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Abstract This paper discusses a so-called ultra-weak three-field formulation of the
biharmonic problem where the solution, its gradient, and an additional Lagrange
multiplier are the three unknowns. We establish the well-posedness of the problem
using the abstract theory for saddle-point problems, and develop a conforming fi-
nite element scheme based on Raviart–Thomas discretisations of the two auxiliary
variables. The well-posedness of the discrete formulation and the corresponding a
priori error estimate are proved using a discrete inf-sup condition. We further extend
the analysis to the time-dependent semilinear equation, namely extended Fisher–
Kolmogorov equation. We present a few numerical examples to demonstrate the
performance of our approach.
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1 Introduction

Fourth-order partial differential equations appear in many applications. Some exam-
ples are thin beams and plates, strain gradient elasticity [10, 15], the Stokes problem
[19] and phase separation of a binary mixture [30]. The variational formulation of
these problems requires H2-conforming finite elements, which are not so easy to
construct on unstructured meshes. There are a few classical approaches to avoid this
difficulty. The first one is to use discontinuous Galerkin methods or non-conforming
approaches as in [27, 15, 7, 30]. The non-conforming approach based on Morley fi-
nite element is quite efficient but it does not produce a uniform approximation when
applied to a singularly perturbed problem [25]. The second approach is to apply a
mixed formulation as in [12, 11, 16, 10, 17, 2, 26, 13, 18].

This paper is concerned about a mixed formulation of the biharmonic equation
and its finite element discretisation. As in [20, 9, 23, 3], our formulation is based
on using the gradient of the solution as a new variable. We formulate our problem
as minimising the square of the L2-norm of the divergence of the gradient in a suit-
able Hilbert space as in [3]. Then we write a variational equation of the constraint
using a Lagrange multiplier. However, in contrast to [3], we reformulate the con-
straint using an integration by parts to recast the problem with the solution in the
L2-space. Therefore, we call our formulation ultra-weak. The gradient of the solu-
tion and the Lagrange multiplier both are discretised using a Raviart–Thomas finite
element space. We note that a very similar formulation has been introduced in [18]
for the biharmonic problem. Here we also carry out the error analysis for the ex-
tended Fisher–Kolmogorov (EFK) equation, which is a time-dependent semilinear
fourth-order equation with a parameter that multiplies the biharmonic term and thus
controls the strength of higher-order diffusion/curvature penalty.

The contents of the paper have been organised as follows. Section 2 describes
the strong form of the biharmonic problem with different boundary conditions and
shows a derivation of the proposed ultra-weak formulation. In Section 3, we address
the unique solvability of the problem using the Babuška–Brezzi theory for saddle-
point problems. We introduce the discrete problem in Section 4, show discrete well-
posedness, and establish quasi-optimality results, which for Raviart–Thomas finite
elements imply optimal convergence rates. Then, we extend the approach to the
extended Fisher–Kolmogorov equation in Section 5, prove a stability estimate and
show the convergence of the numerical method. Finally, Section 6 presents numer-
ical examples in 2D and 3D illustrating the properties of the proposed three-field
formulation, and focusing on the extended Fisher–Kolmogorov problem. We also
present a brief parametric study with the performance of the mixed finite element
scheme when varying the curvature coefficient.
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2 A mixed formulation for the biharmonic equation

In this section we discuss a new mixed formulation of the biharmonic problem. Let
Ω ⊂ Rd , d ∈ {2,3}, be a bounded convex domain with polygonal or polyhedral
boundary Γ = ∂Ω and an unit normal n pointing outward to Γ . We consider the
biharmonic equation

∆
2u = f in Ω (1)

with either simply supported boundary conditions

u = ∆u = 0 on Γ , (2)

or with Cahn–Hilliard boundary conditions

∂u
∂n

=
∂∆u
∂n

= 0 on Γ . (3)

Here we consider a new mixed formulation of the biharmonic equation and its
finite element discretisation. We aim to derive an ultra-weak formulation, where
the solution u is only square integrable. There are many mixed schemes for the
biharmonic problem [12, 11, 10, 20, 9, 22, 23]. Our formulation is similar to a
formulation proposed in a recent contribution [18], where the solution u belongs
to L2(Ω). In this article, we derive a unified formulation for simply supported (2)
and Cahn–Hilliard (3) boundary conditions (BCs), and extend the analysis to the
extended Fisher–Kolmogorov equation.

Here we start with a minimisation problem for the biharmonic equation and in-
troduce the gradient as a new unknown as in [12, 20, 9, 22, 23]. Then we write a
variational equation of this new equation using a Lagrange multiplier.

