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Abstract: In this paper we consider Banach spaces-based fully-mixed variational formulations recently pro-
posed for the Boussinesq and the Oberbeck–Boussinesq models, and develop reliable and efficient residual-
based a posteriori error estimators for the 2D and 3D versions of the associatedmixed finite element schemes.
For the reliability analysis,we employ the global inf-sup condition for each sub-model, namelyNavier–Stokes
and heat equations in the case of Boussinesq, along with suitable Helmholtz decomposition in nonstandard
Banach spaces, the approximation properties of the Raviart–Thomas and Clément interpolants, further regu-
larity on the continuous solutions, and small data assumptions. In turn, the efficiency estimates follow from
inverse inequalities and the localization technique through bubble functions in adequately defined local Lp

spaces. Finally, several numerical results including natural convection in 3D differentially heated enclosures,
are reported with the aim of confirming the theoretical properties of the estimators and illustrating the per-
formance of the associated adaptive algorithm.

Keywords: Boussinesq–Oberbeck flows, Navier–Stokes equations, heat and mass transfer, fully-mixed finite
element methods, a posteriori error analysis

Classification: 65N30, 65N12, 65N15, 35Q79, 80A20, 76R05, 76D07

1 Introduction

1.1 Scope

Wehave recently introduced in [17] and [18] new fully-mixed finite elementmethods for the stationary Boussi-
nesq and Oberbeck–Boussinesq problems in Rn, n ∈ {2, 3}, with temperature-dependent viscosities. The first
model deals with the fluid motion generated by density differences due to temperature gradients, and it con-
sists of the Navier–Stokes equations with a buoyancy term depending on the temperature, coupled to the
heat equation with a convective term depending on the velocity of the fluid. The second one refers to natural
convection in porous media when temperature and concentration differences occur simultaneously, and it
is described by the incompressible Navier–Stokes/Brinkman equations nonlinearly coupled, via convective
mass and heat transfer, to advection–diffusion equations for solute’s concentration and temperature.

The approach in [17] adapts an idea previously applied to the Navier–Stokes equations only (see, e.g., [19,
35]), where in addition to the velocity gradient, it introduces the Bernoulli stress (a part of the usual Cauchy
stress whose divergence defines the momentum balance). The novelty in [17] consists in applying the very
same idea to the energy equation. Instead of using classical primal, or dual-mixed methods, the tempera-
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ture gradient and a vector-counterpart of the Bernoulli tensor are the new unknowns in the modified mixed
formulation.As a consequence one eliminates thepressure (to later recover it via postprocessing) and the con-
tinuous formulation does not need augmentation terms as in, e.g., [14]. In this way, a Banach spaces-based
variational formulation, showing exactly the same saddle-point structure in the flow and energy equations,
is obtained, and hence the corresponding continuous and discrete analyses can be performed separately and
very much in the same way for both sub-problems, which constitute appealing features from the theoretical
and computational points of view. Possible finite element families include Raviart–Thomas spaces of order
k ⩾ n−1 for the Bernoulli tensor and its vector version, and piecewise polynomials of degree ⩽ k for velocity,
temperature, and both gradients.

In general, the use of a Banach spaces framework to analyze continuous and discrete formulations
presents at least two important advantages. On one hand, it avoids the introduction of augmented formula-
tions that increase the complexity of the problem. In fact, while the latter technique has shown to be very
useful for the solvability analysis of a large class of nonlinear and coupled models posed in Hilbert spaces,
in particular allowing corresponding Galerkin schemes with arbitrary finite element subspaces, it is no less
true that the incorporation of further terms into the formulation, and the consequent extra computations that
are required to set up the associated stiffness matrix and load vector, may lead to more expensive discrete
systems. On the other hand, the spaces to which the unknowns belong arise naturally from Cauchy–Schwarz
and Hölder inequalities when controlling diverse terms in the variational formulation. This approach yields
formulations that are somewhat simpler and closer to the original physical model.

The theory from [17] was extended in [18] to the case of the Oberbeck–Boussinesq equations. There, be-
sides the usual unknowns one has the temperature gradient, the concentration gradient, and a nonlinear flux
combining advective and diffusive heat and concentration fluxes. Similarly as in [17], the weak formulation
shows again a saddle-point structure on Banach spaces in both the Navier–Stokes/Brinkman and the thermal
energy conservation equations. Consequently, the tools employed in [17], which include basically the Banach
and Brouwer fixed-point theorems, along with the respective Babuška–Brezzi theory, are also utilized here
for the continuous and discrete analyses. In this way, the same finite element subspaces from [17] can be used
to obtain well-posed Galerkin schemes. Of note, while the approach employed in [17] and [18] could in prin-
ciple seem very costly in terms of degrees of freedom, we stress that the increase in the number of unknowns
is necessary to provide direct approximations to several other variables of physical interest as well (all them
mentioned in the previous paragraphs). Moreover, they holdwith the same rate of convergence of the remain-
ing unknowns, whereas if one wanted to approximate those further variables by using only the velocity and
pressure of the fluid, and the temperature or concentrations, then one would need to apply numerical differ-
entiation formulae, which, aswe know, lead to losses of accuracy of the respective computations. In addition,
themethods aremomentum and thermal energy conservative. These aspects are explored numerically in this
paper. Further related contributions dealing with Banach spaces-based variational formulations have been
addressed also in, e.g., [13, 27, 32] (see also the references therein).

Adaptive algorithms based on a posteriori error estimators are usually employed to recover optimal rates
of convergence of finite element and mixed finite element methods that lose accuracy in highly nonlinear
models or under the presence of singularities. In these cases, quasi uniform refinement quickly exhausts
the computational capacity without obtaining satisfactory approximations of the solutions. A posteriori er-
ror analyses for Banach spaces-based mixed finite element methods are relatively recent. These include [12,
15]. In particular, the usual techniques employed within the Hilbertian framework are extended in [12] to
the case of Banach spaces by deriving a reliable and efficient a posteriori error estimator for the steady-
state Navier–Stokes problem. The above includes corresponding local estimates and new Helmholtz decom-
positions for the reliability, as well as respective inverse inequalities and local estimates of bubble func-
tions for the efficiency. In turn, similar tools to those employed in [12] were previously applied in [15] to
develop a residual-based a posteriori error analysis of primal-mixed finite element methods for the Navier–
Stokes/Darcy–Forchheimer coupled problem. The amount of references is certainly much larger for Hilbert
spaces-based variational formulations. Contributions addressing a posteriori error estimates for related prob-
lems as those studied herein can be found in [3–8, 11, 14, 20, 23, 25, 27, 36].
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According to the above discussion, a main objective of this paper is, proceeding similarly to [12, 15], to
derive reliable and efficient residual-based a posteriori error estimators in 2D and 3D for the fully-mixed finite
element methods introduced in [17, 18]. Up to our knowledge, the present work provides the first a posteri-
ori error analyses of non-augmented Banach spaces-based mixed finite element methods for the stationary
Boussinesq and Oberbeck–Boussinesq systems. It is highlighted that the techniques to be developed here are
not limited to the Boussinesq models. Indeed, in addition to the aforementioned works dealing with Navier–
Stokes and Darcy–Forchheimer equations in which suitable modifications of them have been successfully
applied, we announce in advance that the theory can be adapted to derive a posteriori error estimates of re-
lated models such as the coupled Brinkman–Forchheimer and double-diffusion equations studied in [13].
This subject constitutes undergoing work to be communicated in a forthcoming contribution.

The rest of the paper is organized as follows. In the remainder of this sectionwe introduce some notations
and definitions to be employed throughout the text. In Section 2 we recall from [17] the Boussinesq model, its
fully-mixed variational formulation, and the associated mixed finite element scheme. Next, in Section 3 we
derive in full details a reliable and efficient residual-based a posteriori error estimator for the 2D Boussinesq
equations. We state preliminary results to be utilized in the reliability and efficiency analysis, and present in
detail the proofs. Then, in Section 4 we establish the 3D version of the a posteriori error estimator provided in
Section 3. In turn, the extension of the main results from Sections 3 and 4 to the Oberbeck–Boussinesq equa-
tions are summarized in Section 5. Finally, several numerical results illustrating the reliability and efficiency
of the a posteriori error estimators, as well as the good performance of the adaptive algorithms induced by
them, and confirming the recovery of optimal rates of convergence, are reported in Section 6.

1.2 Preliminary notations

Let Ω ⊆ Rn, n ∈ {2, 3}, be a given bounded domain with polyhedral boundary Γ, and let ν be the outward
unit normal vector on Γ. Standard notationwill be adopted for Lebesgue spaces Lp(Ω) and Lp(Γ), and Sobolev
spaces Ws,p(Ω) and Ws,p(Γ), with s ∈ R and p > 1, whose corresponding norms, and semi-norms in the case
of the latter, either for the scalar, vector, or tensor case, are denoted by ‖ ⋅ ‖0,p;Ω, ‖ ⋅ ‖0,p;Γ , ‖ ⋅ ‖s,p;Ω, | ⋅ |s,p;Ω,
‖ ⋅ ‖s,p;Γ , and | ⋅ |s,p;Γ , respectively. In addition, Ws,2(Ω) andWs,2(Γ) are also denoted by Hs(Ω) and Hs(Γ), and
the notations of their norms and semi-norms are simplified to ‖ ⋅ ‖s,Ω, | ⋅ |s,Ω, ‖ ⋅ ‖s,Γ , and | ⋅ |s,Γ , respectively.
In particular, H1/2(Γ) is the space of traces of functions of H1(Ω), H−1/2(Γ) is its dual, and ⟨⋅, ⋅⟩Γ stands for
the duality pairing between H−1/2(Γ) and H1/2(Γ), and between its corresponding vector versions. On the
other hand, given any generic scalar functional space M, we let M and 𝕄 be the corresponding vectorial
and tensorial counterparts, whereas ‖ ⋅ ‖, with no subscripts, will be employed for the norm of any element
or operator whenever there is no confusion about the space to which they belong. Furthermore, as usual 𝕀
stands for the identity tensor inℝ := Rn×n, and | ⋅ | denotes the Euclidean norm inR := Rn. Also, for any vector
fields v = (vi)i=1,n andw = (wi)i=1,n we set the gradient, divergence, and tensor product operators, as

∇v := ( ∂vi∂xj
)
i,j=1,n

, div(v) :=
n
∑
j=1

∂vj
∂xj

, v ⊗w := (vi wj)i,j=1,n .

In turn, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div(τ) be the divergence operator div
acting along the rows of τ, and define the transpose, the trace, the tensor inner product, and the deviatoric
tensor, respectively, as

τt := (τji)i,j=1,n , tr (τ) :=
n
∑
i=1
τii , τ : ζ :=

n
∑
i,j=1

τijζij , τd := τ − 1
n
tr (τ) 𝕀.

Next, given p > 1, we introduce the Banach spaces

H(divp;Ω) := {τ ∈ L2(Ω) : div(τ) ∈ Lp(Ω)}, ℍ(divp;Ω) := {τ ∈ 𝕃2(Ω) : div(τ) ∈ Lp(Ω)} (1.1)
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equipped with the natural norms

‖τ‖divp;Ω := ‖τ‖0,Ω + ‖div(τ)‖0,p;Ω ∀ τ ∈ H(divp;Ω)
‖τ‖divp;Ω := ‖τ‖0,Ω + ‖div(τ)‖0,p;Ω ∀ τ ∈ ℍ(divp;Ω).

In addition, proceeding as in [17, Sect. 3.1], one can prove that for each p ⩾ 2n/(n + 2) there hold

⟨τ ⋅ ν, v⟩Γ = ∫
Ω
{τ ⋅ ∇v + v div(τ)} ∀ (τ, v) ∈ H(divp;Ω) × H1(Ω) (1.2)

⟨τ ν, v⟩Γ = ∫
Ω
{τ : ∇v + v ⋅ div(τ)} ∀ (τ, v) ∈ ℍ(divp;Ω) ×H1(Ω). (1.3)

Also, given p, q ∈ (1, +∞), we say that they are conjugate to each other if 1/p + 1/q = 1. Finally, we end
this section bymentioning that, throughout the rest of the paper, we employ 0 to denote a generic null vector
(or tensor), and use C and c, with or without subscripts, bars, tildes or hats, to denote generic constants
independent of the discretization, which may take different values at different places.

2 The Boussinesq model
In this section we resort to [17] to introduce the Boussinesq model, its corresponding fully-mixed variational
formulation, and the associated mixed finite element method.

2.1 The boundary value problem

The stationary Boussinesq problem consists of a system of equations in which the incompressible Navier–
Stokes equation is coupled with the heat equation through a convective term and a buoyancy term typically
acting in opposite direction to gravity. More precisely, given a fluid occupying the region Ω, an external force
per unit mass g ∈ L∞(Ω), and data uD ∈ H1/2(Γ) and φD ∈ H1/2(Γ), the model of interest reads: Find a
velocity field u, a pressure field p and a temperature field φ such that

−div(2µ(φ)e(u)) + (∇u)u + ∇p = φg in Ω, div(u) = 0 in Ω

∫
Ω
p = 0, −div(𝕂∇φ) + u ⋅ ∇φ = 0 in Ω

u = uD on Γ, φ = φD on Γ

(2.1)

where e(u) is the symmetric part of the velocity gradient ∇u, also known as the strain rate tensor, and 𝕂 ∈
𝕃∞(Ω) is a uniformly positive tensor describing the thermal conductivity of the fluid, thus allowing the pos-
sibility of anisotropy. In turn, µ : R → R+ is the temperature dependent viscosity, which is assumed to be a
Lipschitz-continuous and bounded from above and below function, which means that there exist constants
Lµ > 0 and µ1, µ2 > 0, such that

|µ(s) − µ(t)| ⩽ Lµ |s − t|, µ1 ⩽ µ(s) ⩽ µ2 ∀ s, t ⩾ 0. (2.2)

We observe that, because of the incompressibility constraint (cf. second eq. of (2.1)) and the Dirichlet bound-
ary condition (cf. fifth eq. of (2.1)), uD must satisfy the compatibility condition ∫Γ uD ⋅ ν = 0.

2.2 The fully-mixed variational formulation

Following the approach from [17], we first introduce the velocity gradient t, the Bernoulli stress tensor σ, the
temperature gradient t̃, and the pseudoheat flux σ̃ as auxiliary unknowns, that is

t := ∇u, σ := 2µ(φ)tsym −
1
2 (u ⊗ u) − pI, t̃ := ∇φ, σ̃ := 𝕂t̃ − 12φu
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where tsym := 1
2 (t + t

t) is the symmetric part of t. In this way, problem (2.1) can be rewritten as

∇u = t in Ω
tr (t) = 0 in Ω

−div(σ) + 1
2 tu − φg = 0 in Ω

2µ(φ) tsym −
1
2 (u ⊗ u)

d = σd in Ω

∇φ = t̃ in Ω (2.3)

𝕂t̃ − 1
2φu = σ̃ in Ω

−div(σ̃) + 1
2u ⋅ t̃ = 0 in Ω

u = uD , φ = φD on Γ

∫
Ω
tr (2σ + u ⊗ u) = 0

where p is eliminated and later recovered terms of σ and u by using the identity

p = − 1
2n tr (2σ + u ⊗ u). (2.4)

In what follows we recall from [17] the variational formulation of (2.3). From its first two equations we
note that, if u is originally sought in H1(Ω), then tmust belong to the space

𝕃2tr(Ω) := {s ∈ 𝕃2(Ω) : tr (s) = 0}.

