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a b s t r a c t

In this paper we propose and analyze a fully-mixed finite element method for the steady-
state model of fluidized beds. This numerical technique, which arises from the use of a
dual-mixed approach in each phase, is motivated by a methodology previously applied to
the stationary Navier–Stokes equations and related models. More precisely, we modify
the stress tensors of the fluid and solid phases by defining pseudostresses as phasic
stresses that include shear, pressure, and convective effects. Next, we eliminate the
pressures from the equations and derive constitutive relations depending only on the
aforementioned pseudostresses and the velocities of the fluid and the particles. In this
way, these variables, together with the skew-symmetric parts of the velocity gradients,
also named vorticities, become the only unknowns of our variational formulation. As
usual, the latter is obtained by testing against suitable functions, and then integrating
and integrating by parts, respectively, the equilibrium and the constitutive equations.
The particle pressure, a known function of the concentration, is given as a datum, and
the fluid pressure is computed afterwards via a postprocessing formula. The continuous
setting, lying in a Banach spaces framework rather than in a Hilbertian one, is rewritten
as an equivalent fixed-point equation, and hence the well-posedness analysis is carried
out by combining the Babuška–Brezzi theory, the Banach–Nečas–Babuška Theorem, and
the classical Banach fixed-point Theorem. Thus, existence of a unique solution in a
closed ball is guaranteed for sufficiently small data. In turn, the associated Galerkin
scheme is introduced and analyzed analogously, so that, under suitable assumptions on
generic finite element subspaces, and for sufficiently small data as well, the Brouwer and
Banach fixed-point Theorems allow to conclude existence and uniqueness of solution,
respectively. Specific finite element subspaces satisfying the required hypotheses are
described, and optimal a priori error estimates are derived. Finally, several numerical
examples illustrating the performance of the method and confirming the theoretical
rates of convergence, are reported.
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1. Introduction

We begin this section by explaining the physical origin of the fluidized bed concept, for which we consider a set of
olid particles in a reservoir through which there is an upward flow of a fluid. When the flow rate is small, the fluid flows
hrough the set of particles as if it was a porous medium. When the flow rate increases and reaches a level at which the
luid drag experienced by the particles is such that it balances their net weight, a few particles become mobile and a small
xpansion of the region occupied by the particles is observed. Any further increase on the flow rate causes the particles
o become fully mobile and to occupy a larger region of the reservoir. At this stage, the particles are said to be fluidized,
nd the system is usually referred to as a fluidized bed. The name fluidized bed is due to the fact that the particles in this
ondition can be stirred and poured as a fluid [1].
Fluidized beds are extensively used as chemical reactors in industrial scale due to the high levels of interaction between

he fluid and the particles that can be achieved in these flows [2]. Higher efficiencies in heat and mass transfer are obtained
n fluidized systems, when compared to fixed bed systems. In addition, the fact that particles behave as a fluid allows for a
ontinuous operation of the reactor, with old (used) particles being removed and new particles being fed in as necessary,
ithout the need to interrupt the operation of the system. Therefore, there is a strong industrial drive to understand the
ynamics of these flows, and mathematical and numerical modeling play a crucial role in this task.
The pioneering work in the mathematical modeling of fluidized beds was developed by Anderson & Jackson in [3]. In

his model, a volume averaging procedure is used to treat the fluidized particles as a continuum phase interpenetrating
he fluid, for which the balance equations of continuum mechanics for mass, momentum, and eventually energy, could be
ritten in terms of field quantities such as velocity and particle concentration, rather than in terms of the properties of
he individual particles. This model is often referred to as the two-fluid model of fluidized beds [1]. Despite the advantage
f not having to track individual particles, the drawback of this continuum approach is that unknown terms appear in the
veraged equations of conservation. Constitutive laws must be proposed to account for these terms, namely the fluid–
article interaction f orce and the particle phase stress tensor. There are several constitutive models discussed in the
iterature and there seems to be a general agreement that the particle stress tensor can be modeled very similarly to that
f a Newtonian fluid stress tensor, but with a particle pressure and a particle viscosity that depend on the local particle
oncentration of particles [3–5], and potentially also on the particle velocity fluctuations, for which another conservation
quation has to be written [6,7].
There are several examples on the literature that have presented results of numerical simulations of flows in fluidized

eds, based on different constitutive models and solved with different numerical schemes. For example, the evolution of
mall amplitude disturbances in both liquid– and gas–solid fluidized beds to finite amplitude structures was investigated
ith a two-fluid standard model in [4,8]. An industrial circulating fluidized bed was investigated in detail with a two-

luid model that used kinetic theory equations to account for particle stresses in [9]. In [10], a steady-state model based
n a two-fluid model was used to study the effect of turbulence on axisymmetrical fluidized beds. More recently, the
roblem involving the determination of the particle stress tensor was avoided by coupling the fluid phase equations
erived in [3] with the Discrete Element Method to solve the motion of individual particles [11–14], which is responsible
o feed the concentration and the velocities of the particles to the continuum fluid phase equation. Although several types
f discretizations were used in these works, in neither of them a rigorous study of the numerical scheme, nor an a priori
rror analysis, were carried out and, to the best knowledge of the authors, contributions in this direction do not seem to
e available in the literature. In particular, the use of the finite element methodology, and even more interestingly, the
erivation of mixed finite element methods taking advantages of the main features of the corresponding constitutive and
omentum equations, have not been considered at all so far.
Due to the aforementioned lack of utilization of finite element techniques, and motivated by the increasing develop-

ent during the last decade of new mixed finite element methods for solving diverse nonlinear models in continuum
echanics, we aim here to extend the applicability of this approach to fluidized beds. More precisely, since the
onlinearities involved in this model are similar to those from the Navier–Stokes and related equations, and rather than
sing a classical Hilbertian framework, we adapt to our present model the Banach spaces-based approach employed in
everal recent works (see, e.g., [15–19]), and which has shown to be very suitable to solve fluid-flow problems via dual-
ixed formulations and the resulting mixed finite element schemes. Indeed, one of its main advantages is the fact that it
oes not need to make use of any augmentation procedure thus leaving the variational formulations as simple as possible
nd employing the natural spaces arising from the equations for their respective settings. Furthermore, it allows, on one
and, to derive momentum conservative numerical schemes, and on the other hand, to obtain direct approximations
f further variables of interest, some of them through their incorporation as unknowns of the formulation, and others
hrough postprocessing formulae defined in terms of the discrete solution.

In order to provide further details on the above discussion, we begin by referring to the numerical method introduced
n [16] for the stationary Navier–Stokes problem. There, the system is rewritten in terms of the velocity and a suitable
seudostress tensor relating the gradient of the velocity, the pressure and the convective term, leading to a dual-mixed
omentum conservative scheme where both unknowns, velocity and psuedostress, are set in Banach spaces. The latter
llows to prove existence and uniqueness of solution by means of a fixed-point argument and the well-known Banach–
ečas–Babuška Theorem. In addition, the pressure, as well as the velocity gradient and the vorticity, can be obtained
245
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through a simple postprocessing of the solution without applying any numerical differentiation, thus avoiding further
sources of error. This technique has also been successfully applied to the Boussinesq system (see [17,19]), magneto-
hydrodynamics (see [18]) and flow-transport problems (see [15]), among others. For instance, the approach employed
in [19] to deal with the fluid part of the model is extended in [17] to the associated heat equation. In this way, a modified
mixed formulation is utilized in the latter, which is based on the introduction of the gradient of temperature and a vector
version of the Bernoulli tensor as auxiliary unknowns. As a consequence, the same Banach saddle-point structure arises
for both the fluid and energy equations. The analysis from [17] was later on adapted to the Oberbeck–Boussinesq system
in [20], where analogue results were obtained.

Consequently, in this work we introduce and analyze a fully-mixed finite element method for numerically solving
he steady-state model of fluidized beds. The rest of the paper is organized as follows. In Section 2 we introduce the
roblem of interest. More precisely, after collecting some preliminary notations and defining the evolutive fluidized bed
odel, its steady-state version is described there in terms of a dual-mixed approach in each phase. As a consequence,

he pseudostress and vorticity tensors in the fluid and solid parts, together with the corresponding velocity vector fields,
ecome the respective unknowns. Then, coherently with the above, the associated fully-mixed variational formulation is
erived and analyzed in Section 3 within a Banach framework. Indeed, besides providing the boundedness properties of
ll the forms involved, the equivalence of the continuous formulation with a fixed-point equation is established, and the
ell-definedness of the corresponding operator is proved. Finally, the Banach fixed-point Theorem is applied to conclude
he existence of a unique solution. In Section 4 we apply the same procedure from Section 3 to introduce and analyze
generic Galerkin scheme. In this way, under suitable assumptions on the finite element subspaces, and employing
gain fixed-point arguments, we are able to prove existence and then uniqueness of the discrete solution by applying
he Brouwer and Banach Theorems, respectively. In addition, it is shown that basically any stable triplet for the Hilbertian
ramework of mixed linear elasticity is also stable for our present Banach framework of the fluidized bed model. Next, in
ection 5 we develop the a priori error analysis of the Galerkin scheme and provide the associated rates of convergence.
inally, several illustrative numerical results are presented in Section 6.

. The model problem

.1. Preliminaries

Let us denote by Ω ⊆ Rn, n ∈ {2, 3} a given bounded domain with polyhedral boundary Γ , and denote by n the
utward unit normal vector on Γ . Standard notations will be adopted for Lebesgue spaces Lp(Ω), with p ∈ [1, ∞] and

Sobolev spaces W r,p(Ω) with r ≥ 0, endowed with the norms ∥ · ∥0,p;Ω and ∥ · ∥r,p;Ω , respectively, whose vectorial and
tensorial versions are denoted in the same way. Note that W 0,p(Ω) = Lp(Ω) and if p = 2, we write Hr (Ω) in place of

r,2(Ω), with the corresponding Lebesgue and Sobolev norms denoted by ∥ · ∥0,Ω and ∥ · ∥r,Ω , respectively. We also
rite |·|r,Ω for the Hr -seminorm. In addition, H1/2(Γ ) is the spaces of traces of functions of H1(Ω) and H−1/2(Γ ) denotes

ts dual. With ⟨·, ·⟩ we denote the corresponding product of duality between H1/2(Γ ) and H−1/2(Γ ). By S and S we will
enote the corresponding vectorial and tensorial counterparts, respectively, of the generic scalar functional space S. In
urn, for any vector fields v = (vi)i=1,n and w = (wi)i=1,n we set the gradient, symmetric part of the gradient, divergence,
nd tensor product operators, as

∇v :=

(
∂vi

∂xj

)
i,j=1,n

, e(v) :=
1
2

{
(∇v) + (∇v)t

}
,

div v :=

n∑
j=1

∂vj

∂xj
, and v ⊗ w := (viwj)i,j=1,n .

In addition, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div(τ) be the divergence operator div acting along
the rows of τ, and define the transpose, the trace, the tensor inner product, and the deviatoric tensor, respectively, as

τt
:= (τ ji)i,j=1,n, tr(τ) :=

n∑
i=1

τii, τ : ζ :=

n∑
i,j=1

τijζij, and τd
:= τ −

1
n
tr(τ)I,

here I is the identity tensor in Rn×n. For simplicity, in what follows we denote

(v, w)Ω :=

∫
Ω

vw, (v,w)Ω :=

∫
Ω

v · w, (v,w)Γ :=

∫
Γ

u · v and (τ, ζ)Ω :=

∫
Ω

τ : ζ.

Furthermore, we recall that the Hilbert space

H(div; Ω) :=

{
τ ∈ L2(Ω) : div(τ) ∈ L2(Ω)

}
, (2.1)
246
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2
div;Ω := ∥τ∥

2
0,Ω + ∥div(τ)∥2

0,Ω is standard in the realm of mixed problems. In turn,

given p ≥
2n

n + 2
, in what follows we will also employ the Banach space H(divp; Ω) defined by

H(divp; Ω) :=

{
τ ∈ L2(Ω) : div(τ) ∈ Lp(Ω)

}
, (2.2)

endowed with the norm ∥τ∥divp;Ω :=

(
∥τ∥

2
0,Ω + ∥div(τ)∥2

0,p;Ω

)1/2
.

2.2. The fluidized bed model

We assume that the domain Ω is the region in which a large number of solid particles is suspended by an upwards
fluid flow of either a liquid or a gas. In the following, we shall focus our attention on the models used in [4] and, more
recently, in [8]. Therefore, letting g be the (constant) acceleration of gravity and denoting the fluid viscosity by µf , the
fluid density by ρf , the density of the particles by ρs, and a final time by T, we are interested in the model problem
described by the following set of equations:

ρf ε

(∂uf

∂t
+
(
∇uf

)
uf

)
= div Tf − F (uf ,us) + ερf g in Ω × (0, T] ,

Tf = −pf I + 2µf e(uf )d in Ω × (0, T] ,
∂ε

∂t
+ div(εuf ) = 0 in Ω × (0, T] ,

(2.3)

ρs φ

(∂us

∂t
+
(
∇us

)
us

)
= div (Ts − Tf ) + F (uf ,us) + φρs g in Ω × (0, T] ,

Ts = −ps(φ) I + 2µs(φ) e(us)d in Ω × (0, T] ,
∂φ

∂t
+ div(φus) = 0 in Ω × (0, T] ,

(2.4)

where the unknowns uf , us, pf , φ and ε represent, respectively, the velocity of the fluid, the velocity of the particles, the
pressure on the fluid phase, the concentration of particles and the void fraction. Note that the concentration of particles
φ and the void fraction ε satisfy the identity

φ + ε = 1 in Ω . (2.5)

The stress tensor of the fluid phase is denoted by Tf and that of the solid phase by Ts. The particle pressure ps : R → R is
a function of the particle concentration φ given by [4,8]:

ps(φ) := Pφ3exp
(

rφ
φp − φ

)
, (2.6)

here P, r are constants that allow for changes in the intensity and the slope of the particle pressure, and φp is the
aximum close random packing of the spheres, usually taken as φp = 0.64. The particle viscosity µs : R → R is given
y [4]:

µs(φ) :=
Mφ

1 −

(
φ

φp

)1/3 , (2.7)

here the constant M is also used to set the range of values of the particle viscosity. Finally, the fluid–particle interaction
orce F : Rn

× Rn
→ Rn is a function of φ, uf and us, which usually takes the form of a viscous drag given by [4]:

F (uf ,us) := δ(φ) (uf − us) , (2.8)

ith δ : R → R denoting the drag coefficient based on the Richardson & Zaki correlation [21]:

δ(φ) :=
(ρs − ρf )g

vt

φ

(1 − φ)m−1 . (2.9)

he experimental coefficient m is normally taken on the range 3 ≤ m ≤ 5 [21].

.3. The steady-state model

In what follows we consider the uncoupling between (φ, ε) and (uf ,us, pf ) resulting from the steady-state counterpart
f (2.3)–(2.5), that is, given φ and ε such that φ + ε = 1 in Ω , we seek uf , us, and pf in suitable spaces such that

ρf ε
(
∇uf

)
uf = div Tf − F (uf ,us) + ερf g in Ω ,

Tf = −pf I + 2µf e(uf )d in Ω , div(εuf ) = 0 in Ω ,

ρs φ
(
∇us

)
us = div (Ts − Tf ) + F (uf ,us) + φρs g in Ω ,

d

(2.10)
Ts = −ps(φ) I + 2µs(φ) e(us) in Ω , and div(φus) = 0 in Ω .
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We first observe, thanks to the divergence-free property for εuf and φus (cf. second and fourth rows of (2.10)), that there
hold

div
(
(εuf ) ⊗ uf

)
= ε

(
∇uf

)
uf and div

(
(φus) ⊗ us

)
= φ

(
∇us

)
us in Ω.

Then, bearing in mind the expressions of Tf and Ts, we now introduce the pseudostress tensors

σ f := 2µf e(uf )d − ρf (εuf ) ⊗ uf − pf I in Ω, and
σs := 2µs(φ) e(us)d − ρs(φus) ⊗ us − ρf (εuf ) ⊗ uf − ps(φ)I in Ω ,

(2.11)

whence the first and third rows of (2.10) can be rewritten, respectively, as follows

div(σ f ) − F (uf ,us) = −ερf g in Ω , and
div(σs) + F (uf ,us) = div(σ f ) − φρsg in Ω .

(2.12)

Equivalently, replacing div(σ f ) from the first equation of (2.12) into the second one, and keeping the former as it is, we
arrive at

div(σ f ) − F (uf ,us) = −ερf g in Ω , and
div(σs) = −(ερf + φρs)g in Ω .

(2.13)

In addition, it also follows from (2.11) that

tr(σ f ) = −ρf tr
(
(εuf ) ⊗ uf

)
− npf in Ω , and

tr(σs) = −tr
(
ρs(φus) ⊗ us + ρf (εuf ) ⊗ uf

)
− nps(φ) in Ω ,

from which we deduce that

pf = −
1
n
tr
(
σ f + ρf (εuf ) ⊗ uf

)
in Ω , and

ps(φ) = −
1
n
tr
(
σs + ρs(φus) ⊗ us + ρf (εuf ) ⊗ uf

)
in Ω .

(2.14)

In this way, replacing the foregoing expressions for pf and ps(φ) back into (2.11), and recalling that e(uf )d = e(uf ) −
1
n tr
(
e(uf )

)
I = e(uf ) −

1
n div(uf ) I, and similarly for e(us)d, we find that

σd
f = 2µf e(uf ) − ρf

(
(εuf ) ⊗ uf

)d
−

2µf

n
div(uf ) I in Ω, and

σd
s = 2µs(φ)e(us) − ρs

(
(φus) ⊗ us

)d
− ρf

(
(εuf ) ⊗ uf

)d
−

2µs(φ)
n

div(us) I in Ω.

