Computers and Mathematics with Applications 84 (2021) 244-276

Contents lists available at ScienceDirect ms

with spplicat ione

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Banach spaces-based analysis of a fully-mixed finite element A
method for the steady-state model of fluidized beds™ 2

Gabriel N. Gatica®>*, Ricardo Oyarzida “?, Ricardo Ruiz-Baier ¢, Yuri D. Sobral ©

3 CI’MA, Universidad de Concepcién, Casilla 160-C, Concepcién, Chile

b Departamento de Ingenieria Matemdtica, Universidad de Concepcién, Casilla 160-C, Concepcién, Chile

¢ GIMNAP-Departamento de Matemdtica, Universidad del Bio-Bio, Casilla 5-C, Concepcién, Chile

4 School of Mathematics, Monash University, 9 Rainforest Walk, Melbourne VIC 3800, Australia

€ Departamento de Matemadtica, Universidade de Brasilia, Campus Universitdrio Darcy Ribeiro, 70910-900, Brasilia DF, Brazil

ARTICLE INFO ABSTRACT

Article history: In this paper we propose and analyze a fully-mixed finite element method for the steady-
Received 7 September 2020 state model of fluidized beds. This numerical technique, which arises from the use of a
Received in revised form 23 December 2020 dual-mixed approach in each phase, is motivated by a methodology previously applied to

Accepted 1 January 2021

Available onfine 300 the stationary Navier-Stokes equations and related models. More precisely, we modify

the stress tensors of the fluid and solid phases by defining pseudostresses as phasic

Keywords: stresses that include shear, pressure, and convective effects. Next, we eliminate the
Mixed-FEM pressures from the equations and derive constitutive relations depending only on the
Pseudostress aforementioned pseudostresses and the velocities of the fluid and the particles. In this

Fluidized bed
Banach framework
Fixed-point

way, these variables, together with the skew-symmetric parts of the velocity gradients,
also named vorticities, become the only unknowns of our variational formulation. As
usual, the latter is obtained by testing against suitable functions, and then integrating
and integrating by parts, respectively, the equilibrium and the constitutive equations.
The particle pressure, a known function of the concentration, is given as a datum, and
the fluid pressure is computed afterwards via a postprocessing formula. The continuous
setting, lying in a Banach spaces framework rather than in a Hilbertian one, is rewritten
as an equivalent fixed-point equation, and hence the well-posedness analysis is carried
out by combining the Babuska-Brezzi theory, the Banach-Necas-Babuska Theorem, and
the classical Banach fixed-point Theorem. Thus, existence of a unique solution in a
closed ball is guaranteed for sufficiently small data. In turn, the associated Galerkin
scheme is introduced and analyzed analogously, so that, under suitable assumptions on
generic finite element subspaces, and for sufficiently small data as well, the Brouwer and
Banach fixed-point Theorems allow to conclude existence and uniqueness of solution,
respectively. Specific finite element subspaces satisfying the required hypotheses are
described, and optimal a priori error estimates are derived. Finally, several numerical
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rates of convergence, are reported.
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1. Introduction

We begin this section by explaining the physical origin of the fluidized bed concept, for which we consider a set of
solid particles in a reservoir through which there is an upward flow of a fluid. When the flow rate is small, the fluid flows
through the set of particles as if it was a porous medium. When the flow rate increases and reaches a level at which the
fluid drag experienced by the particles is such that it balances their net weight, a few particles become mobile and a small
expansion of the region occupied by the particles is observed. Any further increase on the flow rate causes the particles
to become fully mobile and to occupy a larger region of the reservoir. At this stage, the particles are said to be fluidized,
and the system is usually referred to as a fluidized bed. The name fluidized bed is due to the fact that the particles in this
condition can be stirred and poured as a fluid [1].

Fluidized beds are extensively used as chemical reactors in industrial scale due to the high levels of interaction between
the fluid and the particles that can be achieved in these flows [2]. Higher efficiencies in heat and mass transfer are obtained
in fluidized systems, when compared to fixed bed systems. In addition, the fact that particles behave as a fluid allows for a
continuous operation of the reactor, with old (used) particles being removed and new particles being fed in as necessary,
without the need to interrupt the operation of the system. Therefore, there is a strong industrial drive to understand the
dynamics of these flows, and mathematical and numerical modeling play a crucial role in this task.

The pioneering work in the mathematical modeling of fluidized beds was developed by Anderson & Jackson in [3]. In
this model, a volume averaging procedure is used to treat the fluidized particles as a continuum phase interpenetrating
the fluid, for which the balance equations of continuum mechanics for mass, momentum, and eventually energy, could be
written in terms of field quantities such as velocity and particle concentration, rather than in terms of the properties of
the individual particles. This model is often referred to as the two-fluid model of fluidized beds [1]. Despite the advantage
of not having to track individual particles, the drawback of this continuum approach is that unknown terms appear in the
averaged equations of conservation. Constitutive laws must be proposed to account for these terms, namely the fluid-
particle interaction f orce and the particle phase stress tensor. There are several constitutive models discussed in the
literature and there seems to be a general agreement that the particle stress tensor can be modeled very similarly to that
of a Newtonian fluid stress tensor, but with a particle pressure and a particle viscosity that depend on the local particle
concentration of particles [3-5], and potentially also on the particle velocity fluctuations, for which another conservation
equation has to be written [6,7].

There are several examples on the literature that have presented results of numerical simulations of flows in fluidized
beds, based on different constitutive models and solved with different numerical schemes. For example, the evolution of
small amplitude disturbances in both liquid- and gas-solid fluidized beds to finite amplitude structures was investigated
with a two-fluid standard model in [4,8]. An industrial circulating fluidized bed was investigated in detail with a two-
fluid model that used kinetic theory equations to account for particle stresses in [9]. In [10], a steady-state model based
on a two-fluid model was used to study the effect of turbulence on axisymmetrical fluidized beds. More recently, the
problem involving the determination of the particle stress tensor was avoided by coupling the fluid phase equations
derived in [3] with the Discrete Element Method to solve the motion of individual particles [11-14], which is responsible
to feed the concentration and the velocities of the particles to the continuum fluid phase equation. Although several types
of discretizations were used in these works, in neither of them a rigorous study of the numerical scheme, nor an a priori
error analysis, were carried out and, to the best knowledge of the authors, contributions in this direction do not seem to
be available in the literature. In particular, the use of the finite element methodology, and even more interestingly, the
derivation of mixed finite element methods taking advantages of the main features of the corresponding constitutive and
momentum equations, have not been considered at all so far.

Due to the aforementioned lack of utilization of finite element techniques, and motivated by the increasing develop-
ment during the last decade of new mixed finite element methods for solving diverse nonlinear models in continuum
mechanics, we aim here to extend the applicability of this approach to fluidized beds. More precisely, since the
nonlinearities involved in this model are similar to those from the Navier-Stokes and related equations, and rather than
using a classical Hilbertian framework, we adapt to our present model the Banach spaces-based approach employed in
several recent works (see, e.g., [15-19]), and which has shown to be very suitable to solve fluid-flow problems via dual-
mixed formulations and the resulting mixed finite element schemes. Indeed, one of its main advantages is the fact that it
does not need to make use of any augmentation procedure thus leaving the variational formulations as simple as possible
and employing the natural spaces arising from the equations for their respective settings. Furthermore, it allows, on one
hand, to derive momentum conservative numerical schemes, and on the other hand, to obtain direct approximations
of further variables of interest, some of them through their incorporation as unknowns of the formulation, and others
through postprocessing formulae defined in terms of the discrete solution.

In order to provide further details on the above discussion, we begin by referring to the numerical method introduced
in [16] for the stationary Navier-Stokes problem. There, the system is rewritten in terms of the velocity and a suitable
pseudostress tensor relating the gradient of the velocity, the pressure and the convective term, leading to a dual-mixed
momentum conservative scheme where both unknowns, velocity and psuedostress, are set in Banach spaces. The latter
allows to prove existence and uniqueness of solution by means of a fixed-point argument and the well-known Banach-
Necas-Babuska Theorem. In addition, the pressure, as well as the velocity gradient and the vorticity, can be obtained
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through a simple postprocessing of the solution without applying any numerical differentiation, thus avoiding further
sources of error. This technique has also been successfully applied to the Boussinesq system (see [17,19]), magneto-
hydrodynamics (see [18]) and flow-transport problems (see [15]), among others. For instance, the approach employed
in [19] to deal with the fluid part of the model is extended in [17] to the associated heat equation. In this way, a modified
mixed formulation is utilized in the latter, which is based on the introduction of the gradient of temperature and a vector
version of the Bernoulli tensor as auxiliary unknowns. As a consequence, the same Banach saddle-point structure arises
for both the fluid and energy equations. The analysis from [17] was later on adapted to the Oberbeck-Boussinesq system
in [20], where analogue results were obtained.

Consequently, in this work we introduce and analyze a fully-mixed finite element method for numerically solving
the steady-state model of fluidized beds. The rest of the paper is organized as follows. In Section 2 we introduce the
problem of interest. More precisely, after collecting some preliminary notations and defining the evolutive fluidized bed
model, its steady-state version is described there in terms of a dual-mixed approach in each phase. As a consequence,
the pseudostress and vorticity tensors in the fluid and solid parts, together with the corresponding velocity vector fields,
become the respective unknowns. Then, coherently with the above, the associated fully-mixed variational formulation is
derived and analyzed in Section 3 within a Banach framework. Indeed, besides providing the boundedness properties of
all the forms involved, the equivalence of the continuous formulation with a fixed-point equation is established, and the
well-definedness of the corresponding operator is proved. Finally, the Banach fixed-point Theorem is applied to conclude
the existence of a unique solution. In Section 4 we apply the same procedure from Section 3 to introduce and analyze
a generic Galerkin scheme. In this way, under suitable assumptions on the finite element subspaces, and employing
again fixed-point arguments, we are able to prove existence and then uniqueness of the discrete solution by applying
the Brouwer and Banach Theorems, respectively. In addition, it is shown that basically any stable triplet for the Hilbertian
framework of mixed linear elasticity is also stable for our present Banach framework of the fluidized bed model. Next, in
Section 5 we develop the a priori error analysis of the Galerkin scheme and provide the associated rates of convergence.
Finally, several illustrative numerical results are presented in Section 6.

2. The model problem
2.1. Preliminaries

Let us denote by £2 € R", n € {2, 3} a given bounded domain with polyhedral boundary I", and denote by n the
outward unit normal vector on I". Standard notations will be adopted for Lebesgue spaces LP(£2), with p € [1, o] and

Sobolev spaces W"P(§2) with r > 0, endowed with the norms || - [lo ;2> and || - ||, p.2, respectively, whose vectorial and
tensorial versions are denoted in the same way. Note that W%P(£2) = LP(£2) and if p = 2, we write H'(£2) in place of
WT2(£2), with the corresponding Lebesgue and Sobolev norms denoted by || - [lo.o and || - ||;., respectively. We also

write ||, o for the H -seminorm. In addition, H'/?(I") is the spaces of traces of functions of H'(£2) and H~"/2(I") denotes
its dual. With (-, -) we denote the corresponding product of duality between H/2(I") and H~/2(I"). By S and S we will
denote the corresponding vectorial and tensorial counterparts, respectively, of the generic scalar functional space S. In
turn, for any vector fields v = (v;)i=1,, and w = (w;);=1,, We set the gradient, symmetric part of the gradient, divergence,
and tensor product operators, as

8v,- o 1 t
Vv = (M)u:m, e(v) = 2{(Vv)+(Vv) }

a .
divv := Z 87:}’ and VQWw:= (v,-wj)i’j:m .
=1

In addition, for any tensor fields T = (7;); j=1,, and & = ()i j=1,n, we let div(7) be the divergence operator div acting along
the rows of 7, and define the transpose, the trace, the tensor inner product, and the deviatoric tensor, respectively, as
n n 1
t d
T = (Tii)ii=1.n, tr(T):= Tii, T:C .= TiiCii, and ¢ =1 — —tr(7)I,
( ]l)l,} 1,n ( ) ; ii ; ”Zl ufu n ( )

where T is the identity tensor in R™*". For simplicity, in what follows we denote

(v, w)e ::f vw, (V,W)o ::/ v-w, (V,W)r ::fu-v and (7, &) ::/ T:¢.
2 2 r 2

Furthermore, we recall that the Hilbert space

H(div; Q) = {r c12(Q): div(z) € L¥(Q) } 2.1)
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equipped with the usual norm ||7(|g,.o = Izl o + div(7)|§ , is standard in the realm of mixed problems. In turn,

2n
given p > > in what follows we will also employ the Banach space H(div,; £2) defined by
n

H(div,; 2) = {r cL(2): div(z) € LP(2) } (22)
: 2 . 2 2
endowed with the norm ||z |lgiv,:2 = <||r||0,9 + ||le(‘t)||0yp;Q> .
2.2. The fluidized bed model
We assume that the domain 2 is the region in which a large number of solid particles is suspended by an upwards
fluid flow of either a liquid or a gas. In the following, we shall focus our attention on the models used in [4] and, more
recently, in [8]. Therefore, letting g be the (constant) acceleration of gravity and denoting the fluid viscosity by uy, the
fluid density by pr, the density of the particles by ps, and a final time by T, we are interested in the model problem

described by the following set of equations:

ou
of s(—f + (Vuf)uf) =divTy — F(up,u)+6prg in 2 x(0,T],

ot (2.3)
a .
Tr = —pr I+ 2ure(ur)® in €2 x (0,7, a% +diview) = 0 in £ x(0,T],
oug . .
ps¢(¥ + (Vuy) us) =div(T, — Ty) + F(uy, us) + ¢psg in 2 x (0, T], 24
a B
T, = —p()I+ 2u@)e(u) in 2 x (0.1, 2 ydivigu)=0 in 2 x (0.1,

at

where the unknowns u;, us, pr, ¢ and ¢ represent, respectively, the velocity of the fluid, the velocity of the particles, the
pressure on the fluid phase, the concentration of particles and the void fraction. Note that the concentration of particles
¢ and the void fraction ¢ satisfy the identity

p+e=1in 2. (2.5)

The stress tensor of the fluid phase is denoted by T; and that of the solid phase by Ts. The particle pressure ps : R — R is
a function of the particle concentration ¢ given by [4,8]:

s =P 3 rd) >, 2.6
Pi(9) ¢exp<¢p—¢ (26)

where P, r are constants that allow for changes in the intensity and the slope of the particle pressure, and ¢, is the
maximum close random packing of the spheres, usually taken as ¢, = 0.64. The particle viscosity us : R — R is given
by [4]:

M¢

My
()
¢,,

where the constant M is also used to set the range of values of the particle viscosity. Finally, the fluid-particle interaction
force F : R" x R" — R" is a function of ¢, u; and uy, which usually takes the form of a viscous drag given by [4]:

us(@) = (2.7)

F(ug, us) := 8(¢) (us —us), (2.8)
with § : R — R denoting the drag coefficient based on the Richardson & Zaki correlation [21]:
(ps — pf)g ¢
3(¢p) = . (2.9)
Ut (1—g)m1

The experimental coefficient m is normally taken on the range 3 <m <5 [21].
2.3. The steady-state model

In what follows we consider the uncoupling between (¢, ¢) and (uy, uy, py) resulting from the steady-state counterpart
of (2.3)-(2.5), that is, given ¢ and ¢ such that ¢ + ¢ = 1 in £2, we seek uy, u;, and py in suitable spaces such that

pre(Vu)up = divly — F(up, u) + eprg in 2,
Tp = —pr 1 + 2uy E(Uf)d in £, divieus) =0 in £,
0Os b (Vlls) u; = div(Ts — Ty) + F(up,us) + ¢psg in 2,
T, = —ps(@)I + 2us(p)e(us)? in £, and divigus) =0 in 2.
247
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We first observe, thanks to the divergence-free property for euy and ¢us (cf. second and fourth rows of (2.10)), that there
hold

div((eup) @ u) = ¢(Vup)uy and div((¢u) @ us) = ¢ (Vus)ug in £2.

