
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{N}\mathrm{U}\mathrm{M}\mathrm{E}\mathrm{R}. \mathrm{A}\mathrm{N}\mathrm{A}\mathrm{L}. © 2023 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 61, \mathrm{N}\mathrm{o}. 3, \mathrm{p}\mathrm{p}. 1449--1481

TWOFOLD SADDLE-POINT FORMULATION OF BIOT
POROELASTICITY WITH STRESS-DEPENDENT DIFFUSION*

BRYAN G\'OMEZ-VARGAS\dagger , KENT-ANDR\'E MARDAL\ddagger , RICARDO RUIZ-BAIER\S , AND

VEGARD VINJE\P 

Abstract. We present a new stress/total-pressure formulation for poroelasticity that incorpo-
rates the coupling with steady nonlinear diffusion modified by stress. This nonlinear problem is
written in mixed-primal form, which combines a perturbed twofold saddle-point system with an el-
liptic problem. We analyze the continuous formulation within the framework of abstract fixed-point
theory and Fredholm alternative for compact operators. A mixed finite element method is proposed,
and its stability and convergence are rigorously analyzed. We also provide a few representative nu-
merical examples to illustrate the effectiveness of the proposed formulation. The resulting model can
be used to study the steady case of waste removal in the brain, providing insight into the transport
of solutes in poroelastic structures under the influence of stress.
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1. Introduction. Poroelastic structures are found in many applications of in-
dustrial and scientific relevance. Examples include the interaction between soft per-
meable tissue and blood flow or the study of biofilm growth and distribution near
fluids [49]. We are concerned with one particular application involving the transport
of cerebrospinal fluid (CSF) and tracer within the brain parenchyma and how this
can contribute to better explain the mechanisms that permit solutes from the brain
interstitial space to move. These processes are key in eliminating waste from the brain
and in maintaining a healthy function of the nervous system (see, for instance, the re-
view [43]), which address important questions in the context of the overall glymphatic
function [33].
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1450 G\'OMEZ-VARGAS, MARDAL, RUIZ-BAIER, VINJE

Detailed maps of permeability and simulations using realistic hydrostatic pres-
sure gradients and image-based reconstruction of intersitial space suggest that diffu-
sive effects along vasculature dominate over bulk flow [31]. However it appears that
(even heterogeneous) Fickian diffusion and convective effects only are not sufficient
to explain the main features of the physiological propagation of solutes along the var-
ious elements of the brain structure [13, 52]. We thus reconsider how other changes
related to the mechanical state, such as the generation and nonuniform localization
of stresses in the brain, could impact the filtration properties at the spatio-temporal
scales of interest for the application at hand. Pressure, strain, and stress changes
can affect the tissue microstructure by rearranging the local distribution of compliant
arrays, opening and closing pores, and generating preferential paths for the accumu-
lation of large solvent molecules [58]. The combination of such effects can result in
variations of averaged coefficients usually employed in classical models, such as diffu-
sion (but also other parameters such as bulk moduli, relative permeability, and the
Biot--Willis coefficient [41]). For this effect we propose a simplified phenomenological
model for the steady interaction between poroelastic stress and diffusion of solutes
(such as gadobutrol). The coupling of poromechanics and diffusion is a fundamental
aspect not only for investigating the mechanical behavior of the brain function but
also in the description and design of other complex systems such as tissue engineering
scaffolds [12].

Linear models of poroelasticity seem to be sufficient to capture the most impor-
tant strain patterns when coupled to, e.g., immune system equations modeling the
blood-brain barrier in the brain (see the comparison in [36]). In the present model the
linear poroelasticity equations are formulated using the stress as an unknown. This is
of particular importance, as this field will be central to the coupling with the diffusion
process. The recent literature contains various formulations for Biot equations using
poroelastic stress, for instance, including weakly symmetric three-field formulations
[5, 37], four-field schemes [55], adaptive mixed formulations [17], multipoint stress-flux
mixed methods [2], and domain decomposition approaches [34]. In contrast, here we
employ a double saddle-point formulation designed to solve for total poroelastic stress,
displacement, rotation, total pressure (drawing inspiration from [38, 42] and general-
izing these formulations to include poroelastic and active stress), and fluid pressure.
The Biot equations are then coupled with a nonlinear diffusion equation for the CSF
tracer, and the discretization proceeds with classical mixed-primal finite elements.
Weak imposition of symmetry in the poroelastic stress is required to enforce the bal-
ance of angular momentum when using H(div)-conforming approximations of stresses
[3, 4], but using this approach may also have benefits in terms of computational cost
versus discretizations of poroelasticity in primal variables [37].

Mixed-primal and fully mixed methods for stress-modified diffusion problems have
been investigated in [23, 24], and their analysis hinges on techniques using a separation
of elastostatics and diffusion equations by means of a fixed-point scheme that requires
additional assumptions on regularity. This is precisely the approach followed here.
These models, as well as modification of transport properties in other soft tissues such
as cardiac muscle [45], allow us to recover enhanced anisotropy and heterogeneity of
stress-assisted diffusion. However, here the coupling with total poroelastic stress is
used to reduce or hinder diffusion patterns which have the potential to produce a
much better match with experimental studies that indicate a decrease of effective
diffusion by at least an order of magnitude with respect to the base state observed
during sleep. For the sake of simplicity and convenience in the analysis we restrict
ourselves to the stationary case---except for the tests related to the application in brain
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POROELASTICITY WITH STRESS-DEPENDENT DIFFUSION 1451

modeling. Even the steady case is a source of a number of challenges. One of the main
difficulties of the present work lies in deriving a variational formulation involving total
poroelastic stress and whose analysis does not need additional conditions on the Lam\'e
parameters. The resulting form has the structure of a double saddle-point problem,
where terms that explicitly involve \lambda s appear. Exploiting the compactness of these
terms and applying the Fredholm alternative together with a new extended version of
the Babu\v ska--Brezzi theory allow us to assert unique solvability robustly with respect
to \lambda s.

The content of this paper has been laid out as follows. Section 2 provides details of
the model, describing the components of the balance equations and stating boundary
conditions. Section 3 is devoted to the analysis of solvability of the weak form, using
fixed-point arguments in conjunction with the Fredholm alternative and the Babu\v ska--
Brezzi theory. We address in section 4 the solvability and stability analysis of the
discrete problem. A priori error estimates are derived in section 5, and in section 6 we
collect computational results, consisting in verification of convergence and simulation
of different cases on simple geometries. We close with some remarks and discussion
on model extensions in section 7.

2. Governing equations. Let us consider a Lipschitz polyhedral domain \Omega \subset 
\BbbR d, d= 2,3 occupied by the brain parenchyma, here modeled as a mixture consisting of
an elastic structure and an interconnected porous space fully saturated by interstitial
fluid. We will denote by \bfitn the outward unit normal vector on the boundary \partial \Omega .
We also define the boundaries \Gamma and \Sigma where different types of boundary conditions
will be applied. We assume that the parenchyma is isotropic, that the deformation
process is stationary, and that its constitutive stress-strain relation is linear. As usual
in the framework of linear poroelasticity, the solid-fluid mixture is described in terms
of the solid displacement \bfitu : \Omega \rightarrow \BbbR d accounting for the movement of the material
from its initial undeformed configuration and the pore fluid pressure p : \Omega \rightarrow \BbbR (which,
through Darcy's law, also defines the specific discharge or filtration velocity). The
Biot system states momentum and mass balances

 - div(\bfitsigma ) = \rho s\bfitf in \Omega ,

c0p+ \alpha div(\bfitu ) - div

\biggl( 
\kappa 

\mu f
\nabla p - \rho f\bfitg 

\biggr) 
=m in \Omega ,

(2.1)

respectively, where \bfitf : \Omega \rightarrow \BbbR d is the vector field of body loads and m : \Omega \rightarrow \BbbR 
is a source/sink of fluid. We also consider the presence of a CSF tracer within the
poroelastic parenchymal domain. We denote its concentration by \omega : \Omega \rightarrow \BbbR and its
movement in the parenchyma is governed by

(2.2) \phi \omega  - div(D(\bfitsigma )\nabla \omega ) = \phi \ell in \Omega ,

where \bfitsigma = 2\mu s\bfitvarepsilon (\bfitu )+(\lambda sdiv(\bfitu ) - \alpha p - \beta \omega )\BbbI is the poroelastic Cauchy stress tensor with
\bfitvarepsilon (\bfitu ) := 1

2 (\nabla \bfitu +\nabla \bfitu \ttt ) denoting the infinitesimal strain tensor, the Lam\'e constants
\mu s, \lambda s > 0 for homogeneous and isotropic materials, the Biot--Willis constant 0<\alpha \leq 1,
the d \times d identity matrix \BbbI , and \beta a scaling of active stress that indicates a two-
way coupling between diffusion and motion. The right-hand side \ell : \Omega \rightarrow \BbbR is a
nonnegative drainage or source coefficient that encodes absorption from the lymph
nodes and/or from capillaries [14], and \phi is porosity. In (2.1) c0 is the mass storativity
coefficient, and \kappa is the permeability tensor (symmetric, uniformly positive definite,
and bounded). The tensor function D :\BbbR d\times d \rightarrow \BbbR d\times d is a stress-dependent diffusivity
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1452 G\'OMEZ-VARGAS, MARDAL, RUIZ-BAIER, VINJE

accounting for an altered diffusion acting in the poroelastic domain. This term may
assume the simple form

(2.3) D(\bfitsigma ) = [\eta 0D0 + \eta 1 exp( - \eta 1tr\bfitsigma )]\BbbI ,

withD0 being the effective diffusion of typical solutes such as potassium ions and \eta 0, \eta 1
modulating the intensity of the stress-altered diffusion. Other constitutive equations
(including power-law, polynomial, and anisotropic forms) can be found in, e.g., [23],
whereas pressure-dependent diffusion models can be found in [30]. Alternative consti-
tutive relations could be given by a dependence on the volumetric part of the effective
poroelastic stress or on the porosity (which in the linear regime is the total amount of
fluid) such as D =D0\BbbI  - \eta (c0p+ \alpha div\bfitu )\BbbI . We prescribe tracer concentration on \partial \Omega ,
whereas we fix displacement and normal specific discharge on the boundary \Gamma and
zero normal total stress and prescribed fluid pressure on \Sigma .

Besides the main variables we also employ the total pressure (the volumetric
contributions to the poroelastic Cauchy stress) \widetilde p := \alpha p - \lambda s div\bfitu , the poroelastic stress
tensor \bfitsigma = 2\mu s\bfitvarepsilon (\bfitu ) - \widetilde p\BbbI  - \beta \omega \BbbI , the tensor \bfitgamma (rotation Lagrange multiplier assisting
the weakly imposition of the symmetry of \bfitsigma ), and the strain \bfitt := \bfitvarepsilon (\bfitu ) = \nabla \bfitu  - \bfitgamma .
Therefore the governing equations consist in finding \bfitsigma , \bfitu , \bfitgamma , \bfitt , \~p, p, and \omega , satisfying

\bfitt = \bfitvarepsilon (\bfitu ) in \Omega ,(2.4a)

\bfitsigma = 2\mu s\bfitt  - \~p\BbbI  - \beta \omega \BbbI in \Omega ,(2.4b)

\bfitgamma =\nabla \bfitu  - \bfitt in \Omega ,(2.4c)

\bfitsigma =\bfitsigma \ttt in \Omega ,(2.4d)

 - div\bfitsigma = \rho s\bfitf in \Omega ,(2.4e) \biggl( 
c0 +

\alpha 2

\lambda s

\biggr) 
p - \alpha 

\lambda s
\~p - div

\biggl( 
\kappa 

\mu f
\nabla p - \rho f\bfitg 

\biggr) 
=m in \Omega ,(2.4f)

1

\lambda s
\~p+ tr\bfitt  - \alpha 

\lambda s
p= 0 in \Omega ,(2.4g)

\phi \omega  - div(D(\bfitsigma )\nabla \omega ) = \phi \ell in \Omega ,(2.4h)

\bfitu = 0,
\kappa 

\mu f
\nabla p \cdot \bfitn = 0 on \Gamma , \bfitsigma \bfitn = 0, p= 0 on \Sigma ,(2.4i)

\omega = 0 on \partial \Omega .(2.4j)

Equations (2.4d)--(2.4e) state, respectively, the conservation of angular and linear
momentums, while (2.4b), (2.4a), (2.4c), and (2.4g) encode constitutive relations for
stress, strain, rotations, and total pressure, respectively. Homogeneous boundary
conditions (2.4i)--(2.4j) have been assumed only for the sake of conciseness, but they
can be generalized to the nonhomogeneous case by using classical lifting arguments.
An advantage of using this modified form of the system is that all equations are robust
with respect to the Lam\'e parameters.

3. Continuous mixed-primal formulation and well-posedness analysis.
Let us define the tensor functional spaces for stress and rotations and the scalar field
for the pressure,

\BbbH \Sigma (div,\Omega ) := \{ \bfittau \in \BbbH (div,\Omega ) : \bfittau \bfitn = 0 on\Sigma \} , \BbbL 2
skew(\Omega ) := \{ \bfiteta \in \BbbL 2(\Omega ) : \bfiteta + \bfiteta t= 0\} ,

H1
\Sigma (\Omega ) := \{ q \in H1(\Omega ) : q= 0 on\Sigma \} .
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POROELASTICITY WITH STRESS-DEPENDENT DIFFUSION 1453

A weak formulation for the linear poroelasticity problem (2.4a)--(2.4g) can be derived
as usual, and it consists in finding (\bfitt , (\bfitsigma , \~p), (\bfitu ,\bfitgamma ), p)\in \BbbL 2(\Omega )\times [\BbbH \Sigma (div,\Omega )\times L2(\Omega )]\times 
[L2(\Omega )\times \BbbL 2

skew(\Omega )]\times H1
\Sigma (\Omega ) such that

 - 
\int 
\Omega 

\bfitt : \bfittau  - 
\int 
\Omega 

\bfitu \cdot div\bfittau  - 
\int 
\Omega 

\bfitgamma : \bfittau = 0 \forall \bfittau \in \BbbH \Sigma (div;\Omega ),(3.1a)

2\mu s

\int 
\Omega 

\bfitt : \bfitr  - 
\int 
\Omega 

\bfitsigma : \bfitr  - 
\int 
\Omega 

\widetilde p tr(\bfitr ) = \beta 

\int 
\Omega 

\omega tr(\bfitr ) \forall \bfitr \in \BbbL 2(\Omega ),(3.1b)

 - 
\int 
\Omega 

\bfitsigma : \bfiteta = 0 \forall \bfiteta \in \BbbL 2
skew(\Omega ),(3.1c)

 - 
\int 
\Omega 

\bfitv \cdot div\bfitsigma = \rho s

\int 
\Omega 

\bfitf \cdot \bfitv \forall \bfitv \in L2(\Omega ),(3.1d)

 - 
\biggl( 
c0 +

\alpha 2

\lambda s

\biggr) \int 
\Omega 

pq+
\alpha 

\lambda s

\int 
\Omega 

\widetilde pq - 1

\mu f

\int 
\Omega 

\bfitkappa \nabla p \cdot \nabla q(3.1e)

= \rho f

\int 
\Omega 

\bfitkappa \bfitg \cdot \nabla q - 
\int 
\Omega 

mq \forall q \in H1
\Sigma (\Omega ),

 - 1

\lambda s

\int 
\Omega 

\widetilde p \widetilde q - \int 
\Omega 

tr(\bfitt )\widetilde q+ \alpha 

\lambda s

\int 
\Omega 

p\widetilde q= 0 \forall \widetilde q \in L2(\Omega ).(3.1f)

In order to define a weak formulation for problem (2.4h), we remark that the analysis
of fixed-point operators (cf. section 3.1) requires that we are able to control the
expression

(3.2)

\int 
\Omega 

(D(\widetilde \bfitsigma ) - D(\bfitsigma ))\nabla \omega \cdot \nabla \widetilde \omega ,
where \bfitsigma , \widetilde \bfitsigma \in \BbbH \Sigma (div,\Omega ) and \omega and \widetilde \omega are generic scalar fields in suitable spaces.
Then, from the Lipschitz continuity of D (cf. (3.6)) together with Cauchy--Schwarz
and H\"older inequalities, it can be deduced that\bigm| \bigm| \bigm| \bigm| \int 

\Omega 

(D(\widetilde \bfitsigma ) - D(\bfitsigma ))\nabla \widehat \omega \cdot \nabla \widetilde \omega \bigm| \bigm| \bigm| \bigm| \leq d3\| \widetilde \bfitsigma  - \bfitsigma \| \BbbL 2(\Omega )\| \nabla \omega \| L2p(\Omega )\| \nabla \widetilde \omega \| L2q(\Omega ),(3.3)

where p and q are conjugate exponents (that is, 1/p + 1/p\prime = 1). Then, bearing
in mind that a suitable bounding of the expression \| \nabla \widetilde \omega \| L2q(\Omega ) (for a particular \widetilde \omega )
will be stipulated later, (3.3) suggests to look for \omega \in W 1,r(\Omega ), with r := 2p. The
specific choice of r will be discussed later on, but for the moment let us denote s as
its conjugate. The sought variational formulation for (2.4i) now reads as follows: find
\omega \in W 1,r

0 (\Omega ) such that

(3.4)

\int 
\Omega 

\phi \omega \theta +

\int 
\Omega 

D(\bfitsigma )\nabla \omega \cdot \nabla \theta =

\int 
\Omega 

\ell \phi \theta \forall \theta \in W 1,s
0 (\Omega ).