(2.15)

t this point we notice that, similarly to [22], and employing again the incompressibility conditions from (2.10), one easily
inds that the divergence terms of the foregoing equations can be replaced as follows

div(uf ) = −
∇ε

ε
· uf and div(us) = −

∇φ

φ
· us in Ω . (2.16)

Furthermore, for sake of uniqueness of the pressure solution pf , we impose the condition∫
Ω

pf = 0,

which, according to the first equation in (2.14), is equivalent to establishing∫
Ω

tr(σ f ) = −

∫
Ω

tr
(
ρf (εuf ) ⊗ uf

)
. (2.17)

n turn, since ps(φ) is explicitly known in terms of φ (cf. (2.6)), we derive from the second equation in (2.14) that∫
Ω

tr(σs) = −

∫
Ω

{
nps(φ) + tr

(
ρs(φus) ⊗ us + ρf (εuf ) ⊗ uf

)}
. (2.18)

e remark that the identities (2.17) and (2.18) are crucial to solve later on for σ f and σs. The description of our model
ontinues with the introduction of the skew-symmetric tensors

γ f :=
1
2

{
∇uf − (∇uf )t

}
and γ s :=

1
2

{
∇us − (∇us)t

}
,

so that the strain tensors e(uf ) and e(us) can be decomposed as

e(uf ) = ∇uf − γ f and e(us) = ∇us − γ s . (2.19)

inally, given uD,f , uD,s ∈ H1/2(Γ ), we consider the Dirichlet boundary conditions for uf and us given by

u = u and u = u on Γ . (2.20)
f D,f s D,s
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We stress here that (2.20) makes sense under the assumption that us and uf are sought originally in H1(Ω), which, in
urn, implies that γ s and γ f belong to L2

skew(Ω), where

L2
skew(Ω) :=

{
η ∈ L2(Ω) : ηt = − η

}
.

Summarizing, the steady-state model (2.10) is now reformulated in terms of Eqs. (2.13), (2.15), (2.17), (2.18), (2.19), and
(2.20). The unknowns of the global system are the tensors σ f and σs, the vorticity tensors γ s and γ f , and the velocity
vector fields uf and us, whereas the pressure scalar field pf is easily computed by using the postprocessing formula given
by the first equation of (2.14).

3. The variational formulation

In this section we derive the variational setting of the aforementioned reformulation of the steady-state model (2.10),
and then we analyze its solvability.

3.1. A fully-mixed approach

We begin by observing, thanks to the Cauchy–Schwarz inequality and the uniform boundedness of ε and φ by 1, that
he tensors σd

f , σ
d
s ,
(
(εuf )⊗uf

)d, and ((φus)⊗us
)d appearing in (2.15), are integrable against τ ∈ L2(Ω), if the pairs (σ f , σs)

nd (uf ,us) are assumed to live in L2(Ω) × L2(Ω) and L4(Ω) × L4(Ω), respectively. Similarly, we deduce, using now the
ölder inequality, that the terms in (2.13) involving the divergence operator div are integrable against corresponding test
unctions in L4(Ω) if both div(σ f ) and div(σs) belong to L4/3(Ω). The above suggests to look for the unknowns σ f and σs
n H(div4/3; Ω), where, according to (2.2), we set

H(div4/3; Ω) :=

{
τ ∈ L2(Ω) : div(τ) ∈ L4/3(Ω)

}
.

hen, we notice that there holds

H(div4/3; Ω) := H0(div4/3; Ω) ⊕ R I , (3.1)

here

H0(div4/3; Ω) :=

{
τ ∈ H(div4/3; Ω) :

∫
Ω

tr(τ) = 0
}

, (3.2)

hich means that for each tensor τ ∈ H(div4/3; Ω) there exist unique τ0 ∈ H0(div4/3; Ω) and d0 :=
1

n|Ω|

∫
Ω
tr(τ) ∈ R,

uch that τ = τ0 + d0I. In particular, we have the decompositions

σ f = σ f ,0 + df ,0 I and σs = σs,0 + ds,0 I,

here σ f ,0, σs,0 ∈ H0(div4/3; Ω), and the constants df ,0 and ds,0 are computed according to the foregoing definition of
the generic constant d0, and employing (2.17) and (2.18), respectively, which gives

df ,0 := −
1

n|Ω|

∫
Ω

tr
(
ρf (εuf ) ⊗ uf

)
and

ds,0 := −
1

n|Ω|

∫
Ω

{
nps(φ) + tr

(
ρs(φus) ⊗ us + ρf (εuf ) ⊗ uf

)}
.

As a consequence, and regarding the unknowns σ f and σs, it only remains to find their H0(div4/3; Ω)-components σ f ,0
and σs,0, which, because of the constant tensorial components given by df ,0 I and ds,0 I, are easily shown to satisfy exactly
the same Eqs. (2.13) and (2.15) satisfied by σ f and σs. In this way, from now on we denote σ f ,0 and σs,0 by simply σ f
and σs, and look for them in H0(div4/3; Ω), and satisfying the aforementioned equations. In this regard, we now notice
that there is no need to explicitly impose the testing of (2.15) with multiples of I, since, in doing so, both sides of the
equations are nullified, which means that (2.15) is implicitly satisfied.

According to the above discussion, and bearing in mind (3.1), we now proceed to test the equations of (2.15) with
functions inH0(div4/3; Ω). Indeed, multiplying the first equation of (2.15) by τ f ∈ H0(div4/3; Ω), dividing by 2µf , replacing
e(uf ) by its decomposition from (2.19), integrating by parts, and utilizing the first identity of (2.16) and the Dirichlet
boundary condition for uf , we obtain

a (σ , τ ) + b
(
τ , (u , γ )

)
+ c (u , τ ) + d (u ;u , τ ) = F (τ ) , (3.3)
f f f f f f f f f f f f f f f
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for all τ f ∈ H0(div4/3; Ω), where the bilinear forms af , b, and cf , the trilinear form df , and the linear functional Ff are
efined by

af (ζf , τ f ) :=
1

2µf

∫
Ω

ζdf : τd
f ,

b
(
τ f , (vf , ηf )

)
:=

∫
Ω

vf · div(τ f ) +

∫
Ω

ηf : τ f ,

cf (vf , τ f ) := −
1
n

∫
Ω

(
∇ε

ε
· vf
)
tr(τ f ) ,

df (wf ; vf , τ f ) :=
ρf

2µf

∫
Ω

(
(εwf ) ⊗ vf

)d
: τ f ,

(3.4)

nd

Ff (τ f ) :=
⟨
τ f n,uD,f

⟩
, (3.5)

or all ζf , τ f ∈ H0(div4/3; Ω), for all vf , wf ∈ L4(Ω), and for all ηf ∈ L2
skew(Ω). Similarly, multiplying now the second

quation of (2.15) by τs ∈ H0(div4/3; Ω), dividing by 2µs(φ), replacing e(us) by its decomposition from (2.19), integrating
y parts, utilizing the second identity of (2.16) and the Dirichlet boundary condition for us, and denoting from now on
:= (uf ,us), we obtain

as(σs, τs) + b
(
τs, (us, γ s)

)
+ cs(us, τs) + ds(us;us, τs) = Fus (τs) , (3.6)

or all τs ∈ H0(div4/3; Ω), where the bilinear forms as and cs, the trilinear form ds, and the linear functional Fus are defin-
d by

as(ζs, τs) :=

∫
Ω

1
2µs(φ)

ζds : τd
s ,

cs(vs, τs) := −
1
n

∫
Ω

(
∇φ

φ
· vs
)
tr(τs) ,

ds(ws; vs, τs) :=

∫
Ω

ρs

2µs(φ)

(
(φws) ⊗ vs

)d
: τs ,

(3.7)

nd

Fus (τs) :=
⟨
τsn,uD,s

⟩
−

∫
Ω

ρf

2µs(φ)

(
(εuf ) ⊗ uf

)d
: τs , (3.8)

or all ζs, τs ∈ H0(div4/3; Ω), and for all vs, ws ∈ L4(Ω). Note that Fus is denoted in this way irrespective of the fact that
t only depends on the first component uf of u. Next, testing the equations of (2.13) against vf ∈ L4(Ω) and vs ∈ L4(Ω),
espectively, we obtain∫

Ω

vf · div(σ f ) −

∫
Ω

F (u) · vf = −

∫
Ω

ερf g · vf ∀ vf ∈ L4(Ω) , (3.9)

nd ∫
Ω

vs · div(σs) = −

∫
Ω

(ερf + φρs)g · vs ∀ vs ∈ L4(Ω) . (3.10)

inally, the symmetries of σ f and σs are imposed weakly as∫
Ω

σ f : ηf = 0 ∀ ηf ∈ L2
skew(Ω) (3.11)

nd ∫
Ω

σs : ηs = 0 ∀ ηs ∈ L2
skew(Ω) , (3.12)

o that after adding (3.11) and (3.12) to (3.9) and (3.10), respectively, we end up with

b
(
σ f , (vf , ηf )

)
= Gu

f (vf , ηf ) ∀ (vf , ηf ) ∈ L4(Ω) × L2
skew(Ω) (3.13)

nd

b
(
σs, (vs, ηs)

)
= Gs(vs, ηs) ∀ (vs, ηs) ∈ L4(Ω) × L2

skew(Ω) , (3.14)

here

Gu
f (vf , ηf ) :=

∫
F (u) · vf −

∫
ερf g · vf , (3.15)
Ω Ω
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and

Gs(vs, ηs) := −

∫
Ω

(ερf + φρs)g · vs . (3.16)

n this way, the fully-mixed variational formulation of (2.10) reduces basically to Eqs. (3.3), (3.6), (3.13), and (3.14). More
recisely, introducing the spaces

H := H0(div4/3; Ω) and Q := L4(Ω) × L2
skew(Ω) , (3.17)

ith norms ∥τ∥H := ∥τ∥div4/3;Ω for all τ ∈ H, and ∥(v, η)∥Q :=
{
∥v∥2

0,4;Ω + ∥η∥0,Ω
}1/2 for all (v, η) ∈ Q, we seek

σ f , (uf , γ f )
)

∈ H × Q and
(
σs, (us, γ s)

)
∈ H × Q such that

af (σ f , τ f ) + b
(
τ f , (uf , γ f )

)
+ cf (uf , τ f ) + df (uf ;uf , τ f ) = Ff (τ f ) ,

b
(
σ f , (vf , ηf )

)
= Gu

f (vf , ηf ) ,
as(σs, τs) + b

(
τs, (us, γ s)

)
+ cs(us, τs) + ds(us;us, τs) = Fus (τs) ,

b
(
σs, (vs, ηs)

)
= Gs(vs, ηs) ,

(3.18)

or all
(
τ f , (vf , ηf )

)
∈ H × Q and for all

(
τs, (vs, ηs)

)
∈ H × Q .

We end this section by establishing the boundedness properties of all the forms involved in (3.18). Firstly, regarding
f , b, cf , df , Ff , and Gu

f , we notice from (3.4), (3.5), and (3.15), that direct applications of the Cauchy–Schwarz and Hölder
nequalities, combined with the boundedness of the normal trace operator in H(div4/3; Ω), and the expression for F (u)
given by (2.8), yield

|af (ζf , τ f )| ≤ ∥af ∥ ∥ζf ∥0,Ω ∥τ f ∥0,Ω , (3.19)

|b
(
τ f , (vf , ηf )

)
| ≤ ∥b∥ ∥τ f ∥H ∥(vf , ηf )∥Q , (3.20)

|cf (vf , τ f )| ≤ ∥cf ∥ ∥vf ∥0,4;Ω ∥τ f ∥0,Ω , (3.21)

|df (wf ; vf , τ f )| ≤ ∥df ∥ ∥wf ∥0,4;Ω ∥vf ∥0,4;Ω ∥τ f ∥0,Ω , (3.22)

|Ff (τ f )| ≤ ∥Ff ∥ ∥τ f ∥H , and (3.23)

|Gu
f (vf , ηf )| ≤ ∥Gu

f ∥ ∥vf ∥0,4;Ω , (3.24)

where

∥af ∥ =
1

2µf
, ∥b∥ = 1 , ∥cf ∥ =

1
√
n

∇ε

ε


0,4;Ω

,

∥df ∥ =
ρf

2µf
∥ε∥0,∞;Ω , ∥Ff ∥ = ∥uD,f ∥1/2,Γ , and

∥Gu
f ∥ = ∥δ(φ)∥0,Ω ∥uf − us∥0,4;Ω + |Ω|

3/4 ρf g ∥ε∥0,∞;Ω .

(3.25)

n turn, in order to derive the respective bounds for as, cs, ds, Fus , and Gu
s , we assume from now on that µs(φ) is bounded

bove and below, which means that there exist positive constants µ1 and µ2, independent of the given φ, such that

0 < µ1 ≤ µs(φ) ≤ µ2 . (3.26)

quivalently, and according to (2.7), the above means that φ is assumed to remain bounded away from its lower and upper
ounds given by 0 and φp, respectively. Needless to say, this is precisely the case of fluidized beds. Then, proceeding as
or (3.19)–(3.24), we find that

|as(ζs, τs)| ≤ ∥as∥ ∥ζs∥0,Ω ∥τs∥0,Ω , (3.27)

|cs(vs, τs)| ≤ ∥cs∥ ∥vs∥0,4;Ω ∥τs∥0,Ω , (3.28)

|ds(ws; vs, τs)| ≤ ∥ds∥ ∥ws∥0,4;Ω ∥vs∥0,4;Ω ∥τs∥0,Ω , (3.29)

|Fus (τs)| ≤ ∥Fus ∥ ∥τs∥H , and (3.30)

|G (v , η )| ≤ ∥G ∥ ∥v ∥ , (3.31)
s s s s s 0,4;Ω
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where

∥as∥ =
1

2µ1
, ∥cs∥ =

1
√
n

∇φ

φ


0,4;Ω

, ∥ds∥ =
ρs

2µ1
∥φ∥0,∞;Ω ,

∥Fus ∥ = ∥uD,s∥1/2,Γ +
ρf

2µ1
∥ε∥0,∞;Ω ∥uf ∥

2
0,4;Ω , and

∥Gs∥ = |Ω|
3/4 g ∥ερf + φρs∥0,∞;Ω .

(3.32)

.2. A fixed-point approach

In what follows we proceed as in related works (see, e.g. [15,17,23–27]), and [28], and introduce fixed-point strategies
o analyze the solvability of (3.18). To this end, we first define the operator Θf : L4(Ω) × L4(Ω) → L4(Ω) as

Θf (w) := ûf ∀w := (wf ,ws) ∈ L4(Ω) × L4(Ω) , (3.33)

here
(̂
σ f , (̂uf , γ̂ f )

)
∈ H×Q is the unique solution (to be confirmed below) of the first two equations of (3.18) when the

irst component uf of df and the superscript u of Gu
f are replaced by wf and w, respectively, that is

af (̂σ f , τ f ) + b
(
τ f , (̂uf , γ̂ f )

)
+ cf (̂uf , τ f ) + df (wf ; ûf , τ f ) = Ff (τ f ) ,

b
(̂
σ f , (vf , ηf )

)
= Gw

f (vf , ηf ) ,
(3.34)

or all
(
τ f , (vf , ηf )

)
∈ H × Q. In turn, we let Θs : L4(Ω) × L4(Ω) → L4(Ω) be the operator given by

Θs(w) := ûs ∀w := (wf ,ws) ∈ L4(Ω) × L4(Ω) , (3.35)

here
(̂
σs, (̂us, γ̂ s)

)
∈ H × Q is the unique solution (to be confirmed below) of the last two equations of (3.18) when the

irst component us of ds and the superscript u of Fus are replaced by ws and w, respectively, that is

as (̂σs, τs) + b
(
τs, (̂us, γ̂ s)

)
+ cs (̂us, τs) + ds(ws; ûs, τs) = Fws (τs) ,

b
(̂
σs, (vs, ηs)

)
= Gs(vs, ηs) ,

(3.36)

or all
(
τs, (vs, ηs)

)
∈ H × Q . Then, we set the operator S : L4(Ω) × L4(Ω) → L4(Ω) × L4(Ω) as

S(w) :=
(
Θf (w), Θs(w)

)
∀w := (wf ,ws) ∈ L4(Ω) × L4(Ω) , (3.37)

and readily see that solving (3.18) is equivalent to seeking a fixed-point of S, that is: find w ∈ L4(Ω) × L4(Ω) such that

S(w) = w . (3.38)

Alternatively, one could define an operator T : L4(Ω) × L4(Ω) → L4(Ω) × L4(Ω), either as

T (w) :=
(
Θf (w), Θs(Θf (w),ws)

)
∀w := (wf ,ws) ∈ L4(Ω) × L4(Ω),

or

T (w) :=
(
Θf (wf , Θs(w)), Θs(w)

)
∀w := (wf ,ws) ∈ L4(Ω) × L4(Ω),

so that, in both cases, solving (3.18) is equivalent to seeking a fixed-point of T as well, that is: find w ∈ L4(Ω) × L4(Ω)
such that

T (w) = w.

Nevertheless, for sake of clarity of the exposition, in what follows we concentrate only on the operator S. Indeed, while
the algebraic manipulations of T are a bit more cumbersome, all the analyses and results that we provide below for S can
be extended to T by performing minor modifications.

