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In this work we present and analyse a new fully mixed finite element method for the nonlinear problem
given by the coupling of the Darcy and heat equations. Besides the velocity, pressure and temperature
variables of the fluid, our approach is based on the introduction of the pseudoheat flux as a further
unknown. As a consequence of it, and due to the convective term involving the velocity and the
temperature, we arrive at saddle point-type schemes in Banach spaces for both equations. In particular,
and as suggested by the solvability of a related Neumann problem to be employed in the analysis, we
need to make convenient choices of the Lebesgue and H(div)-type spaces to which the unknowns and
test functions belong. The resulting coupled formulation is then written equivalently as a fixed-point
operator, so that the classical Banach theorem, combined with the corresponding Babuška–Brezzi theory,
the Banach–Nečas–Babuška theorem, suitable operators mapping Lebesgue spaces into themselves,
regularity assumptions and the aforementioned Neumann problem, are employed to establish the unique
solvability of the continuous formulation. Under standard hypotheses satisfied by generic finite element
subspaces, the associated Galerkin scheme is analysed similarly and the Brouwer theorem yields existence
of a solution. The respective a priori error analysis is also derived. Then, Raviart–Thomas elements of
order k ≥ 0 for the pseudoheat and the velocity and discontinuous piecewise polynomials of degree ≤ k
for the pressure and the temperature are shown to satisfy those hypotheses in the two-dimensional case.
Several numerical examples illustrating the performance and convergence of the method are reported,
including an application into the equivalent problem of miscible displacement in porous media.
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1. Introduction

In this work we are interested in the distribution of the temperature ϕ of a fluid in a porous medium
occupying a bounded and simply connected Lipschitz-continuous domain Ω in Rn, n ∈ {2, 3}, which is
modelled by the coupling of Darcy’s law with a convection diffusion equation depending on the velocity
u of the fluid. More precisely, letting Γ := ∂Ω with unit outward normal vector ν, the corresponding
system of equations is given by

μ(ϕ) u + ∇p = f in Ω , div(u) = 0 in Ω , u · ν = 0 on Γ ,

−κ Δϕ + u · ∇ϕ = f in Ω , ϕ = 0 on Γ ,
(1.1)

where μ is the temperature-dependent coefficient (representing the porosity times the dynamic viscosity,
divided by the permeability, and from now on simply referred to as scaled viscosity), p is the pressure, f
represents an external vector force, κ is the positive thermal conductivity coefficient and f stands for an
external scalar heat production (per unit volume of the porous medium). Suitable hypotheses on the data
f and f are given throughout the analysis below. In turn, concerning the scaled viscosity μ : R → R+,
we assume that this function is uniformly bounded and Lipschitz continuous, which means that there
exist positive constants μ1, μ2 and Lμ, such that

μ1 ≤ μ(t) ≤ μ2 ∀ t ∈ R and |μ(t) − μ(̃t)| ≤ Lμ |t − t̃| ∀ t, t̃ ∈ R. (1.2)

We note that the same set of coupled equations serves as model for the miscible displacement in porous
media (Wheeler, 1988).

The coupling of the heat equation (or a general convection–diffusion equation) with diverse models
in fluid mechanics, such as Stokes, Navier–Stokes, Darcy, Darcy–Forchheimer, Brinkman–Darcy and
others, has been extensively studied in the literature during the past decade by using a variety of
numerical methods, which include finite elements, mixed finite elements, discontinuous Galerkin,
augmented formulations and several other procedures. In particular, for nonlinear transport, Boussinesq
and heat–Darcy (or related), we refer for instance to the sets of works (and the references therein) given
by Chou & Li (1996); Bernardi et al. (1995); Rivière & Walkington (2011) (Boussinesq); Deteix et al.
(2014); Ruiz-Baier & Torres (2015) (nonlinear transport); Álvarez et al. (2015, 2016); Bürger et al.
(2015, 2019); Ruiz-Baier & Lunati (2016); Colmenares et al. (2016); Oyarzúa & Zúñiga (2017);
Almonacid & Gatica (2020); Caucao et al. (2020); and Amara et al. (2008/09); Bernardi et al. (2016,
2018); Dib et al. (2019, 2020) (heat–Darcy). Regarding the latter model, let us first mention that the
case of constant viscosity, but with the exterior force depending on the temperature, has been analysed
in Bernardi et al. (2016) by using a spectral method for the corresponding Galerkin scheme. More
recently, the model described by (1.1), which assumes a nonlinear viscosity, was considered in Bernardi
et al. (2018), where mixed and primal formulations in the Darcy and heat equations, respectively,
were employed within a Hilbertian framework. Then, a countable basis of a separable Sobolev space
embedded in L∞(Ω), and the Galerkin method induced by it, were utilized there to prove existence
of solution, whereas under smoother exact solution and sufficiently small data, uniqueness was also
established. In addition, two finite element methods, one of them stabilised by a suitable additional term,
and which are solved using Picard successive approximations, were proposed in Bernardi et al. (2018),
and optimal error estimates were derived, all of which was illustrated by several numerical examples. In
turn, the a posteriori error analyses of the methods from Bernardi et al. (2018) were developed in Dib et
al. (2019) (see also Allali, 2005). Furthermore, the analysis and results from Bernardi et al. (2018) were
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3156 G. N. GATICA ET AL.

complemented in Dib et al. (2020) by introducing a new non-stabilized method, and by providing exis-
tence and uniqueness of solution without any restriction on the data, but for sufficiently small mesh sizes.

On the other hand, during recent years there has been an increasing development of new mixed finite
element methods arising from Banach spaces-based variational formulations to solve diverse nonlinear
models in continuum mechanics. Among the main advantages of this methodology, we first highlight the
non-necessity of any augmentation procedure, technique commonly used within a Hilbertian framework
in many previous works (see, e.g., Álvarez et al., 2015, 2016; Colmenares et al., 2016; Caucao et al.,
2018), which, while yielding some benefits, also increases the complexity of the respective continuous
and discrete systems. Another advantageous feature of the Banach framework is given by the fact that the
spaces to which the unknowns belong are the natural ones that arise from the application of the Cauchy–
Schwarz and Hölder inequalities to the terms, suitably tested, of the equations defining the model.
From the large amount of works in this direction, we only refer here to Colmenares & Neilan (2016);
Benavides et al. (2020); Caucao et al. (2020); Colmenares et al. (2020); Gatica et al. (2021). In particu-
lar, a dual-mixed formulation for the Stokes equations, in which, differently from Álvarez et al. (2015),
the velocity belongs to L4, is employed in Benavides et al. (2020) for the coupled flow-transport problem
originally studied in Álvarez et al. (2015). As a consequence, the Cauchy stress is sought in a suitable
H(div)-type Banach space, whereas the concentration unknown of the transport equation lies in H1. In
turn, following some ideas from Howell & Walkington (2013) and Gatica et al. (2016b), the velocity and
a suitable pseudostress tensor are utilized in Camaño et al. (2021) to study a Banach spaces-based dual-
mixed momentum conservative method for the stationary Navier–Stokes problem. Related approaches
have been successfully applied as well to the Boussinesq system in Colmenares & Neilan (2016); Caucao
et al. (2020); Colmenares et al. (2020) and to fluidized beds in Gatica et al. (2021).

According to the previous discussion, our goal here is to complement the recent theory on the
numerical analysis of nonlinear problems and address a new Banach spaces-based mixed finite element
formulation for (1.1). As we are interested in employing mixed formulations in both the Darcy and
heat equations, we now introduce as an auxiliary unknown the pseudoheat flux (the negative sum of the
conductive heat flux and the convective flux)

σ := κ ∇ϕ − ϕ u in Ω ,

which, using the incompressibility condition given by the second equation of the first row of (1.1),
implies

div(σ ) = κ Δϕ − u · ∇ϕ in Ω .

As a consequence, (1.1) can be rewritten, equivalently, as the first-order nonlinear system

μ(ϕ) u + ∇p = f in Ω , div(u) = 0 in Ω , u · ν = 0 on Γ ,

κ ∇ϕ − ϕ u = σ in Ω , div(σ ) = −f in Ω , ϕ = 0 on Γ .
(1.3)

Note that one of the advantages of using also a mixed scheme in the heat equation is the chance
of computing another variable of physical interest, such as the gradient of temperature, by means of
the simple post-processing formula ∇ϕ = κ−1

(
σ + ϕ u

)
, and that the method delivers conservative

approximations. Another important motivation behind the use of this approach will be explained later
on in Section 4.2.
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The rest of the paper is organized as follows. At the end of this section we describe standard notations
and functional spaces to be utilized throughout the paper. Then, in Section 2 we lay out further details
on the governing equations and state preliminary assumptions, and proceed to derive the continuous
formulation and analyse its solvability. More precisely, we first collect some definitions and preliminary
results, establish the fully mixed scheme arising from (1.3) and then introduce an equivalent fixed-
point strategy to address its solvability. Next, we employ the Babuška–Brezzi theory in Banach spaces
and the Banach–Babuška–Nečas theorem to prove the well posedness of the uncoupled Darcy and
heat problems that define the fixed-point operator, and finally apply the Banach fixed-point theorem
to conclude the existence of a unique solution. The associated Galerkin scheme, posed in terms of
arbitrary finite element subspaces satisfying suitable hypotheses, is set and investigated in Section 3.
Similar analytical tools to those employed in Section 2 are employed here. They include a discrete fixed-
point strategy, the well-posedness of the respective uncoupled discrete problems and the application of
the Brouwer theorem to conclude existence of solution. This section ends with the corresponding a
priori error analysis. Next, in Section 4 we restrict ourselves to the two-dimensional case and define
specific finite element subspaces, basically Raviart–Thomas spaces of order k ≥ 0 for σ and u, and
discontinuous piecewise polynomials of degree ≤ k for p and ϕ, which are shown to satisfy the abstract
assumptions introduced in Section 3. The latter reduce to the discrete inf-sup conditions for each one of
the bilinear forms involved in our continuous and discrete formulations. To this end, we need to collect
several preliminary results, namely approximation properties of projection and interpolation operators,
Lt-stability of the Ritz projector and of the projector on a discrete kernel, a Neumann regularity result
and further properties of the Raviart–Thomas interpolator. For the sake of a more concise presentation,
some of the above are gathered in three appendices. Section 4 concludes with the rates of convergence
of the Galerkin method. We highlight here that, because of the unusual, though natural, norms of the
finite element subspaces involved, the discrete inf-sup conditions that are proved have an intrinsic value
by themselves since most likely they will be useful in other models. In this regard, we also remark that
along the way we identify the only one of them whose validity is, up to our knowledge, an open issue in
three-dimensions. Finally, several numerical examples illustrating the performance of the method and
confirming the theoretical rates of convergence are presented in Section 5.

In what follows, given a Lipschitz-continuous domain O with boundary Γ , we adopt standard
notations for Lebesgue spaces Lt(O) and Sobolev spaces W�,t(O) and W�,t

0 (O), with � ≥ 0 and
t ∈ [1, +∞), whose corresponding norms and seminorm, either for the scalar or vectorial case, are
denoted by ‖ · ‖0,t;O, ‖ · ‖�,t;O and | · |�,t;O, respectively. Note that W0,t(O) = Lt(O), and if t = 2, we
write H�(O) instead of W�,2(O), with the corresponding norm and seminorm denoted by ‖ · ‖�,O and
| · |�,O, respectively. In addition, letting t′ be the conjugate of t, that is such that 1/t + 1/t′ = 1,

we denote by W1/t′,t(Γ ) the trace space of W1,t(O) and let W−1/t′,t′(Γ ) be the dual of W1/t′,t(Γ )

endowed with the norms ‖ · ‖−1/t′,t′;Γ and ‖ · ‖1/t′,t;Γ , respectively. Furthermore, given a generic scalar
functional space S, we denote by S its vectorial version, examples of which are Lt(O) := [Lt(O)]n and
W�,t(O) := [W�,t(O)]n. Finally, we employ C and c, with or without subscripts, bars, tildes or hats, to
denote generic positive constants independent of the discretization parameters, which may take different
values at different places.

2. The continuous formulation

In this section we introduce and analyse a suitable weak formulation for (1.3). To this end, we first
collect some results that will be employed later on, first to derive the right spaces of the continuous
formulation and then to prove some of the inf-sup conditions required along the analysis.
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2.1 Preliminary results

We begin by recalling from Geng (2012) a theorem that establishes the W1,r(Ω)-solvability, with r in a
suitable range contained in (1, +∞), of the Poisson equation with Neumann boundary conditions.

Theorem 2.1 Let Ω be as stated at the beginning of Section 1, and let g ∈ Lr(Ω), g ∈ Lr(Ω) and
gN ∈ W−1/r,r(Γ ), with r ∈ (1, +∞), such that g and gN satisfy the compatibility condition∫

Ω

g = 〈gN , 1〉Γ , (2.1)

where 〈·, ·〉Γ stands for the duality pairing between W−1/r,r(Γ ) and W1/r,s(Γ ) and s ∈ (1, +∞) is the
conjugate of r, that is 1

r + 1
s = 1. Then, for each r ∈ [4/3, 4] when n = 2, and for each r ∈ [3/2, 3]

when n = 3, there exists u ∈ W1,r(Ω), unique up to a constant, such that

Δu = g + div(g) in Ω ,
(∇u − g

) · ν = gN on Γ . (2.2)

Moreover, there exists a constant C > 0, depending only on n, r and Ω , such that

|u|1,r;Ω ≤ C
{
‖g‖0,r;Ω + ‖g‖0,r;Ω + ‖gN‖−1/r,r;Γ

}
. (2.3)

Proof. It follows by applying (Geng, 2012, Theorem 1.2) to the particular case of the Laplacian
operator, and by restricting the full ranges provided for r, which are (4/3−ε, 4+ε) and (3/2−ε, 3+ε)

for n = 2 and n = 3, respectively, with a constant ε > 0 that arises from the proof, to the present closed
intervals. �

In particular, defining for each r in the ranges specified by Theorem 2.1 the space

W̃
1,r

(Ω) :=
{

v ∈ W1,r(Ω) :
∫

Ω

v = 0
}

, (2.4)

we deduce that there exists a unique u ∈ W̃
1,r

(Ω) solution of (2.2). Moreover, since ‖·‖1,r;Ω and |·|1,r;Ω

are equivalent in W̃
1,r

(Ω), which follows from the generalized Poincaré inequality (cf. Kufner et al.,
1977, Theorems 5.11.2 and 5.11.3), the a priori estimate (2.3) becomes

‖u‖1,r;Ω ≤ Cr

{
‖g‖0,r;Ω + ‖g‖0,r;Ω + ‖gN‖−1/r,r;Γ

}
, (2.5)

with a constant Cr > 0 depending only on n, r and Ω as well. In addition, the corresponding weak

formulation of (2.2) reduces to find u ∈ W̃
1,r

(Ω) such that∫
Ω

∇u · ∇v =
∫

Ω

g · ∇v −
∫

Ω

g v + 〈gN , v〉Γ ∀ v ∈ W1,s(Ω). (2.6)

In this regard, we notice that actually there is no need to impose the foregoing testing against constant
functions v since, in doing so, and thanks to the compatibility condition (2.1), both sides of (2.6) are
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A NEW MIXED-FEM FOR THE COUPLED HEAT AND DARCY EQUATIONS 3159

nullified. Hence, according to the decomposition W1,s(Ω) = W̃
1,s

(Ω) ⊕ R, we conclude that (2.6) is
equivalent to stating∫

Ω

∇u · ∇v =
∫

Ω

g · ∇v −
∫

Ω

g v + 〈gN , v〉Γ ∀ v ∈ W̃
1,s

(Ω).

Now, it is important to stress that r lies in the ranges indicated in the statement of Theorem 2.1 if and
only if s does as well, and therefore the conclusion of that theorem and the above discussion on the
respective weak formulations, remain valid if r and s are swapped.

Furthermore, given an arbitrary t ∈ (1, +∞), we define for each z ∈ Lt(Ω) the function

Jt(z) :=
{ |z|t−2 z if z �= 0,

0 otherwise,
(2.7)

and establish next the mapping properties of the resulting operators Jt.

Lemma 2.2 Let r, s ∈ (1, +∞) such that 1
r + 1

s = 1. Then, for each z ∈ Lr(Ω) there hold

zs := Jr(z) ∈ Ls(Ω), z = Js(zs) and (2.8a)∫
Ω

z · zs = ‖z‖r
0,r;Ω = ‖zs‖s

0,s;Ω = ‖z‖0,r;Ω ‖zs‖0,s;Ω , (2.8b)

so that Jr : Lr(Ω) → Ls(Ω) and Js : Ls(Ω) → Lr(Ω) become bijective and inverse to each other.

Proof. It follows straightforwardly from (2.7) and simple algebraic manipulations. �
Next, we recall two integration by parts formulae that will be employed later on, for which, given

r ∈ (1, +∞), we first introduce the Banach spaces

H(divr; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ Lr(Ω)

}
, (2.9a)

Hr(divr; Ω) :=
{
τ ∈ Lr(Ω) : div(τ ) ∈ Lr(Ω)

}
, (2.9b)

which are endowed with the natural norms defined, respectively, as

‖τ‖divr;Ω := ‖τ‖0,Ω + ‖div(τ )‖0,r;Ω ∀ τ ∈ H(divr; Ω), (2.10a)

‖τ‖r,divr ;Ω := ‖τ‖0,r;Ω + ‖div(τ )‖0,r;Ω ∀ τ ∈ Hr(divr; Ω). (2.10b)

Then, proceeding as in Gatica (2014, eq. (1.43), Section 1.3.4) (see also Camaño et al., 2018, Section
4.1 and Colmenares et al., 2020, Section 3.1), one can prove that for each r ≥ 2n

n+2 there holds

〈τ · ν, v〉 =
∫

Ω

{
τ · ∇v + v div(τ )

}
∀ (τ , v) ∈ H(divr; Ω) × H1(Ω), (2.11)
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where 〈·, ·〉 stands for the duality pairing between H−1/2(Γ ) and H1/2(Γ ). In turn, given r, s ∈ (1, +∞)

such that 1
r + 1

s = 1, there also holds (cf. Ern & Guermond, 2004, Corollary B. 57)

〈τ · ν, v〉Γ =
∫

Ω

{
τ · ∇v + v div(τ )

}
∀ (τ , v) ∈ Hr(divr; Ω) × W1,s(Ω), (2.12)

where, as indicated in the statement of Theorem 2.1, 〈·, ·〉Γ stands for the duality pairing between
W−1/r,r(Γ ) and W1/r,s(Γ ).

On the other hand, the following lemma introduces a suitable operator mapping Ls(Ω) into itself.

