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We develop a family of mixed finite element methods for a model of nonlinear poroelasticity where,
thanks to a rewriting of the constitutive equations, the permeability depends on the total poroelastic
stress and on the fluid pressure and therefore we can use the Hellinger–Reissner principle with weakly
imposed stress symmetry for Biot’s equations. The problem is adequately structured into a coupled
system consisting of one saddle-point formulation, one linearised perturbed saddle-point formulation, and
two off-diagonal perturbations. This system’s unique solvability requires assumptions on regularity and
Lipschitz continuity of the inverse permeability, and the analysis follows fixed-point arguments and the
Babuška–Brezzi theory. The discrete problem is shown uniquely solvable by applying similar fixed-point
and saddle-point techniques as for the continuous case. The method is based on the classical PEERSk
elements, it is exactly equilibrium and mass conservative, and it is robust with respect to the nearly
incompressible as well as vanishing storativity limits. We derive a priori error estimates, we also propose
fully computable residual-based a posteriori error indicators, and show that they are reliable and efficient
with respect to the natural norms, and robust in the limit of near incompressibility. These a posteriori
error estimates are used to drive adaptive mesh refinement. The theoretical analysis is supported and
illustrated by several numerical examples in 2D and 3D.

Keywords: Mixed finite elements, stress-based formulation, nonlinear poroelasticity, fixed-point
operators, error estimates.

1. Introduction

Scope. Nonlinear interaction between flow and the mechanical response of saturated porous media is
of a great importance in many applications in biophysics, geomechanics, and tissue engineering, for
example. One of such models is the equations of nonlinear poroelasticity, whose mathematical and
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numerical properties were studied in detail, for example, in the references [15, 20, 32, 42, 49, 51]. In
addition, in the works [11, 12, 13] it is emphasised that a distinctive property of nonlinear poroelasticity
models targeted for, e.g., soft tissue (cartilage, trabecular meshwork, brain matter, etc.), is that the
nonlinear permeability (the hydraulic conductivity, defined as how easily pore fluid escapes from the
compacted pore spaces) that depends on the evolving total amount of fluid, does not entail a monotone
operator, and therefore one cannot readily apply typical tools from monotone saddle-point problems.

More specifically, this work considers deriving mixed finite element (FE) formulations (solving
also for other variables of interest), and for this we can cite in particular [40, 43], where fully mixed
formulations based on the Hu–Washizu principle are studied. Writing the poroelasticity equations in
terms of the strain tensor was motivated in particular in [43] because the permeability – at least in the
regime we focus on here – depends nonlinearly on the total amount of fluid, which is a function of
strain.

Novelty and main contributions. The upshot here compared to [43] is that we are able to rewrite the
constitutive equation for permeability to depend on the total poroelastic stress and on the fluid pressure
(similarly as in, e.g., [8]). This allows us to revert to the more popular Hellinger–Reissner type of mixed
formulations for poroelasticity [7, 44, 45, 52] (without solving explicitly for the strain). Consequently,
another appealing advantage with respect to the formulation in [43] is that, as in the Hellinger–Reissner
formulation, the model becomes robust in the nearly incompressibility regime. Also in contrast to [43],
in this work we use a mixed form for the fluid flow (adding the discharge flux as additional unknown),
which gives the additional advantage of mass conservativity. This is certainly a key advantage over
other models for nonlinear permeability poromechanics: that the formulation is adequately reverted
into a form that lends itself to analysis using well-known techniques.

Regarding the well-posedness analysis, the aforementioned non-monotonicity of the permeability
suggest, for example, to use a fixed-point argument. We opt for freezing the arguments of permeability,
turning the double saddle-point structure with three perturbations coming from the stress trace operator
and from the L2 pressure blocks, into two decoupled saddle-point problems whose separate solvability
can be established from the classical literature for weakly symmetric elasticity and mixed reaction-
diffusion equations. Banach fixed-point theorem is then used to show well-posedness of the overall
problem. This analysis needs to verify conditions of ball-mapping and contraction of the fixed-point
map, and this imposes a small data assumption, which can be carried over to the external load, mass
source, boundary displacement, and boundary fluid pressure. Compared to [43], these conditions are
less restrictive and imply also a less restrictive discrete analysis (which follows closely the continuous
one), due to the analysis being performed using the inverse of the Hooke tensor, which allows us to
achieve robustness with respect to the first Lamé parameter λ and also with respect to the storativity
coefficient.

Note that at the discrete level we can simply use conforming FE spaces. Discrete inf-sup conditions
are already well-known for the chosen FE families of PEERSk and Raviart–Thomas elements used for
the solid and fluid sub-problems (but several other inf-sup stable spaces that satisfy a discrete kernel
characterisation are also possible). We emphasise that, as a consequence of the parameter robustness
of the continuous formulation and of the conformity of the discretisation, all estimates hold uniformly
in the limit of nearly incompressibility (implying that the formulation is Poisson locking-free) as well
as when the constrained storage coefficient vanishes (poroelastic locking-free), and therefore they are
free of non-physical pressure oscillations. These properties are confirmed numerically through a set of
computations including mild and extreme parameters, not only testing dependence on Lamé constants
and storativity-permeability but also the Biot–Willis coefficient.
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An additional goal of this work is to derive efficient and reliable residual a posteriori error estimators
for the nonlinear poroelasticity equations. The approach follows a similar treatment as that of [36]
(which focuses on mixed formulations of stress-assisted diffusion equations), with the difference that
here we do not need to include augmentation terms for the mixed form of the mixed diffusion problem.
The main ingredients in the analysis of these estimates are Helmholtz decompositions and a global
inf-sup (together with boundedness and Lipschitz continuity of coupling terms), local inverse and
trace estimates, bubble-based localisation arguments, and properties of Clément and Raviart–Thomas
interpolators. See also [3, 30] for estimators in a similar multiphysics context and, e.g., [21, 22, 46]
for mixed linear elasticity. Note that for the reliability of the estimator the aforementioned Helmholtz
decompositions – for both tensor-vector and vector-scalar cases – should be valid for mixed boundary
conditions. For this we follow [3] and [27], from which we inherit a convexity assumption on the
Neumann sub-boundary (where we impose traction and flux boundary conditions).

Outline. The rest of the paper is organised as follows. The remainder of this Section has a collection
of preliminary definitions and notational convention, as well as the statement of the governing partial
differential equations. The weak formulation and proofs of the uniform boundedness of the bilinear
forms and suitable inf-sup conditions are shown in Section 2. The fixed-point analysis of the coupled
problem is carried out in Section 3. Section 4 then focuses on the Galerkin discretisation, including
its well-posedness analysis and definition of specific FE subspaces that provide equilibrium and mass
conservativity. In Section 5 we show a Céa estimate and using appropriate approximation properties we
derive optimal a priori error bounds including also the higher order case. The definition of a residual
a posteriori error estimator and the proofs of its reliability and efficiency are presented in Section 6.
We display in Section 7 some numerical tests that both validate and underline the theoretical properties
of the proposed discretisations, and close in Section 8 with a summary and a discussion on possible
extensions.

Notation and preliminaries. Let L2(Ω) be the set of all square-integrable functions in Ω⊂ Rd where
d ∈ {2,3} is the spatial dimension, and denote by L2(Ω) = L2(Ω)d its vector-valued counterpart and
by L2(Ω) = L2(Ω)d×d its tensor-valued counterpart. We also write

L2
skew(Ω) := {τττ ∈ L2(Ω) : τττ =−τττ

t},

to represent the skew-symmetric tensors in Ω with each component being square-integrable. Standard
notation will be employed for Sobolev spaces Hm(Ω) with m ≥ 0 (and we note that H0(Ω) = L2(Ω)).
Their norms and seminorms are denoted as ‖ · ‖m,Ω and | · |m,Ω, respectively (as well as for their vector
and tensor-valued counterparts Hm(Ω), Hm(Ω)) see, e.g., [16].

As usual I stands for the identity tensor in Rd×d , and | · | denotes the Euclidean norm in Rd . Also,
for any vector field v = (vi)i=1,d we set the gradient and divergence operators as ∇∇∇v :=

(
∂vi
∂x j

)
i, j=1,d

and divv := ∑
d
j=1

∂v j
∂x j

. In addition, for any tensor fields τττ = (τi j)i, j=1,d and ζζζ = (ζi j)i, j=1,d , we let divτττ

be the divergence operator div acting along the rows of τττ , and define the transpose, the trace, the tensor
inner product, and the deviatoric tensor as τττ t := (τ ji)i, j=1,d , tr(τττ) := ∑

d
i=1 τii, τττ : ζζζ := ∑

n
i, j=1 τi jζi j, and

τττd := τττ− 1
d tr(τττ)I, respectively. We also recall the Hilbert space

H(div;Ω) :=
{

z ∈ L2(Ω) : div z ∈ L2(Ω)
}
,
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with norm ‖z‖2
div;Ω := ‖z‖2

0,Ω +‖div z‖2
0,Ω, and introduce its tensor-valued version

H(div;Ω) :=
{

τττ ∈ L2(Ω) : divτττ ∈ L2(Ω)
}
.

Governing equations. Let us consider a fully-saturated poroelastic medium (consisting of a
mechanically isotropic and homogeneous fluid-solid mixture) occupying the open and bounded domain
Ω in Rd , the Lipschitz boundary ∂Ω is partitioned into disjoint sub-boundaries ∂Ω := ΓD∪ΓN, and it is
assumed for the sake of simplicity that both sub-boundaries are non-empty |ΓD| · |ΓN|> 0. The symbol
n will stand for the unit outward normal vector on the boundary. Let fff ∈ L2(Ω) be a prescribed body
force per unit of volume (acting on the fluid-structure mixture) and let g ∈ L2(Ω) be a net volumetric
fluid production rate.

The equilibrium (balance of linear momentum) for the solid-fluid mixture is written as

−divσσσ = fff in Ω, (1.1)

with σσσ being the total Cauchy stress tensor of the mixture (sum of the effective solid and fluid stresses),
whose dependence on strain and on fluid pressure is given by the constitutive assumption (or effective
stress principle)

σσσ = C ε(uuu)−α pI in Ω. (1.2)

Here the skeleton displacement vector uuu from the position xxx ∈ Ω is an unknown, the tensor ε(uuu) :=
1
2 (∇∇∇uuu+[∇∇∇uuu]t) is the infinitesimal strain, by C we denote the fourth-order elasticity tensor, also known
as Hooke’s tensor (symmetric and positive definite and characterised by C τττ := λ (trτττ)I+2µ τττ), λ and
µ are the Lamé parameters (assumed constant and positive), 0 ≤ α ≤ 1 is the Biot–Willis parameter,
and p denotes the Darcy fluid pressure (positive in compression), which is an unknown in the system.