Moreover, the unknown \omega works as a coupling variable, appearing on the right-hand
side of (3.1b). Therefore we should control this term according to the chosen func-
tional setting. Directly from Cauchy--Schwarz and H\"older inequalities and the Sobolev
embedding W1,r

0 (\Omega ) \lhook \rightarrow L
dr

d - r (\Omega ) we get

(3.5) \beta 

\int 
\Omega 

\omega tr(\bfitr )\leq \beta CH\| \omega \| W1,r(\Omega )\| \bfitr \| L2(\Omega ),

where CH > 0 is a constant depending on d, | \Omega | and r. We further assume that \bfitkappa 
is uniformly bounded and positive definite and that D(\bfitsigma ) is of class C1, uniformly
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1454 G\'OMEZ-VARGAS, MARDAL, RUIZ-BAIER, VINJE

positive definite, and Lipschitz continuous, and this satisfies a particular bounding
property: There exist positive constants \kappa 1, \kappa 2, and d1, d2, d3, d4, d5 such that

\kappa 1| \bfitv | 2 \leq \bfitv t\kappa (\cdot )\bfitv \leq \kappa 2| \bfitv | 2, d1| \bfitv | 2 \leq \bfitv tD(\cdot )\bfitv \leq d2| \bfitv | 2,(3.6)

| D(\bfitsigma ) - D(\bfitzeta )| \leq d3| \bfitsigma  - \bfitzeta | , d4 \leq | D(\bfitzeta )| \leq d5

\forall \bfitv \in \BbbR d and \forall \bfitsigma ,\bfitzeta \in \BbbR d\times d. Next, we regroup unknowns and spaces in (3.1e)--(3.1b)
as follows:

\vec{}\bfitsigma := (\bfitsigma , \widetilde p), \vec{}\bfittau := (\bfittau , \widetilde q), \vec{}\bfitu := (\bfitu ,\bfitgamma ), \vec{}\bfitv := (\bfitv ,\bfiteta ), X :=\BbbH \Sigma (div;\Omega )\times L2(\Omega ),

M :=L2(\Omega )\times \BbbL 2
skew(\Omega ).

Then, given (H\omega , F,G,J)\in \BbbL 2(\Omega )\prime \times M\prime \times H1
\Sigma (\Omega )

\prime \times W1,s
0 (\Omega )\prime , we seek (\bfitt , \vec{}\bfitsigma , \vec{}\bfitu , p,\omega )\in 

\BbbL 2(\Omega )\times X\times M\times H1
\Sigma (\Omega )\times W1,r

0 (\Omega ) such that

[A(\bfitt ),\bfitr ] + [B\ast (\vec{}\bfitsigma ),\bfitr ] = [H\omega ,\bfitr ],(3.7a)

[B(\bfitt ), \vec{}\bfittau ] - [C(\vec{}\bfitsigma ), \vec{}\bfittau ] + [B\ast 
1(\vec{}\bfitu ), \vec{}\bfittau ] + [B\ast 

2(p), \vec{}\bfittau ] =O,(3.7b)

[B1(\vec{}\bfitsigma ),\vec{}\bfitv ] = [F,\vec{}\bfitv ],(3.7c)

[B2(\vec{}\bfitsigma ), q] - [D(p), q] = [G,q],(3.7d)

[A\bfitsigma (\omega ), \theta ] = [J, \theta ](3.7e)

\forall (\bfitr , \vec{}\bfittau ,\vec{}\bfitv , q, \theta )\in \BbbL 2(\Omega )\times X\times M\times H1
\Sigma (\Omega )\times W1,s

0 (\Omega ), where the linear bounded operators
A : \BbbL 2(\Omega ) \rightarrow \BbbL 2(\Omega )\prime , C : X \rightarrow X\prime , B : \BbbL 2(\Omega ) \rightarrow X\prime , B1 : X \rightarrow M\prime , B2 : X \rightarrow H1

\Sigma (\Omega )
\prime ,

D : H1
\Sigma (\Omega ) \rightarrow H1

\Sigma (\Omega )
\prime , B\ast : X \rightarrow \BbbL 2(\Omega )\prime , B\ast 

1 : M \rightarrow X\prime , B\ast 
2 : H1

\Sigma (\Omega ) \rightarrow X\prime , and
A\bfitsigma :W1,r

0 (\Omega )\rightarrow W1,s
0 (\Omega )\prime are defined as

[A(\bfitt ),\bfitr ] := 2\mu s

\int 
\Omega 

\bfitt : \bfitr ,(3.8a)

[B(\bfitr ), \vec{}\bfittau ] := - 
\int 
\Omega 

\bfittau : \bfitr  - 
\int 
\Omega 

\widetilde q tr(\bfitr ),(3.8b)

[B1(\vec{}\bfittau ),\vec{}\bfitv ] := - 
\int 
\Omega 

\bfitv \cdot div\bfittau  - 
\int 
\Omega 

\bfiteta : \bfittau ,(3.8c)

[C(\vec{}\bfitsigma ), \vec{}\bfittau ] :=
1

\lambda s

\int 
\Omega 

\widetilde p \widetilde q,(3.8d)

[B2(\vec{}\bfittau ), q] :=
\alpha 

\lambda s

\int 
\Omega 

\widetilde qq,(3.8e)

[D(p), q] :=

\biggl( 
c0 +

\alpha 2

\lambda s

\biggr) \int 
\Omega 

pq+
1

\mu f

\int 
\Omega 

\bfitkappa \nabla p \cdot \nabla q,(3.8f)

[A\bfitsigma (\omega ), \theta ] :=

\int 
\Omega 

\phi \omega \theta +

\int 
\Omega 

D(\bfitsigma )\nabla \omega \cdot \nabla \theta ,(3.8g)

[H\omega ,\bfitr ] := \beta 

\int 
\Omega 

\omega tr(\bfitr ),(3.8h)

[F,\vec{}\bfitv ] := \rho s

\int 
\Omega 

\bfitf \cdot \bfitv ,(3.8i)

[G,q] := - 
\int 
\Omega 

mq+ \rho f

\int 
\Omega 

\bfitkappa \bfitg \cdot \nabla q,(3.8j)

[J, \theta ] :=

\int 
\Omega 

\ell \phi \theta (3.8k)
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POROELASTICITY WITH STRESS-DEPENDENT DIFFUSION 1455

for each \bfitt ,\bfitr \in \BbbL 2(\Omega ), \vec{}\bfitsigma , \vec{}\bfittau \in X, \vec{}\bfitu ,\vec{}\bfitv \in M, p, q \in H1
\Sigma (\Omega ), \omega \in W1,r

0 (\Omega ), and \theta \in W1,s
0 (\Omega ).

The symbol O stands here for the null functional, and [\cdot , \cdot ] denotes the duality pairing
induced by the operators and functionals.

3.1. Fixed-point-strategy. In this section, we utilize a fixed-point strategy to
prove that (3.7a)--(3.7e) is well-posed. Let S : W1,r

0 (\Omega ) \rightarrow \BbbL 2(\Omega )\times X\times M\times H1
\Sigma (\Omega )

be the operator defined by

S(\omega ) := (S1(\omega ), (S2(\omega ),S3(\omega )), (S4(\omega ),S5(\omega )),S6(\omega ))

= (\bfitt , (\bfitsigma , \widetilde p), (\bfitu ,\bfitgamma ), p)\in \BbbL 2(\Omega )\times X\times M\times H1
\Sigma (\Omega ),

where (\bfitt , (\bfitsigma , \widetilde p), (\bfitu ,\bfitgamma ), p) is the unique solution of (3.7a)--(3.7d) with \omega given. In turn,
we let \widetilde S :\BbbH \Sigma (div,\Omega ) \rightarrow W1,r

0 (\Omega ) be the operator

\widetilde S(\bfitsigma ) := \omega \forall \bfitsigma \in \BbbH \Sigma (div,\Omega ),

where \omega is the unique solution of (3.7e) with \bfitsigma given. Then, we define T :W1,r
0 (\Omega )\rightarrow 

W1,r
0 (\Omega ) as

T(\omega ) := \widetilde S(S2(\omega )) \forall \omega \in W1,r
0 (\Omega )

and realize that solving (3.7a)--(3.7e) is equivalent to finding \omega \in W1,r
0 (\Omega ) such that

(3.9) T(\omega ) = \omega .

3.2. Well-posedness of the uncoupled problems. We analyze the solvability
of problems defining S and \widetilde S. In view of the analysis of section 5 and Lemma 3.9
below, the well-posedness and stability of the uncoupled problem related with the
operator S for a given \omega \in W1,r

0 (\Omega ) will be developed considering generic functionals\widetilde H\omega , \widetilde F1, \widetilde F , and \widetilde G, instead of H\omega ,O, F and G, respectively, in (3.7a)--(3.7d). We begin
by investigating the well-posedness of this uncoupled problem. First, we recall from
[9] the decomposition

\BbbH (div,\Omega )=\BbbH 0(div,\Omega )\oplus \BbbR \BbbI , with \BbbH 0(div,\Omega ) :=

\biggl\{ 
\bfittau \in \BbbH (div,\Omega ) :

\int 
\Omega 

tr(\bfittau ) = 0

\biggr\} 
.

That is, for each \bfittau \in \BbbH (div,\Omega ) there exist unique

(3.10) \bfittau 0 := \bfittau  - 
\biggl\{ 

1

d| \Omega | 

\int 
\Omega 

tr(\bfittau )

\biggr\} 
\BbbI \in \BbbH 0(div,\Omega ) and \^d :=

1

d| \Omega | 

\int 
\Omega 

tr(\bfittau )\in \BbbR 

such that \bfittau = \bfittau 0 + \^d\BbbI . Moreover, we recall the following results which will be useful
in the forthcoming analysis. We remit to [22, Lemma 2.3] and [22, Lemma 2.4],
respectively, for further details.

Lemma 3.1. There exists c1 > 0, depending only on \Omega , such that

(3.11) c1\| \bfittau 0\| 2\BbbL 2(\Omega ) \leq \| \bfittau dev\| 2\BbbL 2(\Omega ) + \| div(\bfittau )\| 2\BbbL 2(\Omega ) \forall \bfittau \in \BbbH (div,\Omega ),

where \bfittau dev denotes the deviatoric part of the tensor \bfittau .
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1456 G\'OMEZ-VARGAS, MARDAL, RUIZ-BAIER, VINJE

Lemma 3.2. There exists c2 > 0, depending only on \Sigma and \Omega , such that

(3.12) c2\| \bfittau \| 2\BbbH (div,\Omega ) \leq \| \bfittau 0\| 2\BbbH (div,\Omega ) \forall \bfittau \in \BbbH \Sigma (div,\Omega ).

On the other hand, we can notice that the kernel of B1 is given by

\BbbV := \{ \vec{}\bfittau \in X : [B1(\vec{}\bfittau ),\vec{}\bfitv ] = 0 \forall \vec{}\bfitv \in M\} =
\bigl\{ 
\vec{}\bfittau \in X : div\bfittau = 0 and \bfittau = \bfittau t in \Omega 

\bigr\} 
.

The following two results will serve to establish the inf-sup conditions for B and B1

(cf. (3.8b), (3.8c)).

Lemma 3.3. There exists \beta 1 > 0 such that

sup
\vec{}\bfittau \in X\setminus \{ 0\} 

[B1(\vec{}\bfittau ),\vec{}\bfitv ]

\| \vec{}\bfittau \| X
\geq \^\beta 1\| \vec{}\bfitv \| M \forall \vec{}\bfitv \in M.

Proof. The (equivalent) surjectivity of B1 follows as a slight modification to the
proof of [21, section 2.4.3].

Lemma 3.4. There exists \beta > 0 such that

(3.13) sup
\bfitr \in \BbbL 2(\Omega )\setminus \{ 0\} 

[B(\bfitr ), \vec{}\bfittau ]

\| \bfitr \| \BbbL 2(\Omega )

\geq \^\beta \| \vec{}\bfittau \| X \forall \vec{}\bfittau \in \BbbV .

Proof. It follows by using (3.11) and (3.12). For more details see [22,
Lemma 2.5].

Before analyzing (3.7a)--(3.7d), we study the reduced problem: For each \omega \in 
W1,r

0 (\Omega ), find (\^\bfitt , \^\vec{}\bfitsigma , \^p)\in \BbbL 2(\Omega )\times \BbbV \times H1
\Sigma (\Omega ) such that

[A(\^\bfitt ),\bfitr ] + [B\ast (\^\vec{}\bfitsigma ),\bfitr ] = [ \widetilde H\omega ,\bfitr ],(3.14a)

[B(\^\bfitt ), \vec{}\bfittau ] - [C(\^\vec{}\bfitsigma ), \vec{}\bfittau ] + [B\ast 
2(\^p), \vec{}\bfittau ] = [ \widetilde F1, \vec{}\bfittau ],(3.14b)

[B2(\^\vec{}\bfitsigma ), q] - [D(\^p), q] = [ \widetilde G,q](3.14c)

\forall (\bfitr , \vec{}\bfittau , q) \in \BbbL 2(\Omega )\times \BbbV \times H1
\Sigma (\Omega ), where

\^\vec{}\bfitsigma := (\^\bfitsigma ,\^\widetilde p) and \widetilde H\omega , \widetilde F1 and \widetilde G are the generic
functionals mentioned at the beginning of section 3.2. The unique solvability of
(3.14a)--(3.14c) proceeds using Fredholm's alternative. Let us recast (3.14a)--(3.14c)
with \omega given as the following equivalent operator problem: find \vec{}\bfitt := (\^\bfitt , \^\vec{}\bfitsigma , \^p) \in H :=
\BbbL 2(\Omega )\times \BbbV \times H1

\Sigma (\Omega ) such that

(3.15) (\scrS + \scrT )\vec{}\bfitt =\scrF ,

where the linear operators \scrS ,\scrT :H\rightarrow H\ast and \scrF \in H\ast are defined, \forall \vec{}\bfitr := (\bfitr , \vec{}\bfittau , q)\in H,
as

[\scrS (\vec{}\bfitt ),\vec{}\bfitr ] := [A(\^\bfitt ),\bfitr ] + [B\ast (\^\vec{}\bfitsigma ),\bfitr ] - [B(\^\bfitt ), \vec{}\bfittau ] + [C(\^\vec{}\bfitsigma ), \vec{}\bfittau ] + [D(\^p), q],

[\scrT (\vec{}\bfitt ),\vec{}\bfitr ] := - [B\ast 
2(\^p), \vec{}\bfittau ] - [B2(\^\vec{}\bfitsigma ), q], [\scrF ,\vec{}\bfitr ] := [ \widetilde H\omega , r] - [ \widetilde F1, \vec{}\bfittau ] - [ \widetilde G,q].