We use the Sobolev spaces L2(Ω), Hs(Ω) for s ∈ R and H(div,Ω), which are
defined in a standard way, equipped with their usual inner products and norms [24,
1, 10, 6]. Defining

V :=

{
H2(Ω)∩H1

0 (Ω) for simply supported BCs,
{v ∈ H2(Ω) : ∂v/∂n = 0 on Γ ,

∫
Ω

v = 0} for Cahn–Hilliard BCs,

we consider the following variational form of the biharmonic problem (1)

J(u) = inf
v∈V

J(v), (4)

with
J(v) :=

1
2

∫
Ω

|∆v|2 dx− ℓ(v), ℓ(v) :=
∫

Ω

f vdx. (5)

The minimisation problem associated with (5) is equivalent to finding u ∈ V such
that

A(u,v) = ℓ(v) ∀ v ∈V, (6)
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where
A(u,v) :=

∫
Ω

∆u∆vdx.

The existence and uniqueness of the solution of (4) and (6) are well established
[12, 10, 13].

We need the following two Hilbert spaces to define our new mixed formulation.
Let

W :=

{
H1

0 (Ω) for simply supported BCs,
{v ∈ H1(Ω) :

∫
Ω

vdx = 0} for Cahn-Hilliard BCs,

and

M :=

{
H(div,Ω) for simply supported BCs,
H0(div,Ω) for Cahn-Hilliard BCs,

where
H0(div,Ω) := {τ ∈ H(div,Ω) : τ ·n = 0 on Γ }.

Introducing the new variable σ := ∇u (as in the Ciarlet–Raviart formulation, σ

represents the velocity of the flow in the context of Stokes equations, or the rotation
vector in the case of plate equations), the biharmonic problem is now recast as a
constrained minimisation problem [3, 10, 12]

argmin
(u,σ)∈[W×M]

σ=∇u

(
1
2
∥divσ∥2

L2(Ω)− ℓ(u)
)
.

Remark 1. The spaces W and M are defined in such a way that we get the correct
boundary conditions from this minimisation formulation for both types of boundary
conditions.

To arrive at an ultra-weak formulation, we multiply the constraint σ = ∇u by a
Lagrange multiplier ψ ∈ M and integrate by parts to get∫

Ω

σ ·ψ dx+
∫

Ω

udivψ dx = 0.

Let

U :=

{
L2(Ω) for simply supported BCs,
{v ∈ L2(Ω) :

∫
Ω

vdx = 0} for Cahn–Hilliard BCs.

Let V :=U ×M. Here V is equipped with the standard graph norm:

∥(v,τ)∥2
V := ∥v∥2

0,Ω +∥τ∥2
div,Ω ,

where ∥τ∥2
div,Ω := ∥τ∥2

0,Ω +∥divτ∥2
0,Ω .
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We now define the constrained space V as

V := {(v,τ) ∈ V :
∫

Ω

τ ·ψ dx+
∫

Ω

vdivψ dx = 0, ∀ψ ∈ M}.

This leads to a minimisation problem of finding (u,σ) ∈ V such that

J (u,σ) = inf
(v,τ)∈V

J(v,τ), (7)

with
J(v,τ) :=

1
2

∫
Ω

|divτ|2 dx− ℓ(v).

Remark 2. A similar three-field formulation has been proposed in [3], where the
constraint is written as∫

Ω

(σ −∇u) ·ψ dx = 0, ∀ψ ∈ [L2(Ω)]d ,

and u ∈ H1
0 (Ω). In that case, a discrete Lagrange multiplier space should be chosen

very carefully to satisfy the stability. Invoking an integration by parts and using the
boundary condition, our new formulation requires the solution u ∈ L2(Ω). There-
fore, we name it an ultra-weak formulation.

Remark 3. If u∈V is the solution to the minimisation problem (4), then (u,∇u)∈V
is also the solution to the minimisation problem (7). Conversely, if (u,σ) ∈ V is the
solution to the minimisation problem (7), we get∫

Ω

σ ·ψ dx+
∫

Ω

udivψ dx = 0, ∀ψ ∈ M.

If u ∈ H2(Ω), an integration by parts leads to∫
Ω

σ ·ψ dx−
∫

Ω

∇u ·ψ dx+
∫

Γ

uψ ·ndσ = 0, ∀ψ ∈ M.

In particular, choosing ψ ∈ M with ψ ·n = 0 on Γ produces σ = ∇u for both cases
of boundary conditions. Using σ = ∇u and the fact that ψ ∈ M, we get u = 0 on Γ

for the case of simply supported boundary conditions. For the case of Cahn-Hilliard
boundary conditions, as σ ∈ M, we have σ ·n = 0 on Γ , which gives ∇u ·n = 0 on
Γ . Hence u ∈ V for both types of boundary conditions, and u is the solution to the
minimisation problem (4).

