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Abstract: In this paper we consider the Navier–Stokes–Brinkman equations, which constitute one of the most
common nonlinear models utilized to simulate viscous fluids through porous media, and propose and analyze

a Banach spaces-based approach yielding new mixed finite element methods for its numerical solution. In ad-

dition to the velocity and pressure, the strain rate tensor, the vorticity, and the stress tensor are introduced as

auxiliary unknowns, and then the incompressibility condition is used to eliminate the pressure, which is com-

puted afterwards by a postprocessing formula depending on the stress and the velocity. The resulting continu-

ous formulation becomes a nonlinear perturbation of, in turn, a perturbed saddle point linear system, which

is then rewritten as an equivalent fixed-point equation whose operator involved maps the velocity space into

itself. The well-posedness of it is then analyzed by applying the classical Banach fixed point theorem, along

with a smallness assumption on the data, the Babuška–Brezzi theory in Banach spaces, and a slight variant of a

recently obtained solvability result for perturbed saddle point formulations in Banach spaces aswell. The result-

ing Galerkin scheme is momentum-conservative. Its unique solvability is analyzed, under suitable hypotheses

on the finite element subspaces, using a similar fixed-point strategy as in the continuous problem. A priori error

estimates are rigorously derived, including also that for the pressure. We show that PEERS and AFW elements

for the stress, the velocity, and the rotation, together with piecewise polynomials of a proper degree for the

strain rate tensor, yield stable discrete schemes. Then, the approximation properties of these subspaces and the

Céa estimate imply the respective rates of convergence. Finally, we include two and three dimensional numeri-

cal experiments that serve to corroborate the theoretical findings, and these tests illustrate the performance of

the proposed mixed finite element methods.

Keywords: Navier–Stokes–Brinkman equations, Banach framework, mixed finite element methods, Babuška–
Brezzi theory, perturbed saddle-point, fixed-point theory, a priori error analysis
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1 Introduction

The Navier–Stokes–Brinkman equations are nowadays present in a wide range of applications, among which

we highlight the flow of a viscous fluid through porous media with adsorption, and the phase change models

for natural convection in porous media as well. The former arises, for instance, in petroleum engineering [17],

chromatography [45], and water decontamination [50], particularly in the design of water filtering devices [9],

whereas the latter appears inmelting and solidification processes [29, 51], design of energy storage devices [31],

and ocean and atmosphere dynamics [30], to name a few. Motivated by the above, the devising of suitable nu-

merical procedures to solve these problems,most of themwithin aHilbertian framework, has gained increasing
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interest in recent years. The variational formulations utilized, which include the case of axisymmetric flow and

time-dependent models, are based on velocity and pressure, stress, pseudostress, vorticity, or stream function,

as main unknowns, whereas the techniques employed are basically finite element, mixed finite element, finite

volume, stabilized finite element, spectral, mortar, and augmented finite element methods. For an overview of

some contributions in these directions, we refer to [9, 17, 42] and [2, 3, 40], and the references therein, in the

case of the aforementioned first and second model, respectively.

Aiming to provide further details on the state of the art, as well as to explain the main motivation of the

present paper, we now refer specifically to [2], where rigorous mathematical and numerical analyses of mixed-

primal and fullymixedmethods for phase changemodels for natural convection, are provided, up to our knowl-

edge, for the first time. Indeed, the problem under consideration there is the one originally proposed in [3],

where a fully-primal formulation for the non-stationary case was analyzed. The governing equations are given

by the Navier–Stokes–Brinkman equations coupled with a generalized energy equation, in addition to Dirich-

let boundary conditions for the velocity and the temperature. The fluid part of the coupled model is handled

similarly to [4] by introducing as auxiliary unknowns the strain rate tensor and the stress tensor relating the

latter with the convective term. In this way, the pressure is eliminated by using the incompressibility condition,

and recovered later on via a postprocessing formula in terms of the stress and the velocity. In turn, due to the

convective term, and in order to stay within a Hilbertian framework, the velocity is sought in the Sobolev space

of order 1, which requires the incorporation into the variational formulation of additional Galerkin-type terms

arising from the constitutive and equilibrium equations. Furthermore, the symmetry of the stress is imposed

in an ultra-weak sense (cf. [5]), which avoids to include the vorticity as a fourth unknown. It is well-known that

the augmentation procedure allows to circumvent the necessity of proving continuous and discrete inf-sup con-

ditions, which yields, in particular, more flexibility for choosing the finite element subspaces. Nevertheless, the

complexity of both the resulting system and its associated computational implementation increases consider-

ably, thus leading to much more expensive schemes. This last remark constitutes our main motivation to look

now for non-augmented schemes.

A similar procedure to the one from [2] for the Navier–Stokes–Brinkman equations was introduced and

analyzed in [35]. However, differently from [2], the authors do not include the strain rate tensor as an unknown,

which is computed later on via a postprocess. In addition, instead of employing the stress and imposing the

incompressibility condition, they use the pseudostress and consider a nonsolenoidal condition, respectively.

Besides these aspects and a minor difference related to the handling of the equilibrium equation, the rest of the

variational formulation proceeds analogously by forcing as well a Hilbert spaces-based framework bymeans of

the introduction of residual terms arising from the constitutive equation and the Dirichlet boundary condition.

In addition to [9] and [35], just a fewother contributions dealingwith numericalmethods for theNavier–Stokes–

Brinkman equations seem to be available in the literature, among which we refer to [10, 36, 48]. More extensive

is the list of references dealing with the related Stokes–Brinkman model (see, e.g., [16, 38, 52, 53]).

On the other hand, a significant amount of contributions showing the suitability of Banach spaces-based ap-

proaches to analyze the continuous anddiscrete formulations of diverse linear, nonlinear, and coupled problems

in continuummechanics, have appeared in recent years. A non-exhaustive list of them includes [11, 18, 22, 23, 25,

27, 34, 37], and among the differentmodels addressedwe canmention Poisson, Brinkman–Forchheimer, Darcy–

Forchheimer, Navier–Stokes, Boussinesq, coupled flow-transport, and fluidized beds, most of which share a Ba-

nach saddle-point structure for the resulting variational formulations. The main advantage of employing this

Banach framework is, precisely as sought, the fact that no augmentation is required, and hence the spaces

to which the unknowns belong are the natural ones arising from the application of the Cauchy–Schwarz and

Hölder inequalities to the tested and eventually integrated by parts equations. In this way, simpler and closer

to the original physical model formulations are obtained. Moreover, it also allows to derive momentum conser-

vative schemes, and to obtain direct approximations of further variables of physical interest, either by incorpo-

rating them into the formulation or by employing postprocessing formulae in terms of the discrete solution.

According to the previous discussion, the purpose of the present paper is to propose non-augmentedmixed

finite element methods for the Navier–Stokes–Brinkman equations (cf. model from [2]) by means of a suitable

Banach spaces-based approach. The extension of it to the phase changemodel for natural convection in a porous

medium will be reported in a separate work. The manuscript is organized as follows. The rest of this section
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collects some preliminary notations and results to be employed throughout the paper. In Section 2 we set the

model of interest, define the auxiliary unknowns to be considered, and eliminate the pressure. The variational

formulation is introduced and analyzed in Section 3. In fact, in Section 3.1 we describe the mixed approach

and realize that the resulting continuous system, which is very close to the one from [2] before augmenting it,

can be written as a nonlinear perturbation of a perturbed saddle point formulation in Banach spaces. Then,

some abstract results that include a slight variant of the continuous and discrete well-posedness of the latter, as

well as the Babuška–Brezzi theory in Banach spaces, are recalled in Section 3.2. The solvability analysis itself

is developed in Section 3.3 by employing a fixed-point strategy along with the theorems from Section 3.2. Next,

in Section 4 we introduce and analyze the associated Galerkin scheme under suitable assumptions on the finite

element subspaces to be employed, adopting an analogous fixed-point strategy, and making use of the discrete

versions of the theoretical results from Section 3.2. In addition, a priori error estimates are derived, specific

finite element subspaces satisfying the aforementioned assumptions are described, and corresponding rates of

convergence are established. Finally, several illustrative numerical results are reported in Section 5.

Preliminary notations

Throughout the paper, Ω is a given bounded Lipschitz-continuous domain of R
n
, n ∈ {2, 3}, whose outward

unit normal at its boundary Γ is denoted ν. Standard notations will be adopted for Lebesgue spaces Lr(Ω), with
r ∈ (1, ∞), and Sobolev spaces W

s,r
(Ω), with s ⩾ 0, endowed with the norms ‖ · ‖0,r;Ω and ‖ · ‖s,r;Ω , respectively,

whose vector and tensor versions are denoted in the same way. In particular, note that W
0,r
(Ω) = L

r
(Ω), and

that when r = 2 we simply write Hs
(Ω) in place ofWs,2

(Ω), with the corresponding Lebesgue and Sobolev norms
denoted by ‖ · ‖0,Ω and ‖ · ‖s,Ω , respectively. We also set | · |s,Ω for the seminorm of H

s
(Ω). In turn, H1/2

(Γ) is the
space of traces of functions of H

1
(Ω), H−1/2

(Γ) is its dual, and ⟨· , ·⟩ denotes the duality pairing between them. On
the other hand, by S and Swemean the corresponding vector and tensor counterparts, respectively, of a generic
scalar functional space S. Furthermore, for any vector fields v = (vi)i=1,n and w = (wi)i=1,n , we set the gradient,

symmetric part of the gradient (also named strain rate tensor), divergence, and tensor product operators, as

∇v :=
(︂
∂vi
∂xj

)︂
i,j=1,n

, ε(v) := 1

2

(︀
∇v + (∇v)t

)︀
div(v) :=

n∑︁
j=1

∂vj
∂xj

, v⊗w := (viwj)i,j=1,n

where the superscript
t
stands for the matrix transpose. Next, for any tensor fields τ = (τij)i,j=1,n and ζ =

(ζij)i,j=1,n , we let div(τ) be the divergence operator div acting along the rows of τ, and define the trace, the

tensor inner product, and the deviatoric tensor, respectively, as

tr(τ) :=
n∑︁
i=1

τii , τ : ζ :=
n∑︁

i,j=1
τijζij , τd := τ − 1

n tr(τ)I

where I is the identity matrix in R := R
n×n

. On the other hand, for each r ∈ [1, +∞] we introduce the Banach

space

H(divr;Ω) := {τ ∈ L2
(Ω) : div(τ) ∈ Lr(Ω)}

which is endowed with the natural norm

‖τ‖divr ;Ω := ‖τ‖0,Ω + ‖div(τ)‖0,r;Ω ∀ τ ∈ H(divr;Ω)

and recall that, proceeding as in [33, Eq. (1.43), Sect. 1.3.4] (see also [19, Sect. 4.1] and [25, Sect. 3.1]), one can

prove that for each r ⩾ 2n/(n + 2) there holds

⟨τ ν, v⟩ =
∫︁
Ω
{τ : ∇v + v · div(τ)} ∀ (τ, v) ∈ H(divr;Ω) ×H1

(Ω) (1.1)

where ⟨· , ·⟩ stands as well for the duality pairing between H−1/2
(Γ) and H1/2

(Γ). Finally, bear in mind that when
r = 2, the Hilbert spaceH(div2;Ω) and its norm ‖ ·‖div2;Ω are simply denotedH(div;Ω) and ‖ ·‖div;Ω , respectively.
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2 The model problem

The modelling of a viscous fluid within a porous medium occupying the domain Ω, is described by the Navier–
Stokes–Brinkman problem, which reduces to finding a velocity vector field u : Ω → R and a pressure scalar

field p : Ω → R satisfying the following system of partial differential equations (cf. [35, 39]):

η u − λ div
(︀
μ ε(u)

)︀
+
(︀
∇u
)︀
u + ∇p = f in Ω

div(u) = 0 in Ω

u = uD on Γ∫︁
Ω
p = 0

(2.1)

where η is the scaled inverse permeability of the porous media, λ := Re
−1
, where Re is the Reynolds number,

μ is the dynamic viscosity of the fluid, f is an external body force, and uD is a Dirichlet datum for u. The right
spaces to which f and uD belong will be precise later on. The functions η and μ are supposed to be bounded,
which means that there exist positive constants η0, η1, μ0, and μ1, such that

0 < η0 ⩽ η(x) ⩽ η1 , 0 < μ0 ⩽ μ(x) ⩽ μ1 ∀x ∈ Ω. (2.2)

In turn, note that the incompressibility of the fluid (cf. second equation of (2.1)) imposes on uD the compatibility
condition ∫︁

Γ
uD · ν = 0 (2.3)

and that the last equation of (2.1) has been included for sake of uniqueness of p.
We now proceed as in [2] and [4] (see, also [18, 20, 21, 24, 26]) and transform (2.1) into an equivalent system

of first order equations. To this end, we introduce the strain rate tensor t, the vorticity γ, and the stress tensor
σ as auxiliary unknowns, namely,

t := ε(u) = ∇u − γ, γ :=
1

2

(︀
∇u − (∇u)t

)︀
(2.4)

and

σ := λ μ t − (u⊗ u) − p I (2.5)

so that, thanks to the incompressibility of the fluid, the first equation of (2.1) is rewritten as

η u − div(σ) = f in Ω.