Lemma 2.3 Let r, s ∈ (1, +∞) such that 1
r + 1

s = 1, with r (and hence s) satisfying the ranges given
by Theorem 2.1. Then there exists a linear and bounded operator Ds : Ls(Ω) → Ls(Ω) such that

div
(
Ds(w)

) = 0 in Ω and Ds(w) · ν = 0 on Γ ∀ w ∈ Ls(Ω). (2.13)

In addition, for each z ∈ Lr(Ω) such that div(z) = 0 in Ω and z · ν = 0 on Γ , there holds∫
Ω

z · Ds(w) =
∫

Ω

z · w ∀ w ∈ Ls(Ω). (2.14)

Proof. Given w ∈ Ls(Ω), we let u ∈ W̃
1,s

(Ω) (cf. (2.4)) be the unique solution of problem (2.2) with
g = 0, g = w and gN = 0, that is,

Δu = div(w) in Ω ,
(∇u − w

) · ν = 0 on Γ ,
∫

Ω

u = 0. (2.15)

Then, the continuous dependence result of (2.15) (cf. (2.5)) guarantees the existence of a constant Cs > 0
such that ‖u‖1,s;Ω ≤ Cs ‖w‖0,s;Ω and, hence, defining Ds(w) := w − ∇u ∈ Ls(Ω), we have that Ds
is clearly linear and satisfies

‖Ds(w)‖0,s;Ω ≤ (
1 + Cs

) ‖w‖0,s;Ω ,

which shows that Ds is bounded. In addition, it is readily seen from (2.15) that Ds(w) satisfies the
required conditions in (2.13). Moreover, given z as indicated in the statement of the lemma, the
integration by parts formula (2.12) applied to z ∈ Hr(divr; Ω) and u ∈ W1,s(Ω), yields∫

Ω

z · ∇u = −
∫

Ω

u div(z) + 〈z · ν, u〉Γ = 0,

hence (2.14) is obtained, thus completing the proof. �

2.2 The fully mixed formulation

We begin by testing the first equation of the second row of (1.3) against a vector function τ , which
formally yields ∫

Ω

σ · τ − κ

∫
Ω

∇ϕ · τ +
∫

Ω

ϕ u · τ = 0. (2.16)
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Then, using the Cauchy–Schwarz and Hölder inequalities, we find that for all �, j ∈ (1, +∞) such that
1
�

+ 1
j

= 1, there holds ∣∣∣∣∫
Ω

ϕ u · τ

∣∣∣∣ ≤ ‖ϕ‖0,2�;Ω ‖u‖0,2j ;Ω ‖τ‖0,Ω , (2.17)

which shows that the third term on the left-hand side of (2.16) makes sense for ϕ ∈ L2�(Ω), u ∈ L2j (Ω)

and τ ∈ L2(Ω). Then, knowing where τ belongs, the first and second terms on the left-hand side of
(2.16) are finite if σ ∈ L2(Ω) and ∇ϕ ∈ L2(Ω), respectively. In addition, in order to be able to apply
(2.11) to τ and ϕ, so that we obtain∫

Ω

∇ϕ · τ = −
∫

Ω

ϕ div(τ ) + 〈τ · ν, ϕ〉 = −
∫

Ω

ϕ div(τ ), (2.18)

with τ ·ν ∈ H−1/2(Γ ) and 〈·, ·〉 denoting the duality pairing between H−1/2(Γ ) and H1/2(Γ ), it suffices
to assume that div(τ ) ∈ L(2�)′(Ω), where (2�)′ := 2�

2�−1 is the conjugate of 2� and that H1(Ω) is

continuously embedded in L2�(Ω). The latter is guaranteed for 2� ∈ [1, +∞) when n = 2, which is
always satisfied, and for 2� ∈ [1, 6] when n = 3 (cf. Ern & Guermond, 2004, Corollary B.43). On the
other hand, since Theorem 2.1 will be applied later on to r = 2j or r = (2j)′, which will be required to
establish some continuous inf-sup conditions, we need that 2j lies in the corresponding ranges specified
there, that is 2j ≤ 4 when n = 2 and 2j ≤ 3 when n = 3 (note that the respective lower bounds are
already satisfied). Then, it is readily seen that 2j ≤ 4 (respectively 2j ≤ 3) if and only if 2� = 2j

j−1 ≥ 4

(respectively 2� = 2j
j−1 ≥ 6). Thus, from the restrictions on 2� when n = 3, we deduce that there must

hold 2� = 6, which yields 2j = 3, (2�)′ = 6/5 and (2j)′ = 3/2, so that defining

ρ = 2�, � = (2�)′, r = 2j and s = (2j)′, (2.19)

we find that the only possible setting for the three-dimensional case is

(ρ, �) := (6, 6/5) and (r, s) := (3, 3/2). (2.20)

In turn, noting that 2� ≥ 4 is the only restriction on 2� when n = 2, at this point we do not consider any
particular choice and continue our analysis with a generic value for �, and hence (cf. (2.19)) for ρ, �, r
and s as well. We just observe that, being (ρ, �) and (r, s) pairs of conjugate to each other with ρ, r > 2,
there necessarily holds �, s ∈ (1, 2). In addition, it is readily seen that ρ > r when ρ > 4. According to
the above discussion, from now on we look for ϕ ∈ Lρ(Ω) and u ∈ Lr(Ω), whereas the test function
τ ∈ L2(Ω) is such that div(τ ) ∈ L�(Ω). Later on in Section 4.4, and in order to complete our discrete
analysis, we will impose a sharper range for s.

Next, replacing the resulting expression from (2.18) into (2.16), and taking into account the
definition (2.9a), we arrive at∫

Ω

σ · τ + κ

∫
Ω

ϕ div(τ ) +
∫

Ω

ϕ u · τ = 0 ∀ τ ∈ H(div�; Ω). (2.21)
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Furthermore, testing now the second equation of the second row of (1.3) against ψ ∈ Lρ(Ω), which
implicitly imposes the unknown σ to belong to H(div�; Ω), assuming that the datum f ∈ L�(Ω) and
multiplying by the constant κ , we obtain

κ

∫
Ω

ψ div(σ ) = −κ

∫
Ω

f ψ ∀ψ ∈ Lρ(Ω). (2.22)

Therefore, given u ∈ Lr(Ω) and setting

H := H(div�; Ω) and Q := Lρ(Ω), (2.23)

the weak formulation of the convection diffusion model reduces to (2.21) and (2.22), that is, find
(σ , ϕ) ∈ H × Q such that

a(σ , τ ) + b(τ , ϕ) + ∫
Ω

ϕ u · τ = 0 ∀ τ ∈ H,

b(σ , ψ) = −κ
∫
Ω

f ψ ∀ψ ∈ Q,
(2.24)

where a : H × H → R and b : H × Q → R are the bilinear forms defined by

a(ζ , τ ) :=
∫

Ω

ζ · τ ∀ (ζ , τ ) ∈ H × H, (2.25a)

b(τ , ψ) := κ

∫
Ω

ψ div(τ ) ∀ (τ , ψ) ∈ H × Q. (2.25b)

It is easily seen that a and b are bounded with respect to the usual norms of H := H(div�; Ω) (cf.
(2.10a)) and Q := Lρ(Ω), and that the corresponding boundedness constants are

‖a‖ = 1 and ‖b‖ = κ . (2.26)

On the other hand, knowing already that u must belong to Lr(Ω), and bearing in mind the
incompressibility and boundary conditions, we introduce appropriate trial and test spaces

X2 = Hr
0(divr; Ω) :=

{
w ∈ Hr(divr; Ω) : w · ν = 0 on Γ

}
, (2.27a)

X1 = Hs
0(divs; Ω) :=

{
v ∈ Hs(divs; Ω) : v · ν = 0 on Γ

}
, (2.27b)

which are endowed with the corresponding norms defined by (2.10b). Indeed, given ϕ ∈ Lρ(Ω), and
assuming that the datum f lies in Lr(Ω), we test the first equation of the first row of (1.3) against v ∈ X1,
so that applying (2.12) to v ∈ Hs(divs; Ω) and p ∈ W1,r(Ω), we obtain∫

Ω

μ(ϕ) u · v −
∫

Ω

p div(v) =
∫

Ω

f · v ∀ v ∈ X1. (2.28)
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We notice here that the resulting second term on the left-hand side of (2.28) vanishes when p is constant,
and hence for sake of uniqueness of solution, the pressure unknown is sought from now on in the space

M1 := Lr
0(Ω) :=

{
q ∈ Lr(Ω) :

∫
Ω

q = 0
}

.

In connection to the above, and thanks to the decomposition Ls(Ω) = Ls
0(Ω) ⊕ R and the boundary

condition satisfied by u, we realise that testing the incompressibility condition (second equation of the
first row of (1.3)) against q ∈ Ls(Ω) is equivalent to doing it against q ∈ Ls

0(Ω), so that the associated
test space is set as M2 := Ls

0(Ω). Consequently, the weak formulation of Darcy’s problem reads as
follows: find (u, p) ∈ X2 × M1 such that

aϕ(u, v) + b1(v, p) = ∫
Ω

f · v ∀ v ∈ X1,

b2(u, q) = 0 ∀ q ∈ M2,
(2.29)

where, given ψ ∈ Lρ(Ω), aψ : X2 × X1 → R, b1 : X1 × M1 → R and b2 : X2 × M2 → R are the
bilinear forms defined as

aψ(w, v) :=
∫

Ω

μ(ψ) w · v ∀ (w, v) ∈ X2 × X1, (2.30a)

bi(v, q) := −
∫

Ω

q div(v) ∀ (v, q) ∈ Xi × Mi, ∀ i ∈ {
1, 2

}
. (2.30b)

Similarly as for a and b, we observe that, under the assumptions on μ (cf. (1.2)), aψ is bounded with
boundedness constant ‖aψ‖ = μ2 for all ψ ∈ Lρ(Ω), and b1 and b2 are bounded as well with
‖b1‖ = ‖b2‖ = 1.

We summarize the previous discussion by stating from (2.24) and (2.29) the weak formulation of
the whole coupled problem (1.3): find (σ , ϕ) ∈ H × Q and (u, p) ∈ X2 × M1 such that

a(σ , τ ) + b(τ , ϕ) + ∫
Ω

ϕ u · τ = 0 ∀ τ ∈ H,

b(σ , ψ) = −κ
∫
Ω

f ψ ∀ψ ∈ Q,

aϕ(u, v) + b1(v, p) = ∫
Ω

f · v ∀ v ∈ X1,

b2(u, q) = 0 ∀ q ∈ M2.

(2.31)

2.3 The fixed-point strategy

In this section we follow similar approaches developed in, e.g., Benavides et al. (2020); Colmenares
et al. (2020); Gatica et al. (2016a, 2021), and make use of the variational formulations (2.24) and (2.29)
to introduce a fixed-point strategy addressing the solvability of (2.31). Indeed, we first let T̃ : Lρ(Ω) →
X2 × M1 be the operator defined for each ψ ∈ Lρ(Ω) as T̃(ψ) = (T̃1(ψ), T̃2(ψ)) := (̃u, p̃), where
(̃u, p̃) ∈ X2 × M1 is the unique solution (to be confirmed below) of (2.29) with ψ instead of ϕ, that is,

aψ (̃u, v) + b1(v, p̃) = ∫
Ω

f · v ∀ v ∈ X1,

b2(̃u, q) = 0 ∀ q ∈ M2.
(2.32)
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In turn, we let T̂ : Lr(Ω) → H × Q be the operator defined for each w ∈ Lr(Ω) as T̂(w) =
(T̂1(w), T̂2(w)) := (σ̂ , ϕ̂), where (σ̂ , ϕ̂) ∈ H × Q is the unique solution (to be confirmed below as
well) of (2.24) with w instead of u, that is,

a(σ̂ , τ ) + b(τ , ϕ̂) + ∫
Ω

ϕ̂ w · τ = 0 ∀ τ ∈ H,

b(σ̂ , ψ) = −κ
∫
Ω

f ψ ∀ψ ∈ Q.
(2.33)

Thus, defining the composite operator T : X2 → X2 as

T(w) := T̃1

(
T̂2(w)

) ∀ w ∈ X2, (2.34)

we notice that solving (2.31) is equivalent to seeking a fixed point of T , that is u ∈ X2 such that

T(u) = u. (2.35)

We end this section by remarking that the above setting certainly requires that both operators T̃ and
T̂ be well defined, that is that the uncoupled problems (2.32) and (2.33) be well posed, which is precisely
the main goal of the following section.

2.4 Well posedness of the uncoupled problems

2.4.1 Preliminary abstract results. In this section we recall two abstract results that will be applied
in what follows. The first one is the classical Babuška–Brezzi theorem, but in Banach spaces.

Theorem 2.4 Let H1, H2, Q1 and Q2 be real reflexive Banach spaces, and let a : H2 × H1 → R and
bi : Hi × Qi → R, i ∈ {1, 2}, be bounded bilinear forms with boundedness constants given by ‖a‖ and
‖bi‖, i ∈ {1, 2}, respectively. In addition, for each i ∈ {1, 2}, let Ki be the kernel of the operator induced
by bi, that is,

Ki :=
{

v ∈ Hi : bi(v, q) = 0 ∀ q ∈ Qi

}
.

Assume that

(i) there exists α > 0 such that

sup
v∈K1
v �=0

a(w, v)

‖v‖H1

≥ α ‖w‖H2
∀ w ∈ K2 ;

(ii) there holds

sup
w∈K2

a(w, v) > 0 ∀ v ∈ K1, v �= 0 ;

(iii) for each i ∈ {1, 2} there exists βi > 0 such that

sup
v∈Hi
v �=0

bi(v, q)

‖v‖Hi

≥ βi ‖q‖Qi
∀ q ∈ Qi.
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Then, for each (F, G) ∈ H′
1 × Q′

2 there exists a unique (u, p) ∈ H2 × Q1 such that

a(u, v) + b1(v, p) = F(v) ∀ v ∈ H1,

b2(u, q) = G(q) ∀ q ∈ Q2,
(2.36)

and the following a priori estimates hold:

‖u‖H2
≤ 1

α
‖F‖H′

1
+ 1

β2

(
1 + ‖a‖

α

)
‖G‖Q′

2
,

‖p‖Q1
≤ 1

β1

(
1 + ‖a‖

α

)
‖F‖H′

1
+ ‖a‖

β1 β2

(
1 + ‖a‖

α

)
‖G‖Q′

2
.

(2.37)

Moreover, (i)—(iii) are also necessary conditions for the well posedness of (2.36).

Proof. See Bernardi et al. (1988, Theorem 2.1, Corollary 2.1, Section 2.1) for details. In turn, for the
particular case given by H1 = H2, Q1 = Q2 and b1 = b2, we also refer to Ern & Guermond (2004,
Theorem 2.34). �

We stress here that, instead of the pair of assumptions given by (i) and (ii), one could consider the
equivalent one arising after exchanging the roles of K1 and K2 (cf. Bernardi et al., 1988, eqs. (2.10) and
(2.11)). Furthermore, it is important to remark that (2.37) is equivalent to an inf-sup condition for the
bilinear form arising after adding the left-hand sides of (2.36), which means that there exists a constant
C > 0, depending only on α, β1, β2 and ‖a‖, such that

sup
(v,q)∈H1×Q2

(v,q) �=0

a(u, v) + b1(v, p) + b2(u, q)

‖(v, q)‖H1×Q2

≥ C ‖(u, p)‖H2×Q1
∀ (u, p) ∈ H2 × Q1. (2.38)

The second result is given by the Banach–Nečas–Babuška Theorem (also know as the generalized
Lax–Milgram Lemma), which is stated as follows.

Theorem 2.5 Let H and Q be Banach spaces such that Q is reflexive, and let A : H × Q −→ R be a
bounded bilinear form. Assume that

(i) there exists α > 0 such that

sup
v∈Q
v �=0

A(w, v)

‖v‖Q
≥ α ‖w‖H ∀ w ∈ H ;

(ii) there holds

sup
w∈H

A(w, v) > 0 ∀ v ∈ Q, v �= 0.

Then, for each F ∈ Q′ there exists a unique u ∈ H such that

A(u, v) = F(v) ∀ v ∈ Q, (2.39)
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and the following a priori estimate holds

‖u‖H ≤ 1

α
‖F‖Q′ . (2.40)

Moreover, (i) and (ii) are also necessary conditions for the well posedness of (2.39).

Proof. See Ern & Guermond (2004, Theorems 2.6). �

2.4.2 Well definedness of the operator T̃. In order to prove that the operator T̃ is well defined, we
plan to employ some of the preliminary results provided in Section 2.1, and then apply Theorem 2.4. To
this end, we first let Ki, i ∈ {1, 2}, be the kernel of the bilinear form bi (cf. (2.30b)), that is,

Ki :=
{

v ∈ Xi : bi(v, q) = 0 ∀ q ∈ Mi

}
,

which, according to the definitions of X1 (cf. (2.27b)), X2 (cf. (2.27a)) and bi (cf. (2.30b)), yields

K1 :=
{

v ∈ Hs
0(divs; Ω) : div(v) = 0 in Ω

}
, (2.41a)

K2 :=
{

w ∈ Hr
0(divr; Ω) : div(w) = 0 in Ω

}
. (2.41b)

Then, we have the following continuous inf-sup conditions.

Lemma 2.6 There exists α̃ > 0 such that for each ψ ∈ Lρ(Ω) there hold

sup
v∈K1
v�=0

aψ(w, v)

‖v‖X1

≥ α̃ ‖w‖X2
∀ w ∈ K2, (2.42a)

and

sup
w∈K2

aψ(w, v) > 0 ∀ v ∈ K1, v �= 0. (2.42b)

Proof. Given ψ ∈ Lρ(Ω), we first consider w ∈ K2 (cf. (2.41b)), w �= 0. Then, recalling that s is
the conjugate exponent of r, we let ws := Js(w) ∈ Ls(Ω) as defined in (2.7) and Lemma 2.2, which
satisfies ∫

Ω

w · ws = ‖w‖0,r;Ω ‖ws‖0,s;Ω .

Thus, applying the lower bound for μ (cf. (1.2)) and Lemma 2.3, we find that

∣∣aψ

(
w, Ds(ws)

)∣∣ ≥ μ1

∫
Ω

w · Ds(ws) = μ1

∫
Ω

w · ws = μ1 ‖w‖0,r;Ω ‖ws‖0,s;Ω ,
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and hence, using that Ds(ws) ∈ K1 (cf. Lemma 2.3 and (2.41a)), we deduce that

sup
v∈K1
v �=0

aψ(w, v)

‖v‖X1

≥
∣∣aψ(w, Ds(ws))

∣∣
‖Ds(ws)‖X1

=
∣∣aψ(w, Ds(ws))

∣∣
‖Ds(ws)‖0,s;Ω

≥ μ1

‖Ds‖
‖w‖0,r;Ω = μ1

‖Ds‖
‖w‖X2

,

which proves (2.42a) with α̃ = μ1‖Ds‖ . In turn, we now take v ∈ K1 (cf. (2.41a)), v �= 0 and let vr :=
Jr(v) ∈ Lr(Ω). In this way, employing again (1.2), Lemmas 2.2 and 2.3, and the fact that Dr(vr) ∈ K2
(cf. (2.41b)), we obtain

sup
w∈K2

aψ(w, v) ≥ μ1

∫
Ω

Dr(vr) · v = μ1

∫
Ω

vr · v = μ1 ‖v‖s
0,s;Ω > 0,

which shows (2.42b) and finishes the proof of the lemma. �
We now establish the continuous inf-sup conditions for the bilinear forms bi, i ∈ {1, 2}.