This leads to a saddle point problem of finding ((u,σ),φ) ∈ V×M such that

a((u,σ),(v,τ))+b((v,τ),φ) = ℓ(v), ∀(v,τ) ∈ V, (8a)
b((u,σ),ψ) = 0 ∀ψ ∈ M, (8b)

where bilinear forms a(·, ·) and b(·, ·) are given by
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a((u,σ),(v,τ)) :=
∫

Ω

divσ divτ dx, (9a)

b((v,τ),ψ) :=
∫

Ω

τ ·ψ + vdivψ dx. (9b)

Remark 4. If u ∈ H1(Ω), the second equation of (8) yields σ = ∇u. Using v = 0
in the first equation of (8) and integrating by parts, we see that φ = ∇(∆u) if u ∈
H3(Ω).

3 Stability analysis

In this section, we show the coercivity of the bilinear form a(·, ·) and inf-sup condi-
tion of the bilinear form b(·, ·) on the kernel space V .

Lemma 1. There exists a constant C > 0 such that for (v,τ) ∈ V

a((v,τ),(v,τ))≥C
(
∥τ∥2

div,Ω +∥v∥2
0,Ω

)
.

Proof. Let (v,τ) ∈ V . Notice from the definition (9a) of a(·, ·) that

a((v,τ),(v,τ)) = ∥divτ∥2
0,Ω . (10)

We aim to show that

∥v∥0,Ω ≤C∥τ∥0,Ω , and ∥τ∥0,Ω ≤C∥divτ∥0,Ω .

Since (v,τ) ∈ V , we have∫
Ω

τ ·ψ + vdivψ dx = 0, ∀ψ ∈ M. (11)

We choose ψ ∈ M as a solution of the divergence equation [6, Lemma 11.2.3]

divψ = v

with the property
∥ψ∥0,Ω ≤C∥v∥0,Ω .

This in (11) and the Cauchy–Schwarz inequality lead to

∥v∥2
0,Ω =−

∫
Ω

τ ·ψ dx ≤ ∥τ∥0,Ω∥ψ∥0,Ω ≤C∥τ∥0,Ω∥v∥0,Ω .

Thus, we have
∥v∥0,Ω ≤C∥τ∥0,Ω . (12)
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For the second step, choosing ψ = τ in (11), we obtain

∥τ∥2
0,Ω =−

∫
Ω

vdivτ dx.

This followed by the Cauchy–Schwarz inequality and (12) proves that

∥τ∥0,Ω ≤C∥divτ∥0,Ω . (13)

The conclusion follows by using (10), (12) and (13).

Lemma 2. The bilinear form b(·, ·) satisfies the inf-sup condition:

sup
(v,τ)∈V

b((v,τ),ψ)

∥(v,τ)∥V
≥ ∥ψ∥div,Ω , ∀ψ ∈ M. (14)

Hereafter, the supremum is taken over all functions of the underlying space with
non-zero norm on the denominator.

Proof. Let ψ ∈ M. Choosing v = divψ and τ = ψ , we have

sup
(v,τ)∈V

b((v,τ),ψ)

∥(v,τ)∥V
≥
√
∥ψ∥2

0,Ω +∥ψ∥2
div,Ω ≥ ∥ψ∥div,Ω .

This concludes the proof.

Remark 5. The biharmonic equation with clamped boundary conditions u = ∂u
∂n = 0

on Γ corresponds to the saddle point problem of finding ((u,σ),φ)∈V×H(div,Ω)
with V= L2(Ω)×H0(div,Ω) such that

a((u,σ),(v,τ))+b((v,τ),φ) = ℓ(v), ∀(v,τ) ∈ V,
b((u,σ),ψ) = 0, ∀ψ ∈ H(div,Ω).

In this case, the formulation is not well-posed as the inf-sup condition (14) does not
hold. A similar issue exists for the well-known Ciarlet–Raviart formulation [12, 2].

4 Finite element discretisation

Let Th be a shape-regular partition of the domain Ω in simplices having the mesh-
size h. Note that for d = 2 a simplex is a triangle, and for d = 3 it is a tetrahedron. In
the following, we use a positive generic constant C, which may take different values
at different places but is always independent of the mesh-size h. Let Pk(T ) be the
space of polynomials of degree k ≥ 0 in the simplex T . We consider the following
finite dimensional subspaces Uh and Mh based on the triangulation Th of the Hilbert
spaces U and M, respectively as follows:
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Uh := {uh ∈U : uh|T ∈ Pk(T ), ∀T ∈ Th},
Mh := {φ h ∈ M : φ h|T ∈ [Pk(T )]

d + xPk(T ), ∀T ∈ Th},

where x ∈ Rd is the space coordinate vector. Here Mh is the Raviart–Thomas
space of order k [5, 4]. Let Vh := Uh ×Mh. The finite element problem is to find
((uh,σh),φ h) ∈ Vh ×Mh such that

a((uh,σh),(vh,τh))+b((vh,τh),φ h) = ℓ(vh), ∀(vh,τh) ∈ Vh, (15a)
b((uh,σh),ψh) = 0 ∀ψh ∈ Mh. (15b)