3.3. Well-definedness of the operators Θf and Θs

In this section we apply the Banach–Nečas–Babuška Theorem (also know as the generalized Lax–Milgram Lemma), and
the classical Babuška–Brezzi theory, both in Banach spaces, to show that the problems (3.34) and (3.36) are well-posed,
which means, equivalently, that the operators Θf and Θs are well-defined. We begin by recalling the aforementioned
results (cf. [29, Theorems 2.6 and 2.34]).

Theorem 3.1. Let H and Q be Banach spaces such that Q is reflexive, and let a : H × Q −→ R be a bounded bilinear form.
Assume that

(i) there exists α > 0 such that

sup
v∈Q
v ̸=0

a(w, v)
∥v∥Q

≥ α ∥w∥H ∀ w ∈ H , (3.39)
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(ii) there holds

sup
w∈H

a(w, v) > 0 ∀ v ∈ Q, v ̸= 0 . (3.40)

Then, for each F ∈ Q′ there exists a unique u ∈ H such that

a(u, v) = F (v) ∀ v ∈ Q , (3.41)

and the following a priori estimate holds

∥u∥H ≤
1
α

∥F∥Q′ . (3.42)

oreover, (i) and (ii) are also necessary conditions for the well-posedness of (3.41).

heorem 3.2. Let H and Q be reflexive Banach spaces, and let a : H × H −→ R and b : H × Q −→ R be bounded bilinear
orms with induced operators A ∈ L(H,H′) and B ∈ L(H,Q′), respectively. In addition, let V be the null space of B, and assume
hat

(i) there exists α > 0 such that

sup
τ∈V
τ ̸=0

a(ζ , τ )
∥τ∥H

≥ α ∥ζ∥H ∀ ζ ∈ V , (3.43)

(ii) there holds

sup
τ∈V

a(τ , ζ ) > 0 ∀ ζ ∈ V, ζ ̸= 0 , (3.44)

(iii) there exists β such that

sup
τ∈H
τ ̸=0

b(τ , v)
∥τ∥H

≥ β ∥v∥Q ∀ v ∈ Q . (3.45)

Then, for each pair (F ,G) ∈ H′
× Q′ there exists a unique (σ , u) ∈ H × Q such that

a(σ , τ ) + b(τ , u) = F (τ ) ∀ τ ∈ H ,

b(σ , v) = G(v) ∀ v ∈ Q ,
(3.46)

and the following a priori estimates hold:

∥σ∥ ≤
1
α

∥F∥H′ +
1
β

(
1 +

∥A∥

α

)
∥G∥Q′ ,

∥u∥ ≤
1
β

(
1 +

∥A∥

α

)
∥F∥H′ +

∥A∥

β2

(
1 +

∥A∥

α

)
∥G∥Q′ .

(3.47)

Moreover, (i), (ii), and (iii) are also necessary conditions for the well-posedness of (3.46).

We find it important to stress here that (3.47) is equivalent to a global inf–sup condition for (3.46), which means that
there exists a constant α̃ > 0, depending only on α, β , and ∥A∥ (as it follows from the right hand side of (3.47)), such
that

sup
(τ ,v)∈H×Q
(τ ,v)̸=0

a(ζ , τ ) + b(τ , w) + b(ζ , v)
∥(τ , v)∥H×Q

≥ α̃ ∥(ζ , w)∥H×Q ∀ (ζ , w) ∈ H × Q . (3.48)

In order to apply Theorem 3.2 to suitable perturbations of (3.34) and (3.36), which is explained later on, we now let
be the kernel of the operator induced by b, that is

V :=

{
τ ∈ H : b

(
τ, (v, η)

)
= 0 ∀ (v, η) ∈ Q

}
,

hich, according to the definitions of b (cf. (3.4)) and the spaces H and Q (cf. (3.17)), yields

V :=

{
τ ∈ H0(div4/3; Ω) : div(τ) = 0 and τ = τt in Ω

}
.

n the other hand, we recall that a simple modification of the proof of [30, Lemma 2.3] (or [31, Proposition 3.1, Chapter
V]) allows to show (see also [16, Lemma 3.2]) that there exists c1 > 0, depending only on Ω , such that

c1 ∥τ∥
2
0,Ω ≤ ∥τd

∥
2
0,Ω + ∥div(τ)∥2

0,4/3;Ω ∀ τ ∈ H0(div4/3; Ω) . (3.49)

Then, we have the following result establishing the V-ellipticity of af .
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Lemma 3.3. There exists a positive constant αf , depending on c1 (cf. (3.49)) and µf , such that

af (τ, τ) ≥ αf ∥τ∥
2
div4/3;Ω ∀ τ ∈ V . (3.50)

roof. According to the definition of af (cf. (3.4)), and employing the inequality (3.49), we find that for each τ ∈ V there
olds

af (τ, τ) =
1

2µf
∥τd

∥
2
0,Ω ≥

c1
2µf

∥τ∥
2
0,Ω =

c1
2µf

∥τ∥
2
div4/3;Ω ,

which shows (3.50) with αf =
c1
2µf

. □

In turn, the V-ellipticity of the bilinear form as is established as follows.

emma 3.4. There exists a positive constant αs, depending on c1 (cf. (3.49)) and µ2 (cf. (3.26)), such that

as(τ, τ) ≥ αs ∥τ∥
2
div4/3;Ω ∀ τ ∈ V . (3.51)

roof. Using now the definition of as (cf. (3.7)), the upper bound of the assumption (3.26), and the inequality (3.49), we
ind that for each τ ∈ V there holds

as(τ, τ) =

∫
Ω

1
2µs(φ)

∥τd
∥
2

≥
1

2µ2
∥τd

∥
2
0,Ω ≥

c1
2µ2

∥τ∥
2
0,Ω =

c1
2µ2

∥τ∥
2
div4/3;Ω ,

which confirms (3.51) with αs =
c1
2µ2

. □

As a consequence of Lemmas 3.3 and 3.4, we stress here that both af and as satisfy the assumptions (i) and (ii) of
heorem 3.2. Indeed, it is easily seen that

sup
τ∈V
τ ̸=0

af (ζ, τ)
∥τ∥div4/3;Ω

≥
af (ζ, ζ)

∥ζ∥div4/3;Ω

≥ αf ∥ζ∥div4/3;Ω ∀ ζ ∈ V,

and

sup
τ∈V

af (τ, ζ) ≥ af (ζ, ζ) ≥ αf ∥ζ∥2
div4/3;Ω > 0 ∀ ζ ∈ V, ζ ̸= 0,

and analogously for as.
Furthermore, the following lemma states that b satisfies the hypothesis (iii) of Theorem 3.2.

Lemma 3.5. There exists β > 0, depending only on Ω , such that

sup
τ∈H
τ ̸=0

b
(
τ, (v, η)

)
∥τ∥H

≥ β ∥(v, η)∥Q ∀ (v, η) ∈ Q . (3.52)

roof. Given (v, η) ∈ Q := L4(Ω) × L2
skew(Ω), we first let v4/3 := |v|2v and observe that ∥v4/3∥

4/3
0,4/3;Ω = ∥v∥4

0,4;Ω , which
roves that v4/3 ∈ L4/3(Ω) and yields∫

Ω

v · v4/3 = ∥v∥4
0,4;Ω = ∥v∥0,4;Ω ∥v4/3∥0,4/3;Ω . (3.53)

hen, we consider the boundary value problem

div
(
e(w)

)
= v4/3 in D′(Ω) , and w = 0 on Γ , (3.54)

hose weak formulation is: find w ∈ H1
0(Ω) such that∫

Ω

e(w) : e(z) = −

∫
Ω

v4/3 · z ∀ z ∈ H1
0(Ω) . (3.55)

ote that the right hand side of (3.55) makes sense thanks to the Hölder inequality and the continuous injection
4 : H1(Ω) → L4(Ω) (which is valid in both 2D and 3D). Then, bearing in mind the Poincaré and the first Korn (cf. [32,
heorem 10.1] or [33, Corollaries 9.2.22 and 9.2.25]) inequalities, which establish that

∥v∥2
1,Ω ≤ cP |v|21,Ω and |v|21,Ω ≤ 2 ∥e(v)∥2

0,Ω ∀ v ∈ H1
0(Ω),

espectively, with a positive constant cP depending only on Ω , and then applying the well-known Lax–Milgram Lemma,
e easily deduce that (3.55) has a unique solution w ∈ H1

0(Ω), for which there holds

∥w∥ ≤ 2c ∥i ∥ ∥v∥ .
1,Ω P 4 0,4/3;Ω
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At this point we notice from (3.54) and the previous remarks on v4/3 that div
(
e(w)

)
∈ L4/3(Ω), which, together with the

act that e(w) ∈ L2(Ω), imply that e(w) belongs to H(div4/3; Ω). Hence, we let τ̃ be the H0(div4/3; Ω)-component of e(w)
cf. (3.1)), and observe that there hold div(̃τ) = v4/3 and

∥̃τ∥
2
div4/3;Ω = ∥̃τ∥

2
0,Ω + ∥div(̃τ)∥2

0,4/3;Ω ≤ ∥e(w)∥2
0,Ω + ∥v4/3∥2

0,4/3;Ω

≤ ∥w∥
2
1,Ω + ∥v4/3∥2

0,4/3;Ω ≤
{
1 + 4c2P∥i4∥

2}
∥v4/3∥2

0,4/3;Ω .
(3.56)

n this way, noting that τ̃ is symmetric (because e(w) and the identity matrix I are), and using (3.53) and (3.56), we find
hat

sup
τ∈H
τ ̸=0

b
(
τ, (v, η)

)
∥τ∥H

≥
b
(̃
τ, (v, η)

)
∥̃τ∥H

=

∫
Ω

v · div(̃τ)

∥̃τ∥div4/3;Ω

=

∫
Ω

v · v4/3

∥̃τ∥div4/3;Ω

≥ β1 ∥v∥0,4;Ω , (3.57)

with β1 =
{
1 + 4c2P∥i4∥

2
}−1/2. On the other hand, for the same (v, η) ∈ Q given at the beginning of the proof, we now

consider the boundary value problem

div
(
e(w)

)
= − div(η) in D′(Ω) , and w = 0 on Γ , (3.58)

whose weak formulation is: find w ∈ H1
0(Ω) such that∫

Ω

e(w) : e(z) = −

∫
Ω

η : e(z) ∀ z ∈ H1
0(Ω) . (3.59)

Similarly as for (3.55), and employing again the Poincaré and first Korn inequalities, a straightforward application of the
Lax–Milgram Lemma guarantees the existence of a unique solution w to (3.59), which satisfies

∥e(w)∥0,Ω ≤ ∥η∥0,Ω . (3.60)

In addition, it is clear from (3.58) that div
(
e(w) + η

)
= 0, so that e(w) + η lies in H(div4/3; Ω). Thus, defining τ̂ as the

0(div4/3; Ω)-component of e(w)+η, we realize that τ̂ is divergence-free as well, and that τ̂ : η = η : η, whence, noting
that there holds ∥̂τ∥0,Ω ≤ ∥e(w)∥0,Ω + ∥η∥0,Ω , and using (3.60), we deduce that

sup
τ∈H
τ ̸=0

b
(
τ, (v, η)

)
∥τ∥H

≥
b
(̂
τ, (v, η)

)
∥̂τ∥H

=

∫
Ω

η : η

∥̂τ∥div4/3;Ω

=
∥η∥

2
0,Ω

∥̂τ∥0,Ω
≥ β2 ∥η∥0,Ω , (3.61)

ith β2 = 1/2. Finally, the required inequality (3.52) follows directly from (3.57) and (3.61) with β depending only on
1 and β2. □

We now consider the perturbed formulation arising from (3.34) after eliminating there the terms involving cf and
f . Then, adding the left hand sides of the resulting equations, we obtain the bounded and symmetric bilinear form
f : (H × Q) × (H × Q) → R given by

Af

((
ζf , (zf , ξf )

)
,
(
τ f , (vf , ηf )

))
:= af (ζf , τ f ) + b

(
τ f , (zf , ξf )

)
+ b

(
ζf , (vf , ηf )

)
(3.62)

or all
(
ζf , (zf , ξf )

)
,
(
τ f , (vf , ηf )

)
∈ H × Q. Note that the boundedness of Af follows directly from (3.19), (3.20), and

3.25). Hence, denoting by Af ∈ L
(
(H × Q ), (H × Q)′

)
the operator induced by Af , and bearing in mind the V-ellipticity

f af (cf. Lemma 3.3) and the inf–sup condition for b (cf. Lemma 3.5), we conclude from a straightforward application
f Theorem 3.2 that Af is bijective. In addition, it is clear from (3.48) that Af satisfies a global inf–sup condition, which

means that there exists a constant ᾱf > 0, depending only on αf , β , and ∥af ∥ (cf. (3.25)) , such that

sup
(τf ,(vf ,ηf ))∈H×Q
(τf (vf ,ηf ))̸=0

Af

((
ζf , (zf , ξf )

)
,
(
τ f , (vf , ηf )

))
∥
(
τ f , (vf , ηf )

)
∥H×Q

≥ ᾱf ∥
(
ζf , (zf , ξf )

)
∥H×Q (3.63)

for all
(
ζf , (zf , ξf )

)
∈ H × Q. Next, in order to apply Theorem 3.1 to (3.34), we introduce the bounded bilinear form

Af ,wf : (H × Q) × (H × Q) → R that results after adding the full equations defining that formulation, that is

Af ,wf

((
ζf , (zf , ξf )

)
,
(
τ f , (vf , ηf )

))
:= Af

((
ζf , (zf , ξf )

)
,
(
τ f , (vf , ηf )

))
+ cf (zf , τ f ) + df (wf ; zf , τ f )

(3.64)

for all
(
ζf , (zf , ξf )

)
,
(
τ f , (vf , ηf )

)
∈ H × Q. Knowing that Af is bounded, the boundedness of Af ,wf is completed thanks to

(3.21), (3.22), and (3.25). In this way, it is clear that (3.34) can be restated as: find
(̂
σ f , (̂uf , γ̂ f )

)
∈ H × Q such that

A
((̂

σ , (̂u , γ̂ )
)
,
(
τ , (v , η )

))
= F (τ ) + Gw(v , η ) (3.65)
f ,wf f f f f f f f f f f f
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for all
(
τ f , (vf , ηf )

)
∈ H × Q. Then, it follows straightforwardly from (3.63) and the boundedness estimates for cf and df

cf. (3.21), (3.22), (3.25)) that

sup
(τf ,(vf ,ηf ))∈H×Q
(τf (vf ,ηf ))̸=0

Af ,wf

((
ζf , (zf , ξf )

)
,
(
τ f , (vf , ηf )

))
∥
(
τ f , (vf , ηf )

)
∥H×Q

≥ ᾱf ∥
(
ζf , (zf , ξf )

)
∥H×Q

−
1

√
n

∇ε

ε


0,4;Ω

∥zf ∥0,4;Ω −
ρf

2µf
∥ε∥0,∞;Ω ∥wf ∥0,4;Ω ∥zf ∥0,4;Ω

≥

{
ᾱf −

1
√
n

∇ε

ε


0,4;Ω

−
ρf

2µf
∥wf ∥0,4;Ω

}
∥
(
ζf , (zf , ξf )

)
∥H×Q ,

where the last inequality uses that ∥ε∥0,∞;Ω ≤ 1. In this way, assuming for instance that

1
√
n

∇ε

ε


0,4;Ω

≤
ᾱf

4
and ∥wf ∥0,4;Ω ≤ rf :=

ᾱf µf

2ρf
, (3.66)

e arrive at

sup
(τf ,(vf ,ηf ))∈H×Q
(τf (vf ,ηf ))̸=0

Af ,wf

((
ζf , (zf , ξf )

)
,
(
τ f , (vf , ηf )

))
∥
(
τ f , (vf , ηf )

)
∥H×Q

≥
ᾱf

2
∥
(
ζf , (zf , ξf )

)
∥H×Q (3.67)

for all
(
ζf , (zf , ξf )

)
∈ H × Q. Similarly, using the fact that Af is symmetric, employing the same boundedness estimates

for cf and df , and assuming again (3.66), we are able to prove the companion inf–sup condition to (3.67), in which the
supremum is taken with respect to the first component of Af ,wf , that is

sup
(ζf ,(zf ,ξf ))∈H×Q
(ζf ,(zf ,ξf ))̸=0

Af ,wf

((
ζf , (zf , ξf )

)
,
(
τ f , (vf , ηf )

))
∥
(
ζf , (zf , ξf )

)
∥H×Q

≥
ᾱf

2
∥
(
τ f , (vf , ηf )

)
∥H×Q (3.68)

for all
(
τ f , (vf , ηf )

)
∈ H × Q.

As a consequence of the previous analysis, we are in position to establish the following result, which confirms that the
operator Θf (cf. (3.33)) is well-defined.

Theorem 3.6. Assume that
1

√
n

∇ε

ε


0,4;Ω

≤
ᾱf

4
. Then, for each w := (wf ,ws) ∈ L4(Ω)×L4(Ω) such that ∥wf ∥0,4;Ω ≤ rf ,

here exists a unique
(̂
σ f , (̂uf , γ̂ f )

)
∈ H × Q solution to (3.65) (equivalently (3.34)). Moreover, there holds

∥Θf (w)∥0,4;Ω = ∥̂uf ∥0,4;Ω ≤ ∥
(̂
σ f , (̂uf , γ̂ f )

)
∥H×Q

≤
2
ᾱf

{
∥uD,f ∥1/2,Γ + ∥δ(φ)∥0,Ω ∥wf − ws∥0,4;Ω + |Ω|

3/4 ρf g ∥ε∥0,∞;Ω

}
.