Moreover, it is easy to see that, precisely the second equation of (2.1), which becomes tr(t) = 0, together

with (2.5), are equivalent to the pair of equations given by

σd = λ μ t − (u⊗ u)d , p = −
1

n tr
(︀
σ + (u⊗ u)

)︀
in Ω. (2.6)

Consequently, the pressureunknown is eliminated from the formulation and computed afterwards, as suggested

by the foregoing identity, in terms of σ and u. In this way, (2.1) can be equivalently reformulated as: Find the
unknowns t, σ, u, and γ in suitable spaces to be defined later on, such that

t + γ = ∇u in Ω

λ μ t − (u⊗ u)d = σd in Ω

η u − div(σ) = f in Ω

u = uD on Γ∫︁
Ω
tr
(︀
σ + (u⊗ u)

)︀
= 0.

(2.7)
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3 The continuous formulation

In this sectionwe introduce and analyze the variational formulation of (2.7), which, differently from [2] and [35],

does not employ any augmentation procedure. As a consequence, the spaces to which the unknowns and test

functions belong are just those arising from the application of the Cauchy–Schwarz and Hölder inequalities to

the equations, suitably tested, of (2.7).

3.1 The mixed approach

We begin by originally seeking u in H1
(Ω), for which we assume from now on that uD ∈ H1/2

(Γ). Then, given
τ ∈ H(divr;Ω), with r ⩾ 2n/(n + 2), a straightforward application of (1.1) along with the fact that u = uD on Γ ,
yield ∫︁

Ω
τ : ∇u = −

∫︁
Ω
u · div(τ) + ⟨τ ν, uD⟩

and hence the corresponding testing of the first equation of (2.7) becomes∫︁
Ω
t : τ +

∫︁
Ω
γ : τ +

∫︁
Ω
u · div(τ) = ⟨τ ν, uD⟩ ∀ τ ∈ H(divr;Ω). (3.1)

We observe here, thanks to Cauchy–Schwarz’s inequality and the fact that τ ∈ L2
(Ω), that the first two terms

of (3.1) make sense for both t and γ in L2
(Ω). Thus, bearing in mind the free trace property of t and the skew

symmetry of γ (cf. (2.4)), we look for these unknowns in L2

tr(Ω) and L2

skew
(Ω), respectively, where

L2

tr(Ω) := {s ∈ L2
(Ω) : tr(s) = 0}

and

L2

skew(Ω) := {δ ∈ L2
(Ω) : δt = −δ}.

In turn, knowing that div(τ) ∈ Lr(Ω), and employing Hölder’s inequality, we notice from the third term of (3.1)

that, instead of H1
(Ω), it would actually suffice to look for u in Lr′(Ω), where r′ is the conjugate of r, that is

r′ ∈ [1, +∞] is such that 1/r+1/r′ = 1. On the other hand, testing the second equation of (2.7) against s ∈ L2

skew
(Ω),

we formally obtain

λ
∫︁
Ω
μ t : s −

∫︁
Ω
(u⊗ u)d : s =

∫︁
Ω
σd : s

which, using the fact that tr(s) also vanishes, becomes

λ
∫︁
Ω
μ t : s −

∫︁
Ω
(u⊗ u) : s =

∫︁
Ω
σ : s. (3.2)

The boundedness of μ (cf. (2.2)) and the fact that both t and s lay in L2
(Ω), guarantee that the first term of (3.2)

is finite, whereas the last one is as well if σ (and hence σd) belongs to L2
(Ω). Regarding the second one, straight-

forward applications of the Cauchy–Schwarz and Hölder inequalities imply that, for each ℓ, j ∈ (1, +∞) such

that 1/ℓ + 1/j = 1, there holds⃒⃒⃒⃒ ∫︁
Ω
(u⊗ u)d : s

⃒⃒⃒⃒
=

⃒⃒⃒⃒ ∫︁
Ω
(u⊗ u) : s

⃒⃒⃒⃒
⩽ ‖u‖0,2ℓ;Ω ‖u‖0,2j;Ω ‖s‖0,Ω (3.3)

which says that this term makes sense for u ∈ L2ℓ(Ω) ∩ L2j(Ω), that is, choosing in particular l = j = 2, for

u ∈ L4(Ω). In this way, our previous analysis on the first equation of (2.7) is restricted hereafter to r′ = 4, and
hence to r = 4/3. Moreover, aiming to keep the same space for the unknown σ and its associated test functions

τ, we will seek σ inH(div4/3;Ω). Therefore, knowing now that div(σ) ∈ L4/3(Ω), and assuming that the datum f
lays also in L4/3(Ω), we proceed to test the third equation of (2.7) against v ∈ L4(Ω), which yields∫︁

Ω
v · div(σ) −

∫︁
Ω
η u · v = −

∫︁
Ω
f · v. (3.4)
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Finally, the symmetry of σ, which, according to (2.5), is equivalent to that of t, is imposed weakly as∫︁
Ω
δ : σ = 0 ∀ δ ∈ L2

skew(Ω). (3.5)

At this point, and before reordering the equations (3.1), (3.2), (3.4), and (3.5) in a suitable way, we consider,

for sake of convenience of the subsequent analysis, the decomposition (see, e.g., [25, Eqs. (3.12)–(3.13)], [34,

Eqs. (3.1)–(3.2)])

H(div4/3;Ω) := H0(div4/3;Ω) ⊕ R I (3.6)

where

H0(div4/3;Ω) :=
{︁
τ ∈ H(div4/3;Ω) :

∫︁
Ω
tr(τ) = 0

}︁
.

In particular, the unknown σ can be uniquely decomposed as σ = σ0 + c0 I, where σ0 ∈ H0(div4/3;Ω), and,
employing the last equation of (2.7),

c0 :=
1

n |Ω|

∫︁
Ω
tr(σ) = −

1

n |Ω|

∫︁
Ω
tr(u⊗ u). (3.7)

In this way, knowing explicitly c0 in terms of u, it remains to find the H0(div4/3;Ω)-component σ0 of σ to

fully determine it. In this regard, we readily observe that equations (3.2), (3.4), and (3.5) remain unchanged

if σ is replaced there by σ0. Moreover, it is easy to see, thanks to the compatibility condition (2.3) satisfied

by the Dirichlet datum uD , that both sides of (3.1) vanish for τ = I, and hence, testing this equation against

τ ∈ H(div4/3;Ω) is equivalent to doing it against τ ∈ H0(div4/3;Ω). Consequently, redenoting from now on σ0 as
simply σ ∈ H0(div4/3;Ω), introducing the spaces

H := L2

tr(Ω) ×H0(div4/3;Ω), Q := L4(Ω) × L2

skew(Ω)

setting the notations

t⃗ := (t, σ), s⃗ := (s, τ), r⃗ := (r, ζ ) ∈ H, u⃗ := (u, γ), v⃗ := (v, δ), w⃗ := (w, ξ) ∈ Q

endowing H and Q with the norms

‖⃗s‖H := ‖s‖0,Ω + ‖τ‖div4/3;Ω ∀ s⃗ := (s, τ) ∈ H

‖v⃗‖Q := ‖v‖0,4;Ω + ‖δ‖0,Ω ∀ v⃗ := (v, δ) ∈ Q

and gathering (3.2)–(3.1) and (3.4)–(3.5), we arrive at the following variational formulation of (2.7): Find (⃗t, u⃗) ∈
H × Q such that

a(t, s) + b1(s, σ)

b2(t, τ) + b(⃗s, u⃗)

+ b(u;u, s) =

=

0

⟨τ ν, uD⟩

b(⃗t, v⃗) − c(u⃗, v⃗) = −

∫︁
Ω
f · v

(3.8)

for all (⃗s, v⃗) ∈ H × Q, where the bilinear forms a : L2

tr(Ω) × L2

tr(Ω) → R, bi : L2

tr(Ω) ×H0(div4/3;Ω) → R, i ∈ {1, 2},
b : H × Q → R, and c : Q × Q → R, are defined by

a(r, s) := λ
∫︁
Ω
μ r : s ∀ r, s ∈ L2

tr(Ω) (3.9a)

b1(s, τ) := −

∫︁
Ω
s : τ, b2(s, τ) :=

∫︁
Ω
s : τ ∀ (s, τ) ∈ L2

tr(Ω) ×H0(div4/3;Ω) (3.9b)

b(⃗s, v⃗) :=
∫︁
Ω
δ : τ +

∫︁
Ω
v · div(τ) ∀ (⃗s, v⃗) ∈ H × Q (3.9c)

c(w⃗, v⃗) :=
∫︁
Ω
ηw · v ∀ w⃗, v⃗ ∈ Q (3.9d)
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whereas for each w ∈ L4(Ω), b(w; · , ·) : L4(Ω) × L2

tr(Ω) → R is the bilinear form given by

b(w; v, s) := −

∫︁
Ω
(w⊗ v) : s ∀ (v, s) ∈ L4(Ω) × L2

tr(Ω). (3.10)

Equivalently, letting a : H × H → R be the bilinear form that arises from the block

(︁ a b1
b2

)︁
by adding the first

two equations of (3.8), that is

a(⃗r, s⃗) := a(r, s) + b1(s, ζ ) + b2(r, τ) ∀ r⃗, s⃗ ∈ H (3.11)

we find that (3.8) can be rewritten as: Find (⃗t, u⃗) ∈ H × Q such that

a(⃗t, s⃗) + b(⃗s, u⃗) + b(u;u, s) = ⟨τ ν, uD⟩ ∀ s⃗ ∈ H

b(⃗t, v⃗) − c(u⃗, v⃗) = −

∫︁
Ω
f · v ∀ v⃗ ∈ Q.

(3.12)

Moreover, letting now A :
(︀
H × Q

)︀
×
(︀
H × Q

)︀
→ R be the bilinear from that arises from the block

(︁ a b
b −c

)︁
by

adding both equations of (3.12), that is

A
(︀
(⃗r, w⃗), (⃗s, v⃗)

)︀
:= a(⃗r, s⃗) + b(⃗s, w⃗) + b(⃗r, v⃗) − c(w⃗, v⃗) ∀ (⃗r, w⃗), (⃗s, v⃗) ∈ H × Q (3.13)

we deduce that (3.12) (and hence (3.8)) can be stated, equivalently as well, as: Find (⃗t, u⃗) ∈ H × Q such that

A
(︀
(⃗t, u⃗), (⃗s, v⃗)

)︀
+ b(u;u, s) = F(⃗s, v⃗) ∀ (⃗s, v⃗) ∈ H × Q (3.14)

where F ∈
(︀
H × Q

)︀
′ is defined by

F(⃗s, v⃗) := ⟨τ ν, uD⟩ −
∫︁
Ω
f · v ∀ (⃗s, v⃗) ∈ H × Q. (3.15)

Hereafter, X ′ denotes the dual of a given normed space X.
Our next goal is to analyze the solvability of (3.14) (equivalently, that of (3.12) or (3.8)), for which we will

apply the abstract results collected in the following section. We stress that, except for the handling of the rota-

tion, (3.8) coincides with the variational formulation for the fluid part of the phase change model for natural

convection (cf. [2, first three rows of Eq. (3.6)]), but before augmenting it, thus emphasizing that this procedure

will not be employed here. In addition, we remark that (3.14) can be seen as a nonlinear perturbation of a per-

turbed saddle-point formulation in Banach spaces, for which continuous and discrete well-posedness results

have been recently shown in [28].

3.2 Some abstract results

We begin by recalling the Babuška–Brezzi theory in Banach spaces.

Theorem 3.1. Let H1, H2, Q1, and Q2 be real reflexive Banach spaces, and let a : H2 ×H1 → R and bi : Hi ×Qi → R,
i ∈ {1, 2}, be bounded bilinear forms with boundedness constants given by ‖a‖ and ‖bi‖, i ∈ {1, 2}, respectively.
In addition, for each i ∈ {1, 2}, letKi be the kernel of the operator induced by bi , that is

Ki := {v ∈ Hi : bi(v, q) = 0 ∀ q ∈ Qi}.

Assume that
(i) there exists a constant α > 0 such that

sup

v∈K
1

v /=0

a(w, v)
‖v‖H1

⩾ α ‖w‖H2
∀w ∈ K2
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(ii) there holds
sup

w∈K2

a(w, v) > 0 ∀ v ∈ K1 , v /= 0

(iii) for each i ∈ {1, 2} there exists a constant βi > 0 such that

sup

v∈Hi
v /=0

bi(v, q)
‖v‖Hi

⩾ βi ‖q‖Qi ∀ q ∈ Qi .