Now we prove the well-posedness of the discrete formulation as in the continuous
setting. The continuity of both bilinear forms a(·, ·) and b(·, ·), and the linear form
ℓ(·) follows as in the continuous setting as we use conforming spaces. To prove the
inf-sup condition for the bilinear form b(·, ·), we choose vh = divψh and τh = ψh
for all ψh ∈ Mh as in the continuous setting to get

sup
(vh,τh)∈Uh×Mh

b((vh,τh),ψh)

∥(vh,τh)∥V
= sup

(vh,τh)∈Uh×Mh

b((vh,τh),ψh)√
∥vh∥2

0,Ω +∥τh∥2
div,Ω

≥ ∥ψh∥div,Ω .

Now we turn our attention to prove the coercivity of the bilinear form a(·, ·) on
the kernel space Vh defined by

Vh := {(vh,τh) ∈Uh ×Mh : b((vh,τh),ψh) = 0, ∀ψh ∈ Mh}.

Let (vh,τh) ∈ Vh so that∫
Ω

τh ·ψh dx+
∫

Ω

vh divψh dx = 0, ∀ψh ∈ Mh. (16)

We choose ψh ∈ Mh as a solution of the divergence equation (see, e.g., [4])

divψh = vh

with the property
∥ψh∥0,Ω ≤C∥vh∥0,Ω ,

in (16) and get

∥vh∥2
0,Ω =−

∫
Ω

τh ·ψh dx ≤ ∥τh∥0,Ω∥ψh∥0,Ω ≤C∥τh∥0,Ω∥vh∥0,Ω .

This gives us
∥vh∥0,Ω ≤C∥τh∥0,Ω . (17)

Choosing ψh = τh, we have

∥τh∥2
0,Ω =−

∫
Ω

vh divτh dx.
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This yields
∥τh∥2

0,Ω ≤ ∥vh∥0,Ω∥divτh∥0,Ω . (18)

Combining (17) with (18), we get

∥τh∥0,Ω ≤C∥divτh∥0,Ω . (19)

Hence, from (19) we have the coercivity result

a((vh,τh),(vh,τh)) = ∥divτh∥2
0,Ω ≥C∥τh∥2

div,Ω +∥vh∥2
0,Ω , ∀(vh,τh) ∈ Vh.

The following theorem for the a priori error estimate follows from the theory of
mixed finite elements [8].

Theorem 1. There exists a unique solution ((uh,σh),φ h) ∈ Vh ×Mh to the discrete
saddle-point problem (15). Moreover, we have that

∥uh∥0,Ω +∥σh∥div,Ω +∥φ h∥div,Ω ≤C∥ f∥0,Ω ,

and for the solution ((u,σ),ψ) ∈ V×M of the saddle point problem (8), we have

∥u−uh∥0,Ω +∥σ −σh∥div,Ω +∥φ −φ h∥div,Ω

≤C
(

inf
vh∈Uh

∥u− vh∥0,Ω + inf
τh∈Mh

∥σ − τh∥div,Ω + inf
ψh∈Mh

∥φ −ψh∥div,Ω

)
.

Moreover, if u ∈ Hk+1(Ω), σ ,φ ∈ [Hk+1(Ω)]d and divσ ,divφ ∈ Hk+1(Ω), we have

∥u−uh∥0,Ω +∥σ −σh∥div,Ω +∥φ −φ h∥div,Ω

≤Chk+1 (∥u∥k+1,Ω +∥σ∥k+1,Ω +∥divσ∥k+1,Ω +∥φ∥k+1,Ω +∥divφ∥k+1,Ω
)
.