Lemma 2.7 There exist β̃1, β̃2 > 0 such that for each i ∈ {1, 2} there holds

sup
v∈Xi
v �=0

bi(v, q)

‖v‖Xi

≥ β̃i ‖q‖Mi
∀ q ∈ Mi. (2.43)

Proof. It suffices to prove for i = 1, since the proof for i = 2 follows verbatim by exchanging the roles
of r and s. We begin by stressing that (2.7) and Lemma 2.2 are certainly valid for the corresponding
scalar version of the operator Jt, t ∈ (1, +∞), which we use next. In fact, given q ∈ M1 = Lr

0(Ω),

we first set qs := Jr(q) ∈ Ls(Ω) and q0
s := qs − 1

|Ω|
∫
Ω

qs ∈ Ls
0(Ω), and then let u ∈ W̃

1,s
(Ω) be the

unique solution of problem (2.2) with g = q0
s , g = 0 and gN = 0, that is,

Δu = q0
s in Ω , ∇u · ν = 0 on Γ ,

∫
Ω

u = 0. (2.44)

Then, the continuous dependence result for (2.44) (cf. (2.5)) implies the existence of a constant Cs > 0
such that ‖u‖1,s;Ω ≤ Cs ‖q0

s ‖0,s;Ω . In turn, there also exists a constant C̃s > 0 such that ‖q0
s ‖0,s;Ω ≤

C̃s ‖qs‖0,s;Ω . Next, defining v̄ := −∇u ∈ Ls(Ω), we have that div(v̄) = − q0
s in Ω and v̄·ν = 0 on Γ ,

whence v̄ ∈ X1 (cf. (2.27b)) and

‖v̄‖X1
= ‖v̄‖s,divs;Ω ≤ (1 + Cs) ‖q0

s ‖0,s;Ω ≤ (1 + Cs)C̃s ‖qs‖0,s;Ω .

In this way, using that
∫
Ω

q q0
s = ∫

Ω
q qs, it follows that

sup
v∈X1
v�=0

b1(v, q)

‖v‖X1

≥ b1(v̄, q)

‖v̄‖X1

=

∫
Ω

q qs

‖v̄‖X1

= ‖q‖0,r;Ω ‖qs‖0,s;Ω

‖v̄‖X1

≥ (
(1 + Cs)C̃s

)−1 ‖q‖0,r;Ω ,
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which proves (2.43) for i = 1 with β̃1 = (
(1 + Cs)C̃s

)−1. As stated at the beginning of this proof, the
inf-sup condition for b2 is proved by taking now q ∈ M2 = Ls

0(Ω), setting qr := Js(q) ∈ Lr(Ω) and

q0
r := qr − 1

|Ω|
∫
Ω

qr ∈ Lr
0(Ω), and then letting u ∈ W̃

1,r
(Ω) be the unique solution of problem (2.2)

with g = q0
r , g = 0 and gN = 0. We omit further details. �

Next, we let F ∈ X′
1 be the functional given by the right-hand side of the first equation of (2.32), that

is F(v) := ∫
Ω

f · v ∀ v ∈ X1, which satisfies ‖F‖X′
1

≤ ‖f‖0,r;Ω . Then, we have the following result

establishing that the operator T̃ (cf. (2.32)) is well defined.

Theorem 2.8 For each ψ ∈ Lρ(Ω) there exists a unique (̃u, p̃) = T̃(ψ) ∈ X2 × M1 solution to (2.32).
Moreover, there hold

‖T̃1(ψ)‖X2
= ‖̃u‖X2

≤ 1

α̃
‖f‖0,r;Ω and

‖T̃2(ψ)‖M1
= ‖̃p‖M1

≤ 1

β̃1

(
1 + μ2

α̃

)
‖f‖0,r;Ω .

(2.45)

Proof. Thanks to Lemmas 2.6 and 2.7, and bearing in mind that the bilinear forms aψ , for each ψ ∈
Lρ(Ω), b1 and b2 are all bounded, as well as that X1, X2, M1 and M2 are all reflexive Banach spaces,
the proof reduces simply to a straightforward application of Theorem 2.4. In particular, the a priori
estimates provided by (2.45) follow from (2.37), the upper bound for ‖F‖X′

1
indicated previously and

the fact that the right-hand side of the second row of (2.32) is the null functional. �

2.4.3 Well definedness of the operator T̂. In this section we use a suitable combination of
Theorems 2.4 and 2.5 to prove that the operator T̂ is well defined. More precisely, we first apply
Theorem 2.4 to a perturbation of (2.33), and then employ Theorem 2.5 to conclude that the whole
problem (2.33) is well-posed. To this end, we begin by letting V be the null space of the operator
induced by the bilinear form b, that is,

V :=
{
τ ∈ H : b(τ , ψ) = 0 ∀ψ ∈ Q

}
,

which, according to the definitions of b (cf. (2.25b)) and the spaces H and Q (cf. (2.23)), yields

V :=
{
τ ∈ H(div�; Ω) : div(τ ) = 0

}
.

Then, it is straightforward to see from the definitions of a (cf. (2.25a)) and the norm of H(div�; Ω) (cf.
(2.10a)) that there holds

a(τ , τ ) = ‖τ‖2
div� ;Ω ∀ τ ∈ V, (2.46)

from which one easily deduces that a satisfies the assumptions (i) and (ii) of Theorem 2.4, the first one
with constant α̂ = 1.

Furthermore, we prove now that the bilinear form b satisfies the assumption (iii) of Theorem 2.4.
Indeed, while the corresponding proof is basically already available in the literature (see, e.g., Lemma
3.4; Camaño et al., 2018, Lemma 2.1; Gatica et al., 2021, Lemma 3.5), we provide it anyway next for
sake of completeness of the presentation.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/42/4/3154/6368060 by Biom
edical Library user on 17 O

ctober 2022



A NEW MIXED-FEM FOR THE COUPLED HEAT AND DARCY EQUATIONS 3169

Lemma 2.9 There exists β̂ > 0, depending only on Ω , such that

sup
τ∈H
τ �=0

b(τ , ψ)

‖τ‖H
≥ β̂ ‖ψ‖Q ∀ψ ∈ Q. (2.47)

Proof. We begin by using again the scalar version of the operator Jt, t ∈ (1, +∞), for which (2.7) and
Lemma 2.2 are valid as well. In fact, given ψ ∈ Q := Lρ(Ω), we set ψ� := Jρ(ψ) ∈ L�(Ω), which
satisfies ∫

Ω

ψ ψ� = ‖ψ‖0,ρ:Ω ‖ψ�‖0,�:Ω . (2.48)

Then, we consider the boundary value problem

− Δw = ψ� in Ω , w = 0 on Γ , (2.49)

whose variational formulation, which follows from (2.11) applied to ∇w ∈ H(div�; Ω) and z ∈ H1
0(Ω),

becomes the following: find w ∈ H1
0(Ω) such that∫

Ω

∇w · ∇z =
∫

Ω

ψ� z ∀ z ∈ H1
0(Ω). (2.50)

We remark that, thanks to Hölder’s inequality and the continuous injection iρ : H1(Ω) → Lρ(Ω), the

right-hand side of (2.50) defines a functional in H1
0(Ω)′. Consequently, a straightforward application

of the classical Lax–Milgram Lemma implies the existence of a unique solution w ∈ H1
0(Ω) to (2.50)

(equivalently to (2.49)). Moreover, it follows from (2.50) that

|w|1,Ω ≤ cP ‖iρ‖ ‖ψ�‖0,�;Ω , (2.51)

where cP is the positive constant, depending only on Ω , that establishes that ‖v‖1,Ω ≤ cP |v|1,Ω for all
v ∈ H1

0(Ω), also known as the Poincaré inequality. Then, defining τ̃ := −∇w ∈ L2(Ω), we notice that
div(̃τ ) = ψ� in Ω , which says that actually τ̃ ∈ H(div�; Ω) (cf. (2.9a)), and then, using (2.51), we get

‖τ̃‖div� ;Ω = ‖τ̃‖0,Ω + ‖div(̃τ )‖0,�;Ω = |w|1,Ω + ‖ψ�‖0,�;Ω ≤ (
1 + cP ‖iρ‖)‖ψ�‖0,�;Ω . (2.52)

In this way, employing now (2.48), we find that

sup
τ∈H
τ �=0

b(τ , ψ)

‖τ‖H
≥ b(̃τ , ψ)

‖τ̃‖div� ;Ω
=

∫
Ω

ψ ψ�

‖τ̃‖div�;Ω
= ‖ψ‖0,ρ:Ω ‖ψ�‖0,�:Ω

‖τ̃‖div�;Ω
, (2.53)

which, together with (2.52), yields (2.47) with β̂ := (
1 + cP ‖iρ‖)−1. �
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We now let A :
(
H × Q

) × (
H × Q

) → R be the bounded bilinear form arising from (2.33) after
adding the left-hand sides of the equations, but without including the term depending on the given w,
that is

A
(
(ζ , φ), (τ , ψ)

)
:= a(ζ , τ ) + b(τ , φ) + b(ζ , ψ) (2.54)

for all (ζ , φ), (τ , ψ) ∈ H×Q. Note that the boundedness of A follows from those of a and b (cf. (2.26)).
Then, denoting by A ∈ L

(
H × Q, (H × Q)′

)
the operator induced by A, and knowing from (2.46) and

Lemma 2.9 that a and b satisfy the hypotheses of Theorem 2.4 with H1 = H2 = H, Q1 = Q2 = Q and
b1 = b2 = b, we conclude from a straightforward application of this abstract result that A is bijective.
Moreover, it follows from (2.38) that A satisfies a global inf-sup condition on H × Q, which means that
there exists a positive constant αT̂ , depending only on α̂, β̂ and ‖a‖, such that

sup
(τ ,ψ)∈H×Q
(τ ,ψ) �=0

A
(
(ζ , φ), (τ , ψ)

)
‖(τ , ψ)‖H×Q

≥ αT̂ ‖(ζ , φ)‖H×Q ∀ (ζ , φ) ∈ H × Q. (2.55)

Next, we let Aw :
(
H × Q

) × (
H × Q

) → R be the bounded bilinear form that results after adding the
full left-hand sides of the equations of (2.33), that is,

Aw

(
(ζ , φ), (τ , ψ)

)
:= A

(
(ζ , φ), (τ , ψ)

) +
∫

Ω

φ w · τ (2.56)

for all (ζ , φ), (τ , ψ) ∈ H × Q. We remark that the boundedness of Aw follows from that of A and
the estimate (2.17). Furthermore, the formulation (2.33) can be rewritten, equivalently, as follows: find
(σ̂ , ϕ̂) ∈ H × Q such that

Aw

(
(σ̂ , ϕ̂), (τ , ψ)

) = G
(
(τ , ψ)

) ∀ (τ , ψ) ∈ H × Q, (2.57)

where G ∈ (H × Q)′ is defined as

G
(
(τ , ψ)

)
:= −κ

∫
Ω

f ψ ∀ (τ , ψ) ∈ H × Q. (2.58)

Then, it follows from (2.56), (2.55) and (2.17) that

sup
(τ ,ψ)∈H×Q
(τ ,ψ) �=0

Aw

(
(ζ , φ), (τ , ψ)

)
‖(τ , ψ)‖H×Q

≥ αT̂ ‖(ζ , φ)‖H×Q − ‖φ‖0,ρ;Ω ‖w‖0,r;Ω

≥
{
αT̂ − ‖w‖0,r;Ω

}
‖(ζ , φ)‖H×Q ∀ (ζ , φ) ∈ H × Q,

and hence, assuming that ‖w‖0,r;Ω ≤ αT̂

2
, we arrive at

sup
(τ ,ψ)∈H×Q
(τ ,ψ) �=0

Aw

(
(ζ , φ), (τ , ψ)

)
‖(τ , ψ)‖H×Q

≥ αT̂

2
‖(ζ , φ)‖H×Q ∀ (ζ , φ) ∈ H × Q. (2.59)
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Analogously, noting that A is symmetric, and employing again (2.55) and (2.17), we find that

sup
(ζ ,φ)∈H×Q
(ζ ,φ) �=0

Aw

(
(ζ , φ), (τ , ψ)

)
‖(ζ , φ)‖H×Q

≥ αT̂ ‖(τ , ψ)‖H×Q − ‖τ‖0,Ω ‖w‖0,r;Ω

≥
{
αT̂ − ‖w‖0,r;Ω

}
‖(τ , ψ)‖H×Q ∀ (τ , ψ) ∈ H × Q,

from which, under the same assumption ‖w‖0,r;Ω ≤ αT̂

2
, we obtain

sup
(ζ ,φ)∈H×Q
(ζ ,φ) �=0

Aw

(
(ζ , φ), (τ , ψ)

)
‖(ζ , φ)‖H×Q

≥ αT̂

2
‖(τ , ψ)‖H×Q ∀ (τ , ψ) ∈ H × Q. (2.60)

Thanks to the foregoing analysis, we are in a position to establish next that the operator T̂ (cf. (2.33))
is well defined.

Theorem 2.10 For each w ∈ Lr(Ω) such that ‖w‖0,r;Ω ≤ αT̂

2
, there exists a unique (σ̂ , ϕ̂) = T̂(w) ∈

H × Q solution to (2.33) (equivalently (2.57)). Moreover, there holds

‖T̂(w)‖H×Q = ‖σ̂‖div�;Ω + ‖ϕ̂‖0,ρ;Ω ≤ 2

αT̂
|κ| ‖f ‖0,�;Ω . (2.61)

Proof. It is clear from (2.59) and (2.60) that Aw satisfies the hypotheses (i) and (ii) of Theorem 2.5,

the first one with α = αT̂

2
. Hence, bearing in mind that Q := Lρ(Ω) is a reflexive Banach space, the

proof reduces to a straightforward application of the aforementioned result. In particular, the a priori
estimate (2.61) follows from (2.40) and the fact that, according to (2.58) and Hölder’s inequality, there
holds ‖G‖ ≤ |κ| ‖f ‖0,�;Ω . �

2.5 Solvability analysis

Knowing that the operators T̃ , T̂ , and hence T as well, are well defined, in this section we address the
solvability of the fixed-point equation (2.35). To this end, in what follows we verify the hypotheses
of the respective Banach Theorem. We begin the analysis by establishing a sufficient condition under
which T maps a closed ball of X2 into itself. Indeed, from now on we let

S :=
{

w ∈ X2 : ‖w‖X2
≤ αT̂

2

}
. (2.62)

Then we have the following result.

Lemma 2.11 Assume that

‖f‖0,r;Ω ≤ α̃ αT̂

2
. (2.63)

Then T(S) ⊆ S.
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Proof. Given w ∈ S, we know from Theorem 2.10 that T̂(w) is well defined. Then, using the a priori
estimate for T̃1 (cf. (2.45)) we have that

‖T(w)‖X2
= ‖T̃1

(
T̂(w)

)‖X2
≤ 1

α̃
‖f‖0,r;Ω ,

which, according to the assumption (2.63), yields T(w) ∈ S and ends the proof. �
Next, we aim to prove the continuity of T , which will follow from similar properties for the operators

T̂ and T̃ . We begin with the corresponding result for T̂ .

Lemma 2.12 There exists a positive constant LT̂ , depending only on αT̂ , such that

‖T̂(w) − T̂(z)‖H×Q ≤ LT̂ |κ| ‖f ‖0,�;Ω ‖w − z‖0,r;Ω ∀ w, z ∈ S. (2.64)

Proof. Given w, z ∈ S, we let T̂(w) := (σ̂ , ϕ̂) ∈ H × Q and T̂(z) := (σ̄ , ϕ̄) ∈ H × Q, which satisfy
(2.33) with w itself and with w = z, respectively. Then, subtracting the corresponding first and second
equations of these systems, we obtain

a(σ̂ − σ̄ , τ ) + b(τ , ϕ̂ − ϕ̄) =
∫

Ω

(
ϕ̄ z − ϕ̂ w

) · τ ∀ τ ∈ H,

and

b(σ̂ − σ̄ , ψ) = 0 ∀ψ ∈ Q,

which, together with the definitions of A (cf. (2.54)) and Aw (cf. (2.56)), yield

A
(
(σ̂ , ϕ̂) − (σ̄ , ϕ̄), (τ , ψ)

) =
∫

Ω

(
ϕ̄ z − ϕ̂ w

) · τ

and
Aw

(
(σ̂ , ϕ̂) − (σ̄ , ϕ̄), (τ , ψ)

) = A
(
(σ̂ , ϕ̂) − (σ̄ , ϕ̄), (τ , ψ)

) + ∫
Ω

(
ϕ̂ − ϕ̄

)
w · τ

= ∫
Ω

ϕ̄
(
z − w

) · τ ∀ (τ , ψ) ∈ H × Q.

In this way, applying the global inf-sup condition (2.59) to (ζ , φ) := (σ̂ , ϕ̂)−(σ̄ , ϕ̄), and then employing
the foregoing identity and the Cauchy–Schwarz and Hölder inequalities, the latter with � and j conjugate
to each other so that ρ = 2� and r = 2j, we find that

αT̂

2
‖(σ̂ , ϕ̂) − (σ̄ , ϕ̄)‖H×Q ≤ sup

(τ ,ψ)∈H×Q
(τ ,ψ) �=0

Aw

(
(σ̂ , ϕ̂) − (σ̄ , ϕ̄), (τ , ψ)

)
‖(τ , ψ)‖H×Q

= sup
(τ ,ψ)∈H×Q
(τ ,ψ) �=0

∫
Ω

ϕ̄
(
z − w

) · τ

‖(τ , ψ)‖H×Q
≤ ‖ϕ̄‖0,ρ;Ω ‖w − z‖0,r;Ω ,

from which, using the bound for ‖ϕ̄‖0,ρ;Ω = ‖T̂2(z)‖0,ρ;Ω provided by (2.61), we arrive at (2.64) with

LT̂ := 4

α2
T̂

.
�
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On the other hand, in order to establish a continuity property for T̃ , we need further regularity
assumptions on the solutions of the problems defining the operators T̂ and T̃ . More precisely, from now
on we suppose that there exists ε ≥ n

ρ
and constants Ĉε, C̃ε > 0, such that

(RA1) for each w ∈ S there holds T̂(w) := (
T̂1(w), T̂2(w)

) ∈ (
Hε(Ω) ∩ H

) × Wε,ρ(Ω), and

‖T̂1(w)‖ε,Ω + ‖T̂2(w)‖ε,ρ;Ω ≤ Ĉε |κ| ‖f ‖0,�;Ω , (2.65)

(RA2) for each φ ∈ Wε,ρ(Ω) there holds T̃(φ) := (
T̃1(φ), T̃2(φ)

) ∈ (
Wε,r(Ω)∩X2

)×(
Wε,r(Ω)∩M1

)
,

and

‖T̃1(φ)‖ε,r;Ω + ‖T̃2(φ)‖ε,r;Ω ≤ C̃ε ‖f‖0,r;Ω . (2.66)

The exact reason of the stipulated range for ε will be clarified along the subsequent analysis.
Furthermore, we recall that the embedding theorem between fractional Sobolev spaces (cf. Grisvard,
1985, Theorem 1.4.5.2; Evans, 1998, Theorem 6, Section 5.6, part e) establishes that whenever rε < n
there holds Wε,r(Ω) ⊂ Lε∗

(Ω), with continuous injection

iε : Wε,r(Ω) → Lε∗
(Ω), where ε∗ = nr

n − rε
. (2.67)

Note that rε < n is compatible with ε ≥ n
ρ

when ρ > 4 since in this case there holds ρ > r.