Then, bearing in mind the expressions of Ty and T, we now introduce the pseudostress tensors

oy = 2uy e(uf)d — ,Of((;‘llf) Quf — prl in £, and ' 2.11)

o = 2#5(¢)e(us)d — ps(ous) @ us — pf(Sllf) Quf — ps(P) in £, )
whence the first and third rows of (2.10) can be rewritten, respectively, as follows

div(of) — F(uy, us) z —epfg in £, and (2.12)

div(o,) + F(uf, uy) div(os) — ¢psg in £2.

Equivalently, replacing div(o;) from the first equation of (2.12) into the second one, and keeping the former as it is, we
arrive at

div(ey) — F(us,u;) = —ep;g in £, and (2.13)
divie;) = —(epr+op)g in 2. '
In addition, it also follows from (2.11) that
tr(oy) = —prtr((eur) @ us) —np; in £, and
tr(os) = —tr(ps(pus) @ us + pr(eur) @ up) — npy(¢p) in £,
from which we deduce that
1 .
pr = ——tr(oy+p(eu)®us) in 2, and
;11 (2.14)
ps(¢) = _Etr(o's + ps(dus) @ us + pr(euy) ® uf) in £.

In this way, replacing the foregoing expressions for py and ps(¢) back into (2.11), and recalling that e(u;)? = e(uf) —
Ltr(e(u)) T = e(us) — 1 div(uy)1, and similarly for e(u;)?, we find that
2
0}1 = 2use(ur) — pr((euy) ® uf)d — % div(uf)I in £, and (2.15)

21d) . _
02 = 2us(letus) — py((90) 0 w)* — pr((ewp @ wp)* — PP diviur in @

At this point we notice that, similarly to [22], and employing again the incompressibility conditions from (2.10), one easily
finds that the divergence terms of the foregoing equations can be replaced as follows

Ve \Y%
div(uf) = —— -u; and div(u,) = —f -us in 2. (2.16)
€
Furthermore, for sake of uniqueness of the pressure solution py, we impose the condition

/prO,
2

which, according to the first equation in (2.14), is equivalent to establishing

/ tr(oy) = — / tr(pr(eur) @ uy) . (2.17)
2 2
In turn, since ps(¢) is explicitly known in terms of ¢ (cf. (2.6)), we derive from the second equation in (2.14) that
/ tr(os) = — / Inp5(¢) + tr(ps(Puy) ® us + ,0f(8llf)®llf)}. (2.18)
2 2

We remark that the identities (2.17) and (2.18) are crucial to solve later on for o7 and o;. The description of our model
continues with the introduction of the skew-symmetric tensors

Yy = %{Vuf—(Vuf)t} and y, = %{Vus—(Vus)t},
so that the strain tensors e(uy) and e(uy) can be decomposed as

eur) = Vuy — y; and e(u) = Vug — y;. (2.19)
Finally, given upy, up € H'/2(I"), we consider the Dirichlet boundary conditions for us and u; given by

u =upy and u; = up; on I. (2.20)
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We stress here that (2.20) makes sense under the assumption that us; and uy are sought originally in H'(£2), which, in
turn, implies that y; and y; belong to L2, (£2), where

skew
L2,..(2) = [17 el(2): 9" = — }

Summarizing, the steady-state model (2.10) is now reformulated in terms of Egs. (2.13), (2.15), (2.17), (2.18), (2.19), and
(2.20). The unknowns of the global system are the tensors oy and g, the vorticity tensors y, and y;, and the velocity
vector fields u; and uy, whereas the pressure scalar field py is easily computed by using the postprocessing formula given
by the first equation of (2.14).

3. The variational formulation

In this section we derive the variational setting of the aforementioned reformulation of the steady-state model (2.10),
and then we analyze its solvability.

3.1. A fully-mixed approach

We begin by observing, thanks to the Cauchy-Schwarz inequality and the uniform boundedness of ¢ and ¢ by 1, that
the tensors a7, o7, ((suf)(g)uf)d, and ((¢>us)®us)d appearing in (2.15), are integrable against T € L?(2), if the pairs (o5, 05)
and (uy, uy) are assumed to live in L?(£2) x L2(£2) and L*(£2) x L*(£2), respectively. Similarly, we deduce, using now the
Holder inequality, that the terms in (2.13) involving the divergence operator div are integrable against corresponding test
functions in L*(£2) if both div(o;) and div(a;) belong to L*3(£2). The above suggests to look for the unknowns oy and o
in H(divy/3; £2), where, according to (2.2), we set

H(divss; 2) = {1’ c12(2): div(r) € L4/3(.Q)}.

Then, we notice that there holds

H(diV4/3; .Q) = Ho(diV4/3; .Q) @ RI, (31)
where
Ho(divss; 2) = {r € H(divys; 2): / tr(r):O}, (32)
2
which means that for each tensor T € H(divy/3; £2) there exist unique 7o € Ho(divs/3; £2) and dy = ﬁ f_q tr(z) € R,

such that T = g + dol. In particular, we have the decompositions
0f = 050 + df,()]I and 0; = 050 + ds,O I,

where oy, 050 € Ho(divy3; §2), and the constants df ¢ and dso are computed according to the foregoing definition of
the generic constant dy, and employing (2.17) and (2.18), respectively, which gives

1
drg = —— [ ¢t
.0 A r(py(euy) ® uy)
and
1
doo = ——— [ {mn(@) + w(plou) @ u + pylev) @ wy) |
n2| Jo

As a consequence, and regarding the unknowns oy and oy, it only remains to find their Hy(div,/3; $2)-components oy g
and o o, which, because of the constant tensorial components given by df o I and d; o I, are easily shown to satisfy exactly
the same Eqs. (2.13) and (2.15) satisfied by oy and o. In this way, from now on we denote oy and o by simply oy
and o5, and look for them in Hy(divy,3; £2), and satisfying the aforementioned equations. In this regard, we now notice
that there is no need to explicitly impose the testing of (2.15) with multiples of I, since, in doing so, both sides of the
equations are nullified, which means that (2.15) is implicitly satisfied.

According to the above discussion, and bearing in mind (3.1), we now proceed to test the equations of (2.15) with
functions in Ho(div,/3; §2). Indeed, multiplying the first equation of (2.15) by 77 € Ho(divy/3; £2), dividing by 2y, replacing
e(uy) by its decomposition from (2.19), integrating by parts, and utilizing the first identity of (2.16) and the Dirichlet
boundary condition for us, we obtain

ar(oy, 77) + b(t7. (wr, ¥p)) + ¢(uy, 77) + de(ug; up, 77) = Fr(ty), (33)
249
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for all =7 € Hp(divy/3; £2), where the bilinear forms ar, b, and ¢y, the trilinear form dy, and the linear functional Fy are
defined by

1
(L, 7)) = ZTH/QQ?:TF,
b(rf,(vf,nf)) = ‘/Qvf~div(rf)+/9nf:tf,
A4
1 Ve (34)
Cf(Vf,‘tf) = _E Q(T-Vf)tl‘(‘[f),
0
df(Wf; Vf, Tf) = ﬁ /;2((8Wf) ®Vf)d 1 Tf,
and
Ff('[f) = (Tfl'l, llD’f> , (35)

for all &, 7 € Ho(divyys; £2), for all vy, wy € L4(£2), and for all Ny € 1.2, .,($2). Similarly, multiplying now the second

equation of (2.15) by 75 € Hy(divy3; £2), dividing by 2u5(¢), replacing e(us) by its decomposition from (2.19), integrating
by parts, utilizing the second identity of (2.16) and the Dirichlet boundary condition for ug, and denoting from now on
u = (uy, u,), we obtain

as(os, T5) + b(T57 (us, }’5)) + ¢(us, 75) + dy(ug; ug, 75) = F?(Ts)v (3.6)

for all =5 € Ho(divy3; £2), where the bilinear forms a; and ¢, the trilinear form d;, and the linear functional F} are defin-
ed by

— 1 d . d
aS(;y TS) = /;2 2/1«3(¢) s TS ’
Vs, T5) = —7/9(— ~v$) tr(zs), (3.7)

. — do
AWy v 7)) = /Q (W) ov)* w.,

and

of d
F(75) == (Tsn, ups) — [ (eur) @ ur) : 5, (3.8)
s\ Ts ( s 5) 92M5(¢)( f f) s
for all &, ©s € Ho(divy/3; £2), and for all vg, ws € L4(£2). Note that F! is denoted in this way irrespective of the fact that
it only depends on the first component us of u. Next, testing the equations of (2.13) against v; € L*(£2) and v, € L4(£2),
respectively, we obtain

/ vy - div(oy) — / F(u)-vf = —/ eprg-vp Vv e L), (3.9)
Q 2 2
and
f v, - div(o) = — / (epr +dps)g-vs  Yvs e LY(2). (3.10)
Q 2
Finally, the symmetries of oy and o, are imposed weakly as
/af i =0 Vip e L2,,(2) (3.11)
Q
and
/ os:n,=0 Vy el? (2), (3.12)
Q
so that after adding (3.11) and (3.12) to (3.9) and (3.10), respectively, we end up with
b(ay, (vr, ) = GF(vp, mp) ¥ (vp, ) € LA(2) x L2, (2) (3.13)
and
b(057 (vg, 773)) - Gs(vsv '75) V(VS7 ”s) € L4(Q) X H—ékew(ﬂ) s (314)
where
Gf(vr, np) = /QF(u) SVp — /Q eprg - vy, (3.15)
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and
Goven) = = [ oo+ o5 v (3.16)
2

In this way, the fully-mixed variational formulation of (2.10) reduces basically to Egs. (3.3), (3.6), (3.13), and (3.14). More
precisely, introducing the spaces

H = Hop(divy/3; £2) and Q = L*(£2) x L%, (£2), (3.17)
. 1/2
with norms |zl = [ITldiv, 30 for all T € H, and ||(v, p)llq = {||v||§,4;9 + ”ﬂ”()’_Q} 2 for all (v,n) € Q, we seek

(0. (ur, 7)) € H x Qand (o5, (u, y,)) € H x Q such that

af(O’f,Tf)+b(Tf,(Uf,}’f)) +Cf(llf,'[f)+df(llf;llf,1'f) = Ff(‘l’f),
b(oy. (vr,mp) = Gilvp.myp), (3.18)
ag(os, T5) + b(Ts» (u, }’s)) + &s(us, T5) + ds(ug; u, ;) = F(7s), '
b(O'Ss (VSs 775)) = Gs(vm 7]5) ,

for all (z7, (vr, 7)) € H x Q and for all (zs, (v, 7,)) € H x Q.

We end this section by establishing the boundedness properties of all the forms involved in (3.18). Firstly, regarding
as, b, ¢r, dy, Fy, and G}‘, we notice from (3.4), (3.5), and (3.15), that direct applications of the Cauchy-Schwarz and Holder
inequalities, combined with the boundedness of the normal trace operator in H(divy/3; £2), and the expression for F(u)
given by (2.8), yield

(& T < lagll 1 llo. Irllo.g » (3.19)
Ib(z7, (v, 1)) < Il sl %7, )l » (3.20)
v, )| < Nl I lloa 7o, (321)
|ds(wr; vr, 7)< g |l [IWrllo 4.2 IVfllo.4:2 llTfllo.e (3.22)
Ei(z7)l < IFll lzsllu, and (323)
IGH Ve 1Pl < IGET vy lloae » (3.24)
where
lall = — bi=1, Qo = — |
f = —, = s f = — ||— s
2puf Jn| e 0.4:2 395
Ids || = ﬁ lellosoe . Il = lupsllijzr. and (3.25)
IGE = 113(é)lo.c Iy — wslloaz + 1214 or g llello.core -

In turn, in order to derive the respective bounds for a;, ¢, ds, FY, and G{, we assume from now on that p(¢) is bounded
above and below, which means that there exist positive constants w1 and u,, independent of the given ¢, such that

0 < p1 = ps(@) < iz (3.26)

Equivalently, and according to (2.7), the above means that ¢ is assumed to remain bounded away from its lower and upper
bounds given by 0 and ¢, respectively. Needless to say, this is precisely the case of fluidized beds. Then, proceeding as
for (3.19)-(3.24), we find that

1as(&s 7s)l = llasl 1sllo.2 1 sllo. - (3.27)
les(vs. 7o)l < NI IVsllo.a:e l1Tsllo.e » (3.28)
ds(Ws; Vs, 75)| < [lds |l [IWsllo.4:2 [IVsllo.4:2 I Tsllo.2 » (3.29)
IF(zs)l < IF[ ll7sllu, and (3.30)
|Gs(vs, n5)l < N1Gsll IVsllo,a:2 » (3.31)
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where
1 1 Vo Ps
lasl = —. lall = — H o ldsl = P llo,00:2 »
) 21 * \/ﬁ ¢ 0,42 ) 2441 - 332
”F;l” = ”uD,s”l/z,F + 27;1 l&10,00: 22 ||llf||(2)~4:9 , and (3.32)