The three upcoming lemmas establish that \scrS is invertible, \scrT is compact, and
\scrS + \scrT is injective. Fredholm's theory will yield the well-posedness of (3.15) and,
equivalently, that of (3.14a)--(3.14c), with \omega \in W1,r

0 (\Omega ) given.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/1

2/
23

 to
 1

30
.1

94
.1

60
.2

41
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



POROELASTICITY WITH STRESS-DEPENDENT DIFFUSION 1457

Lemma 3.5. The operator \scrS :H\rightarrow H\ast is invertible.

Asserting the invertibility of \scrS is equivalent to proving the unique solvability of
the following uncoupled problems: find (\^\bfitt , \^\vec{}\bfitsigma )\in \BbbL 2(\Omega )\times \BbbV such that

[A(\^\bfitt ),\bfitr ] + [B\ast (\^\vec{}\bfitsigma ),\bfitr ] = [F\omega ,\bfitr ] \forall \bfitr \in \BbbL 2(\Omega ),(3.16a)

[B(\^\bfitt ), \vec{}\bfittau ] - [C(\^\vec{}\bfitsigma ), \vec{}\bfittau ] = [FX, \vec{}\bfittau ] \forall \vec{}\bfittau \in \BbbV (3.16b)

and find \^p\in H1
\Sigma (\Omega ) such that

(3.17) [D(\^p), q] = [FH , q] \forall q \in H1
\Sigma (\Omega ),

where, defining \scrF := (\scrF \omega ,\scrF X,\scrF H), the functionals F\omega , FX, and FH are the ones
induced by the operators \scrF \omega ,\scrF X,\scrF H , respectively. The unique solution of (3.17)
simply follows by the Lax--Milgram lemma. In turn, for (3.16a)--(3.16b), we verify the
conditions in the linear version of [25, Lemma 2.1]. We first note that

(3.18) [A(\bfitr ),\bfitr ] = 2\mu s\| \bfitr \| 2\BbbL 2(\Omega ) \forall \bfitr \in \BbbL 2(\Omega ),

which means that the operator A is elliptic on \BbbL 2(\Omega ). Moreover, we observe that

(3.19) [C(\vec{}\bfittau ), \vec{}\bfittau ] =
1

\lambda s
\| \widetilde q\| 2L2(\Omega ) \geq 0 \forall \vec{}\bfittau \in \BbbV ,

which shows that C is semipositive definite on \BbbV . In this way, having in mind (3.18),
(3.19), and the inf-sup condition for B given by Lemma 3.4, we simply apply [25,
Lemma 2.1] and obtain the desired result.

Lemma 3.6. The operator \scrT :H\rightarrow H\ast is compact.

Proof. Let us to define the operator \BbbB : L2(\Omega )\rightarrow H1
\Sigma (\Omega ) as

\langle \BbbB (\widetilde q), q\rangle L2(\Omega ) :=
\alpha 

\lambda s

\int 
\Omega 

\widetilde qq \forall \widetilde q \in L2(\Omega ) \forall q \in H1
\Sigma (\Omega ),

where \langle \cdot , \cdot \rangle L2(\Omega ) stands for the L
2(\Omega )-inner product. Then, thanks to the compactness

of the adjoint operator \BbbB \ast (see [42, Lemma 2.2]), we deduce that the following operator
is also compact:

\scrT (\vec{}\bfitt ) = (0, (0,\BbbB (\^\widetilde p)),\BbbB \ast (\^p)).

Lemma 3.7. The operator (\scrS + \scrT ) :H\rightarrow H\ast is injective.

Proof. It is sufficient to show that the unique solution of the homogeneous prob-
lem of (3.14a)--(3.14c) is the null operator in H. Thus, we consider \widetilde H\omega = \widetilde F1 = \widetilde G= 0
in (3.14a)--(3.14c), and then, taking \bfitr =\^\bfitt , and \vec{}\bfittau = \^\vec{}\bfitsigma , in (3.14a), and (3.14b), respec-
tively, and applying elementary computations, we obtain

(3.20) 2\mu s\| \^\bfitt \| 2\BbbL 2(\Omega ) +
1

\lambda s
\| \^\widetilde p\| 2L2(\Omega )  - 

\alpha 

\lambda s
\| \^\widetilde p\| L2(\Omega )\| \^p\| H1(\Omega ) \leq 0.

In turn, choosing q= \^p in (3.14c), we have

(3.21) min

\biggl\{ 
c0,

\kappa 1

\mu f

\biggr\} 
\| \^p\| 2H1(\Omega ) +

\alpha 2

\lambda s
\| \^p\| 2L2(\Omega )  - 

\alpha 

\lambda s
\| \^\widetilde p\| L2(\Omega )\| \^p\| H1(\Omega ) \leq 0.
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1458 G\'OMEZ-VARGAS, MARDAL, RUIZ-BAIER, VINJE

Thus, by adding (3.20) and (3.21) and applying Young's inequality, we readily obtain
\| \^\bfitt \| \BbbL 2(\Omega ) = \| \^p\| H1(\Omega ) = 0. On the other hand, from Lemma 3.4 and using (3.14a), we
get

\^\beta \| \^\vec{}\bfitsigma \| X \leq sup
\bfitr \in \BbbL 2(\Omega )

\bfitr \not =0

[B(\bfitr ), \^\vec{}\bfitsigma ]

\| \bfitr \| \BbbL 2(\Omega )
= sup

\bfitr \in \BbbL 2(\Omega )
\bfitr \not =0

 - [A(\^\bfitt ),\bfitr ]

\| \bfitr \| \BbbL 2(\Omega )
\leq 2\mu s\| \^\bfitt \| \BbbL 2(\Omega ),

from which we deduce that \| \^\vec{}\bfitsigma \| X = 0, concluding the proof.

As announced above, thanks to Lemmas 3.5, 3.6, and 3.7 and Fredholm's alterna-
tive [47, Theorem 8.2], we deduce the existence of a unique solution to (3.14a)--(3.14c),
again, with a given \omega \in W1,r

0 (\Omega ). We complement the above result with the stability
of (3.14a)--(3.14c) for a given \omega \in W1,r

0 (\Omega ).

Lemma 3.8. For each \omega \in W1,r
0 (\Omega ), there exists a constant \^C > 0 independent of

\lambda s such that

\| \^\bfitt \| \BbbL 2(\Omega ) + \| \^\vec{}\bfitsigma \| X + \| \^p\| H1(\Omega ) \leq \^C
\Bigl( 
\| \widetilde H\omega \| \BbbL 2(\Omega )\prime + \| \widetilde F1\| X\prime + \| \widetilde G\| H1

\Sigma (\Omega )\prime 

\Bigr) 
.

Proof. We proceed similarly as in [35, Theorem 2.1] (see also [6, Theorem 4.3.1])
to obtain suitable estimates and then use linearity. Firstly, we assume that \widetilde F1 = 0 and
bound the solution in terms of \widetilde H\omega and \widetilde G, and secondly, we assume that \widetilde H\omega = 0, \widetilde G= 0
and deduce an estimate for the solution in terms of \widetilde F1.
Step 1: ( \widetilde F1 = 0). Proceeding exactly as in the proof of Lemma 3.7, the following
bounds can be deduced

\| \^\bfitt \| \BbbL 2(\Omega ) + \| \^p\| H1(\Omega ) \leq C1

\Bigl( 
\| \widetilde H\omega \| \BbbL 2(\Omega )\prime + \| \widetilde G\| H1

\Sigma (\Omega )\prime 

\Bigr) 
,(3.22a)

\^\beta \| \^\vec{}\bfitsigma \| X \leq sup
\bfitr \in \BbbL 2(\Omega )

\bfitr \not =0

[B(\bfitr ), \^\vec{}\bfitsigma ]

\| \bfitr \| \BbbL 2(\Omega )
= sup

\bfitr \in \BbbL 2(\Omega )
\bfitr \not =0

[ \widetilde H\omega ,\bfitr ] - [A(\^\bfitt ),\bfitr ]

\| \bfitr \| \BbbL 2(\Omega )
(3.22b)

\leq \| \widetilde H\omega \| \BbbL 2(\Omega )\prime + 2\mu s\| \^\bfitt \| \BbbL 2(\Omega ),

where C1 is a constant independent of \lambda s. Then the desired estimate follows from
(3.22a) and (3.22b).
Step 2: ( \widetilde H\omega = 0 and \widetilde G= 0). We define

[S(\^\vec{}\bfitsigma , \^p), (\vec{}\bfittau , q)] := [C(\^\vec{}\bfitsigma ), \vec{}\bfittau ] - [B\ast 
2(\^p), \vec{}\bfittau ] - [B2(\^\vec{}\bfitsigma ), q] +D[(\^p), q]

=
1

\lambda s

\int 
\Omega 

(\^\widetilde p - \alpha \^p)(\^\widetilde q - \alpha q) + c0

\int 
\Omega 

\^pq,

and notice, \forall \^\vec{}\bfitsigma , \vec{}\bfittau \in \BbbV and \^p, q \in H1
\Sigma (\Omega ), that

| [S(\^\vec{}\bfitsigma , \^p), (\vec{}\bfittau , q)]| \leq [S(\^\vec{}\bfitsigma , \^p), (\^\vec{}\bfitsigma , \^p)]1/2[S(\vec{}\bfittau , q), (\vec{}\bfittau , q)]1/2

=

\biggl( 
1

\lambda s
\| \^\widetilde p - \alpha \^p\| 2L2(\Omega ) + c0\| \^p\| 2L2(\Omega )

\biggr) 1/2

(3.23) \biggl( 
1

\lambda s
\| \^\widetilde q - \alpha q\| 2L2(\Omega ) + c0\| q\| 2L2(\Omega )

\biggr) 1/2

.
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POROELASTICITY WITH STRESS-DEPENDENT DIFFUSION 1459

Additionally, from the inf-sup condition (3.13) it can be deduced that

(3.24) sup
\vec{}\bfittau \in \BbbV \setminus \{ 0\} 

[B(\bfitr \bot ), \vec{}\bfittau ]

\| \vec{}\bfittau \| X
\geq \^\beta 

\bigm\| \bigm\| \bfitr \bot \bigm\| \bigm\| \BbbL 2(\Omega )
\forall \bfitr \bot \in \widetilde \BbbV \bot 

,

where \widetilde \BbbV := \{ \^\bfitr \in \BbbL 2(\Omega ) : [B(\^\bfitr ), \vec{}\bfittau ] = 0 \forall \vec{}\bfittau \in \BbbV \} . Now, we let \^\bfitt 0 \in \widetilde \BbbV and \^\bfitt 
\bot \in \widetilde \BbbV \bot 

be

such that \^\bfitt =\^\bfitt 0 +\^\bfitt 
\bot 

and observe from (3.14a)--(3.14c) that there hold

[A(\^\bfitt ),\^\bfitt ] + [S(\^\vec{}\bfitsigma , \^p), (\^\vec{}\bfitsigma , \^p)] = - \widetilde F1(\^\vec{}\bfitsigma ),(3.25a)

[B(\^\bfitt 
\bot 
), \vec{}\bfittau ] - [S(\^\vec{}\bfitsigma , \^p), (\vec{}\bfittau , q)] = \widetilde F1(\vec{}\bfittau ) \forall \vec{}\bfittau \in \BbbV \forall q \in H1

\Sigma (\Omega ).(3.25b)

Thus, from (3.24) with \bfitr \bot =\^\bfitt 
\bot 
, estimate (3.25b), the continuity of \widetilde F1, and the bound

(3.23), we get

\^\beta \| \^\bfitt \bot \| \BbbL 2(\Omega ) \leq sup
\vec{}\bfittau \in \BbbV \setminus \{ 0\} 

[B(\^\bfitt 
\bot 
), \vec{}\bfittau ]

\| \vec{}\bfittau \| X
= sup

\vec{}\bfittau \in \BbbV \setminus \{ 0\} 

\widetilde F1(\vec{}\bfittau ) + [S(\^\vec{}\bfitsigma , \^p), (\vec{}\bfittau , q)]

\| \vec{}\bfittau \| X

\leq \| \widetilde F1\| X\prime + [S(\^\vec{}\bfitsigma , \^p), (\^\vec{}\bfitsigma , \^p)]1/2 sup
\vec{}\bfittau \in \BbbV \setminus \{ 0\} 

\Bigl( 
1
\lambda s
\| \^\widetilde q - \alpha q\| 2L2(\Omega ) + c0\| q\| 2L2(\Omega )

\Bigr) 1/2
\| \vec{}\bfittau \| X

.(3.26)

Then, defining

CS := sup
\vec{}\bfittau \in \BbbV \setminus \{ 0\} 

\Bigl( 
1
\lambda s
\| \^\widetilde q - \alpha q\| 2L2(\Omega ) + c0\| q\| 2L2(\Omega )

\Bigr) 1/2
\| \vec{}\bfittau \| X

,

which can be seen as a constant independent of \lambda s if \lambda s \rightarrow \infty , and noticing from
(3.25a) that

[S(\^\vec{}\bfitsigma , \^p), (\^\vec{}\bfitsigma , \^p)]\leq  - \widetilde F1(\^\vec{}\bfitsigma ),

it can be deduced from (3.26) that

(3.27) \^\beta \| \^\bfitt \bot \| \BbbL 2(\Omega ) \leq \| \widetilde F1\| X\prime +CS [S(\^\vec{}\bfitsigma , \^p), (\^\vec{}\bfitsigma , \^p)]
1/2 \leq \| \widetilde F1\| X\prime +CS\| \widetilde F1\| 1/2X\prime \| \^\vec{}\bfitsigma \| 1/2X .

Furthermore, taking \^\bfitt 0 in (3.14a), applying the ellipticity and continuity of A, and
recalling (3.10), we easily get

(3.28) \| \^\bfitt \| \BbbL 2(\Omega ) \leq (1 + \widetilde C1)\| \^\bfitt 
\bot \| \BbbL 2(\Omega ).

In this way, from (3.28), the inf-sup condition (3.13), and (3.14a), it readily follows
that

\| \^\vec{}\bfitsigma \| X \leq \^\beta  - 1 sup
\bfitr \in \BbbL 2(\Omega )

\bfitr \not =0

[B(\bfitr ), \^\vec{}\bfitsigma ]

\| \bfitr \| \BbbL 2(\Omega )
= \^\beta  - 1 sup

\bfitr \in \BbbL 2(\Omega )
\bfitr \not =0

 - [A(\^\bfitt ),\bfitr ]

\| \bfitr \| \BbbL 2(\Omega )
\leq 2\mu s

\^\beta  - 1\| \^\bfitt \| \BbbL 2(\Omega )(3.29)

\leq \widetilde C2\| \^\bfitt 
\bot \| \BbbL 2(\Omega ),

which combined with (3.27) and the Young's inequality yields

\| \^\bfitt \bot \| \BbbL 2(\Omega ) \leq \widetilde C3\| \widetilde F1\| X\prime .
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1460 G\'OMEZ-VARGAS, MARDAL, RUIZ-BAIER, VINJE

Therefore, from the latter inequality, (3.28), and (3.29), we derive that

(3.30) \| \^\bfitt \| \BbbL 2(\Omega ) \leq \widetilde C4\| \widetilde F1\| X\prime and \| \^\vec{}\bfitsigma \| X \leq \widetilde C5\| \widetilde F1\| X\prime ,

where \widetilde C4 > 0 and \widetilde C5 > 0 are constants independent of \lambda s. Finally, the ellipticity of
D and (3.14c) yield

(3.31) \| \^p\| 2H1(\Omega ) \leq \widetilde C6\| \^p\| H1(\Omega )\| \^\vec{}\bfitsigma \| X.