We are now in position of proving a continuity property for the first component T̃1 of T̃ , which,
together with the estimate given by Lemma 2.12, will allow us later on to show that the fixed point
operator T is Lipschitz continuous.

Lemma 2.13 There exists a positive constant LT̃ , depending only on α̃, Lμ, ‖iε‖, C̃ε, |Ω|, n, ε and ρ,
such that

‖T̃1(ψ) − T̃1(φ)‖X2
≤ LT̃ ‖f‖0,r;Ω ‖ψ − φ‖0,ρ;Ω ∀ψ , φ ∈ Wε,ρ(Ω). (2.68)

Proof. Given ψ , φ ∈ Wε,ρ(Ω), we proceed similarly to the proof of Lemma 2.12 and let T̃(ψ) :=
(̃u, p̃) ∈ X2 × M1 and T̃(φ) := (ū, p̄) ∈ X2 × M1, which satisfy (2.32) with ψ itself and with ψ = φ,
respectively. Then, from the corresponding second equations of these systems we have that both ũ and
ū, and hence ũ − ū as well, belong to K2. In this way, applying the inf-sup condition (2.42a) to the
present ψ and to w = ũ − ū, we get

α̃ ‖̃u − ū‖X2
≤ sup

v∈K1
v �=0

aψ (̃u − ū, v)

‖v‖X1

, (2.69)

where, according to the respective first equations and the definition of aψ (cf. (2.30a)), we have

aψ (̃u − ū, v) =
∫

Ω

f · v − aψ(ū, v) = aφ(ū, v) − aψ(ū, v)

=
∫

Ω

{
μ(φ) − μ(ψ)

}
ū · v ∀ v ∈ K1. (2.70)
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Then, employing the Lipschitz-continuity of μ (cf. (1.2)), and applying Hölder’s inequality, first with
(r, s), and then with an arbitrary pair of conjugates to each other denoted by (�, j), we obtain from (2.70)

∣∣aψ (̃u − ū, v)
∣∣ ≤ Lμ

∫
Ω

|ψ − φ| ‖ū‖ ‖v‖ ≤ Lμ ‖ψ − φ‖0,rj;Ω ‖ū‖0,r�;Ω ‖v‖0,s;Ω , (2.71)

which, replaced back into (2.69), gives

α̃ ‖̃u − ū‖X2
≤ Lμ ‖ψ − φ‖0,rj;Ω ‖ū‖0,r�;Ω . (2.72)

Next, choosing � such that r� = ε∗ (cf. (2.67)), we get � = n
n−rε , which yields rj = r�

�−1 = n
ε
, and

hence, recalling that ū = T̃1(φ), it follows from the foregoing inequality, the boundedness of iε (cf.
(2.67)), and the regularity estimate (2.66), that

α̃ ‖̃u − ū‖X2
≤ Lμ ‖ψ − φ‖0,n/ε;Ω ‖T̃1(φ)‖0,ε∗;Ω ≤ Lμ ‖iε‖ ‖ψ − φ‖0,n/ε;Ω ‖T̃1(φ)‖ε,r;Ω

≤ Lμ ‖iε‖ C̃ε ‖f‖0,r;Ω ‖ψ − φ‖0,n/ε;Ω .
(2.73)

Finally, in order to bound ‖ψ − φ‖0,n/ε;Ω in terms of ‖ψ − φ‖0,ρ;Ω , it suffices to require that n
ε

≤ ρ,
that is ε ≥ n

ρ
, which is precisely our assumption on ε for (RA1) and (RA2). Thus, a simple algebraic

computation shows that ‖ψ − φ‖0,n/ε;Ω ≤ |Ω| ερ−n
ρn ‖ψ − φ‖0,ρ;Ω , which, together with (2.73), leads to

the required inequality (2.68) with LT̃ := α̃−1 Lμ ‖iε‖ C̃ε |Ω| ερ−n
ρn . �

We stress here that, while it is not necessary for the rest of our analysis, it is also possible to prove
the Lipschitz-continuity of T̃2. To this end, it suffices to apply the inf-sup condition for b1 (cf. (2.43)),
the first equation of the problem defining T̃ (cf. (2.32)) and Lemma 2.13. It is also important to remark
here that if the viscosity is constant, then the regularity assumptions specified above are not required
anymore since the expression that yields (2.73), namely aψ (̃u − ū, v) (cf. (2.70)), actually vanishes in
this case. In other words, the Darcy and heat equations are not coupled, and hence they can be solved
sequentially. However, if we keep a constant viscosity and, say for instance, the source term of the Darcy
equations is supposed to depend on the temperature, then the model becomes coupled again, but still no
extra regularity is needed either in this other case for the respective analysis.

Having proved Lemmas 2.12 and 2.13, we are able to establish now the Lipschitz-continuity of our
fixed point operator T in the closed ball S of X2 (cf. (2.62)).

Lemma 2.14 There exists a positive constant LT , depending only on LT̃ and LT̂ , such that

‖T(w) − T(z)‖X2
≤ LT ‖f‖0,r;Ω |κ| ‖f ‖0,�;Ω ‖w − z‖X2

∀ w, z ∈ S. (2.74)

Proof. Given w, z ∈ S, we first observe, thanks to the regularity of T̂ (cf. (RA1)), that T̂2(w) and T̂2(z)
belong to Wε,ρ(Ω). Then, according to the definition of T (cf. (2.34)), and employing the Lipschitz-
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continuity of T̃1 (cf. Lemma 2.13) and T̂2 (cf. Lemma 2.12), we deduce that

‖T(w) − T(z)‖X2
= ‖T̃1

(
T̂2(w)

) − T̃1

(
T̂2(z)

)‖X2

≤ LT̃ ‖f‖0,r;Ω ‖T̂2(w) − T̂2(z)‖0,ρ;Ω

≤ LT̃ ‖f‖0,r;Ω LT̂ |κ| ‖f ‖0,�;Ω ‖w − z‖0,r;Ω ,

which yields (2.74) with LT := LT̃ LT̂ . �
Consequently, the main result of this section is stated as follows.

Theorem 2.15 Assume (RA1), (RA2) and that the data satisfy

‖f‖0,r;Ω ≤ α̃ αT̂

2
and LT ‖f‖0,r;Ω |κ| ‖f ‖0,�;Ω < 1. (2.75)

Then, our coupled problem (2.31) has a unique solution (σ , ϕ) ∈ H × Q and (u, p) ∈ X2 × M1 with
u ∈ S ∩ X2. Moreover, there hold

‖(σ , ϕ)‖H×Q ≤ 2

αT̂
|κ| ‖f ‖0,�;Ω , ‖u‖X2

≤ 1

α̃
‖f‖0,r;Ω

and ‖p‖M1
≤ 1

β̃1

(
1 + μ2

α̃

)
‖f‖0,r;Ω .

(2.76)

Proof. We begin by recalling from Lemma 2.11 that the first assumption in (2.75) guarantees that T
maps S into itself. Hence, in virtue of the equivalence between (2.31) and (2.35), and bearing in mind
the Lipschitz-continuity of T (cf. Lemma 2.14) and the second hypothesis in (2.75), a straightforward
application of the Banach fixed-point theorem implies the existence of a unique solution of (2.31) with
u ∈ S. In addition, the fact that (u, p) = T̃(ϕ) and (σ , ϕ) = T̂(u), together with the a priori estimates
provided by (2.45) and (2.61), yield (2.76) and conclude the proof. �

3. The Galerkin scheme

In order to approximate the solution of our fully mixed variational formulation (2.31), we now proceed
to introduce and analyse an associated Galerkin scheme. Analogue tools and techniques to those used in
Section 2 will be employed here. We begin by considering arbitrary finite element subspaces Hh ⊆ H,
Qh ⊆ Q, X2,h ⊆ X2, M2,h ⊆ M2, X1,h ⊆ X1 and M1,h ⊆ M1, whose specific choices satisfying all
the required stability conditions will be introduced later on in Section 4. Then, the Galerkin scheme
associated with (2.31) reads as follows: find (σ h, ϕh) ∈ Hh × Qh and (uh, ph) ∈ X2,h × M1,h such that

a(σ h, τ h) + b(τ h, ϕh) + ∫
Ω

ϕh uh · τ h = 0 ∀ τ h ∈ Hh,

b(σ h, ψh) = −κ
∫
Ω

f ψh ∀ψh ∈ Qh,

aϕh
(uh, vh) + b1(vh, ph) = ∫

Ω
f · vh ∀ vh ∈ X1,h,

b2(uh, qh) = 0 ∀ qh ∈ M2,h.

(3.1)
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3.1 The discrete fixed-point strategy

Here we adopt the discrete analogue of the continuous approach applied in Section 2.3 to analyse the
solvability of (3.1). Thus, we now let T̃h : Qh → X2,h × M1,h be the operator defined for each ψh ∈ Qh

as T̃h(ψh) = (T̃1,h(ψh), T̃2,h(ψh)) := (̃uh, p̃h), where (̃uh, p̃h) ∈ X2,h × M1,h is the unique solution (to
be confirmed below) of the last two equations of (3.1) with ψh instead of ϕh, that is,

aψh
(̃uh, vh) + b1(vh, p̃h) = ∫

Ω
f · vh ∀ vh ∈ X1,h,

b2(̃uh, qh) = 0 ∀ qh ∈ M2,h.
(3.2)

In addition, we also let T̂h : X2,h → Hh × Qh be the operator defined for each wh ∈ X2,h as T̂h(wh) =
(T̂1,h(wh), T̂2,h(wh)) := (σ̂ h, ϕ̂h), where (σ̂ h, ϕ̂h) ∈ Hh × Qh is the unique solution (to be confirmed
below as well) of the first two equations of (3.1) with wh instead of uh, that is,

a(σ̂ h, τ h) + b(τ h, ϕ̂h) + ∫
Ω

ϕ̂h wh · τ h = 0 ∀ τ h ∈ Hh,

b(σ̂ h, ψh) = −κ
∫
Ω

f ψh ∀ψh ∈ Qh.
(3.3)

In this way, we now introduce the operator Th : X2,h → X2,h as

Th(wh) := T̃1,h

(
T̂2,h(wh)

) ∀ wh ∈ X2,h, (3.4)

and realise that solving (3.1) is equivalent to seeking a fixed point of Th, that is uh ∈ X2,h such that

Th(uh) = uh. (3.5)

3.2 Well posedness of the operators T̃h and T̂h

In this section we apply the discrete versions of Theorems 2.4 and 2.5 to prove that problems (3.2) and
(3.3) are well posed, equivalently that the discrete operators T̃h and T̂h are well defined. To this end,
we need to introduce certain hypotheses concerning the arbitrary spaces Hh, Qh, X2,h, M2,h, X1,h and
M1,h, and the discrete kernels associated with the bilinear forms b1, b2 and b, respectively, that is,

K1,h :=
{

vh ∈ X1,h : b1(vh, qh) = 0 ∀ qh ∈ M1,h

}
, (3.6a)

K2,h :=
{

wh ∈ X2,h : b2(wh, qh) = 0 ∀ qh ∈ M2,h

}
, (3.6b)

Vh :=
{
τ h ∈ Hh : b(τ h, ψh) = 0 ∀ψh ∈ Qh}. (3.6c)

Specific finite element subspaces satisfying the conditions to be described in what follows will be
defined later on in Section 4.2. More precisely, from now on we assume the following:

(H.1) there exists a constant α̃d > 0, independent of h, such that for each ψh ∈ Qh there hold

sup
vh∈K1,h
vh �=0

aψh
(wh, vh)

‖vh‖X1

≥ α̃d ‖wh‖X2
∀ wh ∈ K2,h,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/42/4/3154/6368060 by Biom
edical Library user on 17 O

ctober 2022



A NEW MIXED-FEM FOR THE COUPLED HEAT AND DARCY EQUATIONS 3177

and

sup
wh∈K2,h

aψh
(wh, vh) > 0 ∀ vh ∈ K1,h, vh �= 0 ;

(H.2) there exist constants β̃1,d, β̃2,d > 0, independent of h, such that for each i ∈ {1, 2} there holds

sup
vh∈X1,h
vh �=0

bi(vh, qh)

‖vh‖Xi

≥ β̃i,d ‖qh‖Mi
∀ qh ∈ Mi,h ;

(H.3) there holds div(Hh) ⊆ Qh;
(H.4) there exists β̂d > 0, independent of h, such that

sup
τh∈Hh
τ h �=0

b(τ h, ψh)

‖τ h‖H
≥ β̂d ‖ψh‖Q ∀ψh ∈ Qh.

Then, as a straightforward consequence of (H.1) and (H.2), we can establish the following result.

Theorem 3.1 For each ψh ∈ Qh there exists a unique (̃uh, p̃h) = T̃(ψh) ∈ X2,h ×M1,h solution to (3.2).
Moreover, there hold

‖T̃1,h(ψh)‖X2
= ‖̃uh‖X2

≤ 1

α̃d
‖f‖0,r;Ω and

‖T̃2,h(ψh)‖M1
= ‖̃ph‖M1

≤ 1

β̃1,d

(
1 + μ2

α̃d

)
‖f‖0,r;Ω .

(3.7)

Proof. Thanks to (H.1) and (H.2), the proof reduces to a straightforward application of the discrete
version of Theorem 2.4 (see, e.g., Bernardi et al., 1988, Corollary 2.2). In particular, the a priori
estimates in (3.7) follow from the discrete analogue of (2.37) (see, e.g., Bernardi et al., 1988, eqs.
(2.24), (2.25)), the upper bound for ‖F‖X′

1
provided right before the statement of Theorem 2.8, and the

fact that the right-hand side of the second row of (3.2) is the null functional. �
Next, according to (H.3), it readily follows from (3.6c) that

Vh :=
{
τ h ∈ Hh : div(τ h) = 0

}
,

which yields the discrete analogue of (2.46), that is,

a(τ h, τ h) = ‖τ h‖2
div�;Ω ∀ τ h ∈ Vh,

and hence the assumptions (i) and (ii) of the discrete version of Theorem 2.4 (see, e.g., Bernardi et al.,
1988, eqs. (2.19), (2.20)) are satisfied, the first of them with the constant α̂d = 1. In this way, this fact
together with (H.4) guarantee the global inf-sup condition for A (cf. (2.54)) when restricted to Hh × Qh,
equivalently the discrete analogue of (2.55), which means the existence of a positive constant α̂T̂ ,d,
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depending only on α̂d, β̂d and ‖a‖, such that

sup
(τh ,ψh)∈Hh×Qh

(τ h,ψh) �=0

A
(
(ζ h, φh), (τ h, ψh)

)
‖(τ h, ψh)‖H×Q

≥ αT̂ ,d ‖(ζ h, φh)‖H×Q ∀ (ζ h, φh) ∈ Hh × Qh. (3.8)

Moreover, proceeding analogously to the analysis developed after (2.55) in Section 2.4.3, we find

that for each wh ∈ X2,h such that ‖wh‖0,r;Ω ≤ αT̂ ,d

2
, there holds

sup
(τh ,ψh)∈Hh×Qh

(τ h,ψh) �=0

Awh

(
(ζ h, φh), (τ h, ψh)

)
‖(τ h, ψh)‖H×Q

≥ αT̂ ,d

2
‖(ζ h, φh)‖H×Q ∀ (ζ h, φh) ∈ Hh × Qh. (3.9)

In this way, we conclude that the operator T̂h (cf. (3.3)) is well defined.

Theorem 3.2 For each wh ∈ X2,h such that ‖wh‖0,r;Ω ≤ αT̂ ,d

2
, there exists a unique (σ̂ h, ϕ̂h) =

T̂h(wh) ∈ Hh × Qh solution to (3.3), equivalently

Awh

(
(σ̂ h, ϕ̂h), (τ h, ψh)

) = G
(
(τ h, ψh)

) ∀ (τ h, ψh) ∈ Hh × Qh.

Moreover, there holds

‖T̂h(wh)‖H×Q = ‖σ̂ h‖div�;Ω + ‖ϕ̂h‖0,ρ;Ω ≤ 2

αT̂ ,d
|κ| ‖f ‖0,�;Ω . (3.10)

Proof. Similarly to the proof of Theorem 2.10, it follows from the fact that Awh
satisfies the hypotheses

of the discrete version of Theorem 2.5 (see, e.g., Ern & Guermond, 2004, Theorem 2.22). Indeed, the
latter reduces equivalently to fulfil only the corresponding inf-sup condition (i), which is precisely (3.9)
in this case. We omit further details. �

3.3 Discrete solvability analysis

Having established that the discrete operators T̃h, T̂h and hence Th, are all well defined, we now address
the solvability of the corresponding fixed-point equation (3.5). For this purpose, we first let

Sh :=
{

wh ∈ X2,h : ‖wh‖X2
≤ αT̂ ,d

2

}
, (3.11)

and provide a sufficient condition under which Th maps Sh into itself. More precisely, we have the
following result.