We also consider the balance of angular momentum, which in this context states that the total
poroelastic stress is a symmetric tensor σσσ = σσσt. To weakly impose it, it is customary to use the rotation
tensor

ρρρ =
1
2
(∇∇∇uuu− [∇∇∇uuu]t) = ∇∇∇uuu− ε(uuu). (1.3)

The fluid content (due to both fluid saturation and local volume dilation) is given by

ζ = c0 p+α divuuu, (1.4)

where c0 ≥ 0 is the constrained specific storage coefficient. Using Darcy’s law to describe the discharge
velocity in terms of the fluid pressure gradient, the balance of mass for the total amount of fluid is
∂tζ − div(κκκ∇p) = g in Ω× (0, tend), where κκκ is the intrinsic permeability tensor of the medium, a
nonlinear function of the porosity. In turn, in the small strains limit the porosity can be approximated
by a linear function of the fluid content ζ (see for example [51, Section 2.1]), and so, thanks to (1.4),
we can simply write

κκκ = κκκ(ε(uuu), p).

Furthermore, after a backward Euler semi-discretisation in time with a constant time step and rescaling
appropriately, we only consider the type of equations needed to solve at each time step and therefore
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we will concentrate on the form

c0 p+α trε(uuu)−div(κκκ(ε(uuu), p)∇p) = g in Ω. (1.5)

Typical constitutive relations for permeability are, e.g., exponential or Kozeny–Carman type (cf. [6])

κκκ(ε(uuu), p) =
k0

µ f
I+

k1

µ f
exp(k2(c0 p+α trε(uuu)))I, κκκ(ε(uuu), p) =

k0

µ f
I+

k1(c0 p+α trε(uuu))3

µ f (1− (c0 p+α trε(uuu)))2 I,

(1.6)
where µ f denotes the viscosity of the interstitial fluid and k0,k1,k2 are model constants. We note that
in the case of incompressible constituents one has c0 = 0 and α = 1, indicating that permeability
depends only on the dilation trε(uuu) = divuuu (see, e.g., [11]). We also note that even in such a scenario
(of incompressible phases) the overall mixture is not necessarily incompressible itself. More precise
assumptions on the behaviour of the permeability are postponed to Section 2.2. Next we note that from
(1.2) we can obtain

trσσσ = (dλ +2µ)divuuu−dα p and C−1
σσσ +

α

dλ +2µ
pI = ε(uuu) in Ω. (1.7)

Then, from the first equation in (1.7) we get

trε(uuu) =
1

dλ +2µ
trσσσ +

dα

dλ +2µ
p,

and therefore the dependence of κκκ on ε(uuu) and p (cf. (1.6)) can be written in terms of σσσ and p as
follows

κκκ(σσσ , p) =
k0

µ f
I+

k1

µ f
exp
( k2

dλ +2µ

(
(c0(dλ +2µ)+dα

2) p+α trσσσ
))

I,

κκκ(σσσ , p) =
k0

µ f
I+

k1
(
(c0(dλ +2µ)+dα2) p+α trσσσ

)3

(dλ +2µ)µ f
(
dλ +2µ− ((c0(dλ +2µ)+dα2) p+α trσσσ)

)2 I,
(1.8)

and emphasize that the permeability tensor is the same constitutive law on either (1.6) or (1.8), so,
making abuse of notation we have

κκκ = κκκ(ζ ) = κκκ(ε(uuu), p) = κκκ(σσσ , p).

In addition, putting together the second equation in (1.7) and (1.3) we obtain:

C−1
σσσ +

α

dλ +2µ
pI = ∇∇∇uuu−ρρρ in Ω. (1.9)

Finally, we introduce the discharge flux ϕϕϕ as an unknown defined by the constitutive relation

κκκ(σσσ , p)−1
ϕϕϕ = ∇p, (1.10)

and combining (1.7) and (1.5), we are able to rewrite the mass balance equation as

c0 p+
α

dλ +2µ
trσσσ +

dα2

dλ +2µ
p−divϕϕϕ = g in Ω. (1.11)
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To close the system, we consider mixed boundary conditions for a given uuuD ∈ H1/2(ΓD) and pD ∈
H1/2(ΓD):

uuu = uuuD and p = pD on ΓD, ϕϕϕ ·n = 0 and σσσn = 000 on ΓN. (1.12)

2. Weak formulation and preliminary properties

2.1. Derivation of weak forms

Let us define the following spaces

HN(div;Ω) :=
{

τττ ∈H(div;Ω) : τττn = 000 on ΓN
}
,

HN(div;Ω) :=
{

ψψψ ∈H(div;Ω) : ψψψ ·n = 0 on ΓN
}
.

We test equation (1.1) against v ∈ L2(Ω), equation (1.9) against τττ ∈HN(div;Ω), impose the symmetry
of σσσ weakly, test equation (1.11) against q ∈ L2(Ω), equation (1.10) against ψψψ ∈HN(div;Ω), integrate
by parts and use the boundary conditions (1.12) naturally, and then reorder the resulting equations. Then
we arrive at∫

Ω

C−1
σσσ : τττ +

α

dλ +2µ

∫
Ω

p trτττ +
∫

Ω

uuu ·divτττ +
∫

Ω

ρρρ : τττ = 〈τττn,uuuD〉ΓD ∀τττ ∈HN(div;Ω),∫
Ω

v ·divσσσ =−
∫

Ω

fff ·v ∀v ∈ L2(Ω),∫
Ω

σσσ : ηηη = 0 ∀ηηη ∈ L2
skew(Ω),

∫
Ω

κκκ(σσσ , p)−1
ϕϕϕ ·ψψψ +

∫
Ω

pdivψψψ = 〈ψψψ ·n, pD〉ΓD ∀ψψψ ∈HN(div;Ω),

(
c0 +

dα2

dλ +2µ

)∫
Ω

pq+
α

dλ +2µ

∫
Ω

q trσσσ −
∫

Ω

qdivϕϕϕ =
∫

Ω

gq ∀q ∈ L2(Ω),

where 〈·, ·〉ΓD denotes the duality pairing between H−1/2(ΓD) and its dual H1/2(ΓD) with respect to the
inner product in L2(ΓD), and we use the same notation, 〈·, ·〉ΓD , in the vector-valued case.

Next we proceed to introduce the bilinear forms a : HN(div;Ω) × HN(div;Ω) → R, b :
HN(div;Ω)× [L2(Ω)×L2

skew(Ω)]→ R, c : HN(div;Ω) × L2(Ω) → R, the nonlinear form ãσ̂σσ ,p̂ :
HN(div;Ω)×HN(div;Ω)→ R, and the bilinear forms b̃ : HN(div;Ω)×L2(Ω)→ R and c̃ : L2(Ω)×
L2(Ω)→ R, as follows

a(σσσ ,τττ) :=
∫

Ω

C−1
σσσ : τττ, b(τττ,(v,ηηη)) :=

∫
Ω

v ·divτττ +
∫

Ω

τττ : ηηη , c(τττ,q) :=
α

dλ +2µ

∫
Ω

q trτττ,

ãσ̂σσ ,p̂(ϕϕϕ,ψψψ) :=
∫

Ω

κκκ(σ̂σσ , p̂)−1
ϕϕϕ ·ψψψ, b̃(ψψψ,q) :=

∫
Ω

qdivψψψ, c̃(p,q) :=
(
c0 +

dα2

dλ +2µ

)∫
Ω

pq,

(2.1)
respectively, and linear functionals H ∈HN(div;Ω)′, F ∈ (L2(Ω)×L2

skew(Ω))′, H̃ ∈HN(div;Ω)′, F̃ ∈
L2(Ω)′

H(τττ) := 〈τττn,uuuD〉ΓD , F(v,ηηη) :=−
∫

Ω

fff ·v, H̃(ψψψ) := 〈ψψψ ·n, pD〉ΓD , F̃(q) :=−
∫

Ω

gq,
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we arrive at: find (σσσ ,uuu,ρρρ,ϕϕϕ, p) ∈HN(div;Ω)×L2(Ω)×L2
skew(Ω)×HN(div;Ω)×L2(Ω), such that:

a(σσσ ,τττ)+ b(τττ,(uuu,ρρρ)) + c(τττ, p) = H(τττ) ∀τττ ∈HN(div;Ω), (2.2a)

b(σσσ ,(v,ηηη)) = F(v,ηηη) ∀v ∈ L2(Ω), ∀ηηη ∈ L2
skew(Ω), (2.2b)

ãσσσ ,p(ϕϕϕ,ψψψ)+ b̃(ψψψ, p) = H̃(ψψψ) ∀ψψψ ∈HN(div;Ω), (2.2c)

b̃(ϕϕϕ,q)− c̃(p,q) − c(σσσ ,q) = F̃(q) ∀q ∈ L2(Ω). (2.2d)

In what follows, we stress that bilinear forms without tildes will refer to the perturbed saddle-point
problem of the solid, and bilinear forms with tildes relate with the perturbed saddle-point sub-system
of the interstitial fluid. Functions with hats will typically denote fixed quantities (which will be of
importance in the fixed-point setting).

2.2. Stability properties and suitable inf-sup conditions

For the sake of the analysis, we allow the permeability κκκ(σσσ , p) to be anisotropic but still require
κκκ(σσσ , p)−1 to be uniformly positive definite in L∞(Ω) and Lipschitz continuous with respect to p ∈
L2(Ω). That is, there exist strictly positive constants κ1,κ2 such that

κ1|v|2 ≤ vtκκκ(·, ·)−1v, ‖κκκ(·, p1)
−1−κκκ(·, p2)

−1‖L∞(Ω) ≤ κ2‖p1− p2‖0,Ω, (2.3)

for all v ∈ Rd \{000}, and for all p1, p2 ∈ L2(Ω). We observe that the boundedness away from zero and
Lipschitz continuity of the permeability (in the pressure) are quite common assumptions on models for
nonlinear flow in porous media. For the specific applications we target here (bone, trabecular meshwork,
and other soft tissues), typical parametric regimes will imply that (2.3) easily holds for the constitutive
relations (1.8). We also note that it is possible to consider a more general formulation in non-Hilbert
setting for the fluid sub-problem, leading to p∈ Ls(Ω) and ϕϕϕ ∈Hr(divs′ ,Ω) for a range of exponents r,s
and 1

s +
1
s′ = 1. And, at least for sake of continuity of the bilinear form ã, the Lipschitz continuity of the

inverse permeability can be relaxed and sought for in the space Lt(Ω) with 1
t +

1
2r = 1. The coercivity

of ã, however, would require a more restrictive range for the exponents t,r (and in turn for s). It is not
clear how this can be extended to a more general form of Lipschitz continuity without disrupting the
functional structure of pressure and flux (and therefore also of displacement and stress).