Now, testing the fourth equation of (2.3) against s ∈ 𝕃2tr(Ω), we formally obtain

2∫
Ω
µ(φ) tsym : s − 1

2 ∫Ω
(u ⊗ u)d : s − ∫

Ω
σd : s = 0 (2.5)

from which we observe that the first term of (2.5) is well-defined thanks to the boundedness of µ (cf. (2.2)),
whereas the third one is as well if σ is sought in 𝕃2(Ω). In turn, letting ℓ, j ∈ (1, +∞) conjugate to each other,
direct applications of the Cauchy–Schwarz and Hölder inequalities yield

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω
(u ⊗ u)d : s

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω
(u ⊗ u) : s

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽ ‖u‖0,2ℓ;Ω ‖u‖0,2j;Ω ‖s‖0,Ω

and hence the second term of (2.5) makes sense if one looks for u in L4(Ω), which arises naturally by taking
ℓ = j = 2 in the foregoing inequality. In this way, knowing the spaces to which t and u should belong, we
notice that the testing of the term 1

2 tu in the third equation of (2.3) is possible only with a vector function
v ∈ L4(Ω) since, employing again the aforementioned inequalities, we find that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω
tu ⋅ v
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽ ‖t‖0,Ω ‖u‖0,4;Ω ‖v‖0,4;Ω .

As a consequence, the testing of the first term of the same equation against v ∈ L4(Ω), along with Hölder’s
inequality, force div(σ) to belong to L4/3(Ω), and therefore σ is sought from now on inℍ(div4/3;Ω) (cf. (1.1)).
Applying a similar analysis to the sixth and seventh equations of (2.3), we deduce that L2(Ω), L4(Ω), and
H(div4/3;Ω) become the right spaces to look for t̃, φ, and σ̃, respectively. Note, in particular, that the space to
which φ belongs is coherent with the testing of the term φg in the third equation of (2.3) against v ∈ L4(Ω).

Next, we consider the orthogonal decomposition

ℍ(div4/3;Ω) = ℍ0(div4/3;Ω) ⊕ R𝕀 (2.6)

where
ℍ0(div4/3;Ω) := {τ ∈ ℍ(div4/3;Ω) : ∫

Ω
tr (τ) = 0}
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and observe, in particular, that the unknown σ can be uniquely decomposed, according to (2.6) and the con-
dition ∫Ω tr (2σ + u ⊗ u) = 0, as

σ = σ0 + c0𝕀, σ0 ∈ ℍ0(div4/3;Ω), c0 := −
1

2n|Ω| ∫Ω
tr (u ⊗ u).

In this way, and similarly as for the pressure, the constant c0 can be computed once the velocity is known,
and hence it only remains to obtain σ0. In this regard, we now stress that the equations of (2.3) involving σ
remain unchanged if σ is replaced by σ0, and hence from now on we denote σ0 as simply σ ∈ ℍ0(div4/3;Ω).
In addition, thanks to the compatibility condition satisfied by the datum uD and the fact that t is sought in
𝕃2tr (Ω), we realize that testing the first equation of (2.3) against τ ∈ ℍ(div4/3;Ω) is equivalent to doing it
against τ ∈ ℍ0(div4/3;Ω). Regarding this fact, we point out that the formula (1.3) is employed to integrate
the expression ∫Ω ∇u : τ. Similarly, when testing the fifth equation of (2.3) against τ̃ ∈ H(div4/3;Ω), the
computation of ∫Ω ∇φ ⋅ τ̃ makes use of (1.2).

Finally, in order to write the announced formulation in a simplified way, we now set the notations

(φ, ψ)Ω := ∫
Ω
φ ψ, (u, v)Ω := ∫

Ω
u ⋅ v, (σ, τ)Ω := ∫

Ω
σ : τ

u⃗ := (u, t), v⃗ := (v, s) ∈ H := L4(Ω) × 𝕃2tr(Ω), φ⃗ := (φ, t̃), ψ⃗ := (ψ, s̃) ∈ H̃ := L4(Ω) × L2(Ω)
‖u⃗‖ := ‖u‖0,4;Ω + ‖t‖0,Ω , ‖φ⃗‖ := ‖φ‖0,4;Ω + ‖t̃‖0,Ω ∀ u⃗ := (u, t) ∈ H, ∀φ⃗ := (φ, t̃) ∈ H̃.

In this way, the fully-mixed formulation of our stationary Boussinesq problem reduces to (see, [17, Sect. 3.1]):
Find (u⃗, σ) ∈ H ×ℍ0(div4/3;Ω) and (φ⃗, σ̃) ∈ H̃ ×H(div4/3;Ω) such that

aφ(u⃗, v⃗) + c(u; u⃗, v⃗) + b(v⃗, σ) = Fφ(v⃗) ∀ v⃗ ∈ H

b(u⃗, τ) = G(τ) ∀ τ ∈ ℍ0(div4/3;Ω)

ã(φ⃗, ψ⃗) + c̃u(φ⃗, ψ⃗) + b̃(ψ⃗, σ̃) = 0 ∀ ψ⃗ ∈ H̃

b̃(φ⃗, τ̃) = G̃(τ̃) ∀ τ̃ ∈ H(div4/3;Ω)

(2.7)

where, given arbitrary (w, φ) ∈ L4(Ω) × L4(Ω), the forms aφ, b, c(w; ⋅, ⋅), ã, b̃, and c̃w, the functionals Fφ, G,
and G̃, are defined by

aφ(u⃗, v⃗) := (2µ(φ)tsym, s)Ω , b(v⃗, τ) := − (τ, s)Ω − (v, div(τ))Ω (2.8)

c(w; u⃗, v⃗) := 1
2 {(tw, v)Ω − ((u ⊗w)d, sd)Ω} (2.9)

ã(φ⃗, ψ⃗) := (𝕂t̃, s̃)Ω , b̃(ψ⃗, τ̃) := − (τ̃, s̃)Ω − (ψ, div(τ̃))Ω (2.10)

c̃w(φ⃗, ψ⃗) :=
1
2 {(ψw, t̃)Ω − (φw, s̃)Ω} (2.11)

Fφ(v⃗) := (φg, v)Ω , G(τ) := − ⟨τ ν, uD⟩Γ , G̃(τ̃) := − ⟨τ̃ ⋅ ν, φD⟩Γ (2.12)

for all u⃗ := (u, t), v⃗ := (v, s) ∈ H, τ ∈ ℍ0(div4/3;Ω), τ̃ ∈ H(div4/3;Ω), φ⃗ := (φ, t̃), ψ⃗ := (ψ, s̃) ∈ H̃. Thewell
posedness of (2.7), which uses a fixed-point strategy alongwith the Babuška–Brezzi theory in Banach spaces,
is established by [17, Th. 3.11]. The continuous and discrete analyses provided therein, as well as the one to be
developed in what follows, are also valid if mixed boundary conditions are considered for the Navier–Stokes
equations. Assuming, for instance u = uD on ΓD and σν = 0 on ΓN , where ΓD and ΓN are disjoint parts of Γ
such that Γ = Γ̄D ∪ Γ̄N , then just two minor changes are in order. The first one has to do with the space where
σ is sought, which is given now by

ℍ̃0(div4/3;Ω) := {τ ∈ ℍ(div4/3;Ω) : ∫
Ω
tr (τ) = 0, τν = 0 on ΓN}.

In this case, it is easy to see that for each τ ∈ ℍ̃0(div4/3;Ω) there holds τν|ΓD ∈ H−1/2(ΓD), and hence the
second change refers to thedefinitionof the functionalG,whichbecomesG(τ) := − ⟨τ ν, uD⟩ΓD ,where ⟨⋅, ⋅⟩ΓD
stands here for the duality pairing between H−1/2(ΓD) and H1/2(ΓD).
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2.3 The finite element method

Let {Th}h>0 be a family of regular triangulations Th of Ω̄ made of triangles K (when n = 2) or tetrahedra
K (when n = 3). Then, given h > 0, we let Tbh be the corresponding barycentric refinement of Th, which
originates from Th after joining the vertices of each element K ∈ Th with its barycenter, and set its meshsize
as h := max {hK : K ∈ Tbh }, where hK denotes the diameter of K. In what follows, given an integer ℓ ⩾ 0, Pℓ(K)
stands for the space of polynomials of degree ⩽ ℓ defined on K, with vector and tensor versions denoted by
Pℓ(K) := [Pℓ(K)]n and ℙℓ(K) := [Pℓ(K)]n×n, respectively. Then, given an integer k ⩾ 0, we set for each K ∈ Tbh
the local Raviart–Thomas space of order k as

RTk(K) := Pk(K) ⊕ Pk(K)x

where x := (x1, . . . , xn)t is a generic vector of ℝn. Next, following [17, Sect. 5], we assume from now on that
k + 1 ⩾ n, and introduce the following finite element subspaces approximating the unknowns u, t, σ, φ, t̃,
and σ̃, respectively,

Hu
h := {vh ∈ L

4(Ω) : vh|K ∈ Pk(K) ∀ K ∈ Tb
h}

ℍth := {sh ∈ 𝕃
2
tr (Ω) : sh|K ∈ ℙk(K) ∀ K ∈ Tb

h}

ℍσh := {τh ∈ ℍ0(div4/3;Ω) : ct τh|K ∈ RTk(K) ∀ c ∈ R, ∀ K ∈ Tb
h} (2.13)

Hφh := {ψh ∈ L4(Ω) : ψh|K ∈ Pk(K) ∀ K ∈ Tb
h}

Ht̃
h := {s̃h ∈ L

2(Ω) : s̃h|K ∈ Pk(K) ∀ K ∈ Tb
h}

Hσ̃h := {τ̃h ∈ H(div4/3;Ω) : τ̃h|K ∈ RTk(K) ∀ K ∈ T
b
h}.

In addition, and similarly to Section 2.1, we set the notations

u⃗h := (uh , th), v⃗h := (vh , sh) ∈ Hh := Hu
h ×ℍ

t
h

φ⃗h := (φh , t̃h), ψ⃗h := (ψh , s̃h) ∈ H̃h := H
φ
h ×H

t̃
h .

We remark that the use of the barycentric refinement Tb
h instead of the original one Th, ismotivated by the ver-

ification of one of the discrete stability conditions involving the subspacesHu
h,ℍ

t
h, andℍ

σ
h (cf. [17, Eq. (5.15)]).

Indeed, starting from an arbitrary pair of finite element subspaces Uh and Qh of H1
0(Ω) and L

2
0(Ω) that yield

a well-posed Galerkin scheme for the primal formulation of the Stokes problem, and proceeding similarly as
in [10, 26], we derive in [17] sufficient conditions onHu

h,ℍ
t
h, andℍ

σ
h (cf. [17, Eqs. (5.24) and (5.25)]), depending

on Uh and Qh, which guarantee the aforementioned stability. Then, taking in particular the Scott–Vogelius
pair (Uh , Qh) (cf. [37, 38]), which is given by continuous piecewise polynomials of degree ⩽ k+1, and discon-
tinuous piecewise polynomials of degree ⩽ k, respectively, andwhich becomes stable only on the barycentric
mesh Tb

h, and under the assumption that k+1 ⩾ n, we are led to the finite element subspaces defined in (2.13).
For further technical details on this issue, we refer to [17, Sect. 5.2].

Hence, the Galerkin scheme associatedwith (2.7) reads: Find (u⃗h , σh) ∈ Hh×ℍσh and (φ⃗h , σ̃h) ∈ H̃h×H
σ̃
h

such that
aφh (u⃗h , v⃗h) + c(uh; u⃗h , v⃗h) + b(v⃗h , σh) = Fφh (v⃗h) ∀ v⃗h ∈ Hh

b(u⃗h , τh) = G(τh) ∀ τh ∈ ℍσh
ã(φ⃗h , ψ⃗h) + c̃uh (φ⃗h , ψ⃗h) + b̃(ψ⃗h , σ̃h) = 0 ∀ ψ⃗h ∈ H̃h

b̃(φ⃗h , τ̃h) = G̃(τ̃h) ∀ τ̃h ∈ Hσ̃h .

(2.14)

The solvability analysis and a priori error bounds for (2.14) employs a fixed-point strategy along with the
discrete Babuška–Brezzi theory in Banach spaces (see [17, Theorems 4.11 and 6.2]).
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3 A posteriori error analysis: the 2D case
In this section, we derive a reliable and efficient residual-based a posteriori error estimator for the two-
dimensional version of (2.14). The 3D case, which follows fromminormodifications of the one to be presented
next, will be addressed in Section 4.

3.1 Preliminaries for reliability

Given K ∈ Tbh , we let Eh(K) be the set of its edges e, and let Eh be the set of all the edges e of Tbh , with
corresponding diameters denoted by he. Then, we set Eh = Eh(Ω) ∪ Eh(Γ), where Eh(Ω) := {e ∈ Eh : e ⊂ Ω}
and Eh(Γ) := {e ∈ Eh : e ⊂ Γ}. Also for each e ∈ Eh we fix unit normal and tangential vectors to e denoted by
νe := (ν1, ν2)t and se := (−ν2, ν1)t, respectively. However, when no confusion arises, we simply write ν and s
instead of νe and se, respectively. In addition, the usual jump operator J⋅K across an internal edge e ∈ Eh(Ω) is
defined for piecewise continuous tensor, vector, or scalar-valued functions ζ as simply Jζ K := ζ|K − ζ|K󸀠 , where
K and K󸀠 are the triangles of Tbh having e as a common edge. Furthermore, given scalar, vector, and matrix
valued fields φ, v = (v1, v2)t, and τ := (τij)2×2, respectively, we set

curl (φ) := (
∂φ
∂x2
− ∂φ∂x1
) , curl (v) := (curl (v1)

t

curl (v2)t
) , rot (v) := ∂v2

∂x1
−
∂v1
∂x2

, rot (τ) := (rot (τ11, τ12)
rot (τ21, τ22)

)

where the derivatives involved are taken in the distributional sense.
Let us now recall the main properties of the Raviart–Thomas and Clément interpolation operators

(cf. [16, 24]). We begin by defining for each p ⩾ 2n/(n + 2) the spaces

Hp := {τ ∈ H(divp;Ω) : τ|K ∈W1,p(K) ∀ K ∈ Tb
h} (3.1)

Ĥσh := {τ ∈ H(divp;Ω) : τ|K ∈ RTk(K) ∀ K ∈ Tb
h}. (3.2)

In addition, we let Πkh : Hp → Ĥσh be the Raviart–Thomas interpolation operator, which is characterized for
each τ ∈ Hp by the identities (see, e.g., [24, Sect. 1.2.7]):

∫
e
(Πkh(τ) ⋅ ν) ξ = ∫e

(τ ⋅ ν) ξ ∀ ξ ∈ Pk(e), ∀ edge or face e of Tb
h (3.3)

when k ⩾ 0, and
∫
K
Πkh(τ) ⋅ ψ = ∫K

τ ⋅ ψ ∀ψ ∈ Pk−1(K), ∀ K ∈ Tb
h

when k ⩾ 1. In turn, given q > 1 such that p and q are conjugate to each other, we let

Hu
h := {v ∈ Lq(Ω) : v|K ∈ Pk(K) ∀ K ∈ Tb

h} (3.4)

and recall from [24, Lem. 1.41] that there holds

div(Πkh(τ)) = Pkh(div(τ)) ∀ τ ∈ Hp

where Pkh : Lp(Ω) → Hu
h is the usual orthogonal projector with respect to the L2(Ω)-inner product, which

satisfies the following error estimate (see [24, Prop. 1.135]): there exists a positive constant C0, independent
of h, such that for 0 ⩽ l ⩽ k + 1 and 1 ⩽ p ⩽ ∞ there holds

‖w − Pkh(w)‖0,p;Ω ⩽ C0 h
l ‖w‖l,p;Ω ∀w ∈ Wl,p(Ω).