5 Extended Fisher–Kolmogorov equation

In this section, we apply our mixed formulation to the following time-dependent
fourth-order extended Fisher–Kolmogorov equation

∂tu+ γ∆
2u−∆u+g(u) = 0 in J×Ω , (20a)

u(x,0) = u0(x) in Ω , (20b)

where the time interval is J := (0,T ] and the nonlinear term is of the form g(u) :=
u3 −u. The positive parameter γ controls the energetic penalty for curvature (bend-
ing) of u, acting as a higher-order diffusion that suppresses small-scale structure
and introduces an intrinsic length scale (see, e.g., [14, 29]). Applying the mixed for-
mulation for the biharmonic problem introduced earlier, we get the following time-
dependent saddle point problem: For every t > 0, find ((u(t),σ(t)),φ(t)) ∈ V×M



10 Khot, Lamichhane & Ruiz-Baier

such that

(∂tu(t),v)0,Ω + γ (a((u(t),σ(t)),(v,τ))+b((v,τ),φ(t)))

+c(σ(t),τ)+(g(u(t)),v)0,Ω = ℓ(v) ∀(v,τ) ∈ V,
(21a)

b((u(t),σ(t)),ψ) = 0 ∀ψ ∈ M (21b)

with u(.,0) = u0(x). From now on, and whenever clear from the context, we will
drop the notation (t) for the trial functions. Recall the bilinear forms a(·, ·) and
b(·, ·) from (9). We denote the usual L2-inner product by (·, ·)0,Ω , and define the
bilinear form

c(σ ,τ) :=
∫

Ω

σ · τ dx.

Since g(u) = u3 −u is a locally Lipschitz continuous function, there exists a unique
solution to (21) for a finite time T > 0 [28].

We use the following shorthand notation:

∥•∥p
Lp(J;∗) :=

∫
J
∥• (s)∥p

∗ ds for p ∈ [1,∞), ∥•∥L∞(J;∗) := sup
s∈J

∥• (s)∥∗,

where the (seminorm) ∥ · ∥∗ depends on the context.

Lemma 3. The following stability estimate holds:

1
2
∥u∥2

L∞(J;L2(Ω))
+ γ∥divσ∥2

L2(J);L2(Ω))+∥σ∥2
L2(J;L2(Ω)) ≲ ∥u0∥2

0,Ω +∥ f∥2
L2(J;L2(Ω)).

Proof. Choosing v = u,τ = σ and ψ = φ and using b((u,σ),φ) = 0, we get

1
2

d
dt
∥u∥2

0,Ω + γ∥divσ∥2
0,Ω +∥σ∥2

0,Ω = ℓ(u)− (g(u),u)0,Ω

= ( f ,u)0,Ω −∥u2∥2
0,Ω +∥u∥2

0,Ω

≤ 1
2
∥ f∥2

0,Ω +
3
2
∥u∥2

0,Ω ,

with the definition of g(u) = u3 − u in the second step and the Cauchy–Schwarz
inequality followed by the Young inequality in the last step. Invoking Gronwall’s
lemma, we conclude the proof.

This stabiliy result and the local existence implies the global existence of the unique
solution to (21). The corresponding finite element problem is to find, for all t > 0,
((uh(t),σh(t)),φ h(t)) ∈ Vh ×Mh such that

(∂tuh,vh)0,Ω + γ(a((uh,σh),(vh,τh))+b((vh,τh),φ h)) (22a)
+c(σh,τh)+(g(uh),vh)0,Ω = ℓ(vh) ∀(vh,τh) ∈ Vh,
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b((uh,σh),ψh) = 0 ∀ψh ∈ Mh
(22b)

with uh(·,0) = Phu0(x), where Ph is the standard L2-projection, that is, for all vh ∈
Uh,

(v−Phv,vh)0,Ω = 0 ∀vh ∈Uh. (23)

The existence and uniqueness of the solution uh follows analogously as in the con-
tinuous problem.

Let us recall that if v ∈ Hk(Ω), then the following approximation property holds:

∥v−Phv∥0,Ω ≲ hk|v|Hk(Ω).

Similarly, let Ph : M → Mh be the vector-valued L2-projection. Let Fh : M → Mh
be the classical Fortin interpolation operator satisfying the following commutative
property (see, e.g., [4]): For all ψ ∈ M,

divFhψ = Ph(divψ).

This provides the orthogonality property

(divψ −divFhψ,vh)0,Ω = 0 ∀vh ∈Uh. (24)

Next, for all τ ∈ [Hk+1(Ω)]d with divτ ∈ Hk+1(Ω), we have the following proper-
ties (see, e.g., [4])

∥τ −Phτ∥0,Ω +∥τ −Fhτ∥0,Ω ≲ hk+1|τ|[Hk+1(Ω ]d , (25a)

∥div(τ −Phτ)∥0,Ω +∥div(τ −Fhτ)∥0,Ω ≲ hk+1|divτ|Hk+1(Ω). (25b)

We define the errors as

u−uh = (u−Phu)+(Phu−uh) =: ρu +θu,

σ −σh = (σ −Phσ)+(Phσ −σh) =: ρσ +θσ ,

φ −φ h = (φ −Fhφ)+(Fhφ −φ h) =: ρφ +θφ .