We start by establishing the boundedness of the bilinear forms a, b, c, b̃, c̃:∣∣a(σσσ ,τττ)
∣∣≤ 1

µ
‖σσσ‖div;Ω‖τττ‖div;Ω,

∣∣b(τττ,(v,ηηη))
∣∣≤ ‖τττ‖div;Ω(‖v‖0,Ω +‖ηηη‖0,Ω), (2.4a)∣∣c(τττ,q)∣∣≤ γ‖τττ‖div;Ω‖q‖0,Ω, (2.4b)∣∣b̃(ψψψ,q)

∣∣≤ ‖ψψψ‖div;Ω‖q‖0,Ω,
∣∣c̃(p,q)

∣∣≤ γ̃‖p‖0,Ω‖q‖0,Ω, (2.4c)

where

γ :=
α
√

d
dλ +2µ

and γ̃ := c0 +
dα2

dλ +2µ
. (2.5)

On the other hand, using Hölder’s and trace inequalities we can readily observe that the right-hand
side functionals are all bounded∣∣H(τττ)

∣∣≤ ‖uuuD‖1/2,ΓD‖τττ‖div;Ω,
∣∣F(v,ηηη)

∣∣≤ ‖ fff‖0,Ω‖v‖0,Ω ≤ ‖ fff‖0,Ω(‖v‖0,Ω +‖ηηη‖0,Ω),
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∣∣H̃(ψψψ)
∣∣≤ ‖pD‖1/2,ΓD‖ψψψ‖div;Ω,

∣∣F̃(q)
∣∣≤ ‖g‖0,Ω‖q‖0,Ω.

Let us now denote by V and V the kernels of b and b̃, respectively. They are characterised, respectively,
as

V=
{

τττ ∈HN(div;Ω) : divτττ = 000 and τττ = τττ
t in Ω

}
, (2.6a)

V =
{

ψψψ ∈HN(div;Ω) : div ψψψ = 0 in Ω

}
. (2.6b)

From [2, Lemmas 3.1 and 3.2] we easily deduce that there exists ca > 0 such that

a(τττ,τττ)≥ ca‖τττ‖2
div;Ω ∀τττ ∈ V. (2.7)

Remark 2.1 From [33, Lemma 2.2] and [34, Lemma 2.2], we have that the ellipticity constant ca has
the form ca = ĉ 1

µ
, where ĉ depends on ΓN, |Ω|, and the Poincaré constant. Based on the above, ca has

a non-zero lower bound.

The following inf-sup conditions are well-known to hold (see, e.g., [19]):

sup
000 6=τττ∈HN(div;Ω)

b(τττ,(v,ηηη))

‖τττ‖div;Ω
≥ β (‖v‖0,Ω +‖ηηη‖0,Ω) ∀(v,ηηη) ∈ L2(Ω)×L2

skew(Ω), (2.8a)

sup
0006=ψψψ∈HN(div;Ω)

b̃(ψψψ,q)
‖ψ‖div;Ω

≥ β̃‖q‖0,Ω ∀q ∈ L2(Ω). (2.8b)

Finally, we observe that c̃ is elliptic over L2(Ω)

c̃(q,q)≥ γ̃ ‖q‖2
0,Ω. (2.9)

Remark 2.2 Due to the careful choice of the bilinear form a(·, ·), constants in continuity estimates
(2.4a) –(2.4c) and inf-sup conditions (2.8a) and (2.8b) do not blow up when λ → ∞ and c0 → 0. In
particular, the constants γ and γ̃ , which depend on λ and c0 (cf. (2.5)), remain bounded.

3. Analysis of the coupled problem

We now use a combination of the classical Babuška–Brezzi and Banach fixed-point theorems to
establish the well-posedness of (2.2) under appropriate assumptions on the data.

3.1. A fixed-point operator

We adopt a similar approach to, e.g., [26]. First, we define a closed ball of L2(Ω) centred at the origin
and of given radius r > 0

W := {p̂ ∈ L2(Ω) : ‖p̂‖0,Ω ≤ r}. (3.1)

Then, for a given (σ̂σσ , p̂) ∈ HN(div;Ω)×W, thanks to the assumptions on the nonlinear permeability,
we can infer that the form ãσ̂σσ ,p̂ (cf. (2.1)) is continuous, as well as coercive over V∣∣ãσ̂σσ ,p̂(ϕϕϕ,ψψψ)

∣∣≤Cã ‖ϕϕϕ‖div;Ω‖ψψψ‖div;Ω, (3.2a)
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ãσ̂σσ ,p̂(ψψψ,ψψψ)≥ κ1‖ψψψ‖2
div;Ω ∀ϕϕϕ, ψψψ ∈ V. (3.2b)

Then, we define the auxiliary operators R : W ⊆ L2(Ω)→ HN(div;Ω)× (L2(Ω)×L2
skew(Ω)) and

S : HN(div;Ω)×W→HN(div;Ω)×L2(Ω), given by

R(p̂) :=
(
R1(p̂),(R2(p̂),R3(p̂))

)
= (σσσ ,(uuu,ρρρ)) ∀ p̂ ∈W,

with (σσσ ,(uuu,ρρρ)) ∈HN(div;Ω)× (L2(Ω)×L2
skew(Ω)) satisfying

a(σσσ ,τττ) + b(τττ,(uuu,ρρρ)) = H(τττ)− c(τττ, p̂) ∀τττ ∈HN(div;Ω),

b(σσσ ,(v,ηηη)) = F(v,ηηη) ∀(v,ηηη) ∈ L2(Ω)×L2
skew(Ω),

(3.3)

and
S(σ̂σσ , p̂) :=

(
S1(σ̂σσ , p̂),S2(σ̂σσ , p̂)

)
= (ϕϕϕ, p) ∀(σ̂σσ , p̂) ∈HN(div;Ω)×W,

where (ϕϕϕ, p) is such that

ãσ̂σσ ,p̂(ϕϕϕ,ψψψ) + b̃(ψψψ, p) = H̃(ψψψ) ∀ψψψ ∈HN(div;Ω),

b̃(ϕϕϕ,q) − c̃(p,q) = F̃(q)+ c(σ̂σσ ,q) ∀q ∈ L2(Ω).
(3.4)

By virtue of the above, by defining the operator T : W⊆ L2(Ω)→ L2(Ω) as

T(p̂) := S2(R1(p̂), p̂), (3.5)

it is clear that (σσσ ,uuu,ρρρ,ϕϕϕ, p) is a solution to (2.2) if and only if p ∈W solves the fixed-point problem

T(p) = p. (3.6)

Thus, in what follows, we focus on proving the unique solvability of (3.6).

3.2. Well-definedness of T

From the definition of T in (3.5) it is evident that its well-definedness requires the well-posedness of
problems (3.3) and (3.4). We begin by analysing that of (3.3).

Lemma 3.1 Let p̂ ∈W (cf. (3.1)). Then, there exists a unique (σσσ ,(uuu,ρρρ)) ∈ HN(div;Ω)×L2(Ω)×
L2

skew(Ω) solution to (3.3). In addition, there exist C1,C2 > 0, such that

‖σσσ‖div;Ω ≤C1 (‖uuuD‖1/2,ΓD +‖ fff‖0,Ω)+
1
ca

γ ‖p̂‖0,Ω,

‖uuu‖0,Ω +‖ρρρ‖0,Ω ≤C2 (‖uuuD‖1/2,ΓD +‖ fff‖0,Ω)+
1
β

(
1+

1
µca

)
γ ‖p̂‖0,Ω.

(3.7)

Proof It is a direct consequence of the Babuška–Brezzi theory [31, Th. 2.34], using (2.7) and (2.8a)
with

C1 :=
( 1

ca
+

1
β

)(
1+

1
µca

)
and C2 :=

1
β

(
1+

1
µca

)(
1+

1
µβ

)
; (3.8)

we omit further details. �
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Next, we provide the well-definedness of S, or equivalently, the well-posedness of (3.4).

Lemma 3.2 Let (σ̂σσ , p̂) ∈ HN(div;Ω)×W. Then, there exists a unique (ϕϕϕ, p) ∈ HN(div;Ω)×L2(Ω)

solution to (3.4). In addition, there exists a constant C̃ > 0 depending on κ1, β̃ , γ̃ , and Cã, such that

‖ϕϕϕ‖div;Ω +‖p‖0,Ω ≤ C̃ (‖g‖0,Ω +‖pD‖1/2,ΓD + γ‖σ̂σσ‖div;Ω). (3.9)

Proof The existence of a unique solution (ϕϕϕ, p) to (3.4) follows directly from the properties of the
bilinear forms ã, b̃, and c̃. In particular, by examining conditions (3.2b), (2.9), and (2.8b), the proof
can be naturally divided into two cases: if γ̃ = 0 – which corresponds to c0 = 0 and either α = 0 or the
fully incompressible case of λ = ∞ – then the classical Babuška–Brezzi theory for unperturbed saddle
point problems (see e.g., [14, Th. 4.2.3]) applies; whereas if γ̃ > 0, we can readily invoke the theory
for perturbed saddle-point problems (with coercive perturbation) stated in [14, Th. 4.3.1]. Additional
technical details can be omitted. �

Remark 3.3 It is important to note that, due to the careful choice of the bilinear forms ãσ̂σσ ,p̂, b̃, c̃, the
constants in estimates (2.4c) and (2.8b) do not blow up when λ → ∞ and c0 → 0. In particular, the
constant C̃ which depends on the constant γ̃ , which in turn depend on λ and c0, remain bounded.

Lemma 3.4 Given r > 0, let us assume that

C̃
(
1+ γ C1

)(
‖g‖0,Ω +‖pD‖1/2,ΓD +‖uuuD‖1/2,ΓD +‖ fff‖0,Ω

)
+

C̃
ca

γ
2r ≤ r, (3.10)

where C1, C̃, and γ are defined in (3.8), (3.9) and (2.5), respectively. Then, for a given p̂∈W (cf. (3.1)),
there exists a unique p ∈W such that T(p̂) = p.