(3.69)

roof. It suffices to notice, thanks to (3.67) and (3.68), that Af ,wf satisfies the hypotheses (i) and (ii) of Theorem 3.1.
herefore, observing that the right hand side of (3.65) defines a functional in (H × Q)′, a direct application of the
forementioned abstract result implies the existence of a unique solution

(̂
σ f , (̂uf , γ̂ f )

)
∈ H × Q to (3.65), for which

here holds

∥
(̂
σ f , (̂uf , γ̂ f )

)
∥H×Q ≤

2
ᾱf

{
∥Ff ∥ + ∥Gw

f ∥

}
.

inally, the foregoing inequality and the upper bounds for ∥Ff ∥ and ∥Gw
f ∥ provided in (3.25) yield (3.69) and complete

he proof. □

On the other hand, it is not difficult to realize that proving that Θs (cf. (3.35)) is well-defined, equivalently that (3.36)
s well-posed, proceeds analogously as we already did for Θf . Therefore, in what follows we simplify the corresponding
resentation and collect only the main aspects of the respective analysis. In fact, we begin by letting As : (H×Q)×(H×Q) →

be the symmetric bilinear form given by

As

((
ζs, (zs, ξs)

)
,
(
τs, (vs, ηs)

))
:= as(ζs, τs) + b

(
τs, (zs, ξs)

)
+ b

(
ζs, (vs, ηs)

)
(3.70)

or all
(
ζs, (zs, ξs)

)
,
(
τs, (vs, ηs)

)
∈ H × Q, which, thanks now to (3.27), (3.20), and (3.32), is clearly bounded. Then, in

irtue of the V-ellipticity of a (cf. Lemma 3.4) and the inf–sup condition for b (cf. Lemma 3.5), direct applications of
s
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Theorem 3.1 and the consequent estimate (3.48) imply that there exists a constant ᾱs > 0, depending only on αs, β , and
as∥ (cf. (3.32)), such that

sup
(τs,(vs,ηs))∈H×Q
(τs(vs,ηs))̸=0

As

((
ζs, (zs, ξs)

)
,
(
τs, (vs, ηs)

))
∥
(
τs, (vs, ηs)

)
∥H×Q

≥ ᾱs ∥
(
ζs, (zs, ξs)

)
∥H×Q (3.71)

for all
(
ζs, (zs, ξs)

)
∈ H × Q. Then, defining the bilinear form

As,ws

((
ζs, (zs, ξs)

)
,
(
τs, (vs, ηs)

))
:= As

((
ζs, (zs, ξs)

)
,
(
τs, (vs, ηs)

))
+ cs(zs, τs) + ds(ws; zs, τs)

(3.72)

for all
(
ζs, (zs, ξs)

)
,
(
τs, (vs, ηs)

)
∈ H×Q, whose boundedness follows now from that of As and the estimates (3.28), (3.29),

and (3.32), we realize that (3.36) can be restated as: find
(̂
σs, (̂us, γ̂ s)

)
∈ H × Q such that

As,ws

((̂
σs, (̂us, γ̂ s)

)
,
(
τs, (vs, ηs)

))
= Fws (τs) + Gs(vs, ηs) (3.73)

for all
(
τs, (vs, ηs)

)
∈ H × Q. Then, assuming that

1
√
n

∇φ

φ


0,4;Ω

≤
ᾱs

4
and ∥ws∥0,4;Ω ≤ rs :=

ᾱsµ1

2ρs
, (3.74)

e are able to prove the analogues of the inf–sup conditions (3.67) and (3.68), with As,ws and ᾱs instead of Af ,wf and ᾱf ,
respectively. In this way, the following theorem confirms that the operator Θs (cf. (3.35)) is well-posed

Theorem 3.7. Assume that
1

√
n

∇φ

φ


0,4;Ω

≤
ᾱs

4
. Then, for each w := (wf ,ws) ∈ L4(Ω)×L4(Ω) such that ∥ws∥0,4;Ω ≤ rs,

here exists a unique
(̂
σs, (̂us, γ̂ s)

)
∈ H × Q solution to (3.73) (equivalently (3.36)). Moreover, there holds

∥Θs(w)∥0,4;Ω = ∥̂us∥0,4;Ω ≤ ∥
(̂
σs, (̂us, γ̂ s)

)
∥H×Q

≤
2
ᾱs

{
∥uD,s∥1/2,Γ +

ρf

2µ1
∥ε∥0,∞;Ω ∥wf ∥

2
0,4;Ω + |Ω|

3/4 g ∥ερf + φρs∥0,∞;Ω

}
.

(3.75)

roof. As for the proof of Theorem 3.6, it follows from a straightforward application of Theorem 3.1. We omit further
etails and just mention that the a priori estimate (3.75) makes use of the upper bounds for ∥Fws ∥ and ∥Gs∥ provided in
3.32). □

.4. Solvability analysis of the fixed-point equation

Knowing from the previous section that the operators Θf and Θs (cf. (3.33), (3.35)), and consequently S (cf. (3.37)),
re well defined, we now focus on the solvability of the corresponding fixed-point equation (3.38). For this purpose, and
iming to apply later on the Banach fixed-point Theorem, we begin by establishing sufficient conditions on the data under
hich S maps a closed ball into itself. Throughout the rest of the section we assume that ε and φ satisfy the hypotheses
pecified in (3.66) and (3.74), respectively. Hence, denoting from now on

r := min
{
rf , rs

}
, (3.76)

here rf and rs are defined in the aforementioned equations, we have the following result.

emma 3.8. Let W :=

{
w = (wf ,ws) ∈ L4(Ω) × L4(Ω) : ∥w∥0,4;Ω ≤ r

}
, and assume that the data satisfy

∥uD,f ∥1/2,Γ + r ∥δ(φ)∥0,Ω + |Ω|
3/4 ρf g ∥ε∥0,∞;Ω ≤

ᾱf

4
r , (3.77)

nd

∥uD,s∥1/2,Γ +
ρf

2µ1
r2 ∥ε∥0,∞;Ω + |Ω|

3/4 g ∥ερf + φρs∥0,∞;Ω ≤
ᾱs

4
r . (3.78)

hen S(W ) ⊆ W.

roof. Given w = (wf ,ws) ∈ W , we first recall from (3.37) that S(w) =
(
Θf (w), Θs(w)

)
. Then, using that ∥wf −ws∥0,4;Ω

nd ∥wf ∥0,4;Ω are both bounded by ∥w∥0,4;Ω , and hence by r , we easily see that the upper bounds of ∥Θf (w)∥0,4;Ω and

Θs(w)∥0,4;Ω provided by (3.69) and (3.75) become the left hand sides of (3.77) and (3.78) multiplied by
2

and
2
,

ᾱf ᾱs
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respectively. In this way, the above assumptions allow to conclude that ∥Θf (w)∥0,4;Ω and ∥Θs(w)∥0,4;Ω are bounded
ach by r/2, which implies that ∥S(w)∥0,4;Ω ≤ r , and hence S(w) ∈ W . □

It is important to remark at this point that the assumptions (3.77) and (3.78), being linear combinations of data, actually
mpose that each one of the latter be sufficiently small. In particular, looking for instance at (3.77), it is readily seen that
sufficient condition for its occurrence would be to require that each one of the terms on the left hand side be less than
r equal to 1/3 of the right hand side, that is

∥uD,f ∥1/2,Γ ≤
ᾱf

12
r , ∥δ(φ)∥0,Ω ≤

ᾱf

12
and ∥ε∥0,∞;Ω ≤

ᾱf

12|Ω|
3/4 ρf g

r.

A similar analysis applies to (3.78), thanks to which one gets individual constraints for the data ∥uD,s∥1/2,Γ and ∥ε∥0,∞;Ω

again, and for ∥ερf + φρs∥0,∞;Ω . In this way, choosing the smallest bounds for the first two, and keeping as such the
ones for ∥δ(φ)∥0,Ω and ∥ερf + φρs∥0,∞;Ω , we obtain a set of four conditions on these data, which guarantee that both
(3.77) and (3.78) are satisfied. Nevertheless, the fact that some of the constants involved are not known explicitly, as it
is the case for example of ᾱf and ᾱs (because of the unknown constant c1 from (3.49)), stops us of truly verifying these
conditions in practice.

We continue the analysis with the Lipschitz-continuity properties of Θf and Θs.

Lemma 3.9. There exists a positive constant Lf , depending on ᾱf , ρf , and µf , such that

∥Θf (w) − Θf (t)∥0,4;Ω

≤ Lf
{
∥δ(φ)∥0,Ω + ∥ε∥0,∞;Ω ∥Θf (t)∥0,4;Ω

}
∥w − t∥0,4;Ω

(3.79)

for all w := (wf ,ws), t := (tf , ts) ∈ L4(Ω) × L4(Ω) such that ∥wf ∥0,4;Ω , ∥tf ∥0,4;Ω ≤ rf .

roof. Given w := (wf ,ws) and t := (tf , ts) as indicated, we set Θf (w) := ûf and Θf (t) := ẑf , where σ⃗ f :=
(̂
σ f , (̂uf , γ̂ f )

)
∈

×Q and ζ⃗f :=
(̂
ζf , (̂zf , ξ̂f )

)
∈ H×Q are the unique solutions, guaranteed by Theorem 3.6, of the formulations (cf. (3.34)

r (3.65))

Af ,wf

(
σ⃗ f , τ⃗ f

)
= Ff (τ f ) + Gw

f (vf , ηf ) (3.80)

nd

Af ,tf
(
ζ⃗f , τ⃗ f

)
= Ff (τ f ) + Gt

f (vf , ηf ) , (3.81)

espectively, both for all τ⃗ f :=
(
τ f , (vf , ηf )

)
∈ H × Q. Then, applying the inf–sup condition (3.67) to σ⃗ f − ζ⃗f , adding and

ubtracting Af ,tf
(
ζ⃗f , τ⃗ f

)
, and using (3.80) and (3.81), we obtain

ᾱf

2
∥σ⃗ f − ζ⃗f ∥H×Q ≤ sup

τ⃗f ∈H×Q
τ⃗f ̸=0

Af ,wf

(
σ⃗ f − ζ⃗f , τ⃗ f

)
∥τ⃗ f ∥H×Q

= sup
τ⃗f ∈H×Q

τ⃗f ̸=0

(
Gw
f − Gt

f

)
(vf , ηf ) +

(
Af ,tf − Af ,wf

)(
ζ⃗f , τ⃗ f

)
∥τ⃗ f ∥H×Q

.

(3.82)

ow, according to the definitions of Gw
f , G

t
f , F (w), and F (t) (cf. (3.15), (2.8)), we readily get (see also the estimate for ∥Gu

f ∥

n (3.25))⏐⏐(Gw
f − Gt

f

)
(vf , ηf )

⏐⏐ =

⏐⏐⏐ ∫
Ω

(
F (w) − F (t)

)
· vf
⏐⏐⏐ ≤ ∥δ(φ)∥0,Ω ∥w − t∥0,4;Ω ∥vf ∥0,4;Ω . (3.83)

In turn, employing (3.64) and the boundedness of df (cf. (3.22), (3.25)), we find that⏐⏐(Af ,tf − Af ,wf

)(
ζ⃗f , τ⃗ f

)⏐⏐ =
⏐⏐df (tf − wf ; ẑf , τ f )

⏐⏐
≤

ρf

2µf
∥ε∥0,∞;Ω ∥wf − tf ∥0,4;Ω ∥̂zf ∥0,4;Ω ∥τ f ∥0,Ω

≤
ρf

2µf
∥ε∥0,∞;Ω ∥w − t∥0,4;Ω ∥Θf (t)∥0,4;Ω ∥τ f ∥0,Ω .

(3.84)

In this way, replacing (3.83) and (3.84) back into (3.82), we deduce that
ᾱf

2
∥σ⃗ f − ζ⃗f ∥H×Q ≤

{
∥δ(φ)∥0,Ω +

ρf

2µf
∥ε∥0,∞;Ω ∥Θf (t)∥0,4;Ω

}
∥w − t∥0,4;Ω ,

hich, together with the fact that ∥Θf (w) − Θf (t)∥0,4;Ω ≤ ∥σ⃗ f − ζ⃗f ∥H×Q, yields (3.79) with Lf :=
2
ᾱf

max
{
1,

ρf

2µf

}
, thus

completing the proof. □
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Lemma 3.10. There exists a positive constant Ls, depending on ᾱs, ρf , ρs, and µ1, such that

∥Θs(w) − Θs(t)∥0,4;Ω

≤ Ls
{
∥ε∥0,∞;Ω ∥tf + wf ∥0,4;Ω + ∥φ∥0,∞;Ω ∥Θs(t)∥0,4;Ω

}
∥w − t∥0,4;Ω

(3.85)

or all w := (wf ,ws), t := (tf , ts) ∈ L4(Ω) × L4(Ω) such that ∥ws∥0,4;Ω , ∥ts∥0,4;Ω ≤ rs.

roof. We proceed similarly to the proof of Lemma 3.9. In this way, given w := (wf ,ws) and t := (tf , ts) as indicated,
e set Θs(w) := ûs and Θs(t) := ẑs, where σ⃗s :=

(̂
σs, (̂us, γ̂ s)

)
∈ H × Q and ζ⃗s :=

(̂
ζs, (̂zs, ξ̂s)

)
∈ H × Q are the unique

olutions, guaranteed now by Theorem 3.7, of the formulations (cf. (3.36) or (3.73))

As,ws

(
σ⃗s, τ⃗s

)
= Fws (τs) + Gs(vs, ηs)

nd

As,ts
(
ζ⃗s, τ⃗s

)
= Fts(τs) + Gs(vs, ηs),

espectively, both for all τ⃗s :=
(
τs, (vs, ηs)

)
∈ H × Q. Then, starting from the inf–sup condition for As,ws with constant

¯ s/2 (analogue of (3.67)), and employing basically the same kind of arguments that yielded (3.82), we are able to show
hat

ᾱs

2
∥σ⃗s − ζ⃗s∥H×Q

≤ sup
τ⃗s∈H×Q

τ⃗s ̸=0

(
Fws − Fts

)
(τs) + ds(ts − ws; ẑs, τs)

∥τ⃗s∥H×Q
,

(3.86)

here the last term uses, according to (3.72), that
(
As,ts − As,ws

)(
ζ⃗s, τ⃗s

)
= ds(ts − ws; ẑs, τs). Next, it follows from the

efinitions of Fws and Fts (cf. (3.8)), and the lower bound of µs (cf. (3.26)), that⏐⏐(Fws − Fts
)
(τs)

⏐⏐ =

⏐⏐⏐⏐∫
Ω

ρf

2µs(φ)

{(
(εtf ) ⊗ tf

)
−
(
(εwf ) ⊗ wf

)}d
: τs

⏐⏐⏐⏐
≤

ρf

2µ1
∥ε∥0,∞;Ω ∥

(
tf ⊗ tf

)
−
(
wf ⊗ wf

)
∥0,Ω ∥τs∥0,Ω

≤
ρf

2µ1
∥ε∥0,∞;Ω ∥tf + wf ∥0,4;Ω ∥tf − wf ∥0,4;Ω ∥τs∥0,Ω .

(3.87)

n turn, using the boundedness properties of ds (cf. (3.29), (3.32)), we find that⏐⏐ds(ts − ws; ẑs, τs)
⏐⏐ ≤

ρs

2µ1
∥φ∥0,∞;Ω ∥Θs(t)∥0,4;Ω∥ts − ws∥0,4;Ω ∥τs∥0,Ω . (3.88)

herefore, replacing the estimates (3.87) and (3.88) back into (3.86), using that ∥tf − wf ∥0,4;Ω and ∥ts − ws∥0,4;Ω
re bounded by ∥w − t∥0,4;Ω , and recalling that ∥Θs(w) − Θs(t)∥0,4;Ω ≤ ∥σ⃗s − ζ⃗s∥H×Q, we are led to (3.85) with

s :=
2
ᾱs

max
{ ρf

2µ1
,

ρs

2µ1

}
. □

As a straightforward consequence of Lemmas 3.9 and 3.10, we are able to establish now the Lipschitz-continuity of
he fixed-point operator S (cf. (3.37)).

emma 3.11. Let W be as in Lemma 3.8 with r given by (3.76), and let Lf and Ls be the constants provided by Lemmas 3.9
nd 3.10. Then, there holds

∥S(w) − S(t)∥0,4;Ω ≤

{
Lf
(
∥δ(φ)∥0,Ω + ∥ε∥0,∞;Ω ∥Θf (t)∥0,4;Ω

)
+ Ls

(
∥ε∥0,∞;Ω ∥tf + wf ∥0,4;Ω + ∥φ∥0,∞;Ω ∥Θs(t)∥0,4;Ω

) }
∥w − t∥0,4;Ω

(3.89)

for all w := (wf ,ws), t := (tf , ts) ∈ W.