IGsl = 121 glleor + dosllo.oc:a -
3.2. A fixed-point approach

In what follows we proceed as in related works (see, e.g. [15,17,23-27]), and [28], and introduce fixed-point strategies
to analyze the solvability of (3.18). To this end, we first define the operator &y : L(£2) x L*(£2) — L%(£2) as

Or(w) =T VYw:=(wp, w) € LY(2) x LY(£2), (3.33)

where (’&f, (uy, ’)?f)) € H x Q is the unique solution (to be confirmed below) of the first two equations of (3.18) when the
first component uy of d; and the superscript u of G}' are replaced by wy and w, respectively, that is

ar(oy, 77) + b(ts, (Ur, 7p)) + ¢ (Ur, 77) + dp(wy: U, ) = Fr(xy),
b(e W (3.34)
(@7, (vromp)) = GP(vp,my),
for all (z7, (vr, 7)) € H x Q. In turn, we let O : L*(£2) x L*(£2) — L*(£2) be the operator given by
Os(w) = b,  Vw = (wr, w) € LY(2) x LY(2), (3.35)

where (35, (ﬁs,’fs)) € H x Q is the unique solution (to be confirmed below) of the last two equations of (3.18) when the
first component us of ds and the superscript u of Fy are replaced by w; and w, respectively, that is

as(gsa Ts) + b(Tm (ﬁs, /);5)) + cs(ﬁs, Ts) + dg(Ws; ﬁ57 1) = F;N(Ts) s (3.36)
b(aSs (vSs 775)) = GS(VS7 ng) s ’
for all (75, (vs, ;) € H x Q. Then, we set the operator S : L*(2) x L*(2) — L) x L) as
S(w) = (Op(w), O5(W)) YW := (wy, w;) € L*(£2) x LY(£2), (3.37)

and readily see that solving (3.18) is equivalent to seeking a fixed-point of S, that is: find w € L*(£2) x L4(£2) such that
S(w) = w. (3.38)
Alternatively, one could define an operator T : L*(£2) x L4(£2) — L4(£2) x L%(£2), either as
T(w) := (Of(W), O5(O(W), Wy)) VW = (Wf, ws) € LY(£2) x L(£2),
or
T(w) := (Op(wy, O(W)), Og(W)) VW = (wy, wy) € L(2) x L*(12),

so that, in both cases, solving (3.18) is equivalent to seeking a fixed-point of T as well, that is: find w € L*(£2) x L4(£2)
such that

T(w) = w.

Nevertheless, for sake of clarity of the exposition, in what follows we concentrate only on the operator S. Indeed, while
the algebraic manipulations of T are a bit more cumbersome, all the analyses and results that we provide below for S can
be extended to T by performing minor modifications.

3.3. Well-definedness of the operators & and ©;

In this section we apply the Banach-Necas-Babuska Theorem (also know as the generalized Lax-Milgram Lemma), and
the classical Babuska-Brezzi theory, both in Banach spaces, to show that the problems (3.34) and (3.36) are well-posed,
which means, equivalently, that the operators ®; and ©; are well-defined. We begin by recalling the aforementioned
results (cf. [29, Theorems 2.6 and 2.34]).

Theorem 3.1. Let H and Q be Banach spaces such that Q is reflexive, and let a : H x Q —> R be a bounded bilinear form.
Assume that

(i) there exists a > 0 such that
a(w, v)

veq vl
v#0

> a|lwly YweH, (3.39)
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(ii) there holds
supa(w,v) > 0 YveQ, v#0. (3.40)

weH

Then, for each F € Q there exists a unique u € H such that
a(u, v) = F(v) YveqQ, (3.41)

and the following a priori estimate holds

1
lullp < 5 IFllq - (3.42)
Moreover, (i) and (ii) are also necessary conditions for the well-posedness of (3.41).

Theorem 3.2. Let H and Q be reflexive Banach spaces, and let a : Hx H — Rand b : H x Q —> R be bounded bilinear
forms with induced operators A € £(H, H') and B € £(H, Q'), respectively. In addition, let V be the null space of B, and assume
that

(i) there exists « > 0 such that

(s“

rev (ks ||

zal¢lls VYieV, (343)

(ii) there holds
supa(r,¢) >0 YeceV, ¢#0, (3.44)

TeV
(iii) there exists B such that

b(r v)

reH Izlln

> Blvlp VYveQq. (3.45)

Then, for each pair (F, G) € H' x Q' there exists a unique (o, u) € H x Q such that
alo,t) + b(t,u) F(7) VteH,

b(o,v) = G(v) YveQ, (3.46)
and the following a priori estimates hold:
1 Al
loll < &”F”H’ ﬁ 1+— IGllg ,
(3.47)

Al

lull < ] (1 + —)”F”H, Al ( Al

(1 =)IGlo -
Moreover, (i), (ii), and (iii) are also necessary conditions for the well-posedness of (3.46).

We find it important to stress here that (3.47) is equivalent to a global inf-sup condition for (3.46), which means that
there exists a constant & > 0, depending only on «, 8, and ||A| (as it follows from the right hand side of (3.47)), such
that

a(¢, )+ b(r, w) 4+ b(¢, v)

(t.v)eHxQ II(z, U)||H><Q
(7,0)#0

> d[I(¢. wllhxe  Y(C.w)eHxQ. (3.48)

In order to apply Theorem 3.2 to suitable perturbations of (3.34) and (3.36), which is explained later on, we now let
V be the kernel of the operator induced by b, that is

V= {r €eH: b(r,(v,n)=0 V(v,p) e Q},
which, according to the definitions of b (cf. (3.4)) and the spaces H and Q (cf. (3.17)), yields
V= {r € Ho(divys; 2): div(r)=0 and 7=17" in 9]

On the other hand, we recall that a simple modification of the proof of [30, Lemma 2.3] (or [31, Proposition 3.1, Chapter
IV]) allows to show (see also [16, Lemma 3.2]) that there exists ¢; > 0, depending only on §2, such that

altlhe < 1T%5.e + V(TG 450 VT € Hol(divys: 2). (3.49)
Then, we have the following result establishing the V-ellipticity of ay.

253



G.N. Gatica, R. Oyarziia, R. Ruiz-Baier et al. Computers and Mathematics with Applications 84 (2021) 244-276
Lemma 3.3. There exists a positive constant c«y, depending on ¢ (cf. (3.49)) and uy, such that

(r, 1) > o ||r||§iv4/3;Q YreV. (3.50)

Proof. According to the definition of ay (cf. (3.4)), and employing the inequality (3.49), we find that for each 7 € V there
holds

1 c ¢
_ b4 Loz, = =Lz
a(r,7) = T T30 = 200 Izlg e = 20 ||t||le4/3;Qv
which shows (3.50) with ¢y = ;L.

In turn, the V-ellipticity of the bilinear form a; is established as follows.

Lemma 3.4. There exists a positive constant as, depending on ¢y (cf. (3.49)) and u; (cf. (3.26)), such that

(7, 1) = & [Tllgy, 0 YTEV. (3.51)

Proof. Using now the definition of a, (cf. (3.7)), the upper bound of the assumption (3.26), and the inequality (3.49), we
find that for each T € V there holds
C1 C1

1 1
a7, 7) =/ 1917 = = lI2%l5e = 5 lI7lie = 5= 7l ;00
) 2 205(¢) 2uy T 2y T 2y R

which confirms (3.51) with a; = 26712 O

As a consequence of Lemmas 3.3 and 3.4, we stress here that both a; and a; satisfy the assumptions (i) and (ii) of
Theorem 3.2. Indeed, it is easily seen that

¥ (9

:i‘vj ||T||diV4/3;.Q o ||C||diV4/3;Q

> of [lElldivys:2 YEEVY,

and

supag(7. &) = (8.8) = of Ll 0 >0 VEEV. L #0,

TeV

and analogously for as.
Furthermore, the following lemma states that b satisfies the hypothesis (iii) of Theorem 3.2.

Lemma 3.5. There exists B > 0, depending only on 2, such that

b(z. (v. 7))
——— = Blv.nllq V(v,n)eQ. (3.52)
wen T
T#0
Proof. Given (v, ) € Q := L) x L2, .(£2), we first let v4/3 := |v|v and observe that ||v4/3||31/j/3;!2 = ||V[§ 4 o Which
proves that v4/3 € L*3(£2) and yields
/ VVys = [Vl 4e = IVloae Vaslloase - (353)
2

Then, we consider the boundary value problem
div(e(w)) = v43 in D(2), and w=0 on I, (3.54)

whose weak formulation is: find w € Hé(Q) such that

/e(w):e(z) = — / Vi3-z Yz € H)(R2). (3.55)
2 2

Note that the right hand side of (3.55) makes sense thanks to the Holder inequality and the continuous injection
iy : H'(2) — L% ) (which is valid in both 2D and 3D). Then, bearing in mind the Poincaré and the first Korn (cf. [32,
Theorem 10.1] or [33, Corollaries 9.2.22 and 9.2.25]) inequalities, which establish that

2 2 2 2 1
IVliie = olVlie and |vif, < 2]eW)l,  VVeH(2)

respectively, with a positive constant ¢p depending only on 2, and then applying the well-known Lax-Milgram Lemma,
we easily deduce that (3.55) has a unique solution w € H(l)(Q), for which there holds

Iwllie < 2cpllisll [Vllo.a/3:2-
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At this point we notice from (3.54) and the previous remarks on vy4/3 that div(e(w)) e L¥3(£2), which, together with the
fact that e(w) e L?(£2), imply that e(w) belongs to H(divy/s; £2). Hence, we let T be the Ho(divy/s; £2)-component of e(w)
(cf. (3.1)), and observe that there hold div(7) = v4/3 and
||?||fliv4/3;9 = ”?”59 + ||div(?)”(2),4/3;g = ||e(w)||(2)_q + ||V4/3||§,4/3;9
=< ”W”%g + ”"4/3”(2),4/3;9 =< {1 +4C[§||i4||2} ||V4/3||5,4/3;_Q .

In this way, noting that 7 is symmetric (because e(w) and the identity matrix I are), and using (3.53) and (3.56), we find
that

(3.56)

b(‘t, (v, 17)) . b(’-‘f, (v, ”)) ~ /QV~diV(?) - /;Zv.v4/3

] Izl - ITllH 1Tl divy5: 2 1Tl divy 5 2

> Bilvlloae (3.57)

with g; = {1 + 4cl§||i4||2}_1/2. On the other hand, for the same (v, ) € Q given at the beginning of the proof, we now
consider the boundary value problem

div(e(w)) = —div(y) in D(2), and w=0 on I, (3.58)

whose weak formulation is: find w € H(l,(.Q) such that

/ e(w):ez) = — f n:ez) Yz e H)(R). (3.59)
2 2

Similarly as for (3.55), and employing again the Poincaré and first Korn inequalities, a straightforward application of the
Lax-Milgram Lemma guarantees the existence of a unique solution w to (3.59), which satisfies

lle(w)llo,.e = lInllo,e - (3.60)

In addition, it is clear from (3.58) that div(e(w) + ) = 0, so that e(w) + 7 lies in H(divy/s; £2). Thus, defining T as the
Ho(divy,3; §2)-component of e(w)+ 1, we realize that 7 is divergence-free as well, and that 7 : y = 5 : 5, whence, noting
that there holds ||7]jo.c < |le(W)|lo.2 + |I7llo.2, and using (3.60), we deduce that

b(z,(v.n)  b(z, (v, ) /"”’ 112
sup ( ) > ( ~ ) _ J2 = =22 > B glloo, (3.61)
Tl 17l Rlavgse  [Tloe

with 8, = 1/2. Finally, the required inequality (3.52) follows directly from (3.57) and (3.61) with 8 depending only on
ﬂl and /32. O

We now consider the perturbed formulation arising from (3.34) after eliminating there the terms involving ¢; and
ds. Then, adding the left hand sides of the resulting equations, we obtain the bounded and symmetric bilinear form
Ar: (H x Q) x (H x Q) — R given by

Af((gf’ (2. &), (7. (vy, m))) = a(¢;. 77) + b(ty. (z7. &) + b(g. (vy. my) (3.62)

for all (&, (z. &) (7, (v, m7)) € H x Q. Note that the boundedness of A; follows directly from (3.19), (3.20), and
(3.25). Hence, denoting by As € ﬁ((H x Q), (H x Q)/) the operator induced by Ay, and bearing in mind the V-ellipticity
of a (cf. Lemma 3.3) and the inf-sup condition for b (cf. Lemma 3.5), we conclude from a straightforward application
of Theorem 3.2 that Ay is bijective. In addition, it is clear from (3.48) that Ay satisfies a global inf-sup condition, which
means that there exists a constant &y > 0, depending only on oy, B, and |ar|| (cf. (3.25)), such that

Af((Cf, (2. &), (7. (vy, nf))) 16 8 .69
sup > o [[(&f, (zr, HxQ .
(zf.(vp.p DeHxQ I (zs. (vr. 0p)) llixg ! A
(zp(vr .5 ))#0
for all (Cf s, &) ) H x Q. Next, in order to apply Theorem 3.1 to (3.34), we introduce the bounded bilinear form
Arw; o (Hx Q) x (H x Q) — R that results after adding the full equations defining that formulation, that is

Af,w,((cf, 7. &), (Tﬁ("f’ﬂf))) = Af((gf’(zfﬂsf))’ (Tf’("f’"f))) (3.64)
+ ¢(zp, T7) + df(Wf;Zf,‘tf)

for all (¢, (. &), (z7. (vf. nr)) € H x Q Knowing that Ay is bounded, the boundedness of Ay s, is completed thanks to
(3.21), (3.22), and (3.25). In this way, it is clear that (3.34) can be restated as: find (Gf, (uy, 'ff)) € H x Q such that

Ay (1 @ 7)) (37 (v, 1)) = Fy(ey) + 6wy mp) (365)
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for all (rf, (vr, nf)) € H x Q. Then, it follows straightforwardly from (3.63) and the boundedness estimates for ¢; and df
(cf. (3.21), (3.22), (3.25)) that

Af,Wf ((;f9 (Zf5 Ef))s (‘tf7 (Vf, nf)))

sup > a5 114 (27, &) luxa

(xf.(vp.n )EHxQ (7, (vr, 1p)) llixa
(zf (vp,mp))#0
L A P ello.oesa IWrllosss 121
- —F—=||— Zillo,4;2 — = lI€llo,00;2 IWFll0,4;2 IIZf ll0,4;82
vn 0.4:02 2
_ 1 || Ve Of
> ja5 — — — —— Iwrllo.a:2 ¢ 108> (2, &) luxa
{f Vnle llose 2m s (8. (27 &)
where the last inequality uses that ||¢]lo.c0;2 < 1. In this way, assuming for instance that
1 | Ve a ar L
— = <=l and Willoae <17 = 2L, (3.66)
Vil e lose 4 2p5
we arrive at
Arwy ((Cf, (z. &)). (7. (vy. ﬂf))) &
sup z 5 (. (2f. &) llxq (3.67)
(zf.(vp.np DeHxQ I(zs. (vr. 05)) lltxa
(zp(vf.nf))#0

for all (cf, (27, & )) € H x Q. Similarly, using the fact that Af is symmetric, employing the same boundedness estimates
for ¢; and df, and assuming again (3.66), we are able to prove the companion inf-sup condition to (3.67), in which the
supremum is taken with respect to the first component of Ay, that is

Af,wf ((Cf, (zf, Ef)), (‘tf, (vr, ﬂf))) a ”( ( )) | (3.68)
sup = — {75, (Vr, 15 ) ) llHxq .
(. gy Vet 1(&7- (2. &) llixa 2 g
(&5 (zf .87 ))#0

for all (zy, (v, nf)) eHxQ.
As a consequence of the previous analysis, we are in position to establish the following result, which confirms that the
operator @ (cf. (3.33)) is well-defined.