We stress that Pkh(w)|K = PkK(w|K) ∀w ∈ Lp(Ω), where PkK : Lp(K) → Pk(K) is the corresponding local
orthogonal projector. In addition, denoting byHu

h the vector version of H
u
h (cf. (3.4)), we letP

k
h : L

p(Ω) → Hu
h

be the vector version of Pkh.
Next, we collect some approximation properties of Πkh.
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Lemma 3.1. Given p > 1, there exist positive constants C1 and C2, independent of h, such that for 0 ⩽ l ⩽ k and
for each K ∈ Tbh there holds

‖τ − Πkh(τ)‖0,p;K ⩽ C1 h
l+1
K |τ|l+1,p;K ∀ τ ∈W

l+1,p(K). (3.5)

and
‖τ ⋅ ν − Πkh(τ) ⋅ ν‖0,p;e ⩽ C2 h

1−1/p
e |τ|1,p;K ∀ τ ∈W1,p(K), ∀e ∈ Eh(K). (3.6)

Proof. The estimate (3.5) follows straightforwardly from [24, Lem. B.67] and [24, Lem. 1.101] (see, e.g., [17,
Lem. 5.3, Eq. (5.38)]), whereas for (3.6) we refer to [12, Lem. 4.2].

Furthermore, denoting byℍp and ℍ̂σh the tensor versions of Hp (cf. (3.1)) and Ĥ
σ
h (cf. (3.2)), respectively, we

let Πkh : ℍp → ℍ̂
σ
h be the operator Π

k
h acting row-wise. Then, according to the decomposition (2.6), for each

τ ∈ ℍp there holds

Πkh(τ) = Π
k
h,0(τ) + d 𝕀, d := 1

n|Ω| ∫Ω
tr(Πkh(τ)) ∈ R, Πkh,0(τ) := Π

k
h(τ) − d 𝕀 ∈ ℍ

σ
h .

We next recall a stable Helmholtz decomposition for the Banach spaceH(divp;Ω), and select p = 4/3 for
the forthcoming analysis. More precisely, we have the following result proven in [12, Lem. 4.4].

Lemma 3.2. Given p ∈ (1, +∞), there exists a positive constant Cp such that for each τ ∈ H(divp;Ω) there exist
η ∈W1,p(Ω) and ξ ∈ H1(Ω) satisfying

τ = η + curl (ξ) in Ω, ‖η‖1,p;Ω + ‖ξ‖1,Ω ⩽ Cp ‖τ‖divp;Ω .

We stress here that the foregoing result is certainly valid for the tensor version ℍ(divp;Ω) of H(divp;Ω)
as well, and hence in particular for ℍ0(divp;Ω). In other words, for each τ ∈ ℍ0(divp;Ω) there exist η ∈
𝕎1,p(Ω) and ξ ∈ H1(Ω) such that

τ = η + curl (ξ ) in Ω, ‖η‖1,p;Ω + ‖ξ‖1,Ω ⩽ Cp ‖τ‖divp;Ω . (3.7)

On the other hand, defining Xh := {vh ∈ C(Ω) : vh|K ∈ P1(K) ∀ K ∈ Tbh } and denoting by Xh its vector
version, we let Ih : H1(Ω) → Xh and Ih : H1(Ω) → Xh be the usual Clément interpolation operator and its
vector version, respectively. Some local properties of Ih, and hence of Ih, which correspond to the particular
case of [24, Lem. 1.127] that arises by choosing there m = 0, p = 2, and ℓ = 1, are established in the following
lemma (for a proof, see [16]).

Lemma 3.3. There exist positive constants C1 and C2, such that for each v ∈ H1(Ω):

‖v − Ihv‖0,K ⩽ C1hK ‖v‖1,∆(K) ∀ K ∈ Tbh

and
‖v − Ihv‖0,e ⩽ C2h1/2e ‖v‖1,∆(e) ∀ e ∈ Eh

where ∆(K) := ⋃ {K󸀠 ∈ Tbh : K
󸀠 ∩ K ̸= ⌀} and ∆(e) := ⋃ {K󸀠 ∈ Tbh : K

󸀠 ∩ e ̸= ⌀}.

3.2 Reliability

Recall that
σ⃗ := ((u⃗, σ), (φ⃗, σ̃)) ∈ 𝕏 := H ×ℍ0(div4/3;Ω) × H̃ ×H(div4/3;Ω)

is the unique solution of problem (2.7), and that

σ⃗h := ((u⃗h , σh), (φ⃗h , σ̃h)) ∈ 𝕏h := Hh ×ℍσh × H̃h ×H
σ̃
h
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is a solution of problem (2.14). Then, assuming from now on that uD ∈ H1+δ(Γ) ∩ L4(Γ) and φD ∈ H1+δ(Γ) ∩
L4(Γ), for some δ > 0, which allows, in particular, to compute their tangential derivatives ∇uD s and ∇φD ⋅ s,
we introduce for each K ∈ Tbh the local error indicators

Θ̃4/3
K := 󵄩󵄩󵄩󵄩 − div(σh) +

1
2 th uh − φh g

󵄩󵄩󵄩󵄩
4/3
0,4/3;K +

󵄩󵄩󵄩󵄩 − div(σ̃h) +
1
2uh ⋅ t̃h
󵄩󵄩󵄩󵄩
4/3
0,4/3;K (3.8)

Θ̄2
K := 󵄩󵄩󵄩󵄩2µ(φh)th,sym −

1
2 (uh ⊗ uh)

d − σdh
󵄩󵄩󵄩󵄩
2
0,K +
󵄩󵄩󵄩󵄩𝕂t̃h −

1
2φhuh − σ̃h

󵄩󵄩󵄩󵄩
2
0,K

+ h2K‖rot (th)‖
2
0,K + h

2
K‖rot (̃th)‖

2
0,K + ∑

e∈Eh(K)∩Eh(Ω)
he{󵄩󵄩󵄩󵄩Jth sK

󵄩󵄩󵄩󵄩
2
0,e +
󵄩󵄩󵄩󵄩J̃th ⋅ sK
󵄩󵄩󵄩󵄩
2
0,e}

+ ∑
e∈Eh(K)∩Eh(Γ)

he{‖ths − ∇uD s‖20,e + ‖t̃h ⋅ s − ∇φD ⋅ s‖
2
0,e} (3.9)

Θ̂4
K := h4K‖th − ∇uh‖

4
0,4;K + h

4
K‖t̃h − ∇φh‖

4
0,4;K

+ ∑
e∈Eh(K)∩Eh(Γ))

he{‖uD − uh‖40,4;e + ‖φD − φh‖
4
0,4;e} (3.10)

so that the global a posteriori error estimator is defined as

Θ = { ∑
K∈Tb

h

Θ̃4/3
K }

3/4

+ { ∑
K∈Tb

h

Θ̄2
K}

1/2

+ { ∑
K∈Tb

h

Θ̂4
K}

1/4

. (3.11)

We recall here, according to the boundary integration by parts formula given in [21, Eq. (3.34), Lem. 3.5],
which in turn follows by applying [34, Eq. (2.17) and Th. 2.11], that for each φD ∈ H1/2(Γ) its tangential deriva-
tive ∇φD ⋅ s is the functional in H−1/2(Γ) defined by

⟨∇φD ⋅ s, v⟩Γ := −⟨curl (v) ⋅ ν, φD⟩Γ ∀ v ∈ H1(Ω).

Alternatively, if φ̃D is any function in H1(Ω) such that φ̃D|Γ = φD, then there holds

⟨∇φD ⋅ s, v⟩Γ = ⟨∇φ̃D ⋅ s, v⟩Γ = ∫
Ω
curl φ̃D ⋅ ∇v ∀ v ∈ H1(Ω).

The fact that ∇φ̃D ∈ H(rot;Ω) := {τ ∈ L2(Ω) : rot(τ) ∈ L2(Ω)} guarantees that its tangential component is
continuous across the edges of Tb

h, and hence ∇φ̃D ⋅ s is unambiguous on Γ. In particular, if φD ∈ H1+δ(Γ), for
some δ > 0, whichmeans that φ̃D ∈ H3/2+δ(Ω), it follows that ∇φ̃D ∈ H1/2+δ(Ω), and then ∇φD ⋅s is identified
to the function in L2(Γ) given by ∇φ̃D ⋅ s. Analogue definitions and remarks hold for uD.

The residual character of each one of the terms defining the foregoing indicators becomes clear from a
simple inspection of the strong problem (2.3) and thanks to the regularity of the continuous solution.

The main result of this section, which establishes the reliability of Θ, reads as follows.

Theorem 3.1. Assume that the data are sufficiently small (as indicated below in Lemma 3.6). Then, there exists
a positive constant Crel, independent of h, such that

‖σ⃗ − σ⃗h‖𝕏 ⩽ CrelΘ. (3.12)

Theproof of (3.12) is performedbymeans of several consecutive steps.Webeginby recalling from [17, Sect. 3.2]
the definitions of two suitable operators, namely S : L4(Ω) × L4(Ω) → H and S̃ : L4(Ω) → H̃. In fact, for each
(w, φ) ∈ L4(Ω) × L4(Ω) we let S(w, φ) := u⃗ = (u, t) ∈ H, where (u⃗, τ) is the solution of the problem arising
from the first two equations of (2.7) after replacing aφ and c(u; ⋅, ⋅) by aφ and c(w; ⋅, ⋅), respectively, that is,
(u⃗, τ) ∈ H ×ℍ0(div4/3;Ω) is such that

aφ(u⃗, v⃗) + c(w; u⃗, v⃗) + b(v⃗, σ) = Fφ(v⃗) ∀ v⃗ ∈ H

b(u⃗, τ) = G(τ) ∀ τ ∈ ℍ0(div4/3;Ω).
(3.13)

In turn, for eachw ∈ L4(Ω) we let S̃(w) := φ⃗ ∈ H̃, where (φ⃗, σ̃) is the solution of the problem defined by the
last two equations of (2.7) after replacing u byw, that is, (φ⃗, σ̃) ∈ H̃ ×H(div4/3;Ω) is such that

ã(φ⃗, ψ⃗) + c̃w(φ⃗, ψ⃗) + b̃(ψ⃗, σ̃) = 0 ∀ ψ⃗ ∈ H̃

b̃(φ⃗, τ̃) = G̃(τ̃) ∀ τ̃ ∈ H(div4/3;Ω).
(3.14)



G.Gatica et al., Banach spaces fully mixed FEM for Boussinesq models | 335

Wenow recall from [17, Lemmas 3.5 and 3.6] that (3.13) and (3.14) are well-posed for each (w, φ) ∈ L4(Ω)×
L4(Ω) and for each w ∈ L4(Ω), respectively, which implies that the bilinear forms arising after adding the
corresponding left-hand sides satisfy global inf-sup conditions uniformly. In other words, denoting from now
onW := H × ℍ0(div4/3;Ω) and W̃ := H̃ × H(div4/3;Ω), there exist positive constants γ, and γ̃, independent
of (w, φ) andw, respectively, such that

γ ‖(z⃗, ζ )‖W ⩽ sup
(v⃗,τ)∈W
(v⃗,τ) ̸=0

aφ(z⃗, v⃗) + c(w; z⃗, v⃗) + b(v⃗, ζ ) + b(z⃗, τ)
‖(v⃗, τ)‖W

∀ (z⃗, ζ ) ∈W (3.15)

γ̃ ‖(φ⃗, ζ̃ )‖W̃ ⩽ sup
(ψ⃗,τ̃)∈W̃
(ψ⃗,τ̃) ̸=0

ã(φ⃗, ψ⃗) + c̃w(φ⃗, ψ⃗) + b̃(ψ⃗, ζ̃ ) + b̃(φ⃗, τ̃)
‖(ψ⃗, τ̃)‖W̃

∀ (φ⃗, ζ̃ ) ∈ W̃. (3.16)

Next, proceeding as in [17, Sect. 3.4], we suppose further regularity on the solutions of the problem defin-
ing the operator S (cf. (3.13)). Indeed, we assume that uD ∈ H1/2+ε(Γ) for some ε ∈ [1/2, 1) (when n = 2) or
ε ∈ [3/4, 1) (when n = 3), and that for each (w, φ) ∈ L4(Ω) × L4(Ω) there holds

S(w, φ) := u⃗ = (u, t) ∈Wε,4(Ω) × (𝕃2tr (Ω) ∩ ℍε(Ω)) (3.17)

and (cf. [17, Eq. (3.62)]):

‖u‖ε,4:Ω + ‖t‖ε,Ω ⩽ cS {‖φ‖0,4;Ω ‖g‖0,∞;Ω + (1 + ‖w‖0,4;Ω) ‖uD‖1/2+ε,Γ} (3.18)

with a positive constant cS independent of the given (w, φ). In particular, taking ‖(w, φ)‖ ⩽ r, with r > 0
given, there holds

‖u‖ε,4:Ω + ‖t‖ε,Ω ⩽ cS {r ‖g‖0,∞;Ω + (1 + r) ‖uD‖1/2+ε,Γ}. (3.19)

Our first estimate aiming to prove (3.12) is established as follows.