Then, for each (F , G) ∈ H ′1 × Q ′2 there exists a unique (u, p) ∈ H2 × Q1 such that

a(u, v) + b1(v, p) = F(v) ∀ v ∈ H1

b2(u, q) = G(q) ∀ q ∈ Q2

(3.16)

and the following a priori estimates hold:

‖u‖H2
⩽

1

α ‖F‖H ′1
+
1

β2

(︂
1 +

‖a‖
α

)︂
‖G‖Q ′2

‖p‖Q1
⩽

1

β1

(︂
1 +

‖a‖
α

)︂
‖F‖H ′1

+
‖a‖
β1 β2

(︂
1 +

‖a‖
α

)︂
‖G‖Q ′2 .

(3.17)

Moreover, (i), (ii), and (iii) are also necessary conditions for the well-posedness of (3.16).

Proof. See [12, Th. 2.1, Corol. 2.1, Sect. 2.1] for the original version and its proof. For the particular case given by
H1 = H2, Q1 = Q2, and b1 = b2, we also refer to [32, Th. 2.34].

We remark here that the roles of K1 and K2 in the assumptions (i) and (ii) of Theorem 3.1 can be exchanged

without altering the joint meaning of these hypotheses (cf. [12, Eqs. (2.10)–(2.11)]). In addition, it is important

to stress that (3.17) is equivalent to an inf-sup condition for the bilinear form arising after adding the left-hand

sides of (3.16), which means that there exists a constant C > 0, depending only on α, β1, β2, and ‖a‖, such that

sup

(v,q)∈H
1
×Q

2

(v,q) /=0

a(u, v) + b1(v, p) + b2(u, q)
‖(v, q)‖H1×Q2

⩾ C ‖(u, p)‖H2×Q1
∀ (u, p) ∈ H2 × Q1 . (3.18)

Indeed, letting for each (u, p) ∈ H2 × Q1 the functionals Fu,p ∈ H ′1 and Gu ∈ Q ′2 be defined by

Fu,p(v) := a(u, v) + b1(v, p) ∀ v ∈ H1 , Gu(q) := b2(u, q)) ∀ q ∈ Q2

the aforementioned equivalence between (3.17) and (3.18) is explained by the fact that there holds

1

2

{︁
‖Fu,p‖H ′1

+ ‖Gu‖Q ′2
}︁

⩽ sup

(v,q)∈H
1
×Q

2

(v,q) /=0

Fu,p(v) + Gu(q)
‖(v, q)‖H1×Q2

⩽ ‖Fu,p‖H ′1
+ ‖Gu‖Q ′2 (3.19)

and by noting that the supremum from (3.18) is the same as the one from (3.19).

We continue with the following abstract result, which constitutes a slight variation of the recent result [28,

Th. 3.4] tailored for perturbed saddle-point problems in Banach spaces.

Theorem 3.2. Let H and Q be reflexive Banach spaces, and let a : H × H → R, b : H × Q → R, and c : Q × Q → R

be given bounded bilinear forms. In addition, let B : H → Q′ be the bounded linear operator induced by b, and let
V := N(B) be the respective null space. Assume that:
(i) a and c are positive semi-definite, that is

a(τ, τ) ⩾ 0 ∀ τ ∈ H, c(v, v) ⩾ 0 ∀ v ∈ Q

and that c is symmetric.
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(ii) there exists a constant α > 0 such that

sup

τ∈V

τ /=0

a(ϑ, τ)
‖τ‖H

⩾ α ‖ϑ‖H ∀ ϑ ∈ V (3.20)

and
sup

ϑ∈V

ϑ /=0

a(ϑ, τ)
‖ϑ‖H

⩾ α ‖τ‖H ∀ τ ∈ V (3.21)

(iii) and there exists a constant β > 0 such that

sup

τ∈H

τ /=0

b(τ, v)
‖τ‖H

⩾ β ‖v‖Q ∀ v ∈ Q

Then, for each pair (f , g) ∈ H′ × Q′ there exists a unique (σ , u) ∈ H × Q such that

a(σ , τ) + b(τ, u) = f (τ) ∀ τ ∈ H

b(σ , v) − c(u, v) = g(v) ∀ v ∈ Q.

(3.22)

Moreover, there exists a constant ̃︀C > 0, depending only on ‖a‖, ‖c‖, α, and β, such that

‖(σ , u)‖H×Q ⩽ ̃︀C {‖f ‖H′ + ‖g‖Q′}.

The foregoing theorem is referred to as a slight variant of the original version given by [28, Th. 3.4] because,

on one hand, it does not assume symmetry of a, as the latter does, but on the other hand, it does require the
second inf-sup condition (3.21) for this bilinear form, which the latter does not. Indeed, the proof of [28, Th. 3.4]

reduces basically to show that there exists a positive constant ̂︀C, depending on ‖a‖, ‖c‖, α, and β, such that the
bilinear form arising from adding the left hand sides of (3.22), say A :

(︀
H×Q

)︀
×
(︀
H×Q

)︀
→ R, satisfies the inf-sup

condition

sup

(τ,v)∈H×Q

(τ,v) /=0

A
(︀
(ζ ,w), (τ, v)

)︀
‖(τ, v)‖ ⩾ ̂︀C ‖(ζ ,w)‖ ∀ (ζ ,w) ∈ H × Q. (3.23)

In this way, thanks to the symmetry of a and c, A is obviously symmetric, and hence (3.23) suffices to conclude,

via the Banach–Nečas–Babuška theorem (cf. [32, Th. 2.6]), also known as the generalized Lax–Milgram lemma,

the well-posedness of (3.22). However, if one drops the symmetry assumption on a (and therefore on A), as done
in the present Theorem 3.2, the same conclusion is attained if additionally (3.23) is also satisfied by the bilinear

form ̃︀A that arises from A after exchanging its components. Thus, noting that the above reduces to fixing the

second component of A and taking the supremum in (3.23) with respect to the first one, we realize that in order

to prove this further inf-sup condition, the assumption (3.21) needs to be added, as we did in Theorem 3.2.

Needless to say, and because of the same constant α in (3.20) and (3.21), the aforementioned further condition
holds with the same constant ̂︀C from (3.23), that is

sup

(ζ ,w)∈H×Q

(ζ ,w) /=0

A
(︀
(ζ ,w), (τ, v)

)︀
‖(ζ ,w)‖ ⩾ ̂︀C ‖(τ, v)‖ ∀ (τ, v) ∈ H × Q. (3.24)

The Banach–Nečas–Babuška theorem will also be employed in Section 3.3 below.

3.3 Solvability analysis

In this section we address the solvability of the variational formulation (3.14), for which we introduce the op-

erator T : L4(Ω) → L4(Ω) defined by
T(z0) := u0 ∀ z0 ∈ L4(Ω) (3.25)
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where (⃗t0 , u⃗0) =
(︀
(t0 , σ0), (u0 , γ0)

)︀
∈ H ×Q is the unique solution (to be derived below under what conditions it

does exist) of the linear problem

A
(︀
(⃗t0 , u⃗0), (⃗s, v⃗)

)︀
+ b(z0;u0 , s) = F(⃗s, v⃗) ∀ (⃗s, v⃗) ∈ H × Q. (3.26)

It follows that (3.14) can be rewritten as the fixed-point equation: Find u ∈ L4(Ω) such that

T(u) = u (3.27)

so that, letting (⃗t0 , u⃗0) be the solution of (3.26) with z0 := u, (⃗t, u⃗) := (⃗t0 , u⃗0) ∈ H × Q is solution of (3.14),

equivalently of (3.8) and (3.12).

We now aim at proving that the operator T is well-defined, which reduces to show that problem (3.26) is

well-posed. To this end, we first state the boundedness of all the variational forms involved (cf. (3.9a), (3.9b),

(3.9c), (3.9d), and (3.15)). Indeed, employing the Cauchy–Schwarz and Hölder inequalities, the upper bounds of

η and μ (cf. (2.2)), and the continuity of the normal trace operator inH(div4/3;Ω), which follows from (1.1) and

the boundedness of the injection i4 : H1
(Ω) → L

4
(Ω), we deduce the existence of positive constants, denoted and

given as:

‖a‖ = λ μ1 , ‖b1‖ = ‖b2‖ = 1, ‖a‖ = λ μ1 + 2, ‖b‖ = 1, ‖c‖ = η1 |Ω|1/2 (3.28a)

‖F‖ = ‖̃︀uD‖1/2,Γ + ‖f‖0,4/3;Ω (3.28b)

with ̃︀uD := max {1, ‖i4‖}uD , such that there hold

|a(r, s)| ⩽ ‖a‖ ‖r‖0,Ω ‖s‖0,Ω ∀ r, s ∈ L2

tr(Ω)

|bi(s, τ)| ⩽ ‖bi‖ ‖s‖0,Ω ‖τ‖div4/3;Ω ∀ (s, τ) ∈ L2

tr(Ω) ×H0(div4/3;Ω)

|a(⃗r, s⃗)| ⩽ ‖a‖ ‖⃗r‖H ‖⃗s‖H ∀ (⃗r, s⃗) ∈ H ×H

|b(⃗s, v⃗)| ⩽ ‖b‖ ‖⃗s‖H ‖v⃗‖Q ∀ (⃗s, v⃗) ∈ H × Q

|c(w⃗, v⃗)| ⩽ ‖c‖ ‖w⃗‖Q ‖v⃗‖Q ∀ w⃗, v⃗ ∈ Q

|F(⃗s, v⃗)| ⩽ ‖F‖ ‖(⃗s, v⃗)‖H×Q ∀ (⃗s, v⃗) ∈ H × Q.

(3.29)

In turn, employing again Cauchy–Schwarz and Hölder inequalities, similarly as we did in (3.3), we find that for

each w ∈ L4(Ω) there holds (cf. (3.10))

|b(w; v, s)| ⩽ ‖w‖0,4;Ω ‖v‖0,4;Ω ‖s‖0,Ω ∀ (v, s) ∈ L4(Ω) × L2

tr(Ω). (3.30)

In what follows, and as suggested by the matrix representation

(︁ a b
b −c

)︁
of A (cf. (3.13)), we will apply

Theorem 3.2 to derive global inf-sup conditions for this bilinear form. To this end, and due to the corresponding

structure

(︁ a b1
b2

)︁
of a, we will employ in turn Theorem 3.1 to establish the required assumptions on the latter.

According to the above, we begin by deducing from the definition (3.9c) that the kernel V of b reduces to

V := L2

tr(Ω) × V0

where

V0 := {τ ∈ H0(div4/3;Ω) : τ = τt , div(τ) = 0 in Ω}. (3.31)

Hereafter, we refer to the null space of the bounded linear operator induced by a bilinear form as the kernel of

the latter. Then, for each i ∈ {1, 2} we let Ki be the kernel of bi|L2

tr
(Ω)×V0 , that is

Ki := {s ∈ L2

tr(Ω) : bi(s, τ) = 0 ∀ τ ∈ V0}

which, recalling from (3.9b) that b1 = −b2, yields

K1 = K2 = K :=

{︁
s ∈ L2

tr(Ω) :
∫︁
Ω
s : τ = 0 ∀ τ ∈ V0

}︁
. (3.32)
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However, irrespective of the above, we readily observe, according to the definition of a (cf. (3.9a)) and the lower
bound of μ (cf. (2.2)), that a is L2

tr(Ω)-elliptic with the constant ̃︀α := λ μ0, that is
a(s, s) ⩾ ̃︀α ‖s‖20,Ω ∀ s ∈ L2

tr(Ω) (3.33)

and hence, in particular, a is K-elliptic. Then it is fairly simple to see that a satisfies the assumptions (i) (with
constant α = ̃︀α) and (ii) of Theorem 3.1. In turn, in order to prove that for each i ∈ {1, 2}, bi|L2

tr
(Ω)×V0 satisfies

hypothesis (iii), we first need to recall a useful estimate for tensors inH0(div4/3;Ω). Indeed, suitably modifying
the proof of [33, Lem. 2.3] (or [15, Prop. 3.1, Ch. IV]), one can show (see also [18, Lem. 3.2]) that there exists a

positive constant c1, depending only on Ω, such that

c1 ‖τ‖0,Ω ⩽ ‖τd‖0,Ω + ‖div(τ)‖0,4/3;Ω ∀ τ ∈ H0(div4/3;Ω). (3.34)

Then, we are in position to prove the following result.

Lemma 3.1. There exists a positive constant ̃︀β such that for each i ∈ {1, 2} there holds

sup

s∈L2
tr
(Ω)

s /=0

bi(s, τ)
‖s‖0,Ω

⩾ ̃︀β ‖τ‖div4/3;Ω ∀ τ ∈ V0 . (3.35)

Proof. Since b1 = −b2, it suffices to show for one of these bilinear forms, so that we stay with b2. Thus, given
τ ∈ V0 (cf. (3.31)), such that τd /= 0, we have that τd ∈ L2

tr(Ω), and hence, bounding from below the supremum

in (3.35) with s = τd, and noting that
∫︀
Ω τd : τ = ‖τd‖2

0,Ω , we obtain

sup

s∈L2
tr
(Ω)

s /=0

b2(s, τ)
‖s‖0,Ω

⩾
b2(τd , τ)
‖τd‖0,Ω

= ‖τd‖0,Ω

fromwhich, using (3.34) and the fact that div(τ) = 0, it follows (3.35) with ̃︀β := c1. Certainly, if τ ∈ V0 is such that

τd = 0, we deduce from (3.34) that τ = 0, whence (3.35) is trivially satisfied.