Ve o
< Zf Then, for each w := (W, W) € LY(£2) x L*(2) such that ||Wrllo 4.0 < 17,

1
Theorem 3.6. Assume that — | —
VI E loae
there exists a unique (ﬁf, (uf,’)?f)) € H x Q solution to (3.65) (equivalently (3.34)). Moreover, there holds

1O;W)llo.a.e = [Urlloae < 1Sy, (U, 77)) Inxq

2 3.69
= o 1Wosthar + 1@ 1w —wiloso + 127 prglelono | (369
Proof. It suffices to notice, thanks to (3.67) and (3.68), that Afw satisfies the hypotheses (i) and (ii) of Theorem 3.1.
Therefore, observing that the right hand side of (3.65) defines a functional in (H x Q), a direct application of the
aforementioned abstract result implies the existence of a unique solution (’&f, ('ﬁf,’;?f)) € H x Q to (3.65), for which
there holds

~ o~ o~ 2 w
137 @ 7 )lea = {11+ 161
Finally, the foregoing inequality and the upper bounds for |Fs| and ||G}"’|| provided in (3.25) yield (3.69) and complete
the proof. O

On the other hand, it is not difficult to realize that proving that ®; (cf. (3.35)) is well-defined, equivalently that (3.36)
is well-posed, proceeds analogously as we already did for ®;. Therefore, in what follows we simplify the corresponding
presentation and collect only the main aspects of the respective analysis. In fact, we begin by letting A; : (HxQ)x(HxQ) —
R be the symmetric bilinear form given by

As((;s, (25, Es))s (757 (Vs, ']5))) = a5, T5) + b(Ts’ (zs, Es)) + b(&'s, (Vs, 773)) (3.70)

for all (&, (. &), (s, (Vs, m5)) € H x Q which, thanks now to (3.27), (3.20), and (3.32), is clearly bounded. Then, in
virtue of the V-ellipticity of a5 (cf. Lemma 3.4) and the inf-sup condition for b (cf. Lemma 3.5), direct applications of
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Theorem 3.1 and the consequent estimate (3.48) imply that there exists a constant &, > 0, depending only on o5, 8, and
llag]| (cf. (3.32)), such that

As((gsa (zs, ss))7 (Ts’ (vs, ﬂs)))
sup

(zs,(vs.75))EHxQ Ts, (Vs, 05)) 1
lestve ns)0 Iz, (v, 1)

> as || (Cs, (157 gs))”HxQ (3-71)

for all (&, (2, &)) € H x Q. Then, defining the bilinear form
AS,WS ((CS’ (Z$7 65))’ (TSs (VS! "5))) = AS((Cs? (Zsa &s))! (TSa (V57 773))) (372)
+ (25, T5) + ds(ws; zg, T5)

for all (&, (z;, &,)). (Ts. (Vs, 1)) € Hx Q whose boundedness follows now from that of A, and the estimates (3.28), (3.29),
and (3.32), we realize that (3.36) can be restated as: find (o5, (U, 7)) € H x Q such that

Acw (B (@, 7). (7 (v, 1)) ) = E(7) + Gulws, ) (373)
for all (s, (vs, n;)) € H x Q. Then, assuming that
1 ||V & &spi1
— | — < — and |Wsllpae < T = , (3.74)
\/ﬁ ¢ 040 4 5110,4; 2 s 2)03

we are able to prove the analogues of the inf-sup conditions (3.67) and (3.68), with A w, and &; instead of Ar wy and oy,
respectively. In this way, the following theorem confirms that the operator ®; (cf. (3.35)) is well-posed

1 |V
Theorem 3.7. Assume that — —(b < %. Then, for each w := (Wy, W;) € L4(2) x L4(£2) such that |ws|lo.a.0 < Ts,
V| ¢ 0,42 4

there exists a unique (35, (65,75)) € H x Q solution to (3.73) (equivalently (3.36)). Moreover, there holds

10:W)llo.4:2 = IUslloae < (T, (W, 7)) lxa

< 2 {lwslar + 5 lelose WG 4o + 121

Vg eps + mno.w;g} .

Proof. As for the proof of Theorem 3.6, it follows from a straightforward application of Theorem 3.1. We omit further
details and just mention that the a priori estimate (3.75) makes use of the upper bounds for ||[F'| and ||Gs|| provided in
(3.32). O

3.4. Solvability analysis of the fixed-point equation

Knowing from the previous section that the operators & and ©; (cf. (3.33), (3.35)), and consequently S (cf. (3.37)),
are well defined, we now focus on the solvability of the corresponding fixed-point equation (3.38). For this purpose, and
aiming to apply later on the Banach fixed-point Theorem, we begin by establishing sufficient conditions on the data under
which S maps a closed ball into itself. Throughout the rest of the section we assume that ¢ and ¢ satisfy the hypotheses
specified in (3.66) and (3.74), respectively. Hence, denoting from now on

r == minfry, g}, (3.76)

where rr and r; are defined in the aforementioned equations, we have the following result.

Lemma 3.8. Let W = {w = (wf, W) € LY(2)xLY(2): |wlosae < r}, and assume that the data satisfy

o
lupsllsjer + rlI8(@loe + 1217 prglellose < Zfr, (3.77)

and

P o
L2 el + 121748 lenr + dpsllon < — 1. (3.78)

u + s
lupsliiyz.r 2 7

Then S(W) C W.

Proof. Given w = (wy, w;) € W, we first recall from (3.37) that S(w) = (@f(w), @S(W)). Then, using that ||w; —Wslo 4.0
and ||wylo,4,2 are both bounded by |wl|o 4., and hence by r, we easily see that the upper bounds of ||@f(W)|lo 4. and
2
|©s(W)l|o,4;> provided by (3.69) and (3.75) become the left hand sides of (3.77) and (3.78) multiplied by — and —,
of O
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respectively. In this way, the above assumptions allow to conclude that [|@f(W)lo.4;2 and [|©s(w)llo 4.2 are bounded
each by r/2, which implies that ||S(w)|o.4.2 <, and hence S(w) e W. O

It is important to remark at this point that the assumptions (3.77) and (3.78), being linear combinations of data, actually
impose that each one of the latter be sufficiently small. In particular, looking for instance at (3.77), it is readily seen that
a sufficient condition for its occurrence would be to require that each one of the terms on the left hand side be less than
or equal to 1/3 of the right hand side, that is

Olf r
1212 g
A similar analysis applies to (3.78), thanks to which one gets individual constraints for the data [[up|l1/2,r and |lello,00; 2
again, and for [lepr + @psllo,00;2. In this way, choosing the smallest bounds for the first two, and keeping as such the
ones for ||6(¢)llo,2 and |leps + @ psllo,00;2, We obtain a set of four conditions on these data, which guarantee that both
(3.77) and (3.78) are satisfied. Nevertheless, the fact that some of the constants involved are not known explicitly, as it
is the case for example of ay and & (because of the unknown constant ¢; from (3.49)), stops us of truly verifying these
conditions in practice.

We continue the analysis with the Lipschitz-continuity properties of & and ;.

a a
lupslljar < é T, 18(loe < é and [lello.c <

Lemma 3.9. There exists a positive constant Ly, depending on &y, py, and uy, such that
1©r(w) — O(t)llo.a:02
= 1 {18@)lo.e + Nl 19Ollosc | 1w = tloae

forall w = (wp, wy), t:==(t;, t;) € L4(£2) x L*(£2) such that IWrllo.a:2» NItelloae <17

(3.79)

Proof. Givenw := (wy, W) and t := (7, t;) as indicated, we set O¢(w) := Uy and O(t) := Z, where o7 := (o7, (U5, 7})) €
HxQand ¢ := (Ef (7, §f)) € H x Q are the unique solutions, guaranteed by Theorem 3.6, of the formulations (cf. (3.34)
or (3.65))

Arw (05, T) = Fr(zp) + GF'(vy. mp) (3.80)
and

Ay (8 %) = Fr(p) + Ghvy, mp), (3.81)
respectively, both for all 7 = (rf, (vr, nf)) € H x Q. Then, applying the inf-sup condition (3.67) to oy — Zf, adding and
subtracting Ay, (Zf 7y), and using (3.80) and (3.81), we obtain

& . - Arwy (07 — & Tr)
TNy Glhwea = sup LTSN

#reHxQ 17 llxq
g - (3.82)
~ sup (GF = G)(vr. mp) + (Argy — Arw) (&1 )
FreHxQ 1% lixq
740

Now, according to the definitions of G¥, G}, F(w), and F(t) (cf. (3.15), (2.8)), we readily get (see also the estimate for ||G}‘||
in (3.25))

|(G — G )(vr. mp)| = ] /Q (F(w) — F(t)) -vf] < 18(e)llo.2 W — tloae IVlloas - (3.83)

In turn, employing (3.64) and the boundedness of d; (cf. (3.22), (3.25)), we find that

|(Ary —;‘f,Wf)(Cfs )| = di(ty —wy; 77, 7)|
f
< Z)é‘«f llello,cor2 IWr — trllo,4:2 12 llo,4.2 177 llo.2 (3.84)
f

< —— llello,c0;2 IW —tllo, 4.2 1O (E)ll0,4;2 I llo, 2 -
245

In this way, replacing (3.83) and (3.84) back into (3.82), we deduce that

P
21

a . =
3f lor — &rlluxq =< {||5(¢)||0,9 + l€llo,00: 2 ||@f(t)||0,4;:2} lw —tllo,4,0,

- = . . 2
which, together with the fact that ||©Op(w) — Of(t)llo,a.0 < lloy — & llnxq, yields (3.79) with Ly == — max{ 1, zi } thus
af s
completing the proof. O
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Lemma 3.10. There exists a positive constant Ly, depending on s, pr, ps, and py, such that

|Os(W) — Os(t)]lo,4,2

3.85
< L {||€||0,oo;:2 Itr +wrlloa.0 + ll@llo,000 ||@s(t)||0,4;.9} lw —tllo.4 (385)

for all w = (wp, wy), t:=(tr, t;) € L*(§2) x LY(2) such that |Wsllos.e . lItllose <Ts

Proof. We proceed similarly to the proof of Lemma 3.9. In this way, given w := (W, W) and t = (t;, t;) as indicated,
we set Oy(w) := U and O(t) := Z, where g, := (0%, (U;, 7;)) € H x Q and Z = (Es (Z;. &) € H x Q are the unique
solutions, guaranteed now by Theorem 3.7, of the formulations (cf. (3.36) or (3.73))

As,ws (&57 ?s) = F:V(Ts) + Gs(vsa 775)
and

As t (st %s) = FE(TS) + Gs(Vs, 75),

respectively, both for all 7, := (s, (Vs, 7)) € H x Q Then, starting from the inf-sup condition for A, with constant
a@s/2 (analogue of (3.67)), and employing basically the same kind of arguments that yielded (3.82), we are able to show
that

As . =
— llos — &lluxq

2
< sup (FZV - Fﬁ)(fs) + dy(ts — wy; Zg, T5) (3.86)
 senx I1%slIxe ’
Ts#0

where the last term uses, according to (3.72), that (Agy, — As,ws)(zs, T5) = dy(t; — Wy; Z, 75). Next, it follows from the
definitions of F¥ and Ft (cf. (3.8)), and the lower bound of u; (cf. (3.26)), that

/ g [((Stf)®tf) - ((8Wf)®Wf)]d : T,
7

|(F* = F)(zo)| =

2p15()
< 2% lello.ocs2 I (tr @ tr) — (W ® W) llo.2 lITsllo. (3.87)
= szf] lello.cse2 Ity +Wrlloac Ity — Wrllo.aze 17sllo.c -
In turn, using the boundedness properties of ds (cf. (3.29), (3.32)), we find that
|dy(t, — w7, 1) < 2’;; 16 ll0.00:22 11Os(O o2 Its — Welloasez 17sllowc - 58)

Therefore, replacing the estimates (3.87) and (3.88) back into (3.86), using that ”_tf — Wrllo4e and |ty — Wsllo 4.
are bounded by ||w — t||p.4., and recalling that ||Os(W) — Os(t)]lo.a.0 < [0s — &llnxq, we are led to (3.85) with
Lo 2 P Ps }
s ‘= — max{ —, .
s 2001 241
As a straightforward consequence of Lemmas 3.9 and 3.10, we are able to establish now the Lipschitz-continuity of
the fixed-point operator S (cf. (3.37)).

Lemma 3.11. Let W be as in Lemma 3.8 with r given by (3.76), and let Ly and Ls be the constants provided by Lemmas 3.9

and 3.10. Then, there holds
ISw) = S(®)lo.4.0 <[ Ly (1802 + lllo. o2 197 (E)lo.:2) 559
+Ls(”8”0,oo;(2 it +wrllo4.2 + dllo.co:2 ||@s(t)||o,4;:2) } lw —tllo.4. '

forallw = (wp, wy), t:==(t;,t;) € W.