Lemma 3.4. There exists C1 > 0, independent of h, such that

‖(u⃗, σ) − (u⃗h , σh)‖W ⩽ C1 {󵄩󵄩󵄩󵄩 − div(σh) +
1
2 thuh − φhg

󵄩󵄩󵄩󵄩0,4/3;Ω + ‖u⃗h‖H ‖u − uh‖0,4;Ω

+ 󵄩󵄩󵄩󵄩2µ(φh)th,sym −
1
2 (uh ⊗ uh)

d − σdh
󵄩󵄩󵄩󵄩0,Ω + (‖g‖0,∞;Ω + ‖t‖ε,Ω)‖φ − φh‖0,4;Ω + ‖R‖}

(3.20)

where R : ℍ0(div4/3;Ω) → R is the functional defined by

R(τ) := (th , τ)Ω + (uh , div(τ))Ω − ⟨τν, uD⟩Γ ∀ τ ∈ ℍ0(div4/3;Ω). (3.21)

Proof. We begin by applying (3.15) to (w, φ) = (u, φ) and (z⃗, ζ ) = (u⃗, σ) − (u⃗h , σh). In this way, and addition-
ally employing the first two equations of (2.7), we arrive at

γ‖(u⃗, σ) − (u⃗h , σh)‖W ⩽ sup
(v⃗,τ)∈W
(v⃗,τ) ̸=0

Q(v⃗) + R(τ)
‖(v⃗, τ)‖W

(3.22)

where

Q(v⃗) := Fφ(v⃗) − {aφ(u⃗h , v⃗) + c(u; u⃗h , v⃗) + b(v⃗, σh)} ∀ v⃗ ∈ H
R(τ) := G(τ) − b(u⃗h , τ) ∀ τ ∈ ℍ0(div4/3;Ω)

which, according to the definitions of G (cf. (2.12)) and b (cf. (2.8)), yields (3.21). Next, adding and subtracting
Fφh (v⃗), aφh (u⃗h , v⃗), and c(uh; u⃗h , v⃗), we obtain

Q(v⃗) := Q1(v⃗) + Fφ−φh (v⃗) + aφh (u⃗h , v⃗) − aφ(u⃗h , v⃗) + c(uh; u⃗h , v⃗) − c(u; u⃗h , v⃗) (3.23)

with
Q1(v⃗) := Fφh (v⃗) − aφh (u⃗h , v⃗) − c(uh; u⃗h , v⃗) − b(v⃗, σh).
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Then, bearing in mind the definitions of the forms and functionals involved (cf. (2.8), (2.9), and (2.12)), and
applying the Hölder and Cauchy–Schwarz inequalities, we find that

|Q1(v⃗)| ⩽ {󵄩󵄩󵄩󵄩 − div(σh) +
1
2 thuh − φhg

󵄩󵄩󵄩󵄩0,4/3;Ω

+ 󵄩󵄩󵄩󵄩2µ(φh)th,sym −
1
2 (uh ⊗ uh)

d − σdh
󵄩󵄩󵄩󵄩0,Ω} ‖v⃗‖H (3.24)

|Fφ−φh (v⃗)| ⩽ |Ω|1/2‖g‖0,∞;Ω ‖φ − φh‖0,4;Ω ‖v⃗‖H (3.25)

|c(uh; u⃗h , v⃗) − c(u; u⃗h , v⃗)| ⩽ ‖u⃗h‖H ‖u − uh‖0,4;Ω ‖v⃗‖H. (3.26)

In turn, proceeding as in the proof of [17, Lem. 3.8], that is using the Lipschitz-continuity of µ (cf. (2.2)), the
Cauchy–Schwarz and Hölder inequalities again, and the regularity assumption on the operator S (cf. (3.17)),
we obtain (cf. [17, Eqs. (3.67) and (3.68)]):

|aφh (u⃗h , v⃗) − aφ(u⃗h , v⃗)| ⩽ 2Lµ ‖iε‖ c(ε, n, |Ω|) ‖t‖ε,Ω ‖φ − φh‖0,4;Ω ‖v⃗‖H (3.27)

where iε denotes the continuous injection of ℍε(Ω) into 𝕃ε∗ (Ω), with ε∗ := 2/(1 − ε), and c(ε, n, |Ω|)
is a positive constant depending on ε, n, and |Ω|. Hence, employing (3.24), (3.25), (3.26), and (3.27) to
bound |Q(v⃗)| (cf. (3.23)), and replacing the resulting estimate back into (3.22), we get (3.20) with C1 :=
γ−1 max {1, |Ω|1/2, 2Lµ ‖iε‖ c(ε, n, |Ω|)}, which completes the proof.

The bound for ‖(φ⃗, σ̃) − (φ⃗h , σ̃h)‖W̃ is provided next.

Lemma 3.5. There exists C2 > 0, independent of h, such that

‖(φ⃗, σ̃)−(φ⃗h , σ̃h)‖W̃ ⩽ C2{
󵄩󵄩󵄩󵄩−div(σ̃h)+

1
2uh ⋅t̃h
󵄩󵄩󵄩󵄩0,4/3;Ω+

󵄩󵄩󵄩󵄩𝕂t̃h−
1
2φhuh−σ̃h

󵄩󵄩󵄩󵄩0,Ω+‖φ⃗h‖H̃‖u−uh‖0,4;Ω+‖R̃‖} (3.28)

where R̃ : H(div4/3;Ω) → R is the functional defined by

R̃(τ̃) := (̃th , τ̃)Ω + (φh , div(τ̃))Ω − ⟨τ̃ ⋅ ν, φD⟩Γ ∀ τ ∈ H(div4/3;Ω). (3.29)

Proof. It proceeds similarly to the proof of Lemma 3.4, but now applying the global inf-sup condition (3.16)
to w = u and (φ⃗, ζ̃ ) = (φ⃗, σ̃) − (φ⃗h , σ̃h), and then employing the last two equations of (2.7), along with the
definitions and boundedness properties of the forms and functionals involved (cf. (2.10), (2.11), and (2.12)).
Further details are omitted.

Thanks to Lemmas 3.4 and 3.5, we are able to state now a preliminary estimate for the global error

‖σ⃗ − σ⃗h‖𝕏 = ‖(u⃗, σ) − (u⃗h , σh)‖W + ‖(φ⃗, σ̃) − (φ⃗h , σ̃h)‖W̃.

Indeed, it follows straightforwardly from (3.20) and (3.28) that

‖σ⃗ − σ⃗h‖𝕏 ⩽ C3 {󵄩󵄩󵄩󵄩 − div(σh) +
1
2 thuh − φhg

󵄩󵄩󵄩󵄩0,4/3;Ω +
󵄩󵄩󵄩󵄩 − div(σ̃h) +

1
2uh ⋅ t̃h
󵄩󵄩󵄩󵄩0,4/3;Ω

+ 󵄩󵄩󵄩󵄩2µ(φh)th,sym −
1
2 (uh ⊗ uh)

d − σdh
󵄩󵄩󵄩󵄩0,Ω +
󵄩󵄩󵄩󵄩𝕂t̃h −

1
2φhuh − σ̃h

󵄩󵄩󵄩󵄩0,Ω

+ (‖u⃗h‖H + ‖φ⃗h‖H̃) ‖u − uh‖0,4;Ω + (‖g‖0,∞;Ω + ‖t‖ε,Ω) ‖φ − φh‖0,4;Ω + ‖R‖ + ‖R̃‖}

with C3 := max {C1, C2}. Then, according to the a priori estimates for ‖u⃗h‖H and ‖φ⃗h‖H̃ provided by [17,
Th. 4.11, Eqs. (4.24) and (4.25)], there exist positive constants CS,d and CS̃,d, independent of h, such that

‖u⃗h‖H ⩽ CS,d {r ‖g‖0,∞;Ω + (1 + r) ‖uD‖1/2,Γ} (3.30)

and
‖φ⃗h‖H̃ ⩽ CS̃,d {1 + ‖𝕂‖0,∞;Ω + r} ‖φD‖1/2,Γ

whereas the regularity estimate (3.19) yields a corresponding bound for ‖t‖ε,Ω. Thus, it follows that

C3 {(‖u⃗h‖H + ‖φ⃗h‖H̃)‖u − uh‖0,4;Ω + (‖g‖0,∞;Ω + ‖t‖ε,Ω)‖φ − φh‖0,4;Ω} ⩽ max {C(data), Cε(data)}‖σ⃗ − σ⃗h‖𝕏
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where C(data) and Cε(data) are the data-depending constants given by

C(data) := C3 CS,d {r ‖g‖0,∞;Ω + (1 + r) ‖uD‖1/2,Γ} + C3 CS̃,d {1 + ‖𝕂‖0,∞;Ω + r} ‖φD‖1/2,Γ
Cε(data) := C3 ‖g‖0,∞;Ω + C3 cS {r‖g‖0,∞;Ω + (1 + r)‖uD‖1/2+ε,Γ}.

As a consequence, we readily deduce the following result.

Lemma 3.6. Assume that
max {C(data), Cε(data)} ⩽

1
2

and let C̃ := 2C3. Then there holds

‖σ⃗ − σ⃗h‖𝕏 ⩽ C̃ {󵄩󵄩󵄩󵄩 − div(σh) +
1
2 thuh − φhg

󵄩󵄩󵄩󵄩0,4/3;Ω +
󵄩󵄩󵄩󵄩 − div(σ̃h) +

1
2uh ⋅ t̃h
󵄩󵄩󵄩󵄩0,4/3;Ω

+ 󵄩󵄩󵄩󵄩2µ(φh)th,sym −
1
2 (uh ⊗ uh)

d − σdh
󵄩󵄩󵄩󵄩0,Ω +
󵄩󵄩󵄩󵄩𝕂t̃h −

1
2φhuh − σ̃h

󵄩󵄩󵄩󵄩0,Ω + ‖R‖ + ‖R̃‖}.
(3.31)

According to (3.31), and in order to complete the derivation of our residual-based estimator, we need to bound
the norms of the residual functionals R and R̃. In this regard, we now notice from the second and fourth
equations of the Galerkin scheme (2.14) that R(τh) = 0 for all τh ∈ ℍσh and R̃(τ̃h) = 0 for all τ̃h ∈ Hσ̃h ,
respectively, whence the aforementioned norms can be redefined as

‖R‖ := sup
τ∈ℍ0(div4/3;Ω)

τ ̸=0

R(τ − τh)
‖τ‖div4/3;Ω ‖R̃‖ := sup

τ̃∈H(div4/3;Ω)
τ̃ ̸=0

R̃(τ̃ − τ̃h)
‖τ̃‖div4/3;Ω (3.32)

where the functions τh and τ̃h are chosen within the suprema of (3.32) so that they depend on the corre-
sponding τ ∈ ℍ0(div4/3;Ω) and τ̃ ∈ H(div4/3;Ω). More precisely, they are suitably defined in what follows
by employing the Helmholtz decompositions provided by Lemma 3.2 and (3.7) with p = 4/3. Indeed, letting
η ∈ 𝕎1,4/3(Ω), ξ ∈ H1(Ω), η ∈W1,4/3(Ω), and ξ ∈ H1(Ω), such that

τ := η + curl (ξ ), τ̃ := η + curl (ξ) in Ω (3.33)

with
‖η‖1,4/3;Ω + ‖ξ‖1,Ω ⩽ C4/3 ‖τ‖div4/3;Ω , ‖η‖1,4/3;Ω + ‖ξ‖1,Ω ⩽ C4/3 ‖τ‖div4/3;Ω (3.34)

we set
τh := Πkh(η) + curl (Ihξ ) + c 𝕀 ∈ ℍ

σ
h , τ̃h := Πkh(η) + curl (Ihξ) ∈ H

σ̃
h (3.35)

where the constant c is chosen so that tr (τh) has a null mean value, and hence τh does belong toℍσh . Note
that τh and τ̃h can be seen as discrete Helmholtz decompositions of τ and τ̃, respectively. In this way, using
that R(c𝕀) = 0, and denoting

η̂ := η − Πkh(η), ξ̂ := ξ − Ihξ , η̂ := η − Πkh(η), ξ̂ := ξ − Ihξ

it follows from (3.33) and (3.35) that

R(τ) = R(τ − τh) = R(η̂) + R(curl (ξ̂ )) (3.36)

R̃(τ̃) = R̃(τ̃ − τ̃h) = R̃(η̂) + R̃(curl (ξ̂ )) (3.37)

where, according to the definitions of R and R̃ (cf. (3.21) and (3.29)), we find that

R(η̂) = (th , η̂)Ω + (uh , div(η̂))Ω − ⟨η̂ν, uD⟩Γ (3.38)

R(curl (ξ̂ )) = (th , curl (ξ̂ ))Ω − ⟨curl (ξ̂ )ν, uD⟩Γ (3.39)

R̃(η̂) = (̃th , η̂)Ω + (φh , div(η̂))Ω − ⟨η̂ ⋅ ν, φD⟩Γ , R̃(curl (ξ̂ )) = (̃th , curl (ξ̂ ))Ω − ⟨curl (ξ̂ ) ⋅ ν, φD⟩Γ .

The following lemma establishes the residual upper bound for ‖R‖.
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Lemma 3.7. There exists a positive constant C, independent of h, such that

‖R‖ ⩽ C {Φ̄ + Φ̂} (3.40)

where
Φ̄2 := ∑

K∈Tb
h

Φ̄2
K , Φ̂4 := ∑

K∈Tb
h

Φ̂4
K

with

Φ̄2
K := h2K ‖rot (th)‖

2
0,K + ∑

e∈Eh(K)∩Eh(Ω)
he ‖Jth sK‖20,e + ∑

e∈Eh(K)∩Eh(Γ)
he ‖ths − ∇uD s‖20,e

Φ̂4
K := h4K ‖th − ∇uh‖

4
0,4;K + ∑

e∈Eh(K)∩Eh(Γ)
he ‖uD − uh‖40,4;e .