Proof From Lemmas 3.1 and 3.2, we ascertain that the operators R and S, respectively, are well-defined,
thereby ensuring the well-definition of T. Furthermore, from (3.7) and (3.9), for each p̂∈W, we deduce
that

‖T(p̂)‖0,Ω = ‖S2(R1(p̂), p̂)‖0,Ω

≤ C̃ (‖g‖0,Ω +‖pD‖1/2,ΓD)+C̃ γ ‖R1(p̂)‖div;Ω

≤ C̃ (‖g‖0,Ω +‖pD‖1/2,ΓD)+C̃ γ C1 (‖uuuD‖1/2,ΓD +‖ fff‖0,Ω)+
C̃
ca

γ
2‖p̂‖0,Ω,

this, combined with assumption (3.10), implies T(W)⊆W, which concludes the proof. �

Remark 3.5 Note that the argument used in Lemma 3.4 is as follows, for an arbitrary but fixed r > 0,
we define the ball W (cf. (3.1)). Then, for this fixed r, we assume that the data fff , g, uuuD, pD, and γ (cf.
(2.5)) are sufficiently small to satisfy Hypothesis (3.10). In particular, for the last term on the left-hand

side of assumption (3.10), the condition
C̃
ca

γ2r ≤ r is required, which implies that γ2 ≤ ca

C̃
. As noted in
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Remarks 2.1 and 3.3,
ca

C̃
admits a positive lower bound. Therefore, it suffices to consider λ sufficiently

large (nearly incompressible regime) to ensure that γ2 is sufficiently small, thereby guaranteeing the
feasibility of the condition (3.10).

Remark 3.6 Another option for defining the operator S (see (3.4)) is to introduce the perturbation c̃
on the right-hand side of the system, given by

ãσ̂σσ ,p̂(ϕϕϕ,ψψψ) + b̃(ψψψ, p) = H̃(ψψψ) ∀ψψψ ∈HN(div;Ω),

b̃(ϕϕϕ,q) = F̃(q)+ c(σ̂σσ ,q)+ c̃(p̂,q) ∀q ∈ L2(Ω).

But in this case, the assumption of small data in (3.10) (as well as in other instances, later on) would
also involve the storativity parameter c0, making the analysis slightly more restrictive.

3.3. Existence and uniqueness of weak solution

We begin by establishing two lemmas deriving conditions under which the operator T is a contraction.

Lemma 3.7 Given p̂1, p̂2,∈W, the following estimate holds

‖R1(p̂1)−R1(p̂2)‖div;Ω ≤
1
ca

γ ‖p̂1− p̂2‖0,Ω. (3.11)

Proof Let (σσσ1,(uuu1,ρρρ1)), (σσσ2,(uuu2,ρρρ2)) ∈ HN(div;Ω) × (L2(Ω) × L2
skew(Ω)), such that R(p̂1) =

(σσσ1,(uuu1,ρρρ1)) ad R(p̂2) = (σσσ2,(uuu2,ρρρ2)). Then, from the definition of R (cf. (3.3)), we have

a(σσσ1−σσσ2,τττ) +b(τττ,(uuu1−uuu2,ρρρ1−ρρρ2)) =−c(τττ, p̂1− p̂2) ∀τττ ∈HN(div;Ω),

b(σσσ1−σσσ2,(v,ηηη)) = 0 ∀(v,ηηη) ∈ L2(Ω)×L2
skew(Ω).

(3.12)
Since σσσ1−σσσ2 ∈ V (cf. (2.6a)), taking τττ = σσσ1−σσσ2 in (3.12), and utilising the ellipticity of a on V (cf.
(2.7)) along with the bound of c (cf. (2.4b)), we obtain:

ca‖σσσ1−σσσ2‖2
div;Ω ≤ a(σσσ1−σσσ2,σσσ1−σσσ2) =−c(σσσ1−σσσ2, p̂1− p̂2)≤ γ ‖σσσ1−σσσ2‖div;Ω‖p̂1− p̂2‖0,Ω,

which concludes the proof. �

Lemma 3.8 Given (σ̂σσ1, p̂1), (σ̂σσ2, p̂2),∈HN(div;Ω)×W, the following estimate holds

‖S2(σ̂σσ1, p̂1)−S2(σ̂σσ2, p̂2)‖0,Ω (3.13)

≤ 2κ2 C̃
min{γ̃, κ1}

(
‖g‖0,Ω +‖pD‖1/2,ΓD + γ‖σ̂σσ2‖div;Ω

)
‖p̂1− p̂2‖0,Ω +

2
min{γ̃, κ1}

γ ‖σ̂σσ1− σ̂σσ2‖div;Ω.

Note that min{γ̃,κ1} enters in the denominator of the estimate, but we have assumed that κ1 is
strictly positive and it does not degenerate to zero.
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Proof Let (ϕϕϕ1, p1), (ϕϕϕ2, p2) ∈ HN(div;Ω)×L2(Ω), such that S(σ̂σσ1, p̂1) = (ϕϕϕ1, p1) and S(σ̂σσ2, p̂2) =
(ϕϕϕ2, p2). Then, from the definition of S (cf. (3.4)), and employing similar arguments to those in
Lemma 3.7, we have

ãσ̂σσ1,p̂1
(ϕϕϕ1,ϕϕϕ1−ϕϕϕ2)− ãσ̂σσ2,p̂2

(ϕϕϕ2,ϕϕϕ1−ϕϕϕ2)+ c̃(p1− p2, p1− p2) =−c(σ̂σσ1− σ̂σσ2, p1− p2),

by adding ±ãσ̂σσ1,p̂1
(ϕϕϕ2,ϕϕϕ1−ϕϕϕ2) in the last equation, we obtain

ãσ̂σσ1,p̂1
(ϕϕϕ1−ϕϕϕ2,ϕϕϕ1−ϕϕϕ2)+ c̃(p1− p2, p1− p2)

= ãσ̂σσ2,p̂2
(ϕϕϕ2,ϕϕϕ1−ϕϕϕ2)− ãσ̂σσ1,p̂1

(ϕϕϕ2,ϕϕϕ1−ϕϕϕ2)− c(σ̂σσ1− σ̂σσ2, p1− p2).

Then, using the the first assumption for κκκ (cf. (2.3)), the ellipticity of c̃ (see (2.9)), the definition of ãσ̂σσ ,p̂
(cf. (2.1)) and the continuity of the form c (see (2.4b)), we deduce

κ1‖ϕϕϕ1−ϕϕϕ2‖2
0,Ω + γ̃‖p1− p2‖2

0,Ω ≤ ãσ̂σσ1,p̂1
(ϕϕϕ1−ϕϕϕ2,ϕϕϕ1−ϕϕϕ2)+ c̃(p1− p2, p1− p2)

=
∫

Ω

(κκκ(σ̂σσ2, p̂2)
−1−κκκ(σ̂σσ1, p̂1)

−1)ϕϕϕ2 · (ϕϕϕ1−ϕϕϕ2)− c(σ̂σσ1− σ̂σσ2, p1− p2)

≤ ‖κκκ(σ̂σσ2, p̂2)
−1−κκκ(σ̂σσ1, p̂1)

−1‖L∞(Ω) ‖ϕϕϕ2‖0,Ω‖ϕϕϕ1−ϕϕϕ2‖0,Ω + γ ‖σ̂σσ1− σ̂σσ2‖div;Ω‖p1− p2‖0,Ω.

From the last equation, by utilising the second assumption regarding κκκ (see (2.3)), we obtain

1
2 min{γ̃,κ1}(‖ϕϕϕ1−ϕϕϕ2‖0,Ω +‖p1− p2‖0,Ω)

2 ≤ κ1‖ϕϕϕ1−ϕϕϕ2‖2
0,Ω + γ̃‖p1− p2‖2

0,Ω

≤ κ2‖p̂2− p̂1‖0,Ω‖ϕϕϕ2‖0,Ω‖ϕϕϕ1−ϕϕϕ2‖0,Ω + γ ‖σ̂σσ1− σ̂σσ2‖div;Ω‖p1− p2‖0,Ω

≤
(
κ2‖p̂2− p̂1‖0,Ω‖ϕϕϕ2‖0,Ω + γ ‖σ̂σσ1− σ̂σσ2‖div;Ω

)(
‖ϕϕϕ1−ϕϕϕ2‖0,Ω +‖p1− p2‖0,Ω

)
,

the last, together with the fact that ϕϕϕ2 satisfies (3.9), leads to the following bound

1
2 min{γ̃,κ1}(‖ϕϕϕ1−ϕϕϕ2‖0,Ω +‖p1− p2‖0,Ω)≤ κ2‖p̂2− p̂1‖0,Ω‖ϕϕϕ2‖0,Ω + γ ‖σ̂σσ1− σ̂σσ2‖div;Ω

≤ κ2‖p̂2− p̂1‖0,ΩC̃ (‖g‖0,Ω +‖pD‖1/2,ΓD + γ‖σ̂σσ2‖div;Ω)+ γ ‖σ̂σσ1− σ̂σσ2‖div;Ω,

and this yields (3.13), concluding the proof. �

The following theorem presents the main result of this section, establishing the existence and
uniqueness of the solution to the fixed-point problem (3.6), or equivalently, of (2.2).

Theorem 3.9 Given r > 0, assume that fff ∈ L2(Ω), g ∈ L2(Ω), uuuD ∈ H1/2(ΓD), pD ∈ H1/2(ΓD) and
γ satisfies

2max{1, κ2}
min{γ̃, κ1 ,r}

{
C̃(1+C1γ)(‖g‖0,Ω +‖pD‖1/2,ΓD +‖uuuD‖1/2,ΓD +‖ fff‖0,Ω)+

γ2

ca
(

1
κ2

+C̃ r)
}
< 1.

(3.14)
Then, T (cf. (3.5)) has a unique fixed point p ∈ W. Equivalently, (2.2) has a unique solution
(σσσ ,uuu,ρρρ,ϕϕϕ, p) ∈ HN(div;Ω)×L2(Ω)×L2

skew(Ω)×HN(div;Ω)×W. In addition, there exists C > 0,
such that

‖σσσ‖div;Ω +‖uuu‖0,Ω +‖ρρρ‖0,Ω +‖ϕϕϕ‖div;Ω +‖p‖0,Ω
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≤C(‖g‖0,Ω +‖pD‖1/2,ΓD +‖uuuD‖1/2,ΓD +‖ fff‖0,Ω + γ r ). (3.15)

Proof Recall that (3.14) ensures the well-definedness of T. Let p̂1, p̂2, p1, p2 ∈W, such that T(p̂1) = p1
and T(p̂2) = p2. From the definition of T (see (3.5)), and the estimates (3.13) and (3.11), we deduce