As a consequence of Lemma 3.1 and the previous discussion on the bilinear form a, we conclude that a, b1, and
b2 satisfy the hypotheses of Theorem 3.1, and hence, a straightforward application of this abstract result, though

more specifically of the global inf-sup condition (3.18), yields the existence of a positive constant αa, depending
only on ̃︀α = λμ0, ̃︀β = c1, and ‖a‖ = λ μ1 (cf. (3.28a)), such that

sup

s⃗∈V
s⃗ /=0

a(⃗r, s⃗)
‖⃗s‖H

⩾ αa ‖⃗r‖H ∀ r⃗ ∈ V. (3.36)

Moreover, exchanging the roles of b1 and b2, so that, instead of the matrix structure

(︁ a b1
b2

)︁
, we consider(︁ a b2

b1

)︁
, we can apply again Theorem 3.1 and (3.18) to conclude that, with the same constant αa from (3.36),

there holds

sup

r⃗∈V
r⃗ /=0

a(⃗r, s⃗)
‖⃗r‖H

⩾ αa ‖⃗s‖H ∀ s⃗ ∈ V.

Furthermore, it is readily seen from (3.11) and the ellipticity of a in L2

tr(Ω) (cf. (3.33)), that

a(⃗r, r⃗) = a(r, r) ⩾ ̃︀α ‖r‖20,Ω ∀ r⃗ := (r, ζ ) ∈ H (3.37)

which proves that a is positive semi-definite. In turn, it is clear from the definition of c (cf. (3.9d)) that this
bilinear form is symmetric, and that, thanks to the lower bound of η (cf. (2.2)), there holds

c(⃗v, v⃗) ⩾ η0 ‖v‖20,Ω ∀ v⃗ := (v, δ) ∈ Q (3.38)
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which shows that c is positive semi-definite as well. In this way, we have proved that a and c verify the hypothe-
ses (i) and (ii) of Theorem 3.2, and hence it only remains to show the corresponding assumption (iii), that is the
continuous inf-sup condition for b. This result has already been given in [34, Lem. 3.5], so that, in addition to its
statement, and for sake of clearness, we provide next most details of the corresponding proof. For this purpose,

wewill make use of the Poincaré and the first Korn (cf. [44, Th. 10.1] or [14, Corol. 9.2.22 and 9.2.25]) inequalities,

which establish that

‖v‖21,Ω ⩽ c
P
|v|21,Ω , |v|21,Ω ⩽ 2 ‖ε(v)‖20,Ω ∀ v ∈ H1

0(Ω) (3.39)

respectively, with a positive constant c
P
depending on Ω. In addition, we also let i4 be the continuous injection

of H1
(Ω) into L4(Ω). Then, the announced result is as follows.

Lemma 3.2. There exists a positive constant βb, depending only on cP and ‖i4‖, such that

sup

s⃗∈H
s⃗ /=0

b(⃗s, v⃗)
‖⃗s‖H

⩾ βb ‖v⃗‖Q ∀ v⃗ ∈ Q. (3.40)

Proof. Given v⃗ := (v, δ) ∈ Q, we set ̃︀v := |v|2 v and notice that ‖̃︀v‖4/3
0,4/3;Ω = ‖v‖4

0,4;Ω , which says that ̃︀v ∈ L4/3(Ω),
and additionally there holds ∫︁

Ω
v · ̃︀v = ‖v‖40,4;Ω = ‖v‖0,4;Ω ‖̃︀v‖0,4/3;Ω . (3.41)

Then, lettingA : H1

0
(Ω) × H1

0
(Ω) → R and F : H1

0
(Ω) → R be the bilinear form and linear functional, respectively,

defined by

A(w, z) :=
∫︁
Ω
ε(w) : ε(z), F(z) := −

∫︁
Ω
̃︀v · z ∀w, z ∈ H1

0(Ω)

we readily see thatA is bounded, and that, using (3.39), it becomesH1

0
(Ω)-elliptic with constant αA := 1/(2c

P
). In

turn, thanks to Hölder’s inequality and the continuous injection i4, it follows thatF is well-defined and bounded

with ‖F‖ ⩽ ‖i4‖ ‖̃︀v‖0,4/3;Ω . Hence, a straightforward application of the classical Lax–Milgram Lemma implies

the existence of a unique ̃︀w ∈ H1

0
(Ω) such thatA(̃︀w, z) = F(z) for all z ∈ H1

0
(Ω), and ‖̃︀w‖1,Ω ⩽ 2c

P
‖i4‖‖̃︀v‖0,4/3;Ω .

Moreover, it is easy to see from the foregoing identity involving A and F that div
(︀
ε(̃︀w))︀ = ̃︀v in D′(Ω), which

together with the fact that ε(̃︀w) ∈ L2(Ω), proves that ε(̃︀w) ∈ H(div4/3;Ω). Then, letting ̃︀τ be the H0(div4/3;Ω)
component of ε(̃︀w), we readily find that div(̃︀τ) = ̃︀v and

‖̃︀τ‖div4/3;Ω ⩽ ‖̃︀w‖1,Ω + ‖̃︀v‖0,4/3;Ω ⩽
(︀
2c

P
‖i4‖ + 1

)︀
‖̃︀v‖0,4/3;Ω (3.42)

and hence, noting that ̃︀τ is symmetric, since ε(w) and the identity matrix are, and employing (3.41) and (3.42),
we get

sup

s⃗∈H
s⃗ /=0

b(⃗s, v⃗)
‖⃗s‖H

⩾
b((0,̃︀τ), v⃗)
‖̃︀τ‖div4/3;Ω =

∫︁
Ω
v · div(̃︀τ)

‖̃︀τ‖div4/3;Ω =

∫︁
Ω
v · ̃︀v

‖̃︀τ‖div4/3;Ω ⩾ ̃︀βb ‖v‖0,4;Ω (3.43)

with ̃︀βb := (2cP ‖i4‖ + 1)−1. Similarly, introducing the bounded linear functional G : H1

0
(Ω) → R defined by

G(z) := −

∫︁
Ω
δ : ε(z) ∀ z ∈ H1

0(Ω)

we deduce that there exists a unique ̂︀w ∈ H1

0
(Ω) such that A(̂︀w, z) = G(z) for all z ∈ H1

0
(Ω), and ‖ε(̂︀w)‖0,Ω ⩽

‖δ‖0,Ω . It follows from the above that div
(︀
ε(̂︀w) + δ

)︀
= 0 in D′(Ω), so that ε(̂︀w) + δ ∈ H(div4/3;Ω), and hence,

letting now ̂︀τ be theH0(div4/3;Ω) component of ε(̂︀w) + δ, we get div(̂︀τ) = 0 and
‖̂︀τ‖div4/3;Ω = ‖̂︀τ‖0,Ω ⩽ ‖ε(̂︀w)‖0,Ω + ‖δ‖0,Ω ⩽ 2 ‖δ‖0,Ω . (3.44)

In this way, noting that ̂︀τ : δ = δ : δ, and using (3.44), we obtain

sup

s⃗∈H
s⃗ /=0

b(⃗s, v⃗)
‖⃗s‖H

⩾
b((0,̂︀τ), v⃗)
‖̂︀τ‖div4/3;Ω =

∫︁
Ω
̂︀τ : δ

‖̂︀τ‖div4/3;Ω =
‖δ‖2

0,Ω
‖̂︀τ‖div4/3;Ω ⩾ ̂︀βb ‖δ‖0,Ω (3.45)
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with ̂︀βb := 1/2. Finally, the required inequality (3.40) is a direct consequence of (3.43) and (3.45), with βb :=

1

2
min {̃︀βb , ̂︀βb}.

Consequently, having the bilinear forms a, b, and c satisfied the three hypotheses of Theorem 3.2, a straightfor-

ward application of this abstract result yields the existence of a positive constant αA, depending on ‖a‖, ‖c‖, αa,
and βb, such that (cf. (3.23), (3.24))

sup

(⃗s,⃗v)∈H×Q
(⃗s,⃗v) /=0

A
(︀
(⃗r, w⃗), (⃗s, v⃗)

)︀
‖(⃗s, v⃗)‖H×Q

⩾ αA ‖(⃗r, w⃗)‖H×Q ∀ (⃗r, w⃗) ∈ H × Q (3.46)

and

sup

(⃗r,⃗w)∈H×Q
(⃗r,w⃗) /=0

A
(︀
(⃗r, w⃗), (⃗s, v⃗)

)︀
‖(⃗r, w⃗)‖H×Q

⩾ αA ‖(⃗s, v⃗)‖H×Q ∀ (⃗s, v⃗) ∈ H × Q. (3.47)

Moreover, employing (3.46) and the boundedness property from (3.30), it readily follows that, given z ∈ L4(Ω),
there holds

sup

(⃗s,⃗v)∈H×Q
(⃗s,⃗v) /=0

A
(︀
(⃗r, w⃗), (⃗s, v⃗)

)︀
+ b(z;w, s)

‖(⃗s, v⃗)‖H×Q
⩾
(︀
αA − ‖z‖0,4;Ω

)︀
‖(⃗r, w⃗)‖H×Q ∀ (⃗r, w⃗) ∈ H × Q

and hence, for each z ∈ L4(Ω) such that, say ‖z‖0,4;Ω ⩽ αA /2, we get

sup

(⃗s,⃗v)∈H×Q
(⃗s,⃗v) /=0

A
(︀
(⃗r, w⃗), (⃗s, v⃗)

)︀
+ b(z;w, s)

‖(⃗s, v⃗)‖H×Q
⩾

αA
2

‖(⃗r, w⃗)‖H×Q ∀ (⃗r, w⃗) ∈ H × Q. (3.48)

Similarly, but now using (3.47) and (3.30), and under the same assumption on z, we arrive at

sup

(⃗r,⃗w)∈H×Q
(⃗r,w⃗) /=0

A
(︀
(⃗r, w⃗), (⃗s, v⃗)

)︀
+ b(z;w, s)

‖(⃗r, w⃗)‖H×Q
⩾

αA
2

‖(⃗s, v⃗)‖H×Q ∀ (⃗s, v⃗) ∈ H × Q. (3.49)

We are now in a position to prove that the operator T (cf. (3.25)) is well-defined, equivalently that prob-

lem (3.26) is well-posed.

Lemma 3.3. For each z0 ∈ L4(Ω) such that ‖z0‖0,4;Ω ⩽ αA /2, problem (3.26) has a unique solution (⃗t0 , u⃗0) =(︀
(t0 , σ0), (u0 , γ0)

)︀
∈ H × Q, and hence T(z0) := u0 ∈ L4(Ω) is well-defined. Moreover, there holds

‖T(z0)‖0,4;Ω = ‖u0‖0,4;Ω ⩽ ‖(⃗t0 , u⃗0)‖H×Q ⩽
2

αA
{‖̃︀uD‖1/2,Γ + ‖f‖0,4/3;Ω}. (3.50)

Proof. Given z0 as indicated, the existence of a unique solution of (3.26) follows from (3.48), (3.49), and a straight-

forward application of the Banach–Nečas–Babuška theorem (cf. [32, Th. 2.6]). In turn, the corresponding a priori

estimate and the boundedness of F (cf. (3.28b), (3.29)) yield (3.50).

Next, we introduce the ball

W :=

{︁
z ∈ L4(Ω) : ‖z‖0,4;Ω ⩽

αA
2

}︁
(3.51)

and prove that, under sufficiently small data, TmapsW into itself.

Lemma 3.4. Assume that
‖̃︀uD‖1/2,Γ + ‖f‖0,4/3;Ω ⩽

α2A
4
. (3.52)

Then, there holds T(W) ⊆ W.

Proof. It is a direct consequence of the a priori estimate (3.50) and the assumption (3.52).