Proof. Given w, t ∈ W , it suffices to observe that

∥S(w) − S(t)∥0,4;Ω = ∥Θf (w) − Θf (t)∥0,4;Ω + ∥Θs(w) − Θs(t)∥0,4;Ω ,

nd then apply the estimates (3.79) and (3.85). □

Now, incorporating the upper bounds of ∥Θf (t)∥0,4;Ω and ∥Θs(t)∥0,4;Ω provided by (3.69) and (3.75), respectively, into
he right hand side of (3.89), and bounding ∥tf − ts∥0,4;Ω and ∥tf ∥2

0,4;Ω by r and r2, respectively, we arrive at

∥S(w) − S(t)∥ ≤ L
(
data

)
∥w − t∥ , (3.90)
0,4;Ω 0,4;Ω
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for all w := (wf ,ws), t := (tf , ts) ∈ W , where

L
(
data

)
:= C1 ∥δ(φ)∥0,Ω + C2 ∥ε∥0,∞;Ω + C3 ∥ε∥0,∞;Ω ∥uD,f ∥1/2,Γ

+ C4 ∥φ∥0,∞;Ω ∥uD,s∥1/2,Γ + C5 ∥ε∥0,∞;Ω ∥δ(φ)∥0,Ω + C6 ∥ε∥2
0,∞;Ω

+ C7 ∥φ∥0,∞;Ω ∥ε∥0,∞;Ω + C8 ∥φ∥0,∞;Ω ∥ερf + φρs∥0,∞;Ω ,

(3.91)

nd Cj, j ∈ {1, . . . , 8} are positive constants depending on Lf , Ls, ᾱf , ᾱs, r , ρf , µ1, |Ω|, and g, as indicated as follows

C1 = Lf , C2 = 2rLs , C3 =
2Lf
ᾱf

, C4 =
2Ls
ᾱs

, C5 =
2rLf
ᾱf

,

C6 =
2Lf |Ω|

3/4ρf g
ᾱf

, C7 =
r2Lsρf

ᾱsµ1
, and C8 =

2Ls|Ω|
3/4g

ᾱs
.

(3.92)

We can establish now the main result concerning the solvability of (3.18).

Theorem 3.12. Let W be as in Lemma 3.8 with r given by (3.76), and assume that the data are sufficiently small so that they
satisfy (3.77), (3.78), and

L
(
data

)
< 1 . (3.93)

Then, problem (3.18) has a unique solution
(
σ f , (uf , γ f )

)
∈ H × Q and

(
σs, (us, γ s)

)
∈ H × Q with u := (uf ,us) ∈ W.

Moreover, there hold

∥
(
σ f , (uf , γ f )

)
∥H×Q ≤

2
ᾱf

{
∥uD,f ∥1/2,Γ + r ∥δ(φ)∥0,Ω + |Ω|

3/4 ρf g ∥ε∥0,∞;Ω

}
, (3.94)

nd

∥
(
σs, (us, γ s)

)
∥H×Q ≤

2
ᾱs

{
∥uD,s∥1/2,Γ + r2

ρf

2µ1
∥ε∥0,∞;Ω + |Ω|

3/4 g ∥ερf + φρs∥0,∞;Ω

}
. (3.95)

roof. According to the equivalence between (3.18) and (3.38), and thanks to Lemma 3.8, the Lipschitz-continuity of S
cf. (3.90)), and the assumption (3.93), the existence of a unique solution of (3.18) with u := (uf ,us) ∈ W follows from
straightforward application of the classical Banach fixed-point Theorem. Then, the a priori estimates (3.69) and (3.75),
ogether with the fact that ∥uf ∥0,4;Ω and ∥uf − us∥0,4;Ω are bounded by r , yield (3.94) and (3.95), which completes the
roof. □

Similar remarks to those expressed on the assumptions (3.77) and (3.78) right after the proof of Lemma 3.8, are valid
ere for (3.93) and the expression L

(
data

)
given by (3.91) and (3.92). We omit further details.

. The Galerkin scheme

In this section we introduce and analyze a Galerkin scheme for approximating the solution of (3.18). In particular, for
he respective solvability analysis we employ basically the same tools and techniques utilized for the continuous case in
ection 3, except that now we apply Brouwer and Banach fixed-point Theorems to prove existence and uniqueness of
olution, respectively.

.1. The discrete fixed-point approach

We begin by considering a regular family
{
Th
}
h>0 of triangulations of Ω̄ , which are made of triangles K (when n = 2)

r tetrahedra K (when n = 3) of diameters hK , and define the meshsize h := max
{
hK : K ∈ Th

}
, which also serves as

he index of Th. Then, for each h > 0 we let Hσ
h , Q

u
h , and Qγ

h be arbitrary finite element subspaces of H(div4/3; Ω), L4(Ω),
nd L2

skew(Ω), respectively, and set

Hh := Hσ
h ∩ H0(div4/3; Ω) and Qh := Qu

h × Qγ

h . (4.1)

hus, the Galerkin scheme associated with (3.18) reads: find
(
σ fh, (ufh, γ fh)

)
∈ Hh × Qh and

(
σsh, (ush, γ sh)

)
∈ Hh × Qh

uch that, denoting uh := (ufh,ush) ∈ Qu
h × Qu

h ,

af (σ fh, τ fh) + b
(
τ fh, (ufh, γ fh)

)
+ cf (ufh, τ fh) + df (ufh;ufh, τ fh) = Ff (τ fh) ,

b
(
σ fh, (vfh, ηfh)

)
= Guh

f (vfh, ηfh) ,

as(σsh, τsh) + b
(
τsh, (ush, γ sh)

)
+ cs(ush, τsh) + ds(ush;ush, τsh) = Fuhs (τsh) ,( ) (4.2)
b σsh, (vsh, ηsh) = Gs(vsh, ηsh) ,
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for all
(
τ fh, (vfh, ηfh)

)
∈ Hh × Qh and for all

(
τsh, (vsh, ηsh)

)
∈ Hh × Qh. Next, we consider the discrete analogue of the

ixed-point approach employed in Section 3.2. Indeed, we first introduce the operator Θfh : Qu
h × Qu

h → Qu
h as

Θfh(wh) := ûfh ∀wh := (wfh,wsh) ∈ Qu
h × Qu

h , (4.3)

here
(̂
σ fh, (̂ufh, γ̂ fh)

)
∈ Hh × Qh is the unique solution (to be confirmed below) of the first two equations of (4.2) when

he first component ufh of df and the superscript uh of Guh
f are replaced by wfh and wh, respectively, that is

af (̂σ fh, τ fh) + b
(
τ fh, (̂ufh, γ̂ fh)

)
+ cf (̂ufh, τ fh) + df (wfh; ûfh, τ fh) = Ff (τ fh) ,

b
(̂
σ fh, (vfh, ηfh)

)
= Gwh

f (vfh, ηfh) ,
(4.4)

or all
(
τ fh, (vfh, ηfh)

)
∈ Hh × Qh. In addition, we let Θsh : Qu

h × Qu
h → Qu

h be the operator given by

Θsh(wh) := ûsh ∀wh := (wfh,wsh) ∈ Qu
h × Qu

h , (4.5)

here
(̂
σsh, (̂ush, γ̂ sh)

)
∈ Hh × Qh is the unique solution (to be confirmed below) of the last two equations of (4.2) when

he first component ush of ds and the superscript uh of Fuhs are replaced by wsh and wh, respectively, that is

as (̂σsh, τsh) + b
(
τsh, (̂ush, γ̂ sh)

)
+ cs (̂ush, τsh) + ds(wsh; ûsh, τsh) = Fwh

s (τsh) ,
b
(̂
σsh, (vsh, ηsh)

)
= Gs(vsh, ηsh) ,

(4.6)

or all
(
τsh, (vsh, ηsh)

)
∈ Hh × Qh. Finally, we define the operator Sh : Qu

h × Qu
h → Qu

h × Qu
h as

Sh(wh) :=
(
Θfh(wh), Θsh(wh)

)
∀wh := (wfh,wsh) ∈ Qu

h × Qu
h , (4.7)

nd notice that solving (4.2) is equivalent to seeking a fixed-point of Sh, that is: find wh ∈ Qu
h × Qu

h such that

Sh(wh) = wh . (4.8)

.2. Well-definedness of the operators Θfh and Θsh

In this section we apply the discrete versions of Theorems 3.1 and 3.2 to prove that problems (4.4) and (4.6) are
ell-posed, thus confirming that the operators Θfh and Θsh are well-defined. Regarding the aforementioned versions of
hose theorems, which certainly involve finite dimensional subspaces, we stress that in this case each assumption (i) (cf.
3.39) and (3.43)) is equivalent to its corresponding assumption (ii) (cf. (3.40) and (3.44)), so that in what follows we
hoose to stay with the (i) ones. Moreover, for the stability of the associated discrete schemes, we require the respective
onstants α to be independent of the meshsize h.
In order to proceed as announced, we need to incorporate some hypotheses on the arbitrary discrete spaces Hσ

h , Qu
h ,

nd Qγ

h . Specific finite element subspaces verifying these conditions will be introduced later on. More precisely, from now
n we assume the following:

H.1) Hσ
h contains the multiples of the identity tensor I.

H.2) div
(
Hσ

h

)
⊆ Qu

h .

H.3) There exists a positive constant βd, independent of h, such that

sup
τh∈Hh
τh ̸=0

b
(
τh, (vh, ηh)

)
∥τh∥H

≥ βd ∥(vh, ηh)∥Q ∀ (vh, ηh) ∈ Qh . (4.9)

Hence, thanks to (H.1) and the decomposition (3.1), the subspace Hh (cf. (4.1)) can be redefined, at least from a
heoretical point of view, as:

Hh :=

{
τh −

(
1

n|Ω|

∫
Ω

tr(τh)
)
I : τh ∈ Hσ

h

}
.

However, for the computational implementation of the Galerkin scheme (4.2), which is addressed below in Section 6, the
null mean value condition for the traces of the unknown tensors living in Hh will be imposed via real Lagrange multipliers.

On the other hand, the kernel of the operator induced by the bilinear form b restricted to Hh × Qh, is given by

Vh :=

{
τh ∈ Hh : b

(
τh, (vh, ηh)

)
= 0 ∀ (vh, ηh) ∈ Qh

}
,

rom which, bearing in mind the definitions of b (cf. (3.4)) and Qh, and the assumption (H.2), we find that

Vh :=

{
τh ∈ Hh : div(τh) = 0 in Ω and

∫
ηh : τh = 0 ∀ ηh ∈ Qγ

h

}
. (4.10)
Ω
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In this way, noticing from Lemmas 3.3 and 3.4 that the V-ellipticity of the bilinear forms af and as only makes use of the
ivergence-free property of the tensors of V, we conclude from (4.10) that af and as are Vh-elliptic as well, with the same
ositive constants αf and αs provided by those lemmas, that is there hold

af (τh, τh) ≥ αf ∥τh∥
2
div4/3;Ω ∀ τh ∈ Vh , (4.11)

nd

as(τh, τh) ≥ αs ∥τh∥
2
div4/3;Ω ∀ τh ∈ Vh . (4.12)

herefore, in virtue of (H.3), (4.11), and (4.12), straightforward applications of the discrete version of Theorem 3.2, and
articularly of the corresponding estimate (3.48), imply that Af (cf. (3.62)) and As (cf. (3.70)) satisfy global discrete inf–sup
onditions on Hh × Qh, that is the discrete analogues of (3.63) and (3.71), with constants ᾱf ,d > 0, depending only on
f , βd, and ∥af ∥ (cf. (3.25)), and ᾱs,d > 0, depending only on αs, βd, and ∥as∥ (cf. (3.32)), respectively. Moreover, given
h := (wfh,wsh) ∈ Qu

h × Qu
h , and proceeding analogously as we did in Section 3.3, we are able to show that, under the

ollowing pairs of conditions

1
√
n

∇ε

ε


0,4;Ω

≤
ᾱf ,d

4
and ∥wfh∥0,4;Ω ≤ rf ,d :=

ᾱf ,d µf

2ρf
, (4.13)

and
1

√
n

∇φ

φ


0,4;Ω

≤
ᾱs,d

4
and ∥wsh∥0,4;Ω ≤ rs,d :=

ᾱs,d µ1

2ρs
, (4.14)

the bilinear forms Af ,wfh (cf. (3.64)) and As,wsh (cf. (3.72)) satisfy global discrete inf–sup conditions on Hh×Qh with constants
ᾱf ,d/2 and ᾱs,d/2, respectively. Consequently, rewriting (4.4) and (4.6) as the discrete analogues of (3.65) and (3.73),
respectively, and applying now the discrete version of Theorem 3.1, we obtain the following results confirming that the
discrete operators Θfh (cf. (4.3)) and Θsh (cf. (4.5)) are well-defined. The respective proofs, being almost verbatim to those
of Theorems 3.6 and 3.7, are omitted.

Theorem 4.1. Assume that
1

√
n

∇ε

ε


0,4;Ω

≤
ᾱf ,d

4
. Then, for each wh := (wfh,wsh) ∈ Qu

h ×Qu
h such that ∥wfh∥0,4;Ω ≤ rf ,d,

here exists a unique
(̂
σ fh, (̂ufh, γ̂ fh)

)
∈ Hh × Qh solution to (4.4). Moreover, there holds

∥Θfh(wh)∥0,4;Ω = ∥̂ufh∥0,4;Ω ≤ ∥
(̂
σ fh, (̂ufh, γ̂ fh)

)
∥H×Q

≤
2

ᾱf ,d

{
∥uD,f ∥1/2,Γ + ∥δ(φ)∥0,Ω ∥wfh − wsh∥0,4;Ω + |Ω|

3/4 ρf g ∥ε∥0,∞;Ω

}
.

(4.15)

heorem 4.2. Assume that
1

√
n

∇φ

φ


0,4;Ω

≤
ᾱs,d

4
. Then, for each wh := (wfh,wsh) ∈ Qu

h ×Qu
h such that ∥wsh∥0,4;Ω ≤ rs,d,

here exists a unique
(̂
σsh, (̂ush, γ̂ sh)

)
∈ Hh × Qh solution to (4.6). Moreover, there holds

∥Θsh(wh)∥0,4;Ω = ∥̂ush∥0,4;Ω ≤ ∥
(̂
σsh, (̂ush, γ̂ sh)

)
∥H×Q

≤
2

ᾱs,d

{
∥uD,s∥1/2,Γ +

ρf

2µ1
∥ε∥0,∞;Ω ∥wfh∥

2
0,4;Ω + |Ω|

3/4 g ∥ερf + φρs∥0,∞;Ω

}
.

(4.16)

Regarding the assumptions on
∇ε

ε
and

∇φ

φ
specified in Theorems 4.1 and 4.2, whose continuous analogues are required

by Theorems 3.6 and 3.7, respectively, and observing that these expressions require both ε and φ to be bounded from
elow, we find it important to state here some remarks.
First of all, and while in many industrial situations there will certainly be regions in which the particle concentration

ill be zero (zones depleted of particles) or, equivalently, the void fraction will be one (pure fluid regions), in our present
ormulation it is only the concentration φ that has to be bounded from below, so that it avoids the zero value. The void
raction ε can never be zero as the upper bound of the model is φ ≈ φp = 0.65 (and not φ = 1), since the particle pressure
nd particle viscosity functions (cf. (2.6), (2.7)) would be singular at φp as φ increases from a typical φ0 to φp. In this model,

bubbles, or large amplitude concentration instabilities, are obtained as very low concentration regions, but never reaching
true zero values inside them. Indeed, a quick search in the literature shows that the lowest concentrations obtained in
structures resembling (and being analyzed as) bubbles were φ = 0.14 in [4], φ = 0.11 in [34], and φ = 0.01 in [9] (in
hich a slightly different model and a very low φ0 were used). The reason why simulations cannot reach very low values
f φ is due to the requirement that the mass of particles is conserved, which forces that the mean volume fraction should
e φ0 in the small-ish numerical domains. In a real scale fluidized bed, the ratio of the size of the fluidization domain
o the size of the bubbles is much larger than 10, allowing for local rearrangements of the particles flowing out of the
tructures that will become bubbles, whereas in numerical simulations bubbles occupy an important part of the domain
262
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of the simulation. The minimum values of φ obtained with this model depend not only on the flow properties, but also on
he mean particle concentration φ0 and on the size of the numerical domain that is used. Therefore, one would not expect
o find true zero values of φ in numerical simulation of bubbles using averaged models in normal scale simulations.

Nevertheless, and despite the above comments, in Section 6 we consider two examples to test the validity of the model
n the φ ≈ 0 limit. The first one represents a fluidized bed that is expanded homogeneously up to a certain height and,
rom there, after a sharp transition, the concentration decreases very rapidly to zero. The second test represents a bubble
laced at the center of the domain, and whose particle concentration distribution is such that it is actually zero at the
enter of the bubble.