Proof. According to (3.36), we begin by estimating R(η̂) (cf. (3.38)). Let us first observe that, for each e ∈ Eh,
the identity (3.3) and the fact that uh|e ∈ Pk(e) yield ∫e η̂ν ⋅ uh = 0. Hence, locally integrating by parts the
second term in (3.38), we readily obtain

R(η̂) = (th − ∇uh , η̂)Ω − ∑
e∈Eh(Γ)
∫
e
uD ⋅ η̂ν = (th − ∇uh , η̂)Ω − ∑

e∈Eh(Γ)
∫
e
(uD − uh) ⋅ η̂ν

from which, applying the Hölder inequality along with the approximation properties (3.5) and (3.6) (cf.
Lemma 3.1) with p = 4/3 and l = 0, we find that

|R(η̂)| ⩽ ∑
K∈Tb

h

‖th − ∇uh‖0,4;K ‖η̂‖0,4/3;K + ∑
e∈Eh(Γ)
‖uD − uh‖0,4;e ‖η̂ν‖0,4/3;e

⩽ Ĉ1{ ∑
K∈Tb

h

hK ‖th − ∇uh‖0,4;K |η|1,4/3;K + ∑
e∈Eh(Γ)

h1/4e ‖uD − uh‖0,4;e |η|1,4/3;Ke}

where, given e ∈ Eh(Γ), Ke is the triangle of Tbh having e as an edge. Then, employing the discrete Hölder
inequality in the above sums and then the first stability estimate of (3.34), we arrive at

|R(η̂)| ⩽ Ĉ2{ ∑
K∈Tb

h

h4K ‖th − ∇uh‖
4
0,4;K + ∑

e∈Eh(Γ)
he ‖uD − uh‖40,4;e}

1/4

‖τ‖div4/3;Ω . (3.41)

Next, we estimate R(curl (ξ̂ )) (cf. (3.39)). In fact, regarding its second term, a suitable boundary integration
by parts formula (cf. [21, Eq. (3.35), Lemma 3.5]) yields

⟨curl (ξ̂ )ν, uD⟩Γ = −⟨∇uD s, ξ̂⟩Γ . (3.42)

In turn, locally integrating by parts the first term of R(curl (ξ̂ )), we get

(th , curl (ξ̂ ))Ω = ∑
K∈Tb

h

∫
K
rot (th) ⋅ ξ̂ − ∑

e∈Eh(Ω)
∫
e
JthsK ⋅ ξ̂ − ∑

e∈Eh(Γ)
∫
e
ths ⋅ ξ̂

which, together with (3.42), imply

R(curl (ξ̂ )) = ∑
K∈Tb

h

∫
K
rot (th) ⋅ ξ̂ − ∑

e∈Eh(Ω)
∫
e
JthsK ⋅ ξ̂ − ∑

e∈Eh(Γ)
∫
e
(ths − ∇uD s) ⋅ ξ̂ . (3.43)

In this way, applying the Cauchy–Schwarz inequality, the approximation properties provided by Lemma 3.3,
and again the first stability estimate of (3.34), we deduce from (3.43) that

|R(curl (ξ̂ ))| ⩽ Ĉ3{ ∑
K∈Tb

h

h2K‖rot (th)‖
2
0,K + ∑

e∈Eh(Ω)
he‖JthsK‖20,e + ∑

e∈Eh(Γ)
he‖ths−∇uDs‖20,e}

1/2

‖τ‖div4/3;Ω . (3.44)
Finally, it is easy to see that (3.32), (3.36), (3.41), and (3.44) give (3.40), which ends the proof.
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The derivation of the residual upper bound for ‖R̃‖ proceeds analogously to the proof of the previous lemma.
We omit further details and state the corresponding result as follows.

Lemma 3.8. There exists a positive constant C, independent of h, such that

‖R̃‖ ⩽ C {Ψ̄ + Ψ̂}

where
Ψ̄2 := ∑

K∈Tb
h

Ψ̄2
K , Ψ̂4 := ∑

K∈Tb
h

Ψ̂4
K

with

Ψ̄2
K := h2K‖rot (̃th)‖

2
0,K + ∑

e∈Eh(K)∩Eh(Γ)
he ‖J̃th ⋅ sK‖20,e + ∑

e∈Eh(K)∩Eh(Γ)
he ‖t̃h ⋅ s − ∇φD ⋅ s‖20,e

Ψ̂4
K := h4K ‖t̃h − ∇φh‖

4
0,4;K + ∑

e∈Eh(K)∩Eh(Γ)
he ‖φD − φh‖40,4;e .

We end this section by stressing that the reliability of the estimator Θ (cf. (3.11)), that is the proof of Theo-
rem 3.1, is a direct consequence of Lemmas 3.6, 3.7, and 3.8. However, we observe that, while the resulting
constant Crel is independent of h, it is not explicitly computable since it depends on other constants, such as
the ones arising from the interpolation errors and the regularity assumption on the operator S, which are not
known explicitly. For the same reason, that is, dependence on unknown constants, the smallness assump-
tions on the data are not verifiable in practice. Unfortunately, improving these results has remained elusive.
Nevertheless, the numerical examples reported in Section 6 illustrate the boundedness of Crel and the good
performance of the adaptive strategy suggested by the a posteriori error estimates.

3.3 Preliminaries for eflciency

For the efficiency analysis of Θ (cf. (3.11)) we proceed as in [6, 7, 15], and apply the localization technique
based on bubble functions, and the inverse and discrete trace inequalities. For the former, given K ∈ Tbh , we
let ψK be the usual element-bubble function (cf. [39, Eqs. (1.5) and (1.6)]), satisfying

ψK ∈ P3(K), supp(ψK) ⊆ K, ψK = 0 on ∂T, 0 ⩽ ψK ⩽ 1 in K.

The specific properties of ψK to be employed in what follows, are collected in the following lemma, for
whose proof we refer to [39, Lem. 3.3 and Rem. 3.2].

Lemma 3.9. Let k be a non-negative integer, p, q ∈ (1, +∞) conjugate to each other, and K ∈ Tbh . Then, there
exist positive constants c1, c2, and c3, independent of h and K, but depending on the shape-regularity of the
triangulations (minimum angle condition) and k, such that for each u ∈ Pk(K) there hold

c1 ‖u‖0,p;K ⩽ sup
v∈Pk (K)
v ̸=0

∫
K
u ψKv

‖v‖0,q;K
⩽ ‖u‖0,p;K (3.45)

and
c2 h−1K ‖ψKu‖0,q;K ⩽ ‖∇(ψKu)‖0,q;K ⩽ c3 h

−1
K ‖ψKu‖0,q;K . (3.46)

In turn, the aforementioned inverse inequality is stated as follows (cf. [24, Lem. 1.138]).

Lemma 3.10. Let k, ℓ, and m be non-negative integers such that m ⩽ ℓ, and let r, s ∈ [1, +∞], and K ∈ Tbh .
Then, there exists c > 0, independent of h, K, r, and s, but depending on k, ℓ, m, and the shape regularity of the
triangulations, such that

‖v‖l,r;K ⩽ c hm−ℓ+n(1/r−1/s)K ‖v‖m,s;K ∀ v ∈ Pk(K). (3.47)
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Finally, proceeding as in [1, Th. 3.10], that is employing the usual scaling estimates with respect to a fixed
reference element K̂, and applying the trace inequality in W1,p(K̂), for a given p ∈ (1, +∞), one is able to
establish the following discrete trace inequality.

Lemma 3.11. Let p ∈ (1, +∞). Then, there exits c > 0, depending only on the shape regularity of the triangula-
tions, such that for each K ∈ Tbh and e ∈ E(K), there holds

‖v‖p0,p;e ⩽ c {h
−1
K ‖v‖

p
0,p;K + h

p−1
K |v|

p
1,p;K} ∀ v ∈ W

1,p(K). (3.48)

3.4 Eflciency

In this section we prove the efficiency of Θ (cf. (3.11)), which is stated as follows.

Theorem 3.2. Assume, for simplicity, that uD and φD are piecewise polynomials. Then, there exists a positive
constant Ceff , independent of h, such that

Ceff Θ + h.o.t. ⩽ ‖σ⃗ − σ⃗h‖𝕏 (3.49)

where h.o.t. stands for one or several terms of higher order.

The rest of this section is devoted to the proof of (3.49). We begin with the following result.

Lemma 3.12. There exist positive constants c, c̃, C, and C̃, independent of h, such that
󵄩󵄩󵄩󵄩 − div(σh) +

1
2 th uh − φh g

󵄩󵄩󵄩󵄩0,4/3;Ω

⩽ c {‖σ − σh‖div4/3;Ω + ‖u − uh‖0,4;Ω + ‖t − th‖0,Ω + ‖φ − φh‖0,4;Ω} (3.50)

󵄩󵄩󵄩󵄩2µ(φh)th,sym −
1
2 (uh ⊗ uh)

d − σdh
󵄩󵄩󵄩󵄩0,Ω

⩽ C {‖σ − σh‖div4/3;Ω + ‖t − th‖0,Ω + ‖u − uh‖0,4,Ω + ‖φ − φh‖0,4;Ω} (3.51)

󵄩󵄩󵄩󵄩 − div(σ̃h) +
1
2uh ⋅ t̃h
󵄩󵄩󵄩󵄩0,4/3;Ω ⩽ c̃ {‖σ̃ − σ̃h‖div4/3;Ω + ‖t̃ − t̃h‖0,Ω + ‖u − uh‖0,4;Ω} (3.52)

and

󵄩󵄩󵄩󵄩𝕂t̃h −
1
2φhuh − σ̃h

󵄩󵄩󵄩󵄩0,Ω ⩽ C̃ {‖σ̃ − σ̃h‖div4/3;Ω + ‖t̃ − t̃h‖0,Ω + ‖u − uh‖0,4;Ω + ‖φ − φh‖0,4;Ω}. (3.53)

Proof. Let us begin with the proof of (3.50). According to the third row of (2.3), and applying the triangle
inequality and the continuous injection of L4(Ω) into L4/3(Ω), we readily find that

󵄩󵄩󵄩󵄩 − div(σh) +
1
2 thuh − φhg

󵄩󵄩󵄩󵄩0,4/3;Ω =
󵄩󵄩󵄩󵄩div(σ − σh) −

1
2 (tu − thuh) + (φ − φh)g

󵄩󵄩󵄩󵄩󵄩󵄩0,4/3;Ω

⩽ ‖σ − σh‖div4/3;Ω + 1
2 ‖tu − thuh‖0,4/3;Ω + ‖g‖0,∞;Ω‖φ − φh‖0,4;Ω . (3.54)

Then, subtracting and adding tuh, and employing the triangle and Hölder inequalities, the latter with conju-
gate exponents given by 3/2 and 3, we obtain

‖tu − thuh‖0,4/3;Ω ⩽ ‖t(u − uh)‖0,4/3;Ω + ‖(t − th)uh‖0,4/3;Ω

⩽ ‖t‖0,Ω ‖u − uh‖0,4;Ω + ‖t − th‖0,Ω ‖uh‖0,4;Ω . (3.55)

Next, using the bounds for ‖t‖0,Ω and ‖uh‖0,4;Ω provided by [17, Th. 3.11, Eq. (3.79)] and (3.30) (cf. [17, Th. 4.11,
Eq. (4.24)]), respectively,we deduce from (3.55) the existence of a positive constant C, depending only on data,
but independent of h, such that

‖tu − thuh‖0,4/3;Ω ⩽ C {‖u − uh‖0,4;Ω + ‖t − th‖0,Ω}
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which, replaced back into (3.54), yields (3.50). In turn, for the proof of (3.51), we first make use of the fourth
row of (2.3) and the triangle inequality to obtain

󵄩󵄩󵄩󵄩2µ(φh)th,sym −
1
2 (uh ⊗ uh)

d − σdh
󵄩󵄩󵄩󵄩0,Ω

= 󵄩󵄩󵄩󵄩2{µ(φh)th,sym − µ(φ)tsym} +
1
2 {(u ⊗ u)

d − (uh ⊗ uh)d} + σd − σdh
󵄩󵄩󵄩󵄩0,Ω

⩽ 2 {‖µ(φh)th,sym − µ(φ)tsym‖0,Ω + ‖(u ⊗ u) − (uh ⊗ uh)‖0,Ω + ‖σ − σh‖0,Ω}.

(3.56)

Then, subtracting and adding µ(φh)tsym, using the upper bound of µ (cf. (2.2)), proceeding as for the deriva-
tion of (3.27) (see also [17, Eq. (3.68)]), and employing the regularity estimate for ‖t‖ε,Ω provided by (3.19), we
find that

‖µ(φh)th,sym − µ(φ)tsym‖0,Ω ⩽ ‖µ(φh)(tsym − th,sym)‖0,Ω + ‖(µ(φ) − µ(φh)) tsym‖0,Ω

⩽ C {‖t − th‖0,Ω + ‖φ − φh‖0,4;Ω}
(3.57)

where C is a positive constant depending only on data and independent of h. Similarly, subtracting and
adding uh in one factor of u ⊗ u, and then applying Hölder’s inequality, we get

‖(u ⊗ u) − (uh ⊗ uh)‖0,Ω ⩽ ‖u‖0,4;Ω ‖u − uh‖0,4;Ω + ‖uh‖0,4;Ω ‖u − uh‖0,4;Ω (3.58)

from which, making use of the bounds for ‖u‖0,4;Ω and ‖uh‖0,4;Ω given by [17, Th. 3.11, Eq. (3.79)] and (3.30)
(see also [17, Th. 4.11, Eq. (4.24)], respectively, it follows that

‖(u ⊗ u) − (uh ⊗ uh)‖0,Ω ⩽ C ‖u − uh‖0,4;Ω (3.59)

with another positive constant C depending only on data and independent of h as well. In this way, replacing
the bounds from (3.57) and (3.59) in (3.56), we are lead to (3.51). The proofs of (3.52) and (3.53), being similar
to those of (3.50) and (3.51), are omitted.

The local efficiency estimates to be stated by the next two lemmas have already been proved in the literature
by using localization through bubble functions. We simply refer to their respective proofs.

Lemma 3.13. There exist positive constants c, c̃, C, and C̃, such that

h2K ‖rot (th)‖
2
0,K ⩽ c ‖t − th‖

2
0,K , h2K ‖rot (̃th)‖

2
0,K ⩽ c̃ ‖t̃ − t̃h‖

2
0,K ∀ K ∈ T

b
h

he ‖JthsK‖20,e ⩽ C ‖t − th‖
2
0,ωe , he ‖J̃th ⋅ sK‖20,e ⩽ C̃ ‖t̃ − t̃h‖

2
0,ωe ∀ e ∈ Eh(Ω)

where ωe is the union of the two elements of Tbh sharing the edge e.

Proof. See [9, Lemmas 4.3 and 4.4].

Lemma 3.14. Assume that uD and φD are piecewise polynomials. Then, there exist positive constants c and c̃,
such that for each e ∈ Eh(Γ) there hold

he ‖ths − ∇uD s‖20,e ⩽ c ‖t − th‖
2
0,Ke , he ‖t̃h ⋅ s − ∇φD ⋅ s‖20,e ⩽ c̃ ‖t̃ − t̃h‖

2
0,Ke

where Ke is the triangle of Tbh having e as an edge.

Proof. See [31, Lem. 4.15].

The inequalities supplied by Lemma 3.9 are invoked in the proof of the following lemma.

Lemma 3.15. There exist positive constants c and c̃, independent of h, such that

h4K ‖th − ∇uh‖
4
0,4;K ⩽ c {‖u − uh‖

4
0,4;K + h

2
K‖t − th‖

4
0,K} ∀ K ∈ T

b
h

h4K ‖t̃h − ∇φh‖
4
0,4;K ⩽ c̃{‖φ − φh‖

4
0,4;K + h

2
K‖t̃ − t̃h‖

4
0,K} ∀ K ∈ T

b
h .