Proof. Given w, t € W, it suffices to observe that
IS(w) — S(t)llo.4.2 = 1Or(W) — Op(t)]lo.4:.2 + [|Os(W) — Os(t)]l0.4. 2,
and then apply the estimates (3.79) and (3.85). O

Now, incorporating the upper bounds of ||@f(t)|lo,4:2 and ||Os(t)|lo 4.2 provided by (3.69) and (3.75), respectively, into
the right hand side of (3.89), and bounding ||ty — t;]|o 4;> and ||tf||§’4;9 by r and r?, respectively, we arrive at

IS(W) — S()llo.4.0 < £(data) W —tllose . (3.90)
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for all w := (wy, wg), t:=(t;, t;) € W, where

£(data) = C;[18(¢)llo.2 + C2 lI€llo,002 + C3 € llo,00:2 IUpsll/2.r

+ Callpllo.co:2 1upsll12.r + Cs ll€llo.00:2 18(8)llo.2 + Co [l oor 0 (3.91)
+ G 1@ll0.00:2 lI€ll0.00:2 + Cs 1@ ll0.00:2 €07 + Pp5sl0.00: 22 5
and G, j € {1, ..., 8} are positive constants depending on L, L, ay, as, 1, pf, i1, [$2], and g, as indicated as follows
2Ls 2L 2rLf
G=L, G=2L, G=—, G=—, G=
& % o (3.92)
2L¢ |27/ r’L 215|021 g
_ f|_| Pfg’ LI G = s|_| .
ar O l1 s

We can establish now the main result concerning the solvability of (3.18).
Theorem 3.12. Let W be as in Lemma 3.8 with r given by (3.76), and assume that the data are sufficiently small so that they
satisfy (3.77), (3.78), and
£(data) < 1. (3.93)

Then, problem (3.18) has a unique solution (o, (us, y;)) € H x Q and (o5, (us, ;) € H x Q with u := (u;,u;) € W.
Moreover, there hold

2
(o5, (ur, 7)) lxq < &*f{||lln,f||1/z,r + rl18@lo.e + 1217 pr g llello, ;2 } ; (3.94)
and

2 J
(o5 s v ) lho = = { Mol + o lelooia + 121 g llepr + dpslloci | (3.95)
s 1

Proof. According to the equivalence between (3.18) and (3.38), and thanks to Lemma 3.8, the Lipschitz-continuity of S
(cf. (3.90)), and the assumption (3.93), the existence of a unique solution of (3.18) with u := (uf, us) € W follows from
a straightforward application of the classical Banach fixed-point Theorem. Then, the a priori estimates (3.69) and (3.75),
together with the fact that ||u||o 4.2 and ||uf — usllo 4,2 are bounded by r, yield (3.94) and (3.95), which completes the
proof. O

Similar remarks to those expressed on the assumptions (3.77) and (3.78) right after the proof of Lemma 3.8, are valid
here for (3.93) and the expression L(data) given by (3.91) and (3.92). We omit further details.

4. The Galerkin scheme

In this section we introduce and analyze a Galerkin scheme for approximating the solution of (3.18). In particular, for
the respective solvability analysis we employ basically the same tools and techniques utilized for the continuous case in
Section 3, except that now we apply Brouwer and Banach fixed-point Theorems to prove existence and uniqueness of
solution, respectively.

4.1. The discrete fixed-point approach

We begin by considering a regular family {7}, of triangulations of £2, which are made of triangles K (when n = 2)
or tetrahedra K (when n = 3) of diameters hy, and define the meshsize h := max{hK . Ke 771}, which also serves as
the index of 7. Then, for each h > 0 we let H7, Q}, and Q,’; be arbitrary finite element subspaces of H(divs3; £2), L4(£2),
and L2, (£2), respectively, and set

Hy = Hg N Ho(diV4/3; Q) and Q_h = Q;: X Q;; . (41)

Thus, the Galerkin scheme associated with (3.18) reads: find (o, (upm, ) € Hp x Qu and (o, (Ush, ¥5)) € Hp x Qu
such that, denoting w;, := (ug, ug) € Qf x Qj,
ag(ogm, Tn) + b, (U, ) + ¢ (up, Tn) + de(ups; up, ) = Fr(za),
u
b(opm. (Yp. 1)) = Gi"("fh’ M) (4.2)
a(Osh, Tsp) + b(rshv (usn, }’gh)) + ¢(ugp, Tsn) + ds(Ugp; U, Tn) = F'(T4n),

b(o'sh Vs, gp) = Gy(Vsn, ),
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for all (zm, (Vm, nm)) € Hp x Qu and for all (eh, (Ven, g,)) € Ha x Qu. Next, we consider the discrete analogue of the
fixed-point approach employed in Section 3.2. Indeed, we first introduce the operator O : Q) x Q; — Q} as

@fh(wh) = ﬁﬂ, VWh = (Wﬂ«,, Wsh) € Q;: X Q;:, (43)

where (3fh, (U, ’ffh )) € Hy x Qy is the unique solution (to be confirmed below) of the first two equations of (4.2) when
the first component ug, of dy and the superscript u, of G}”‘ are replaced by wp, and wy, respectively, that is

3 (@, Tn) + b(zm, W, V) + ¢ W, ) + dy (Wi U, 70) - = Fr(zm), (44
b(Gpm, (Y, 1)) = G (Y, 1) '

for all (zm, (V. nﬂ,)) € Hp x Qu. In addition, we let @y, : QF x QF — QJ' be the operator given by
Oup(Wp) == U, VW = (Wp, Wy) € Q) x Q) (4.5)

where (Esh, (Ush, Pp )) € Hp x Qy is the unique solution (to be confirmed below) of the last two equations of (4.2) when
the first component ug, of dy and the superscript u, of Fy" are replaced by wy, and wy, respectively, that is

a (G, Th) + b(rshv (U, /}’\gh)) + C(Usp, Ton) + ds(Wep: Uy, Top) = F:v}'(tsh) s (4.6)
b(o'sha (Vshs Msn )) = Gs(Vsh, N5p) s
for all (sh, (Vsh, s)) € Hp x Q. Finally, we define the operator S, : Qi x Q) — Q}f x QJf as
Sh(Wi) = (Om(Wh), Osn(Wr)) VW = (Wp, W) € Q) x Q) (4.7)
and notice that solving (4.2) is equivalent to seeking a fixed-point of Sp, that is: find w, € Q) x Q) such that
Sh(wr) = wy. (4.8)

4.2. Well-definedness of the operators Og and O,

In this section we apply the discrete versions of Theorems 3.1 and 3.2 to prove that problems (4.4) and (4.6) are
well-posed, thus confirming that the operators @p, and Oy, are well-defined. Regarding the aforementioned versions of
those theorems, which certainly involve finite dimensional subspaces, we stress that in this case each assumption (i) (cf.
(3.39) and (3.43)) is equivalent to its corresponding assumption (ii) (cf. (3.40) and (3.44)), so that in what follows we
choose to stay with the (i) ones. Moreover, for the stability of the associated discrete schemes, we require the respective
constants « to be independent of the meshsize h.

In order to proceed as announced, we need to incorporate some hypotheses on the arbitrary discrete spaces Hj, Q},
and Q,’,'. Specific finite element subspaces verifying these conditions will be introduced later on. More precisely, from now
on we assume the following:

(H.1) Hy contains the multiples of the identity tensor I.
(H.2) div(H‘h’) c Q.
(H.3) There exists a positive constant B4, independent of h, such that

b(zh. (Vh. 1))

TpeHy ” Th ” H
T #0

> Ball(vis mp)llq Y(Vh, 1) € Qn. (4.9)

Hence, thanks to (H.1) and the decomposition (3.1), the subspace Hy (cf. (4.1)) can be redefined, at least from a
theoretical point of view, as:

1
Hy = {rh—<ml}tr(rh)>ﬂz rheHZ}.

However, for the computational implementation of the Galerkin scheme (4.2), which is addressed below in Section 6, the
null mean value condition for the traces of the unknown tensors living in Hy, will be imposed via real Lagrange multipliers.
On the other hand, the kernel of the operator induced by the bilinear form b restricted to H, x Qp, is given by

Vp = {Th €Hy: b(th (Vi.my) =0 V(i my) € Qh},
from which, bearing in mind the definitions of b (cf. (3.4)) and Qy, and the assumption (H.2), we find that
Vy = {rh €Hy: div(zy)=0 in £ and / M:ith=0 Vi, € Qﬁ} (4.10)
2
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In this way, noticing from Lemmas 3.3 and 3.4 that the V-ellipticity of the bilinear forms a; and a; only makes use of the
divergence-free property of the tensors of V, we conclude from (4.10) that ar and a; are V-elliptic as well, with the same
positive constants oy and os provided by those lemmas, that is there hold

a(Th, Th) > of ||Th||f|iv4/3;g V€V, (411)
and
a(Tp, Th) > o ||Th||f|iv4/3;g VT, € V. (4.12)

Therefore, in virtue of (H.3), (4.11), and (4.12), straightforward applications of the discrete version of Theorem 3.2, and
particularly of the corresponding estimate (3.48), imply that Ay (cf. (3.62)) and A (cf. (3.70)) satisfy global discrete inf-sup
conditions on H x Qp, that is the discrete analogues of (3.63) and (3.71), with constants & 4 > 0, depending only on
af, Ba, and |las|| (cf. (3.25)), and a5 4 > 0O, depending only on o5, B4, and |jas|| (cf. (3.32)), respectively. Moreover, given
wy, = (wp, Wg,) € QF x Q, and proceeding analogously as we did in Section 3.3, we are able to show that, under the
following pairs of conditions

1 Ve &f,d 123

.0
— < ——= and | wploae < Tfa = (4.13)
Vil e llose 4 " ! 20

and
1 V¢ &sd &Sd/'bl
— | = < — and |[Wglloge < Tsa i= — , (4.14)
\/ﬁ ¢ 0,4:2 4 * +d 205

the bilinear forms Ay w,, (cf. (3.64)) and As wy, (cf. (3.72)) satisfy global discrete inf-sup conditions on Hy, x Qs with constants
ara/2 and asq/2, respectively. Consequently, rewriting (4.4) and (4.6) as the discrete analogues of (3.65) and (3.73),
respectively, and applying now the discrete version of Theorem 3.1, we obtain the following results confirming that the
discrete operators @p, (cf. (4.3)) and Oy, (cf. (4.5)) are well-defined. The respective proofs, being almost verbatim to those
of Theorems 3.6 and 3.7, are omitted.

1 || Ve
Theorem 4.1. Assume that — | — =<

vl e 0,4:2

there exists a unique (ﬁfh, (up, ?ﬂl )) € Hp, x Qy solution to (4.4). Moreover, there holds

o
< 4 Then, for each wy, := (W, W) € Q) x Qjf such that |Wgllo4,0 < Tfa,

lOnWillose = lUmllose < I(@m (@n. Pa))luxa

2 415
= [ Iorlhar + 16@)o0 1w~ wallusa + 12 prgleloocia | (415)
,d
1 |V s g
Theorem 4.2. Assume that — | — < —=. Then, for each wy, == (wWp,, Wg;) € Q} x Q)i such that [|Wgllo4,0 < Tsa,
V| ¢ 0,4;2 4
there exists a unique (Tfsh, (Ush, Vp )) € Hy x Qy solution to (4.6). Moreover, there holds
||@sh(wh)g0,4;9 = [Ualloae < (G, W, Pe)lHxa
P 4.16
< o {Imoshar 5 el I a0 + 1274 glenr +dploia | (419
s,d

Ve \%
Regarding the assumptions on — and ?qb specified in Theorems 4.1 and 4.2, whose continuous analogues are required
&

by Theorems 3.6 and 3.7, respectively, and observing that these expressions require both ¢ and ¢ to be bounded from
below, we find it important to state here some remarks.

First of all, and while in many industrial situations there will certainly be regions in which the particle concentration
will be zero (zones depleted of particles) or, equivalently, the void fraction will be one (pure fluid regions), in our present
formulation it is only the concentration ¢ that has to be bounded from below, so that it avoids the zero value. The void
fraction & can never be zero as the upper bound of the model is ¢ ~ ¢, = 0.65 (and not ¢ = 1), since the particle pressure
and particle viscosity functions (cf. (2.6), (2.7)) would be singular at ¢, as ¢ increases from a typical ¢ to ¢p. In this model,
bubbles, or large amplitude concentration instabilities, are obtained as very low concentration regions, but never reaching
true zero values inside them. Indeed, a quick search in the literature shows that the lowest concentrations obtained in
structures resembling (and being analyzed as) bubbles were ¢ = 0.14 in [4], ¢ = 0.11 in [34], and ¢ = 0.01 in [9] (in
which a slightly different model and a very low ¢, were used). The reason why simulations cannot reach very low values
of ¢ is due to the requirement that the mass of particles is conserved, which forces that the mean volume fraction should
be ¢ in the small-ish numerical domains. In a real scale fluidized bed, the ratio of the size of the fluidization domain
to the size of the bubbles is much larger than 10, allowing for local rearrangements of the particles flowing out of the
structures that will become bubbles, whereas in numerical simulations bubbles occupy an important part of the domain
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of the simulation. The minimum values of ¢ obtained with this model depend not only on the flow properties, but also on
the mean particle concentration ¢y and on the size of the numerical domain that is used. Therefore, one would not expect
to find true zero values of ¢ in numerical simulation of bubbles using averaged models in normal scale simulations.

Nevertheless, and despite the above comments, in Section 6 we consider two examples to test the validity of the model
in the ¢ ~ 0 limit. The first one represents a fluidized bed that is expanded homogeneously up to a certain height and,
from there, after a sharp transition, the concentration decreases very rapidly to zero. The second test represents a bubble
placed at the center of the domain, and whose particle concentration distribution is such that it is actually zero at the
center of the bubble.

4.3. Solvability of the discrete fixed-point equation

We now address the solvability of the fixed-point equation (4.8), which is equivalent to analyzing the existence and
uniqueness of solution of the Galerkin scheme (4.2). To this end, we proceed very similarly to the continuous case and
establish first the discrete versions of the preliminary lemmas from Section 3.4. Bearing this in mind, we assume in what
follows that & and ¢ satisfy the conditions indicated in (4.13) and (4.14), respectively, and we set

rq = min{ryq, rsq} . (4.17)

Then, we begin with the result that provides sufficient conditions on the data for S; mapping a closed ball into itself.

Lemma 4.3. Let W, = [wh = (W, Wg,) € Q) X Q¢ [[Whlloge < rd], and assume that the data satisfy

o
luoslhyzr + ral8(@)lo.e + 2P prglielone < = ra. (4.18)
and
o o,
lupslliy2.r + jfﬁ lello.cic + 1217 glleay +dpsllocoe < =% ra. (4.19)
1

Then Sp(Wy) C Wi

Proof. It proceeds analogously to the proof of Lemma 3.8, but now using the well-posedness and associated a priori
estimates of @p, and Oy, provided by Theorems 4.1 and 4.2. We omit further details. O

Next, we establish the Lipschitz-continuity properties of @ and .