.3. Solvability of the discrete fixed-point equation

We now address the solvability of the fixed-point equation (4.8), which is equivalent to analyzing the existence and
niqueness of solution of the Galerkin scheme (4.2). To this end, we proceed very similarly to the continuous case and
stablish first the discrete versions of the preliminary lemmas from Section 3.4. Bearing this in mind, we assume in what
ollows that ε and φ satisfy the conditions indicated in (4.13) and (4.14), respectively, and we set

rd := min
{
rf ,d, rs,d

}
. (4.17)

hen, we begin with the result that provides sufficient conditions on the data for Sh mapping a closed ball into itself.

emma 4.3. Let Wh :=

{
wh = (wfh,wsh) ∈ Qu

h × Qu
h : ∥wh∥0,4;Ω ≤ rd

}
, and assume that the data satisfy

∥uD,f ∥1/2,Γ + rd ∥δ(φ)∥0,Ω + |Ω|
3/4 ρf g ∥ε∥0,∞;Ω ≤

ᾱf ,d

4
rd , (4.18)

and

∥uD,s∥1/2,Γ +
ρf

2µ1
r2d ∥ε∥0,∞;Ω + |Ω|

3/4 g ∥ερf + φρs∥0,∞;Ω ≤
ᾱs,d

4
rd . (4.19)

hen Sh(Wh) ⊆ Wh.

roof. It proceeds analogously to the proof of Lemma 3.8, but now using the well-posedness and associated a priori
stimates of Θfh and Θsh provided by Theorems 4.1 and 4.2. We omit further details. □

Next, we establish the Lipschitz-continuity properties of Θfh and Θsh.

emma 4.4. There exists a positive constant Lf ,d, depending on ᾱf ,d, ρf , and µf , such that

∥Θfh(wh) − Θfh(th)∥0,4;Ω

≤ Lf ,d
{
∥δ(φ)∥0,Ω + ∥ε∥0,∞;Ω ∥Θfh(th)∥0,4;Ω

}
∥wh − th∥0,4;Ω

or all wh := (wfh,wsh), th := (tfh, tsh) ∈ Qu
h × Qu

h such that ∥wfh∥0,4;Ω , ∥tfh∥0,4;Ω ≤ rf ,d.

roof. Given wh := (wfh,wsh) and th := (tfh, tsh) as indicated, we set Θfh(wh) := ûfh and Θfh(th) := ẑfh, where
⃗ fh :=

(̂
σ fh, (̂ufh, γ̂ fh)

)
∈ Hh ×Qh and ζ⃗fh :=

(̂
ζfh, (̂zfh, ξ̂fh)

)
∈ Hh ×Qh are the unique solutions, guaranteed by Theorem 4.1,

f the formulations

Af ,wfh

(
σ⃗ fh, τ⃗ fh

)
= Ff (τ fh) + Gwh

f (vfh, ηfh)

nd

Af ,tfh
(
ζ⃗fh, τ⃗ fh

)
= Ff (τ fh) + Gth

f (vfh, ηfh),

espectively, both for all τ⃗ fh :=
(
τ fh, (vfh, ηfh)

)
∈ Hh ×Qh. We refer to (3.64) for the definitions of Af ,wfh and Af ,tfh . The rest

f the proof follows similarly to the one of Lemma 3.9, using now the discrete inf–sup condition satisfied by Af ,wfh with
onstant ᾱf ,d/2, adding and subtracting suitable expressions, and employing the boundedness properties of the linear
orms involved. Further details are omitted. □

emma 4.5. There exists a positive constant Ls,d, depending on ᾱs,d, ρf , ρs, and µ1, such that

∥Θsh(wh) − Θsh(th)∥0,4;Ω

≤ Ls,d
{
∥ε∥0,∞;Ω ∥tfh + wfh∥0,4;Ω + ∥φ∥0,∞;Ω ∥Θsh(th)∥0,4;Ω

}
∥wh − th∥0,4;Ω

or all wh := (wfh,wsh), th := (tfh, tsh) ∈ Qu
h × Qu

h such that ∥wsh∥0,4;Ω , ∥tsh∥0,4;Ω ≤ rs,d.
263



G.N. Gatica, R. Oyarzúa, R. Ruiz-Baier et al. Computers and Mathematics with Applications 84 (2021) 244–276

f

e
∥

f
f

B

T
s
w

t

P
o
l
u
∥

4

L
t
f
o
B
a

4

b
a

Proof. It begins analogously to the proof of Lemma 4.4, and then it continues similarly to the one of Lemma 3.10,
employing now the discrete inf–sup condition satisfied by As,wsh (cf. (3.72)) with constant ᾱs,d/2. □

We are now in position to state the Lipschitz-continuity of the discrete fixed-point operator Sh. More precisely, as
a direct consequence of Lemmas 4.4 and 4.5, we have the following result, which constitutes the discrete analogue of
Lemma 3.11.

Lemma 4.6. Let Wh be as in Lemma 4.3 with rd given by (4.17), and let Lf ,d and Ls,d be the constants provided by Lemmas 4.4
and 4.5. Then, there holds

∥Sh(wh) − Sh(th)∥0,4;Ω ≤

{
Lf ,d
(
∥δ(φ)∥0,Ω + ∥ε∥0,∞;Ω ∥Θfh(th)∥0,4;Ω

)
+ Ls,d

(
∥ε∥0,∞;Ω ∥tfh + wfh∥0,4;Ω + ∥φ∥0,∞;Ω ∥Θsh(th)∥0,4;Ω

) }
∥wh − th∥0,4;Ω

(4.20)

or all wh := (wfh,wsh), th := (tfh, tsh) ∈ Wh.

Next, we proceed as in the last part of Section 3.4 to continue bounding the right hand side of (4.20). Indeed,
mploying the upper bounds of ∥Θfh(th)∥0,4;Ω and ∥Θsh(th)∥0,4;Ω provided by (4.15) and (4.16), respectively, and bounding
tfh − tsh∥0,4;Ω and ∥tfh∥2

0,4;Ω by rd and r2d , respectively, we arrive at

∥Sh(wh) − Sh(th)∥0,4;Ω ≤ Ld
(
data

)
∥wh − th∥0,4;Ω , (4.21)

or all wh := (wfh,wsh), th := (tfh, tsh) ∈ Wh, where Ld
(
data

)
is defined exactly as in (3.91), except that the constants

rom (3.92) are computed now employing Lf ,d, Ls,d, ᾱf ,d, ᾱs,d, and rd, instead of Lf , Ls, ᾱf , ᾱs, and r , respectively.
Consequently, the main result concerning the solvability of (4.8) (equivalently (4.2)) is stated as follows thanks to the

rouwer and Banach fixed-point Theorems.

heorem 4.7. Let Wh be as in Lemma 4.3 with rd given by (4.17), and assume that the data are sufficiently small so that they
atisfy (4.18) and (4.19). Then, problem (4.2) has at least one solution

(
σ fh, (ufh, γ fh)

)
∈ Hh×Qh and

(
σsh, (ush, γ sh)

)
∈ Hh×Qh

ith uh := (ufh,ush) ∈ Wh. Moreover, under the further assumption

Ld
(
data

)
< 1 , (4.22)

his solution is unique. In addition, in both cases there hold

∥
(
σ fh, (ufh, γ fh)

)
∥H×Q ≤

2
ᾱf ,d

{
∥uD,f ∥1/2,Γ + rd ∥δ(φ)∥0,Ω + |Ω|

3/4 ρf g ∥ε∥0,∞;Ω

}
, (4.23)

and

∥
(
σsh, (ush, γ sh)

)
∥H×Q

≤
2

ᾱs,d

{
∥uD,s∥1/2,Γ + r2d

ρf

2µ1
∥ε∥0,∞;Ω + |Ω|

3/4 g ∥ερf + φρs∥0,∞;Ω

}
.

(4.24)

roof. The fact that Wh is certainly a compact and convex subset of Qu
h ×Qu

h , together with Lemma 4.3 and the continuity
f Sh (cf. (4.20) or (4.21)), allow to apply the Brouwer Theorem (cf. [35, Theorem 9.9-2]) to conclude the existence of at
east a solution to (4.8), and hence to (4.2). Next, the assumption (4.22) and the Banach fixed-point Theorem imply the
niqueness. Finally, (4.23) and (4.24) follow from the a priori estimates (4.15) and (4.16), taking also into account that
ufh∥0,4;Ω and ∥ufh − ush∥0,4;Ω are bounded by rd. □

.4. Specific finite element subspaces

In this section we describe a way of choosing finite element subspaces Hσ
h , Q

u
h , and Qγ

h of H(div4/3; Ω), L4(Ω), and
2
skew(Ω), respectively, that satisfy the hypotheses (H.1), (H.2), and (H.3) stated in Section 4.2, and then we provide
wo specific examples of them. More precisely, given a stable triplet of finite element subspaces for the usual Hilbertian
ramework of mixed linear elasticity, such that it verifies (H.1) and (H.2) (which is actually a common feature to most
f such triplets), we add a couple of additional feasible assumptions that allow to conclude that (H.3) is also satisfied.
efore dealing with the respective analysis in Section 4.4.2, we collect in what follows some definitions and results that
re needed later on.

.4.1. Preliminaries
Hereafter, we make use of the notations from Section 4.1. In particular, given an integer ℓ ≥ 0 and K ∈ Th, we let Pℓ(K )

e the space of polynomials of degree ≤ ℓ defined on K with vector and tensorial versions denoted by Pℓ(K ) := [Pℓ(K )]n
nd P (K ) := [P (K )]n×n, respectively. In addition, we let RT (K ) := P (K )⊕ P (K ) x be the local Raviart–Thomas space of
ℓ ℓ ℓ ℓ ℓ
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order ℓ defined on K , where x stands for a generic vector in Rn. Furthermore, denoting by bK the bubble function on K ,
hich is given by the product of its n + 1 barycentric coordinates, we set the local bubble space of order ℓ as

Bℓ(K ) := curl
(
bK Pℓ(K )

)
if n = 2 , and Bℓ(K ) := curl

(
bK Pℓ(K )

)
if n = 3,

where curl(v) :=
(

∂v
∂x2

, − ∂v
∂x1

)
if n = 2 and v : K → R, and curl(v) := ∇ × v if n = 3 and v : K → R3. Then, having defined

the above local spaces, we now introduce corresponding global subspaces of L2(Ω), L2(Ω), and H(div; Ω) (cf. (2.1)), as
follows

Pℓ(Ω) :=

{
vh ∈ L2(Ω) : vh|K∈ Pℓ(K ) ∀ K ∈ Th

}
,

Pℓ(Ω) :=

{
ηh ∈ L2(Ω) : ηh|K∈ Pℓ(K ) ∀ K ∈ Th

}
,

RTℓ(Ω) :=

{
τh ∈ H(div; Ω) : τh,i|K∈ RTℓ(K ) ∀ i ∈ {1, . . . , n} , ∀ K ∈ Th

}
,

and

Bℓ(Ω) :=

{
τh ∈ H(div; Ω) : τh,i|K∈ Bℓ(K ) ∀ i ∈ {1, . . . , n} , ∀ K ∈ Th

}
,

where τh,i denotes the ith-row of τh. We remark here that Pℓ(Ω) and Pℓ(Ω) are also subspaces of L4(Ω) and L4(Ω),
respectively. In addition, the fact that L2(Ω) is clearly contained in L4/3(Ω) with bounded injection, implies that H(div; Ω)
is in turn continuously embedded in H(div4/3; Ω) and there holds

∥τ∥div4/3;Ω ≤ c(Ω) ∥τ∥div;Ω ∀ τ ∈ H(div; Ω) , (4.25)

where c(Ω) is a positive constant depending only on |Ω|. It follows then that RTℓ(Ω) and Bℓ(Ω) are subspaces of
H(div4/3; Ω) as well. Moreover, denoting RTℓ,0(Ω) := RTℓ(Ω) ∩ H0(div4/3; Ω) (cf. (3.2)), we recall from [17, Lemma
5.5] that, for each integer ℓ ≥ 0, there exists a positive constant β0, independent of h, such that

sup
τh∈RTℓ,0(Ω)

τh ̸=0

∫
Ω

vh · div(τh)

∥τh∥div4/3;Ω

≥ β0 ∥vh∥0,4;Ω ∀ vh ∈ Pℓ(Ω) . (4.26)

.4.2. Stable triplets for mixed linear elasticity and (H.3)
We now let Hσ

h , Q
u
h , and Qγ

h be finite element subspaces of H(div; Ω), L2(Ω), and L2
skew(Ω), respectively, which satisfy

H.1) and (H.2), and conform a stable triplet for mixed linear elasticity. In particular, denoting Hh := Hσ
h ∩H0(div4/3; Ω),

he above means that there exists a positive constant β1, independent of h, such that

sup
τh∈Hh
τh ̸=0

b
(
τh, (vh, ηh)

)
∥τh∥div;Ω

≥ β1

{
∥vh∥0,Ω + ∥ηh∥0,Ω

}
∀ (vh, ηh) ∈ Qu

h × Qγ

h . (4.27)

hen, employing (4.25) and (4.27), we deduce that

sup
τh∈Hh
τh ̸=0

b
(
τh, (vh, ηh)

)
∥τh∥div4/3;Ω

≥
1

c(Ω)
sup
τh∈Hh
τh ̸=0

b
(
τh, (vh, ηh)

)
∥τh∥div;Ω

≥
β1

c(Ω)

{
∥vh∥0,Ω + ∥ηh∥0,Ω

}
,

nd hence

sup
τh∈Hh
τh ̸=0

b
(
τh, (vh, ηh)

)
∥τh∥div4/3;Ω

≥
β1

c(Ω)
∥ηh∥0,Ω ∀ (vh, ηh) ∈ Qu

h × Qγ

h . (4.28)

n turn, assuming that there exists an integer ℓ ≥ 0 such that RTℓ(Ω) ⊆ Hσ
h , which certainly yields RTℓ,0(Ω) ⊆ Hh, we

find that

sup
τh∈Hh
τh ̸=0

b
(
τh, (vh, ηh)

)
∥τh∥div4/3;Ω

≥ sup
τh∈RTℓ,0(Ω)

τh ̸=0

b
(
τh, (vh, ηh)

)
∥τh∥div4/3;Ω

≥ sup
τh∈RTℓ,0(Ω)

τh ̸=0

∫
Ω

vh · div(τh)

∥τh∥div4/3;Ω

− ∥ηh∥0,Ω ,

rom which, assuming additionally that Qu
h ⊆ Pℓ(Ω), and using (4.26), we conclude that

sup
τh∈Hh

b
(
τh, (vh, ηh)

)
∥τh∥div4/3;Ω

≥ β0 ∥vh∥0,4;Ω − ∥ηh∥0,Ω ∀ (vh, ηh) ∈ Qu
h × Qγ

h . (4.29)

τh ̸=0

265



G.N. Gatica, R. Oyarzúa, R. Ruiz-Baier et al. Computers and Mathematics with Applications 84 (2021) 244–276

L
t
a
o

4

a
L

o

In this way, a suitable linear combination of (4.28) and (4.29) imply that Hh and Qh := Qu
h × Qγ

h satisfy (H.3) (cf. (4.9))
with a positive constant βd depending only on β0, β1, and c(Ω).

We have thus proved the following result.

emma 4.8. Let Hσ
h , Qu

h , and Qγ

h be finite element subspaces of H(div; Ω), L2(Ω), and L2
skew(Ω), respectively, such that

hey conform a stable triplet for linear elasticity. In addition, assume that there exists an integer ℓ ≥ 0 such that RTℓ(Ω) ⊆ Hσ
h

nd Qu
h ⊆ Pℓ(Ω). Then, Hh := Hσ

h ∩ H0(div4/3; Ω) and Qh := Qu
h × Qγ

h verify (H.3) with a positive constant βd independent
f h.

.4.3. Two specific examples
In order to define specific finite element subspaces yielding the well-posedness of the Galerkin scheme introduced and

nalyzed in Section 4, we now identify stable triplets for linear elasticity that satisfy (H.1), (H.2), and the hypotheses of
emma 4.8.
Our first example is PEERSℓ, the plane elasticity element with reduced symmetry of order ℓ ≥ 0, whose stability was

riginally proved in [36] for ℓ = 0 and n = 2, and later on established for ℓ ≥ 0 and n ∈ {2, 3} (see. e.g. [37]). Letting
C(Ω̄) := [C(Ω̄)]n×n, the corresponding subspaces are given as follows:

Hσ
h := RTℓ(Ω) ⊕ Bℓ(Ω) , Qu

h := Pℓ(Ω) , and Qγ

h := C(Ω̄) ∩ L2
skew(Ω) ∩ Pℓ+1(Ω) , (4.30)

which are easily seen to satisfy the aforementioned requirements. In particular, (H.2) follows from the divergence-free
property of Bℓ(Ω) and the inclusion div

(
RTℓ(Ω)

)
⊆ Pℓ(Ω), whereas the hypotheses of Lemma 4.8 are trivially met.

Our second example is AFWℓ, the Arnold–Falk–Winther element of order ℓ ≥ 0, which, introduced and proved to be
stable in [38], is defined as:

Hσ
h := Pℓ+1(Ω) ∩ H(div; Ω) , Qu

h := Pℓ(Ω) , and Qγ

h := L2
skew(Ω) ∩ Pℓ(Ω) . (4.31)

Again, (H.1) and (H.2) are straightforward, whereas the fact that RTℓ(K ) ⊆ Pℓ+1(K ) for each K ∈ Th, completes the
hypotheses of Lemma 4.8.

The approximation properties of the finite element subspaces defining PEERSℓ (cf. (4.30)) and AFWℓ (cf. (4.31),
which basically follow from the analogue properties of the Raviart–Thomas and AFW interpolation operators, and of the
orthogonal projectors Pℓ

h : Lp(Ω) → Pℓ(Ω) and PPℓ
h : Lp(Ω) → Pℓ(Ω) (cf. [29, Proposition 1.135]), and which make use

of the commuting diagram properties and of the interpolation estimates of Sobolev spaces as well, are given as follows
(see also [31,39], [17, eqs. (5.37) and (5.40)], [30]):

(APσ
h ): there exists C > 0, independent of h, such that for each r ∈ [0, ℓ + 1], and for each τ ∈ Hr (Ω) ∩ H0(div4/3; Ω)

with div(τ) ∈ Wr,4/3(Ω), there holds

dist(τ,Hh) := inf
τh∈Hh

∥τ − τh∥div4/3;Ω ≤ C hr
{
∥τ∥r,Ω + ∥div(τ)∥r,4/3;Ω

}
. (4.32)

(APu
h ): there exists C > 0, independent of h, such that for each r ∈ [0, ℓ + 1], and for each v ∈ Wr,4(Ω) there holds

dist(v,Qu
h ) := inf

vh∈Qu
h

∥v − vh∥0,4;Ω ≤ C hr
∥v∥r,4;Ω . (4.33)

(APγ

h ): there exists C > 0, independent of h, such that for each r ∈ [0, ℓ + 1], and for each η ∈ Hr (Ω) ∩ L2
skew(Ω) there

holds

dist(η,Qγ

h ) := inf
ηh∈Q

γ
h

∥η − ηh∥0,Ω ≤ C hr
∥η∥r,Ω . (4.34)

The associated rates of convergence of our Galerkin scheme (4.2), implemented in each case with Hh := Hσ
h ∩

H(div4/3; Ω) and Qh := Qu
h × Qγ

h , are provided below in Section 5 after performing the respective a priori error analysis.