342 | G.Gatica et al., Banach spaces fully mixed FEM for Boussinesq models

Proof. For the first inequality we proceed as in the proof of [15, Lem. 5.15]. In fact, given K ∈ Tbh , we begin
by applying the vector version of the left hand side inequality of (3.45), with p = 4 and q = 4/3, to the local
polynomial χK := th − ∇uh ∈ Pk(K), which gives

c1 ‖χK‖0,4;K ⩽ sup
v∈Pk (K)
v ̸=0

∫
K
χK ⋅ ψKv

‖v‖0,4/3;K
. (3.60)

Then, using that t = ∇u in Ω, and integrating by parts, we find that

∫
K
χK ⋅ ψKv = ∫

K
{∇(u − uh) − (t − th)} ⋅ ψKv = −∫

K
(u − uh)div(ψKv) − ∫

K
(t − th) ⋅ ψKv

from which, employing the Hölder and Cauchy–Schwarz inequalities, noting that

‖div(ψKv)‖0,4/3;Ω ⩽ ‖∇(ψKv)‖0,4/3;Ω

and then applying the right-hand side inequality of (3.46), along with the fact that 0 ⩽ ψK ⩽ 1, we obtain

∫
K
χK ⋅ ψKv ⩽ C {h−1K ‖u − uh‖0,4;K ‖v‖0,4/3;K + ‖t − th‖0,K ‖v‖0,K}. (3.61)

In turn, according to the local inverse inequality (3.47) with n = 2, ℓ = m = 0, r = 2, and s = 4/3, there holds
‖v‖0,K ⩽ c h−1/2K ‖v‖0,4/3;K, and thus (3.61) becomes

∫
K
χK ⋅ ψKv ⩽ C {h−1K ‖u − uh‖0,4;K + h

−1/2
K ‖t − th‖0,K} ‖v‖0,4/3;K . (3.62)

In this way, replacing (3.62) back into (3.60), and multiplying the resulting inequality by hK, we get

hK ‖th − ∇uh‖0,4;K ⩽ ‖u − uh‖0,4;K + h1/2K ‖t − th‖0,K

so that taking the foregoing inequality to the power 4 the required bound is obtained. The second inequality
is derived by an analogous reasoning, and hence we omit further details.

The remaining local efficiency estimates are established as follows.

Lemma 3.16. Assume that uD and φD are piecewise polynomials. Then, there exist positive constants C and C̃,
independent of h, such that

he ‖uD − uh‖40,4;e ⩽ C {‖u − uh‖
4
0,4;Ke + h

2
Ke ‖t − th‖

4
0,Ke}

he ‖φD − φh‖40,4;e ⩽ C̃ {‖φ − φh‖
4
0,4;Ke + h

2
Ke ‖t̃ − t̃h‖

4
0,Ke}

for all e ∈ Eh(Γ), and where Ke is the triangle of Tbh having e as an edge.

Proof. Being both inequalities proved in an analogous way, we only show the first one. In fact, given e ∈
Eh(Γ), we first observe that the local inverse inequality (3.47) with n = 1, ℓ = m = 0, r = 4, and s = 2 yields
‖uD−uh‖0,4;e ⩽ c h−1/4e ‖uD−uh‖0,e. Hence, taking the above to the power 4, using thatu = uD on Γ, applying
the vector version of the discrete trace inequality (3.48) (cf. Lemma 3.11) with p = 2, recalling that t = ∇u, and
employing the triangle inequality, we find that

he ‖uD − uh‖40,4;e ⩽ C ‖u − uh‖
4
0,e ⩽ C {h

−1
Ke ‖u − uh‖

2
0,Ke + hKe ‖t − ∇uh‖

2
0,Ke}

2

⩽ C {h−1Ke ‖u − uh‖
2
0,Ke + hKe ‖t − th‖

2
0,Ke + hKe ‖th − ∇uh‖

2
0,Ke}

2
.

(3.63)

Next, and owing to the Cauchy–Schwarz inequality, we have that

‖w‖20,Ke ⩽ |Ke|
1/2 ‖w‖20,4;Ke ⩽ c hKe ‖w‖

2
0,4;Ke ∀w ∈ L

4(Ke)
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and it follows from (3.63) that

he ‖uD − uh‖40,4;e ⩽ C {‖u − uh‖
2
0,4;Ke + hKe ‖t − th‖

2
0,Ke + h

2
Ke ‖th − ∇uh‖

2
0,4;Ke}

2

⩽ c {‖u − uh‖40,4;Ke + h
2
Ke ‖t − th‖

4
0,Ke + h

4
Ke ‖th − ∇uh‖

4
0,4;Ke}.

Finally, as a consequence of the first estimate from Lemma 3.15 we can bound the last term in the foregoing
inequality, and this step concludes the proof.

At this point we stress that if uD and φD were not piecewise polynomials but sufficiently smooth, then higher
order terms given by the errors arising from suitable polynomial approximations of these functionswould ap-
pear in the efficiency estimates provided by Lemmas 3.14 and 3.16. This fact explains the eventual expression
h.o.t. in the global efficiency estimate (3.49).

We end this section by remarking that the proof of (3.49) follows straightforwardly from Lemmas 3.12–
3.16, and after summing up the local efficiency estimates over all K ∈ Tbh .

4 A posteriori error analysis: the 3D case
In this section we extend the results from Section 3 to the three-dimensional version of (2.14). Similarly as
in the previous section, given a tetrahedron K ∈ Tbh , we let E(K) be the set of its faces, and let Eh be the set
of all faces of the triangulation Tbh . Then, we write Eh = Eh(Ω) ∪ Eh(Γ) with Eh(Ω) and Eh(Γ) defined as in
Section 3.1. Also, for each face e ∈ Eh we fix a unit normal νe to e. Now, let v ∈ L2(Ω) such that v|K ∈ C(K)
on each K ∈ Tbh . Then, given e ∈ E(K) ∩ Eh(Ω), we denote by Jv × νeK the tangential jump of v across e, that
is, Jv × νeK := (v|K − v|K󸀠 )|e × νe, where K and K󸀠 are the tetrahedron of Tbh having e as a common face. In
addition, for τ ∈ 𝕃2(Ω) such that τ|K ∈ ℂ(K), we let Jτ × νeK be the tangential jump of τ across e, that is,
Jτ × νeK := (τ|K − τ|K󸀠 )|e × νe. In what follows, when no confusion arises, we simply write ν instead of νe. On
the other hand, we recall that the curl of a 3D vector v := (v1, v2, v3) is the 3D vector

curl (v) = ∇ × v := ( ∂v3∂x2
−
∂v2
∂x3

, ∂v1
∂x3
−
∂v3
∂x1

, ∂v2
∂x1
−
∂v1
∂x2
)

and that, given a tensor function τ := (τij)3×3, the operator curl (τ) is the 3 × 3 tensor whose rows are given
by

curl (τ) := (
curl (τ11, τ12, τ13)
curl (τ21, τ22, τ23)
curl (τ31, τ32, τ33)

) .

In addition, τ × ν stands for the 3 × 3 tensor whose rows are given by the tangential components of each row
of τ, that is,

τ × νe := (
(τ11, τ12, τ13) × νe
(τ21, τ22, τ23) × νe
(τ31, τ32, τ33) × νe

) .

In turn, the tangential curl operator curl s and a tensor version of it, denoted curl s, which is defined
component-wise by curl s, will also be used.

Thus, for each K ∈ Tbh we define

Θ̄2
K := 󵄩󵄩󵄩󵄩2µ(φh)th,sym −

1
2 (uh ⊗ uh)

d − σdh
󵄩󵄩󵄩󵄩
2
0,K +
󵄩󵄩󵄩󵄩𝕂t̃h −

1
2φhuh − σ̃h

󵄩󵄩󵄩󵄩
2
0,K

+ h2K ‖curl (th)‖
2
0,K + h

2
K‖curl (̃th)‖

2
0,K + ∑e∈Eh(Ω) he{

󵄩󵄩󵄩󵄩Jth × νK
󵄩󵄩󵄩󵄩
2
0,e +
󵄩󵄩󵄩󵄩J̃th × νK

󵄩󵄩󵄩󵄩
2
0,e}

+ ∑
e∈Eh(K)∩Eh(Γ)

he{‖th × ν − curl s(uD)‖
2
0,e + ‖t̃h × ν − curl s(φD)‖

2
0,e}.

(4.1)
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Hence, bearing in mind the definitions of Θ̃4/3
K (cf. (3.8)) and Θ̂4

K (cf. (3.10)), which are also valid in the
present 3D case, the associated global a posteriori error estimator is defined as

Θ = { ∑
K∈Tb

h

Θ̃4/3
K }

3/4

+ { ∑
K∈Tb

h

Θ̄2
K}

1/2

+ { ∑
K∈Tb

h

Θ̂4
K}

1/4

. (4.2)

In this way, the corresponding reliability and efficiency estimates, which constitute the analogue of Theo-
rems 3.1 and 3.2, are stated as follows.

Theorem 4.1. Assume that the data are sufficiently small (similarly as indicated in Lemma 3.6), and suppose
that uD and φD are piecewise polynomials. Then, there exist positive constants Crel and Ceff , independent of h,
such that

Ceff Θ + h.o.t. ⩽ ‖σ⃗ − σ⃗h‖𝕏 ⩽ CrelΘ.

The proof of Theorem 4.1 follows very closely the analysis of Section 3, except a few issues to be described
throughout the followingdiscussion. Indeed,wefirst observe that the general a posteriori error estimate given
by Lemma 3.6 is also valid in 3D. Then, we follow [29, Th. 3.2] to derive a 3D version for arbitrary polyhedral
domains of the Helmholtz decomposition provided by Lemma 3.2. Next, the associated discrete Helmholtz
decomposition and the functionalsR and R̃ are set and rewritten exactly as in (3.35), (3.36), and (3.37), respec-
tively. Furthermore, in order to derive the new upper bounds of ‖R‖ and ‖R̃‖, we now need the 3D analogue of
the integration by parts formula on the boundary given by (3.42). In fact, by applying the identities from [34,
Ch. I, Eq. (2.17), and Th. 2.11], we deduce that in this case there holds

⟨curl ξ ⋅ ν, ϑ⟩Γ = −⟨curl sϑ, ξ⟩Γ ∀ ξ ∈ H1(Ω), ∀ ϑ ∈ H1/2(Γ).

In addition, the integration by parts formula on each tetrahedron K ∈ Tbh , which is used in the proof of the
3D analogue of Lemma 3.7, becomes (cf. [34, Ch. I, Th. 2.11])

∫
K
curl q ⋅ ξ − ∫

K
q ⋅ curl ξ = ⟨q × ν, ξ⟩∂K ∀q ∈ H(curl ;Ω), ∀ ξ ∈ H1(Ω)

where ⟨⋅, ⋅⟩∂K is the duality pairing between H−1/2(∂K) and H1/2(∂K), and, as usual, H(curl , Ω) is the space
of vectors in L2(Ω) whose curl lies also in L2(Ω). Note that, unlike the 2D case, it is not necessary for the
reliability to assume that uD ∈ H1+δ(Γ) and φD ∈ H1+δ(Γ), for some δ > 0, since the curl s is defined into
H1/2(Γ).

Finally, in order to prove the efficiency of Θ (cf. (4.2)), we first observe that the terms defining Θ̃4/3
K

(cf. (3.8)) and the first two defining Θ̄2
K (cf. (4.1)) are estimated exactly as done for the 2D case in Lemma 3.12.

For the remaining terms, we refer to [30, Lem. 4.2].

5 Extension to the Oberbeck–Boussinesq problem
The same tools and techniques employed in the previous sections can be applied for the a posteriori error
analysis of the fully mixed scheme from [18] for the Oberbeck–Boussinesq model. The resulting a posteriori
error estimators for the 2D and 3D cases are summarized in Sections 5.3 and 5.4.

5.1 The Oberbeck–Boussinesq problem

The stationaryOberbeck–Boussinesqproblemconsists of the incompressibleNavier–Stokes–Brinkmanequa-
tions coupled with the heat and mass transfer equations through a convective term and a buoyancy term
acting in opposite direction to gravity. More precisely, given an external force per unit mass g ∈ L∞(Ω), and
Dirichlet data uD ∈ H1/2(Γ), and φ1,D , φ2,D ∈ H1/2(Γ), the model reduces to: Find a velocity field u, a pres-
sure field p, a temperature field φ1, and a concentration field φ2, both defining a vectorφ := (φ1, φ2), such
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that
γu − div(2µ(φ)e(u)) + (∇u)u + ∇p = (ϑ ⋅ φ)g in Ω, div(u) = 0 in Ω

− div(𝕂1∇φ1) + u ⋅ ∇φ1 = 0 in Ω, − div(𝕂2∇φ2) + u ⋅ ∇φ2 = 0 in Ω

u = uD on Γ, φ1 = φ1,D on Γ, φ2 = φ2,D on Γ

(5.1)

where γ is a positive constant inversely proportional to the reciprocal of theDarcy number Da, µ : R×R+ → R+

is the viscosity of the fluid, e(u) is the symmetric part of the velocity gradient ∇u, also known as the rate of
strain tensor, ϑ := (ϑ1, ϑ2) is a vector containing expansion coefficients, and𝕂j ∈ 𝕃∞(Ω), with j ∈ {1, 2}, are
uniformly positive definite tensors describing the thermal conductivity of the fluid. In addition, µ is assumed
bounded and Lipschitz continuous, which means that there exist constants µ1, µ2, Lµ > 0, such that

µ1 ⩽ µ(φ) ⩽ µ2, |µ(φ) − µ(ψ)| ⩽ Lµ |φ − ψ| ∀φ, ψ ∈ R × R+

where | ⋅ | denotes from on the euclidean norm of Rn, n ∈ {1, 2, 3}. The incompressibility of the fluid (cf.
second eq. of (5.1)) and the Dirichlet boundary condition (cf. fifth eq. of (5.1)), imply that uD must satisfy the
compatibility condition∫Γ uD ⋅ν = 0. Then, using someof the auxiliary unknownsdefined in Section 2.2, intro-
ducing the new ones that are set implicitly next, denotingφD := (φ1,D , φ2,D), and eliminating the pressure p
as before, the Oberbeck–Boussinesq problem (5.1) can be re-stated as follows: Find (u, t, σ) and (φj , t̃j , σ̃j),
j ∈ {1, 2}, in suitable spaces to be indicated below such that

∇u = t in Ω

γu − div σ + 1
2 tu − (ϑ ⋅ φ)g = 0 in Ω

2µ(φ)tsym −
1
2 (u ⊗ u)

d = σd in Ω

∇φj = t̃j in Ω (5.2)

𝕂j t̃j −
1
2φj u = σ̃j in Ω

−div σ̃j +
1
2 t̃j ⋅ u = 0 in Ω

∫
Ω
tr (2σ + u ⊗ u) = 0, u = uD φ = φD on Γ.