The main result concerning the solvability of the fixed-point equation (3.27), and hence, equivalently, that

of (3.14), (3.12), or (3.8), is stated as follows.
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Theorem 3.3. Assume that
‖̃︀uD‖1/2,Γ + ‖f‖0,4/3;Ω <

α2A
4
. (3.53)

Then, the operator T has a unique fixed-point u ∈ W. Equivalently, (3.14) has a unique solution (⃗t, u⃗) := (⃗t0 , u⃗0) ∈
H × Q with u ∈ W, where (⃗t0 , u⃗0) is the unique solution of (3.26) with z0 = u. Moreover, there holds

‖(⃗t, u⃗)‖H×Q ⩽
2

αA
{‖̃︀uD‖1/2,Γ + ‖f‖0,4/3;Ω}. (3.54)

Proof. It is clear, thanks to (3.53) and Lemma 3.4, that TmapsW into itself, so that aiming to apply the classical

Banach fixed-point theorem, it only remains to show that T is a contraction. To this end, given zi ∈ W, i ∈ {1, 2},
we let T(zi) := ui , where (⃗ti , u⃗i) :=

(︀
(ti , σi), (ui , γi)

)︀
∈ H ×Q is the unique solution of (3.26) with z0 := zi , that is

A
(︀
(⃗ti , u⃗i), (⃗s, v⃗)

)︀
+ b(zi;ui , s) = F(⃗s, v⃗) ∀ (⃗s, v⃗) ∈ H × Q. (3.55)

Now, applying the inf-sup condition (3.48) with z = z1 to (⃗r, w⃗) := (⃗t1 , u⃗1) − (⃗t2 , u⃗2), we obtain

|(⃗t1 , u⃗1) − (⃗t2 , u⃗2)‖H×Q ⩽
2

αA
sup

(⃗s,⃗v)∈H×Q
(⃗s,⃗v) /=0

A
(︀
(⃗t1 , u⃗1) − (⃗t2 , u⃗2), (⃗s, v⃗)

)︀
+ b(z1;u1 − u2 , s)

‖(⃗s, v⃗)‖H×Q

from which, adding and subtracting b(z2;u2 , s), and then employing (3.55), we arrive at

|(⃗t1 , u⃗1) − (⃗t2 , u⃗2)‖H×Q ⩽
2

αA
sup

(⃗s,⃗v)∈H×Q
(⃗s,⃗v) /=0

b(z2 − z1;u2 , s)
‖(⃗s, v⃗)‖H×Q

. (3.56)

In turn, using the boundedness of b (cf. (3.30)) and the a priori estimate for ‖u2‖0,4;Ω = ‖T(z2)‖0,4;Ω provided

by (3.50) (cf. Lemma 3.3), it follows from (3.56) that

‖T(z1) − T(z2)‖0,4;Ω = ‖u1 − u2‖0,4;Ω ⩽
2

αA
‖z1 − z2‖0,4;Ω ‖u2‖0,4;Ω

⩽
4

α2A

{︁
‖̃︀uD‖1/2,Γ + ‖f‖0,4/3;Ω

}︁
‖z1 − z2‖0,4;Ω

which, according to (3.53), confirms the announced property on T, thus ending the proof for the existence of a
unique fixed-point u inW of this operator. Finally, the a priori estimate (3.54) is a straightforward consequence

of (3.50) (cf. Lemma 3.3).

4 The discrete formulation

In this section we approximate the solution of (3.14) (equivalently, that of (3.12) or (3.8)) by introducing and

analyzing the associated Galerkin scheme. To this end, similar tools to those employed in Section 3.3 will be

utilized here.

4.1 The Galerkin scheme

Webegin by considering arbitrary finite element subspacesHt
h ,
̃︀Hσ
h ,H

u
h , andH

γ
h of the spacesL

2

tr(Ω),H(div4/3;Ω),
L4(Ω), and L2

skew
(Ω), respectively. Hereafter, h stands for both the sub-index of each foregoing subspace and the

size of a regular triangulation Th of Ωmade up of triangles K (in R
2
) or tetrahedra K (in R

3
) of diameter hK , that

is h := max {hK : K ∈ Th}. Specific finite element subspaces satisfying suitable hypotheses to be introduced in
due course will be provided later on in Section 4.4. Then, letting

Hσ
h := ̃︀Hσ

h ∩ H0(div4/3;Ω) (4.1)
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defining the product spaces

Hh := Ht
h ×H

σ
h , Qh := Hu

h ×H
γ
h

and setting the notations

t⃗h := (th , σh), s⃗h := (sh , τh), r⃗h := (rh , ζh) ∈ Hh

u⃗h := (uh , γh), v⃗h := (vh , δh), w⃗h := (wh , ξh) ∈ Qh

the Galerkin scheme associated with (3.8) reads as follows: Find (⃗th , u⃗h) :=
(︀
(th , σh), (uh , γh)

)︀
∈ Hh × Qh such

that

a(th , sh) + b1(sh , σh)

b2(th , τh) + b(⃗sh , u⃗h)

+ b(uh;uh , sh) =

=

0

⟨τh ν, uD⟩

b(⃗th , v⃗h) − c(u⃗h , v⃗h) = −

∫︁
Ω
f · vh

(4.2)

for all (⃗sh , v⃗h) ∈ Hh × Qh . Similarly, the ones associated with (3.12) and (3.14), which are certainly equivalent

to (4.2), become, respectively: Find (⃗th , u⃗h) ∈ Hh × Qh such that

a(⃗th , s⃗h) + b(⃗sh , u⃗h) + b(uh;uh , sh) = ⟨τh ν, uD⟩ ∀ s⃗h ∈ Hh

b(⃗th , v⃗h) − c(u⃗h , v⃗h) = −

∫︁
Ω
f · vh ∀ v⃗h ∈ Qh

(4.3)

and: Find (⃗th , u⃗h) ∈ Hh × Qh such that

A
(︀
(⃗th , u⃗h), (⃗sh , v⃗h)

)︀
+ b(uh;uh , sh) = F(⃗sh , v⃗h) ∀ (⃗sh , v⃗h) ∈ Hh × Qh . (4.4)

In order to analyze the solvability of (4.4) (equivalently that of (4.3) or (4.2)) in Section 4.2 below, we will

require the finite dimensional versions of the Babuška–Brezzi theory in Banach spaces (cf. Theorem 3.1) and the

Banach–Nečas–Babuška theorem, which are available in [12, Sect. 2.2 and 2.3] and [32, Th. 2.22], respectively. In

turn, we will also need the discrete analogue of Theorem 3.2, which is given by the slight improvement of [28,

Th. 3.5] that is stated next.

Theorem 4.1. Let H and Q be reflexive Banach spaces, and let a : H × H → R, b : H × Q → R, and c : Q × Q → R be
given bounded bilinear forms. In addition, let {Hh}h>0 and {Qh}h>0 be families of finite dimensional subspaces of
H and Q, respectively, and let Vh be the kernel of b|Hh×Qh , that is

Vh := {τh ∈ Hh : b(τh , vh) = 0 ∀ vh ∈ Qh}.

Assume that:
(i) a and c are positive semi-definite, and that c is symmetric,
(ii) there exists a constant ̃︀αd > 0, independent of h, such that

sup

τh∈Vh
τh /=0

a(ϑh , τh)
‖τh‖H

⩾ ̃︀αd ‖ϑh‖H ∀ ϑh ∈ Vh

(iii) and there exists a constant ̃︀βd > 0, independent of h, such that
sup

τh∈Hh
τh /=0

b(τh , vh)
‖τh‖H

⩾ ̃︀βd ‖vh‖Q ∀ vh ∈ Qh .

Then, for each pair (f , g) ∈ H′ × Q′ there exists a unique (σh , uh) ∈ Hh × Qh such that

a(σh , τh) + b(τh , uh) = f (τh) ∀ τh ∈ Hh

b(σh , vh) − c(uh , vh) = g(vh) ∀ vh ∈ Qh .
(4.5)

Moreover, there exists a constant ̃︀Cd > 0, depending only on ‖a‖, ‖c‖, ̃︀αd, and ̃︀βd, such that
‖σh‖H + ‖uh‖Q ⩽ ̃︀Cd {‖f ‖H′ + ‖g‖Q′}.
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We stress here that the aforementioned improvement refers to the fact that the symmetry of a, originally as-
sumed in [28, Th. 3.5], is actually not needed for Theorem 4.1. In addition to the above, note as well that the

discrete analogue of (3.21) is not required either. The reason for these simplifications of the analysis is due to

the fact that Hh × Qh is the space to which both the unknowns and test functions of (4.5) belong, and hence, as

stipulated by the finite dimensional version of the Banach–Nečas–Babuška theorem (cf. [32, Th. 2.22]), in this

case one only needs to prove the discrete analogue of (3.23). In this way, it is easy to see, as done in [28, Th. 3.4

and 3.5], that in order to achieve the latter, it suffices to assume the already described hypotheses of Theorem4.1.

4.2 Solvability analysis

In this section we adopt the discrete version of the fixed-point strategy employed in Section 3.3 to study the

solvability of (4.4). For this purpose, we now let Th : Hu
h → Hu

h be the operator defined by

Th(z0,h) := u0,h ∀ z0,h ∈ Hu
h

where (⃗t0,h , u⃗0,h) =
(︀
(t0,h , σ0,h), (u0,h , γ0,h)

)︀
∈ Hh × Qh is the unique solution (to be derived below under what

conditions it does exist) of the linear problem

A
(︀
(⃗t0,h , u⃗0,h), (⃗sh , v⃗h)

)︀
+ b(z0,h;u0,h , sh) = F(⃗sh , v⃗h) ∀ (⃗sh , v⃗h) ∈ Hh × Qh . (4.6)

Then, it is easily seen that (4.4) can be rewritten as the fixed-point equation: Find uh ∈ Hu
h such that

Th(uh) = uh (4.7)

so that, letting (⃗t0,h , u⃗0,h) be the solution of (4.6) with z0,h := uh , (⃗th , u⃗h) := (⃗t0,h , u⃗0,h) ∈ Hh × Qh is solution

of (4.4), equivalently of (4.2) and (4.3).

In what follows we derive the preliminary results needed to address later on the solvabilities of (4.6)

and (4.7), and hence of (4.4). Indeed, following a similar procedure to the one from Section 3.3, we first observe

that the kernel Vh of b|Hh×Qh reduces to

Vh := Ht
h × V0,h

where

V0,h :=

{︁
τh ∈ Hσ

h :

∫︁
Ω
τh : δh = 0 ∀ δh ∈ Hγ

h ,

∫︁
Ω
vh · div(τh) = 0 ∀ vh ∈ Hu

h

}︁
.

At this point, we introduce our first hypotheses on the finite element subspaces, namely:

(H.0) ̃︀Hσ
h contains the multiples of the identity tensor I.

(H.1) div(̃︀Hσ
h ) ⊆ Hu

h .

As a consequence of (H.0) and the decomposition (3.6),Hσ
h (cf. (4.1)) can be redefined as

Hσ
h :=

{︂
τh −

(︁
1

n|Ω|

∫︁
Ω
tr(τh)

)︁
I : τh ∈ ̃︀Hσ

h

}︂
.

We remark in advance, however, that for the computational implementation of the Galerkin scheme (4.4), which

will be addressed later on in Section 5, we will utilize a real Lagrange multiplier to impose the mean value

condition on the trace of the unknown tensor lying inHσ
h .

In turn, thanks to (H.1), V0,h becomes

V0,h :=

{︁
τh ∈ Hσ

h :

∫︁
Ω
τh : δh = 0 ∀ δh ∈ Hγ

h , div(τh) = 0 in Ω
}︁
. (4.8)

Next, for each i ∈ {1, 2} we let Ki,h be the kernel of bi|Ht
h×V0,h

, and notice, similarly as for the continuous case

(cf. (3.32)), that

K1,h = K2,h = Kh :=

{︁
sh ∈ Ht

h :

∫︁
Ω
sh : τh = 0 ∀ τh ∈ V0,h

}︁
.
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While, as in the continuous case, the above does not allow us to derive an explicit characterization for the

elements of Kh , this is actually unnecessary since, having already stated that the bilinear form a isL2

tr(Ω)-elliptic
(cf. (3.33)), this property is certainly valid for the subspace Kh . Consequently, the corresponding hypotheses on

a, K1,h , and K2,h specified in the discrete version of Theorem 3.1 (cf. [12, Eqs. (2.19)–(2.20)]) are clearly satisfied

with the same constant ̃︀α from (3.33). Nevertheless, we notice that [12, Eq. (2.20)] is not required in the present

case since obviously the dimensions of K1,h and K2,h coincide (cf. [12, Eq. (2.21)] and the remark right before it).

Furthermore, in order to show that for each i ∈ {1, 2}, bi|Ht
h×V0,h

satisfies the discrete version of the hypoth-

esis (iii) of Theorem 3.1, namely, eq. (2.22)i in [12], we consider the following additional hypothesis:

(H.2) (V0,h)d := {τdh : τh ∈ V0,h} ⊆ Ht
h .