Lemma 3.3 Assume that

‖f‖0,r;Ω ≤ α̃d αT̂ ,d

2
. (3.12)

Then Th(Sh) ⊆ Sh.
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Proof. It proceeds analogously to the proof of Lemma 2.11, noting now from (3.11) and Theorem 3.2
that T̂h(wh) is well defined for each wh ∈ Sh, and using the a priori estimate for T̃1,h (cf. (3.7)) and the
assumption (3.12). �

Next, we look at the continuity properties of T̂h and T̃h, and hence at that of Th. In fact, we first
observe that, proceeding analogously to the proof of Lemma 2.12, but now using the discrete inf-sup
condition (3.8) and the a priori bound (3.10), we find that

‖T̂h(wh) − T̂h(zh)‖H×Q ≤ LT̂ ,d |κ| ‖f ‖0,�;Ω ‖wh − zh‖0,r;Ω ∀ wh, zh ∈ Sh, (3.13)

where LT̂ ,d = 4

α2
T̂ ,d

. In turn, for the continuity of T̃1,h we basically follow the same reasoning of the

proof of Lemma 2.13, except that, not being the regularity assumptions (RA1) and (RA2) applicable in
the present context, we only employ the Lrj−Lr�−Ls argument from (2.71), but with different values for
j and �, to estimate the discrete version of (2.70). More precisely, we apply the aforementioned tool with
j and � conjugate to each other such that rj = ρ. As a consequence, given ψh, φh ∈ Qh, and denoting
T̃h(ψh) := (̃uh, p̃h) ∈ X2,h × M1,h and T̃h(φh) := (ūh, p̄h) ∈ X2,h × M1,h, the discrete analogue of (2.72)
becomes

α̃d ‖̃uh − ūh‖X2
≤ Lμ ‖ψh − φh‖0,ρ;Ω ‖ūh‖0,r�;Ω ,

which, denoting LT̃ ,d := Lμ

α̃d
, yields

‖T̃1,h(ψh) − T̃1,h(φh)‖X2
≤ LT̃ ,d ‖T̃1,h(φh)‖0,r�;Ω ‖ψh − φh‖0,ρ;Ω ∀ψh, φh ∈ Qh. (3.14)

In this way, bearing in mind (3.13) and (3.14), it follows from the definition of Th (cf. (3.4)) and the fact
that ‖wh − zh‖0,r;Ω ≤ ‖wh − zh‖X2

, that

‖Th(wh) − Th(zh)‖X2
≤ LT ,d |κ| ‖f ‖0,�;Ω ‖Th(zh)‖0,r�;Ω ‖wh − zh‖X2

∀ wh, zh ∈ Sh, (3.15)

with LT ,d := LT̃ ,d LT̂ ,d. We stress here that (3.15) proves continuity of Th, but, due to the lack of
control of the term ‖Th(zh)‖0,r�;Ω , it does not necessarily yield neither Lipschitz-continuity, and hence
nor contractivity of this operator. As a consequence, we are only able to conclude existence, but not
necessarily uniqueness of a fixed point of Th.

According to the above, the main result of this section is established as follows.

Theorem 3.4 Assume that ‖f‖0,r;Ω ≤ α̃d αT̂ ,d

2
. Then, the Galerkin scheme (3.1) has at least one

solution (σ h, ϕh) ∈ Hh × Qh and (uh, ph) ∈ X2,h × M1,h with uh ∈ Sh. Moreover, there hold

‖(σ h, ϕh)‖H×Q ≤ 2

αT̂ ,d
|κ| ‖f ‖0,�;Ω , ‖uh‖X2

≤ 1

α̃d
‖f‖0,r;Ω

and ‖ph‖M1
≤ 1

β̃1,d

(
1 + μ2

α̃d

)
‖f‖0,r;Ω .

(3.16)
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Proof. We first notice from Lemma 3.3 that the assumption on ‖f‖0,r;Ω guarantees that Th maps Sh
into itself. Then, the aforementioned continuity of Th, the equivalence between (3.1) and (3.5), and
a straightforward application of the Brouwer Theorem (cf. Ciarlet, 2013, Theorem 9.9-2) implies the
existence of at least one solution of (3.1) with uh ∈ Sh. Finally, recalling that (uh, ph) = T̃h(ϕh) and
(σ h, ϕh) = T̂h(uh), and thanks to the a priori estimates (3.7) and (3.10), we obtain (3.16). �

3.4 A priori error analysis

In this section we derive an a priori error estimate for the Galerkin scheme (3.1) with arbitrary finite
element subspaces satisfying the hypotheses introduced in Section 3.2. More precisely, we are interested
in establishing a Céa estimate for the error

‖σ − σ h‖H + ‖ϕ − ϕh‖Q + ‖u − uh‖X2
+ ‖p − ph‖M1

,

where
(
(σ , ϕ), (u, p)

) ∈ (
H × Q

) × (
X2 × M1

)
is the unique solution of (2.31) with u ∈ S (cf. (2.62)),

and
(
(σ h, ϕh), (uh, ph)

) ∈ (
Hh × Qh

) × (
X2,h × M1,h

)
is a solution of (3.1) with uh ∈ Sh (cf. (3.11)). To

this end, and in order to employ corresponding Strang estimates, we rewrite (2.31) and (3.1) as the pairs
given by a continuous formulation and its associated discrete one, that is,

a(σ , τ ) + b(τ , ϕ) = Fϕ,u(τ ) ∀ τ ∈ H,

b(σ , ψ) = −κ
∫
Ω

f ψ ∀ψ ∈ Q,

a(σ h, τ h) + b(τ h, ϕh) = Fϕh,uh
(τ ) ∀ τ h ∈ Hh,

b(σ h, ψh) = −κ
∫
Ω

f ψh ∀ψh ∈ Qh,

(3.17)

where

Fϕ,u(τ ) := −
∫

Ω

ϕ u · τ ∀ τ ∈ H, and Fϕh,uh
(τ h) := −

∫
Ω

ϕh uh · τ h ∀ τ h ∈ Hh,

and

aϕ(u, v) + b1(v, p) = ∫
Ω

f · v ∀ v ∈ X1,

b2(u, q) = 0 ∀ q ∈ M2,

aϕh
(uh, vh) + b1(vh, ph) = ∫

Ω
f · vh ∀ vh ∈ X1,h,

b2(uh, qh) = 0 ∀ qh ∈ M2,h.

(3.18)

In what follows, given a subspace Zh of a generic Banach space (Z, ‖ · ‖Z), we set for each z ∈ Z

dist(z, Zh) := inf
zh∈Zh

‖z − zh‖Z .

Then, applying the Strang a priori error estimate from Bernardi et al. (1988, Proposition 2.1,
Corollary 2.3 and Theorem 2.3) (see also Colmenares et al., 2020, Lemma 6.1) to the context given
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by (3.17), we deduce that there exists a positive constant ĈS, depending only on α̂d = 1, β̂d, ‖a‖ = 1
and ‖b‖ = |κ|, such that

‖σ − σ h‖H + ‖ϕ − ϕh‖Q ≤ ĈS

{
dist(σ , Hh) + dist(ϕ, Qh) + ‖Fϕ,u − Fϕh,uh

‖H′
h

}
. (3.19)

Next, adding and subtracting ϕhu, applying the Cauchy-Schwarz and Hölder inequalities, similarly as
done in the last part of the proof of Lemma 2.12, and then employing the a priori estimates for ‖ϕ‖Q
(cf. (2.76)) and ‖uh‖X2

(cf. (3.16)), we obtain

‖Fϕ,u − Fϕh,uh
‖H′

h
= sup

τh∈Hh
τ h �=0

∫
Ω

{
(ϕh − ϕ) uh + ϕ (uh − u)

}
· τ h

‖τ h‖H

≤ ‖uh‖0,r;Ω ‖ϕ − ϕh‖0,ρ;Ω + ‖ϕ‖0,ρ;Ω ‖u − uh‖0,r;Ω

≤ 1

α̃d
‖f‖0,r;Ω ‖ϕ − ϕh‖0,ρ;Ω + 2

αT̂
|κ| ‖f ‖0,�;Ω ‖u − uh‖0,r;Ω ,

which, replaced back into (3.19), yields

‖σ − σ h‖H + ‖ϕ − ϕh‖Q ≤ ĈS

{
dist(σ , Hh) + dist(ϕ, Qh)

}
+ ĈS

α̃d
‖f‖0,r;Ω ‖ϕ − ϕh‖0,ρ;Ω + 2ĈS

αT̂
|κ| ‖f ‖0,�;Ω ‖u − uh‖0,r;Ω . (3.20)

In turn, applying again the Strang a priori error estimate from Bernardi et al. (1988, Proposition
2.1, Corollary 2.3 and Theorem 2.3), but now to the context given by (3.18), and performing some
algebraic manipulations in the consistency term determined by aϕ − aϕh

, we find that there exists a
positive constant C̃S, depending only on α̃d, β̃1,d, β̃2,d, ‖aϕ‖ = ‖aϕh

‖ = μ2 and ‖b1‖ = ‖b2‖ = 1,
such that

‖u − uh‖X2
+ ‖p − ph‖M1

≤ C̃S

{
dist(u, X2,h) + dist(p, M1,h) + ‖(aϕ − aϕh

)(u, ·)‖X′
1,h

}
. (3.21)

Then, proceeding as in the last part of the proof of Lemma 2.13 (cf. (2.73)), and using in particular the
regularity estimate (2.66), we get

‖(aϕ − aϕh
)(u, ·)‖X′

1,h
= sup

vh∈X1,h
vh �=0

∫
Ω

(
μ(ϕ) − μ(ϕh)

)
u · vh

‖vh‖X1

≤ L̃S ‖f‖0,r;Ω ‖ϕ − ϕh‖0,ρ;Ω , (3.22)

where L̃S := Lμ ‖iε‖ C̃ε |Ω| ερ−n
ρn . In this way, replacing (3.22) back into (3.21), we arrive at

‖u − uh‖X2
+ ‖p − ph‖M1

≤ C̃S

{
dist(u, X2,h) + dist(p, M1,h)

}
+ C̃S L̃S ‖f‖0,r;Ω ‖ϕ − ϕh‖0,ρ;Ω . (3.23)
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Thus, bounding ‖u − uh‖0,r;Ω in (3.20) by the right-hand side of (3.23), the former inequality becomes

‖σ − σ h‖H + ‖ϕ − ϕh‖Q ≤ ĈS

{
dist(σ , Hh) + dist(ϕ, Qh)

}
+ Ĉ1,S

{
dist(u, X2,h) + dist(p, M1,h)

}
+

{
Ĉ2,S ‖f‖0,r;Ω + Ĉ3,S |κ| ‖f ‖0,�;Ω ‖f‖0,r;Ω

}
‖ϕ − ϕh‖0,ρ;Ω , (3.24)

where

Ĉ1,S := 2ĈSC̃S

αT̂
|κ| ‖f ‖0,�;Ω , Ĉ2,S := ĈS

α̃d
and Ĉ3,S := 2ĈSC̃SL̃S

αT̂
.

According to the previous analysis, we are now in a position to establish the announced Céa estimate.

Theorem 3.5 In addition to the hypotheses of Theorems 2.15 and 3.4, assume that

Ĉ2,S ‖f‖0,r;Ω + Ĉ3,S |κ| ‖f ‖0,�;Ω ‖f‖0,r;Ω ≤ 1

2
. (3.25)

Then, there exists a constant C > 0, depending only on ĈS, C̃S, L̃S, αT̂ , |κ|, ‖f ‖0,�;Ω and ‖f‖0,r;Ω , such
that

‖σ − σ h‖H + ‖ϕ − ϕh‖Q + ‖u − uh‖X2
+ ‖p − ph‖M1

≤ C
{

dist(σ , Hh) + dist(ϕ, Qh) + dist(u, X2,h) + dist(p, M1,h)
}

.

Proof. It suffices to employ the assumption (3.25) in (3.24), and then combine the resulting estimate
with (3.23). �

4. Specific finite element subspaces

In this section we restrict ourselves to the two-dimensional case and define specific finite element
subspaces

Hh ⊆ H, Qh ⊆ Q, X2,h ⊆ X2, M2,h ⊆ M2, X1,h ⊆ X1, and M1,h ⊆ M1,

satisfying the abstract assumptions (H.1), (H.2), (H.3) and (H.4) that were introduced in Section 3.2 for
the well posedness of our Galerkin scheme.

4.1 Preliminaries

We first let
{
Th

}
h>0 be a regular family of triangulations of Ω̄ , which are made of triangles K of

diameters hK , and define the mesh size h := max
{
hK : K ∈ Th

}
, which also serves as the index of

Th. Next, given an integer k ≥ 0 and K ∈ Th, we let Pk(K) be the space of polynomials of degree ≤ k
defined on K with vector version denoted by Pk(K). In addition, we let RTk(K) := Pk(K) ⊕ Pk(K) x
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be the local Raviart–Thomas space of order k defined on K, where x stands for a generic vector in
R2. In turn, we let Pk(Th) and RTk(Th) be the corresponding global versions of Pk(K) and RTk(K),
respectively, that is

Pk(Th) :=
{

qh ∈ L2(Ω) : qh|K ∈ Pk(K) ∀ K ∈ Th

}
,

and

RTk(Th) :=
{
τ h ∈ H(div; Ω) : τ h|K ∈ RTk(K) ∀ K ∈ Th

}
.

Note that there also hold Pk(Th)⊆Lt(Ω), RTk(Th)⊆H(divt; Ω) (cf. (2.9a)) and RTk(Th)⊆Ht(divt; Ω)

(cf. (2.9b)), for all t ∈ [1, +∞], which is implicitly employed below in Section 4.2 to define our
specific finite element subspaces. Before doing that, in what follows we provide some useful properties
concerning Pk(Th) and RTk(Th). To this end, we now introduce for each t ∈ (1, +∞) the space

Ht :=
{
τ ∈ Ht(divt; Ω) ∪ H(divt; Ω) : τ |K ∈ W1,t(K) ∀ K ∈ Th

}
,

and let Πk
h : Ht −→ RTk(Th) be the global Raviart–Thomas interpolation operator (cf. Boffi et al.,

2013, Section 2.5; Gatica, 2014, Section 3.4). Then, we recall from Boffi et al. (2013, Proposition 2.5.2
and eq. (2.5.27)) (see also Gatica, 2014, Lemma 3.7) the commuting diagram property

div
(
Πk

h (τ )
) = Pk

h

(
div(τ )

) ∀ τ ∈ Ht, (4.1)

where Pk
h : L1(Ω) −→ Pk(Th) is the usual orthogonal projector with respect to the L2(Ω)-inner

product, that is, given w ∈ L1(Ω), Pk
h(w) is the unique element in Pk(Th), satisfying∫

Ω

Pk
h(w) qh =

∫
Ω

w qh ∀ qh ∈ Pk(Th).

Similarly, letting Γh be the set of edges e ⊂ Γ that are induced by Th, and denoting by Pk(Γh) the
subspace of L2(Γ ) given by the piecewise polynomials of degree ≤ k on each e ∈ Γh, the following
property also holds (cf. Boffi et al., 2013, eq. (2.5.10) in Example 2.5.3; Gatica, 2014, eq. (3.36) in
Lemma 3.18)

Πk
h (τ ) · ν = Qk

h(τ · ν) on Γ ∀ τ ∈ Ht, (4.2)

where Qk
h : L1(Γ ) −→ Pk(Γh) is the orthogonal projector with respect to the L2(Γ )-inner product.

On the other hand, employing the Wm,t version of the Deny–Lions Lemma (cf. Ern & Guermond,
2004, Lemma B.67) with integer m ≥ 0 and t ∈ (1, +∞), the associated scaling estimates (cf. Ern
& Guermond, 2004, Lemma 1.101) and the regularity of

{
Th

}
h>0, we deduce the existence of constants

C1, C2 > 0, independent of h, such that for integers � and m satisfying 0 ≤ � ≤ k + 1 and 0 ≤ m ≤ �,
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there hold

|w − Pk
h(w)|m,t;Ω ≤ C1 h�−m |w|�,t;Ω ∀ w ∈ W�,t(Ω), (4.3a)

and ∣∣∣div(τ ) − div
(
Πk

h (τ )
)∣∣∣

m,t;Ω
≤ C1 h�−m |div(τ )|�,t;Ω ∀ τ ∈ W1,t(Ω) with div(τ ) ∈ W�,t(Ω),

(4.3b)

whereas for integers � and m satisfying 1 ≤ � ≤ k + 1 and 0 ≤ m ≤ �, there holds

|τ − Πk
h (τ )|m,t;Ω ≤ C2 h�−m |τ |�,t;Ω ∀ τ ∈ W�,t(Ω). (4.3c)

In particular, note that (4.3b) actually follows from (4.1) and a straightforward application of (4.3a) to
w = div(τ ). In addition, we remark that (4.3a) is first derived for 1 ≤ � ≤ k +1, and then using only the
scaling estimates one proves the stability of Pk

h , that is the existence of a constant c > 0, independent of
h, such that

‖Pk
h(w)‖0,t;Ω ≤ c ‖w‖0,t;Ω ∀ w ∈ Lt(Ω). (4.4)

In turn, employing the triangle inequality and (4.3c) with � = 1 and m = 0, we readily deduce the
existence of a constant C > 0, independent of h, such that

‖Πk
h (τ )|0,t;Ω ≤ C ‖τ‖1,t;Ω ∀ τ ∈ W1,t(Ω). (4.5)

Furthermore, taking in particular (m, t) = (0, 2) in (4.3c) and m = 0 in (4.3b), we readily find that there
exists a constant C3 > 0, independent of h, such that for 1 ≤ � ≤ k + 1 there holds

‖τ − Πk
h (τ )‖divt;Ω ≤ C3 h�

{
|τ |�,Ω + |div(τ )|�,t;Ω

}
(4.6)

for all τ ∈ H�(Ω) with div(τ ) ∈ W�,t(Ω). In turn, taking now m = 0 in (4.3c) and (4.3b), we deduce
the existence of a constant C4 > 0, independent of h, such that for 1 ≤ � ≤ k + 1 there holds

‖τ − Πk
h (τ )‖t,divt;Ω ≤ C4 h�

{
|τ |�,t;Ω + |div(τ )|�,t;Ω

}
(4.7)

for all τ ∈ W�,t(Ω) with div(τ ) ∈ W�,t(Ω).

4.2 The finite element subspaces

Our specific finite element subspaces are defined as

Hh := H(div�; Ω) ∩ RTk(Th) =
{
τ h ∈ H(div�; Ω) : τ h|K ∈ RTk(K) ∀ K ∈ Th

}
, (4.8a)

Qh := Lρ(Ω) ∩ Pk(Th) =
{
ψh ∈ Lρ(Ω) : ψh|K ∈ Pk(K) ∀ K ∈ Th

}
, (4.8b)
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X2,h := X2 ∩ RTk(Th) =
{

wh ∈ Hr
0(divr; Ω) : wh|K ∈ RTk(K) ∀ K ∈ Th

}
, (4.8c)

M2,h := Ls
0(Ω) ∩ Pk(Th) =

{
qh ∈ Ls

0(Ω) : qh|K ∈ Pk(K) ∀ K ∈ Th

}
, (4.8d)

X1,h := X1 ∩ RTk(Th) =
{

vh ∈ Hs
0(divs; Ω) : vh|K ∈ RTk(K) ∀ K ∈ Th

}
, (4.8e)

M1,h := Lr
0(Ω) ∩ Pk(Th) =

{
qh ∈ Lr

0(Ω) : qh|K ∈ Pk(K) ∀ K ∈ Th

}
. (4.8f)

Regarding the above definitions, we first observe that div(Hh) ⊆ Qh, which confirms the verification
of the hypothesis (H.3). In turn, while the pairs (Hh, Qh), (X2,h, M2,h) and (X1,h, M1,h) are topologically
different, we stress that they do coincide algebraically. This fact implies that the stiffness matrices
associated to the bilinear forms b, b1 and b2 are exactly the same, except for the constant factor κ of b,
and that those of a and aϕ differ only by the factor μ(ϕ). The above, being certainly very relevant from
the computational point of view, constitutes another advantage of having used a mixed formulation in
the heat equation as well.