In this way, the result follows from (3.30) and (3.31) and after applying algebraic
manipulations.

Finally, the main result is given next.

Lemma 3.9. For each \omega \in W1,r
0 (\Omega ) the problem (3.7a)--(3.7d) has a unique solu-

tion (\bfitt , \vec{}\bfitsigma , \vec{}\bfitu , p)\in \BbbL 2(\Omega )\times X\times M\times H1
\Sigma (\Omega ). Moreover, there exists C > 0 independent

of \omega and \lambda s such that

(3.32)

\| \bfitt \| \BbbL 2(\Omega )+\| \vec{}\bfitsigma \| X+\| \vec{}\bfitu \| M+\| p\| H1(\Omega ) \leq C
\Bigl( 
\| \widetilde H\omega \| \BbbL 2(\Omega )\prime + \| \widetilde F1\| X\prime + \| \widetilde F\| M\prime + \| \widetilde G\| H1

\Sigma (\Omega )\prime 

\Bigr) 
.

Proof. We proceed similarly as in [25, Theorem 2.1]. Recall from [29, Lemma 4.1]
that the result given in Lemma 3.3 implies that B1 :\BbbV \bot \rightarrow M\prime and B\ast 

1 :M\rightarrow \BbbV \circ are
isomorphisms with

(3.33) \| B1\| , \| (B\ast 
1)

 - 1\| \leq 1

\^\beta 1

,

where \BbbV \circ stands for the set of functionals in X that vanish on the elements of \BbbV .
Now, let \vec{}\bfitsigma 0 :=B - 1

1 ( \widetilde F )\in \BbbV \bot , and notice that by using (3.33) it can be deduced that

(3.34) \| \vec{}\bfitsigma 0\| X \leq 1

\beta 1
\| \widetilde F\| M\prime .

With this in mind, we define the functionals H\omega := \widetilde H\omega  - B\ast (\vec{}\bfitsigma 0), F := \widetilde F1 + C(\vec{}\bfitsigma 0)
and G := \widetilde G  - B2(\vec{}\bfitsigma 0) and consider the following problem: Find (\bfitt , \vec{}\bfitsigma , p) \in \BbbL 2(\Omega ) \times 
\BbbV \times H1

\Sigma (\Omega ) such that

[A(\bfitt ),\bfitr ] + [B\ast (\vec{}\bfitsigma ),\bfitr ] = [H\omega ,\bfitr ],(3.35)

[B(\bfitt ), \vec{}\bfittau ] - [C(\vec{}\bfitsigma ), \vec{}\bfittau ] + [B\ast 
2(p), \vec{}\bfittau ] = F ,\vec{}\bfittau ],

[B2(\vec{}\bfitsigma ), q] - [D(p), q] = [G,q]

\forall (\bfitr , \vec{}\bfittau , q) \in \BbbL 2(\Omega ) \times \BbbV \times H1
\Sigma (\Omega ), where the involved operators are exactly the ones

defining (3.14a)--(3.14c). Therefore, by noticing that H\omega \in \BbbL 2(\Omega )\prime , F \in \BbbV \circ , and
G \in H1

\Sigma (\Omega )
\prime , we can simply take \widetilde H\omega , \widetilde F1 and \widetilde G in (3.14a)--(3.14c) as H\omega , F , and G,

respectively, and apply Lemma 3.8 to assert the existence and uniqueness of a solution
(\bfitt , \vec{}\bfitsigma , p)\in \BbbL 2(\Omega )\times \BbbV \times H1

\Sigma (\Omega ) to problem (3.35).
On the other hand, since (F  - B(\bfitt ) + C(\vec{}\bfitsigma )  - B\ast 

2(p)) \in \BbbV \circ , we can take \vec{}\bfitu :=
(B\ast 

1)
 - 1(F  - B(\bfitt ) +C(\vec{}\bfitsigma ) - B\ast 

2(p))\in M, from which it is clear that

(3.36) [B\ast 
1(\vec{}\bfitu ), \vec{}\bfittau ] = [F  - B(\bfitt ) +C(\vec{}\bfitsigma ) - B\ast 

2(p), \vec{}\bfittau ] \forall \vec{}\bfittau \in X,

and therefore,

(3.37) \| \vec{}\bfitu \| M \leq 1

\beta 1
\| F  - B(\bfitt ) +C(\vec{}\bfitsigma ) - B\ast 

2(p)\| .
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POROELASTICITY WITH STRESS-DEPENDENT DIFFUSION 1461

In this manner, noting also that B1(\vec{}\bfitsigma + \vec{}\bfitsigma 0) = B1(\vec{}\bfitsigma 0) = \widetilde F , we finally conclude for
each \omega \in W1,r

0 (\Omega ) that (\bfitt , \vec{}\bfitsigma + \vec{}\bfitsigma 0, \vec{}\bfitu , p) \in \BbbL 2(\Omega ) \times X \times M \times H1
\Sigma (\Omega ) is a solution of

(3.7a)--(3.7d).
Now, for the uniqueness, consider another solution (\bfitt , \vec{}\bfitsigma , \vec{}\bfitu , p)\in \BbbL 2(\Omega )\times X\times M\times 

H1
\Sigma (\Omega ) of (3.7a)--(3.7d). It is fairly directly seen from (3.7a)--(3.7d) that (\bfitt , \vec{}\bfitsigma  - \vec{}\bfitsigma 0, p)\in 

\BbbL 2(\Omega )\times \BbbV \times H1
\Sigma (\Omega ) is also a solution of (3.35), and therefore (\bfitt , \vec{}\bfitsigma  - \vec{}\bfitsigma 0, p) = (\bfitt , \vec{}\bfitsigma , p),

which together with (3.36) gives (\bfitt , \vec{}\bfitsigma , \vec{}\bfitu , p) = (\bfitt , \vec{}\bfitsigma + \vec{}\bfitsigma 0, \vec{}\bfitu , p).
On the other hand, in order to deduce the stability estimate (3.32) we begin by

using (3.37) to obtain

\| \vec{}\bfitu \| M \leq 1

\beta 1
\|  - B(\bfitt ) +C(\vec{}\bfitsigma 0) - B\ast 

2(p)\| ,

from which, by using the definitions (3.8d), (3.8e), the inf-sup condition (3.13), and
the bound (3.34), we deduce that there exists C1 > 0 independent of \lambda s such that

(3.38) \| \vec{}\bfitu \| M \leq C1

\biggl\{ 
\| \bfitt \| \BbbL 2(\Omega ) +

1

\lambda s
\| \widetilde F\| \prime 

\bfM 
+

\alpha 

\lambda s
\| p\| H1(\Omega )

\biggr\} 
.

Moreover, applying Lemma 3.8 to (3.35), we deduce the existence of C > 0,
independent of \lambda s, such that

\| \bfitt \| \BbbL 2(\Omega ) + \| \vec{}\bfitsigma  - \vec{}\bfitsigma 0\| X + \| p\| H1(\Omega )

\leq C
\Bigl\{ 
\| \widetilde H\omega  - B\ast (\vec{}\bfitsigma 0)\| + \| \widetilde F1 +C(\vec{}\bfitsigma 0)\| + \| \widetilde G - B2(\vec{}\bfitsigma 0)\| 

\Bigr\} 
.

Thus, from the definitions in (3.8a), (3.8i), and (3.8j), we proceed as before to get

\| \bfitt \| \BbbL 2(\Omega ) + \| \vec{}\bfitsigma \| X + \| p\| H1(\Omega )(3.39)

\leq C2

\biggl\{ 
\| \widetilde H\omega \| \BbbL 2(\Omega )\prime + \| \widetilde F1\| X\prime +

\biggl( 
1 +

1

\lambda s
+

\alpha 

\lambda s

\biggr) 
\| \widetilde F\| M\prime + \| \widetilde G\| H1

\Sigma (\Omega )\prime 

\biggr\} 
,

where C2 > 0 is independent of \lambda s. In this way, replacing (3.39) back into (3.38), we
deduce that

\| \bfitt \| \BbbL 2(\Omega ) + \| \vec{}\bfitsigma \| X + \| \vec{}\bfitu \| M + \| p\| H1(\Omega )

\leq C3

\biggl( 
1 +

\alpha 

\lambda s

\biggr) \biggl\{ 
\| \widetilde H\omega \| \BbbL 2(\Omega )\prime + \| \widetilde F1\| X\prime +

\biggl( 
1 +

2

\lambda s
+

\alpha 

\lambda s

\biggr) 
\| \widetilde F\| M\prime + \| \widetilde G\| H1

\Sigma (\Omega )\prime 

\biggr\} 
.

Therefore, noting that the constants 1 + \alpha 
\lambda s

and 1 + 2
\lambda s

+ \alpha 
\lambda s

are understood as inde-
pendent of \lambda s in the limit \lambda s \rightarrow \infty , we can apply elementary algebraic computations
to deduce the existence of a constant C independent of \lambda s such that (3.32) holds.

We establish now the well-posedness of the operator \widetilde S. Consider the following
problem: find \omega \in W1,r

0 (\Omega ) such that

(3.40) [A1(\omega ), \theta ] + [A2(\omega ), \theta ] = [J, \theta ] \forall \theta \in W1,s
0 (\Omega ),

where [J, \theta ] is defined in (3.8k) and where [A1(\widetilde \omega ), \theta ] := \int \Omega \vargamma \nabla \widetilde \omega \cdot \nabla \theta , and [A2(\widetilde \omega ), \theta ] :=\int 
\Omega 
\phi \widetilde \omega \theta , with \vargamma considered as a real-valued n \times n symmetric matrix satisfying the

second and fourth conditions in (3.6) (taking \vargamma instead of D) and \phi defined as in
(2.2). Moreover, we recall from [1] (see also [48]) the following results which will be
useful in the forthcoming analysis.
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1462 G\'OMEZ-VARGAS, MARDAL, RUIZ-BAIER, VINJE

Lemma 3.10. Let r be such that 2d/(d+ 1) - \varepsilon < r < 2 with \varepsilon > 0. Then, there
exists \beta A such that problem (3.40) with A2 = O (the null operator) is well defined,
and there holds

(3.41) \beta A \| \nabla \widetilde \omega \| Lr(\Omega ) \leq sup
\theta \in W1,s(\Omega )\setminus \{ 0\} 

\int 
\Omega 
\vargamma \nabla \widetilde \omega \cdot \nabla \theta 

\| \nabla \theta \| Ls(\Omega )
\forall \widetilde \omega \in W1,r(\Omega ).

Proof. The proof follows from [1, Proposition 3].

Lemma 3.11. Assume that \beta A \phi < 1, and that r satisfies the range given in
Lemma 3.10. Then, problem (3.40) is well-posed, and there holds

(3.42) \| \nabla \omega \| Lr(\Omega ) \leq 
\beta  - 1

A

1 - \beta  - 1
A \phi 

\| J\| W1,r
0 (\Omega )\prime .

Proof. It follows similarly to the proof of [1, Proposition 4]. In fact, from (3.41) it
can be deduced that A1 is invertible with \| A - 1

1 \| \leq \beta A . Additionally, it can be noticed
that the map A2 is linear and bounded. Then, problem (3.40) can be rewritten as
(\BbbI +A - 1

1 A2)\omega = A - 1
1 J . In this way, the boundedness of the maps A - 1

1 and A2 com-
bined with the assumption \beta  - 1

A \phi < 1 yield that the W 1,r
0 (\Omega )-norm is bounded by 1.

Therefore, by applying [57, Theorem 1.B], we conclude that (3.40) has a unique solu-
tion. Finally, the estimate (3.42) can be obtained from the aforementioned modified
problem.

We are now in a position to establish the desired result for \widetilde S.
Lemma 3.12. For each \bfitsigma \in \BbbH \Sigma (div,\Omega ), the problem (3.7e) has a unique solution

\omega := \widetilde S(\bfitsigma )\in W1,r
0 (\Omega ), and there holds

(3.43) \| \widetilde S(\bfitsigma )\| := \| \omega \| W1,r(\Omega ) \leq 
\beta  - 1

A

1 - \beta  - 1
A \phi 

\| J\| W1,r
0 (\Omega )\prime .

Proof. The proof follows simply as an application of Lemma 3.11.

As S and \widetilde S are well defined, we can guarantee the well-posedness of the
operator T.

3.3. Solvability of the fixed-point problem. With the aim to use the Banach
fixed-point theorem on T, in what follows we establish sufficient conditions under
which T maps a closed ball of W1,r

0 (\Omega ) into itself. Indeed, from now on we let

(3.44) W :=

\biggl\{ 
\omega \in W1,r

0 (\Omega ) : \| \omega \| W1,r(\Omega ) \leq \zeta :=
\beta  - 1

A

1 - \beta  - 1
A \phi 

\| J\| W1,r
0 (\Omega )\prime 

\biggr\} 
.

Lemma 3.13. Assume that \beta  - 1
A \phi < 1. For the closed ball W, it holds that

T(W)\subseteq W.

Proof. The proof suffices to recall the definition of T (3.9) and then apply the
estimate (3.43).

We now verify the hypotheses of the fixed-point theorem. As a preliminary step,
we show the Lipschitz continuity of S.

Lemma 3.14. There exists a constant CS > 0 independent of \lambda s such that

\| S(\omega 1) - S(\omega 2)\| \leq CSCH\beta \| \omega 1  - \omega 2\| W1,r(\Omega ) \forall \omega 1, \omega 2 \in W1,r
0 (\Omega ),

where CH > 0 is the constant given in (3.5).
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POROELASTICITY WITH STRESS-DEPENDENT DIFFUSION 1463

Proof. Let (\bfitt 1, \vec{}\bfitsigma 1, \vec{}\bfitu 1, r1) and (\bfitt 2, \vec{}\bfitsigma 2, \vec{}\bfitu 2, p2) be two solutions of the problem
(3.7a)--(3.7d), with \omega 1 and \omega 2 \in W1,r

0 (\Omega ) given such that S(\omega 1) := (\bfitt 1, \vec{}\bfitsigma 1, \vec{}\bfitu 1, r1)
and S(\omega 2) := (\bfitt 2, \vec{}\bfitsigma 2, \vec{}\bfitu 2, p2). Then, by applying the linearity of the involved bilinear
forms and functionals, we obtain

[A(\bfitt 1  - \bfitt 2),\bfitr ] +B(\bfitr ), \vec{}\bfitsigma 1  - \vec{}\bfitsigma 2] = [H\omega 1 - \omega 2
,\bfitr ],

[B(\bfitt 1  - \bfitt 2), \vec{}\bfittau ] - [C(\vec{}\bfittau ), \vec{}\bfitsigma 1  - \vec{}\bfitsigma 2] + [B1(\vec{}\bfittau ), \vec{}\bfitu  - \vec{}\bfitu 2] + [B2(\vec{}\bfittau ), p1  - p2] = 0,

[B1(\vec{}\bfitsigma 1  - \vec{}\bfitsigma 2),\vec{}\bfitv ] = 0,

[B2(\vec{}\bfitsigma ), q] - [D(p), q] = 0

for each (\bfitr , \vec{}\bfittau ,\vec{}\bfitv , p) \in \BbbL 2(\Omega ) \times X \times M \times H1
\Sigma (\Omega ). Proceeding as in the proof of the

well-posedness of the decoupled poroelasticity problem, we deduce that

\| S(\omega 1) - S(\omega 2)\| = \| (\bfitt 1, \vec{}\bfitsigma 1, \vec{}\bfitu 1, p1) - (\bfitt 2, \vec{}\bfitsigma 2, \vec{}\bfitu 2, p2)\| \leq CSCH\beta \| \omega 1  - \omega 2\| W1,r(\Omega ).

Now that we have established the previous result, we focus on proving the Lip-
schitz continuity of \widetilde S. To do so, we state a suitable regularity estimate that will be
necessary for what follows.