Theorem 2. The following error estimate holds:

∥θu∥2
L∞(J;L2(Ω))

+ γ∥divθσ ∥2
L2(J;L2(Ω))+∥θσ ∥2

L2(;,L2(Ω))

≲ ∥∂tρu∥2
L2(J;L2(Ω))+∥ρu∥2

L2(J;L2(Ω))+ γ∥divρσ ∥2
L2(J;L2(Ω))

+∥ρσ ∥2
L2(J;L2(Ω))+∥ρφ ∥2

L2(J;L2(Ω)).

Proof. Testing the continuous problem (21) against (v,τ) := (vh,τh) and subtracting
(22) from (21), we get the following error equations
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(∂t(u−uh),vh)0,Ω + γ(a((u−uh,σ −σh),(vh,τh))

+b((vh,τh),φ −φ h))+ c(σ −σh,τh)+(g(u)−g(uh),vh)0,Ω = 0, (26a)
b((u−uh,σ −σh),ψh) = 0, (26b)

for all (vh,τh) ∈ Vh and all ψh ∈ Mh. Since divθφ ∈ Uh, the L2-orthogonality (23)
implies that

b((u−Phu,σ −Phσ),ψh) = (σ −Phσ ,ψh)0,Ω +(u−Phu,divψh)0,Ω = 0,

for all ψh ∈ Mh. This in (26b) provides that b((θu,θσ ),ψh) = 0 for all ψh ∈ Mh.
Invoking this, using the error decompositions, and choosing (vh,τh) = (θu,θσ ) and
ψh = θφ , we arrive at

1
2

d
dt
∥θu∥2

0,Ω + γ∥divθσ ∥2
Ω +∥θσ ∥2

0,Ω =−(∂tρu,θu)0,Ω − γ((divρσ ,divθσ )0,Ω

+b((θu,θσ ),ρφ ))− (ρσ ,θσ )0,Ω − (g(u)−g(uh),θu)0,Ω . (27)

The orthogonalities (23) and (24) lead to (∂tρu,θu)0,Ω = 0, and b((θu,θσ ),ρφ ) =

(θσ ,ρφ )0,Ω . The definition of the nonlinear term g and the Young inequality show
that

∥g(u)−g(uh)∥0,Ω ≤ ∥u−uh∥0,Ω∥u2 +uuh +u2
h −1∥∞,Ω

≤CL∥u−uh∥0,Ω ≤CL(∥ρu∥0,Ω +∥θu∥0,Ω ),

where we used the Sobolev embedding result H2(Ω) ↪→ L∞(Ω) and the regularity
estimate for both u and uh in the second step, and the triangle inequality in the last
step. The previous displayed estimate and the Young inequality in (27) prove that

1
2

d
dt
∥θu∥2

0,Ω +
γ

2
∥divθσ ∥2

Ω +
1
2
∥θσ ∥2

0,Ω

≤ 1
2
∥∂tρu∥2

0,Ω +
γ

2
∥divρσ ∥2

0,Ω +∥ρφ ∥2
0,Ω +∥ρσ ∥2

0,Ω +CL∥ρu∥2
0,Ω +C∥θu∥2

0,Ω .

Integrating from 0 to t and invoking Gronwall lemma, we conclude the proof.

6 Numerical results

This section presents a series of numerical experiments illustrating the performance
of the proposed mixed formulation for the extended Fisher–Kolmogorov problem
(20). All tests are carried out using exact solutions in closed form so that the cor-
responding forcing term and boundary conditions can be manufactured. We con-
sider two different types of boundary conditions: the simply supported case and the
Cahn–Hilliard case.
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Table 1 Convergence for the Fisher–Kolmogorov equation at the final time T = 0.1, against manu-
factured solutions for different polynomial degrees in the 2D case with simply supported boundary
conditions. Here we set γ = 1. The symbol ⋆ here, and in the tables below, indicates that no con-
vergence rate has been computed for the coarsest mesh refinement.

DoF h e(u) EOC e(σ) EOC e(φ) EOC

Ultra-weak scheme with k = 0
40 0.7071 2.72e-02 ⋆ 5.42e-01 ⋆ 1.07e+01 ⋆

144 0.3536 1.42e-02 0.936 2.85e-01 0.927 5.61e+00 0.936
544 0.1768 7.18e-03 0.987 1.44e-01 0.982 2.84e+00 0.981

2112 0.0884 3.60e-03 0.997 7.23e-02 0.996 1.43e+00 0.995
8320 0.0442 1.80e-03 0.999 3.62e-02 0.999 7.14e-01 0.999

33024 0.0221 9.00e-04 1.000 1.81e-02 1.000 3.57e-01 1.000
Ultra-weak scheme with k = 1