Furthermore, it is also clear that div
(
Xi,h

) ⊆ Mi,h for all i ∈ {1, 2}. As a consequence, the
corresponding discrete kernels of the bilinear forms b1 and b2 (cf. (3.6a), (3.6b)) coincide as well,
and it is easily seen that they become the space

Kk
h :=

{
vh ∈ RTk(Th) : vh · ν = 0 on Γ and div(vh) = 0 in Ω

}
. (4.9)

In this way, we now let Θk
h : L1(Ω) −→ Kk

h be the L2(Ω)-orthogonal projector, that is, given
w ∈ L1(Ω), Θk

h(w) is the unique element in Kk
h, satisfying∫

Ω

Θk
h(w) · vh =

∫
Ω

w · vh ∀ vh ∈ Kk
h. (4.10)

This operator plays a key role in what follows. Indeed, in order to prove one of the inf-sup conditions
required by our discrete analysis, we need to establish a particular stability estimate for Θk

h in terms of
‖ · ‖0,t;Ω , with t ∈ (1, +∞). This result is provided next in Section 4.3, for which we make use of the
related estimates for the Ritz projection that are collected in Appendix A.

4.3 Lt(Ω)-stability of Θk
h

In this section we first characterize the kernel Kk
h in terms of Pk+1,c(Th) (cf. (A1) in Appendix A), and

then establish for each t ∈ (1, +∞) the Lt(Ω)-stability of Θk
h when restricted to the space

H̃
t
0(divt; Ω) :=

{
v ∈ Ht

0(divt; Ω) : div(v) = 0 in Ω
}

.

More precisely, these results are given by the following two lemmas, whose proofs follow very closely
those of Durán (1988, Lemma 2.1) and Durán (1988, Theorem 3.1), respectively.

Lemma 4.1 There holds

Kk
h = curl

(
Pk+1,c(Th)

)
. (4.11)
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Proof. Let vh ∈ Kk
h, that is vh ∈ RTk(Th), div(vh) = 0 in Ω and vh · ν = 0 on Γ . It follows (see,

e.g., Gatica, 2014, proof of Theorem 3.3) that vh|K ∈ Pk(K) for all K ∈ Th. In addition, since Ω is
simply connected, we deduce from Girault & Raviart (1986, Theorem I.3.1) and the null normal trace
of vh on Γ that there exists φ ∈ H1

0(Ω) such that vh = curl(φ). Hence, for each K ∈ Th there holds
curl(φ)|K = vh|K ∈ Pk(K), which implies that φ|K ∈ Pk+1(K). In this way, φ ∈ Pk+1,c(Th), and
therefore vh ∈ curl

(
Pk+1,c(Th)

)
. Conversely, let vh ∈ curl

(
Pk+1,c(Th)

)
, that is vh = curl(φh) with

φh ∈ Pk+1,c(Th). It follows that vh|K = curl(φh)|K ∈ Pk(K) ⊆ RTk(K) for all K ∈ Th, and certainly
div(vh) = 0 in Ω and vh · ν = 0 on Γ , which shows that vh ∈ Kk

h. �
Lemma 4.2 Given t ∈ (1, +∞) and an integer k ≥ 0, there holds

‖Θk
h(w)‖0,t;Ω ≤ ck

t ‖w‖0,t;Ω ∀ w ∈ H̃
t
0(divt; Ω), (4.12)

where (cf. (A.5), (A.9))

ck
t :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ck
t if Ω is convex,

C̄k
t

{ − log(h)
}|1−2/t| if Ω is non-convex and k = 0,

C̄k
t if Ω is non-convex and k ≥ 1.

(4.13)

Proof. Given t ∈ (1, +∞), an integer k ≥ 0 and w ∈ H̃
t
0(divt; Ω), we employ again Girault & Raviart

(1986, Theorem I.3.1), and the fact that the normal trace of w vanishes on Γ , to deduce that there exists
ϕ ∈ W1,t

0 (Ω) such that w = curl(ϕ) in Ω . In turn, according to the identity (4.11) (cf. Lemma 4.1),
there exists ϕh ∈ Pk+1,c(Th) such that Θk

k (w) = curl(ϕh), and hence the characterization (4.10) of
Θk

h(w) becomes∫
Ω

curl(ϕh) · curl(φh) =
∫

Ω

curl(ϕ) · curl(φh) ∀φh ∈ Pk+1,c(Th), (4.14)

where (4.11) has also been utilized to replace the test functions vh of (4.10) by curl(φh), with
φh ∈ Pk+1,c(Th). Next, it is readily seen that, due to the relation between curl and ∇ in the two-
dimensional case, (4.14) can be rewritten as∫

Ω

∇ϕh · ∇φh =
∫

Ω

∇ϕ · ∇φh ∀φh ∈ Pk+1,c(Th), (4.15)

which, invoking (A.2), says that ϕh = Rk
h(ϕ). In this way, bearing in mind again the aforementioned

relation, it follows that

‖Θk
h(w)‖0,t;Ω = ‖curl(ϕh)‖0,t;Ω = ‖∇ϕh‖0,t;Ω = ‖∇Rk

h(ϕ)‖0,t;Ω (4.16)

and

‖w‖0,t;Ω = ‖curl(ϕ)‖0,t;Ω = ‖∇ϕ‖0,t;Ω , (4.17)

so that these identities, together with (A5) and (A9), yield (4.12) and (4.13) and complete the proof. �
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At this point we remark that in three-dimensions, (4.14) and (4.15) do not coincide, and the second
equalities of the identities (4.16) and (4.17) do not hold either, which stops us from extending the proof
of Lemma 4.2 to an eventual three-dimensional version. Indeed, up to our knowledge, the respective
stability estimate (4.12) remains as an open problem in this case, which explains that the discrete
inf-sup condition for aψh

, to be established below in Lemma 4.3 by making use of (4.12), only holds in
two-dimensions. In other words, this latter fact is actually the only reason why the present Section 4 has
been restricted to a two-dimensional domain Ω since all the other discrete inf-sup conditions that are
required for the discrete analysis, can be proved to be valid in both dimensions.

4.4 The discrete inf-sup conditions for T̃h and T̂h

In this section we employ the main results provided in Appendices B and C to verify that the specific
finite element subspaces that were introduced in Section 4.2 satisfy the assumptions (H.1), (H.2) and
(H.4). In other words, in what follows we establish the discrete analogues of Lemmas 2.6, 2.7 and 2.9,
for which we suitably adapt their respective proofs to the present context. We begin with the discrete
inf-sup condition for aψh

, where ψh is taken in Qh.

Lemma 4.3 For each ψh ∈ Qh there hold

sup
vh∈Kk

h
vh �=0

aψh
(wh, vh)

‖vh‖X1

≥ α̃d ‖wh‖X2
∀ wh ∈ Kk

h, (4.18)

with α̃d := μ1/(c
k
s ‖Ds‖) (cf. (1.2), Lemmas 2.3 and 4.2), and

sup
wh∈Kk

h

aψh
(wh, vh) > 0 ∀ vh ∈ Kk

h, vh �= 0. (4.19)

Proof. Given ψh ∈ Qh, we consider wh ∈ Kk
h, wh �= 0, define (cf. (2.7)) wh,s := Jr(wh) ∈ Ls(Ω),

and let ṽh := Θk
h

(
Ds(wh,s)

) ∈ Kk
h. Then, thanks to (4.10), (2.14) (cf. Lemma 2.3) and Lemma 2.2, we

observe that ∫
Ω

wh · ṽh =
∫

Ω

wh · Ds(wh,s) =
∫

Ω

wh · wh,s = ‖wh‖0,r;Ω ‖wh,s‖0,s;Ω , (4.20)

from which it follows that necessarily ṽh �= 0. Furthermore, the stability estimate (4.12) (cf. Lemma
4.2) and the boundedness of Ds (cf. Lemma 2.3) yield

‖̃vh‖0,s;Ω ≤ ck
s ‖Ds‖ ‖wh,s‖0,s;Ω . (4.21)

Thus, employing the lower bound for μ (cf. (1.2)), (4.20) and (4.21), we find that

sup
vh∈Kk

h
vh �=0

aψh
(wh, vh)

‖vh‖X1

≥
∣∣aψh

(wh, ṽh)
∣∣

‖̃vh‖0,s;Ω
≥ μ1

∫
Ω

wh · ṽh

‖̃vh‖0,s;Ω
≥ μ1

ck
s ‖Ds‖

‖wh‖0,r;Ω ,
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which yields (4.18) with the indicated constant α̃d. Similarly, given vh ∈ Kk
h, vh �= 0, we define (cf.

(2.7)) vh,r := Js(vh) ∈ Lr(Ω), set w̃h := Θk
h

(
Dr(vh,r)

) ∈ Kk
h, and utilize again (1.2), (4.10), (2.14)

and Lemma 2.2, to deduce that

sup
wh∈Kk

h

aψh
(wh, vh) ≥ aψh

(w̃h, vh) ≥ μ1

∫
Ω

w̃h · vh

= μ1

∫
Ω

Dr(vh,r) · vh = μ1 ‖vh‖s
0,s;Ω > 0,

which proves (4.19) and concludes the proof. �
We stress here that, only when Ω is non-convex and k = 0 is utilized, the discrete inf-sup constant

α̃d depends on the mesh size h, though in a very inoffensive manner. In fact, it is clear from (4.13) (cf.

Lemma 4.2) that in that case α̃d = μ1/
(
C̄k

s

{ − log(h)
}|1−2/s| ‖Ds‖

)
, where the h-dependent term given

by
{− log(h)

}|1−2/s| grows very slowly as h → 0, and hence it actually remains reasonably bounded for
very small values of h. In particular, taking for instance s = 8

5 (in Lemma 4.4 below we show that any

s ∈ ( 3
2 , 2) is a feasible choice) and h ≥ 10−30, then there holds

{− log(h)
}|1−2/s| = {− log(h)

}1/4
< 3.

It is also important to highlight at this point that the proof of Lemma 4.3 induces a discrete version of
the operator Ds provided by Lemma 2.3. In fact, it suffices to define Ds,h : Ls(Ω) → Kk

h by Ds,h(w) :=
Θk

h

(
Ds(w)

)
for all w ∈ Ls(Ω), which satisfies

∫
Ω

wh · Ds,h(w) = ∫
Ω

wh · w for all wh ∈ X2,h such that
div(wh) = 0 in Ω and wh · ν = 0 on Γ .

The discrete inf-sup conditions for the bilinear forms bi, i ∈ {1, 2}, are provided next.

Lemma 4.4 There exist β̃1,d, β̃2,d > 0, independent of h, such that for each i ∈ {1, 2} there holds

sup
vh∈Xi,h
vh �=0

bi(vh, qh)

‖vh‖Xi

≥ β̃i,d ‖qh‖Mi
∀ qh ∈ Mi,h. (4.22)

Proof. We first prove for i = 1. In this way, given qh ∈ M1,h, we set qh,s := Jr(qh) ∈ Ls(Ω) and

q0
h,s := qh,s − 1

|Ω|
∫
Ω

qh,s ∈ Ls
0(Ω), and let u ∈ W̃

1,s
(Ω) be the unique solution of (2.2) with g = q0

h,s,
g = 0 and gN = 0, that is,

Δu = q0
h,s in Ω , ∇u · ν = 0 on Γ ,

∫
Ω

u = 0. (4.23)

If Ω is convex, then we deduce from Jakab et al. (2009, Theorem 1.1) that actually u ∈ W2,s(Ω) ∩
W̃

1,s
(Ω) and that there exists a positive constant C(s) such that

‖u‖2,s;Ω ≤ C(s) ‖q0
h,s‖0,s;Ω . (4.24)

Then, defining v̄ := −∇u ∈ W1,s(Ω), we have v̄ · ν = 0 on Γ , div(v̄) = −q0
h,s in Ω , and, using (4.24),

‖v̄‖1,s;Ω ≤ ‖u‖2,s;Ω ≤ C(s) ‖q0
h,s‖0,s;Ω . (4.25)
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Thus, letting v̄h := Πk
h (v̄) and employing the identities satisfied by the Raviart–Thomas interpolator

Πk
h (cf. (4.2), (4.1)), we observe that v̄h · ν = Πk

h (v̄) · ν = Qk
h(v̄ · ν) = 0 on Γ , which proves that

v̄h ∈ X1,h and

div(v̄h) = div
(
Πk

h (v̄)
) = Pk

h(div(v̄)
) = Pk

h(−q0
h,s) in Ω . (4.26)

In addition, applying the stability estimates of Πk
h (cf. (4.5)) and Pk

h (cf. (4.4)), and thanks to (4.25) and
(4.26), we find that

‖v̄h‖0,s;Ω = ‖Πk
h (v̄)‖0,s;Ω ≤ C ‖v̄‖1,s;Ω ≤ C̃ ‖q0

h,s‖0,s;Ω , (4.27a)

‖div(v̄h)‖0,s;Ω = ‖Pk
h(q0

h,s)‖0,s;Ω ≤ c ‖q0
h,s‖0,s;Ω , (4.27b)

from which it follows that (cf. (2.10b))

‖v̄h‖X1
= ‖v̄h‖0,s;Ω + ‖div(v̄h)‖0,s;Ω ≤ C̄ ‖q0

h,s‖0,s;Ω ≤ C̄ C̃s ‖qh,s‖0,s;Ω , (4.28)

where C, c, C̄ and C̃s are positive constants independent of h, the latter being specified within the proof
of Lemma 2.7. In this way, bearing in mind (4.26) again, the fact that

∫
Ω

qh q0
h,s = ∫

Ω
qh qh,s, the scalar

version of (2.8b) and the estimate (4.28), we obtain

sup
vh∈X1,h
vh �=0

b1(vh, qh)

‖vh‖X1

≥
−

∫
Ω

qh div(v̄h)

‖v̄h‖X1

=

∫
Ω

qh Pk
h(q0

h,s)

‖v̄h‖X1

=

∫
Ω

qh qh,s

‖v̄h‖X1

= ‖qh‖0,r;Ω ‖qh,s‖0,s;Ω

‖v̄h‖X1

≥ 1

C̄ C̃s

‖qh‖0,r;Ω , (4.29)

which yields (4.22), for i = 1 and a convex polygonal domain Ω with β̃1,d = 1
C̄ C̃s

.
In turn, if Ω is non-convex, and bearing in mind that s ∈ (1, 2), we observe from Lemma B.1

(cf. (B2)) that the solution u of (4.23) belongs to W1+δ,s(Ω) ∩ W̃
1,s

(Ω) for all δ ∈ (0, δ0), with

δ0 = min
{

2 − 2
s , π

ω

}
and that there exists a positive constant C(s, δ) such that

‖u‖1+δ,s;Ω ≤ C(s, δ) ‖q0
h,s‖0,s;Ω . (4.30)

Thus, defining v̄ := −∇u ∈ Wδ,s(Ω), we have v̄ · ν = 0 on Γ , div(v̄) = −q0
h,s in Ω , and, using (4.30),

‖v̄‖δ,s;Ω ≤ C(s, δ) ‖q0
h,s‖0,s;Ω . (4.31)

Next, proceeding as in the convex case, we define v̄h := Πk
h (v̄) and realise again that v̄h ∈ X1,h and that

div(v̄h) = Pk
h(−q0

h,s). Now, in order to apply (C12b) to t = s and τ = v̄, which requires, according to

Lemma C.1 (cf. (C .3)), that δ > 1
s , we need to impose that δ0 > 1

s , or equivalently, 2 − 2
s > 1

s and
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π
ω

> 1
s , that is s > 3

2 and ω < sπ . In this way, under these assumptions on s and the maximum interior
angle ω of Ω , and thanks to (C.12b) and (4.31), we get

‖v̄h‖0,s;Ω = ‖Πk
h (v̄)‖0,s;Ω ≤ cs

{
‖v̄‖δ,s;Ω + hδ ‖div(v̄)‖0,s;Ω

}
≤ cs(1 + C(s, δ)) ‖q0

h,s‖0,s;Ω ,

where we have simply bounded hδ by 1. The foregoing inequality together with (4.27b) yield the bound
for ‖v̄h‖X1

in terms of ‖qh,s‖0,s;Ω (cf. (4.28)), and then the rest of the derivation of the discrete inf-sup
condition for b1 follows as (4.29).

On the other hand, for i = 2 we consider qh ∈ M2,h, set qh,r := Js(qh) ∈ Lr(Ω) and q0
h,r :=

qh,r − 1
|Ω|

∫
Ω

qh,r ∈ Lr
0(Ω), and let u ∈ W̃

1,r
(Ω) be the unique solution of

Δu = q0
h,r in Ω , ∇u · ν = 0 on Γ ,

∫
Ω

u = 0, (4.32)

so that in the convex case the proof is almost verbatim to the one for i = 1.
In turn, if Ω is non-convex, the fact that π

ω
> 1

2 > 1 − 2
r when s > 3

2 (equivalently, when r < 3)
allows us to apply Lemma B.1 to t = r without further restrictions. In this way, we conclude that the

solution u of (4.32) belongs to W1+δ,r(Ω) ∩ W̃
1,r

(Ω) for all δ ∈ (0, δ0), and it satisfies the analogue of
(4.30). Note that the hypothesis of Lemma C.1 (cf. (C.3)) is clearly satisfied in this case as well. The
rest of the proof proceeds as for the non-convex case of i = 1. We omit further details. �

It is important to remark here, as noticed within the previous proof, that in the case of a non-convex
Ω , the discrete inf-sup condition for b1, and hence our whole discrete analysis, is restricted to s > 3

2
and to those polygonal regions with largest interior angle ω < sπ . Nevertheless, as illustrated by the
numerical results reported later on in Section 5, which even consider s = 3

2 and domains with ω ≥ sπ ,
the above constraints seem to be only technical issues of the analysis rather than limitations of the
applicability of the method.

We end this section with the discrete analogue of Lemma 2.9. Indeed, while this result is a simple
modification of (Colmenares et al., 2020, eq. (5.64)), which in turn corresponds essentially to the vector
version of Colmenares et al. (2020, Lemma 5.5), in what follows we provide its full proof for sake
of completeness of our analysis. Moreover, irrespective of the fact that ρ and its conjugate � are now
subject in two-dimensions to the restriction ρ > 4, we prove the aforementioned inequality assuming
arbitrary ρ ∈ (2, +∞) and � ∈ (1, 2) such that 1/ρ + 1/� = 1. To this end, we first invoke Colmenares
et al. (2020, Lemma 5.4) (with local choices there given by p = �, � = 0 and n = 2) to deduce that
there exists a constant C0 > 0, independent of h, such that

‖τ − Πk
h (τ )‖0,Ω ≤ C0 h2(1−1/�) |τ |1,�;Ω ∀ τ ∈ W1,�(Ω). (4.33)

The announced discrete inf-sup condition for our bilinear form b is proved next.