\bullet (RE) Assume that \partial \Omega is of class \scrC 2. The Lipschitz continuity of the diffusion
operator D in combination with elliptic regularity (cf. [28]) allows us to assert
that \widetilde S(\bfitsigma ) = \omega \in W 2,2

0 (\Omega ) for each \bfitsigma \in \BbbH \Sigma (div,\Omega ) and that there is a positive
constant CR such that

(3.45) \| \widetilde S(\bfitsigma )\| W2,2(\Omega ) = \| \omega \| W2,2(\Omega ) \leq CR\| J\| L2(\Omega )\prime .

Considering r < 2 and utilizing the estimate (3.45), for the case d= 2 we can

apply the Sobolev embedding W1,r
0 (\Omega ) \lhook \rightarrow L

2r
2 - r (\Omega ) to deduce that, for every

\bfitsigma \in \BbbH \Sigma (div,\Omega ), we have

\| \nabla \widetilde S(\bfitsigma )\| 
L

2r
2 - r (\Omega )

= \| \nabla \omega \| 
L

2r
2 - r (\Omega )

\leq Ce\| \nabla \omega \| W1,r(\Omega )(3.46)

=Ce\| \omega \| W2,r(\Omega ) \leq Ce\| \omega \| W2,2(\Omega ) \leq CRE\| J\| L2(\Omega )\prime ,

where Ce represents the best constant in this embedding, and CRE :=CeCR.
Note that the Sobolev embedding used in (RE) renders the previous result inapplicable
to three dimensions. Nonetheless, to bound a term arising from (3.48) using an
estimate similar to (3.46), the approach in [23, 24], which employs an L\infty  - L2  - L2

argument for (3.48), may still be sufficient. Although there are regularity results
giving \bfitu \in H2(\Omega ) for the classical poroelasticity problem (cf. [56]), they are not
necessarily relevant to our situation due to the coupling with \omega ; those results would
require \nabla \omega \in L2(\Omega ) rather than \nabla \omega \in Lr(\Omega ) with r < 2 as in our case. In this way,
and unlike [23, 24], we do not have that D(\bfitsigma )ij \in \scrC 1+\gamma for some \gamma > 1/2, and we are
unable to apply classical regularity results.

Thus, we only make the assumption of extending (3.46) to three dimensions and
proceed next to prove the Lipschitz continuity of \widetilde S.

Lemma 3.15. Let d3, \beta \widehat S, and CRE be defined by (3.6), (3.47), and (3.46), respec-
tively. Then

\| \widetilde S(\bfitsigma ) - \widetilde S(\widetilde \bfitsigma )\| \leq d3\beta 
 - 1\widehat S CRE\| J\| L2(\Omega )\prime \| \widetilde \bfitsigma  - \bfitsigma \| \BbbL 2(\Omega ) \forall \bfitsigma , \widetilde \bfitsigma \in \BbbH \Sigma (div,\Omega ).
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1464 G\'OMEZ-VARGAS, MARDAL, RUIZ-BAIER, VINJE

Proof. Given \bfitsigma and \widetilde \bfitsigma \in \BbbH \Sigma (div,\Omega ), we let \omega and \widetilde \omega be two solutions of problem
(3.7e). That is, \omega := \widetilde S(\bfitsigma ) and \widetilde \omega := \widetilde S(\widetilde \bfitsigma ). Then, thanks to [18, Theorem 2.6] we can
ensure that there exists \beta \widehat S > 0 such that

(3.47) \beta \widehat S\| \nabla \widehat \omega \| Lr(\Omega ) \leq sup
\theta \in W1,s(\Omega )\setminus \{ 0\} 

[A\bfitsigma (\widehat \omega ), \theta ]
\| \nabla \theta \| Ls(\Omega )

\forall \widehat \omega \in W1,r(\Omega ).

In particular, for (\omega  - \widetilde \omega ) \in W1,r
0 (\Omega ) in (3.47), and after adding and subtracting

appropriate terms, we find that

\beta \widehat S\| \omega  - \widetilde \omega \| W1,r(\Omega ) \leq sup
\theta \in W1,s(\Omega )\setminus \{ 0\} 

[A\bfitsigma (\omega ), \theta ] - [A\bfitsigma (\widetilde \omega ), \theta ]
\| \nabla \theta \| Ls(\Omega )

(3.48)

= sup
\theta \in W1,s(\Omega )\setminus \{ 0\} 

[A\widetilde \bfitsigma (\widetilde \omega ), \theta ] - [A\bfitsigma (\widetilde \omega ), \theta ]
\| \nabla \theta \| Ls(\Omega )

\leq d3\| \widetilde \bfitsigma  - \bfitsigma \| \BbbL 2(\Omega )\| \nabla \widetilde \omega \| 
L

2r
2 - r (\Omega )

.

Thus, the proof ends after combining the estimate (3.46) with (3.48), which leads to

\| \widetilde S(\bfitsigma ) - \widetilde S(\widetilde \bfitsigma )\| W1,r(\Omega ) := \| \omega  - \widetilde \omega \| W1,r(\Omega ) \leq d3\beta 
 - 1\widehat S CRE\| J\| L2(\Omega )\prime \| \widetilde \bfitsigma  - \bfitsigma \| \BbbL 2(\Omega ).

Now, we are able to show the announced property of the operator T.

Lemma 3.16. There exists a constant CT > 0 independent of \lambda s such that

(3.49)
\| T(\omega 1) - T(\omega 2)\| W1,r(\Omega ) \leq CTd3\beta \| J\| L2(\Omega )\prime \| \omega 1  - \omega 2\| W1,r(\Omega ) \forall \omega 1, \omega 2 \in W1,r

0 (\Omega ).

Proof. It suffices to recall from section 3.1 that T(\omega ) = \widetilde S(S2(\omega )) \forall \omega \in W1,r
0 (\Omega )

and to apply Lemmas 3.14 and 3.15.

We can now establish the existence and uniqueness of a solution to (3.7a)--(3.7e),
which follows straightforwardly from the Banach fixed-point theorem.

Theorem 3.17. Let W be as in (3.44) and r be such that 2d/(d+1) - \varepsilon < r < 2
with \varepsilon > 0, and assume that \beta A \phi < 1 and that CTd3\beta \| J\| L2(\Omega )\prime < 1. Then, there exists
C > 0, independent of \lambda s, such that (3.7a)--(3.7e) has unique solution (\bfitt , \vec{}\bfitsigma , \vec{}\bfitu , p,\omega ) \in 
\BbbL 2(\Omega )\times X\times M\times H1

\Sigma (\Omega )\times W1,r
0 (\Omega ) with \omega \in W, satisfying

\| \bfitt \| \BbbL 2(\Omega ) + \| \vec{}\bfitsigma \| X + \| \vec{}\bfitu \| M + \| p\| H1(\Omega ) + \| \omega \| W1,r(\Omega )(3.50)

\leq C
\Bigl( 
\| F\| M\prime + \| G\| H1

\Sigma (\Omega )\prime + \| J\| W1,r
0 (\Omega )\prime 

\Bigr) 
.

Proof. Thanks to Lemmas 3.13 and 3.16 and the assumption given in the state-
ment of the present theorem, the existence of a unique solution is merely an appli-
cation of the Banach fixed-point theorem. To prove (3.50), it suffices to apply the
result (3.32) with \widetilde H\omega = H\omega , \widetilde F1 = O, \widetilde F = F, and \widetilde G = G; the estimate (3.43); the
corresponding bound for \| H\omega \| \BbbL 2(\Omega )\prime , and the fact that \omega \in W.

4. Finite element method and solvability of the discrete problem. We
now introduce and analyze the Galerkin scheme associated with (3.7a)--(3.7e). We
consider generic finite dimensional subspaces

\BbbH \bfitt 
h \subseteq \BbbL 2(\Omega ), \BbbH \bfitsigma 

h \subseteq \BbbH \Sigma (div,\Omega ), H\widetilde p
h(\Omega )\subseteq L2(\Omega ), H\bfitu 

h \subseteq L2(\Omega ),

\BbbH \bfitgamma 
h(\Omega )\subseteq \BbbL 2

skew(\Omega ), Hp
h \subseteq H1

\Sigma (\Omega ), and H\omega 
h \subseteq W1,r

0 (\Omega ),(4.1)
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POROELASTICITY WITH STRESS-DEPENDENT DIFFUSION 1465

which will be specified later on. Then, we define

\vec{}\bfitsigma h := (\bfitsigma h, \widetilde ph), \vec{}\bfittau h := (\bfittau h, \widetilde qh), \vec{}\bfitu h := (\bfitu h,\bfitgamma h), \vec{}\bfitv h := (\bfitv h,\bfiteta h),

Xh :=\BbbH \bfitsigma 
h \times H\widetilde p

h, Mh :=H\bfitu 
h \times \BbbH \gamma 

h,

and a Galerkin scheme for (3.7a)--(3.7e) reads as follows: Find (\bfitt h, \vec{}\bfitsigma , \vec{}\bfitu h, ph, \omega h) \in 
\BbbH \bfitt 

h \times Xh \times Mh \times Hp
h \times H\omega 

h such that

[A(\bfitt h),\bfitr h] + [B\ast (\vec{}\bfitsigma h),\bfitr h] = [H\omega h
,\bfitr h] \forall \bfitr h \in \BbbH \bfitt 

h,(4.2a)

[B(\bfitt h), \vec{}\bfittau h] - [C(\vec{}\bfitsigma h), \vec{}\bfittau h] + [B\ast 
1(\vec{}\bfitu h), \vec{}\bfittau h] + [B\ast 

2(ph), \vec{}\bfittau h] = 0 \forall \vec{}\bfittau h \in Xh,
(4.2b)

[B1(\vec{}\bfitsigma h),\vec{}\bfitv h] = [F,\vec{}\bfitv h] \forall \vec{}\bfitv h \in Mh,(4.2c)

[B2(\vec{}\bfitsigma h), qh] - [D(ph), qh] = [G,qh] \forall ph \in Hp
h,(4.2d)

[A\bfitsigma h
(\omega h), \theta h] = [J, \theta h] \forall \theta h \in H\omega 

h .(4.2e)

In order to address the well-posedness of (4.2a)--(4.2e), we use again a fixed-point
strategy. Let us define Sh : H\omega 

h \rightarrow \BbbH \bfitt 
h \times Xh \times Mh \times Hp

h as

Sh(\omega h) := (S1,h(\omega h), (S2,h(\omega h),S3,h(\omega h)), (S4,h(\omega h),S5,h(\omega h)),S6,h(\omega h))

= (\bfitt h, (\bfitsigma h, \widetilde ph), (\bfitu h,\bfitgamma h), ph)\in \BbbH \bfitt 
h \times Xh \times Mh \times Hp

h,

where (\bfitt h, (\bfitsigma h, \widetilde ph), (\bfitu h,\bfitgamma h), ph) is the unique solution of (4.2a)--(4.2d) with \omega h given.
In turn, let \widetilde Sh :\BbbH \bfitsigma 

h \rightarrow H\omega 
h be the operator defined by

\widetilde Sh(\bfitsigma h) := \omega h \forall \bfitsigma h \in \BbbH \bfitsigma 
h ,

where \omega h is the unique solution of (4.2e) with \bfitsigma h given. Finally, by introducing the
operator Th : H\omega 

h \rightarrow H\omega 
h as

Th(\omega h) := \widetilde Sh(S2,h(\omega h)) \forall \omega h \in H\omega 
h ,

we see that solving (4.2a)--(4.2e) is equivalent to seeking a fixed point of Th, that is,
find \omega h \in H\omega 

h such that

(4.3) Th(\omega h) = \omega h.

4.1. Well definedness of the operator Th. Here we establish the solvability
of (4.2a)--(4.2e) by studying the equivalent fixed-point problem (4.3). We begin by
introducing some needed notations and preliminary results, as well as specific finite
element subspaces satisfying (4.1).

Let us denote by \scrT h a regular partition of \Omega into triangles (or tetrahedra in three
dimensions) K of diameter hK , where h := max\{ hK : K \in \scrT h\} is the meshsize.
Given an integer k \geq 0, for each K \in \scrT h we let Pk(K) be the space of polynomial
functions on K of degree \leq k and define the local Raviart--Thomas space of order k
as RTk(K) :=Pk(K)\oplus Pk(K)\bfitx , where Pk(K) = [Pk(K)]d and \bfitx is a generic vector
in \BbbR d. Now, let bK be the element bubble function defined as the unique polynomial
in Pd+1(K) vanishing on \partial K with

\int 
K
bK = 1. Then, for each K \in \scrT h we consider the

bubble space of order k, defined as

Bk(K) :=

\Biggl\{ 
curlt(bKPk(K)) in \BbbR 2,

\nabla \times (bKPk(K)) in \BbbR 3.
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1466 G\'OMEZ-VARGAS, MARDAL, RUIZ-BAIER, VINJE

On the other hand, we observe thanks to Lemma 3.5 that the ellipticity of A :\BbbH \bfitt 
h \times 

\BbbH \bfitt 
h \rightarrow \BbbR is satisfied for any finite dimensional subspace \BbbH \bfitt 

h and with the same constant
from (3.18). Therefore \BbbH \bfitt 

h is chosen such that the discrete inf-sup condition for
B holds. Moreover, thanks to the discrete analogue of B1 (cf. (3.8c)), an inf-sup
condition can be ensured by using the classical PEERSk elements introduced in [3],
that is,

\BbbH \bfitsigma 
h :=

\bigl\{ 
\bfittau h \in \BbbH \Sigma (div,\Omega ) : \bfittau h| K \in [RTk(K)]d \oplus [Bk(K)]d \forall K \in \scrT h

\bigr\} 
,

H\bfitu 
h :=

\bigl\{ 
\bfitv h \in L2(\Omega ) : \bfitv h| K \in Pk(K) \forall K \in \scrT h

\bigr\} 
,(4.4)

\BbbH \bfitgamma 
h :=

\bigl\{ 
\bfiteta h \in \BbbL 2

skew(\Omega ) : \bfiteta h \in C(\Omega ) and \bfiteta h| K \in \BbbP k+1(K) \forall K \in \scrT h
\bigr\} 
,

or by employing the well-known Arnold--Falk--Winther (AFWk, [4]) family of order
k\geq 0, that is,

\BbbH \bfitsigma 
h := \{ \bfittau h \in \BbbH \Sigma (div,\Omega ) : \bfittau h| K \in BDMk+1(K) \forall K \in \scrT h\} ,

H\bfitu 
h :=

\bigl\{ 
\bfitv h \in L2(\Omega ) : \bfitv h| K \in Pk(K) \forall K \in \scrT h

\bigr\} 
,(4.5)

\BbbH \bfitgamma 
h :=

\bigl\{ 
\bfiteta h \in \BbbL 2

skew(\Omega ) : \bfiteta h| K \in \BbbP k(K) \forall K \in \scrT h
\bigr\} 
.

Also, we notice that the kernel of B1 is given by

(4.6) \BbbV h := \{ \vec{}\bfittau h \in Xh : [B1(\vec{}\bfittau h), \vec{}\bfitu h] = 0 \forall \vec{}\bfitu h \in Mh\} .