In this way, proceeding analogously as for the proof of Lemma 3.1, that is, given τh ∈ V0,h , bounding from

below with sh = τdh ∈ Ht
h , we find that

sup

sh∈Hth
sh /=0

b2(sh , τh)
‖sh‖0,Ω

⩾
b2(τdh , τh)
‖τdh‖0,Ω

= ‖τdh‖0,Ω

which, using (3.34) and the fact that div(τh) = 0, yields

sup

sh∈Hth
sh /=0

b2(sh , τh)
‖sh‖0,Ω

⩾ ̃︀β ‖τh‖div4/3;Ω ∀ τh ∈ V0,h

with ̃︀β = c1. A similar reasoning provides the corresponding discrete inf-sup condition for b1 with the same

constant ̃︀β.
Therefore, having a, b1, and b2 satisfied the hypotheses of the discrete version of Theorem 3.1 (cf. [12,

Corol. 2.2]), we conclude the discrete analogue of the global inf-sup condition (3.18), namely, with the same

constant αa from (3.36), there holds

sup

s⃗h∈Vh
s⃗h /=0

a(⃗rh , s⃗h)
‖⃗sh‖H

⩾ αa ‖⃗rh‖H ∀ r⃗h ∈ Vh .

In addition, we know from the continuous analysis (cf. (3.37) and (3.38)) that a and c are positive semi-definite
on H and Q, respectively, so that they certainly keep this property on Hh and Qh . We have thus shown that the

bilinear forms a and c satisfy the hypotheses (i) and (ii) of Theorem 4.1, and hence, in order to be able to apply

this abstract result, we now add the remaining hypothesis (iii) as an assumption:

(H.3) there exists a positive constant βb,d, independent of h, such that

sup

s⃗h∈Hh
s⃗h /=0

b(⃗sh , v⃗h)
‖⃗sh‖H

⩾ βb,d ‖v⃗h‖Q ∀ v⃗h ∈ Qh . (4.9)

As already announced, specific finite element subspaces satisfying the four hypotheses (H.0)–(H.3) will be
detailed later on in Section 4.4.

Now, having a, b, and c satisfied the hypotheses of Theorem 4.1, we conclude, similarly to the continuous

case (cf. (3.46), (3.48)), the existence of a positive constant αA,d, depending on ‖a‖, ‖c‖, αa, and βb,d, and hence
independent of h, such that

sup

(⃗sh ,⃗vh )∈Hh×Qh
(⃗sh ,⃗vh) /=0

A
(︀
(⃗rh , w⃗h), (⃗sh , v⃗h)

)︀
‖(⃗sh , v⃗h)‖H×Q

⩾ αA,d ‖(⃗rh , w⃗h)‖H×Q ∀ (⃗rh , w⃗h) ∈ Hh × Qh (4.10)

and thus, for each zh ∈ Hu
h such that ‖zh‖0,4;Ω ⩽ αA,d /2, there holds

sup

(⃗sh ,⃗vh )∈Hh×Qh
(⃗sh ,⃗vh) /=0

A
(︀
(⃗rh , w⃗h), (⃗sh , v⃗h)

)︀
+ b(zh;wh , sh)

‖(⃗sh , v⃗h)‖H×Q
⩾

αA,d
2

‖(⃗rh , w⃗h)‖H×Q (4.11)
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for all (⃗rh , w⃗h) ∈ Hh × Qh .

According to the above, we are now in a position to present the discrete analogues of Lemmas 3.3 and 3.4,

and Theorem 3.3, whose proofs follow almost verbatim to those for the continuous case, and hence only some

remarks are provided. We begin with the well-posedness of (4.6), which is the same as establishing that Th is
well-defined.

Lemma 4.1. For each z0,h ∈ Hu
h such that ‖z0,h‖0,4;Ω ⩽ αA,d /2, problem (4.6) has a unique solution (⃗t0,h , u⃗0,h) =(︀

(t0,h , σ0,h), (u0,h , γ0,h)
)︀
∈ Hh × Qh , and hence Th(z0,h) := u0,h ∈ Hu

h is well-defined. Moreover, there holds

‖Th(z0,h)‖0,4;Ω = ‖u0,h‖0,4;Ω ⩽ ‖(⃗t0,h , u⃗0.h)‖H×Q ⩽
2

αA,d

{︁
‖̃︀uD‖1/2,Γ + ‖f‖0,4/3;Ω

}︁
. (4.12)

Proof. Given z0,h as indicated, and bearing inmind (4.11), it suffices to apply the discrete version of the Banach–

Nečas–Babuška Theorem (cf. [32, Th. 2.22]) and its corresponding a priori error estimate.

We continue with the result ensuring that Th maps a ball of Hu
h into itself.

Lemma 4.2. LetWh be the ball

Wh :=

{︁
zh ∈ Hu

h : ‖zh‖0,4;Ω ⩽
αA,d
2

}︁
(4.13)

and assume that

‖̃︀uD‖1/2,Γ + ‖f‖0,4/3;Ω ⩽
α2A,d
4

. (4.14)

Then, there holds Th(Wh) ⊆ Wh .

Proof. It follows straightforwardly from (4.12) and (4.14).

The unique solvability of (4.7), and hence, equivalently that of (4.4), is stated next.

Theorem 4.2. Assume that

‖̃︀uD‖1/2,Γ + ‖f‖0,4/3;Ω <
α2A,d
4

. (4.15)

Then, the operator Th has a unique fixed-point uh ∈ Wh . Equivalently, (4.4) has a unique solution (⃗th , u⃗h) :=
(⃗t0,h , u⃗0,h) ∈ Hh × Qh with uh ∈ Wh , where (⃗t0,h , u⃗0,h) is the unique solution of (4.6) with z0,h = uh . Moreover,
there holds

‖(⃗th , u⃗h)‖H×Q ⩽
2

αA,d
{‖̃︀uD‖1/2,Γ + ‖f‖0,4/3;Ω}. (4.16)

Proof. Similarly to the proof of Theorem 3.3, it reduces to employ (4.11), (4.6), (4.12), and (3.30) to prove that

Th :Wh →Wh is a contraction, and then apply the Banach fixed-point theorem.

4.3 A priori error analysis

In this section we derive an a priori error estimate for the Galerkin scheme (4.4) with arbitrary finite element

subspaces satisfying the hypotheses (H.0) up to (H.3) specified in Section 4.2. In other words, our main goal is
to establish a Céa estimate for the error

‖(⃗t, u⃗) − (⃗th , u⃗h)‖H×Q

where (⃗t, u⃗) :=
(︀
(t, σ), (u, γ)

)︀
∈ H × Q and (⃗th , u⃗h) :=

(︀
(th , σh), (uh , γh)

)︀
∈ Hh × Qh are the unique solutions

of (3.14) and (4.4), respectively, with u ∈ W (cf. (3.51)) and uh ∈ Wh (cf. (4.13)). As a byproduct of this, we

also derive an a priori estimate for ‖p − ph‖0,Ω , where ph is the discrete pressure computed according to the
postprocessing formula suggested by the second identity in (2.6), that is

ph = −
1

n tr
(︀
σh + c0,hI + (uh ⊗ uh)

)︀
(4.17)
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where, following (3.7),

c0,h := −
1

n |Ω|

∫︁
Ω
tr(uh ⊗ uh). (4.18)

We begin by observing from (3.14) that for each (⃗sh , v⃗h) ∈ Hh × Qh there holds

A
(︀
(⃗t, u⃗), (⃗sh , v⃗h)

)︀
+ b(u;u, sh) = F(⃗sh , v⃗h)

which, combined with (4.4), yields for each (⃗sh , v⃗h) ∈ Hh × Qh

A
(︀
(⃗t, u⃗) − (⃗th , u⃗h), (⃗sh , v⃗h)

)︀
= b(uh;uh , sh) − b(u;u, sh). (4.19)

Now, the triangle inequality gives for each (⃗rh , w⃗h) ∈ Hh × Qh

‖(⃗t, u⃗) − (⃗th , u⃗h)‖H×Q ⩽ ‖(⃗t, u⃗) − (⃗rh , w⃗h)‖H×Q + ‖(⃗rh , w⃗h) − (⃗th , u⃗h)‖H×Q (4.20)

and then, applying (4.10), subtracting and adding (⃗t, u⃗) in the first component of A, using the boundedness of A
with constant ‖A‖, which depends on ‖a‖, ‖b‖, and ‖c‖ (cf. (3.28a)), and employing the identity (4.19), we find
that

αA,d ‖(⃗rh , w⃗h) − (⃗th , u⃗h)‖H×Q ⩽ sup

(⃗sh ,⃗vh )∈Hh×Qh
(⃗sh ,⃗vh) /=0

A
(︀
(⃗rh , w⃗h) − (⃗th , u⃗h), (⃗sh , v⃗h)

)︀
‖(⃗sh , v⃗h)‖H×Q

⩽ ‖A‖ ‖(⃗t, u⃗) − (⃗rh , w⃗h)‖H×Q + sup

(⃗sh ,⃗vh )∈Hh×Qh
(⃗sh ,⃗vh) /=0

A
(︀
(⃗t, u⃗) − (⃗th , u⃗h), (⃗sh , v⃗h)

)︀
‖(⃗sh , v⃗h)‖H×Q

= ‖A‖ ‖(⃗t, u⃗) − (⃗rh , w⃗h)‖H×Q + sup

(⃗sh ,⃗vh )∈Hh×Qh
(⃗sh ,⃗vh) /=0

b(uh;uh , sh) − b(u;u, sh)
‖(⃗sh , v⃗h)‖H×Q

.

(4.21)

In this way, replacing the bound for ‖(⃗rh , w⃗h) − (⃗th , u⃗h)‖H×Q that arises from (4.21) back into (4.20), and taking

infimum with respect to (⃗rh , w⃗h) ∈ Hh × Qh , we deduce that

‖(⃗t, u⃗) − (⃗th , u⃗h)‖H×Q ⩽
(︁
1 +

‖A‖
αA,d

)︁
dist
(︀
(⃗t, u⃗),Hh × Qh

)︀
+

1

αA,d
sup

(⃗sh ,⃗vh )∈Hh×Qh
(⃗sh ,⃗vh) /=0

b(uh;uh , sh) − b(u;u, sh)
‖(⃗sh , v⃗h)‖H×Q

(4.22)

which basically constitutes the Strang-type estimate for the joint setting formed by (3.14) and (4.4). Hereafter,

given a subspace Xh of a generic Banach space
(︀
X , ‖ · ‖X

)︀
, we set for each x ∈ X:

dist(x, Xh) := inf
xh∈Xh

‖x − xh‖X .

Next, in order to estimate the consistency term from (4.22), we subtract and add u in the second component of
b(uh;uh , sh), and then invoke the boundedness property of b (3.30), and the a priori estimates (3.54) and (4.16)
for ‖u‖0,4;Ω and ‖uh‖0,4;Ω , respectively, thanks to all of which we obtain

b(uh;uh , sh) − b(u;u, sh) = b(uh;uh − u, sh) + b(uh − u;u, sh)

⩽
4̃︀αA
{︁
‖̃︀uD‖1/2,Γ + ‖f‖0,4/3;Ω

}︁
‖u − uh‖0,4;Ω ‖sh‖0,Ω

(4.23)

where ̃︀αA := min {αA , αA,d}. Hence, using (4.23) in (4.22), we conclude that

‖(⃗t, u⃗) − (⃗th , u⃗h)‖H×Q ⩽
(︁
1 +

‖A‖
αA,d

)︁
dist
(︀
(⃗t, u⃗),Hh × Qh

)︀
+

4̃︀α2A {‖̃︀uD‖1/2,Γ + ‖f‖0,4/3;Ω} ‖u − uh‖0,4;Ω .
(4.24)

The Céa estimate for the error ‖(⃗t, u⃗) − (⃗th , u⃗h)‖H×Q is stated then as follows.
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Theorem 4.3. Assume that for some δ ∈ (0, 1) there holds

‖̃︀uD‖1/2,Γ + ‖f‖0,4/3;Ω ⩽
δ ̃︀α2A
4

. (4.25)

Then, there exists a positive constant Cd, depending only on ‖A‖, αA,d, and δ, and hence independent of h, such
that

‖(⃗t, u⃗) − (⃗th , u⃗h)‖H×Q ⩽ Cd dist
(︀
(⃗t, u⃗),Hh × Qh

)︀
. (4.26)

Proof. It suffices to use (4.25) in (4.24), which yields (4.26) with Cd := (1 − δ)−1
(︀
1 + ‖A‖/αA,d

)︀
.

Regarding the pressure error, we readily deduce from (2.6) and (4.17), applying Cauchy–Schwarz’s inequality,

performing some algebraic manipulations, and employing again the a priori bounds for ‖u‖0,4;Ω and ‖uh‖0,4;Ω
(cf. (3.54) and (4.16)), that there exists a positive constant ̃︀C, depending only on n, |Ω|, ̃︀αA, ‖̃︀uD‖1/2,Γ , and ‖f‖0,4/3;Ω ,
and hence, independent of h, such that

‖p − ph‖0,Ω ⩽ ̃︀C {‖σ − σh‖0,Ω + ‖u − uh‖0,4;Ω}. (4.27)

Thus, combining (4.26) and (4.27), we conclude the existence of a positive constant ̃︀Cd, independent of h, such
that

‖(⃗t, u⃗) − (⃗th , u⃗h)‖H×Q + ‖p − ph‖0,Ω ⩽ ̃︀Cd dist(︀(⃗t, u⃗),Hh × Qh
)︀
. (4.28)

We end this section by stressing that (4.25) and the fact that ̃︀αA := min {αA , αA,d} guarantee that the as-
sumptions (3.53) and (4.15) of Theorems 3.3 and 4.2, respectively, are satisfied.