5.2 The continuous and discrete formulations

Bearing inmind the definitions andnotations fromSection 2.2, and according to [18, Sect. 3.1], the fully-mixed
variational formulation for (5.2) reads: Find (u⃗, σ) ∈ H × ℍ0(div4/3;Ω) and (φ⃗j , σ̃j) ∈ H̃ × H(div4/3;Ω),
j ∈ {1, 2} such that

âφ(u⃗, v⃗) + c(u; u⃗, v⃗) + b(v⃗, σ) = F̂φ(v⃗) ∀ v⃗ ∈ H

b(u⃗, τ) = G(τ) ∀ τ ∈ ℍ0(div4/3;Ω)

ãj(φ⃗j , ψ⃗j) + c̃u(φ⃗j , ψ⃗j) + b̃(ψ⃗j , σ̃j) = 0 ∀ ψ⃗j ∈ H̃

b̃(φ⃗j , τ̃j) = G̃(τ̃j) ∀ τ̃j ∈ H(div4/3;Ω)

(5.3)

where, given φ ∈ L4(Ω), the forms âφ and ãj, and the functional F̂φ, are defined by

âφ(u⃗, v⃗) := (γu, v)Ω + (2µ(φ)tsym, s)Ω , ãj(φ⃗j , ψ⃗j) := (𝕂j t̃j , s̃j)Ω , F̂φ(v⃗) := ((ϑ ⋅ φ)g, v)Ω

for all u⃗ := (u, t), v⃗ := (v, s) ∈ H, for all τ ∈ ℍ0(div4/3;Ω), for all φ⃗j := (φj , t̃j), ψ⃗j := (ψj , s̃j) ∈ H̃, and for
all τ̃j ∈ H(div4/3;Ω). In turn, as stated at the beginning of this section, the forms b, c, b̃, and c̃w, the latter
for a givenw ∈ L4(Ω), and the functionals G and G̃, are defined in Section 2.2.
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In turn, using the same finite element subspaces from Section 2.3, the Galerkin scheme associated
with (5.3) reads: Find (u⃗h , σh) ∈ Hh ×ℍσh and (φ⃗j,h , σ̃j,h) ∈ H̃h ×H

σ̃
h , j ∈ {1, 2} such that

âφh
(u⃗h , v⃗h) + c(uh; u⃗h , v⃗h) + b(v⃗h , σh) = F̂φh

(v⃗h) ∀ v⃗h ∈ Hh

b(u⃗h , τh) = G(τh) ∀ τh ∈ ℍσh
ãj(φ⃗j,h , ψ⃗j,h) + c̃uh (φ⃗j,h , ψ⃗j,h) + b̃(ψ⃗j,h , σ̃j,h) = 0 ∀ ψ⃗h ∈ H̃h

b̃(φ⃗j,h , τ̃j,h) = G̃(τ̃j,h) ∀ τ̃h ∈ Hσ̃h .

(5.4)

For the well-posedness of (5.3) and (5.4) we refer to [18, Th. 3.9] and [18, Th. 4.7], respectively, whereas the
a priori error estimates and corresponding rates of convergence are established in [18, Th. 5.1 and 5.2].

5.3 The a posteriori error estimator in 2D

Recall that

σ⃗ = ((u⃗, σ), (φ⃗1, σ̃1), (φ⃗2, σ̃2)) ∈ 𝕏̂ := H ×ℍ0(div4/3;Ω) × H̃ ×H(div4/3;Ω) × H̃ ×H(div4/3;Ω)

is the unique solution of problem (5.3), and that

σ⃗h = ((u⃗h , σh), (φ⃗1,h , σ̃1,h), (φ⃗2,h , σ̃2,h)) ∈ 𝕏̂h := Hh ×ℍσh × H̃h ×H
σ̃
h × H̃h ×H

σ̃
h

is a solution of (5.4). Then, assuming as in Section 3.2, that uD ∈ H1+δ(Γ) ∩ L4(Γ) and φj,D ∈ H1+δ(Γ) ∩ L4(Γ),
for some δ > 0, and for j ∈ {1, 2}, we define for K ∈ Tbh the local error indicators

Ψ̃4/3
K := 󵄩󵄩󵄩󵄩γuh − div(σh) +

1
2 th uh − (ϑ ⋅ φh) g

󵄩󵄩󵄩󵄩
4/3
0,4/3;K +

2
∑
j=1

󵄩󵄩󵄩󵄩 − div(σ̃j,h) +
1
2uh ⋅ t̃j,h

󵄩󵄩󵄩󵄩
4/3
0,4/3;K (5.5)

Ψ̄2
K := 󵄩󵄩󵄩󵄩2µ(φh)th,sym −

1
2 (uh ⊗ uh)

d − σdh
󵄩󵄩󵄩󵄩󵄩󵄩
2

0,K
+

2
∑
j=1

󵄩󵄩󵄩󵄩𝕂j t̃j,h −
1
2φj,huh − σ̃j,h

󵄩󵄩󵄩󵄩
2
0,K

+ h2K‖rot (th)‖
2
0,K +

2
∑
j=1
h2K‖rot (̃tj,h)‖

2
0,K + ∑

e∈Eh(K)∩Eh(Ω)
he󵄩󵄩󵄩󵄩Jth sK

󵄩󵄩󵄩󵄩
2
0,e

+
2
∑
j=1
{ ∑
e∈Eh(K)∩Eh(Ω)

he󵄩󵄩󵄩󵄩J̃tj,h ⋅ sK
󵄩󵄩󵄩󵄩
2
0,e + ∑

e∈Eh(K)∩Eh(Γ)
he‖t̃j,h ⋅ s − ∇φj,D ⋅ s‖20,e}

+ ∑
e∈Eh(K)∩Eh(Γ)

he‖ths − ∇uD s‖20,e (5.6)

Ψ̂4
K := h4K‖th − ∇uh‖

4
0,4;K +

2
∑
j=1
h4K‖t̃j,h − ∇φj,h‖

4
0,4;K

+ ∑
e∈Eh(K)∩Eh(Γ)

he‖uD − uh‖40,4;e +
2
∑
j=1
{ ∑
e∈Eh(K)∩Eh(Γ)

he‖φj,D − φj,h‖40,4;e} (5.7)

so that the global a posteriori error estimator is given by

Ψ = { ∑
K∈Tb

h

Ψ̃4/3
K }

3/4

+ { ∑
K∈Tb

h

Ψ̄2
K}

1/2

+ { ∑
K∈Tb

h

Ψ̂4
K}

1/4

. (5.8)

Then, the reliability and efficiency of Ψ , whose proofs follow very closely the analysis of Section 3, are
established as follows.

Theorem 5.1. Assume that the data are sufficiently small (similarly as indicated in Lemma 3.6), and suppose
for simplicity that uD and φj,D, j ∈ {1, 2}, are piecewise polynomials. Then, there exist positive constants Crel
and Ceff , independent of h, such that

Ceff Ψ + h.o.t. ⩽ ‖σ⃗ − σ⃗h‖𝕏 ⩽ Crel Ψ

where h.o.t. stands for one or several terms of higher order.
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5.4 The a posteriori error estimator in 3D

In this case for each K ∈ Tbh we define

Ψ̄2
K := 󵄩󵄩󵄩󵄩2µ(φh)th,sym −

1
2 (uh ⊗ uh)

d − σdh
󵄩󵄩󵄩󵄩
2
0,K +

2
∑
j=1

󵄩󵄩󵄩󵄩𝕂j t̃j,h −
1
2φj,huh − σ̃j,h

󵄩󵄩󵄩󵄩
2
0,K

+ h2K‖curl (th)‖
2
0,K +

2
∑
j=1
h2K‖curl (̃tj,h)‖

2
0,K + ∑

e∈Eh(K)∩Eh(Ω)
he󵄩󵄩󵄩󵄩Jth × νK

󵄩󵄩󵄩󵄩
2
0,e

+
2
∑
j=1
{ ∑
e∈Eh(K)∩Eh(Ω)

he󵄩󵄩󵄩󵄩J̃tj,h × νK
󵄩󵄩󵄩󵄩
2
0,e + ∑

e∈Eh(K)∩Eh(Γ)
he‖t̃j,h × ν − curl s(φj,D)‖20,e}

+ ∑
e∈Eh(K)∩Eh(Γ)

he‖th × ν − curl s(uD)‖
2
0,e

so that, letting Ψ̃4/3
K and Ψ̂4

K as definedby (5.5) and (5.7), the global a posteriori error estimator is givenby (5.8),
while the reliability and efficiency results are stated analogously to Theorem 5.1.

6 Numerical results
This section presents three computational tests that illustrate the properties of the proposed family of meth-
ods. For each problem we provide a test with known closed-form solution that we use to quantify the robust-
ness of the a posteriori error estimators (tests 1 and 3), while we consider in test 2 an application-driven prob-
lemwithout closed-form solutions. All computations useAlfeld splits (barycentric refinedmeshes)Tb

h created
from regular partitions Th of Ω, using the open-sourcemeshmanipulator GMSH [33]. For the implementation
of the numerical schemeswehave used the open-source finite element library FEniCS [2]. ANewton–Raphson
algorithm with null initial guess is used for the resolution of all nonlinear problems, whereas the solution of
tangent systems resulting from the linearization is carried out with themultifrontal massively parallel sparse
direct solver MUMPS. The condition of zero-average pressure (thanks to (2.4), translated in terms of the trace
of the tensor quantity 2σ + u ⊗ u) is imposed by means of a real Lagrange multiplier.

Errors between exact and approximate solutions are denoted as

e(u) := ‖u − uh‖0,4;Ω , e(t) := ‖t − th‖0,Ω e(σ) := ‖σ − σh‖div4/3;Ω , e(p) := ‖p − ph‖0,Ω

e(φ) :=
2
∑
j=1
‖φj − φj,h‖0,4;Ω , e(̃t) :=

2
∑
j=1
‖t̃j − t̃j,h‖0,4;Ω , e(σ̃) :=

2
∑
j=1
‖σ̃j − σ̃j,h‖div4/3;Ω

while we let r(⋆) denote their corresponding rates of convergence, specified for the case of adaptive compu-
tations as

r(⋆) := −2log(e(⋆)/e
󸀠(⋆))

log(DoF/DoF󸀠)
∀ ⋆ ∈ {u, t, σ, p, φ, t̃, σ̃} (6.1)

where DoF and DoF󸀠 denote the numbers of degrees of freedom associated with two consecutive meshes
producing errors e(⋆) and e󸀠(⋆), respectively. The local contributions of the residual-based a posteriori error
estimators (3.11), (4.2), and (5.8), which come from the constitutive equations, the conservation equations,
and the inter-element residuals, are used to steer the adaptive mesh-refining. We follow Algorithm 1, which,
though explained below for (2.14) and Θ (cf. (3.11)), applies in the same way for (5.4) and Ψ (cf. (5.8)). It is
designed based on the classical loop of

solving→ estimating→marking→ refining→ solving→ ⋅ ⋅ ⋅

as specified in, e.g., [22, 39]. As in [18] we need to deal with the adaptive procedure associated with the initial
triangular/tetrahedral mesh at each refinement step, and perform an additional step to treat its Alfeld split
and to project the estimator on a macro (parent) mesh. The key user-defined parameter is ℵ in step 12 of
Algorithm 1.
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Algorithm 1 – Adaptive refinement algorithm
1: for a given computation start with a coarse mesh Th made of triangles (or tetrahedra) ∆ and do
2: generate the associated barycentric refinement Tb

h made of triangles (or tetrahedra) K;
3: for the current mesh Tb

h do
4: solve the discrete problem (2.14) on the new barycentric mesh Tb

h;
5: end for
6: for each K ∈ Tb

h do
7: compute Θ̃K, Θ̄K, and Θ̂K, and then compute the local a posteriori error indicator ΘK := Θ̃K +

Θ̄K + Θ̂K;
8: end for
9: for each ∆ ∈ Th do
10: project the local a posteriori error indicator to the parent mesh Θ∆ := ∑K∈Tb

h , K⊆∆
ΘK;

11: end for
12: if for an element in theparentmesh L ∈ Th (even for a boundary element)wehaveΘL ⩾ ℵmaxK∈Tb

h
ΘK

then
13: mark L for refinement and mark further elements to guarantee that the triangulation remains

regular;
14: end if
15: if sufficiently many elements in the parent mesh Th aremarked so that they represent a given fraction

of the total estimated error then
16: stop
17: else
18: continue to the next step;
19: end if
20: generate an adapted parent mesh from Th through a variable metric/Delaunay automatic meshing

algorithm using the local indicators Θ∆, targeting the equidistribution of the local error indicators in
the updated parent mesh;

21: define the resulting mesh as Th and go to step (2).
22: end for

6.1 Example 1: accuracy for the Boussinesq problem using uniform and adaptive
mesh refinement

First we verify numerically the convergence of the mixed method applied to the Boussinesq equations by
manufacturing exact solutions of (2.7) over the L-shaped domain Ω = (−1, 1)2 \ (0, 1)2:

u = (
cos( π2 x1) sin (

π
2 x2)

− sin( π2 x1) cos (
π
2 x2)
) , p = 1 + sin(x1x2) cos(x1 + x2)

(x1 − 0.01)2 + (x2 − 0.01)2

φ = sin(x1x2) + cos(x1x2) + e−100[(x1−0.01)
2+(x2−0.01)2]

from which we can determine the exact strain rate, pseudostress, pseudo-heat, and heat flux. The values of
the exact velocity and temperature are used for Dirichlet data uD and φD, and they are also used to gener-
ate matching right-hand side forcing term and heat source. We consider synthetic viscosity and conduction
functions, as well as constant gravity acceleration as follows:

µ(φ) = e−φ , 𝕂 = (
e−x1 1

10 x1
1
10 x2 e−x2

) , g = ( 0
−1
) .

Note that the order of convergencederived in [17] dependsonboth thepolynomial degree andon the regularity
of the exact solutions. As the manufactured pressure (and therefore the exact pseudostress) and the exact
temperature have relatively high gradients near the reentrant corner, we expect the accuracy of the mixed
finite element scheme to deteriorate upon using uniform mesh refinement.
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Tab. 1: Example 1: Convergence history for the fully-mixed approximation with polynomial degree k = 2 and using uniform
(top block) and adaptive mesh refinement guided by (3.11) (bottom block). DoF stands for the number of degrees of freedom
associated with each barycentric refined mesh Tb

h, and Iter stands for the number of Newton–Raphson iterations required to
reach the tolerance 10−8.