Then, by using the definition given for \BbbH \bfitsigma 
h , H

\bfitu 
h , and \BbbH \bfitgamma 

h , (4.6) becomes \BbbV h :=\BbbV \bfitsigma 
h\times Hp

h,
where

(4.7) \BbbV \bfitsigma 
h :=

\biggl\{ 
\bfittau h \in \BbbH \bfitsigma 

h : div\bfittau h = 0 in \Omega and

\int 
\Omega 

\bfiteta h : \bfittau h = 0 \forall \bfiteta h \in \BbbH \bfitgamma 
h

\biggr\} 
,

and therefore, if we use the finite elements (4.4), we can proceed as in [27, section 2.4]
to extend the results given in [22] to the case k \geq 1 and define an appropriate space
for \BbbH \bfitt 

h as

\BbbH \bfitt 
h :=

\bigl\{ 
\bfitr h \in \BbbL 2(\Omega ) : \bfitr h| K \in \BbbP k(K)\oplus [Bk(K)]d \oplus ([Bk(K)]d)dev \forall K \in \scrT h

\bigr\} 
,(4.8)

where ([Bk(K)]d)dev stands for the deviatoric part of tensor [Bk(K)]d. In turn, if
(4.5) is employed, we simply take the part of the AFWk element that approximates
\bfitsigma without requiring \BbbH (div,\Omega )-conformity, that is,

\BbbH \bfitt 
h :=

\bigl\{ 
\bfitr h \in \BbbL 2(\Omega ) : \bfitr h| K \in BDMk+1(K) \forall K \in \scrT h

\bigr\} 
.(4.9)

Additionally, note that H\widetilde p
h does not require any specific condition. It is therefore

simply chosen as

(4.10) H\widetilde p
h :=

\bigl\{ \widetilde qh \in L2(\Omega ) : \widetilde qh| K \in Pk(K) \forall K \in \scrT h
\bigr\} 
.

Finally, for pressure and solute concentration we consider Lagrange finite elements of
degree \leq k+ 1, namely,

(4.11a) Hp
h :=

\bigl\{ 
qh \in C(\Omega ) \cap H1

\Sigma (\Omega ) qh| K \in Pk+1(K) \forall K \in \scrT h
\bigr\} 
,

(4.11b) H\omega 
h :=

\Bigl\{ 
\theta h \in C(\Omega ) \cap W1,s

0 (\Omega ) \theta h| K \in Pk+1(K) \forall K \in \scrT h
\Bigr\} 
,

where s > 2. Notice that, for each h> 0, we have that H\omega 
h \subset W1,s

0 (\Omega )\subset W1,r
0 (\Omega ).

We now require some preliminary results to establish the well-posedness of the
operator Sh.
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POROELASTICITY WITH STRESS-DEPENDENT DIFFUSION 1467

Lemma 4.1. There exists \^\beta 1d > 0, independent of h, such that

(4.12) sup
\vec{}\bfittau h\in Xh\setminus \{ 0\} 

[B1(\vec{}\bfittau h),\vec{}\bfitv h]

\| \vec{}\bfittau h\| X
\geq \^\beta 1d\| \vec{}\bfitv h\| M \forall \vec{}\bfitv h \in Mh.

Lemma 4.2. There exists c3 > 0, independent of h, such that

c3\| \bfittau h\| 2\BbbH (div,\Omega ) \leq \| \bfittau 0,h\| 2\BbbH (div,\Omega ) \forall \bfittau h \in \BbbH \bfitsigma 
h .

Proof. The proof follows the same arguments from [22, Lemma 2.4] but now uses
that \bfittau h\bfitn = 0 \forall \bfittau h \in \BbbH \bfitsigma 

h .

Lemma 4.3. There exists \^\beta d > 0, independent of h, such that

(4.13) \forall sup
\bfitr h\in \BbbH \bfitt 

h\setminus \{ 0\} 

[B(\bfitr h), \vec{}\bfitsigma h]

\| \bfitr h\| \BbbL 2(\Omega )

\geq \^\beta d\| \vec{}\bfitsigma h\| X \forall \vec{}\bfitsigma h \in \BbbV h.

Proof. The proof follows applying Lemmas 3.1 and 4.2 and noticing that \bfittau dev
h

and (\widetilde qh\BbbI + \bfittau h) \in \BbbH \bfitt 
h for each \vec{}\bfittau h \in \BbbV h. We refer to [22, Lemma 2.5] for further

details.

Now, we are in a position to establish the well definedness of Th. First we
guarantee that the discrete problems defined by Sh and \widetilde Sh are well-posed. In what
follows, we show this result for Sh, considering, as in the continuous case, generic
functionals in (4.2a)--(4.2d), namely, \widetilde Hwh

, \widetilde F1,h, \widetilde Fh, and \widetilde Gh instead of Hwh
,O, F , and

G, respectively.

Lemma 4.4. For each \omega h \in H\omega 
h the problem (4.2a)--(4.2d) has a unique solution

(\bfitt h, \vec{}\bfitsigma h, \vec{}\bfitu h, ph) \in \BbbH \bfitt 
h \times Xh \times Mh \times Hp

h. Moreover, there exists Cd > 0 independent of
h and \lambda s such that

\| Sh(\omega h)\| = \| \bfitt h\| \BbbL 2(\Omega ) + \| \vec{}\bfitsigma h\| X + \| \vec{}\bfitu h\| M + \| ph\| H1(\Omega )

\leq Cd

\Bigl( 
\| \widetilde H\omega h

\| (\BbbH \bfitt 
h)

\prime + \| \widetilde F1,h\| X\prime + \| \widetilde Fh\| M\prime 
h
+ \| \widetilde Gh\| (Hp

h)
\prime 

\Bigr) 
.(4.14)

Proof. The proof follows similarly to the proof for the continuous case. In fact,
for the well-posedness of the discrete version of problem (3.35), we take advantage of
the fact that for finite dimension, it suffices to prove that the homogeneous problem
only has the trivial solution, which follows analogously to the proof of Lemma 3.7,
whereas for the corresponding stability result (4.14), we proceed exactly as in Lemma
3.8. Therefore, by noticing that B satisfies the inf-sup condition (4.12), the proof
follows the same steps as in Lemma 3.9 but now uses the arguments given by [25,
Theorem 3.1].

Now, in order to establish the unique solvability of the nonlinear problem (4.2e),
we recall the following result given in [8, Proposition 8.6.2].

Lemma 4.5. Let \vargamma be an n\times n matrix, satisfying the second and fourth conditions
in (3.6) (taking \vargamma instead of D). Then, there exist h0 > 0 and \varepsilon > 0 such that, for
each 0<h\leq h0, there holds

(4.15) \widetilde \beta A \| \nabla \widetilde \omega h\| Lr(\Omega ) \leq sup
\theta h\in H\omega 

h\setminus \{ 0\} 

\int 
\Omega 
\vargamma \nabla \widetilde \omega h \cdot \nabla \theta h

\| \nabla \theta h\| Ls(\Omega )
\forall \widetilde \omega h \in H\omega 

h ,

where 2 - \varepsilon \leq r < 2 and \widetilde \beta A is a positive constant independent of h.
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1468 G\'OMEZ-VARGAS, MARDAL, RUIZ-BAIER, VINJE

Lemma 4.6. Assume that \widetilde \beta  - 1
A \phi < 1. Then, for each \bfitsigma h \in \BbbH \bfitsigma 

h , there exist h0 > 0
and \varepsilon > 0 such that, for each 0 < h \leq h0 and 2 - \varepsilon \leq r < 2, the problem (4.2e) has a
unique solution \omega h := \widetilde Sh(\bfitsigma h)\in H\omega 

h . Moreover, there holds

(4.16) \| \widetilde Sh(\bfitsigma h)\| := \| \omega h\| W1,r(\Omega ) \leq 
\widetilde \beta  - 1
A

1 - \widetilde \beta  - 1
A \phi 

\| J\| (H\omega 
h )\prime ,

where \widetilde \beta  - 1
A is the discrete inf-sup constant given in (4.15).

Proof. Lemma 4.5 helps us to apply the same steps as in the proof of Lemma 3.10
to obtain an equivalent discrete result to Lemma 3.10. The proof therefore follows
simply as an application of that discrete result.

4.2. Discrete solvability analysis. In this section we address the solvability
of (4.3). We verify the hypotheses of the Brouwer fixed-point theorem to prove that
(4.3) has at least one fixed point. Most of the details can be omitted since they follow
straightforwardly by adapting the results given in section 3.3.

Let Wh := \{ \omega h \in H\omega 
h : \| \omega h\| W1,r(\Omega ) \leq 

\widetilde \beta  - 1
A

1 - \widetilde \beta  - 1
A \phi 

\| J\| (H\omega 
h )\prime \} , be a compact and convex

subset of H\omega 
h . We now provide the discrete analogue of Lemma 3.13.

Lemma 4.7. Assume that \widetilde \beta  - 1
A \phi < 1. For the closed ball Wh, it holds that

Th(Wh)\subseteq Wh.

On the other hand, it is not difficult to prove that for the discrete case the operator
Sh satisfies the first bound in Lemma 3.14 with a constant CSd

> 0 instead of CS.
With this goal in mind, we are now in a position to establish the following result.

Lemma 4.8. There exists a constant CTd
> 0 independent of h and \lambda s such that

\| Th(\omega 1,h) - Th(\omega 2,h)\| W1,r(\Omega ) \leq CTd
d3\beta \| \nabla Th(\omega 2,h)\| 

L
2r

2 - r (\Omega )
\| \omega 1,h  - \omega 2,h\| W1,r(\Omega )

(4.17)

\forall \omega 1,h, \omega 2,h \in H\omega 
h .

Proof. Recalling from (4.3) the definition of Th, we notice, for each \omega 1,h, \omega 2,h \in 
H\omega 

h , that

\| Th(\omega 1,h) - Th(\omega 2,h)\| W1,r(\Omega ) = \| \widetilde Sh(Sh(\omega 1,h)) - \widetilde Sh(Sh(\omega 2,h))\| W1,r(\Omega )(4.18)

\leq d3\widetilde \beta \widehat S \| \nabla 
\widetilde Sh(Sh(\omega 2,h))\| 

L
2r

2 - r (\Omega )
\| Sh(\omega 2,h)

 - Sh(\omega 1,h)\| \BbbL 2(\Omega ),

where, for the last inequality, we have applied the same arguments as in the proof of
Lemma 3.15 but now for the discrete case. In this way, the bound in (4.17) follows
from applying the Lipschitz continuity of the operator Sh and the definition of Th to
(4.18).

We stress that [26, equation (4.14)] (where in the right-hand side, the term Th

should be read as \nabla Th) establishes a similar result as Lemma 4.8 (estimate (4.17)
asserts the continuity of Th). However, here and also as in [26], the lack of control
of one of the right-hand-side terms (we only know that it is bounded) does not allow
us to conclude directly the Lipschitz continuity---and hence the contractivity---of this
operator. For that reason, the main result of this section only yields existence of
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POROELASTICITY WITH STRESS-DEPENDENT DIFFUSION 1469

a fixed point of Th, which follows as a consequence of Lemmas 4.7 and 4.8 and a
straightforward application of the Brouwer fixed-point theorem.

We also remark that, although a precise estimate for the gradient of Th(\omega 2,h) in
(4.17) is not obvious to obtain, we will provide numerical evidence that its norm is
indeed bounded. See section 6, in particular, the last column of Tables 6.1 and 6.2.

Theorem 4.9. Let Wh be defined as at the beginning of this section, and assume
that \widetilde \beta  - 1

A \phi < 1. Then, there exist h0 > 0 and \varepsilon > 0 such that, for each 0 < h \leq 
h0 and 2  - \varepsilon \leq r < 2, the coupled problem (4.2a)--(4.2e) has at least one solution
(\bfitt h, \vec{}\bfitsigma h, \vec{}\bfitu h, ph, \omega h)\in \BbbH \bfitt 

h\times Xh\times Mh\times Hp
h\times H\omega 

h with \omega h \in Wh. Moreover, there exists
Cd > 0 independent of \lambda s and h such that

\| \bfitt h\| \BbbL 2(\Omega ) + \| \vec{}\bfitsigma h\| X + \| \vec{}\bfitu h\| M + \| ph\| H1(\Omega ) + \| \omega h\| W1,r(\Omega )

\leq Cd

\Bigl( 
\| F\| M\prime 

h
+ \| G\| (Hp

h)
\prime + \| J\| (H\omega 

h )\prime 

\Bigr) 
.

Proof. We proceed similarly as in the continuous case. In fact, from (4.14) and
(4.16), we get

\| \bfitt h\| \BbbL 2(\Omega ) + \| \vec{}\bfitsigma h\| X + \| \vec{}\bfitu h\| M + \| ph\| H1(\Omega ) + \| \omega h\| W1,r(\Omega )

\leq C1,d

\Bigl( 
\| \widetilde H\omega h

\| (\BbbH \bfitt 
h)

\prime + \| \widetilde F1,h\| X\prime 
h
+ \| \widetilde Fh\| M\prime 

h
+ \| \widetilde Gh\| (Hp

h)
\prime + \| J\| (H\omega 

h )\prime 

\Bigr) 
.

Then, the result follows by setting \widetilde H\omega h
=H\omega h

, \widetilde F1,h =O, \widetilde Fh = F, and \widetilde Gh =G, noticing
that \| H\omega h

\| (\BbbH \bfitt 
h)

\prime \leq CH\| \omega h\| W1,r(\Omega ), and applying the fact that \omega h \in Wh.

5. Error analysis. In this section, we derive the optimal a priori error esti-
mate. For this purpose, we first establish a C\'ea estimate formulated in the following
theorem.

Theorem 5.1. Let (\bfitt , \vec{}\bfitsigma , \vec{}\bfitu , p,\omega ) and (\bfitt h, \vec{}\bfitsigma h, \vec{}\bfitu h, ph, \omega h) be the solutions of prob-
lems (3.7a)--(3.7e) and (4.2a)--(4.2e), respectively, and assume that

(5.1) \^C1,d

\bigl( 
CH\beta + d3CRE\| J\| L2(\Omega )\prime 

\bigr) 
\leq 1

2
,

where \^C1,d,CH , \beta , d3, and CRE are specified in (5.5), (3.5), (2.4b), (3.6), and (3.46),
respectively. Then, there exists CC\'ea > 0 such that

\| \bfitt  - \bfitt h\| \BbbL 2(\Omega ) + \| \vec{}\bfitsigma  - \vec{}\bfitsigma h\| X + \| \vec{}\bfitu  - \vec{}\bfitu h\| M + \| p - ph\| H1(\Omega ) + \| \omega  - \omega h\| W1,r(\Omega )

(5.2)

\leq CC\'ea

\Bigl( 
dist(\bfitt ,\BbbH \bfitt 

h) + dist(\vec{}\bfitsigma ,\BbbH \vec{}\bfitsigma 
h ) + dist(\vec{}\bfitu ,H\vec{}\bfitu 

h ) + dist(p,Hp
h) + dist(\omega ,H\omega 

h)
\Bigr) 
.

Proof. For sake of notational convenience we define e\bfitt = \bfitt  - \bfitt h, e\vec{}\bfitsigma = \vec{}\bfitsigma  - \vec{}\bfitsigma h, e\vec{}\bfitu =
\vec{}\bfitu  - \vec{}\bfitu h, ep = p  - ph, e\omega = \omega  - \omega h. As usual, for arbitrary ( \^\bfitr h, \^\vec{}\bfittau h,\^\vec{}\bfitv h, \^qh, \^\theta h) \in 
\BbbH \bfitt 

h \times Xh \times Mh \times Hp
h \times H\omega 

h , they are decomposed as

(5.3)
e\bfitt = \bfitxi \bfitt +\bfitchi \bfitt , e\vec{}\bfitsigma = \bfitxi \vec{}\bfitsigma +\bfitchi \vec{}\bfitsigma , e\vec{}\bfitu = \bfitxi \vec{}\bfitu +\bfitchi \vec{}\bfitu , ep = \xi p + \chi p, and e\omega = \xi \omega + \chi \omega ,

where

\bfitxi \bfitt := \bfitt  - \^\bfitr h \in \BbbL 2(\Omega ), \bfitchi \bfitt := \^\bfitr h  - \bfitt h \in \BbbH \bfitt 
h, \bfitxi \vec{}\bfitsigma := \vec{}\bfitsigma  - \^\vec{}\bfittau h \in X, \bfitchi \vec{}\bfitsigma := \^\vec{}\bfittau h  - \vec{}\bfitsigma h \in Xh,

\bfitchi \vec{}\bfitu := \^\vec{}\bfitv h  - \vec{}\bfitu h \in Mh,

\xi p := p - \^qh \in H1
\Sigma (\Omega ), \chi p := \^qh  - ph \in Hp

h, \xi \omega := \omega  - \^\theta h \in W1,r
0 (\Omega ), \chi \omega := \^\theta h  - \omega h \in H\omega 

h .