4.4 Specific finite element subspaces

In this section we resort to [34, Sect. 4.4] to specify two examples of finite element subspacesHt
h ,
̃︀Hσ
h ,H

u
h , andH

γ
h

of the spaces L2

tr(Ω),H(div4/3;Ω), L4(Ω), and L2

skew
(Ω), respectively, satisfying the hypotheses (H.0), (H.1), (H.2),

and (H.3) that were introduced in Section 4.2.

4.4.1 Preliminaries

Here we collect some definitions and results that are employed in what follows. Indeed, given an integer ℓ ⩾ 0

and K ∈ Th , we first let Pℓ(K) be the space of polynomials of degree ⩽ ℓ defined on K, whose vector and
tensor versions are denoted Pℓ(K) := [Pℓ(K)]n and Pℓ(K) = [Pℓ(K)]n×n , respectively. Also, we let RTℓ(K) :=

Pℓ(K)⊕ Pℓ(K)x be the local Raviart–Thomas space of order ℓ defined on K, where x stands for a generic vector
in R := R

n
. Furthermore, we let bK be the bubble function on K, which is defined as the product of its n + 1

barycentric coordinates, and introduce the local bubble spaces of order ℓ as

Bℓ(K) := curl
(︀
bK Pℓ(K)

)︀
if n = 2, Bℓ(K) := curl

(︀
bK Pℓ(K)

)︀
if n = 3

where curl(v) :=
(︀
∂v/∂x2 , −∂v/∂x1

)︀
if n = 2 and v : K → R, and curl(v) := ∇ × v if n = 3 and v : K → R

3
. In

addition, we need to set the global spaces

Pℓ(Ω) :=
{︁
vh ∈ L2(Ω) : vh|K ∈ Pℓ(K) ∀ K ∈ Th

}︁
Pℓ(Ω) :=

{︁
δh ∈ L2

(Ω) : δh|K ∈ Pℓ(K) ∀ K ∈ Th

}︁
RTℓ(Ω) :=

{︁
τh ∈ H(div;Ω) : τh,i|K ∈ RTℓ(K) ∀ i ∈ {1, . . . , n}, ∀ K ∈ Th

}︁
and

Bℓ(Ω) :=
{︁
τh ∈ H(div;Ω) : τh,i|K ∈ Bℓ(K) ∀ i ∈ {1, . . . , n}, ∀ K ∈ Th

}︁
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where τh,i stands for the ith row of τh . As noticed in [34], it is easily seen that Pℓ(Ω) and Pℓ(Ω) are also subspaces
of L4(Ω) and L4

(Ω), respectively, and thatRTℓ(Ω) and Bℓ(Ω) are both subspaces ofH(div4/3;Ω) as well. Actually,
sinceH(div;Ω) is clearly contained inH(div4/3;Ω), any subspace of the former is also subspace of the latter.

Next, definingH0(div;Ω) := {τ ∈ H(div;Ω) :
∫︀
Ω tr(τ) = 0}, we recall that a triplet of subspaces ̃︀Hσ

h , H
u
h , and

Hγ
h of H(div;Ω), L

2
(Ω), and L2

skew
(Ω), respectively, is said to be stable for the classical Hilbertian mixed formu-

lation of linear elasticity, if, denotingHσ
h :=

̃︀Hσ
h ∩H0(div;Ω), there exists a positive constant βe, independent of

h, such that

sup

τh∈Hσ
h

τh /=0

∫︁
Ω
δh : τh +

∫︁
Ω
vh · div(τh)

‖τh‖div;Ω
⩾ βe {‖vh‖0,Ω + ‖δh‖0,Ω} ∀ (vh , δh) ∈ Hu

h ×H
γ
h . (4.29)

In turn, since the definition of the bilinear form b (cf. (3.9c)) does not involve the L2

tr(Ω)-variable, we notice that
hypothesis (H.3) (cf. (4.9)) becomes

sup

τh∈Hσ
h

τh /=0

∫︁
Ω
δh : τh +

∫︁
Ω
vh · div(τh)

‖τh‖div4/3;Ω
⩾ βb,d {‖vh‖0,4;Ω + ‖δh‖0,Ω} ∀ (vh , δh) ∈ Hu

h ×H
γ
h . (4.30)

Certainly, the inequalities (4.29) and (4.30) do not coincide since the spaces Hσ
h and Hu

h employ different

norms in them. However, the following result, already proved in [34, Lem. 4.8], establishes a very suitable con-

nection between these discrete inf-sup conditions.

Lemma 4.3. Let ̃︀Hσ
h , H

u
h , andH

γ
h be subspaces ofH(div;Ω), L

2
(Ω), and L2

skew
(Ω), respectively, such that they sat-

isfy (4.29). In addition, assume that there exists an integer ℓ ⩾ 0 such that RTℓ(Ω) ⊆ ̃︀Hσ
h and H

u
h ⊆ Pℓ(Ω). Then

Hσ
h :=

̃︀Hσ
h ∩H0(div4/3;Ω), Hu

h , andH
γ
h satisfy (4.30) with a positive constant βb,d, independent of h.

According to the above, we now employ the stable triplets for elasticity proposed in [34, Sect. 4.4] to describe

two examples of finite element subspaces Ht
h ,
̃︀Hσ
h , H

u
h , and Hγ

h satisfying the hypotheses (H.0), (H.1), (H.2), and
(H.3) from Section 4.2.

4.4.2 PEERS-based finite element subspaces

We first consider the plane elasticity element with reduced symmetry (PEERS) of order ℓ ⩾ 0, whose stability

was originally proved in [7] for ℓ = 0 and n = 2, and later on in [41] for ℓ ⩾ 0 and n ∈ {2, 3}. In fact, denoting
C(Ω) := [C(Ω)]n×n , the corresponding subspaces are given by

̃︀Hσ
h := RTℓ(Ω) ⊕ Bℓ(Ω), Hu

h := Pℓ(Ω), Hγ
h := C(Ω) ∩ L2

skew(Ω) ∩ Pℓ+1(Ω). (4.31)

It is easily seen that ̃︀Hσ
h and H

u
h satisfy (H.0) and (H.1), and, thanks to Lemma 4.3, whose hypotheses on ̃︀Hσ

h and

Hu
h are also guaranteed, it is clear that H

σ
h := ̃︀Hσ

h ∩ H0(div4/3;Ω), Hu
h , and Hγ

h satisfy (H.3) (cf. (4.30)). Next, in
order to check (H.2), we recall from (4.8) that

V0,h :=

{︁
τh ∈ Hσ

h :

∫︁
Ω
τh : δh = 0 ∀ δh ∈ Hγ

h , div(τh) = 0 in Ω
}︁

which, noting that Bℓ(Ω) is divergence free, recalling that the divergence free tensors of RTℓ(Ω) are contained
in Pℓ(Ω) (cf. [33, proof of Th. 3.3]), and observing that Bℓ(Ω) ⊆ Pℓ+n(Ω), we deduce that

V0,h ⊆ Pℓ(Ω) ⊕ Bℓ(Ω) ⊆ Pℓ+n(Ω)

so that, to accomplish (H.2), that is (V0,h)d ⊆ Ht
h , it suffices to choose

Ht
h := Pℓ+n(Ω) ∩ L2

tr(Ω). (4.32)
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4.4.3 AFW-based finite element subspaces

Our second example is the Arnold–Falk–Winther (AFW) element of order ℓ ⩾ 0, which is defined as

̃︀Hσ
h := Pℓ+1(Ω) ∩H(div;Ω), Hu

h := Pℓ(Ω), Hγ
h := L2

skew(Ω) ∩ Pℓ(Ω) (4.33)

andwhose stability for the Hilbertianmixed formulation of linear elasticity is proved in [8]. In this case, it is also

straightforward to see that ̃︀Hσ
h andH

u
h satisfy (H.0) and (H.1), as well as the hypotheses required by Lemma 4.3,

and henceHσ
h :=

̃︀Hσ
h ∩H0(div4/3;Ω), Hu

h , andHγ
h satisfy (H.3). In turn, for (H.2), and since V0,h does not seem to

be additionally simplifiable, it suffices to take

Ht
h := Pℓ+1(Ω) ∩ L2

tr(Ω). (4.34)

4.4.4 The rates of convergence

The approximation properties ofHσ
h , H

u
h , andH

γ
h , for PEERS (cf. (4.31)) as well as for AFW (cf. (4.33)), are stated

next (see also [13], [15], [25, Eqs. (5.37) and (5.40)]). Their derivations follow basically from the error estimates

of the Raviart–Thomas and AFW interpolation operators, and of projectors onto piecewise vector and tensor

polynomials (cf. [32, Prop. 1.135]). In addition, they make use of the commuting diagram properties and of the

interpolation estimates of Sobolev spaces. The respective statements are as follows:(︀
APσ

h
)︀
there exists a positive constant C, independent of h, such that for each r ∈ (0, ℓ + 1], and for each τ ∈

Hr
(Ω) ∩H0(div4/3;Ω) with div(τ) ∈ Wr,4/3

(Ω), there holds

dist
(︀
τ,Hσ

h
)︀
⩽ C hr {‖τ‖r,Ω + ‖div(τ)‖r,4/3;Ω}

(︀
APuh

)︀
there exists a positive constant C, independent of h, such that for each r ∈ [0, ℓ + 1], and for each v ∈

Wr,4
(Ω), there holds

dist
(︀
v,Hu

h
)︀
⩽ C hr‖v‖r,4;Ω

and(︀
APγ

h
)︀
there exists a positive constant C, independent of h, such that for each r ∈ [0, ℓ + 1], and for each δ ∈

Hr
(Ω) ∩ L2

skew
(Ω), there holds

dist
(︀
δ,Hγ

h
)︀
⩽ C hr‖δ‖r,Ω .

In turn, denoting

ℓ* :=

{︃
ℓ + n for PEERS-based

ℓ + 1 for AFW-based

the approximation property forHt
h is similar to that of H

u
h , that is:(︀

APth
)︀
there exists a positive constant C, independent of h, such that for each r ∈ [0, ℓ* + 1], and for each

s ∈ Hr
(Ω) ∩ L2

tr(Ω), there holds
dist
(︀
s,Ht

h
)︀
⩽ C hr‖s‖r,Ω .

We are now in a position to provide the rates of convergence of the Galerkin scheme (4.4) with the finite

element subspaces defined in Sections 4.4.2 and 4.4.3.

Theorem 4.4. Assume that for some δ ∈ (0, 1) there holds (4.25), and let (⃗t, u⃗) :=
(︀
(t, σ), (u, γ)

)︀
∈ H × Q and

(⃗th , u⃗h) :=
(︀
(th , σh), (uh , γh)

)︀
∈ Hh × Qh be the unique solutions of (3.14) and (4.4), respectively, with u ∈ W

(cf. (3.51)) and uh ∈ Wh (cf. (4.13)), whose existences are guaranteed by Theorems 3.3 and 4.2, respectively. In turn,
let p and ph be the exact and approximate pressure defined by the second identity in (2.6) and (4.17), respectively.
Furthermore, given an integer ℓ ⩾ 0, assume that there exists r ∈ (0, ℓ + 1] such that t ∈ Hr

(Ω) ∩ L2

tr(Ω), σ ∈
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Hr
(Ω) ∩ H0(div4/3;Ω), div(σ) ∈ Wr,4/3

(Ω), u ∈ Wr,4
(Ω), and γ ∈ Hr

(Ω) ∩ L2

skew
(Ω). Then, there exists a positive

constant C, independent of h, such that

‖(⃗t, u⃗) − (⃗th , u⃗h)‖H×Q + ‖p − ph‖0,Ω
⩽ C hr {‖t‖r,Ω + ‖σ‖r,Ω + ‖div(σ)‖r,4/3;Ω + ‖u‖r,4;Ω + ‖γ‖r,Ω}.

Proof. It follows straightforwardly from the final Céa estimate (4.28) and the approximation properties
(︀
APσ

h
)︀
,(︀

APuh
)︀
,
(︀
APγ

h
)︀
, and

(︀
APth

)︀
.

5 Numerical results

We report on the performance of the proposed numerical methods. The set of computational tests collected in

this section have been implemented using the open source finite element library FEniCS [1]. A Newton–Raphson

algorithm with null initial guess is used for the resolution of all nonlinear problems, setting a fixed tolerance

of 10
−8
imposed on the relative or the absolute ℓ∞-norm of the increment vector. The solution of the tangent

systems resulting from the linearization is carried out with the multifrontal massively parallel sparse direct

solver MUMPS [6], and the visualization is done with ParaView¹.

