impose slip conditions 𝒛 ⋅ 𝒏 = 0 everywhere on the boundary. 
For the chemical species we assume that the normal trace of the total fluxes is zero everywhere on the boundary 𝝈𝑖 ⋅ 𝒏 = 0 (that is, 
the boundary is considered impenetrable for the ionic quantities), which is imposed essentially. For the electrostatic sub-system we 
consider two separate sub-boundaries: on the top segment (𝑦 = 2) we prescribe a given potential 𝜒0 (representing a ground condition, 
imposed naturally), on the vertical walls of the reservoir we set zero normal trace of the electric field 𝝋 ⋅ 𝒏 = 0, and the bottom 
segment is regarded as a positively charged surface 𝝋 ⋅ 𝒏 = 𝑠𝐸 (the two last conditions are imposed essentially).

Note that just for this test, the drag due to electric field and concentration difference is considered as a right-hand side of the 
Darcy momentum equation. Also, for this test we consider the time-dependent version of the equations and so we include the term 

Computers and Mathematics with Applications 186 (2025) 53–83 

78 



G.N. Gatica, C. Inzunza and R. Ruiz-Baier 

Fig. 7.4. Example 3. Ion spreading in a charged deformable cell. Sample of approximate solutions at times 𝑡= 0.1,0.4,0.8,2 (from left to right). We display the Darcy 
flux, electrostatic potential, and relative concentration on the deformed cofiguration.

1 
Δ𝑡

𝛼

𝜆 (𝜃
𝑚 + 1 − 𝜃𝑚) − 1 

Δ𝑡 (𝑐0 + 𝛼2

𝜆 )(𝑐
𝑚 + 1 − 𝑐𝑚) in the mass conservation equation and the terms − 1 

Δ𝑡 (𝜉
𝑚 + 1
1 − 𝜉𝑚1 ) −

1 
Δ𝑡 (𝜉

𝑚 + 1
2 − 𝜉𝑚2 ) in the 

two ion conservation equations, where the superscripts 𝑚,𝑚 + 1 denote approximations at time instants 𝑡𝑚, 𝑡𝑚 + 1 using backward 
Euler’s method. For this we take a constant time step Δ𝑡 = 0.01 and run the system until the final time 𝑡 = 2. The initial pressure and 
total pressure are zero and the initial concentrations of positively and negatively charged particles are as follows

𝜉𝑖,0(𝒙) =
𝜉0

2𝜋𝑅2 exp
{
−
(𝑥− 1

2 + 𝑞𝑖8 )
2 + (𝑦− 1 + 𝑞𝑖2 )

2

2𝑅2

}
,

and the remaining parameters adopt the values (all adimensional) 𝑐0 = 0.01, 𝛼 = 0.9, 𝜇 = 10, 𝜆 = 1000, 𝜀 = 0.5, 𝜈 = 0.08, 𝜅1 = 𝜅2 =
0.01, 𝑠𝐸 = 1, 𝜒0 = 0, 𝜉0 = 3, 𝑅= 1

4 .

Snapshots of the approximate solutions, computed using the lowest order method, and taken at four time instants are shown in 
Fig. 7.4. We plot the net charge (difference between concentrations of ionic concentrations), the line integral convolution of the 
relative fluid velocity, and the electrostatic potential.

We end this section by mentioning that the numerical experiments included data that we could not guarantee will satisfy the 
hypotheses on small data (for either the Banach fixed-point or Newton-Kantorovich arguments). Nevertheless we do observe optimal 
convergence in all cases. A more general theory for large data would be desirable such as Leray-Schauder schemes with homotopy 
arguments or weak compactness arguments and passage to the limit, but they unfortunately do not fit the present framework in 
general Banach spaces.
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Appendix A. Newton’s method

In this appendix, we dfine a Newton’s method to solve the discrete scheme (5.1). To guarantee the convergence of this method, 
we establish sufficient conditions on the problem data and invoke the Kantorovich Theorem (cf. [4, Theorem 5]), following [15, 
Section 5.2]. Let 𝑋 and 𝑌 be two Banach spaces, and let 𝑥0 ∈𝑋. Additionally, dfine the bounded sets