Therefore, by subtracting (4.2a)--(4.2e) and (3.7a)--(3.7e), we easily get the classical
Galerkin orthogonality, which together with the decompositions (5.3) implies that
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1470 G\'OMEZ-VARGAS, MARDAL, RUIZ-BAIER, VINJE

[A(\bfitchi \bfitt ),\bfitr h] + [B\ast (\bfitchi \vec{}\bfitsigma ),\bfitr h] = [Hh +H\omega  - \omega h
,\bfitr h],(5.4)

[B(\bfitchi \bfitt ), \vec{}\bfittau h] - [C(\bfitchi \vec{}\bfitsigma ), \vec{}\bfittau h] + [B\ast 
1(\bfitchi \vec{}\bfitu ), \vec{}\bfittau h] + [B\ast 

2(\chi p), \vec{}\bfittau h] = [ \widetilde Fh
1 , \vec{}\bfittau h],

[B1(\bfitchi \vec{}\bfitsigma ),\vec{}\bfitv h] = [Fh,\vec{}\bfitv h],

[B2(\bfitchi \vec{}\bfitsigma ), qh] - [D(\chi p), qh] = [Gh, ph],

[A\bfitsigma h
(\chi \omega ), \theta h] = [Jh +A\bfitsigma h

(\omega ) - A\bfitsigma (\omega ), \theta h]

\forall \bfitr h \in \BbbH \bfitt 
h, \vec{}\bfittau h \in Xh,\vec{}\bfitv h \in Mh, ph \in Hp

h, and \theta h \in H\omega 
h , and where

[Hh,\bfitr h] := - [A(\bfitxi \bfitt ),\bfitr h] - [B\ast (\bfitxi \vec{}\bfitsigma ),\bfitr h], [F
h,\vec{}\bfitv ] := - [B1(\bfitxi \vec{}\bfitsigma ),\vec{}\bfitv h],

[Gh, ph] := - [B2(\bfitxi \vec{}\bfitsigma ), qh] + [D(\xi p), qh],

[Jh, \theta h] := - [A\bfitsigma h
(\xi p), \theta h], [ \widetilde Fh

1 , \vec{}\bfittau ] := - [B(\bfitxi \bfitt ), \vec{}\bfittau h] + [C(\bfitxi \vec{}\bfitsigma ), \vec{}\bfittau h]

 - [B\ast 
1(\bfitxi \vec{}\bfitu ), \vec{}\bfittau h] - [B\ast 

2(\xi p), \vec{}\bfittau h].

Then, proceeding as in the proof of Theorem 4.9 but now for problem (5.4), we deduce
that there exists \^C1,d > 0, independent of \lambda s and h, such that

\| \bfitchi \bfitt \| \BbbL 2(\Omega ) + \| \bfitchi \vec{}\bfitsigma \| X + \| \bfitchi \vec{}\bfitu \| M + \| \chi p\| H1(\Omega ) + \| \chi \omega \| W1,r(\Omega )(5.5)

\leq \^C1,d

\Bigl( 
\| Hh +H\omega  - \omega h

\| (\BbbH \bfitt )\prime + \| \widetilde Fh
1 \| X\prime 

h
+ \| Fh\| M\prime 

h
+ \| Gh\| (Hp

h)
\prime 

+ \| Jh +A\bfitsigma h
(\omega ) - A\bfitsigma (\omega )\| (H\omega 

h )\prime 

\Bigr) 
.

In this way, we now proceed to bound the terms on the right-hand side of (5.5).
We begin by noticing thanks to the continuity of the operators A and B\ast and the
definition of H\omega  - \omega h

(cf. (3.8h)) that there holds

(5.6) \| Hh +H\omega  - \omega h
\| (\BbbH \bfitt )\prime \leq \^C1

\bigl( 
\| \bfitxi \bfitt \| \BbbL 2(\Omega ) + \| \bfitxi \vec{}\bfitsigma \| X

\bigr) 
+CH\beta \| e\omega \| W1,r(\Omega ),

with \^C1 independent of \lambda s and h. Proceeding in a similar way as before, it can be
deduced that

\| Fh\| M\prime 
h
\leq \^C2\| \bfitxi \vec{}\bfitsigma \| X, \| Gh\| (Hp

h)
\prime \leq \^C3

\biggl( 
\alpha 

\lambda s
\| \bfitxi \vec{}\bfitsigma \| X + \| \xi p\| H1(\Omega )

\biggr) 
,

\| \widetilde Fh
1 \| X\prime 

h
\leq \^C4

\biggl( 
\| \bfitxi \bfitt \| \BbbL 2(\Omega ) +

1

\lambda s
\| \bfitxi \vec{}\bfitsigma \| X + \| \bfitxi \vec{}\bfitu \| M +

\alpha 

\lambda s
\| \xi p\| H1(\Omega )

\biggr) 
,(5.7)

where \^C2, \^C3, \^C4 > 0 are independent of \lambda s and h. On the other hand, in order to
bound the last term on the right-hand side of (5.5), we proceed as in (3.48) to get

\| A\bfitsigma h
(\omega ) - A\bfitsigma (\omega )\| (H\omega 

h )\prime \leq d3\| \bfitsigma  - \bfitsigma h\| \BbbL 2(\Omega )\| \nabla \omega \| 
L

2r
2 - r (\Omega )

,

and then, from the latter, we conclude that

(5.8) \| Jh +A\bfitsigma h
(\omega ) - A\bfitsigma (\omega )\| (H\omega 

h )\prime \leq \^C5\| \xi \omega \| W1,r(\Omega ) + d3\| e\vec{}\bfitsigma \| X\| \nabla \omega \| 
L

2r
2 - r (\Omega )

,

with \^C5 independent of \lambda s and h. Therefore, from (5.6), (5.7), and (5.8), we obtain
that there exists \^C2,d > 0 independent of \lambda s and h such that

\| \bfitchi \bfitt \| \BbbL 2(\Omega ) + \| \bfitchi \vec{}\bfitsigma \| X + \| \bfitchi \vec{}\bfitu \| M + \| \chi p\| H1(\Omega ) + \| \chi \omega \| W1,r(\Omega )(5.9)

\leq \^C2,d

\biggl( 
\| \bfitxi \bfitt \| \BbbL 2(\Omega ) +

\biggl( 
1 +

1

\lambda s
+

\alpha 

\lambda s

\biggr) 
\| \bfitxi \vec{}\bfitsigma \| X + \| \bfitxi \vec{}\bfitu \| M

+

\biggl( 
1 +

\alpha 

\lambda s

\biggr) 
\| \xi p\| H1(\Omega ) + \| \xi \omega \| W1,r(\Omega )

\biggr) 
+ d3 \^C1,dCRE\| J\| L2(\Omega )\prime \| e\vec{}\bfitsigma \| X + \^C1,d\beta \| e\omega \| W1,r(\Omega ),
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POROELASTICITY WITH STRESS-DEPENDENT DIFFUSION 1471

where we have applied the regularity estimate given by (3.46) and (1 + 1
\lambda s

+ \alpha 
\lambda s
) and

(1 + \alpha 
\lambda s
) can be seen as constants independent of \lambda s if \lambda s \rightarrow \infty . In this way, the

desired result follows simply by the triangle inequality in (5.3), the estimation (5.9),
and assumption (5.1).

The main result of this section is given by the following lemma.

Theorem 5.2. In addition to the hypotheses of Theorems 3.17, 4.9, and 5.1,
assume that there exist t > 0 and l > 1/2 such that \bfitsigma \in \BbbH t(\Omega ), div\bfitsigma \in Ht(\Omega ), \bfitu \in 
Ht(\Omega ), \bfitgamma \in \BbbH t(\Omega ), \widetilde p \in Ht(\Omega ), p \in H1+t(\Omega ), \omega \in W1+t,r(\Omega ), and \bfitt \in \BbbH l(\Omega ). Then,
there exist \widetilde C1, \widetilde C2 > 0, independent of h, such that, with the finite element subspaces
defined by (4.5), (4.9), (4.10), (4.11a), and (4.11b), there holds

\| \bfitt  - \bfitt h\| \BbbL 2(\Omega ) + \| \vec{}\bfitsigma  - \vec{}\bfitsigma h\| X + \| \vec{}\bfitu  - \vec{}\bfitu h\| M + \| p - ph\| H1(\Omega ) + \| \omega  - \omega h\| W1,r(\Omega )

\leq \widetilde C1h
min\{ t,k+1\} 

\Bigl\{ 
\| \bfitsigma \| \BbbH t(\Omega ) + \| div\bfitsigma \| Ht(\Omega ) + \| \bfitu \| Ht(\Omega ) + \| \bfitgamma \| \BbbH t(\Omega ) + \| \widetilde p\| Ht(\Omega )

+\| p\| H1+t(\Omega ) + \| \omega \| W1+t,r(\Omega )

\Bigr\} 
+ \widetilde C2h

min\{ l,k+1\} \| \bfitt \| \BbbH l(\Omega ).

(5.10)

Proof. The proof follows as a combination of C\'ea estimate (5.2), the smallness as-
sumption, and the approximation properties of the spaces (4.5), (4.9), (4.10), (4.11a),
and (4.11b). In particular, for the concentration approximability we use a quasi-
interpolator \scrI av

h0 :W
1+t,r \rightarrow H\omega 

h with the local property (see [19, Theorem 6.4])

| \omega  - \scrI av
h0\omega | W1,r(K) \leq Cht

K | \omega | W1+t,r(K)

with t\in [0, k+1] (we recall that in the notation of section 4.1, the discrete space H\omega 
h

is conformed by Pk+1 elements).

Remark 5.3. Similar results are obtained when (4.4) and (4.8) are employed
instead of (4.5) and (4.9), respectively. For the lowest-order case, we notice from the
classical approximation properties of the finite element subspaces that it suffices to
consider l > 0, and therefore, the second to last term on the right-hand side of (5.10)
should be changed to \widetilde C1h

min\{ t,k+1\} \sum 
K\in \scrT h

\| \bfitt \| \BbbH t(K) (see [22, Theorem 3.2]), whereas
the other terms remain unchanged. Even if approximation results for (4.8) in the
high-order case do not seem to be available in the literature, the numerical results in
the next section demonstrate an asymptotic \scrO (hk+1) convergence (see Table 6.1).

6. Numerical tests.

6.1. Example 1: Convergence against manufactured solutions. The ac-
curacy of the discretization is verified through two convergence tests using man-
ufactured solutions and implemented using the FEniCS library [40]. The model
parameters are simply taken as \mu s = \lambda s = 1 = c0 = \kappa = \alpha = \ell = \rho f = \rho s = \mu f = \beta = 1,
and \phi = 0.5, and \bfitg = 0. Variations (of several orders of magnitude) in \lambda s, \alpha ,\mu f and
the pair (\kappa , c0) will be also considered to study the robustness of the formulation with
respect to these parameters. The stress-altered diffusion is (2.3) with D0 = 0.01 and
\eta = 0.01. We use the following closed-form smooth solutions to (2.4),

\omega = ex1 + cos(\pi x1) cos(\pi x2), \bfitu =
1

10

\Biggl( 
 - cos(x1) sin(x2) +

x2
1

\lambda s

sin(x1) cos(x2) +
x2
2

\lambda s

\Biggr) 
,

p= sin(\pi x1) sin(\pi x2), \widetilde p= \alpha p - \lambda sdiv\bfitu ,
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1472 G\'OMEZ-VARGAS, MARDAL, RUIZ-BAIER, VINJE

Table 6.1
Verification of convergence for the method with PEERSk and enriched piecewise polynomials

with degrees k= 0 and k= 1 and using unity parameters. Errors and convergence rates are tabulated
for strain, stress, total pressure, displacement, rotation Lagrange multiplier, fluid pressure, and
tracer concentration (measured in the W1,r-norm with r = 3

2
). The last column shows the norm of

the gradient of the fixed-point operator applied to the discrete tracer solution (6.1). The asterisks in
all tables indicate that no rates are computed at the first refinement level.

DoF e0(\bfitt ) Rate e\bfd iv(\bfitsigma ) Rate e1(\~p) Rate e0(\bfitu ) Rate e0(\bfitgamma ) Rate e1(p) Rate e1,r(\omega ) Rate \^\varphi h

Scheme with k= 0

148 1.8e-01 * 1.2e+00 * 2.8e-01 * 2.6e-02 * 3.2e-01 * 1.1e+0 * 1.7e+0 * 2.35

540 7.8e-02 1.19 6.2e-01 0.99 1.4e-01 1.00 8.6e-03 1.59 9.6e-02 1.73 7.4e-01 0.62 8.8e-01 0.94 2.46
2068 3.7e-02 1.08 3.1e-01 1.00 6.8e-02 1.07 3.9e-03 1.15 3.7e-02 1.36 4.1e-01 0.85 4.3e-01 1.03 2.44

8100 1.8e-02 1.05 1.6e-01 1.00 3.3e-02 1.03 1.9e-03 1.04 1.4e-02 1.43 2.1e-01 0.95 2.1e-01 1.03 2.44

32068 8.7e-03 1.03 7.8e-02 1.00 1.6e-02 1.01 9.4e-04 1.01 5.0e-03 1.48 1.1e-01 0.98 1.0e-01 1.02 2.44
127620 4.3e-03 1.02 3.9e-02 1.00 8.2e-03 1.00 4.7e-04 1.00 1.8e-03 1.50 5.4e-02 1.00 5.1e-02 1.01 2.44

509188 2.5e-03 1.01 1.9e-02 1.00 4.1e-03 1.00 2.3e-04 1.00 1.5e-03 1.20 2.7e-02 1.00 2.6e-02 1.00 2.44

Scheme with k= 1

436 1.3e-02 * 2.3e-01 * 7.7e-02 * 1.8e-03 * 6.9e-03 * 3.8e-01 * 4.8e-01 * 2.49

1652 4.6e-03 1.51 5.8e-02 1.97 2.0e-02 1.95 4.4e-04 2.02 2.4e-03 1.35 1.2e-01 1.70 1.3e-01 1.88 2.44

6436 1.3e-03 1.76 1.5e-02 1.99 5.0e-03 1.99 1.0e-04 2.07 8.7e-04 1.44 3.2e-02 1.88 3.3e-02 1.96 2.44
25412 3.6e-04 1.91 3.7e-03 2.00 1.2e-03 2.00 2.5e-05 2.04 2.5e-04 1.78 8.2e-03 1.95 8.4e-03 1.99 2.44

100996 9.2e-05 1.96 9.2e-04 2.00 3.1e-04 2.00 6.3e-06 2.01 6.7e-05 1.91 2.1e-03 1.98 2.1e-03 2.00 2.44

402692 2.3e-05 1.98 2.3e-04 2.00 7.8e-05 2.00 1.6e-06 2.00 1.7e-05 1.96 5.2e-04 1.99 5.3e-04 2.00 2.44
16081965.9e-06 1.99 5.7e-05 2.00 1.9e-05 2.00 3.9e-07 2.00 4.4e-06 1.98 1.3e-04 2.00 1.3e-04 2.00 2.44

which are used to produce nonhomogeneous forcing and source terms. For the sake
of simplicity only one type of boundary conditions is considered, i.e., \partial \Omega = \Gamma . The
remaining boundary conditions in (2.4g) (for displacement and fluid flux) are imposed
naturally. This also implies that the stress is not uniquely defined, and we constraint
its trace, using a real Lagrange multiplier. We generate seven successively refined
meshes (congruent right-angled triangular partitions) for the domain \Omega = (0,1)2 and
calculate errors between approximate and exact solutions e(\cdot ) (measured in H1-norm
for fluid pressure; in W1,r-norm for the tracer; in the tensor H(div)-norm for stress;
and in the tensorial, vectorial, and scalar L2-norm for strain, rotation, displacement,
and total pressure). We take the Sobolev exponent r = 3

2 . The mixed finite ele-
ment methods are defined by the PEERSk and enriched piecewise polynomial spaces
specified in (4.4), (4.8), and (4.11a).