5. A priori error analysis

In this section we derive the a priori error analysis for the Galerkin scheme (4.2) considering arbitrary finite
element subspaces satisfying hypotheses (H.1), (H.2) and (H.3) (cf. Section 4.2). In addition, we define postprocessed
approximations of further variables of interest and establish its corresponding rates of convergence, which coincide with
those of the original unknowns. This fact constitutes a clear advantage of the present approach with respect to the usual
primal method since, in order for the latter to be able to provide approximations of those additional variables, numerical
differentiation procedures would need to be applied with the consequent loss of accuracy that they imply.
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5.1. The main estimates

We begin by introducing the following Strang-type estimate for saddle point problems. Its proof follows after slight
odifications of that of [30, Theorem 2.6].

emma 5.1. Let H and Q be reflexive Banach spaces, and let a : H × H → R and b : H × Q → R be bounded bilinear forms
ith bounding constants ∥a∥ and ∥b∥, respectively. Furthermore, let {Hh}h>0 and {Qh}h>0 be sequences of finite dimensional
ubspaces of H and Q, respectively, and assume that a and b satisfy the hypotheses of Theorem 3.2 on H × Q and Hh × Qh. In
urn, given F ∈ H′, G ∈ Q′, and the sequences of functionals {Fh}h>0 with Fh ∈ H′

h for each h > 0 and {Gh}h>0 with Gh ∈ Q′

h
or each h > 0, we let (σ , u) ∈ H × Q and (σh, uh) ∈ Hh × Qh be the unique solutions, respectively, to the problems

a(σ , τ ) + b(τ , u) = F (τ ) ∀ τ ∈ H ,

b(σ , v) = G(v) ∀ v ∈ Q ,
(5.1)

nd
a(σh, τh) + b(τh, uh) = Fh(τh) ∀ τh ∈ Hh ,

b(σh, vh) = Gh(vh) ∀ vh ∈ Qh .
(5.2)

hen, there holds
∥σ − σh∥H + ∥u − uh∥Q ≤ CS,1 dist(σ ,Hh) + CS,2 dist(u,Qh)

+ CS,3 ∥F − Fh∥H′
h
+ CS,4 ∥G − Gh∥Q′

h
,

(5.3)

ith

CS,1 :=

(
1 +

∥a∥
α̃

)(
1 +

∥a∥

β̃

)(
1 +

∥b∥

β̃

)
,

CS,2 := 1 +
∥b∥
α̃

+
∥b∥

β̃
+

∥a∥∥b∥

α̃β̃
,

CS,3 :=
1
α̃

+
1

β̃

(
1 +

∥a∥
α̃

)
,

CS,4 :=
1

β̃

(
1 +

∥a∥
α̃

)(
1 +

∥a∥

β̃

)
,

(5.4)

here α̃ and β̃ are the positive constants satisfying (3.43) and (3.45), respectively, on Hh × Qh.

Now, for the subsequent analysis we let
(
σ f , (uf , γ f )

)
∈ H × Q,

(
σs, (us, γ s)

)
∈ H × Q and

(
σ fh, (ufh, γ fh)

)
∈ Hh × Qh,

σsh, (ush, γ sh)
)

∈ Hh × Qh be the solutions of (3.18) and (4.2), respectively, and for the sake of convenience, we rewrite
oth problems as follows:

af (σ f , τ f ) + b
(
τ f , (uf , γ f )

)
= F̂uf (τ f ) , ∀ τ f ∈ H ,

b
(
σ f , (vf , ηf )

)
= Gu

f (vf , ηf ) , ∀ (vf , ηf ) ∈ Q ,

as(σs, τs) + b
(
τs, (us, γ s)

)
= F̂us (τs) , ∀ τs ∈ H,

b
(
σs, (vs, ηs)

)
= Gs(vs, ηs) , ∀ (vs, ηs) ∈ Q ,

(5.5)

nd

af (σ fh, τ fh) + b
(
τ fh, (ufh, γ fh)

)
= F̂uhf (τ fh) , ∀ τ fh ∈ Hh

b
(
σ fh, (vfh, ηfh)

)
= Guh

f (vfh, ηfh) , ∀ (vfh, ηfh) ∈ Qh

as(σsh, τsh) + b
(
τsh, (ush, γ sh)

)
= F̂uhs (τsh) , ∀ τsh ∈ Hh

b
(
σsh, (vsh, ηsh)

)
= Gs(vsh, ηsh) , ∀ (vsh, ηsh) ∈ Qh,

(5.6)

ith

F̂uf (τ f ) := Ff (τ f ) − cf (uf , τ f ) − df (uf ;uf , τ f ), ∀ τ f ∈ H ,

F̂us (τs) := Fus (τs) − cs(us, τs) − ds(us;us, τs), ∀ τs ∈ H ,

F̂uhf (τ fh) := Ff (τ fh) − cf (ufh, τ fh) − df (ufh;ufh, τ fh), ∀ τ fh ∈ Hh ,

F̂uhs (τsh) := Fuhs (τsh) − cs(ush, τsh) − ds(ush;ush, τsh), ∀ τsh ∈ Hh .

(5.7)

Then, since (5.5) and (5.6) have the same structure of the abstract problems (5.1) and (5.2), respectively, in what follows
we proceed similarly to [17] and apply Lemma 5.1 to derive the a priori error estimate for the Galerkin scheme (4.2). Let
us first establish the following upper bounds for the differences between the functionals introduced above.
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Lemma 5.2. There holds,̂Fuf − F̂uhf

H′
h

≤

(
1

√
n

∇ε

ε


0,4;Ω

+
ρf

2µf
∥ε∥0,∞;Ω

(
∥uf ∥0,4;Ω + ∥ufh∥0,4;Ω

))
∥uf − ufh∥0,4;Ω , (5.8)

̂Fus − F̂uhs

H′
h

≤

(
1

√
n

∇φ

φ


0,4;Ω

+
ρs

2µ1
∥φ∥0,∞;Ω (∥us∥0,4;Ω + ∥ush∥0,4;Ω )

)
∥us − ush∥0,4;Ω

+
ρf

2µ1
∥ε∥0,∞;Ω (∥uf ∥0,4;Ω + ∥ufh∥0,4;Ω )∥uf − ufh∥0,4;Ω .

(5.9)

roof. Recalling that cf and df (cf. (3.4)) are bilinear and trilinear forms, respectively, and summing and subtracting ufh
in the second component of df , we deduce from (5.7) that for each τ fh ∈ Hh there holds(̂

Fuf − F̂uhf
)
(τ fh) = −cf (uf − ufh, τ fh) −

(
df (uf ;uf − ufh, τ fh) − df (uf − ufh;ufh, τ fh)

)
,

hich together with (3.21) and (3.22), yields⏐⏐(̂Fuf − F̂uhf
)
(τ fh)

⏐⏐ ≤
(
∥cf ∥ + ∥df ∥(∥uf ∥0,4;Ω + ∥ufh∥0,4;Ω )

)
∥uf − ufh∥0,4;Ω∥τ fh∥0,Ω .

hen, using the definitions of ∥cf ∥ and ∥df ∥ (cf. (3.25)), the foregoing inequality implies (5.8). Analogously, according to
he definitions of F̂us and F̂uhs (cf. (5.7)), it is easy to see that for each τsh ∈ Hh there holds(̂

Fus − F̂uhs
)
(τsh) = Fus (τsh) − Fuhs (τsh) − cs(us − ush, τsh)

−
(
ds(us;us − ush, τsh) − ds(us − ush;ush, τsh)

)
,

nd then, from (3.28), (3.29), (3.87), and the definitions of ∥cs∥ and ∥ds∥ (cf. (3.32)), we conclude (5.9), which ends the
roof. □

Now we proceed to establish preliminary estimates for (σ f −σ fh, (uf −ufh, γ f −γ fh)) and (σs −σsh, (us −ush, γ s −γ sh)).

emma 5.3. There exist positive constants Cf ,i, i ∈ {1, 2, 3, 4}, depending on µf and other constants independent of the
iscretization and physical parameters, such that

∥σ f − σ fh∥H + ∥uf − ufh∥0,4;Ω + ∥γ f − γ fh∥0,Ω ≤ Cf ,1 dist(σ f ,Hh)
+ Cf ,2 dist((uf , γ f ),Qh) + Jf (data)

uf − ufh

0,4;Ω + Kf (data) ∥us − ush∥0,4;Ω ,

(5.10)

ith Jf (data) and Kf (data) given by

Jf (data) := Cf ,3
1

√
n

∇ε

ε


0,4;Ω

+ Cf ,3
ρf

µf
min{ᾱf , ᾱf ,d}∥ε∥0,∞;Ω

(
2∥uD,f ∥1/2,Γ

+ (r + rd)∥δ(φ)∥0,Ω + 2|Ω|
3/4ρf g∥ε∥0,∞;Ω

)
+Cf ,4∥δ(φ)∥0,Ω ,

Kf (data) := Cf ,4∥δ(φ)∥0,Ω .

(5.11)

Proof. By applying Lemma 5.1 to the first and second equations of (5.5) and (5.6), we find that

∥σ f − σ fh∥H + ∥uf − ufh∥0,4;Ω + ∥γ f − γ fh∥0,Ω ≤ Cf ,1 dist(σ f ,Hh)
+ Cf ,2 dist((uf , γ f ),Qh) + Cf ,3

̂Fuf − F̂uhf

H′
h
+ Cf ,4 ∥Gu

f − Guh
f ∥Q′

h
, (5.12)

where the constants Cf ,i, i ∈ {1, . . . , 4}, are given by (5.4) with ∥a∥ = ∥af ∥ =
1

2µf
, ∥b∥ = ∥b∥ = 1, α̃ = αf =

c1
2µf

and
˜ = βd > 0 (cf. (3.25), (3.50), (4.9)). In turn, from (3.83) we observe that⏐⏐(Gu

f − Guh
f

)
(vfh, ηfh)

⏐⏐ ≤ ∥δ(φ)∥0,Ω

{
∥uf − ufh∥0,4;Ω + ∥us − ush∥0,4;Ω

}
∥vfh∥0,4;Ω ,

for all (vfh, ηfh) ∈ Qh, which impliesGu
f − Guh

f


Q′
h

≤ ∥δ(φ)∥0,Ω

{
∥uf − ufh∥0,4;Ω + ∥us − ush∥0,4;Ω

}
. (5.13)

In this way, from estimates (5.8) (5.12) and (5.13), and the fact that (see (3.94) and (4.23))

∥uf ∥0,4;Ω + ∥ufh∥0,4;Ω

≤ 2min{ᾱf , ᾱf ,d}

{
2∥uD,f ∥1/2,Γ + (r + rd)∥δ(φ)∥0,Ω + 2|Ω|

3/4ρf g∥ε∥0,∞;Ω

}
,

e readily obtain (5.10). □
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Lemma 5.4. There exist positive constants Cs,i, i ∈ {1, 2, 3}, depending on µ1, µ2, and other constants independent of the
iscretization and physical parameters, such that

∥σs − σsh∥H + ∥us − ush∥0,4;Ω + ∥γ s − γ sh∥0,Ω ≤ Cs,1 dist(σs,Hh)
+ Cs,2 dist((us, γ s),Qh) + Js(data) ∥uf − ufh∥0,4;Ω + Ks(data) ∥us − ush∥0,4;Ω ,

(5.14)

with Js(data) and Ks(data) given by

Js(data) := Cs,3
ρf

µ1
min{ᾱf , ᾱf ,d}∥ε∥0,∞;Ω

(
2∥uD,f ∥1/2,Γ + (r + rd)∥δ(φ)∥0,Ω

+ 2|Ω|
3/4ρf g∥ε∥0,∞;Ω

)
,

Ks(data) := Cs,3
1

√
n

∇φ

φ


0,4;Ω

+ Cs,3
ρs

µ1
min{ᾱs, ᾱs,d}∥φ∥0,∞;Ω

(
2∥uD,s∥1/2,Γ

+ (r2 + r2d )
ρf

2µ1
∥ε∥0,∞;Ω + 2|Ω|

3/4g∥ερf + φρs∥0,∞;Ω

)
.

(5.15)

roof. Analogously to the proof of Lemma 5.3, we apply Lemma 5.1 to the third and fourth equations of (5.5) and (5.6),
o obtain

∥σs − σsh∥H + ∥us − ush∥0,4;Ω + ∥γ s − γ sh∥0,Ω

≤ Cs,1 dist(σs,Hh) + Cs,2 dist((us, γ s),Qh) + Cs,3
̂Fus − F̂uhs


H′
h

, (5.16)

where the constants Cs,i, i ∈ {1, . . . , 3}, are given by (5.4) with ∥a∥ = ∥as∥ =
1

2µ1
, ∥b∥ = ∥b∥ = 1, α̃ = αs =

c1
2µ2

and
β̃ = βd > 0 (cf. (3.32), (3.51), (4.9)). Then, the result follows from (5.9), (5.16), (3.94), (3.95), (4.23) and (4.24). □

The a priori error estimate for the Galerkin scheme (4.2) is provided next.

Theorem 5.5. Assume that the hypotheses of Theorems 3.12 and 4.7 hold, and let
(
σ f , (uf , γ f )

)
∈ H×Q,

(
σs, (us, γ s)

)
∈ H×Q

and
(
σ fh, (ufh, γ fh)

)
∈ Hh × Qh,

(
σsh, (ush, γ sh)

)
∈ Hh × Qh be the unique solutions of (3.18) and (4.2), respectively. Assume

further that

Jf (data) + Js(data) ≤
1
2

and Kf (data) + Ks(data) ≤
1
2
, (5.17)

ith Jf , Kf and Js, Ks given by (5.11) and (5.15), respectively. Then, there holds∑
j∈{f ,s}

{
∥σ j − σ jh∥H + ∥uj − ujh∥0,4;Ω + ∥γ j − γ jh∥0,Ω

}
≤

∑
j∈{f ,s}

{
Cj,1 dist(σ j,Hh) + Cj,2 dist((ui, γ j),Qh)

}
,

(5.18)

ith Cf ,i and Cs,i, i = 1, 2, specified in Lemmas 5.3 and 5.4, respectively.

roof. Employing assumption (5.17), the result is a direct consequence of Lemmas 5.3 and 5.4. We omit further details. □

Similarly as we did for the assumptions (3.77), (3.78), and (3.93), we stress here that the feasibility of the hypotheses
n (5.17) depends finally on the data defining Jf , Kf , Js, and Ks (cf. (5.11) and (5.15)). In particular, it is easy to see that
sufficient condition for (5.17) is given by the set of assumptions

Jf (data) ≤
1
4

, Kf (data) ≤
1
4

, Js(data) ≤
1
4

, and Ks(data) ≤
1
4
,

hich, in turn, are satisfied if, proceeding as for (3.77) and (3.78), individual constraints on each one of the terms defining
hem are imposed. However, as already noticed in the case of the aforementioned hypotheses, the fact that some of
he constants involved are not known explicitly stops us of checking in practice the verification of those conditions.
urthermore, we believe that only unrealistic data, with very sharp and unusual gradients, might fail (5.17). Indeed, some
f the numerical essays reported in Section 6 consider even delicate cases for which our proposed algorithm still performs
ery well. In other words, and summarizing our point of view, (5.17) seems to be more a technical issue of the analysis
ather than a real limitation of the applicability of the method.

We end this section with the theoretical rate of convergence for the Galerkin scheme (4.2) discretized by the finite
lement spaces introduced in Section 4.4.3.

heorem 5.6. Assume that (3.93) holds and let
(
σ f , (uf , γ f )

)
∈ H × Q,

(
σs, (us, γ s)

)
∈ H × Q be the unique solution of

(3.18). In addition, given ℓ ≥ 0, we let Hh × Qh be the pair defined by the PEERSℓ or AFWℓ elements introduced in (4.30)
nd (4.31), respectively, and under assumption (4.22), we let

(
σ , (u , γ )

)
∈ H × Q ,

(
σ , (u , γ )

)
∈ H × Q be the
fh fh fh h h sh sh sh h h
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unique solution of (4.2). Assume further that (5.17) holds and that, given r ∈ [0, ℓ + 1], σ j ∈ Hr (Ω) ∩ H0(div4/3; Ω) with
div(σ j) ∈ Wr,4/3(Ω), uj ∈ Wr,4(Ω) and γ j ∈ Hr (Ω) ∩ L2

skew(Ω) for j ∈ {f , s}. Then there exists C > 0, independent of h, such
hat ∑

j∈{f ,s}

{
∥σ j − σ jh∥H + ∥uj − ujh∥0,4;Ω + ∥γ j − γ jh∥0,Ω

}
≤ C hr

∑
j∈{f ,s}

{
∥σ j∥r,Ω + ∥div(σ j)∥r,4/3;Ω + ∥uj∥r,4;Ω + ∥γ j∥r,Ω

}
.

roof. The result follows straightforwardly from Theorem 5.5 and the approximation properties (4.32), (4.33) and
4.34). □

.2. Computing further variables of interest

Here we introduce suitable approximations of further variables of interest, such as the stresses Tf and Ts, the fluid
ressure pf and the gradient of the fluid and particle velocities ∇uf and ∇us, respectively, all of them written in terms
f the solution of the discrete problem (4.2). To that end, we first notice from (2.10) and (2.11) that Tf and Ts satisfy the
dentities

Tf = σ f + ρf (εuf ) ⊗ uf and Ts = σs + ρs(φus) ⊗ us + ρf (εuf ) ⊗ uf . (5.19)

ext, we observe that pf , ∇uf and ∇us can be written in terms of Tf and Ts as follows:

pf = −
1
n
tr
(
Tf
)
, ∇uf =

1
2µf

T d
f + γ f −

1
n

(
∇ε

ε
· uf

)
I,

∇us =
1

2µs(φ)
T d
s + γ s −

1
n

(
∇φ

φ
· us

)
I .