120 0.7071 8.19e-03 ⋆ 1.62e-01 ⋆ 3.19e+00 ⋆
448 0.3536 2.15e-03 1.931 4.28e-02 1.919 8.44e-01 1.916

1728 0.1768 5.45e-04 1.979 1.09e-02 1.978 2.14e-01 1.977
6784 0.0884 1.37e-04 1.995 2.73e-03 1.994 5.38e-02 1.994

26880 0.0442 3.42e-05 1.999 6.82e-04 1.999 1.35e-02 2.000
107008 0.0221 8.63e-06 1.986 1.72e-04 1.986 3.01e-03 2.013

The spatial discretisation employs Raviart–Thomas spaces of order k = 0,1 for
the flux variables σ and φ , coupled with piecewise polynomial approximations of
compatible degree for the remaining unknown u in the mixed system. We consider
a sequence of uniformly refined meshes of Ω with mesh-size h. Errors are reported
in the natural H(div)-norm associated with the mixed formulation, and, in addition,
in the L2-norm for the biharmonic solution u, all at the final time step. The discreti-
sation in time is done with backward Euler’s scheme, utilising a small constant time
step so that the total error is dominated by the spatial error.

Let e(h) denote the computed error associated with the solution u, the gradient
σ or the Lagrange multiplier φ on a mesh with size h. The experimental order of
convergence (EOC) in space between two meshes of sizes h1 and h2 (h2 < h1) is
defined by

EOC(h1,h2) =
log

(
e(h1)/e(h2)

)
log(h1/h2)

.

We also recall that when reporting EOCs in the tables, we follow the convention that
a rate of r indicates the error behaves like

e(h) = O(hr).

For the case of Cahn–Hilliard boundary conditions, the zero-mean constraint for
u is imposed with a real Lagrange multiplier requiring to add two terms in the left-
hand side system.

The first set of tests corresponds to the simply supported case and on the unit
square domain Ω =(0,1)2 and the time domain [0,0.1] with the time step ∆ t = 0.01.
The manufactured solution
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Table 2 Convergence for the extended Fisher–Kolmogorov equation at the final time T = 0.1,
against manufactured solutions for different polynomial degrees in the 2D case with Cahn–Hilliard
boundary conditions. Here we set γ = 1.

DoF h e(u) EOC e(σ) EOC e(φ) EOC

Ultra-weak scheme with k = 0
41 0.7071 2.72e-02 ⋆ 5.45e-01 ⋆ 1.08e+01 ⋆

145 0.3536 1.43e-02 0.928 2.86e-01 0.931 5.62e+00 0.938
545 0.1768 7.19e-03 0.991 1.44e-01 0.985 2.85e+00 0.981

2113 0.0884 3.60e-03 0.998 7.23e-02 0.996 1.43e+00 0.995
8321 0.0442 1.80e-03 1.000 3.62e-02 0.999 7.14e-01 0.999

33025 0.0221 9.00e-04 1.000 1.81e-02 1.000 3.57e-01 1.000
Ultra-weak scheme with k = 1

121 0.7071 8.24e-03 ⋆ 1.63e-01 ⋆ 3.21e+00 ⋆
449 0.3536 2.15e-03 1.937 4.29e-02 1.928 8.46e-01 1.923

1729 0.1768 5.45e-04 1.982 1.09e-02 1.981 2.15e-01 1.980
6785 0.0884 1.37e-04 1.995 2.73e-03 1.995 5.38e-02 1.995

26881 0.0442 3.42e-05 1.999 6.82e-04 1.999 1.33e-02 2.020
107009 0.0221 7.37e-06 1.997 1.76e-04 1.995 3.02e-03 2.014

u = t sin(πx)sin(πy)

is chosen so that the solution is sufficiently smooth, ensuring that the theoretical
convergence rates are attainable, and it also satisfies the simply supported bound-
ary conditions. Note that in this case we take the non-homogeneous version of the
extended Fisher–Kolmogorov equation and the corresponding source term is com-
puted from the manufactured solutions. Table 1 displays the error history (individual
errors and estimated rates of convergence) for RT0 and RT1, respectively. The results
confirm the theoretical error estimates. For RT0 we observe first-order convergence
in the energy norm while for RT1, the convergence rates increase to second order.
In all cases the asymptotic regime is reached rapidly, and the computed orders of
convergence match the approximation properties of the finite element spaces.

The second set of experiments considers the Cahn–Hilliard boundary conditions,
also in the unit square domain. The manufactured solution to the extended Fisher–
Kolmogorov problem is now

u = t cos(πx)cos(πy),

and it is used to prescribe the data as well as the exact mixed variables. The corre-
sponding error history is reported in Table 2, and sample solutions for the scheme
with k = 1 and on a fine mesh are depicted at time T = 0.1 in Figure 1.