Lemma 4.4. There exists a positive constant Ly 4, depending on ay q, py, and uy, such that
1Om(wWr) — Om(tn)llo.ae
< La{18@loa + lelowe 1OnE o0 | IWh = tillos
for all wy := (W, We), t = (tm, ts) € Q) x Qy such that [[Wpllo 42, ltmllose <Tra

Proof. Given w, = (Wp, Ws,) and t, = (tg, ty) as indicated, we set Op(wy) = Up and Op(ty) = Zp, where

o = (0. (Un. Vp)) € Hy x Q, and th = (Ejh, @h,th )) € Hy x Qq are the unique solutions, guaranteed by Theorem 4.1,
of the formulations

Ay (G Tm) = Fr(Tm) + G (v, )
and

Ar 5 (Ems Tm) = Fr(zm) + G (v, 1),
respectively, both for all Tp, == (. (v, N )) € Hy x Qu. We refer to (3.64) for the definitions of A wy, and Ay ¢, . The rest
of the proof follows similarly to the one of Lemma 3.9, using now the discrete inf-sup condition satisfied by A w, with
constant &y 4/2, adding and subtracting suitable expressions, and employing the boundedness properties of the linear
forms involved. Further details are omitted. O
Lemma 4.5. There exists a positive constant L 4, depending on asq, py, ps, and 4, such that

”@sh(wh) - @sh(th)”0,4;(2

< La [||8||o,oo;rz Itm + wWmllo.a.2 + lPllo.co:2 ||@sh(th)||o,4;rz] lwy — thllo.4:e

Jor all wy, .= (Wp, Wa), ty == (tm, tsr) € Qp x Qp such that [|Wsnllo4.2, tnlloae <Tsa
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Proof. It begins analogously to the proof of Lemma 4.4, and then it continues similarly to the one of Lemma 3.10,
employing now the discrete inf-sup condition satisfied by A w,, (cf. (3.72)) with constant & 4/2. O

We are now in position to state the Lipschitz-continuity of the discrete fixed-point operator S;. More precisely, as
a direct consequence of Lemmas 4.4 and 4.5, we have the following result, which constitutes the discrete analogue of
Lemma 3.11.

Lemma 4.6. Let Wy, be as in Lemma 4.3 with r4 given by (4.17), and let Ly 4 and Ls 4 be the constants provided by Lemmas 4.4
and 4.5. Then, there holds

ISv(wi) = (el ={ Lr.a (18@o.2 + o, 1O(ti)lo.4)

(4.20)
+Loa(lellonia It +Walloa.e + I8lone 1Oa(tlosa) | 1w = tallo.as

for all wy, == (W, Wgy), t, == (tg, tsn) € Wi

Next, we proceed as in the last part of Section 3.4 to continue bounding the right hand side of (4.20). Indeed,
employing the upper bounds of || @p,(t)llo,4:2 and ||Osu(ty)llo,4.2 Provided by (4.15) and (4.16), respectively, and bounding
Itm — tallo.a.2 and [|tml|3 4., by ra and 13, respectively, we arrive at

ISh(Wh) — Sh(t)llo4e < La(data) [Wh — thllosce . (4.21)

for all wy, == (Wg, Wsp), ty == (tm, t) € Wy, where Lq4 (data) is defined exactly as in (3.91), except that the constants
from (3.92) are computed now employing Ly 4, L; 4, Of 4, @54, and rq, instead of Ly, L, &y, a5, and r, respectively.

Consequently, the main result concerning the solvability of (4.8) (equivalently (4.2)) is stated as follows thanks to the
Brouwer and Banach fixed-point Theorems.

Theorem 4.7. Let W), be as in Lemma 4.3 with rq given by (4.17), and assume that the data are sufficiently small so that they
satisfy (4.18) and (4.19). Then, problem (4.2) has at least one solution (aﬂ,, (upm, v )) € Hp xQp and (ash, (ugp, ysh)) € Hy xQy
with uy, == (up, ug,) € Wy Moreover, under the further assumption

Ly(data) < 1, (4.22)
this solution is unique. In addition, in both cases there hold
2
(o (U, ¥3)) lixq < K[||uD.f||1/z,r + ra 8@l + 1217 prgllelo.nis | (4.23)
,d
and
{05k, (Wsh, ¥s1)) I
0 4.24
= = {Ioslie.r + 122 lleloocsa + 12174 g lepr + dodlocic |- (424
Us.a 211

Proof. The fact that W, is certainly a compact and convex subset of Q} x Q}, together with Lemma 4.3 and the continuity
of S (cf. (4.20) or (4.21)), allow to apply the Brouwer Theorem (cf. [35, Theorem 9.9-2]) to conclude the existence of at
least a solution to (4.8), and hence to (4.2). Next, the assumption (4.22) and the Banach fixed-point Theorem imply the
uniqueness. Finally, (4.23) and (4.24) follow from the a priori estimates (4.15) and (4.16), taking also into account that
lumllo.a.2 and [lugm — wshllo 4,2 are bounded by ry. O

4.4, Specific finite element subspaces

In this section we describe a way of choosing finite element subspaces H?, Q}, and Q} of H(divs/s; £2), L(£2), and
]Lﬁkew(.Q), respectively, that satisfy the hypotheses (H.1), (H.2), and (H.3) stated in Section 4.2, and then we provide
two specific examples of them. More precisely, given a stable triplet of finite element subspaces for the usual Hilbertian
framework of mixed linear elasticity, such that it verifies (H.1) and (H.2) (which is actually a common feature to most
of such triplets), we add a couple of additional feasible assumptions that allow to conclude that (H.3) is also satisfied.
Before dealing with the respective analysis in Section 4.4.2, we collect in what follows some definitions and results that
are needed later on.

4.4.1. Preliminaries

Hereafter, we make use of the notations from Section 4.1. In particular, given an integer £ > 0 and K € T, we let P,(K)
be the space of polynomials of degree < ¢ defined on K with vector and tensorial versions denoted by P;(K) := [P,(K)]"
and Py(K) := [P,(K)]™*", respectively. In addition, we let RT,(K) := P,(K) & P,(K)x be the local Raviart-Thomas space of
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order ¢ defined on K, where x stands for a generic vector in R". Furthermore, denoting by bk the bubble function on K,
which is given by the product of its n + 1 barycentric coordinates, we set the local bubble space of order ¢ as

By(K) := curl(bx Py(K)) if n=2, and By(K) := curl(bx P,(K)) if n=3,

where curl(v) :== (8"7“2 —;7"1) ifn=2andv:K — R and curl(v) :== V x v if n = 3 and v : K — R3. Then, having defined
the above local spaces, we now introduce corresponding global subspaces of L?(£2), L?(£2), and H(div; £2) (cf. (2.1)), as

follows

P[(Q) :

{vh cLX(Q): vilke Py(K) YK e Th},
Py(82) = [nh cLX(Q): mylke Pu(K) VK € T,,]

RT,(2) = {r,, € H(div; 2): thilke RT(K) Vie(l,....n}, VKe T,,},
and

By(2) = {theH(div;Q): thilce Be(K) Yie(l,....n}, VKeTh},

where tp,; denotes the ith-row of ;. We remark here that P,($2) and P,(£2) are also subspaces of L*(£2) and L*(£2),
respectively. In addition, the fact that L?(£2) is clearly contained in L*3(£2) with bounded injection, implies that H(div; £2)
is in turn continuously embedded in H(divy,3; £2) and there holds

ITlldivy 50 < c(2) lIllaive VT € H(div; £2), (4.25)

where ¢(£2) is a positive constant depending only on |$2|. It follows then that RT,(§2) and B,(§2) are subspaces of
H(divy/3; §2) as well. Moreover, denoting RT; o(£2) = RT,(£2) N Ho(diva3; £2) (cf. (3.2)), we recall from [17, Lemma
5.5] that, for each integer ¢ > 0, there exists a positive constant 3y, independent of h, such that

/ vy, - div(Ty)
sup 2 > Bo|Vhlloge YV € Py(R2). (4.26)

ThERTy o(£2) ”Th ||diV4/3;.Q
Th#0

4.4.2. Stable triplets for mixed linear elasticity and (H.3)
We now let HJ, Q¥, and Q) be finite element subspaces of H(div; £2), L*(£2), and L2, (£2), respectively, which satisfy

(H.1) and (H.2), and conform a stable triplet for mixed linear elasticity. In particular, denoting Hy := Hp N Hy(divy,3; £2),
the above means that there exists a positive constant 81, independent of h, such that

b(zh, (i, 14)
sup 20t o] Vi) € 0 x Q. (427)
rhEH‘;l [ITn llaiv; 2
wh#

Then, employing (4.25) and (4.27), we deduce that

b(zn, (V, n) 1 b(zn, (Vn, 14)
sup ) . sup 2 (V) By [Ivalo.c + lmlo.c ).
TheHy ||Th||diV4/3;.Q C(-Q) TheHy ||TI1||div;S2 C(Q)
T #0 70
and hence
b(zh, (i, 1)
sup (e ) > A Imnllo.e ¥ (V. 1) € Q) x Q. (4.28)
rhé:(;] ||Th||diV4/3;Q C(Q)
Th

In turn, assuming that there exists an integer £ > 0 such that RT,(£2) € Hy, which certainly yields RT; ¢(£2) € Hjy, we
find that

vy, - div(ty)
b(zh., (Vh. 1)) b(zh, (Vi, 1)) /_Q
e = sup ——— = sup =——— — [mpllo.c,
TheHy ||Th||diV4/3;.Q T €RTy o(£2) ”Th ||diV4/3;.Q T €RTy 0(£2) ”T’l ||diV4/3;Q
T #0 Th#0 Th#0

from which, assuming additionally that Q} < P,(£2), and using (4.26), we conclude that
b(‘[ha (vha 77h ))

TpeHy ”Th ||diV4/3;Q
Th#0

> BolVilloae — lmllo.e VY (Vh, 1) € QF x Q. (4.29)
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In this way, a suitable linear combination of (4.28) and (4.29) imply that H, and Q, = Q) x Q,f satisfy (H.3) (cf. (4.9))
with a positive constant 84 depending only on By, B1, and c(£2).
We have thus proved the following result.

Lemma 4.8. Let H7, Q}, and Q,’; be finite element subspaces of H(div; £2), L?(£2), and Likew(ﬂ), respectively, such that
they conform a stable triplet for linear elasticity. In addition, assume that there exists an integer £ > 0 such that RT,(£2) € Hf
and Qp < Py($2). Then, Hy := HJ N Ho(divy,s; £2) and Q, == Q) x Qh" verify (H.3) with a positive constant B4 independent

of h.

4.4.3. Two specific examples

In order to define specific finite element subspaces yielding the well-posedness of the Galerkin scheme introduced and
analyzed in Section 4, we now identify stable triplets for linear elasticity that satisfy (H.1), (H.2), and the hypotheses of
Lemma 4.8.

Our first example is PEERS,, the plane elasticity element with reduced symmetry of order £ > 0, whose stability was
originally proved in [36] for £ = 0 and n = 2, and later on established for £ > 0 and n € {2, 3} (see. e.g. [37]). Letting
C(2) == [C(£2)]™", the corresponding subspaces are given as follows:

HY = RT((2) ® B(2), Q} = P(2), and Q) = C(£2)NL2

skew

(2)NPe4(£2), (4.30)

which are easily seen to satisfy the aforementioned requirements. In particular, (H.2) follows from the divergence-free
property of B,(£2) and the inclusion div(]RTl(.Q)) C Py(£2), whereas the hypotheses of Lemma 4.8 are trivially met.
Our second example is AFW,, the Arnold-Falk-Winther element of order ¢ > 0, which, introduced and proved to be
stable in [38], is defined as:
Hf = P q(R2)NH(div; 2), QF = P«(£2), and Q) := L2

skew

(£2)NPy(£2). (4.31)

Again, (H.1) and (H.2) are straightforward, whereas the fact that RT,(K) < P;.{(K) for each K € 75, completes the
hypotheses of Lemma 4.8.

The approximation properties of the finite element subspaces defining PEERS, (cf. (4.30)) and AFW, (cf. (4.31),
which basically follow from the analogue properties of the Raviart-Thomas and AFW interpolation operators, and of the
orthogonal projectors ’P,‘; cLP(£2) — Py(£2) and 7P,‘f 1 LP(82) — P(82) (cf. [29, Proposition 1.135]), and which make use
of the commuting diagram properties and of the interpolation estimates of Sobolev spaces as well, are given as follows
(see also [31,39], [17, egs. (5.37) and (5.40)], [30]):

(AP}): there exists C > 0, independent of h, such that for each r € [0, £ + 1], and for each T € H'(£2) N Hy(divy3; £2)
with div(t) € W"43(£2), there holds

dist(z, H) = inf |7 = Tullawgsio < CH {I7le + 14V(Dlree] . (432)
h&€Hh

(AP}): there exists C > 0, independent of h, such that for each r € [0, £ + 1], and for each v € W"4(£2) there holds

dist(v, Q) = viggg [V —"Villoae < Ch |Vl aq. (4.33)
h
EIAIl’d;'): there exists C > 0, independent of h, such that for each r € [0, £ + 1], and for each n € H'(£2) N ]Likew(.Q) there
olds
dist(n, Q) = in& Im—npllo.e < Ch lInllr.q. (4.34)
LIS
The associated rates of convergence of our Galerkin scheme (4.2), implemented in each case with H, := Hj N

H(divy/3; £2) and Q; := Q} X Qz , are provided below in Section 5 after performing the respective a priori error analysis.

5. A priori error analysis

In this section we derive the a priori error analysis for the Galerkin scheme (4.2) considering arbitrary finite
element subspaces satisfying hypotheses (H.1), (H.2) and (H.3) (cf. Section 4.2). In addition, we define postprocessed
approximations of further variables of interest and establish its corresponding rates of convergence, which coincide with
those of the original unknowns. This fact constitutes a clear advantage of the present approach with respect to the usual
primal method since, in order for the latter to be able to provide approximations of those additional variables, numerical
differentiation procedures would need to be applied with the consequent loss of accuracy that they imply.
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5.1. The main estimates

We begin by introducing the following Strang-type estimate for saddle point problems. Its proof follows after slight
modifications of that of [30, Theorem 2.6].