‖p1− p2‖0,Ω = ‖T(p̂1)−T(p̂2)‖0,Ω = ‖S2(R1(p̂1), p̂1)−S2(R1(p̂2), p̂2)‖0,Ω

≤ 2κ2 C̃
min{γ̃, κ1}

(
‖g‖0,Ω +‖pD‖1/2,ΓD + γ‖R1(p̂2)‖div;Ω

)
‖p̂1− p̂2‖0,Ω

+
2

min{γ̃, κ1}
γ ‖R1(p̂1)−R1(p̂2)‖div;Ω

≤ 2κ2 C̃
min{γ̃, κ1}

(
‖g‖0,Ω +‖pD‖1/2,ΓD

)
‖p̂1− p̂2‖0,Ω +

2κ2 C̃
min{γ̃, κ1}

γ‖R1(p̂2)‖div;Ω‖p̂1− p̂2‖0,Ω

+
2

ca min{γ̃, κ1}
γ

2 ‖p̂1− p̂2‖0,Ω,

the above, along with the fact that R1(p̂2) satisfies (3.7) and p̂2 ∈W, implies

‖p1− p2‖0,Ω ≤
2κ2 C̃

min{γ̃, κ1}
(
‖g‖0,Ω +‖pD‖1/2,ΓD

)
‖p̂1− p̂2‖0,Ω +

2
ca min{γ̃, κ1}

γ
2 ‖p̂1− p̂2‖0,Ω

+
2κ2 C̃

min{γ̃, κ1}
γ

(
C1 (‖uuuD‖1/2,ΓD +‖ fff‖0,Ω)+

1
ca

γ r
)
‖p̂1− p̂2‖0,Ω

≤ 2
min{γ̃, κ1}

{
κ2 C̃(1+C1γ)(‖g‖0,Ω +‖pD‖1/2,ΓD +‖uuuD‖1/2,ΓD +‖ fff‖0,Ω)

+
γ2

ca
(1+κ2 C̃ r)

}
‖p̂1− p̂2‖0,Ω,

which together with (3.14) and the Banach fixed-point theorem yields that T has a unique fixed point in
W. Finally, (3.15) is derived analogously to the estimates in (3.7) and (3.9), which completes the proof.
�

Remark 3.10 The operator T (see (3.5)) could be also defined, for example T : W→W, with W :={
(σ̂σσ , p̂)∈HN(div;Ω)×L2(Ω) : ‖σ̂σσ‖div;Ω+‖p̂‖0,Ω ≤ r

}
and T(σ̂σσ , p̂) := (R1(p̂),S2(σ̂σσ , p̂)) = (σσσ , p),

with R1 and S2 defined as in (3.3) and (3.4), respectively.

4. Finite element discretisation

In this section, we present and analyse the Galerkin scheme for problem (2.2). An advantage of this
scheme is that the well-posedness analysis can be straightforwardly extended from the continuous
problem to the discrete case. Therefore, we can omit many of the rather standard details.
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4.1. Finite element spaces and Galerkin scheme

Let us consider a regular partition Th of Ω̄ made up of triangles K (in R2) or tetrahedra K (in R3)
of diameter hK , and denote the mesh size by h := max{hK : K ∈ Th}. Given an integer ` ≥ 0 and
K ∈ Th, we first let P`(K) be the space of polynomials of degree ≤ ` defined on K, whose vector
and tensor versions are denoted P`(K) := [P`(K)]d and P`(K) = [P`(K)]d×d , respectively. Also, we let
RT`(K) := P`(K)⊕P`(K)xxx be the local Raviart–Thomas space of order ` defined on K, where xxx stands
for a generic vector in Rd , and denote by RTk(K) the tensor-valued counterpart of this space.

For each K ∈Th we consider the bubble space of order k, defined as

Bk(K) :=

{
curl(bK)Pk(K) in R2,

∇× (bKPk(K)) in R3,

where bK is a suitably normalised cubic polynomial on K, which vanishes on the boundary of K (see
[31]).

We recall the classical PEERSk elements (cf. [5]) to define the discrete subspaces for the stress
tensor σσσ , the displacement uuu, and the rotation tensor ρρρ

Hσσσ
h :=

{
τττh ∈HN(div;Ω) : τττh|K ∈ RTk(K)⊕ [Bk(K)]d ∀K ∈Th

}
,

Huuu
h :=

{
vh ∈ L2(Ω) : vh|K ∈ Pk(K) ∀K ∈Th

}
, (4.1)

Hρρρ

h :=
{

ηηηh ∈ L2
skew(Ω)∩C(Ω) and ηηηh|K ∈ Pk+1(K) ∀K ∈Th

}
,

where C(Ω) denotes the space of continuous tensor fields, and the following estimates are proven for
the PEERSk elements (cf. [46, Remark 3.3])

sup
0006=τττh∈Hσσσ

h

b(τττh,(vh,ηηηh))

‖τττh‖div;Ω
≥ β

∗(‖vh‖0,Ω +‖ηηηh‖0,Ω) ∀(vh,ηηηh) ∈Huuu
h×Hρρρ

h , (4.2a)

a(τττh,τττh)≥ ca‖τττh‖2
div;Ω ∀τττh ∈ Vh, (4.2b)

where Vh denotes the discrete kernel of b, that is

Vh :=
{

τττh ∈Hσσσ
h : b(τττh,(vh,ηηηh)) = 0 ∀(vh,ηηηh) ∈Huuu

h×Hρρρ

h

}
.

Additionally, for ϕϕϕ and the pressure p, we define the FE subspaces

Hϕϕϕ

h := {ψψψh ∈HN(div;Ω) : ψψψh|K ∈ RTk(K) ∀K ∈Th} ,

Hp
h :=

{
qh ∈ L2(Ω) : qh|K ∈ Pk(K) ∀K ∈Th

}
, (4.3)

and it is well known that b̃ satisfies the inf-sup condition (see, e.g., [23, Lemma 4.6])

sup
0006=ψψψh∈Hϕϕϕ

h

b̃(ψψψh,qh)

‖ψψψh‖div;Ω
≥ β̃

∗‖qh‖0,Ω ∀qh ∈ Hp
h . (4.4)

Note that it is of course possible to consider other conforming and inf-sup stable spaces such as Arnold–
Falk–Winther and Brezzi–Douglas–Marini instead of (4.1) and (4.3), respectively. The Galerkin scheme
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for (2.2) reads: find (σσσh,uuuh,ρρρh,ϕϕϕh, ph) ∈Hσσσ
h ×Huuu

h×Hρρρ

h ×Hϕϕϕ

h ×Hp
h , such that:

a(σσσh,τττh) + b(τττh,(uuuh,ρρρh)) + c(τττh, ph) = H(τττh) ∀τττh ∈Hσσσ
h ,

b(σσσh,(vh,ηηηh)) = F(vh,ηηηh) ∀(vh,ηηηh) ∈Huuu
h×Hρρρ

h ,

ãσσσh,ph(ϕϕϕh,ψψψh) + b̃(ψψψh, ph) = H̃(ψψψh) ∀ψψψh ∈Hϕϕϕ

h ,

b̃(ϕϕϕh,qh) − c̃(ph,qh) − c(σσσh,qh) = F̃(qh) ∀qh ∈ Hp
h .

(4.5)

4.2. Analysis of the discrete problem

In this section, we analyse the Galerkin scheme (4.5). It’s worth noting that establishing well-posedness
can be readily achieved by extending the results derived for the continuous problem to the discrete
setting. Firstly, and similarly to the continuous case, we define the following set

Wh :=
{

p̂h ∈ Hp
h : ‖p̂h‖0,Ω ≤ r

}
.

Next, for a fixed p̂h in Wh, we have that the bilinear form ãσσσh,ph satisfies

ãσ̂σσh,p̂h
(ψψψh,ψψψh)≥ κ1‖ψψψh‖2

div;Ω ∀ψψψh ∈ Vh, (4.6)

where Vh is the discrete kernel of b̃

Vh :=
{

ψψψh ∈Hϕϕϕ

h : b̃(ψψψh,qh) = 0 ∀qh ∈ Hp
h

}
.

Additionally, we define the discrete operators Rh : Wh ⊆ Hp
h →Hσσσ

h × (Huuu
h×Hρρρ

h ) and Sh : Hσσσ
h ×Wh→

Hϕϕϕ

h ×Hp
h , respectively, by

Rh(p̂h) :=
(
R1,h(p̂h),(R2,h(p̂h),R3,h(p̂h))

)
= (σσσh,(uuuh,ρρρh)) ∀ p̂h ∈Wh,

where (σσσh,(uuuh,ρρρh)) ∈Hσσσ
h × (Huuu

h×Hρρρ

h ) is the unique solution of

a(σσσh,τττh) + b(τττh,(uuuh,ρρρh)) = H(τττh)− c(τττh, p̂h) ∀τττh ∈Hσσσ
h ,

b(σσσh,(vh,ηηηh)) = F(vh,ηηηh) ∀(vh,ηηηh) ∈Huuu
h×Hρρρ

h ,
(4.7)

and
Sh(σ̂σσh, p̂h) :=

(
S1,h(σ̂σσh, p̂h),S2,h(σ̂σσh, p̂h)

)
= (ϕϕϕh, ph) ∀(σ̂σσh, p̂h) ∈Hσσσ

h ×Wh,

where (ϕϕϕh, ph) is the unique tuple in Hϕϕϕ

h ×Hp
h such that

ãσ̂σσh,p̂h
(ϕϕϕh,ψψψh) + b̃(ψψψh, ph) = H̃(ψψψh) ∀ψψψh ∈Hϕϕϕ

h ,

b̃(ϕϕϕh,qh) − c̃(ph,qh) = F̃(qh)+ c(σ̂σσh,qh) ∀qh ∈ Hp
h .

Employing properties (4.2a), (4.2b), (4.4), (4.6) and (2.9) and proceeding exactly as for the
continuous case (Lemmas 3.1 and 3.2), it can be easily deduced that both operators are well-defined.
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Then, analogously to the continuous case, we define the following fixed-point operator

Th : Wh ⊆ Hp
h → Hp

h , p̂h 7→ Th(p̂h) := S2,h(R1,h(p̂h), p̂h), (4.8)

which is clearly well-defined (since Rh and Sh are). Further, it can be easily deduced that Th(Wh)⊆Wh
if

C̃∗
(
1+ γ C∗1

)(
‖g‖0,Ω +‖pD‖1/2,ΓD +‖uuuD‖1/2,ΓD +‖ fff‖0,Ω

)
+

C̃∗

ca
γ

2r ≤ r, (4.9)

where C̃∗ and C∗1 (depending on ca, µ , κ1, κ2, Cã, β ∗, β̃ ∗) are the discrete versions of the constants C̃
and C1 (cf. (3.7) and (3.9)). Finally, it is clear that (σσσh,uuuh,ρρρh,ϕϕϕh, ph) is a solution to (4.5) if and only
if ph satisfies

Th(ph) = ph. (4.10)

The main outcome of this section is presented in the following theorem, establishing the existence and
uniqueness of a solution to the fixed-point problem (4.10), equivalently proving the well-posedness of
problem (4.5).

Theorem 4.1 Given r > 0, assume that the data and γ satisfy

2max{1, κ2}
min{γ̃, κ1 ,r}

{
C̃∗(1+C∗1γ)(‖g‖0,Ω +‖pD‖1/2,ΓD +‖uuuD‖1/2,ΓD +‖ fff‖0,Ω)+

γ2

ca

(
1
κ2

+C̃∗ r
)}

< 1.