𝐵𝑅 ∶= 
{
𝑥 ∈𝑋 ∶ ‖𝑥− 𝑥0‖𝑋 < 𝑅 

}
and 𝐵𝑟 ∶= 

{
𝑥 ∈𝑋 ∶ ‖𝑥− 𝑥0‖𝑋 < 𝑟 

}
,

where 𝑅 and 𝑟 are positive constants satisfying 0 < 𝑟 < 𝑅. Assume that 𝐵𝑅 contains a zero of an operator 𝑃 ∶ 𝐵𝑅 ⊂𝑋→ 𝑌 and that 
𝑃 has a continuous derivative in 𝐵𝑅.

Theorem A.1 (Kantorovich). Let 𝑃 be dfined on 𝐵𝑅 ⊂𝑋 with continuous second derivative in 𝐵𝑟. Moreover assume that

𝑖) the continuous linear operator [𝑃 ′(𝑥0)]−1 exists,

𝑖𝑖) there exists a constant 𝐾1 > 0 such that ‖[𝑃 ′(𝑥0)]−1](𝑃 (𝑥0))‖ ≤ 𝐾1,

𝑖𝑖𝑖) there exists a constant 𝐾2 > 0 such that ‖[𝑃 ′(𝑥0)]−1 𝑃 ′′(𝑥)‖ ≤ 𝐾2, for all 𝑥 ∈ 𝐵𝑟.

If 𝐾3 = 𝐾1𝐾2 ≤ 1
2 , and the radius 𝑟 of 𝐵𝑟 satifies

𝑟 ≥ 𝑟0 ∶= 
1 −
√
1 − 2𝐾3
𝐾3

𝐾1 , (A.1)

then there exists a zero 𝑥∗ of 𝑃 to which Newton’s iteration converges. And in this case, ‖𝑥− 𝑥∗‖𝑋 ≤ 𝑟0. Furthermore, if for 𝐾3 < 1∕2,

𝑟 < 𝑟1 ∶= 
1 −
√
1 − 2𝐾3
𝐾3

𝐾1 , (A.2)

or for 𝐾3 = 1∕2, 𝑟 ≤ 𝑟1, then the solution 𝑥∗ is unique in the set 𝐵𝑟, and the rate of convergence is

‖𝑥∗ − 𝑥𝑚‖𝑋 ≤ 1 
2𝑚

(2𝐾3)2
𝑚 𝐾1
𝐾3

, 𝑚 ≥ 0 .

Now we present Newton’s method associated with (5.1). For simplicity of notation, we focus on the continuous case (3.36) (the 
same analysis directly applies to the discrete setting). First we set

𝒖 ∶= (𝒖⃗, (𝝋, 𝜒), (𝒕⃗1, 𝜉1), (𝒕⃗2, 𝜉2)) ∈𝐇 ∶= 𝕏 × (X2 ×M1) × ( ×) × ( ×) ,
𝒗 ∶= (𝒗⃗, (𝝍 , 𝛾), (𝒔⃗1, 𝜂1), (𝒔⃗2, 𝜂2)) ∈𝐌 ∶= ℚ× (X1 ×M2) × ( ×) × ( ×) .

Next, given 𝒖0 ∈𝐇, we introduce the linear operator 𝒩(𝒖0, ⋅) ∶𝐇→𝐌′, dfined as

𝒩(𝒖0,𝒖)(𝒗) ∶= 𝒜(𝒖,𝒗) +𝒞(𝒖0;𝒖,𝒗) ∀ (𝒖,𝒗) ∈𝐇 ×𝐌 ,

where the bilinear form 𝒜 ∶𝐇×𝐌→ R is dfined as the sum of each bilinear form in the left-hand side of (3.36). Furthermore, given 
𝒖0 ∈𝐇, the bilinear form 𝒞(𝒖0, ⋅, ⋅) ∶𝐇 ×𝐌→ R is dfined as

𝒞(𝒖0;𝒖,𝒗) ∶= 𝜀−1 ∫
Ω 

(𝜉1 − 𝜉2)𝝋0 ⋅ 𝒗+
2 ∑
𝑖=1 

(𝒛0 (𝜉𝑖, 𝜂𝑖) + 𝒛0 ,𝝋0 (𝒔⃗𝑖, 𝜉𝑖)
)

∀ (𝒖,𝒗) ∈𝐇 ×𝐌 .