With uniformmesh refinement

DoF h e(u) r(u) e(t) r(t) e(σ) r(σ) Iter

2899 1.0000 7.87e+00 — 1.47e+02 — 8.59e+02 — 15
11521 0.5000 5.61e+00 0.491 1.18e+02 0.319 5.47e+02 0.655 7
45937 0.2500 5.23e+00 0.130 1.05e+02 0.174 4.94e+02 0.312 5
183457 0.1250 3.10e+00 0.884 9.24e+01 0.445 3.60e+02 0.242 6
733249 0.0625 1.45e+00 0.679 7.05e+01 0.130 3.44e+02 0.164 7

e(φ) r(φ) e(̃t) r(̃t) e(σ̃) r(σ̃) e(p) r(p) eff(Θ)

3.72e-01 — 2.89e+00 — 1.72e+01 — 2.61e+02 — 0.585
1.38e-01 1.439 2.13e+00 0.438 1.62e+01 0.081 2.20e+02 0.127 0.738
7.13e-02 0.953 1.24e+00 0.790 1.34e+01 0.272 5.19e+01 1.213 0.929
4.37e-02 0.708 9.61e-01 0.363 1.30e+01 0.045 4.39e+01 0.243 0.658
4.56e-03 3.261 7.95e-01 0.257 9.07e+00 0.362 2.80e+01 0.648 0.370

With adaptive mesh refinement

DoF h e(u) r(u) e(t) r(t) e(σ) r(σ) Iter

19405 0.5143 5.70e+00 — 2.57e+01 — 9.88e+02 — 6
30385 0.5144 3.90e+00 1.694 1.14e+01 0.958 1.17e+02 0.740 5
44236 0.5153 2.13e+00 3.573 7.02e+00 1.215 7.62e+01 2.270 4
57601 0.5146 5.57e-01 3.975 6.51e-01 3.580 3.30e+01 3.415 4
77653 0.5144 7.96e-02 3.933 3.67e-01 3.131 7.49e+00 3.165 3
111070 0.5146 9.73e-03 3.272 8.73e-02 3.036 3.01e+00 3.489 3

e(φ) r(φ) e(̃t) r(̃t) e(σ̃) r(σ̃) e(p) r(p) eff(Θ)

6.92e-02 — 1.24e+00 — 1.31e+01 — 5.87e+01 — 0.642
4.97e-02 1.481 9.53e-01 1.155 1.13e+01 0.669 4.45e+01 1.236 0.643
2.11e-02 3.999 5.47e-01 2.954 6.97e+00 2.547 3.38e+01 2.470 0.634
9.65e-03 3.472 3.04e-01 3.572 4.29e-01 3.122 7.13e+00 3.778 0.634
2.10e-03 3.201 9.39e-02 3.484 3.13e-02 3.535 3.77e+00 3.323 0.634
7.08e-04 2.067 4.56e-02 3.229 7.10e-03 3.283 9.31e-01 3.892 0.635

10
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Fig. 1: Example 1: Total error decay obtained with a method with polynomial degree k = 2 and using uniform and adaptive mesh
refinement.
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(a) (b) (c)

(d) (e) (f)

Fig. 2: Example 1: Approximate velocity magnitude (a), postprocessed pressure with colormap in log scale (b), and temperature
distribution (c) obtained using a mixed method for the Boussinesq problem with k = 2 and after two steps of adaptive mesh
refinement. Panels (d,e,f) show samples of adaptive meshes.

On each refinement level we compute approximate solutions, as well as errors and convergence rates
defined as above. The error history for each field variable and the effectivity index for the estimator (3.11),
eff(Θ) := e/Θ (where e denotes the total error), are supplied in Table 1. There, we also list for each refine-
ment step the iteration count for the Newton–Raphson algorithm (needed for the ℓ2-norm, either absolute
or relative, of the incremental vector solution to be below the prescribed tolerance of 10−8). These results
tabulate the convergence of themethodwhen following a uniformmesh refinement versus the adaptive case.
In the uniform case we generate triangular meshes and refine them uniformly, then apply for each mesh a
barycentric refinement, on which we compute numerical solutions and errors. In the adaptive case we use
Algorithm 1. In all cases we see that the convergence is suboptimal for the uniform refinement whereas opti-
mal and super-optimal rates are seen whenwe apply the adaptive algorithm. In addition, we observe that the
effectivity index is muchmore stable in the adaptive case.We also see that the number of iterations is system-
atically lower in the adaptive case. Note that the asymptotic convergence and the fluctuation of the effectivity
index can be easily tuned using step 12 in Algorithm 1. For example, using a refinement parameter ℵ = 0.05
(instead of the value 0.01 used to generate Table 1) we get a slower convergence (but still super-optimal). Such
behaviour is not surprising since the high gradients of pressure and temperature are concentrated only on a
very small region near the reentrant corner. Once these gradients are resolved (which occurs after a couple
of adaptive refinement steps), then the solution is relatively smooth, leading to superconvergence. Moreover,
for this type of solutions, the experimental convergence computed as in (6.1) and used in the adaptive case,
can be quite different compared to the usual rate computed using two consecutive meshsizes. For sake of
completeness we also plot the total error decay vs the number of degrees of freedom in Fig. 1, that allows us
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to infer an approximate fourth-order convergence for the adaptive scheme versus a rate of convergence of
approximately 0.3 for the uniform case.

To further exemplify the performance of the scheme, we show in Fig. 2 approximate solutions (velocity
magnitude, postprocessed pressure, and temperature) obtained by the adaptive method on relatively coarse
meshes, together with examples of locally refined barycentric meshes indicating the expected refinement
near the reentrant corner of the domain, located at the origin.

6.2 Example 2: adaptive computation for the 3D thermal cavity

Next we test the adaptive algorithm in a 3D problem consisting of the stationary Boussinesq equations on
the unit cube Ω = (0, 1)3, where the distribution of temperature and flow patterns is driven by differentially
heating the enclosure. The classical benchmark problem uses unity viscosity and thermal conductivity (see,
e.g., [4, 28]), while here we use the nonlinear viscosity ν(φ) = 0.25 + exp(−φ) together with g = (0, 0, Ra)t
with a Rayleigh number of Ra = 5 ⋅ 104. For the thermal energy conservation, the boundary is split into two
regions: Γ1 (top and bottom edges of the box) and Γ2 (vertical walls) where temperature and heat flux are
prescribed, respectively. The boundary temperature on Γ1 is set to φD = 0 on the top surface and φD = 1
on the bottom. On Γ2 we consider that the remainder squares of the boundary (that is, the cavity walls) are
insulated, which translates in prescribing zero normal components for the heat flux σ̃, which is done as an
essential boundary condition. Finally, no-slip velocities uD = 0 are prescribed everywhere on the boundary.

Starting with a coarse uniform tetrahedral mesh and its corresponding barycentric refinement, we com-
pute numerical solutions using the mixed method with k = 2. The error estimator (4.2) guides the adaptive
mesh refinement, which seems to focus the majority of the marking on the zone of higher temperature gra-
dients. The performance of the scheme is exemplified in Fig. 3 where we display approximate temperature,
heat flux, and velocity streamlines that exhibit a qualitative agreement with the expected flow recirculation.
We also show in the bottom panels of the figure, some coarse adaptively refined grids.

For a more quantitative study, and in order to emphasize another advantage of the fully mixed scheme,
we illustrate that the formulation is conservative in the momentum and thermal energy equations (cf. third
and seventh equations of (2.3)). In Table 2 (top) we show, for each step of adaptive refinement, the number of
degrees of freedom, the number of Newton–Raphson iterations required to reach convergence, the ℓ∞ norm
of the balanced momentum −div(σh) + 1

2 thuh − φhg, and the ℓ∞ norm of the balanced thermal energy
−div(σ̃h) + 1

2uh ⋅ t̃h. We can see that at every adaptive step these balances are indeed very close to zero. For
sake of comparison, we compute the numerical solutions to the 3D thermal cavity problem using a classi-
cal (primal) finite element formulation in terms of velocity, pressure, and temperature, and discretized by
a Taylor–Hood−P1 scheme (and using a uniform, but not nested, refinement strategy). The secondary un-
knowns (velocity gradient, pseudostress, temperature gradient, and pseudo-flux) are posprocessed from the
primary fields. Table 2 (bottom) displays the same quantities for this primal method, and we can clearly see
a decay of the momentum and thermal energy errors, but is many orders of magnitude larger than those
obtained with the fully mixed scheme, even for comparable number of degrees of freedom. In addition, the
iteration count is also slightly lower in the adaptive case.

6.3 Example 3: accuracy for Oberbeck–Boussinesq in a truncated cube

We conclude our numerical tests with the verification of convergence of the mixed method and the adaptive
mesh refinement applied to the Oberbeck–Boussinesq system. We use the non-convex domain Ω = (0, 1)3 \
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 3: Example 2: Different angle views for approximate velocity streamlines (a), temperature distribution (b), and heat flux
streamlines (c) for the Boussinesq equations modeling the differentially heated cavity. Solutions computed with a method
using k = 2 and a barycentric tetrahedral grid obtained after four steps of adaptive mesh refinement. Panels (d,e,f,g) show
samples of adaptive meshes with a crinkle clip across the geometry.

Tab. 2: Example 2: Momentum and energy balance computed with the fully mixed scheme and adaptive mesh refinement (top)
vs. a classical Taylor–Hood–Lagrange approximation of velocity–pressure–temperature and applying uniform mesh refinement
(bottom).

Fully mixed method and adaptive mesh refinement

DoF Iter ‖div(σh) − 1
2 thuh + φhg‖ℓ∞ ‖div(σ̃h) − 1

2uh ⋅ ̃th‖ℓ∞

289801 6 7.761e-12 2.042e-12
372193 6 7.158e-12 5.527e-12
527365 5 9.263e-12 9.088e-12
620413 5 2.276e-11 1.823e-10
819805 6 6.733e-12 7.951e-12

1154365 5 8.537e-12 7.062e-12

Primal method and uniformmesh refinement

DoF Iter ‖div(σh) − 1
2 thuh + φhg‖ℓ∞ ‖div(σ̃h) − 1

2uh ⋅ ̃th‖ℓ∞

7278 7 304.885 70.143
22578 7 148.230 59.625
79918 7 64.109 48.614

259818 7 29.382 47.591
740526 6 19.171 46.900

1863538 7 14.245 45.812
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Tab. 3: Example 3: Convergence history and Newton iteration count for the fully-mixed approximation of the Oberbeck–
Boussinesq equations on a truncated cube.

With uniformmesh refinement

DoF h e(u) r(u) e(t) r(t) e(σ) r(σ) Iter

46251 1 0.5848 — 17.11 — 135.7 — 4
368921 0.5 0.1542 1.285 11.67 0.549 96.16 0.332 5
2947041 0.3056 0.1320 0.511 9.265 0.388 64.02 0.451 5
8655681 0.1528 0.0944 0.603 6.304 0.410 45.78 0.398 4

e(φ) r(φ) e(̃t) r(̃t) e(σ̃) r(σ̃) e(p) r(p) eff(Ψ)

0.03211 — 0.6320 — 0.9353 — 6.432 — 0.767
0.02031 0.694 0.4377 0.467 0.6395 0.698 3.678 0.538 0.854
0.01276 0.766 0.1929 0.776 0.2684 0.819 2.353 0.692 0.612
0.00715 0.983 0.1307 0.462 0.2591 0.128 2.012 0.377 0.300

With adaptive mesh refinement

DoF h e(u) r(u) e(t) r(t) e(σ) r(σ) Iter

46251 1 0.5848 — 17.11 — 235.7 – 4
102181 1 0.3689 3.185 13.14 2.885 101.3 2.764 4
160002 0.7071 0.1952 2.838 9.246 2.233 60.17 2.552 4
334557 0.7071 0.0913 2.524 6.365 2.681 37.95 2.845 4
468940 0.7071 0.0532 2.487 4.032 2.528 22.79 2.709 3
667680 0.5719 0.0376 2.435 2.516 2.507 17.48 2.696 4
844490 0.5673 0.0193 2.617 1.254 2.791 11.89 2.391 3

e(φ) r(φ) e(̃t) r(̃t) e(σ̃) r(σ̃) e(p) r(p) eff(Ψ)

0.03211 — 0.6325 — 0.9353 — 7.432 — 0.767
0.02371 2.474 0.3761 3.543 0.6802 2.497 5.457 1.954 0.654
0.01240 1.946 0.2189 2.413 0.3549 2.794 2.872 2.506 0.679
0.00628 2.666 0.1047 2.123 0.1985 2.342 1.916 2.126 0.670
0.00161 2.728 0.0722 2.401 0.1343 2.194 1.141 2.396 0.695
0.00092 2.729 0.0504 2.504 0.0865 2.946 0.753 2.560 0.695
0.00066 2.243 0.0299 2.538 0.0596 2.444 0.451 3.022 0.695

[0.5, 1]3 (with a volume of |Ω| = 0.875), and consider the following closed-form solutions

u = (
sin2(πx1) sin(πx2) sin(2πx3)
sin(πx1) sin2(πx2) sin(2πx3)

−[sin(2πx1) sin(πx2) + sin(πx1) sin(2πx2)] sin2(πx3)
)

p =
1 − x21 − x

2
2 − x

2
3

(x1 − 0.55)2 + (x2 − 0.55)2 + (x3 − 0.55)2

φ1 = 1 − sin(πx1) cos(πx2) sin(πx3), φ2 = exp(−(x1 − 0.55)2 − (x2 − 0.55)2 − (x3 − 0.55)2).

The manufactured exact velocity, concentration, and temperature are used as Dirichlet data everywhere on
the boundary. The pressure has a strong gradient near the reentrant corner of the domain and therefore we
expect that adaptivemesh refinement outperforms the convergence of themethod usingmeshes successively
refined in a uniform way. We select the following parameter values

µ(φ) = exp(−φ1), γ = 1, α = (1, 0.5)t, 𝕂1 = (
exp(−x1) 0 0

0 exp(−x2) 0
0 0 exp(−x3)

) , 𝕂2 = 𝕀.

The error history for each field variable (number of degrees of freedom associated with each mesh and
experimental errors and convergence rates) and the effectivity index for the estimator (5.8) (its 3D version),
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4: Example 3: Approximate velocity magnitude and streamlines (a), velocity gradient (b), Bernoulli tensor (c), postpro-
cessed pressure (d), temperature (e), concentration (f), temperature gradient (g), and concentration gradient (h), obtained
using k = 2 and an adaptive barycentrically refined tetrahedral mesh. Panels (i,j,k,l) show the repartition of the indicator on
coarse sample meshes.

eff(Ψ) := e/Ψ (where e denotes the total error), are supplied in Table 3. As in the 2D Boussinesq case of Exam-
ple 1, the lack of smoothness of the exact solution is reflected in the hindered convergence observed under
uniformmesh refinement. Noticeably improved results are obtained for the case of adaptivemesh refinement.
The overall mesh density is controlled through a refinement tolerance in order to produce adaptive meshes
representing fewer degrees of freedom than in the uniform case. Even then the errors decay much faster for
the adaptive case and the effectivity index remains in a neighborhood of 0.69, confirming the efficiency and
reliability of the a posteriori error indicator. Approximate solutions are shown in Fig. 4.
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