(4.11)
Then, Th (cf. (4.8)) has a unique fixed point ph ∈Wh. Equivalently, problem (4.5) has a unique solution
(σσσh,uuuh,ρρρh,ϕϕϕh, ph) ∈Hσσσ

h ×Huuu
h×Hρρρ

h ×Hϕϕϕ

h ×Wh.In addition, there exists C∗ > 0, such that

‖σσσh‖div;Ω +‖uuuh‖0,Ω +‖ρρρh‖0,Ω +‖ϕϕϕh‖div;Ω +‖ph‖0,Ω

≤C∗(‖g‖0,Ω +‖pD‖1/2,ΓD +‖uuuD‖1/2,ΓD +‖ fff‖0,Ω + γ r ). (4.12)

Proof First, we observe that, similar to the continuous case (as seen in the proof of Theorem 3.9),
assumption (4.11) ensures the well-definedness of Th and that Th(Wh) ⊆Wh. Now, by adapting the
arguments used in Section 3.3 (cf. Lemmas 3.7 and 3.8), one can derive the following estimates

‖R1,h(p̂1)−R1,h(p̂2)‖div;Ω ≤
1
ca

γ ‖p̂1− p̂2‖0,Ω,

‖S2,h(σ̂σσ1, p̂1)−S2,h(σ̂σσ2, p̂2)‖0,Ω ≤
2κ2 C̃∗

min{γ̃, κ1}
(
‖g‖0,Ω +‖pD‖1/2,ΓD + γ‖σ̂σσ2‖div;Ω

)
‖p̂1− p̂2‖0,Ω

+
2

min{γ̃, κ1}
γ ‖σ̂σσ1− σ̂σσ2‖div;Ω,

for all p̂1, p̂2 ∈Wh and σ̂σσ1, σ̂σσ2 ∈Hσσσ
h , which together with the definition of Th (see (4.8)), yield

‖Th(p̂1)−Th(p̂2)‖0,Ω ≤
2

min{γ̃, κ1}

{
κ2 C̃∗(1+C∗1γ)(‖g‖0,Ω +‖pD‖1/2,ΓD +‖uuuD‖1/2,ΓD +‖ fff‖0,Ω)

+
γ2

ca
(1+κ2 C̃∗ r)

}
‖p̂1− p̂2‖0,Ω,
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for all p̂1, p̂2 ∈Wh. In this way, using estimate (4.11) we obtain that Th is a contraction mapping on Wh,
thus problem (4.10), or equivalently (4.5) is well-posed. Finally, analogously to the proof of Theorem
3.9 (see also Lemmas 3.7 and 3.8) we can obtain (4.12), which concludes the proof. �

5. A priori error estimates

In this section, we aim to provide the convergence of the Galerkin scheme (4.5) and derive the
corresponding rate of convergence. From now on we assume that the hypotheses of Theorem 3.9 and
Theorem 4.1 hold.

5.1. Preliminaries

Let the tuples (σσσ ,uuu,ρρρ,ϕϕϕ, p) ∈ HN(div;Ω) × L2(Ω) × L2
skew(Ω) × HN(div;Ω) × L2(Ω) and

(σσσh,uuuh,ρρρh,ϕϕϕh, ph)∈Hσσσ
h ×Huuu

h×Hρρρ

h ×Hϕϕϕ

h ×Hp
h be the unique solutions of (3.3) and (4.7), respectively.

Let us write eσσσ = σσσ −σσσh, euuu = uuu− uuuh, eρρρ = ρρρ −ρρρh, eϕϕϕ = ϕϕϕ −ϕϕϕh and ep = p− ph. As usual,
for a given (τ̂ττh,(v̂h, η̂ηηh)) ∈ Hσσσ

h × (Huuu
h×Hρρρ

h ) and (ψ̂ψψh, q̂h) ∈ Hϕϕϕ

h ×Hp
h , we shall then decompose these

errors into

eσσσ = ξξξ σσσ +χχχσσσ , euuu = ξξξ uuu+χχχuuu, eρρρ = ξξξ ρρρ +χχχρρρ , eϕϕϕ = ξξξ ϕϕϕ +χχχϕϕϕ , ep = ξp+χp, (5.1)

with ξξξ σσσ := σσσ − τ̂ττh, χχχσσσ := τ̂ττh − σσσh, ξξξ uuu := uuu− v̂h, χχχuuu := v̂h − uuuh, ξξξ ρρρ := ρρρ − η̂ηηh, χχχρρρ := η̂ηηh − ρρρh,
ξξξ ϕϕϕ := ϕϕϕ− ψ̂ψψh, χχχϕϕϕ := ψ̂ψψh−ϕϕϕh, ξp := p− q̂h, and χp := q̂h− ph.

Considering the first two equations of problems (2.2) and (4.5), the following identities hold

a(σσσ ,τττ) + b(τττ,(uuu,ρρρ)) = H(τττ)− c(τττ, p) ∀τττ ∈HN(div;Ω),

b(σσσ ,(v,ηηη)) = F(v,ηηη) ∀v ∈ L2(Ω), ∀ηηη ∈ L2
skew(Ω),

and

a(σσσh,τττh) + b(τττh,(uuuh,ρρρh)) = H(τττh)− c(τττh, ph) ∀τττh ∈Hσσσ
h ,

b(σσσh,(vh,ηηηh)) = F(vh,ηηηh) ∀(vh,ηηηh) ∈Huuu
h×Hρρρ

h .

From these relations we can obtain that for all (τττh,(vh,ρρρh)) ∈Hσσσ
h × (Huuu

h×Hρρρ

h ), there holds

a(eσσσ ,τττh) + b(τττh,(euuu,eρρρ)) =−c(τττh,ep),

b(eσσσ ,(vh,ηηηh)) = 0,

which together with the definition of the errors in (5.1), implies that

a(χχχσσσ ,τττh)+b(τττh,(χχχuuu,χχχρρρ))+b(χχχσσσ ,(vh,ηηηh))

=−a(ξξξ σσσ ,τττh)−b(τττh,(ξξξ uuu,ξξξ ρρρ))−b(ξξξ σσσ ,(vh,ηηηh))− c(τττh,χχχ p)− c(τττh,ξξξ p),
(5.2)

for all (τττh,(vh,ρρρh)) ∈Hσσσ
h × (Huuu

h×Hρρρ

h ).
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Next, considering the last two equations of both problems (2.2) and (4.5), we obtain

ãσσσ ,p(ϕϕϕ,ψψψ) + b̃(ψψψ, p) = H̃(ψψψ) ∀ψψψ ∈HN(div;Ω),

b̃(ϕϕϕ,q) − c̃(p,q) = F̃(q)+ c(σσσ ,q) ∀q ∈ L2(Ω).

and
ãσσσh,ph(ϕϕϕh,ψψψh) + b̃(ψψψh, ph) = H̃(ψψψh) ∀ψψψh ∈Hϕϕϕ

h ,

b̃(ϕϕϕh,qh) − c̃(ph,qh) = F̃(qh)+ c(σσσh,qh) ∀qh ∈ Hp
h .

Then, using arguments similar to those in Lemma 3.8, by adding ±ãσσσh,ph(ϕϕϕ,ψψψh), we have

ãσσσh,ph(eϕϕϕh ,ψψψh)+ b̃(ψψψh,eph)+ b̃(eϕϕϕh ,qh)− c̃(eph ,qh)

=−
∫

Ω

(
κκκ(σσσ , p)−1−κκκ(σσσh, ph)

−1
)

ϕϕϕ ·ψψψh + c(eσσσ ,qh),

which together with (5.1), implies that

ãσσσh,ph(χχχϕϕϕ ,ψψψh)+ b̃(ψψψh,χph)+ b̃(χχχϕϕϕ ,qh)− c̃(χp,qh)+ ãσσσh,ph(ξξξ ϕϕϕ ,ψψψh)

=−b̃(ψψψh,ξp)− b̃(ξξξ ϕϕϕ ,qh)+ c̃(ξp,qh)−
∫

Ω

(
κκκ(σσσ , p)−1−κκκ(σσσh, ph)

−1
)

ϕϕϕ ·ψψψh + c(eσσσ ,qh).

(5.3)

5.2. Derivation of Céa estimates

Lemma 5.1 There exist C∗3 ,C∗4 > 0, independent of h, such that

‖χχχσσσ‖div;Ω +‖χχχuuu‖0,Ω +‖χχχρρρ‖0,Ω ≤C∗3(‖ξξξ σσσ‖div;Ω +‖ξξξ uuu‖0,Ω +‖ξξξ ρρρ‖0,Ω +‖ξξξ p‖0,Ω)+C∗4γ‖χp‖0,Ω.
(5.4)

Proof From the properties of a and b (refer to (4.2b) and (4.2a)), and [31, Proposition 2.36], we derive
the following discrete global inf-sup condition

‖χχχσσσ‖div;Ω +‖χχχuuu‖0,Ω +‖χχχρρρ‖0,Ω

≤ (C∗1 +C∗2) sup
0006=(τττh,vh,ψψψh)∈Hσσσ

h ×Huuu
h×H

ρρρ

h

a(χχχσσσ ,τττh)+b(τττh,(χχχuuu,χχχρρρ))+b(χχχσσσ ,(vh,ηηηh))

‖τττh‖div;Ω +‖vh‖0,Ω +‖ηηηh‖0,Ω
,

where C∗1 ,C∗2 > 0 independent of h are the discrete version of the constants C1,C2 defined in (3.8).
Then, combining the last inequality with (5.2), and the continuity properties of a and b (see (2.4a)), we
obtain

‖χχχσσσ‖div;Ω +‖χχχuuu‖0,Ω +‖χχχρρρ‖0,Ω

≤ (C∗1 +C∗2)(
1
µ
‖ξξξ σσσ‖div;Ω +‖ξξξ uuu‖0,Ω +‖ξξξ ρρρ‖0,Ω +‖ξξξ σσσ‖div;Ω + γ‖χp‖0,Ω + γ‖ξp‖0,Ω),

which implies (5.4) with C∗3 := (C∗1 +C∗2)(
1
µ
+ 1+ γ) and C∗4 := C∗1 +C∗2 . Note also, that the error

estimate is robust with respect to λ . �
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Lemma 5.2 There exist C̃∗5 , C̃∗6 > 0, independent of h, such that

‖χχχϕϕϕ‖div;Ω +‖χχχ p‖0,Ω ≤ C̃∗5 (‖ξξξ ϕϕϕ‖div;Ω +‖ξp‖0,Ω +‖ξξξ σσσ‖div;Ω)

+C̃∗6
(
(‖g‖0,Ω +‖pD‖1/2,ΓD +‖uuuD‖1/2,ΓD +‖ fff‖0,Ω + γ r )‖χp‖0,Ω + γ‖χχχσσσ‖div;Ω

)
.