Additionally, given 𝒖0 ∈𝐇, we dfine the functional ℱ𝒖0 ∈𝐌′ as

ℱ𝒖0 (𝒗) ∶= ∫
Ω 
𝒇 ⋅ 𝒗− 𝛿 ∫

Ω 
(𝒕01 − 𝒕

0
2) ⋅ 𝒗+𝐆(𝑞) +𝐺(𝝍) + 𝐹

𝝃0 (𝛾) +
2 ∑
𝑖=1 

((𝒔⃗𝑖) + (𝜂𝑖) 
)

∀ 𝒗 ∈𝐌 .

Note that the second and fourth terms in the definition of ℱ𝒖0 is crucial for the forthcoming analysis in establishing the bijectivity of 
𝒜. Given 𝒖0 ∈𝐇, defining the nonlinear operator 𝒫𝒖0 ∶𝐇→𝐌′ as

𝒫𝒖0 (𝒖) ∶= 𝒩(𝒖,𝒖) −ℱ𝒖0 ∀ 𝒖 ∈𝐇′ ,

we notice that 𝒖 ∈𝐇 is the unique solution of (3.36), if and only if 𝒫𝒖(𝒖) = 𝟎 ∈𝐌′. After simple manipulations, we obtain that the 
Gâteaux derivative of 𝒫𝒖0 , 𝒫′ ∶𝐇→ (𝐇,𝐌′) is

(𝒫′(𝒖0)(𝒖))(𝒗) ∶= 𝒜(𝒖,𝒗) +𝒞(𝒖;𝒖0,𝒗) +𝒞(𝒖0;𝒖,𝒗) ∀ (𝒖0,𝒖,𝒗) ∈𝐇 ×𝐇 ×𝐌 ,

where (𝐇,𝐌′) is the set of linear and bounded operators from 𝐇 to 𝐌′.
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According to the above, Newton’s method reads: Given 𝒖0 ∈𝐇, for 𝑚 ≥ 0, find 𝒖𝑚+1 ∈𝐇 such that

(𝒫′(𝒖𝑚)(𝒖𝑚+1 − 𝒖𝑚))(𝒗) = 𝒫𝒖𝑚 (𝒖𝑚)(𝒗) ∀ 𝒗 ∈𝐌 . (A.3)

Theorem A.2. Assume that, besides (4.18), the data satisfy

𝐶 
{‖𝐟‖0,Ω + ‖𝑔‖0,Ω + ‖𝜒D‖1∕𝑠,𝑟;Γ + 2 ∑

𝑖=1 

(‖𝜉𝑖,D‖1∕2;Γ + ‖𝑓𝑖‖0,𝜚;Ω)} < 1
2
, (A.4)

where 𝐶 is a positive constant to be specfied below. Then, for the initial guess 𝒖0 = 𝟎, the sequence {𝒖𝑚}𝑚∈ℕ computed by (A.3) converges 
to a unique solution 𝒖∈ 𝐵𝑟 ∶=

{
𝒗 ∈𝐇 ∶ ‖𝒗‖𝐇 ≤ 𝑟}, where 𝑟 satifies (A.1) and (A.2). In addition,

‖𝒖− 𝒖𝑚‖𝐇 ≤ 1 
2𝑚

(2𝐾3)2
𝑚 𝐾1
𝐾3

, 𝑚 ≥ 0 .