Next, we also show spatial convergence in the 3D case, taking the unit cube
domain Ω = (0,1)3 and considering the manufactured solution

u = t sin(πx)sin(πy)sin(πz).
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Fig. 1 Approximate solutions for the Fisher–Kolmogorov problem at time T = 0.1
, in 2D using Cahn–Hilliard boundary conditions. The results correspond to the second-order

mixed scheme.

Table 3 Convergence against manufactured solutions in 3D and using simply supported boundary
conditions. Errors computed at the final time T = 0.01.

DoF h e(u) EOC e(σ) EOC e(φ) EOC

Ultra-weak scheme with k = 0
42 1.7321 2.90e-03 ⋆ 8.26e-02 ⋆ 3.15e+00 ⋆

288 0.8660 1.80e-03 0.693 5.38e-02 0.619 1.65e+00 0.938
2112 0.4330 9.60e-04 0.904 2.88e-02 0.901 8.55e-01 0.945

16128 0.2165 4.88e-04 0.975 1.47e-02 0.974 4.34e-01 0.977
125952 0.1083 2.45e-04 0.994 7.36e-03 0.994 2.18e-01 0.994
995328 0.0541 1.23e-04 0.998 3.69e-03 0.998 1.09e-01 0.998

Ultra-weak scheme with k = 1
168 1.7321 2.08e-03 ⋆ 6.07e-02 ⋆ 2.15e+00 ⋆

1200 0.8660 6.36e-04 1.708 1.89e-02 1.682 5.70e-01 1.913
9024 0.4330 1.73e-04 1.880 5.16e-03 1.872 1.53e-01 1.898

69888 0.2165 4.42e-05 1.967 1.32e-03 1.966 3.91e-02 1.968
549888 0.1083 1.11e-05 1.992 3.32e-04 1.991 9.84e-03 1.991

4362240 0.0541 2.78e-06 1.998 8.32e-05 1.998 2.46e-03 1.998

Fig. 2 Approximate solutions for the biharmonic problem in 3D using simply supported boundary
conditions. The results correspond to the lowest-order mixed scheme.

For conciseness we only show the case of simply supported boundary conditions,
and take the time interval [0,0.01], ∆ t = 0.001, and γ = 0.01. The convergence is
reported in Table 3, while we also show samples of approximate primal and mixed
variables in Figure 2.

The observed convergence rates are in full agreement with the theoretical pre-
dictions from Theorem 1. For both polynomial degrees, the optimal error decay of
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Fig. 3 Performance (error history and number of Newton iterations to converge) of the mixed
finite element scheme for the extended Fisher–Kolmogorov problem, taking different values of the
model parameter γ .

O(hk+1) is obtained in all norms. This demonstrates that the proposed mixed formu-
lation is robust with respect to the type of boundary conditions imposed and works
in both 2D and 3D.

It is also important to address the dependence of the formulation on the values
of the parameter γ . We perform a simple parametric study, taking as base-line case
simply supported boundary conditions, the unit square domain, the time domain
[0,1] and ∆ t = 1 (that is, we only do one time step). The plot in Figure 3 shows
the error decay for each unknown and number of required Newton iterations for
the convergence of the finite element scheme for different values of γ . We observe
that the convergence of the primal unknown is not affected by variations in γ that
optimal convergence is attained except for the case of γ = 10−6 (where essentially
the Jacobian matrix becomes of low rank since the off-diagonal blocks associated
with the bilinear form b vanish), and only for the Lagrange multiplier. We also
observe that the lower the value of γ the more difficult is for the nonlinear solver to
converge.
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Fig. 4 Numerical solution of the extended Fisher–Kolmogorov equation on a gear model at T =
0.5. Potential, gradient, and Lagrange multiplier obtained with the second-order scheme.

Finally, we perform a simulation of the extended Fisher–Kolmogorov equation
with simply supported boundary conditions on a 3D geometry of a gear. The time
interval is [0, 0.5] and the constant time step is ∆ t = 0.1. This can be considered
as the 3D extension of the 2D gear domain convergence tests done for the same
equation (in primal form and using generalised finite difference schemes) in [21,
Case 2].

The initial condition is taken as the solution of the steady problem with source
term f (x,y,z)= 100sin(2πx)sin(2πy)sin(3πz), and homogeneous simply supported
boundary conditions. The simulation is performed up to the final time T = 0.5 with
constant time step ∆ t = 0.1. We use the parameter γ = 1 and take the second-order
scheme with k = 1, which give for this mesh resolution a total of 694280 degrees
of freedom. The numerical solutions are displayed in Figure 4, showing smooth
concentration of potential near the centre of the gear.
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