(5.5)

Proof Similarly to Lemma 5.1, using the properties of ã, b̃ and c̃ (refer to (4.6), (4.4) and (2.9)), and
[28, Th. 3.4], we derive the following discrete global inf-sup condition

‖χχχϕϕϕ‖div;Ω +‖χp‖0,Ω ≤ 2C̃∗ sup
0006=(ψψψh,qh)∈Hϕϕϕ

h ×Hp
h

ãσσσh,ph(χχχϕϕϕ ,ψψψh)+ b̃(ψψψh,χp)+ b̃(χχχϕϕϕ ,qh)− c̃(χp,qh)

‖ψψψh‖div;Ω +‖qh‖0,Ω
,

with C̃∗ defined as in (4.9). Then, using the equation (5.3), the bound properties of ã, b̃ and c̃ (see (3.2a)
and (2.4c)), and the second assumption for κκκ (cf. (2.3)), we obtain

‖χχχϕϕϕ‖div;Ω +‖χp‖0,Ω

≤ 2C̃∗(Cã‖ξξξ ϕϕϕ‖div;Ω +‖ξp‖0,Ω +‖ξξξ ϕϕϕ‖div;Ω + γ̃‖ξp‖0,Ω

+‖κκκ(σσσ , p)−1−κκκ(σσσh, ph)
−1‖L∞(Ω)‖ϕϕϕ‖div;Ω + γ‖eσσσ‖div;Ω)

≤ 2C̃∗(Cã‖ξξξ ϕϕϕ‖div;Ω +‖ξp‖0,Ω +‖ξξξ ϕϕϕ‖div;Ω + γ̃‖ξp‖0,Ω +κ2‖ep‖0,Ω‖ϕϕϕ‖div;Ω + γ‖eσσσ‖div;Ω),

hence, using the fact that ϕϕϕ satisfies (3.15) and the error decomposition (5.1), we have

‖χχχϕϕϕ‖div;Ω +‖χp‖0,Ω ≤ 2C̃∗(Cã‖ξξξ ϕϕϕ‖div;Ω +‖ξp‖0,Ω +‖ξξξ ϕϕϕ‖div;Ω + γ̃‖ξp‖0,Ω +κ2‖ξp‖0,Ω‖ϕϕϕ‖div;Ω

+ γ‖ξξξ σσσ‖div;Ω)+2C̃∗(κ2‖χp‖0,Ω‖ϕϕϕ‖div;Ω + γ‖χχχσσσ‖div;Ω)

≤ C̃∗5 (‖ξξξ ϕϕϕ‖div;Ω +‖ξp‖0,Ω +‖ξξξ σσσ‖div;Ω)

+2C̃∗
(
κ2C(‖g‖0,Ω +‖pD‖1/2,ΓD +‖uuuD‖1/2,ΓD +‖ fff‖0,Ω + γ r )‖χp‖0,Ω

+ γ‖χχχσσσ‖div;Ω
)
,

the last equation implies (5.5), with C̃∗5 := 2C̃∗
(
Cã + 1 + γ̃ + γ + κ2C(‖g‖0,Ω + ‖pD‖1/2,ΓD +

‖uuuD‖1/2,ΓD +‖ fff‖0,Ω + γ r )
)

and C̃∗6 := 2C̃∗(κ2C+1), and concludes the proof. �

Theorem 5.3 Assume that

(C∗4 +C̃∗6 +C̃∗6r)γ +C̃∗6(‖g‖0,Ω +‖pD‖1/2,ΓD +‖uuuD‖1/2,ΓD +‖ fff‖0,Ω)≤
1
2
, (5.6)

with C∗4 and C̃∗6 being the constants in Lemmas 5.1 and 5.2. Furthermore, assume that the hypotheses
of Theorem 3.9 and Theorem 4.1 hold. Let (σσσ ,uuu,ρρρ,ϕϕϕ, p) ∈ HN(div;Ω) × L2(Ω) × L2

skew(Ω) ×
HN(div;Ω)×L2(Ω) and (σσσh,uuuh,ρρρh,ϕϕϕh, ph) ∈ Hσσσ

h ×Huuu
h ×Hρρρ

h ×Hϕϕϕ

h ×Hp
h be the unique solutions of

(2.2) and (4.5), respectively. Then, there exists CCéa > 0, independent of h, such that

‖eσσσ‖div;Ω +‖euuu‖0,Ω +‖eρρρ‖0,Ω +‖eϕϕϕ‖div;Ω +‖ep‖0,Ω

≤CCéa dist
(
(σσσ ,uuu,ρρρ,ϕϕϕ, p),Hσσσ

h ×Huuu
h×Hρρρ

h ×Hϕϕϕ

h ×Hp
h

)
.

(5.7)
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Proof Combining (5.4) and (5.5), and using the assumption (5.6), we deduce

‖χχχσσσ‖div;Ω +‖χχχuuu‖0,Ω +‖χχχρρρ‖0,Ω +‖χχχϕϕϕ‖div;Ω +‖χp‖0,Ω

≤C∗3(‖ξξξ σσσ‖div;Ω +‖ξξξ uuu‖0,Ω +‖ξξξ ρρρ‖0,Ω +‖ξp‖0,Ω)

+C̃∗5 (‖ξξξ ϕϕϕ‖div;Ω +‖ξp‖0,Ω +‖ξξξ σσσ‖div;Ω)+
1
2
‖χp‖0,Ω +

1
2
‖χχχσσσ‖div;Ω.

And from the latter inequality we obtain

‖χχχσσσ‖div;Ω +‖χχχuuu‖0,Ω +‖χχχρρρ‖0,Ω +‖χχχϕϕϕ‖div;Ω +‖χp‖0,Ω

≤ 2(C∗3 +C̃∗5)(‖ξξξ σσσ‖div;Ω +‖ξξξ uuu‖0,Ω +‖ξξξ ρρρ‖0,Ω +‖ξξξ ϕϕϕ‖div;Ω +‖ξp‖0,Ω).
(5.8)

In this way, from (5.1), (5.8) and the triangle inequality we obtain

‖eσσσ‖div;Ω +‖euuu‖0,Ω +‖eρρρ‖0,Ω +‖eϕϕϕ‖div;Ω +‖ep‖0,Ω

≤ ‖χχχσσσ‖div;Ω +‖ξξξ σσσ‖div;Ω +‖χχχuuu‖0,Ω +‖ξξξ uuu‖0,Ω

+‖χχχρρρ‖0,Ω +‖ξξξ ρρρ‖0,Ω +‖χχχϕϕϕ‖div;Ω +‖ξξξ ϕϕϕ‖div;Ω +‖χp‖0,Ω +‖ξp‖0,Ω

≤ (2C∗3 +2C̃∗5 +1)(‖ξξξ σσσ‖div;Ω +‖ξξξ uuu‖0,Ω +‖ξξξ ρρρ‖0,Ω +‖ξξξ ϕϕϕ‖div;Ω +‖ξp‖0,Ω),

which combined with the fact that (τ̂ττh,(v̂h, η̂ηηh)) ∈ Hσσσ
h × (Huuu

h ×Hρρρ

h ) and (ψ̂ψψh, q̂h) ∈ Hϕϕϕ

h ×Hp
h are

arbitrary (see (5.1)), concludes the proof. �

5.3. Rates of convergence

In order to establish the rate of convergence of the Galerkin scheme (4.5), we first recall the following
approximation properties associated with the FE spaces specified in Section 4.1.

For each 0 < m ≤ k+ 1 and for each τττ ∈ Hm(Ω)∩HN(div;Ω) with divτττ ∈ Hm(Ω), v ∈ Hm(Ω),
ηηη ∈Hm(Ω)∩L2

skew(Ω), ψψψ ∈Hm(Ω)∩HN(div;Ω) with div v ∈ Hm(Ω), and q ∈ Hm(Ω), there holds

dist
(
τττ,Hσσσ

h
)

:= inf
τττh∈Hσσσ

h

‖τττ− τττh‖div;Ω . hm
{
‖τττ‖m,Ω +‖divτττ‖m,Ω

}
, (5.9a)

dist
(
v,Huuu

h
)

:= inf
vh∈Huuu

h

‖v−vh‖0,Ω . hm ‖v‖m,Ω, (5.9b)

dist
(
ηηη ,Hρρρ

h

)
:= inf

ηηηh∈H
ρρρ

h

‖ηηη−ηηηh‖0,Ω . hm ‖ηηη‖m,Ω, (5.9c)

dist
(
ψψψ,Hϕϕϕ

h

)
:= inf

ψψψh∈Hϕϕϕ

h

‖ψψψ−ψψψh‖div;Ω . hm
{
‖ψψψ‖m,Ω +‖div ψψψ‖m,Ω

}
, (5.9d)

dist
(
q,Hp

h

)
:= inf

qh∈Hp
h

‖q−qh‖0,Ω . hm ‖q‖m,Ω. (5.9e)

For (5.9a), (5.9b) and (5.9c) we refer to [37, Th. 2.4], whereas (5.9d) and (5.9e) are provided in [34,
Th. 3.6] and [31, Proposition 1.134], respectively. With these steps we are now in a position to state the
rates of convergence associated with the Galerkin scheme (4.5).
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Theorem 5.4 Assume that the hypotheses of Theorem 5.3 hold and let (σσσ ,uuu,ρρρ,ϕϕϕ, p) ∈HN(div;Ω)×
L2(Ω)×L2

skew(Ω)×HN(div;Ω)×L2(Ω) and (σσσh,uuuh,ρρρh,ϕϕϕh, ph) ∈Hσσσ
h ×Huuu

h×Hρρρ

h ×Hϕϕϕ

h ×Hp
h be the

unique solutions of the continuous and discrete problems (2.2) and (4.5), respectively. Assume further
that σσσ ∈Hm(Ω), divσσσ ∈Hm(Ω), uuu∈Hm(Ω), ρρρ ∈Hm(Ω), ϕϕϕ ∈Hm(Ω), div ϕϕϕ ∈Hm(Ω) and p∈Hm(Ω),
for 1≤ m≤ k+1. Then there exists Crate > 0, independent of h, such that

‖eσσσ‖div;Ω +‖euuu‖0,Ω +‖eρρρ‖0,Ω +‖eϕϕϕ‖div;Ω +‖ep‖0,Ω

≤ Crate hm
{
‖σσσ‖m,Ω +‖divσσσ‖m,Ω +‖uuu‖m,Ω +‖ρρρ‖m,Ω +‖ϕϕϕ‖m,Ω +‖div ϕϕϕ‖m,Ω +‖p‖m,Ω

}
.