Lemma 4.5 There exists β̂d > 0, independent of h, such that

sup
τh∈Hh
τ h �=0

b(τ h, ψh)

‖τ h‖H
≥ β̂d ‖ψh‖Q ∀ψh ∈ Qh. (4.34)
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Proof. Given ψh ∈ Qh, we let O be a convex domain containing Ω̄ , and set

g :=
{ |ψh|ρ−2 ψh in Ω ,

0 in O\Ω̄ ,

which is easily seen to belong to L�(O), with ‖g‖0,�;O = ‖g‖0,�;Ω = ‖ψh‖ρ−1
0,ρ;Ω . It follows from

(Fromm, 1993, Corollary 1) that there exists a unique z ∈ W2,�(O) ∩ W1,�
0 (O) solution of

Δz = g in O, z = 0 on ∂O, (4.35)

and there exists a constant Creg > 0, depending only on O, such that

‖z‖2,�;O ≤ Creg ‖g‖0,�;Ω = Creg ‖ψh‖ρ−1
0,ρ;Ω . (4.36)

Next, we let ζ := ∇z|Ω ∈ W1,�(Ω), and notice from (4.35) and (4.36) that

div(ζ ) = |ψh|ρ−2 ψh in Ω and ‖ζ‖1,�;Ω ≤ Creg ‖ψh‖ρ−1
0,ρ;Ω . (4.37)

Thus, defining ζ h := Πk
h (ζ ) ∈ Hh, applying (4.33) with � = 1, n = 2 and � ∈ (1, +∞), and employing

the continuous injection i� of W1,�(Ω) into L2(Ω), and the inequality from (4.37), we deduce that

‖ζ h‖0,Ω ≤ ‖ζ − Πk
h (ζ )‖0,Ω + ‖ζ‖0,Ω ≤ C0 h2(1−1/�) |ζ |1,�;Ω + ‖i�‖ ‖ζ‖1,�;Ω

≤ (C0 + ‖i�‖) ‖ζ‖1,�;Ω ≤ (C0 + ‖i�‖)Creg ‖ψh‖ρ−1
0,ρ;Ω , (4.38)

where h2(1−1/�) has been simply bounded by 1. In turn, we have

div(ζ h) = Pk
h

(
div(ζ )

) = Pk
h(|ψh|ρ−2 ψh),

so that proceeding exactly as for the derivation of (4.27b), we find that

‖div(ζ h)‖0,�;Ω ≤ Ĉ ‖|ψh|ρ−2 ψh‖0,�;Ω = Ĉ ‖ψh‖ρ−1
0,ρ;Ω ,

which, together with (4.38), give

‖ζ h‖div�;Ω ≤ (
(C0 + ‖i�‖)Creg + Ĉ

) ‖ψh‖ρ−1
0,ρ;Ω . (4.39)

Finally, bounding below with ζ h and using the orthogonality property of Pk
h , we conclude that

sup
τh∈Hh
τ h �=0

b(τ h, ψh)

‖τ h‖H
≥ b(ζ h, ψh)

‖ζ h‖H
= κ

∫
Ω

ψh Pk
h(|ψh|ρ−2 ψh)

‖ζ h‖div�;Ω
= κ‖ψh‖ρ

0,ρ;Ω

‖ζ h‖div�;Ω
,

from which, making use of (4.39), we arrive at (4.34) with β̂d = κ
(
(C0 + ‖i�‖)Creg + Ĉ

)−1. �
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4.5 The rates of convergence

In this section we provide the rates of convergence of our Galerkin scheme (3.1) with the specific
finite element subspaces introduced in Section 4.2. For this purpose, we first collect the approximation
properties of Hh, Qh, X2,h and M1,h (cf. Section 4.2), which follow from (4.3a) (for m = 0 and t = ρ, r),
(4.6) (for t = �), (4.7) (for t = r) and interpolation estimates of Sobolev spaces. More precisely, we
have the following:

(APσ
h ) there exists C > 0, independent of h, such that for each � ∈ [1, k + 1], and for each τ ∈ H�(Ω)

with div(τ ) ∈ W�,�(Ω), there holds

dist(τ , Hh) := inf
τ h∈Hh

‖τ − τ h‖div�;Ω ≤ C h�
{
‖τ‖�,Ω + ‖div(τ )‖�,�;Ω

}
.

(APϕ
h ) there exists C > 0, independent of h, such that for each � ∈ [0, k+1], and for each ψ ∈ W�,ρ(Ω),

there holds

dist(ψ , Qh) := inf
ψh∈Qh

‖ψ − ψh‖0,ρ;Ω ≤ C h� ‖ψ‖�,ρ;Ω .

(APu
h) there exists C > 0, independent of h, such that for each � ∈ [1, k + 1], and for each v ∈ W�,r(Ω)

with div(v) ∈ W�,r(Ω), there holds

dist(v, X2,h) := inf
vh∈X2,h

‖v − vh‖r,divr ;Ω ≤ C h�
{
‖v‖�,r;Ω + ‖div(v)‖�,r;Ω

}
.

(APp
h) there exists C > 0, independent of h, such that for each � ∈ [0, k + 1], and for each q ∈ W�,r(Ω),

there holds

dist(q, M1,h) := inf
qh∈M1,h

‖q − qh‖0,r;Ω ≤ C h� ‖q‖�,r;Ω .

Hence, we can state the following main theorem.

Theorem 4.6 Let
(
(σ , ϕ), (u, p)

) ∈ (
H × Q

) × (
X2 × M1

)
be the unique solution of (2.31) with u ∈ S

(cf. (2.62)) and let
(
(σ h, ϕh), (uh, ph)

) ∈ (
Hh × Qh

) × (
X2,h × M1,h

)
be a solution of (3.1) with uh ∈ Sh

(cf. (3.11)), whose existences are guaranteed by Theorems 2.15 and 3.4, respectively. Assume that (3.25)
(cf. Theorem 3.5) holds, and that there exists � ∈ [1, k + 1] such that σ ∈ H�(Ω), div(σ ) ∈ W�,�(Ω),
ϕ ∈ W�,ρ(Ω), u ∈ W�,r(Ω), div(u) ∈ W�,r(Ω) and p ∈ W�,r(Ω). Then, there exists a constant C > 0,
independent of h, such that

‖σ − σ h‖H + ‖ϕ − ϕh‖Q + ‖u − uh‖X2
+ ‖p − ph‖M1

≤ C h�
{
‖σ‖�,Ω + ‖div(σ )‖�,�;Ω + ‖ϕ‖�,ρ;Ω + ‖u‖�,r;Ω + ‖div(u)‖�,r;Ω + ‖p‖�,r;Ω

}
. (4.40)

Proof. It follows straightforwardly from Theorem 3.5 and the above approximation properties. �
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5. Numerical results

We now address the numerical verification of the convergence properties of the proposed scheme (as
stated in Section 4.5), as well as the usability of this new method in problems of applicative interest. In
all results reported in this section, the linear systems emanating from the Newton–Raphson linearization
have been solved with the unsymmetric multifrontal direct method for sparse matrices (UMFPACK).

The condition of zero-average for pressure needed in (4.8d) and (4.8f) is imposed through a real
Lagrange multiplier.

5.1 Test 1: accuracy verification on different domains

The choice of s and the geometry of the underlying domain play key roles in the discrete analysis of the
method. More precisely, as pointed out after the proof of Lemma 4.4, the theoretical estimates require in
two-dimensions that s be greater than 3

2 and the largest interior angle ω be less than sπ , and the proofs of
stability do not extend readily to three-dimensional domains, as discussed after the proof of Lemma 4.2.
In this example we explore these aspects numerically by considering s = 3

2 and s = 8
5 , that is (cf. (2.19))

(ρ, �, r, s) = (6, 6/5, 3, 3/2) and (ρ, �, r, s) = (8, 8/7, 8/3, 8/5), (5.1)

respectively, and using as domains a square ΩS, an L-shaped domain ΩL (having an inner angle
of 3π/2), a domain with an inner angle larger than 8π/5, ΩV and the unit cube ΩC. Following a
manufactured solution approach, first we construct a sequence of successively refined unstructured
partitions of the given domain (with h tending to zero), and consider the following closed-form synthetic
solutions to (1.3) (in all of which we use the specification for temperature-dependent scaled viscosity
μ(ϕ) = μ0 + 1

2μ0ϕ(μ1 − ϕ))

in ΩS := (−π , π)2 : ϕ = 0.5(x2
1 + x2

2) − 0.25 sin(x1) cos(x2), κ = 0.1, μ0 = 0.5, μ1 = 10,

u = 1

10

(
cos(x1) sin(x2)− sin(x1) cos(x2)

)
, p = 1

10
sin(x1x2) e−0.1x1x2 , σ = κ∇ϕ − ϕu;

in ΩL := (−1, 1)2 \ (0, 1)2 : ϕ = 1 + sin(x1) sin(x2), κ = 0.05, μ0 = 0.1, μ1 = 5,

u =
(

cos(x1) sin(x2)− sin(x1) cos(x2)

)
, p = x4

1 − x4
2, σ = κ∇ϕ − ϕu;

in ΩV :=(0, 1)2\Δ

((
1

2
,

1

2

)
,

(
1,

1

3

)
,

(
1,

2

3

))
, ϕ=1+ 3

4
cos

(π

4
x1x2

)
, κ =0.01, μ0 =0.05, μ1 =3,

u=
(

sin2(πx1) sin2(πx2) cos(πx2)

− 1
3 sin(2πx1) sin3(πx2)

)
, p=sin(x1x2) cos(x1x2), σ =κ∇ϕ−ϕu;
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Fig. 5.1. Test 1. Error history for pseudoheat flux, temperature, velocity and pressure, showing convergence of the mixed finite
element method on the domains ΩS (top left and top right), ΩL (bottom left), ΩV (bottom centre) and ΩC (bottom right).

in ΩC := (0, 1)3 : ϕ = 1

2
(x2

1 + x2
2 + x2

3) − 1

4
sin(x1) cos(x2) cos(x3), κ =0.1, μ0 =1, μ1 =10,

u =
⎛⎝ sin(πx1) cos(πx2) cos(πx3)−2 cos(πx1) sin(πx2) cos(πx3)

cos(πx1) cos(πx2) sin(πx3)

⎞⎠, p=sin(x1x2x3) e−0.1x1x2x3 , σ =κ∇ϕ − ϕu.

Source terms (and for the cases that require it, also the non-homogeneous boundary conditions for the
normal trace of velocity that are prescribed essentially and for temperature ϕD, which are prescribed
weakly by adding the contribution −κ〈τ · ν, ϕD〉Γ ) are imposed using these exact solutions.

The finite element spaces are specified as in (4.8). In addition to RT elements composing (4.8a),
(4.8c) and (4.8e), we have also tested the convergence with Brezzi-Douglas-Marini (BDM) elements,
and no substantial differences are observed. We therefore refer only to RT-based families in the plots
below.

In Fig. 5.1 we collectively show the error history for each case, including computed errors on
each refinement level, for two different polynomial degrees k = 0, 1 and separating each individual
contribution to the total error

e(σ ) := ‖σ − σ h‖H, e(ϕ) := ‖ϕ − ϕh‖Q, e(u) := ‖u − uh‖X2
, e(p) := ‖p − ph‖M1

.
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Fig. 5.2. Test 2. Porous enclosure heated from the side, with Ra = 1500. Approximate pseudoheat flux and line integral contour,
temperature, velocity magnitude with line integral contour and pressure distribution at t = 0.5.

And these errors are computed in the norms that use the values from (5.1). For ΩS we use the two sets
of values, whereas for ΩL, ΩV, ΩC we use the second set of values (with s = 8/5).

The plotted accuracy trends in the top-left panel demonstrate numerically the optimal convergence
order anticipated by Theorem 4.6, and a similar conclusion is drawn when testing the accuracy in the
domains for which the analysis does not carry over. As usual, a local error decay rate can be obtained,
for a generic pair of individual errors e, ê generated by the mixed method on meshes associated with
mesh sizes h and ĥ, as rate = log

(
e(·)/̂e(·))[log(h/̂h)]−1, and then an average value can be taken for

each error history. Alternatively, one can visually compare the convergence against the optimal values
in the solid lines of each panel. For instance, for the three-dimensional domain ΩC we can infer a
slightly higher convergence for pressure (of about O(h1.45)). For all these runs, the maximum number of
iterations required over the course of the Newton–Raphson loop (which is terminated once the nonlinear
residual discrete norm drops below a relative tolerance of 10−6) was 5.

5.2 Test 2: application to buoyancy-driven flow in porous media

In order to study an application into heat and fluid flow in non-isothermal porous media, we extend the
model to the classical pseudo-steady case by adding the rate of change of temperature to the left-hand
side of the thermal energy conservation equation: ∂tϕ + u · ∇ϕ − κΔϕ = f (or −∂tϕ + div(σ ) = −f
in the context of (1.3)). After non-dimensionalization, the system regime can be fully described by
the Rayleigh number Ra (combining the effects of gravity, permeability, characteristic length, viscosity
and thermal conductivity), and the temperature-dependent viscosity is μ(ϕ) = exp(ϕ). The momentum
equation has an additional term on the right-hand side, depending on temperature (due to the Boussinesq

approximation relating density and temperature), f = ϕ

(
0
1

)
. The test configuration and parameter

values are taken from Nield & Bejan (2013), where a square porous layer is held between differentially
heated sidewalls. The four walls are impermeable, resulting in the condition u ·ν = 0 everywhere on the
boundary, and therefore a Lagrange multiplier is used to enforce pressure uniqueness. The temperature
boundary conditions adopted for this test are of mixed type, and they differ from those in (1.1): on
the left and right sidewalls, normalized temperatures of ϕ = 1 and ϕ = 0 are imposed, respectively;
whereas on the top and bottom walls we set σ · ν = 0. The fully discrete problem resulting from a
simple backward Euler time discretization with constant time step, adopts a form similar to (3.1). The
computational domain is the unit square, discretized into a uniform mesh of 40K triangles, and for the
lowest-order scheme the method has 320801 DoFs. We use a constant time step Δt = 0.01 and prescribe
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Fig. 5.3. Test 3A. Evolution of the concentration in viscous fingering at t = 5, 10, 15 s (left panels) and snapshots of total flux,
velocity and pressure with line integral contours at the final time (right column).

a Rayleigh number of 1500, and the approximate solutions on the enclosure heated from the left side,
after 50 time steps are shown in Fig. 5.2.

5.3 Test 3: applications to Darcian miscible displacement and viscous fingering

To conclude we note that if ϕ is understood as a species concentration rather than temperature, then
equations (1.1) can be used to describe flow displacement in Hele–Shaw cells (see, e.g., Bear, 1988;
Scovazzi et al., 2013), where one injects water into another viscous fluid of different viscosity (and with
viscosity ratio of r = 2). Starting from the initial distribution of concentration ϕ(x1, x2, 0) = ϕ2

2

[
1 +

erf
( x1−0.01

4×10−4

)]
, eventually the existing fluid is displaced and so-called viscous fingering instabilities

are formed (for this there is no need to prescribe a random perturbation, as the unstructured mesh
is sufficient to onset the required instabilities near the initial interface between the two fluids). The
computational domain is the channel Ω = (0, 0.08) × (0, 0.02) m2. The field ϕ is now interpreted as
concentration of the fluid to be displaced (and measured in mol/m3). The left side of the domain is the
inlet boundary, where we impose u · ν = −0.001m/s as inlet velocity and ϕ = 0 as inlet concentration
(since the second fluid, water, is being injected from that segment). On the horizontal walls of the
channel we impose u · ν = σ · ν = 0 and on the outlet (the right end of the channel) we set p = 0 and
zero diffusive flux (implying that [σ + ϕu] · ν = 0). The model parameters are (see, e.g., Bear, 1988;
Wheeler, 1988)

κ = 4 × 10−8 m2/s, lporo = 0.5, lmob = 2, lvisc = 1 mPa·s, lperm = 10−6 m2,

ϕ2 = 6500 mol/m3, μ(ϕ) = lvisc

lperm
exp(lmovϕ/ϕ2),
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Fig. 5.4. Test 3B. Evolution of the concentration in miscible displacement in porous media at adimensional times t = 10, 30, 90
(top) and snapshots of total flux, velocity and pressure at the final time (bottom).

and they represent diffusivity, porosity, log-mobility ratio, viscosity of the displacing fluid, permeability
of the porous medium, reference concentration of the displaced solute and concentration-dependent
Arrhenius viscosity law (scaled with permeability), respectively. We use an unstructured mesh of 37745
triangles, set a constant timestep of Δt = 0.01 s and run the simulations until t = 10 s.

Next we conduct a very similar test but the displaced fluid is water and a fluid with higher viscosity is
injected. The domain is an annular region (of radii 0.2 and 5, in adimensional units) with many holes of
random location and size. The inlet and outlet are the inner and outer circles, respectively. We prescribe
an inlet velocity u · ν = −1 and inlet concentration ϕ = 1, on the outlet we set zero pressure p = 0 and
zero diffusive flux [σ + ϕu] · ν = 0, and on the remainder of the boundaries the fluids are allowed to
slip, and zero total flux is imposed σ · ν = 0. The set of equations is in dimensionless form, depending
on the Péclet number Pe= 750, from which κ = 1/Pe, and the scaled viscosity follows a quarter-power
mixing rule μ(ϕ) = 1 + (ϕ + 1.18(1 − ϕ))−4. The mesh has 34683 triangular elements, the timestep is
Δt = 0.5 and the computation is evolved until t = 100.