Lemma 5.1. Let H and Q be reflexive Banach spaces, and let a : H x H — Rand b : H x Q — R be bounded bilinear forms
with bounding constants ||a|| and ||b||, respectively. Furthermore, let {Hp}n~0 and {Qn}n-0 be sequences of finite dimensional
subspaces of H and Q, respectively, and assume that a and b satisfy the hypotheses of Theorem 3.2 on H x Q and Hy x Q. In
turn, given F € H', G € Q,, and the sequences of functionals {Fy}s-o with F, € Hj, for each h > 0 and {Gy}p-0 With G, € Q;
for each h > 0, we let (o, u) € H x Q and (oy, up) € Hy x Qn be the unique solutions, respectively, to the problems

alo,t) + b(t,u) = F(1) VYVt eH, (5.1)
b(o,v) = G(v) YveQ, )
and
a(on, T) + b(Th, up) = Fn(th) V1, € Hy, (52)
b(on, vi) = Gpl(vp) Yo, € Q. :
Then, there holds
lo —onlly + llu—upllq < Gs,q1dist(o, Hy) + Cs 2 dist(u, Qp) (5.3)
+ Gs3IF = Fally, + Cs.a IG = Gallg, » :
with
a a b
Cs1 = (1 + U) <1 + ”~”> (1 + ”~”> ,
o B B
b b all|lb
Csop=1+ ”~” —I—u—l— I |~|! I ,
o B ap (5.4)

11 llal|
CGa==-+=(1+—),
:8 o

C54 = i (] + ”a”> <1+ ”(}”) i

where a and B are the positive constants satisfying (3.43) and (3.45), respectively, on Hp x Q.

S

Now, for the subsequent analysis we let (o7, (uf, y;)) € H x Q, (0%, (us, ¥5)) € H x Q and (o, (up, ) € Hy x Qu,
(ash, (usp, ys,,)) € Hy x Qp be the solutions of (3.18) and (4.2), respectively, and for the sake of convenience, we rewrite
both problems as follows:

ar(oy, T7) + b(‘[f, (uy, yf)) ’l?}l(‘l,’f), VYt eH,
b(oy. (v, mp)) = E}'(Vf, np), V(v ) €Q, (55)
ag(o5, 7o) + b(zs, (U, 7)) = Ft). Y1, €H,
b(os. (Ve 7)) = Gi(Vs.my). V(v 1) €Q,
and
as(om. Tp) + (. (up. vp) = F'(zp). V1m € Hy
b(om. (Va. 0m) = GO mm). Y (Vo ) € Qu (5.6)
a(osh, Ton) + b(Toh, (Ush, ¥)) = F"(zq). ¥ Tsn € Hp
b(o, (Vs Ng) = Go(Vsn, 0g), Y (Vsn, 1) € Qi
with
Fi(r) o =Fr(r) — cpluy, 77) — de(uys uy, 7p), Vi €H,
E‘(ts) = F(15) — ¢(ug, 75) — dg(ug; ug, 75), Vi, e H, (5.7)
F'(tn) = Fr(tpm) — c(upm, Tn) — dr(up: up, 7). YT € Hy,
F'tn) = F"(Th) — &(Ush, 7o) — ds(Ugy; Ugp, Tgn), ¥ Ton € Hy .

Then, since (5.5) and (5.6) have the same structure of the abstract problems (5.1) and (5.2), respectively, in what follows
we proceed similarly to [17] and apply Lemma 5.1 to derive the a priori error estimate for the Galerkin scheme (4.2). Let
us first establish the following upper bounds for the differences between the functionals introduced above.
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Lemma 5.2. There holds,

. 1 Ve
[ S Sl —=— +7||8||0 2 (Iusllo.ae + lumlloae) | Iur —umllose, (5.8)
[ , (ﬁ e loa T 2y "¥M0 (Il mllo.a) | 10— upllo.s
~ 1 ||Ve P
U,

-5, < [—=|-— + = llgllo.cce(luslioae + Iusllose) | IIus — tsllo.ae

h Vil ¢ lose 21 (5.9)

0
+j||5||0009(||uf||049+||ufh||049)||uf—ufh||04:2

Proof. Recalling that ¢; and dy (cf. (3.4)) are bilinear and trilinear forms, respectively, and summing and subtracting ug,
in the second component of dy, we deduce from (5.7) that for each g € Hy there holds

(FF —F") (z) = —¢; (0 — g, ) — (dy (w55 oy — wp, 7) — dy(uy — s gy, 7).
which together with (3.21) and (3.22), yields
|(F =) (zm)] < (lles |+ ldr i llo.ase + [0mllo.se)) 0y — uglloae I Tmlo.o-

Then, using the deflmtlons of |lcs]l and ||d¢]| (cf. (3.25)), the foregoing inequality implies (5.8). Analogously, according to
the definitions of F“ and F Fon (cf. (5.7)), it is easy to see that for each 7y, € Hy there holds

Tuy
(FY — ") (za) = Fe(wan) — B () — (15 — W, 71
- (ds(USQ Us — Ugp, Tgh) — ds(Us — Usp; Ugp, Tsh)),

and then, from (3.28), (3.29), (3.87), and the definitions of |cs|| and ||ds|| (cf. (3.32)), we conclude (5.9), which ends the
proof. O

Now we proceed to establish preliminary estimates for (o7 — o, (Uf —upm, ¥y — yp)) and (s — osh, (Us — Ush, Y5 — Vp))-

Lemma 5.3. There exist positive constants C;;, i € {1,2, 3, 4}, depending on s and other constants independent of the
discretization and physical parameters, such that

loy —omlu + luf —uplloae + 117 — Ymllo.e < Cr1dist(oy, Hp)
+ G dist((uy, ¥;), Qu) + Jp(data) |uy — up ||0,4;Q + Kr(data) [lus — usllo.a:0, (5.10)
with Jr(data) and Kr(data) given by
oL
TVl e lloae
+(r+12I8@)lo.e + 212 prgllelose ) +Gald@lo..
Kr(data) = Cralld(@)llo. -

Jr(data) :=

1Y L -
+ Cf,317f min{ay, & a}ll€llo,00; 2 <2||UD,f||1/2,F
! (5.11)

Proof. By applying Lemma 5.1 to the first and second equations of (5.5) and (5.6), we find that

oy — omllu + lluy — uplloae + 7y — )’ﬂ1||09 <G dlSt(Uf, Hp)

+ Gz dist((uy, ), Qu) + G5 B — L+ G 16 — G"llg; (5.12)

where the constants Cr;, i € {1, ..., 4}, are given by (5.4) with [la|| = |laf|| =
B = Ba > 0 (cf. (3.25), (3.50), (4.9)). In turn, from (3.83) we observe that

2y bl = Ibl = 1,& = oy = 51 and

(6 = &) wm 1| = 1)l {I1ur = Bnllo.so + s = Wnlloo | ¥l

for all (v, ) € Qn, which implies

l6f - 6"

o = 16@)oa I —unloaa + 10 —valosa | (5.13)
In this way, from estimates (5.8) (5.12) and (5.13), and the fact that (see (3.94) and (4.23))

llusllo,4;2 + llumllo,se
< 2min{ay, &f,d}{ZHUD,f”l/Z.F + (r +ra)llé(@)llo.e + 2|9|3/4pfg||8||o,oo;sz},

we readily obtain (5.10). O
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Lemma 5.4. There exist positive constants Cs;, i € {1, 2, 3}, depending on w4, W, and other constants independent of the
discretization and physical parameters, such that

llos — asnlln + us — Wsnllo.a:e + 175 — Yallo.e < Gadist(as, H) (5.14)
+ G2 dist((us, y5), Qn) + Js(data) [ur — uplloa.e + Ks(data) [[us — usllo 4.0 » ’

with Jy(data) and Ks(data) given by

o P
Js(data) = Cs,aﬂff min{ay, @r.a}ll€llo.co:2 ( 2Mupslliz.r + (1 +1a)ll8(@)llo.
1

+2121 prglle o0 )
1 \Y%
Ks(data) = GC3— %

vn p 0.4
+(r? + ri)ﬁ”ﬂhm;.@ +2121gllesr + ppsllo.cce )
1

(5.15)

1% -
+ Cs,aﬂfS min{as, as.q} 1@ lo,00:2 ( 2|lapslli/z,r
1

Proof. Analogously to the proof of Lemma 5.3, we apply Lemma 5.1 to the third and fourth equations of (5.5) and (5.6),
to obtain

los — osnlln + lus — Usplloa.0 + 175 — Yaullo,2

< Gudist(os, Hy) + G dist((s, ). Qo) + Ges [ —F"[, (5.16)
where the constants C;;, i € {1, ..., 3}, are given by (5.4) with |la|| = la|| = i bl = bl =1, & = as = ;712 and
B = B4 > 0 (cf. (3.32), (3.51), (4.9)). Then, the result follows from (5.9), (5.16), (3.94), (3.95), (4.23) and (4.24). O

The a priori error estimate for the Galerkin scheme (4.2) is provided next.

Theorem 5.5. Assume that the hypotheses of Theorems 3.12 and 4.7 hold, and let (o, (uy, y;)) € HxQ (o5, (us, y,)) € HxQ
and (o, (W, ¥p)) € Hy x Qu, (0h. (Ush, ¥44)) € Hy x Qu be the unique solutions of (3.18) and (4.2), respectively. Assume
further that

1
and Kr(data) + Ks(data) < 3 (5.17)
.11) and (5.15), respectively. Then, there holds

Jr(data) + Js(data) <

o NI =

with J;, Ky and J;, K given by (

>~ {llos = il + Iy — wllo.c + 17 = vulloa |
jetrsh (5.18)
= Y {Gdistlo H) + Gadist((w, 7). Q)
Jjetif s}
with Cs; and C;, i = 1, 2, specified in Lemmas 5.3 and 5.4, respectively.

Proof. Employing assumption (5.17), the result is a direct consequence of Lemmas 5.3 and 5.4. We omit further details. O

Similarly as we did for the assumptions (3.77), (3.78), and (3.93), we stress here that the feasibility of the hypotheses
in (5.17) depends finally on the data defining .7, K5, J5, and Ks (cf. (5.11) and (5.15)). In particular, it is easy to see that
a sufficient condition for (5.17) is given by the set of assumptions

1 1 1 1
Jr(data) < 1 Kr(data) < 1 Js(data) < 1 and Ky(data) < vk

which, in turn, are satisfied if, proceeding as for (3.77) and (3.78), individual constraints on each one of the terms defining
them are imposed. However, as already noticed in the case of the aforementioned hypotheses, the fact that some of
the constants involved are not known explicitly stops us of checking in practice the verification of those conditions.
Furthermore, we believe that only unrealistic data, with very sharp and unusual gradients, might fail (5.17). Indeed, some
of the numerical essays reported in Section 6 consider even delicate cases for which our proposed algorithm still performs
very well. In other words, and summarizing our point of view, (5.17) seems to be more a technical issue of the analysis
rather than a real limitation of the applicability of the method.

We end this section with the theoretical rate of convergence for the Galerkin scheme (4.2) discretized by the finite
element spaces introduced in Section 4.4.3.

Theorem 5.6. Assume that (3.93) holds and let (af, (uy, yf)) e HxQ (05, (ug, ys)) € H x Q be the unique solution of
(3.18). In addition, given £ > 0, we let H, x Qy be the pair defined by the PEERS, or AFW, elements introduced in (4.30)
and (4.31), respectively, and under assumption (4.22), we let (o7, (Up, ¥p)) € Hy x Qu, (05, (Ush, ¥5)) € Hy x Qu be the
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unique solution of (4.2). Assume further that (5.17) holds and that, given r € [0, £ + 1], 0j € H'(£2) N Hy(divy/3; 2) with
div(o;) € W-*3(2), uj € W-*(2) and y; € H'(2) N2, (£2) for j € {f, s}. Then there exists C > 0, independent of h, such
that

>~ {lles = il + oy = wllo.c + 17, = vulloe}
Jelfsh
= o Y {lojlee + 1Vl ase + Iwlae + 17}
Jeifs)

Proof. The result follows straightforwardly from Theorem 5.5 and the approximation properties (4.32), (4.33) and
(434). O

5.2. Computing further variables of interest

Here we introduce suitable approximations of further variables of interest, such as the stresses T; and T, the fluid
pressure ps and the gradient of the fluid and particle velocities Vuy and Vug, respectively, all of them written in terms
of the solution of the discrete problem (4.2). To that end, we first notice from (2.10) and (2.11) that Tf and T; satisfy the
identities

Tr =07 + pr(eus) @up and T = o5 + ps(pus) @ us + pr(eur) @ uy . (5.19)

Next, we observe that py, Vuy and Vus can be written in terms of Ty and T; as follows:
= 1tr(T) Vi = — ¢ + LY )1
pp= =2 tly), f = 20 1 -\ Wb

1 1/Ve
Vu, = T+ y,— = — -uy ) 1.
T e T n(¢ “)

Therefore, given the discrete solution (o7, (U, ¥p,)) € Hy x Qu, (05h, (Ush, ¥)) € Hy x Qu, of (4.2), we propose the post
processed approximations of Ts, Ty, pr, Vuy and Vuy defined by the following expressions

(5.20)

Tm=om + ,Of(Sllﬂ,) Qup, Ty =045+ ps(dug) ® ug, + :Of(guﬂl) & ugm,
Ve

1 1 1
= ——tr(Tp), Vup), = —T¢ — = — cug | L,
= = (). (Vo= T+ v — ( . fh) (521)

_ _1(Ve
(VU = @) T ¥~ < ¢ “Sh>ﬂ'

Notice that all the variables in (5.21) can be obtained in terms of the solution of (4.2) without applying any numerical
differentiation procedure, thus avoiding further sources of error, which constitutes a significant advantage of the present
mixed finite element method as compared with the usual primal formulation. In addition, it is easy to see that they
optimally converge to their exact counterparts. The latter is established in the following corollary whose proof is omitted
since it follows directly from (5.19), (5.20), (5.21), and Theorem 5.6.

Corollary 5.7. Given £ > 0, let H, x Qy be the pair defined by the PEERS, or AFW, elements introduced in (4.30) and (4.31),
respectively, and let (ay, (uy, y;)) € Hx Q (o5, (us, ,)) € Hx Q and (o, (U, ¥5)) € Hp x Qu, (0h, (Ush, ¥51)) € Hp X Qu
be the unique solutions of (3.18) and (4.2), respectively. Assume that the regularity hypotheses of Theorem 5.6 hold with
r € [0, £ 4+ 1]. Then, there exists C > 0, independent of h, such that

Ipy = Palo.c + D {7 = Tllo.z + 1785 = (Vo }
= (5.22)
=& Y- {lojlne + 1iv©@)lase + Iwlasn + 17lna}-
Jeif.s)

6. Numerical results

The realization of the numerical methods described in Section 5 has been carried out using the open-source finite
element library FEniCS [40]. A Newton-Raphson algorithm with null initial guesses and exact Jacobian is used to solve the
nonlinear set of equations. The condition of zero-averaged fluid pressure (translated in terms of tensor traces) is imposed
through a real Lagrange multiplier, which amounts to augmenting the algebraic systems by one row and one column;
and the solution of all linear systems appearing at each Newton-Raphson iteration is conducted with the multifrontal
massively parallel sparse direct solver MUMPS.
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Table 6.1
Example 1. Convergence history for the mixed finite element approximations of the coupled nonlinear problem in 2D, for different variants of the
scheme. DoF stands for the number of degrees of freedom associated with each method on each mesh refinement.