5.1 Accuracy verification

The convergence of themethods is assessed in 2D and 3D.We consider the unit square (0, 1)
2
andunit cube (0, 1)

3

domains, discretized into meshes that are successively refined. We fix λ = 0.2 together with the heterogeneous
viscosity and inverse permeabilities μ(x1 , x2) = exp(−x1x2), η(x1 , x2) = 2 + sin(x1x2) (in 2D) and μ(x1 , x2 , x3) =
exp(−x1x2x3), η(x1 , x2 , x3) = 2 + sin(x1x2x3) (in 3D). And we choose a boundary velocity uD and a forcing term
f such that the exact solutions are

u(x1 , x2) =
(︃

cos(πx1) sin(πx2)
− sin(πx1) cos(πx2)

)︃
, p(x1 , x2) = sin(x1x2)

and

u(x1 , x2 , x3) =

⎛⎜⎝ sin(πx1) cos(πx2) cos(πx3)
−2 cos(πx1) sin(πx2) cos(πx3)
cos(πx1) cos(πx2) sin(πx3)

⎞⎟⎠ , p(x1 , x2) = sin(x1x2x3)

for the 2D and 3D cases, respectively.

Note that in this example we do not have a zero-mean manufactured pressure, and hence, to keep consis-

tency between the theory and the computations, some minor modifications are in order. In fact, we first realize

that the last equation of (2.1), which constitutes a uniqueness condition for p, must be replaced in this case by∫︁
Ω
p = p0

where p0 is a given known constant (its value determined using themanufactured pressure). As a consequence,
and according to the second identity in (2.6), the last equation of (2.7) becomes∫︁

Ω
tr
(︀
σ + (u⊗ u)

)︀
= −np0 .

In this way, when using (3.6) to uniquely decompose the original unknown σ as σ = σ0 + c0 I, with σ0 ∈
H0(div4/3;Ω) and c0 ∈ R, we find, instead of (3.7), that

c0 :=
1

n |Ω|

∫︁
Ω
tr(σ) = −

1

|Ω|

{︁
p0 +

1

n

∫︁
Ω
tr(u⊗ u)

}︁
. (5.1)

1 www.paraview.org

www.paraview.org
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Fig. 1: Error history for the mixed methods defined using the spaces in (4.31)–(4.32) (left panels) and in (4.33)–(4.34) (right panels),
using manufactured solutions in 2D (top) and 3D (bottom) and setting λ = 0.2. Here DoF stands for the number of degrees of freedom
associated with each mesh refinement.

The rest of the continuous and discrete analyses follows exactly as discussed in the previous sections, the only

difference being the computation of the constant c0,h in (4.17), which, instead of (4.18), and coherentlywith (5.1),
reduces to

c0,h := −
1

|Ω|

{︁
p0 +

1

n

∫︁
Ω
tr(uh ⊗ uh)

}︁
.

Now, regarding in particular the computational implementation of the Galerkin scheme (4.2), we stress that

the zero-mean trace of σh is imposed by using a real Lagrange multiplier ξ. This means that, instead of (4.2), we
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Fig. 2: Error history for the mixed method defined using the
spaces in (4.33)–(4.34), using manufactured solutions in 2D and
setting λ = 0.01. Here DoF stands for the number of degrees of
freedom associated with each mesh refinement.

consider the equivalent scheme: Find (⃗th , u⃗h , ξ) :=
(︀
(th , σh), (uh , γh), ξ

)︀
∈ (Ht

h ×
̃︀Hσ
h ) × Qh × R such that

a(th , sh) + b1(sh , σh)

b2(th , τh) +b(⃗sh , u⃗h) + ξ
∫︁
Ω
tr(τh)

+b(uh;uh , sh) =

=

0

⟨τh ν, uD⟩

b(⃗th , v⃗h) + η
∫︁
Ω
tr(σh) − c(u⃗h , v⃗h) = −

∫︁
Ω
f · vh

(5.2)

for all (⃗sh , v⃗h , η) :=
(︀
(sh , τh), (vh , δh), η

)︀
∈ (Ht

h ×
̃︀Hσ
h ) × Qh × R.

Errors between exact and approximate solutions relevant to the norms used in the analysis of Section 4 are

denoted as

e(t) := ‖t − th‖0,Ω , e(σ) := ‖σ − σh‖div4/3;Ω , e(u) := ‖u − uh‖0,4;Ω
e(γ) := ‖γ − γh‖0,Ω , e(p) := ‖p − ph‖0,Ω .

The error decay according to themesh refinement is reported in Fig. 1.Weplot, in log-log scale, errors for the

individual variables in thenorms above vs thenumber of degrees of freedomassociatedwith each triangulation.

Apart from the rotation tensor, which has a slightly better convergence than the optimal for the PEERS-based

family and for the lowest-order case only, the convergences observed for all fields, even for coarser meshes,

and for the two methods in 2D and 3D and using polynomial degrees ℓ = 0 (dashed lines) and ℓ = 1 (dot-dashed

lines) are all optimal,O(hl+1), in accordancewith Theorem 4.4. In addition, we show in Figs. 3 and 4 approximate

solutions after 4 steps of uniform mesh refinement. All field variables are well resolved.

We also include a convergence study with a higher Reynolds number. We maintain all other model coef-

ficients and discretization parameters as in the first round of examples, and only modify λ = 0.01. Even if the
strain rate and vorticity errors are higher inmagnitude than their counterpart for a diffusion-dominated regime

with λ = 0.2, the convergence rates are again optimal as visualized in the error history diagrams of Fig. 2 (we

only show here the results obtained for the 2D case and AFW-based elements). Note that the velocity, stress, and

pressure errors remain of the same magnitude and decay rates as in the case of λ = 0.2.

5.2 Channel flow

Next we test the performance of the mixed finite element methods in reproducing flow patterns on a curved

channel with three obstacles (using the domain and boundary configuration from the micro–macro mod-

els for incompressible flow introduced in [49]), and including mixed boundary conditions. The unstruc-
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Fig. 3: Sample of approximate solutions (velocity with line integral convolution) for the convergence test, obtained using the second-
order AFW-based finite element family.

Fig. 4: Sample of approximate solutions (velocity with streamlines, showing views from two different angles) for the convergence test,
obtained using the first-order PEERS-based finite element family.

tured mesh is constructed using the Gmsh file from the aforementioned reference, which is publicly avail-

able². The boundaries are smooth curves defined by B-splines specified by control points as follows. Lower

wall: {(−2, 0), (0, 0), (0, −2)}, upper wall: {(−2, 1), (1, 1), (1, −2)}, top obstacle: {(−1.4, 0.35), (−1, 0.5), (−0.6, 0.35),
(−0.6, 0.6), (−1, 0.75), (−1.4, 0.75)}, middle obstacle: {(−0.1, −0.2), (0.25, −0.25), (0.4, −0.1), (0.1, 0), (−0.1, 0.3),
(−0.4, 0.1)}, and bottom obstacle: {(0.55, −0.8), (0.2, −1.2), (0.6, −1.3), (0.8, −0.9), (0.7, −0.4), (0.5, −0.4)}. A uni-

tary external body forcing term is imposed on the domain f = (0, 1)t. On the inlet
(︀
the bottom horizontal section

2 https://github.com/torrilhon/HierarchicalBoltzmann/blob/master/grids/ComplexChannel.geo

https://github.com/torrilhon/HierarchicalBoltzmann/blob/master/grids/ComplexChannel.geo
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of the boundary defined by (0, 1) × {−2}
)︀
we predefine a parabolic inflow velocity uin = (0, x1(1 − x1))t. On the

outlet (the vertical segment on the top left part of the boundary, defined by {−2} × (0, 1)) we impose a zero
normal Cauchy stress, which means that we need to set

(σ + u⊗ u)ν = 0 on Γout

and on the remainder of the boundary (channel walls as well as obstacles) we set a no-slip velocity condition

u = 0. The above outlet boundary condition can be easily incorporated in the analysis developed in Sections 3
and 4 by imposing it via either a Nitsche method or a Lagrange multiplier. We proceed with the former for

the present numerical example, using the value 10
3
for the Nitsche parameter. We specify the coefficients η =

0.1+x2
1
+x2

2
, λ = 0.01 (giving Re = 100), and μ = exp(−x1x2). No closed-form solution is available for this problem.

For this test we use a second-order method setting ℓ = 1 and choosing the PEERS-based finite element family.

The computed flow profiles are shown in Fig. 5, including the strain rate magnitude, the total stress magnitude

(which can be regarded as a rescaling of the von-Mises stress), the velocity magnitude and streamlines, and

the post-processed pressure distribution. From the velocity plot it is observed that the flow avoids the obstacles

where a no-slip condition is used. It is also seen that the stress concentrates on regions of higher pressure, that

is, to the top-right of the first and second obstacles, while the strain rate magnitude is higher near the regions

of higher velocity magnitude. As a stationary channel flow solution with moderate Reynolds number, we do

not expect the formation of vortices or recirculation zones. Also, the obtained flow structures differ from the

micro-macro Navier–Stokes–Fourier system solutions from [49] since the model, parameters, and boundary

conditions are different.

5.3 Flow on an intracranial aneurysm

We finalize this section by computing numerical solutions on a section of the middle cerebral artery with an

aneurysm (abnormal bulge of a blood vessel). The surface mesh was obtained from the Gmsh repository³, and

it was then truncated and volume-meshed into 68,024 unstructured tetrahedral elements. For this test we use

the AFW-based finite element family of second-order.

As a typical indicator of a risk factor for aneurysm rupture, we compute thewall shear stress (see, e.g., [46]).

Its magnitude on the boundary (representing the tangential drag exerted by flowing blood on the aneurysmal

sac and in general, on the vessel wall) is computed as the vector field wh ∈ Hu
h such that∑︁

e∈Eh,w

∫︁
e
wh · vh =

∑︁
e∈Eh,w

1

he

∫︁
e
(σh + uh ⊗ uh)s · vh ∀ vh ∈ Hu

h

where Eh,w stands for the set of faces e that are contained in the polyhedral approximation of the vessel wall
that is inherited from the triangulation Th , and τs := τν − (τν · ν)ν denotes the tangential part of τ. We do not

require differentiation of the velocity as in the usual postprocess-based computation of the wall shear stress.

The parameters for the incompressible fluid (in this case, blood) were defined by a constant density of

1g/cm
3
and a dynamic viscosity μ = 3.5 · 10

−3
kg · m

−1
s
−1
(and we take λ = 1 and η = 10). We impose a zero

external force. At the vessel walls the no-slip condition u = 0 is imposed. On the inlet (a disk-shaped surface

on the parent artery branch near to the visualization center) we impose a constant velocity profile u = −umν
(with um = 1 cm/s), while at the outlet (the caps at the two remaining distal ends), and differently than the

previous example, we set σν = 0. This condition is simply included in the definitions of the spaces to which σ
and σh belong, so that the continuous and discrete analyses remain basically unchanged. Under physiological
circumstances the wall shear stress magnitude is of the order of 10 dyne/cm

2
. The initiation of atherosclerosis

is associated with a decrease in wall shear stress and a reduction in the function of several endothelial cell

mechanisms. We plot in Fig. 6 the obtained numerical solutions. It is observed that the wall shear stress is very

low (magnitude less than 0.1 dyne/cm
2
) in the aneurysm andwe also see a large recirculationwith amuch lower

velocity in that region. These findings are in qualitative agreement with, e.g., [43, 47].

3 https://gitlab.onelab.info/gmsh/gmsh/-/blob/master/examples/api/aneurysm_data.stl

https://gitlab.onelab.info/gmsh/gmsh/-/blob/master/examples/api/aneurysm_data.stl
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Fig. 5: Approximate strain rate magnitude, total stress magnitude, velocity magnitude and velocity streamlines, and postprocessed
pressure for the Navier–Stokes–Brinkman equations on a curved channel with three obstacles. Solutions computed with a PEERS-based
method using ℓ = 1.

Conclusions

In this work we have successfully employed a Banach spaces-based approach to introduce and analyze new sta-

ble mixed finite element methods for the Navier–Stokes–Brinkman equations in 2D and 3D. The first advantage

of the proposed discrete schemes lies on the non-need, and hence absence, of augmented terms that usually

increase the complexity of the resulting computational implementations. Secondly, and besides the original

unknowns given by the velocity and the pressure of the fluid, the methods provide direct numerical approx-

imations for three other variables of physics interest, namely the stress tensor, the strain rate tensor, and the

vorticity. In particular, PEERS- and AFW-based elements along with piecewise polynomials of proper degree,

are feasible choices for defining the associated Galerkin schemes. Finally, our numerical experiments indicate

that the methods achieve optimal rates of convergence, and we showcase the use of the proposed formulation

in complex channel flow simulations.
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Fig. 6: Approximate strain rate magnitude, wall shear stress magnitude, velocity streamlines, and postprocessed pressure for the
Navier–Stokes–Brinkman equations on a cerebral aneurysm. Solutions computed with an AFW-based method using ℓ = 1.
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