Proof. We proceed to verify the hypotheses of Theorem A.1. Considering 𝒖0 = 𝟎, it is easy to see that there exists a positive constant 
𝐶 , depending on 1, 𝑐𝑟, and ‖𝑖𝜌‖ (cf. (3.26) and (3.33)), such that

‖𝒫𝒖0 (𝒖0)‖𝐌′ ≤ 𝐶
{‖𝐟‖0,Ω + ‖𝑔‖0,Ω + ‖𝜒D‖1∕𝑠,𝑟;Γ + 2 ∑

𝑖=1 

(‖𝜉𝑖,D‖1∕2;Γ + ‖𝑓𝑖‖0,𝜚;Ω)} . (A.5)

Next, we note that the bilinear forms 𝑎, 𝑏1 and 𝑏2 (cf. Section 3.3), satisfy the hypotheses of [7, Theorem 2.1, Section 2.1] (cf. [26, 
Lemmas 4.3 and 4.4]) with constants 𝛼, 𝛽1, and 𝛽2. Thus, there exists 𝜶, depending on these constants, as well as ‖𝑎‖, ‖𝑏1‖, and ‖𝑏2‖, such that

sup 
(𝝋,𝜒)∈X2×M1

(𝝋,𝜒)≠𝟎

𝑎(𝝋,𝝍) + 𝑏1(𝝍 , 𝜒) + 𝑏2(𝝋, 𝛾)‖(𝝋, 𝜒)‖X2×M1

≥ 𝜶‖(𝝍 , 𝛾)‖X1×M2
∀ (𝝍 , 𝛾) ∈ X1 ×M2 , and

sup 
(𝝍 ,𝛾)∈X1×M2

(𝝍 ,𝛾)≠𝟎

𝑎(𝝋,𝝍) + 𝑏1(𝝍 , 𝜒) + 𝑏2(𝝋, 𝛾)‖(𝝍 , 𝛾)‖X1×M2

≥ 𝜶‖(𝝋, 𝜒)‖X2×M1
∀ (𝝋, 𝜒) ∈ X2 ×M1 .

In consequence, observing that 𝒫′(𝒖0)(𝒖)(𝒗) = 𝒜(𝒖,𝒗), and using previous inf-sup conditions, as well as (4.9a)-(4.9b) and 
(4.29a)-(4.29b), we can state the following

sup 
𝒖∈𝐇⧵{𝟎}

𝒜(𝒖,𝒗)‖𝒖‖𝐇 ≥ 𝛼𝒜‖𝒗‖𝐌 ∀ 𝒗 ∈𝐌 , and sup 
𝒗∈𝐐⧵{𝟎}

𝒜(𝒖,𝒗)‖𝒗‖𝐌 ≥ 𝛼𝒜‖𝒖‖𝐇 ∀ 𝒖 ∈𝐇 , (A.6)

where 𝛼𝒜 ∶= 1
3 (𝜶𝐀 + 𝜶 + 𝜶). Then, (A.6) implies that 𝒫′(𝒖0) ∶𝐇→𝐌′ is bijective operator. Hence, 𝑖) is established, that is, there 

exists [𝒫′(𝒖0)]−1 and

‖[𝒫′(𝒖0)]−1‖(𝐌′ ,𝐇) ≤ 1 
𝛼𝒜

. (A.7)

Thus, thanks to (A.5) and (A.7), 𝑖𝑖) is satified with

𝐾1 ∶= 𝐶
𝛼𝒜

{‖𝐟‖0,Ω + ‖𝑔‖0,Ω + ‖𝜒D‖1∕𝑠,𝑟;Γ + 2 ∑
𝑖=1 

(‖𝜉𝑖,D‖1∕2;Γ + ‖𝑓𝑖‖0,𝜚;Ω)} .
Furthermore, since the second derivative of 𝒫𝒖0 is given by

(𝒫′′(𝒖̃)(𝒖))(𝒘)(𝒗) = 𝒞(𝒘;𝒖,𝒗) +𝒞(𝒖;𝒘,𝒗) ∀ ̃𝒖 ,𝒖 ,𝒘 ∈𝐇 , ∀ 𝒗 ∈𝐌 ,

it is straightforward to show that

‖𝒫′′(𝒖̃)‖(𝐇,(𝐇,𝐌′)) ≤ 2max
{
𝜀−1,‖‖,‖‖} .

Thus, defining 𝐾2 ∶=
2 
𝛼𝒜

max{𝜀−1,‖‖,‖‖}, we conclude 𝑖𝑖𝑖). Hence, having verfied the hypothesis of Theorem A.1, and assuming 

(A.4) with 𝐶 ∶= 𝐶

𝛼𝒜
𝐾2, the proof is complete. □

Data availability

Data will be made available on request.
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