DoF e(oy) r(oy) e(uy) r(uy) e(ys) r(ys) e(os) r(os) e(uy) r(u) e(ys) r(ys)
AFW,-based formulation with ¢ =0

54 2.19e+-0 - 6.42e—1 - 1.08e+-0 - 1.07e+1 - 1.07e+0 - 1.04e+4-0 -
178 1.23e+0 0.832 3.27e—1 0.973 5.80e—1 0.900 5.32e+00 1.009 5.53e—1 0.955 4.86e—1 1.104
642 6.20e—1 0.987 1.66e—1 0.983 3.93e—1 0.559 2.59e+-00 1.040 2.79%e—1 0.990 251e—1 0.951
2434 3.11e—-1 0.998 8.29e—2 0.997 2.07e—1 0.930 1.28e+4-00 1.018 1.40e—1 0.998 1.27e—1 0.980
9474 1.55e—1 1.000 4.15e—2 1.000 1.04e—1 0.984 6.36e—1 1.007 6.98e—2 0.999 6.39e—2 0.995
37378 7.76e—2 1.000 2.07e—2 1.000 5.24e—2 0.996 3.17e—1 1.002 3.49e—2 1.000 3.20e—2 0.999
AFW,-based formulation with ¢ = 1

122 7.45e—1 - 1.30e—1 - 2.19e—1 - 2.96e+0 - 2.20e—1 - 2.46e—1 -
434 1.89e—1 1.975 3.84e—2 1.765 1.67e—1 0.389 6.39e—1 2214 5.60e—2 1.973 8.61e—2 1513
1634 4.70e—2 2.012 9.37e—3 2.034 4.70e—2 1.832 1.60e—1 1.994 1.41e-2 1.994 247e—2 1.799
6338 1.17e-2 2.005 2.32e—3 2.015 1.22e-2 1.949 4.03e—2 1.991 3.52e—3 1.999 6.45e—3 1.939
24962 2.92e-3 2.002 5.78e—4 2.004 3.10e—3 1.974 1.01e-2 2.000 8.79e—4 2.000 1.64e—3 1.979
99074 7.29e—4 2.001 1.44e—4 2.001 7.83e—4 1.986 2.52e-3 2.002 2.20e—4 2.000 4.12e—4 1.992
PEERS,-based formulation with ¢ =0

46 2.49e+-0 - 8.65e—1 - 4.47e+0 - 1.07e+1 - 1.08e+-0 - 1.57e+0 -
148 1.59e+0 0.647 6.45e—1 0.423 3.75e+0 0.252 5.73e+0 0.898 5.58e—1 0.955 5.56e—1 1.500
532 7.26e—1 1.131 191e—1 1.756 9.99e—1 1.909 2.92e+0 0.972 2.79%e—1 0.999 1.97e—1 1.500
2020 3.60e—1 1.011 8.78e—2 1.120 4.26e—1 1.230 1.47e+40 0.993 1.40e—1 0.999 8.81e—2 1.159
7876 1.76e—1 1.034 4.22e—2 1.057 1.71e—1 1.312 7.30e—1 1.009 6.98e—2 1.000 3.88e—2 1.184
31108 8.70e—2 1.016 2.08e—2 1.020 6.38e—2 1.428 3.64e—1 1.005 3.49e—2 1.000 1.55e—2 1.327
PEERS,-based formulation with ¢ =1

124 7.63e—1 - 1.36e—1 - 4.34e—1 - 2.71e+0 - 2.24e—1 - 5.33e—1 -
436 2.10e—1 1.863 4.02e—2 1.761 1.77e—1 1.490 7.01e—1 1.950 5.63e—2 1.992 1.50e—1 1.830
1636 5.39e—2 1.962 1.00e—2 2.006 7.22e—2 1.596 1.90e—1 1.882 1.41e-2 1.996 4.46e—2 1.848
6340 1.36e—2 1.983 2.39e—3 2.063 2.44e—2 1.668 4.95e—2 1.943 3.52e—3 2.001 1.31e-2 1.868
24964 3.43e-3 1.988 5.85e—4 2.034 7.07e—3 1.785 1.26e—2 1.977 8.80e—4 2.001 3.58e—3 1.873
99076 8.62e—4 1.994 1.45e—4 2.012 1.90e—3 1.895 3.17e-3 1.990 2.20e—4 2.001 9.30e—4 1.945

6.1. Test 1: accuracy verification using smooth manufactured solutions

We assess the convergence of the mixed finite element discretizations by manufacturing an exact solution of the
coupled system (2.10) defined over the domain £ := (0, 1)?

$0) = 5 — 5 sinG)cos(e).
4 cos(x1) sin(x3)

u(x) = | 7(sin®(x1) — cos?(x1)) cos(2x3) — 2 sin(x;) cos(xz) | |
(%) $(x)

e(x)=1-¢(x), u(x)= @“s(x), p(X) =x] — X5

The exact velocities and the smooth particle distribution are such they satisfy the mass conservation equations. Using these
closed-form solutions we require additional right-hand side load terms in (2.13), and the boundary Dirichlet velocities are
also adjusted in terms of these manufactured solutions. The model constants for the convergence test assume the values

=1, ps=22, pus=0.1, d;=0.1, ¢, =065 g=(0,—1),

P=1.266, r=03, M=0.571, m=3.65 ¢o=0.61, v =14.3.
Errors between exact and approximate solutions are denoted as

e(af) = ”af - afh||diV4/3;Q s e(uf) = ||uf - uh||0,4;.(2 s e()’f) = ”yf - yﬂl”O.Qv

8(0’5) = ”US - ‘75h||diV4/3;S2 s e(us) = ”us - ush||0,4;!2 ) 6(}/5) = “ys - }'shHO,Q B
and by r(x) we denote their corresponding rates of convergence, that is

log(e(x)/€'(x))
r = o V*x € (0, Uy, yg, 05, U, s
(*) log(h/h/) { fs Yf }'f sy Ug )’s}

where h and b’ denote two consecutive mesh sizes with errors e(x) and e'(x), respectively. Errors and corresponding
convergence rates are summarized in Table 6.1, focusing on approximations using AFW, and PEERS, elements for the two

271



G.N. Gatica, R. Oyarziia, R. Ruiz-Baier et al. Computers and Mathematics with Applications 84 (2021) 244-276

SR B

15001 20 30 51e%0 |5 (x) 54001 1.5 20 25 3.3e+00 [, (x) 6701 20  38e+00
D — ! J e — 7/11

5501 20 3.0 4.0 54e+00
-—

196400 3.0 35 44400

-

140400 melf.ev 230401 |

o, (%) Ju, (x)] Yea2(x)

Fig. 6.1. Example 1. Approximate solutions computed with PEERS, method with ¢ = 1. Magnitude of fluid pseudostress, fluid velocity magnitude,
component (1,2) of the vorticity fluid tensor, magnitude of particle pseudostress, solid velocity magnitude, and component (1,2) of the vorticity solid
tensor.

lowest-order polynomial degrees £ = 0, 1. In all cases we see the optimal convergence rates predicted by Theorem 5.6
for all individual unknowns. Also, we mention that in every run the number of Newton-Raphson iterations needed to
reach a residual-based convergence criterion with tolerance of le-6 was less than 4. Samples of approximate solutions
are shown in Fig. 6.1.

6.2. Test 2: velocity fields generated by synthetic particle distributions

For our second test we consider a two-dimensional fluidized bed of size 15 x 30 cm?, where the problem configuration
follows a simplification of the applicative cases discussed in [4,13]. The inlet boundary I"'™ is defined as a nozzle of 1 cm
width which is located at the center of the lower horizontal boundary, and through which fluid is injected with a uniform
profile. In addition, we generate a synthetic particle distribution

1 1
d(X) = % — % sin(gxl) cos(gxz), (6.1)

where ¢ is the mean concentration of the particles in the fluidized bed occupying 2. Note that, because of (2.16) the
formulation requires ¢ to be smooth and non-zero. The boundary conditions are now slightly different than in Example
1. The fluid velocity is still prescribed on the whole boundary, but it is split as follows

(0,U)* on I'",
6U K
— t
us p(X) = (0, 153 x1(15 — x1)) on It
0 on I—vwall =r \ {I—vin U I-vout},
whereas the particle velocities are allowed to slip on all boundaries
u;-n=0 on I, (6.2)

which implies that, at the discrete level, the first pairing appearing in the definition of F;"(tg,) (see the specification for
the continuous variational form in (3.8)) is replaced by

<E - Tsp, Ugp - E> s (6.3)

in 2D, where t is the tangent vector on the boundary. Such a boundary setup expresses, respectively, that we apply exactly
the fluidization uniform velocity at the entrance of the fluidized bed and that this is the same profile with which the fluid
leaves the bed, that there is no-slip boundary conditions for the fluid at rigid walls, and that there is slip of solid particles
at rigid walls but no particles should leave the fluidized bed. The remaining parameters characterizing (2.6), (2.7) and
(2.9), (6.1), are

pr =1.205, p;=27, pr=18-102 d;=4-10"", ¢, =0.65,
P=1078, r=0.3, M=0571, m=4.25 Ue{l,22}, ¢o=0.61,

taken as in [4,13] using CGS units, and representing the interaction between a liquid and solids in a fluidized bed. We
employ a uniform mesh and run the simulation of the interaction between the mass and momentum conservations in
the steady case. The outcome is shown in Fig. 6.2, where we see how the particle distribution generates velocity patterns
going from the nozzle to the outlet boundary, and how the particles slip on the boundaries. We also compare two cases for
different inlet velocities. The plots in Fig. 6.3 show distinct velocity patterns generated using the same particle distribution,
but where the intensity of the nozzle varies from U =1to U = 2.2.

We also conduct a modification of the previous tests by considering different specifications for the particle distribution.
Using the same rectangular channel as before we set

be(x) = %"(1 - tanh(xz ; 15)), dp(X) = ¢0<1 — exp[—0.5(x; — 7.5) — (xo — 15)2]>,
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' uf,l(x) ‘- um(x) == ﬁus,l(x) ‘- -us,z(x) == O(X) == Py (x)
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4.8e-02 2.0e+01
= |0, (x)

I

L _2 |
136400 1.3e400

' — 7[,12(7[)

9.8e-01
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— 1.4e-04
Py, o) I Gl o e

Fig. 6.2. Example 2A. Approximate solutions obtained with a lowest-order AFW, method. Velocity components and postprocessed pressure (top),
magnitude of fluid and particle pseudostress (bottom left), synthetic particle distribution with particle velocity line integral contours and sample of
distribution of ¢ and fluid velocity (bottom center panels), and entry (1,2) of the fluid and particle vorticity fields.

I— 2.2e+00
[ 1.0

— 1.4e-04

[uy ()]

Fig. 6.3. Example 2B. From left to right: Magnitudes of the particle and fluid velocities for two different magnitudes of the inlet fluid velocity.
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Fig. 6.4. Examples 2C (top row)-2D (bottom row). Particle distribution, magnitudes of the fluid and particle velocities, and particle velocity line
integral contours, for two different particle distributions.

where ¢y is as in examples 2A-B. In test 2C we also modify the boundary conditions setting the same parabolic profile for
the fluid velocity on the inlet and the outlet, in order to generate a Poiseuille fluid flow. For test 2D the boundary setup
is as in examples 2A-2B. As announced at the end of Section 4.1, the aim of these additional tests is to assess how the
method behaves in the low concentration limit ¢ &~ 0. Test 2C mimics a fluidized bed that is homogeneously expanded to
a height of approximately 15 and, from there, after a fast transition of the concentration field from approximately ¢o to
approximately 0, the flow would only be of almost pure fluid up until the outlet of the reservoir. For test 2D, we mimic
a (stationary) bubble at the center of the domain. In the center of the bubble, the particle concentration is actually zero.
The results indicate that the formulation performs relatively well in these scenarios, suggesting that the restrictions of
maintaining ¢ away from zero dictated by (2.16) and the corresponding hypotheses in Theorems 3.6, 3.7, 4.1 and 4.2, may
be waived at the implementation level. The numerical solutions for tests 2C and 2D are portrayed in Fig. 6.4.
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Fig. 6.5. Example 3. Magnitude of fluid and particle pseudostress (left top), particle distribution and magnitude fluid vorticity (left bottom), and
fluid (center) and particle (right) velocity streamlines showing also contour plots of the particle distribution. The simulations were performed with
the lowest-order PEERS, method.

6.3. Test 3: 3D version of Test 2B

As a proof of concept of the need of multidimensional models for fluidized beds we present a simple extension of the
previous tests to the 3D case. We consider a cylinder of height 30 cm and radius 10 cm. Again we start from a given
smooth particle distribution that we choose as

1 1
P(x) = % - E%)O sin(§x1> cos(§x2>(x3 —15)%.

The boundary conditions are set similarly as above, on the bottom disk of the cylinder we define as "™ a smaller region of
radius 1 cm on which we impose a uniform fluid velocity (0, 0, 1)*, on x3 = 30 we define another disk region I"°"t centered

at (0, 0, 30) and with radius 3 cm, where we set the parabolic outlet fluid velocity profile (0, 0, 11—2x1(15 —x1)%2(15 —x))%;

and the remainder of the boundary conforms ™", Again, we impose slip-velocity conditions for the solid particles
according to (6.2), and instead of (6.3) we now set (Tsn X n, Ug; X n). The remaining parameters assume the same values
as in the 2D case. The computations were performed with a coarse unstructured tetrahedral mesh for which the lowest-
order PEERS, elements use around 110k DoFs. The outcomes are collected in Fig. 6.5. The larger plots on the center and
right panels show the streamlines of fluid and particle velocities, where we also show also contours of ¢ that go over the
threshold 0.35. The fluid velocity streamlines indicate the direction of the flow and the generation of non-axisymmetric
recirculation patterns. The remaining panels show the magnitude of pseudostress and vorticity.
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