(5.20)

herefore, given the discrete solution
(
σ fh, (ufh, γ fh)

)
∈ Hh × Qh,

(
σsh, (ush, γ sh)

)
∈ Hh × Qh, of (4.2), we propose the post

rocessed approximations of Ts, Tf , pf , ∇uf and ∇us defined by the following expressions

Tfh = σ fh + ρf (εufh) ⊗ ufh, Tsh = σsh + ρs(φush) ⊗ ush + ρf (εufh) ⊗ ufh,

pfh = −
1
n
tr
(
Tfh
)
, (∇uf )h =

1
2µf

T d
fh + γ fh −

1
n

(
∇ε

ε
· ufh

)
I,

(∇us)h =
1

2µs(φ)
T d
sh + γ sh −

1
n

(
∇φ

φ
· ush

)
I .

(5.21)

otice that all the variables in (5.21) can be obtained in terms of the solution of (4.2) without applying any numerical
ifferentiation procedure, thus avoiding further sources of error, which constitutes a significant advantage of the present
ixed finite element method as compared with the usual primal formulation. In addition, it is easy to see that they
ptimally converge to their exact counterparts. The latter is established in the following corollary whose proof is omitted
ince it follows directly from (5.19), (5.20), (5.21), and Theorem 5.6.

orollary 5.7. Given ℓ ≥ 0, let Hh ×Qh be the pair defined by the PEERSℓ or AFWℓ elements introduced in (4.30) and (4.31),
espectively, and let

(
σ f , (uf , γ f )

)
∈ H×Q,

(
σs, (us, γ s)

)
∈ H× Q and

(
σ fh, (ufh, γ fh)

)
∈ Hh ×Qh,

(
σsh, (ush, γ sh)

)
∈ Hh × Qh

e the unique solutions of (3.18) and (4.2), respectively. Assume that the regularity hypotheses of Theorem 5.6 hold with
∈ [0, ℓ + 1]. Then, there exists C̃ > 0, independent of h, such that

∥pf − pfh∥0,Ω +

∑
j∈{f ,s}

{
∥Tj − Tjh∥0,Ω + ∥∇uj − (∇uj)h∥0,Ω

}
≤ C̃hr

∑
j∈{f ,s}

{
∥σ j∥r,Ω + ∥div(σ j)∥r,4/3;Ω + ∥uj∥r,4;Ω + ∥γ j∥r,Ω

}
.

(5.22)

. Numerical results

The realization of the numerical methods described in Section 5 has been carried out using the open-source finite
lement library FEniCS [40]. A Newton–Raphson algorithm with null initial guesses and exact Jacobian is used to solve the
onlinear set of equations. The condition of zero-averaged fluid pressure (translated in terms of tensor traces) is imposed
hrough a real Lagrange multiplier, which amounts to augmenting the algebraic systems by one row and one column;
nd the solution of all linear systems appearing at each Newton–Raphson iteration is conducted with the multifrontal
assively parallel sparse direct solver MUMPS.
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Table 6.1
Example 1. Convergence history for the mixed finite element approximations of the coupled nonlinear problem in 2D, for different variants of the
scheme. DoF stands for the number of degrees of freedom associated with each method on each mesh refinement.
DoF e(σ f ) r(σ f ) e(uf ) r(uf ) e(γ f ) r(γ f ) e(σs) r(σs) e(us) r(us) e(γ s) r(γ s)

AFWℓ-based formulation with ℓ = 0

54 2.19e+0 – 6.42e−1 – 1.08e+0 – 1.07e+1 – 1.07e+0 – 1.04e+0 –
178 1.23e+0 0.832 3.27e−1 0.973 5.80e−1 0.900 5.32e+00 1.009 5.53e−1 0.955 4.86e−1 1.104
642 6.20e−1 0.987 1.66e−1 0.983 3.93e−1 0.559 2.59e+00 1.040 2.79e−1 0.990 2.51e−1 0.951
2434 3.11e−1 0.998 8.29e−2 0.997 2.07e−1 0.930 1.28e+00 1.018 1.40e−1 0.998 1.27e−1 0.980
9474 1.55e−1 1.000 4.15e−2 1.000 1.04e−1 0.984 6.36e−1 1.007 6.98e−2 0.999 6.39e−2 0.995
37378 7.76e−2 1.000 2.07e−2 1.000 5.24e−2 0.996 3.17e−1 1.002 3.49e−2 1.000 3.20e−2 0.999

AFWℓ-based formulation with ℓ = 1

122 7.45e−1 – 1.30e−1 – 2.19e−1 – 2.96e+0 – 2.20e−1 – 2.46e−1 –
434 1.89e−1 1.975 3.84e−2 1.765 1.67e−1 0.389 6.39e−1 2.214 5.60e−2 1.973 8.61e−2 1.513
1634 4.70e−2 2.012 9.37e−3 2.034 4.70e−2 1.832 1.60e−1 1.994 1.41e−2 1.994 2.47e−2 1.799
6338 1.17e−2 2.005 2.32e−3 2.015 1.22e−2 1.949 4.03e−2 1.991 3.52e−3 1.999 6.45e−3 1.939
24962 2.92e−3 2.002 5.78e−4 2.004 3.10e−3 1.974 1.01e−2 2.000 8.79e−4 2.000 1.64e−3 1.979
99074 7.29e−4 2.001 1.44e−4 2.001 7.83e−4 1.986 2.52e−3 2.002 2.20e−4 2.000 4.12e−4 1.992

PEERSℓ-based formulation with ℓ = 0

46 2.49e+0 – 8.65e−1 – 4.47e+0 – 1.07e+1 – 1.08e+0 – 1.57e+0 –
148 1.59e+0 0.647 6.45e−1 0.423 3.75e+0 0.252 5.73e+0 0.898 5.58e−1 0.955 5.56e−1 1.500
532 7.26e−1 1.131 1.91e−1 1.756 9.99e−1 1.909 2.92e+0 0.972 2.79e−1 0.999 1.97e−1 1.500
2020 3.60e−1 1.011 8.78e−2 1.120 4.26e−1 1.230 1.47e+0 0.993 1.40e−1 0.999 8.81e−2 1.159
7876 1.76e−1 1.034 4.22e−2 1.057 1.71e−1 1.312 7.30e−1 1.009 6.98e−2 1.000 3.88e−2 1.184
31108 8.70e−2 1.016 2.08e−2 1.020 6.38e−2 1.428 3.64e−1 1.005 3.49e−2 1.000 1.55e−2 1.327

PEERSℓ-based formulation with ℓ = 1

124 7.63e−1 – 1.36e−1 – 4.34e−1 – 2.71e+0 – 2.24e−1 – 5.33e−1 –
436 2.10e−1 1.863 4.02e−2 1.761 1.77e−1 1.490 7.01e−1 1.950 5.63e−2 1.992 1.50e−1 1.830
1636 5.39e−2 1.962 1.00e−2 2.006 7.22e−2 1.596 1.90e−1 1.882 1.41e−2 1.996 4.46e−2 1.848
6340 1.36e−2 1.983 2.39e−3 2.063 2.44e−2 1.668 4.95e−2 1.943 3.52e−3 2.001 1.31e−2 1.868
24964 3.43e−3 1.988 5.85e−4 2.034 7.07e−3 1.785 1.26e−2 1.977 8.80e−4 2.001 3.58e−3 1.873
99076 8.62e−4 1.994 1.45e−4 2.012 1.90e−3 1.895 3.17e−3 1.990 2.20e−4 2.001 9.30e−4 1.945

6.1. Test 1: accuracy verification using smooth manufactured solutions

We assess the convergence of the mixed finite element discretizations by manufacturing an exact solution of the
oupled system (2.10) defined over the domain Ω := (0, 1)2

φ(x) =
1
2

−
1
4
sin(x1) cos(x2) ,

us(x) =

⎛⎝ 4 cos(x1) sin(x2)
1
4 (sin

2(x1) − cos2(x1)) cos(2x2) − 2 sin(x1) cos(x2)
φ(x)

⎞⎠ ,

ε(x) = 1 − φ(x), uf (x) =
φ(x)
ε(x)

us(x), p(x) = x41 − x42 .

The exact velocities and the smooth particle distribution are such they satisfy the mass conservation equations. Using these
closed-form solutions we require additional right-hand side load terms in (2.13), and the boundary Dirichlet velocities are
also adjusted in terms of these manufactured solutions. The model constants for the convergence test assume the values

ρf = 1, ρs = 2.2, µf = 0.1, ds = 0.1, φp = 0.65, g = (0, −1)t,
P = 1.266, r = 0.3, M = 0.571, m = 3.65, φ0 = 0.61, vt = 14.3.

Errors between exact and approximate solutions are denoted as

e(σ f ) := ∥σ f − σ fh∥div4/3;Ω , e(uf ) := ∥uf − uh∥0,4;Ω , e(γ f ) := ∥γ f − γ fh∥0,Ω ,

e(σs) := ∥σs − σsh∥div4/3;Ω , e(us) := ∥us − ush∥0,4;Ω , e(γ s) := ∥γ s − γ sh∥0,Ω ,

and by r(⋆) we denote their corresponding rates of convergence, that is

r(⋆) :=
log(e(⋆)/e′(⋆))

log(h/h′)
∀ ⋆ ∈

{
σ f ,uf , γ f , σs,us, γ s

}
,

here h and h′ denote two consecutive mesh sizes with errors e(⋆) and e′(⋆), respectively. Errors and corresponding
onvergence rates are summarized in Table 6.1, focusing on approximations using AFW and PEERS elements for the two
ℓ ℓ
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Fig. 6.1. Example 1. Approximate solutions computed with PEERSℓ method with ℓ = 1. Magnitude of fluid pseudostress, fluid velocity magnitude,
component (1,2) of the vorticity fluid tensor, magnitude of particle pseudostress, solid velocity magnitude, and component (1,2) of the vorticity solid
tensor.

lowest-order polynomial degrees ℓ = 0, 1. In all cases we see the optimal convergence rates predicted by Theorem 5.6
for all individual unknowns. Also, we mention that in every run the number of Newton–Raphson iterations needed to
reach a residual-based convergence criterion with tolerance of 1e-6 was less than 4. Samples of approximate solutions
are shown in Fig. 6.1.

6.2. Test 2: velocity fields generated by synthetic particle distributions

For our second test we consider a two-dimensional fluidized bed of size 15 × 30 cm2, where the problem configuration
follows a simplification of the applicative cases discussed in [4,13]. The inlet boundary Γ in is defined as a nozzle of 1 cm
width which is located at the center of the lower horizontal boundary, and through which fluid is injected with a uniform
profile. In addition, we generate a synthetic particle distribution

φ(x) =
φ0

2
−

φ0

4
sin
(
1
5
x1

)
cos
(
1
5
x2

)
, (6.1)

here φ0 is the mean concentration of the particles in the fluidized bed occupying Ω . Note that, because of (2.16) the
formulation requires φ to be smooth and non-zero. The boundary conditions are now slightly different than in Example
1. The fluid velocity is still prescribed on the whole boundary, but it is split as follows

uf ,D(x) =

⎧⎪⎪⎨⎪⎪⎩
(0,U)t on Γ in,(
0,

6U
153 x1(15 − x1)

)t

on Γ out,

0 on Γ wall
= Γ \ {Γ in

∪ Γ out
},

whereas the particle velocities are allowed to slip on all boundaries

us · n = 0 on Γ , (6.2)

hich implies that, at the discrete level, the first pairing appearing in the definition of Fuhs (τsh) (see the specification for
he continuous variational form in (3.8)) is replaced by⟨

t̃ · τshn,ush · t̃
⟩
, (6.3)

n 2D, where t̃ is the tangent vector on the boundary. Such a boundary setup expresses, respectively, that we apply exactly
he fluidization uniform velocity at the entrance of the fluidized bed and that this is the same profile with which the fluid
eaves the bed, that there is no-slip boundary conditions for the fluid at rigid walls, and that there is slip of solid particles
t rigid walls but no particles should leave the fluidized bed. The remaining parameters characterizing (2.6), (2.7) and
2.9), (6.1), are

ρf = 1.205, ρs = 2.7, µf = 1.8 · 10−2, ds = 4 · 10−1, φp = 0.65,
P = 10.78, r = 0.3, M = 0.571, m = 4.25, U ∈ {1, 2.2}, φ0 = 0.61,

taken as in [4,13] using CGS units, and representing the interaction between a liquid and solids in a fluidized bed. We
employ a uniform mesh and run the simulation of the interaction between the mass and momentum conservations in
the steady case. The outcome is shown in Fig. 6.2, where we see how the particle distribution generates velocity patterns
going from the nozzle to the outlet boundary, and how the particles slip on the boundaries. We also compare two cases for
different inlet velocities. The plots in Fig. 6.3 show distinct velocity patterns generated using the same particle distribution,
but where the intensity of the nozzle varies from U = 1 to U = 2.2.

We also conduct a modification of the previous tests by considering different specifications for the particle distribution.
Using the same rectangular channel as before we set

φC (x) =
φ0
(
1 − tanh

(x2 − 15))
, φD(x) = φ0

(
1 − exp

[
−0.5(x1 − 7.5)2 − (x2 − 15)2

])
,

2 5
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m
d

Fig. 6.2. Example 2A. Approximate solutions obtained with a lowest-order AFWℓ method. Velocity components and postprocessed pressure (top),
agnitude of fluid and particle pseudostress (bottom left), synthetic particle distribution with particle velocity line integral contours and sample of
istribution of ε and fluid velocity (bottom center panels), and entry (1,2) of the fluid and particle vorticity fields.

Fig. 6.3. Example 2B. From left to right: Magnitudes of the particle and fluid velocities for two different magnitudes of the inlet fluid velocity.
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Fig. 6.4. Examples 2C (top row)-2D (bottom row). Particle distribution, magnitudes of the fluid and particle velocities, and particle velocity line
ntegral contours, for two different particle distributions.

here φ0 is as in examples 2A-B. In test 2C we also modify the boundary conditions setting the same parabolic profile for
he fluid velocity on the inlet and the outlet, in order to generate a Poiseuille fluid flow. For test 2D the boundary setup
s as in examples 2A–2B. As announced at the end of Section 4.1, the aim of these additional tests is to assess how the
ethod behaves in the low concentration limit φ ≈ 0. Test 2C mimics a fluidized bed that is homogeneously expanded to
height of approximately 15 and, from there, after a fast transition of the concentration field from approximately φ0 to
pproximately 0, the flow would only be of almost pure fluid up until the outlet of the reservoir. For test 2D, we mimic
(stationary) bubble at the center of the domain. In the center of the bubble, the particle concentration is actually zero.
he results indicate that the formulation performs relatively well in these scenarios, suggesting that the restrictions of
aintaining φ away from zero dictated by (2.16) and the corresponding hypotheses in Theorems 3.6, 3.7, 4.1 and 4.2, may
e waived at the implementation level. The numerical solutions for tests 2C and 2D are portrayed in Fig. 6.4.
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Fig. 6.5. Example 3. Magnitude of fluid and particle pseudostress (left top), particle distribution and magnitude fluid vorticity (left bottom), and
luid (center) and particle (right) velocity streamlines showing also contour plots of the particle distribution. The simulations were performed with
he lowest-order PEERSℓ method.

.3. Test 3: 3D version of Test 2B

As a proof of concept of the need of multidimensional models for fluidized beds we present a simple extension of the
revious tests to the 3D case. We consider a cylinder of height 30 cm and radius 10 cm. Again we start from a given
mooth particle distribution that we choose as

φ(x) =
φ0

2
−

φ0

900
sin
(
1
5
x1

)
cos
(
1
5
x2

)
(x3 − 15)2.

The boundary conditions are set similarly as above, on the bottom disk of the cylinder we define as Γ in a smaller region of
radius 1 cm on which we impose a uniform fluid velocity (0, 0, 1)t, on x3 = 30 we define another disk region Γ out centered
t (0, 0, 30) and with radius 3 cm, where we set the parabolic outlet fluid velocity profile (0, 0, 1

12x1(15−x1)x2(15−x2))t;
nd the remainder of the boundary conforms Γ wall. Again, we impose slip-velocity conditions for the solid particles
ccording to (6.2), and instead of (6.3) we now set ⟨τshn × n,ush × n⟩. The remaining parameters assume the same values
s in the 2D case. The computations were performed with a coarse unstructured tetrahedral mesh for which the lowest-
rder PEERSℓ elements use around 110k DoFs. The outcomes are collected in Fig. 6.5. The larger plots on the center and
ight panels show the streamlines of fluid and particle velocities, where we also show also contours of φ that go over the
hreshold 0.35. The fluid velocity streamlines indicate the direction of the flow and the generation of non-axisymmetric
ecirculation patterns. The remaining panels show the magnitude of pseudostress and vorticity.
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