Table 6.1 shows such error decay for polynomial orders k = 0 and k = 1, and we
can clearly observe a convergence of O(hk+1) for all field variables in their natural
norms, which is consistent with the theoretical error bounds. Table 6.2 shows the error
history associated with the extension to three dimensions, using the exact solutions

\omega = cos(\pi x1) cos(\pi x2) cos(\pi x3), \bfitu =
1

10

\left(    
sin(x1) cos(x2) cos(x3) +

x2
1

\lambda s

 - 2cos(x1) sin(x2) cos(x3) +
x2
2

\lambda s

cos(x1) cos(x2) sin(x3) +
x2
3

\lambda s

\right)    ,

p= sin(\pi x1) sin(\pi x2) sin(\pi x3),

and \widetilde p = \alpha p  - \lambda sdiv\bfitu , on \Omega = (0,1)3, with the same unit parameters, and focusing
on the lowest-order scheme. Optimal, first-order convergence is also achieved in this
case. For completeness, we also verify the error decay of the scheme resulting from
using AFWk elements (4.5) and (4.9), which also delivers optimal convergence.
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POROELASTICITY WITH STRESS-DEPENDENT DIFFUSION 1473

Table 6.2
Verification of space convergence in three dimensions with polynomial degree k = 0 and using

unity parameters. Errors history for strain, stress, total pressure, displacement, rotation Lagrange
multiplier, fluid pressure, and tracer concentration (measured in the W1,r-norm with r = 3

2
). The

last column shows the norm of the gradient of the fixed-point operator applied to the discrete tracer
solution (6.1).

DoF e0(\bfitt ) Ratee\bfd iv(\bfitsigma )Rate e1(\~p) Rate e0(\bfitu ) Rate e0(\bfitgamma ) Rate e1(p) Rate e1,r(\omega )Rate \^\varphi h

Scheme with PEERSk and enriched piecewise polynomials

1984 1.7e-01 * 1.5e+0 * 2.0e-01 * 2.0e-02 * 1.4e-01 * 1.4e+0 * 1.6e+0 * 2.29

6477 9.8e-02 0.72 1.0e+0 0.87 1.5e-01 0.74 1.3e-02 0.99 8.3e-02 1.29 9.4e-01 0.63 1.2e+0 0.73 2.27

29281 6.4e-02 0.83 6.4e-01 0.95 8.9e-02 0.98 7.7e-03 1.08 2.7e-02 2.16 6.7e-01 0.76 7.7e-01 0.90 2.21
168297 3.5e-02 0.92 3.6e-01 0.99 4.7e-02 1.09 4.1e-03 1.07 1.0e-02 1.71 4.1e-01 0.84 4.3e-01 0.98 2.20

11250492.1e-02 0.95 1.9e-01 1.00 2.4e-02 1.06 2.1e-03 1.04 3.7e-03 1.59 2.2e-01 0.96 2.3e-01 1.00 2.19

81941371.2e-02 0.96 9.6e-02 1.01 1.3e-02 1.02 1.1e-03 1.00 1.6e-03 1.49 1.2e-01 0.97 1.2e-01 0.98 2.19

Scheme with AFWk elements

2551 7.1e-02 * 1.4e+0 * 1.9e-01 * 1.9e-02 * 3.8e-02 * 1.3e+0 * 1.6e+0 * 2.29

8067 4.3e-02 1.24 1.0e+0 0.90 1.4e-01 0.78 1.2e-02 1.04 2.2e-02 1.38 9.4e-01 0.59 1.2e+0 0.74 2.27
35383 2.3e-02 1.23 6.1e-01 0.96 8.5e-02 0.99 7.4e-03 1.02 1.1e-02 1.35 6.7e-01 0.66 7.7e-01 0.91 2.21

198831 1.0e-02 1.34 3.4e-01 0.99 4.6e-02 1.06 4.0e-03 1.02 5.0e-03 1.32 4.1e-01 0.84 4.3e-01 0.98 2.20

13104314.6e-03 1.31 1.8e-01 1.00 2.4e-02 1.03 2.1e-03 1.01 2.3e-03 1.22 2.3e-01 0.94 2.3e-01 0.99 2.19

One of the key components of our analysis is the use of a fixed-point argument
for the solution of the problem. In order to illustrate numerically the Lipschitz conti-
nuity of the discrete fixed-point operator Th (cf. Lemma 4.8), we have tabulated the

L
2r

2 - r (\Omega )-norm of its gradient

(6.1) \^\varphi h := \| \nabla Th(\omega h)\| 
L

2r
2 - r (\Omega )

.

These values converge to a constant with a value of 2.44 in Table 6.1 and 2.19 in
Table 6.2. This indicates that \^\varphi h remains bounded.

Figure 6.1 illustrates the robustness with respect to large variations in physical
parameters including nearly incompressible materials (taking \lambda s = 108), for low per-
meability and low storativity (with \kappa = 10 - 12 and c0 = 10 - 6), for weak Biot--Willis
coupling (\alpha = 10 - 6), and with small fluid viscosity (with \mu f = 10 - 4). Analogous
results (not shown here) were obtained for different values of porosity. For all these
tests (both 2D and 3D), on average, four Newton--Raphson iterations were required
to reach convergence across all mesh refinements.

6.2. Example 2: Testing the effect of stress-altered diffusion. In this test
we compare the filtration effects on models using different degrees of stress-modified
diffusion where the diffusion due to stress is lower than the constant base-line diffusion.
This simple test emphasizes the significance of anisotropy and heterogeneity in the
transport of tracer, and it is more illustrative to consider the time-dependent case
(adding a time derivative of the first two terms in the second equation of (2.1) and of
the first term in (2.2), which we discretize using the backward Euler method with a
constant time step. For this we employ a slab of tissue of size 1 mm2, and the model
parameters are as follows (see, e.g., [10, 31, 50]):

E = 800Pa, \nu = 0.495, c0 = 2\times 10 - 8, \kappa = 10 - 8mm2, \alpha = 1, \ell = 0,

\rho s = 10 - 3mg/mm3,

\mu f = 0.7Pa s, \beta = 0.45, \phi = 0.2, D0 = 5.3\times 10 - 5mm2/s,
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Fig. 6.1. Verification of space convergence and robustness with respect to changes in model
parameters \lambda s, (\kappa , c0), \alpha ,\mu f .

whereD0 is made sufficiently large to compare with stress-hindered effects. On the top
of the slab we impose a traction \bfitsigma \bfitn = - \alpha ptop\bfitn with pin = 0.5atan(t/10) mmHg/mm,
on the bottom we clamp the tissue \bfitu = 0, and on the vertical walls we set zero
traction. The fluid pressure pin is prescribed on the top segment and set to p0 = 9
mmHg/mm on the vertical walls, whereas we set zero normal flux on the bottom.
The tracer concentration \omega in = 1 mmol is fixed on the top, and zero diffusive flux is
considered elsewhere on the boundary. A coarse mesh with 16384 triangular elements
is employed, and the time step is \Delta t= 50 s.

Three main scenarios are considered: (a) pure reaction-diffusion of the tracer with
D0, (b) adding the effect of isotropic stress-assisted diffusion according to

(6.2) D(\bfitsigma ) =D0\BbbI +D0 exp( - \eta 0tr\bfitsigma )\BbbI 

with \eta 0 = 5\times 10 - 5, and (c) modifying the functional form of the apparent diffusion
to

(6.3) \~D(\bfitsigma ) = \eta 0D0\BbbI  - \eta 1D0\bfitsigma + \eta 2D0\bfitsigma 
2

with \eta 1 = 0.02 and \eta 2 = 10 - 5. Figure 6.2 shows the results from these tests. The
first row illustrates how with pure diffusion (without stress-hinderance) the tracer
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POROELASTICITY WITH STRESS-DEPENDENT DIFFUSION 1475

Fig. 6.2. Example 2. Stress-altered diffusion. Top: Filtration of the CSF tracer into the slab of
tissue for pure reaction-diffusion (left), stress-hindered diffusion according to (6.2) (center), and the
anisotropic form (6.3) (right). Middle row: Approximate displacement (left), total pressure (center),
and fluid pressure (right). Bottom: Tensor glyph representation on the deformed configuration, of
the total Cauchy stress (left), the isotropic diffusion (center), and anisotropic one (right). All
snapshots are taken at time t= 1800 s.

penetrates faster than in the cases with stress-dependent diffusion (this is shown at
t= 1800 s). The deformation of the parenchymal slab using case (c) is shown in the
second row, where we can observe a localization of total pressure accumulation near
the bottom corners of the domain. The bottom row indicates the degree of anisotropy
of the total poroelastic stress and of the stress-altered diffusivity tensors according to
(6.2) and (6.3), also at t = 1800 s. In case (c), apart from a slower diffusion than in
case (a), a slight deviation from plane solute transport is seen (in the top-right panel
of the figure), explained by the anisotropy differences exhibited in the bottom row of
the figure.

6.3. Example 3: Stress-hindered diffusion and transport in the brain.
Next we perform two application tests investigating the filtration properties of parenchy-
mal brain tissue and the evolution of tracer concentration in its sleeping versus awake

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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state. Transport in the brain has been reported to occur 5\%--24\% faster than diffu-
sion [52], suggesting diffusion is the dominant mechanism of transport. We therefore
neglect convection to assess whether stress-dependent diffusion may explain the dis-
crepancy between observations and Fickian diffusion simulations. In the first example,
we create a 2D slab (1mm deep, 1 \mu m wide) of a mouse brain, and simulated tracer
enrichment from the cortical surface into the cortex. The diffusion coefficient was
here assumed to take the form

(6.4) D(\bfitsigma ) =D0\BbbI  - D0 exp( - \eta | tr(\bfitsigma )| )\BbbI .

Boundary conditions for the first test case (in two dimensions) assume the form

\omega = 1, p= p0, \bfitsigma \bfitn = - p0 arctan(t/50)\bfitn on cortex (top),

D(\bfitsigma )\nabla \omega \cdot \bfitn = \kappa \nabla p \cdot \bfitn = 0 on sides and bottom,

\bfitsigma \bfitn = 0 on sides,

\bfitu = 0 on bottom,

and the initial condition is \omega = 0 everywhere. The depth (1mm) was assumed to
cover the entire width of the mouse cortex. Over time we measured the concentra-
tion (100 \mu m into the tissue) similarly to the results reported by [54]. In the awake
state, the porosity was set to \phi = 0.14, while in the awake state we used \phi = 0.23
[54]. We assumed that the known change in volume fraction was associated with a
similar change in the width of the cerebral cortex, which is known to change dur-
ing sleep [16]. Simulating the (compressed) awake state, we therefore added a force
\bfitsigma \bfitn =  - p0 arctan(

t
50s )\bfitn , where p0 = 0.5 mmHg to the top of the domain, while the

bottom was fixed. The arctan function was used to ensure a smooth loading. In the
sleeping state, no forces were applied, and tracers were thus allowed to diffuse freely
according to the base diffusion D0. In both cases the sidewalls were assigned Neu-
mann conditions. The resulting displacement at the cortex surface was 0.09mm (data
now shown). In Figure 6.3 (top panel) we show the resulting tracer concentration. We
compare tracer concentrations after 15 minutes in the awake state versus the sleeping
state, from 0 to 300 \mu m into the cortex (left), and show the time evolution of tracer
concentration at a slice 100 \mu m below the surface (right). The applied forces in the
awake state significantly slow down transport into mouse cortex. Other parameters
were set as follows (see also [10, 53]):

E = 800Pa, \nu = 0.495, c0 = 2\times 10 - 8Pa - 1, \kappa = 10 - 8mm2, \alpha = 1, \ell = 0,

\eta = 2\times 10 - 5,

\rho s = 10 - 3 g/mm3, \mu f = 0.7\times 10 - 3Pa/s, \beta = 0.35, D0 = 5.3\times 10 - 2mm3/s.

In the second scenario, we simulate tracer clearance from the human brain using a 3D
mesh generated from the the right hemisphere of the built-in subject Bert in FreeSurfer
[20]. The mesh consisted of 400000 cells, and the resulting system had 15million
degrees of freedom. Boundary conditions for this test case (in three dimensions)
assume the form

\omega = 0 on all boundaries,

p= p0, \bfitsigma \bfitn = - p0 arctan(t/50)\bfitn on cortex,

\bfitsigma \bfitn = 0, \kappa \nabla p \cdot \bfitn = 0 on ventricles,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Sleep Awake

Sleep Awake

Fig. 6.3. Example 3. Tracer infiltration in the mouse cortex (top panel) and tracer clearance
from the human brain (bottom panel) using the stress-hindered formulation as described by (6.4). In
the top-left we compare the sleeping versus awake state after 15 minutes of transport from the mouse
cortex 300 \mu m into the tissue. The concentration was held fixed at the cortex. To the right, the shown
time evolution 100 \mu m below the cortex indicates that transport by stress-hindered diffusion is an
order of magnitude lower than for free diffusion within the cortex. In the bottom panel we show
the tracer distribution in a brain slice of a human brain. In the left panel is the tracer distribution
after 12 hours of diffusive transport. In the awake state, stress-hindered diffusion results in slightly
slower clearance. In the right bottom panel, the average concentration for the entire piece of brain
tissue is plotted over time.

and the initial condition is \omega = 1 everywhere in the brain. Other parameters were
set exactly as in the previous example, except that now \eta = 2\times 10 - 1 and the cortex
pressure is p0 = 0.01 mmHg. On the ventricles we imposed no-slip conditions. In
Figure 6.3 (bottom panel) we show the tracer concentration in the sleeping versus
awake brain after 12 hours of transport (left) and also show the time evolution of
the average tracer concentration within the slice shown (right). Transport rates differ
between the sleeping state versus the awake state but occur on approximately the
same time scale [52] in contrast to the mouse test case. Our results from the human
brain test case thus reflect differences in clearance in the awake versus sleeping state
observed experimentally [15].

7. Concluding remarks. In this manuscript, we have proposed a new formu-
lation for the transport of solutes within poroelastic structures fully saturated with
an incompressible fluid, which incorporates the effect of stress-altered diffusion. Our
analysis is based on a fixed-point argument combined with the generalized theory for
perturbed saddle-point problems and a Banach spaces abstract result for the stress-
dependent diffusion. We have shown that the discrete problem is solvable and have
derived optimal error estimates under usual regularity assumptions. Additionally, we
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have verified numerically that the formulation is robust with respect to variations in
model parameters. The set of equations models how a tracer permeates through the
brain tissue, and the incorporation of stress-altered diffusion leads to better agreement
with filtration rates observed from experiments.

However, one drawback of the present formulation is its high computational cost,
as it depends on several tensor and scalar secondary variables. To address this is-
sue, we are currently investigating the analysis of simplified formulations that retain
some of the appealing features of momentum conservation, parameter robustness,
and amenability to analysis using perturbed saddle-point theory. Additionally, we
would like to stress that our analysis does not accommodate for time dependence,
which is an important matter in the context of the application that motivates the
new formulation. This is one of the generalizations we are currently working on.

Other steps in the process of model refinement include the study of interfacial flow
between the poroelastic structure (at the macroscale) coupled with the surrounding
layer of CSF and the specific waste disposal system, which is still not well understood.
For this we will also use multiple network models [32, 44], the preconditioning frame-
work for perturbed saddle-point problems from [7], and interface couplings such as
those in [11, 39, 46, 51]. Other envisaged generalizations deal with large deformations
and kinematics through a more complete mixture theory following, e.g., [36, 12].

Acknowledgments. We express our gratitude for the invaluable feedback pro-
vided by four anonymous referees, whose comments have significantly enhanced the
quality of the manuscript from its initial version.
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