The results of both tests are collected in Figs 5.3 and 5.4, showing snapshots of concentration at
different times, as well as examples of total fluxes, velocities and pressures at the final time. And we
emphasize that a key benefit offered by the proposed mixed-mixed formulation is the conservativity of
the resulting scheme.
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A. Lt(Ω)-stability of the Ritz projection

Given an integer k ≥ 0, we let Pk+1,c(Th) be the space of continuous piecewise polynomials of degree
≤ k + 1, that is

Pk+1,c(Th) :=
{
φh ∈ H1

0(Ω) : φh|K ∈ Pk+1(K) ∀ K ∈ Th

}
, (A.1)

and consider the Ritz projection Rk
h : H1

0(Ω) −→ Pk+1,c(Th) associated with the Poisson equation
under homogeneous Dirichlet boundary conditions. In other words, given φ ∈ H1

0(Ω), Rk
h(φ) is the

unique element in Pk+1,c(Th), satisfying∫
Ω

∇Rk
h(φ) · ∇φh =

∫
Ω

∇φ · ∇φh ∀φh ∈ Pk+1,c(Th), (A.2)
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and hence

‖∇Rk
h(φ)‖0,Ω ≤ ‖∇φ‖0,Ω . (A.3)

Note that the fact that Pk+1,c(Th) is contained in W1,t(Ω) for all t ∈ [1, +∞], guarantees that Rk
h is

actually well-defined in each one of these spaces as well. In this regard, we stress that stability estimates
as (A.3), but measured with respect to ‖ · ‖0,t;Ω , t �= 2, though less known, are also available in the
literature. One of the first results in this direction goes back to (Rannacher & Scott, 1982, Theorem),
where the aforementioned estimate is established for k = 0 and t ∈ [2, +∞] in the 2D case. More
precisely, if Ω is a convex polygonal region of R2, then for each t ∈ [2, +∞] there exists a positive
constant C0

t , independent of h, such that

‖∇R0
h(φ)‖0,t;Ω ≤ C0

t ‖∇φ‖0,t;Ω ∀φ ∈ W1,t
0 (Ω). (A.4)

Actually, this result is provided in (Rannacher & Scott, 1982, Theorem) in terms of ‖R0
h(φ)‖1,t;Ω and

‖φ‖1,t;Ω , which, due to the equivalence between ‖ · ‖1,t;Ω and | · |1,t;Ω in W1,t
0 (Ω), becomes (A.4). In

addition, employing a duality argument (as explained for instance in (Brenner & Scott, 2008, Section
8.5)), it is not difficult to show that (A.4) is also valid for t ∈ (1, 2]. In turn, for the corresponding
extension of all the above to any integer k ≥ 1, we refer to (Brenner & Scott, 2008, Theorem 8.5.3),
whose proof, based on a suitable regularity assumption (cf. (Brenner & Scott, 2008, eqs. (8.1.2) and
(8.1.3))), follows basically the same technique from Rannacher & Scott (1982). However, whereas the
aforementioned hypothesis is satisfied for an arbitrary convex polygonal region in R2, it requires a
maximum interior angle condition in R3. This difficulty is overcome in (Guzmán et al., 2009, eqs. (1.2)
and (1.3)) by employing arguments based on Green’s functions, which yields the respective stability for
t = +∞ (see also Leykekhman & Vexler (2016)). In this way, the interpolation of the latter with (A3)
implies the result for t ∈ [2, +∞], and the same duality argument from (Brenner & Scott, 2008, Section
8.5) allows to extend it to t ∈ (1, 2]. Summarizing, thanks to the analysis and results from Brenner &
Scott (2008), Guzmán et al. (2009) and Rannacher & Scott (1982), we know that, given an integer k ≥ 0
and a convex polygonal (resp. polyhedral) region Ω of R2 (resp. R3), for each t ∈ (1, +∞] there exists
a positive constant Ck

t , independent of h, such that

‖∇Rk
h(φ)‖0,t;Ω ≤ Ck

t ‖∇φ‖0,t;Ω ∀φ ∈ W1,t
0 (Ω). (A.5)

For further results on the stability of Rk
h in convex polygonal regions of R2, we refer for instance to

the recent works Leykekhman & Li (2017) and Li (2017), which consider the cases of mixed boundary
conditions and graded meshes, respectively.

On the other hand, in the case of arbitrary polygonal domains Ω in R2, not necessarily convex, one
easily proves, starting from (Schatz, 1980, eq. (0.7), Theorem 2), that, given an integer k ≥ 0, there
exists a positive constant C̄k∞, independent of h, such that

‖∇Rk
h(φ)‖0,∞;Ω ≤ C̄k∞

{ − log(h)
}r(k) ‖∇φ‖0,∞;Ω ∀φ ∈ W1,∞

0 (Ω), (A.6)

where r(k) =
{

1 if k = 0
0 if k ≥ 1

. Then, interpolating (A.6) with (A.3) we find that for each t ∈ [2, +∞]

there exists a positive constant C̄k
t , independent of h, such that

‖∇Rk
h(φ)‖0,t;Ω ≤ C̄k

t

{ − log(h)
}r(k)(1−2/t) ‖∇φ‖0,t;Ω ∀φ ∈ W1,t

0 (Ω). (A.7)
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Moreover, applying again the duality argument from (Brenner & Scott, 2008, Section 8.5), we deduce
that for each t ∈ (1, 2] there exists a positive constant C̄k

t , independent of h, such that

‖∇Rk
h(φ)‖0,t;Ω ≤ C̄k

t

{ − log(h)
}r(k)(−1+2/t) ‖∇φ‖0,t;Ω ∀φ ∈ W1,t

0 (Ω), (A.8)

so that we summarize (A.7) and (A.8) by simply stating that for each t ∈ (1, +∞] there exists a positive
constant C̄k

t , independent of h, such that

‖∇Rk
h(φ)‖0,t;Ω ≤ C̄k

t

{ − log(h)
}r(k)|1−2/t| ‖∇φ‖0,t;Ω ∀φ ∈ W1,t

0 (Ω). (A.9)

B. A Neumann regularity result on non-convex domains

We now let Ω be a non-convex polygonal region of R2, and establish, with δ > 0 and t ∈ (1, +∞),
a W1+δ,t(Ω)-regularity result for the Poisson problem with source term in Lt

0(Ω) and homogeneous

Neumann boundary conditions. More precisely, defining H̃
1
(Ω) :=

{
v ∈ H1(Ω) :

∫
Ω

v = 0
}

, and

letting N : H̃
1
(Ω)′ −→ H̃

1
(Ω) be the bounded linear operator that assigns to f ∈ H̃

1
(Ω)′ the unique

solution uf ∈ H̃
1
(Ω) of the problem∫

Ω

∇uf · ∇v = f (v) ∀ v ∈ H̃
1
(Ω),

we are interested in providing conditions under which there exists δ > 0 such that N can also be
continuously defined from Lt

0(Ω) into W1+δ,t(Ω). Note that this means that for each q ∈ Lt
0(Ω) there

exists a unique weak solution u ∈ W1+δ,t(Ω) ∩ W̃
1,t

(Ω) of the boundary value problem

Δu = q in Ω , ∇u · ν = 0 on Γ ,
∫

Ω

u = 0,

which satisfies

‖u‖1+δ,t;Ω ≤ ‖N‖ ‖q‖0,t;Ω .

In order to prove this regularity result we basically follow Dauge (2020) and make use of (Dauge,
1988, Corollary (23.5)), which says that N is continuous from Hs−1(Ω) to Hs+1(Ω) for each s ∈ [0, π

ω
),

where ω stands for the largest interior corner angle of Ω . Indeed, we have the following result.

Lemma B.1 Assume that t ∈ (1, +∞) is such that

π

ω
> 1 − 2

t
if t ≥ 2, (B.1)

and set

δ0 :=

⎧⎪⎪⎨⎪⎪⎩
min

{
1,

π

ω
+ 2

t
− 1

}
if t ≥ 2,

min

{
2 − 2

t
,
π

ω

}
if t ∈ (1, 2).

(B.2)

Then N : Lt
0(Ω) −→ W1+δ,t(Ω) is continuous for each δ ∈ (0, δ0).

Proof. Let us first assume that t ≥ 2. Then the continuous embeddings i0 : Lt
0(Ω) −→ L2(Ω) and

is : L2(Ω) −→ Hs−1(Ω), for s ≤ 1, are straightforward. In addition, employing the aforementioned
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regularity result for N , and noting that for the non-convex domain Ω there holds π
ω

≤ 1, we deduce
the continuity of N : Lt

0(Ω) −→ Hs+1(Ω) for each s ∈ [0, π
ω
), which is depicted by the following

sequence

Lt
0(Ω)

i0−→ L2(Ω)
is−→ Hs−1(Ω)

N−→ Hs+1(Ω).

In turn, according to the embedding between fractional Sobolev spaces (cf. (Evans, 1998, Theorem 6,
Section 5.6), (Grisvard, 1985, Theorem 1.4.5.2, part e)), we know that iδ : Hs+1(Ω) −→ W1+δ,t(Ω) is
continuous if

s = 1 + δ − 2

t
and s ≥ δ.

The former holds for some δ > 0 if s > 1 − 2
t , whereas the latter is guaranteed by the former and the

fact that t ≥ 2. Hence, bearing in mind our hypothesis on t, the feasible range for s becomes the interval
(1 − 2

t , π
ω
), equivalently δ := s − (

1 − 2
t

) ∈ (0, π
ω

+ 2
t − 1), which, together with the fact that δ ≤ s ≤ 1,

yields δ ∈ (0, δ0), and hence the required continuity of N follows from the diagram

Lt
0(Ω)

N−→ Hs+1(Ω)
iδ−→ W1+δ,t(Ω).

Furthermore, given t ∈ (1, 2), we employ again (Evans, 1998, Theorem 6, Section 5.6) (see also
(Grisvard, 1985, Theorem 1.4.5.2, part e)) to observe that the injection is : Lt

0(Ω) −→ H−s(Ω) is
continuous if s ≥ 2

t − 1, that is 1 − s ≤ 2 − 2
t . In turn, N : H−s(Ω) −→ H2−s(Ω) is continuous

if 1 − s ∈ [0, π
ω
), whereas H2−s(Ω) is continuously embedded in H1+t(Ω) if 2 − s ≥ 1 + δ, that

is 1 − s ≥ δ. Hence, noticing from the present range of t that H1+t(Ω) is continuously embedded
in W1+δ,t(Ω), we conclude that iδ : H2−s(Ω) −→ W1+δ,t(Ω) is continuous as well. In this way, the
announced continuity of N follows from the above constraints on 1 − s and δ, and the sequence

Lt
0(Ω)

is−→ H−s(Ω)
N−→ H2−s(Ω)

iδ−→ W1+δ,t(Ω).
�

C. Further properties of the Raviart–Thomas interpolators

In this appendix we establish additional stability and approximation properties of the local and global
Raviart–Thomas interpolation operators. To this end, we now denote the reference triangle of Th by K̂, so
that, given K ∈ Th, we let FK : K̂ −→ K be the bijective affine mapping defined by FK(x) := BK x+bK∀ x ∈ K̂, with BK ∈ R2×2 invertible and bK ∈ R2. Next, given an integer k ≥ 0 and a side F̂ of ∂K̂,

we let dk and
{
ϕ̂�,̂F

}dk
�=1 be the dimension and a basis of Pk(F̂), respectively. Similarly, when k ≥ 1,

we let rk be the dimension of Pk−1(K̂) and denote by
{
ψ̂�

}rk
�=1 a corresponding basis. Then, for each

τ̂ ∈ W1,t(K̂), with t ∈ (1, +∞), we formally define the F̂-moments for k ≥ 0 as

m�,̂F (̂τ ) :=
∫

F̂
τ̂ · ν ϕ̂�,̂F ∀ � ∈ {

1, 2, . . . , dk

}
, (C.1)

whereas the K̂-moments for k ≥ 1 are given by

m�,K̂ (̂τ ) :=
∫

K̂
τ̂ · ψ̂� ∀ � ∈ {

1, 2, . . . , rk

}
.
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In addition, gathering all the F̂ and K̂ moments in the set of linear functionals m̂j, j ∈ {
1, 2, . . . , Nk

}
,

with Nk := 3 dk + rk, for each i ∈ {
1, 2, . . . , Nk

}
we let τ̂ i be the unique function in RTk(K̂) such that

m̂j(̂τ i) = δij ∀ j ∈ {
1, 2, . . . , Nk

}
,

and introduce the reference Raviart–Thomas interpolation operator Πk
K̂

: W1,t(K̂) −→ RTk(K̂) as

Πk
K̂
(̂τ ) :=

Nk∑
j=1

m̂j(̂τ ) τ̂ j ∀ τ̂ ∈ W1,t(K̂). (C.2)

Proceeding analogously, one defines on each K ∈ Th the local Raviart–Thomas interpolation operator
Πk

K : W1,t(K) −→ RTk(K), which is related to Πk
K̂

through the identity

Πk
K̂
(̂τ ) = ̂Πk

K(τ ) := | det(BK)| B−1
K Πk

K(τ ) ◦ FK ∀ τ ∈ W1,t(K),

wherêdenotes from now on the Piola transformation.
The stability and approximation properties of Πk

K , measured with respect to Wm,t(K)-norms, with
integer m ≥ 0 and t ∈ (1, +∞), are well-known for sufficiently smooth functions (see, e.g. Section 4.1
for the corresponding global versions of them). Here we are interested in establishing similar estimates
measured in Lt(K)-norms, but for less smooth functions. For this purpose, we need the result provided
by the following lemma.

Lemma C.1 Let t ∈ (1, +∞), t �= 2 and δ ∈ [0, 1] such that⎧⎨⎩ δ >
1

t
if t ∈ (1, 2),

δ ≥ 0 if t ∈ (2, +∞).
(C.3)

Then, there exists a constant Ĉ > 0, independent of h, such that

‖Πk
K̂
(̂τ )‖0,t;K̂ ≤ Ĉ

{
‖τ̂‖δ,t;K̂ + ‖div(̂τ )‖0,t;K̂

}
∀ τ̂ ∈ Wδ,t(K̂) ∩ Ht(divt; K̂). (C.4)

Proof. We first realise that the moments m̂j, j ∈ {
1, 2, . . . , Nk

}
, are well-defined and constitute bounded

linear functionals in Wδ,t(K̂)∩Ht(divt; K̂). In fact, the above is straightforward for the K̂-moments since
m�,K̂ is clearly linear for each � ∈ {

1, 2, . . . , rk

}
, and, thanks to Hölder’s inequality, there holds

|m�,K̂ (̂τ )| ≤ ‖τ̂‖0,t;K̂ ‖ψ̂�‖0,t′;K̂ ∀ τ̂ ∈ Wδ,t(K̂) ∩ Ht(divt; K̂), (C.5)

where t′ is the conjugate of t. In turn, for the case of the F̂-moments, which are all linear as well,
we separate the analysis according to (C.3). If t ∈ (1, 2) and δ > 1

t , then the trace theorem (cf.

(Grisvard, 1985, Theorem 1.5.1.2)) establishes that τ̂ |∂K̂ ∈ Wδ− 1
t ,t(∂K̂) for all τ̂ ∈ Wδ,t(K̂). Hence,

given � ∈ {
1, 2, . . . , dk

}
, it follows from Hölder’s inequality, the continuous embedding of Wδ− 1

t ,t(∂K̂)

into Lt(∂K̂), and the trace inequality for Wδ,t(K̂), that

|m�,̂F (̂τ )| ≤ ‖τ̂‖0,t;̂F ‖ϕ̂�,̂F‖0,t′ ;̂F ≤ ‖τ̂‖0,t;∂K̂ ‖ϕ̂�,̂F‖0,t′ ;̂F

≤ C ‖τ̂‖
δ− 1

t ,t;∂K̂ ‖ϕ̂�,̂F‖0,t′ ;̂F ≤ C ‖τ̂‖δ,t;K̂ ‖ϕ̂�,̂F‖0,t′ ;̂F. (C.6)
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Next, we take t ∈ (2, +∞) and δ ≥ 0, so that, in particular, t′ ∈ (1, 2). Then, given � ∈ {
1, 2, . . . , dk

}
,

and noticing that certainly ϕ̂�,̂F ∈ W
1
t ,t′(F̂), it follows from (Grisvard, 1985, Theorem 1.5.2.3, part (a))

that its extension by zero to ∂K̂\F̂, say ϕ̂0
�,̂F

, belongs to W
1
t ,t′(∂K̂), and therefore we can redefine m�,̂F

(cf. (C.1)) as

m�,̂F (̂τ ) := 〈̂τ · ν, ϕ̂0
�,̂F

〉∂K̂ ∀ τ̂ ∈ Ht(divt; K̂), (C.7)

where 〈·, ·〉∂K̂ denotes the duality pairing between W− 1
t ,t(∂K̂) and W

1
t ,t′(∂K̂). Moreover, applying now

(Grisvard, 1985, Theorem 1.5.1.3), we deduce the existence of v̂�,̂F ∈ W1,t′(K̂) such that v̂�,̂F|∂K̂ = ϕ̂0
�,̂F

and

‖̂v�,̂F‖1,t′;K̂ ≤ c ‖ϕ̂0
�,̂F

‖ 1
t ,t′;∂K̂ . (C.8)

In this way, starting from (C.7), and then employing the integration by parts formula (2.12), the Hölder
inequality, and the trace estimate (C.8), we find that

|m�,̂F (̂τ )| = |〈̂τ · ν, ϕ̂0
�,̂F

〉∂K̂ | = |〈̂τ · ν, v̂�,̂F〉∂K̂ | =
∣∣∣ ∫

K̂

{
τ̂ · ∇ v̂�,̂F + v̂�,̂F div(̂τ )

}∣∣∣
≤ C ‖τ̂‖t,divt;K̂ ‖̂v�,̂F‖1,t′;K̂ ≤ C ‖τ̂‖t,divt;K̂ ‖ϕ̂0

�,̂F
‖ 1

t ,t′;∂K̂ . (C.9)

Finally, given τ̂ ∈ Wδ,t(K̂) ∩ Ht(divt; K̂), we have from (C.2)

‖Πk
K̂
(̂τ )‖0,t;K̂ ≤

Nk∑
j=1

|m̂j(̂τ )| ‖τ̂ j‖0,t;K̂ ,

which, together with the bounds (C.5), (C.6) and (C.9), and the fact that ‖τ̂‖0,t;K̂ ≤ ‖τ̂‖δ,t;K̂ , yield the

required estimate (C.4) with Ĉ depending on the sets
{‖ψ̂�‖0,t′;K̂

}rk
�=1,

{‖τ̂ j‖0,t;K̂

}Nk
j=1,

{‖ϕ̂�,̂F‖0,t′ ;̂F
}dk
�=1

and
{‖ϕ̂0

�,̂F
‖ 1

t ,t′;∂K̂

}dk
�=1, for all the sides F̂ ⊂ ∂K̂. �

Having proved Lemma C.1, we now establish an approximation property of Πk
K . More precisely, we

have the following result.

Lemma C.2 Assume that t and δ are as stated in Lemma C.1. Then, there exists a constant C > 0,
independent of h, such that for each K ∈ Th there holds

‖τ − Πk
K(τ )‖0,t;K ≤ C hδ

K

{
|τ |δ,t;K + ‖div(τ )‖0,t;K

}
∀ τ ∈ Wδ,t(K) ∩ Ht(divt; K). (C.10)

Proof. It proceeds analogously to the proof of (Gatica, 2014, Lemma 3.19), using now the estimate
(C4), and employing the Deny-Lions Lemma for fractional Sobolev spaces (cf. (Dupont & Scott, 1980,
Theorem 6.1)), and the scaling properties of the corresponding semi-norms (cf. (Heuer, 2014, Lemmas
2.8 and 2.9)). We omit further details. �

As a straightforward consequence of the triangle inequality, (C.10), and the fact that both, ‖ · ‖0,t;K
and | · |δ,t;K , are bounded by ‖ · ‖δ,t;K, we readily deduce the existence of a constant c > 0, independent
of h, such that for each K ∈ Th there holds

‖Πk
K(τ )‖0,t;K ≤ c

{
‖τ‖δ,t;K + hδ

K ‖div(τ )‖0,t;K

}
∀ τ ∈ Wδ,t(K) ∩ Ht(divt; K). (C.11)
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Finally, it is not difficult to see that the global versions of (C.10) and (C.11) become

‖τ − Πk
h (τ )‖0,t;Ω ≤ Ct hδ

{
|τ |δ,t;Ω + ‖div(τ )‖0,t;Ω

}
∀ τ ∈ Wδ,t(Ω) ∩ Ht(divt; Ω), (C.12a)

‖Πk
h (τ )‖0,t;Ω ≤ ct

{
‖τ‖δ,t;Ω + hδ ‖div(τ )‖0,t;Ω

}
∀ τ ∈ Wδ,t(Ω) ∩ Ht(divt; Ω), (C.12b)

respectively, with constants Ct, ct > 0, independent of h, but depending on t.
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