Proof The result follows from Céa estimate (5.7) and the approximation properties (5.9). �

Remark 5.5 Similarly to [43], the analysis developed in Sections 2-5 can be adapted to a formulation
without the variable ρρρ (ρρρh in the discrete problem), imposing symmetry of σσσ by taking σσσ ∈
Hsym(div;Ω) :=

{
τττ ∈ L2

sym(Ω) : divτττ ∈ L2(Ω)
}

and L2
sym(Ω) := {τττ ∈ L2(Ω) : τττ = τττt}, utilizing

results from [43, Section 2.2] ([43, Section 4.1] for the discrete problem), and adapting the strategy
used in, e.g., [43, Sections 3 and 4].

6. A posteriori error estimates

In this section we derive residual-based a posteriori error estimates and demonstrate the reliability and
efficiency of the proposed estimators. Mainly due to notational convenience, we confine our analysis
to the two-dimensional case. The extension to three-dimensional case should be quite straightforward
(see, e.g., [24]). Similarly to [18, Section 4], we introduce additional notation. Let Eh be the set of edges
of Th, whose corresponding diameters are denoted hE , and define

Eh(?) :=
{

E ∈ Eh : E ⊆ ?
}
, ? ∈ {Ω,ΓD,ΓN}.

On each E ∈ Eh, we also define the unit normal vector nE := (n1,n2)
t and the tangential vector sssE :=

(−n2,n1)
t. However, when no confusion arises, we will simply write n and sss instead of nE and sssE ,

respectively. Also, by d
dsss we denote the tangential derivative. The usual jump operator [[·]] across internal

edges are defined for piecewise continuous matrix, vector, or scalar-valued functions. For sufficiently
smooth scalar ψ , vector v := (v1,v2)

t, and tensor fields τττ := (τi j)1≤i, j≤2, we let

curl(ψ) :=
(

∂ψ

∂x2
,− ∂ψ

∂x1

)t
, rot(v) :=

∂v2

∂x1
− ∂v1

∂x2
, curl(v) =

(
curl(v1)

t

curl(v2)
t

)
,

and curl(τττ) =
(

rot(τττ1)
rot(τττ2)

)
.

In addition, we denote by Πh the Raviart–Thomas interpolator and by Ih the Clément operator (see,
e.g., [3, Section 3] for their properties). In what follows, we denote by Πh the tensor version of Πh,
which is defined row-wise by Πh and by Ih the corresponding vector version of Ih which is defined
componentwise by Ih.

In what follows, we will assume that the hypotheses of Theorems 3.9 and 4.1 are satisfied. Let σσσh,
uuuh, ρρρh, ϕϕϕh, ph denote the FE solutions of (4.5). We define the residual-based and fully computable
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local contributions to the error estimator Ξ2
K , defined as the sum of Ξ2

s,K and Ξ2
f ,K , where Ξs,K and Ξ f ,K

pertain to the solid (mixed elasticity) and fluid (mixed Darcy) components, respectively:

Ξ
2
s,K := ‖ fff +divσσσh‖2

0,K +‖σσσh−σσσ
t
h‖2

0,K +h2
K‖C−1

σσσh +
α

dλ +2µ
phI−∇∇∇uuuh +ρρρh‖2

0,K

+h2
K‖curl(C−1

σσσh +
α

dλ +2µ
phI+ρρρh)‖2

0,K + ∑
E∈∂K∩Eh(ΓD)

hE‖uuuD−uuuh‖2
0,E

+ ∑
E∈∂K∩Eh(Ω)

hE‖[[(C−1
σσσh +

α

dλ +2µ
phI+ρρρh)sss]]‖2

0,E

+ ∑
E∈∂K∩Eh(ΓD)

hE‖(C−1
σσσh +

α

dλ +2µ
phI+ρρρh)sss−

duuuD

dsss
‖2

0,E , (6.1a)

Ξ
2
f ,K := ‖c0 ph +

α

dλ +2µ
trσσσh +

dα2

dλ +2µ
ph−divϕϕϕh−g‖2

0,K +h2
K‖κκκ(σσσh, ph)

−1
ϕϕϕh−∇ph‖2

0,K

+h2
K‖rot(κκκ(σσσh, ph)

−1
ϕϕϕh)‖2

0,K + ∑
E∈∂K∩Eh(Ω)

hE‖[[(κκκ(σσσh, ph)
−1

ϕϕϕh) · sss]]‖2
0,E

+ ∑
E∈∂K∩Eh(ΓD)

hE‖κκκ(σσσh, ph)
−1

ϕϕϕh · sss−
dpD

dsss
‖2

0,E + ∑
E∈∂K∩Eh(ΓD)

hE‖pD− ph‖2
0,E . (6.1b)

Then, we define the global estimator

Ξ
2 := ∑

K∈Th

Ξ
2
s,K +Ξ

2
f ,K . (6.2)

6.1. Reliability of the a posteriori error estimator

First we prove preliminary results that will be key in showing the reliability of the global estimator.

Lemma 6.1 There exists C1 > 0, such that

‖σσσ −σσσh‖div;Ω +‖uuu−uuuh‖0,Ω +‖ρρρ−ρρρh‖0,Ω ≤C1
(
‖R1‖+‖ fff +div(σσσh)‖0,Ω +‖σσσh−σσσ

t
h‖0,Ω

)
,

where
R1(τττ) := a(σσσ −σσσh,τττ)+b(τττ,(uuu−uuuh,ρρρ−ρρρh)), (6.3)

with R1(τττh) =−c(τττh, p− ph) for all τττh ∈Hσσσ
h , and ||R1||= sup

0006=τττ∈HN(div;Ω)

R1(τττ)

‖τττ‖div;Ω
.

Proof Using the properties of bilinear forms a and b, as outlined in equations (2.7) and (2.8a), along
with the insight from [31, Proposition 2.36], there exists C1 > 0 depending on µ, ca, β such that

‖eσσσ‖div;Ω +‖euuu‖0,Ω +‖eρρρ‖0,Ω ≤C1 sup
0006=(τττ,v,ηηη)

∈HN(div;Ω)×L2(Ω)×L2
skew(Ω)

a(eσσσ ,τττ)+b(τττ,(euuu,eρρρ))+b(eσσσ ,(v,ηηη))

‖τττ‖div;Ω +‖v‖0,Ω +‖ηηη‖0,Ω
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≤C1

(
sup

0006=τττ∈HN(div;Ω)

R1(τττ)

‖τττ‖div;Ω
+ sup

0006=(v,ηηη)∈L2(Ω)×L2
skew(Ω)

b(eσσσ ,(v,ηηη))

‖v‖0,Ω +‖ηηη‖0,Ω

)
.

Then, recalling the definitions of the bilinear form b (cf. (2.1)), using the equation (2.2b), along with
the fact that

∫
Ω

σσσh : ηηη = 1
2
∫

Ω
(σσσh−σσσt

h) : ηηη for ηηη ∈ L2
skew(Ω), the following estimate holds

|b(eσσσ ,(v,ηηη))| ≤ (|| fff +divσσσh||0,Ω + ||σσσh−σσσ
t
h||0,Ω)(‖v‖0,Ω +‖ηηη‖0,Ω),

and this gives the asserted inequality. �

Lemma 6.2 There exists C2 > 0 such that

‖ϕϕϕ−ϕϕϕh‖div;Ω +‖p− ph‖0,Ω

≤C2
(
‖R2‖+‖g− c0 ph−

α

dλ +2µ
trσσσh−

dα2

dλ +2µ
ph +divϕϕϕh‖0,Ω + γ‖σσσ −σσσh‖div;Ω

)
,

where
R2(ψψψ) := ãσσσ ,p(ϕϕϕ−ϕϕϕh,ψψψ)+ b̃(ψψψ, p− ph),

satisfies R2(ψψψh) = 0 for all ψψψh ∈Hϕϕϕ

h , and ||R2||= sup
0006=ψψψ∈HN(div;Ω)

R2(ψψψ)

‖ψψψ‖div;Ω
.

Proof Similarly to Lemma 5.1, using the properties of bilinear forms ãσσσ ,p and b̃ (as outlined in equations
(3.2b), (2.8b) and (2.9)), along with the insight from [28, Th. 3.4], we establish that there exists C2 > 0
depending on κ1, κ2, Cã, γ̃ , β̃ such that

‖eϕϕϕ‖div;Ω +‖ep‖0,Ω ≤C2 sup
0006=(ψψψ,q)∈HN(div;Ω)×L2(Ω)

ãσσσ ,p(eϕϕϕ ,ψψψ)+ b̃(ψψψ,ep)+ b̃(eϕϕϕ ,q)− c̃(ep,q)
‖ψψψ‖div;Ω +‖q‖0,Ω

≤C2

(
sup

0006=ψψψ∈HN(div;Ω)

R2(ψψψ)

‖ψψψ‖div;Ω
+ sup

06=q∈L2(Ω)

b̃(eϕϕϕ ,q)− c̃(ep,q)
‖q‖0,Ω

)
.

Hence, recalling the definitions of b̃, c̃, adding ±c(σσσh, p), and using (2.2d), we arrive at

|b̃(eϕϕϕ ,q)− c̃(ep,q)| ≤ ‖g−c0 ph−
α

dλ +2µ
trσσσh−

dα2

dλ +2µ
ph+divϕϕϕh‖0,Ω‖q‖0,Ω+γ‖σσσ−σσσh‖div;Ω‖q‖0,Ω,

and therefore, we obtain the desired result. �

Throughout the rest of this section, we provide suitable upper bounds for R1 and R2. We
begin by establishing the corresponding estimates for R1, which are based on a suitable Helmholtz
decomposition of the space HN(div;Ω) (see [3, Lemma 3.9] for details), along with the following two
technical results.
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Lemma 6.3 Let us denote ξ̂ξξ := ξξξ −Πh(ξξξ ). There exists a positive constant C3, independent of h, such
that for each ξξξ ∈H1(Ω) there holds

|R1(ξ̂ξξ )| ≤ −c(ξ̂ξξ , p− ph)

+C3

(
∑

K∈Th

h2
K ||C−1

σσσh +
α

dλ +2µ
phI−∇∇∇uuuh +ρρρh||20,K + ∑

E∈Eh(ΓD)

hE ||uuuD−uuuh||20,E
)1/2

‖ξξξ‖1,Ω.

Proof From the definition of R1 (cf. (6.3)), adding ±c(ξ̂ξξ , ph), and using equation (2.2a), we have

R1(ξ̂ξξ ) = H(ξ̂ξξ )− c(ξ̂ξξ , p)−a(σσσh, ξ̂ξξ )−b(ξ̂ξξ ,(uuuh,ρρρh))

= 〈(ξ̂ξξ )n,uuuD〉ΓD −
α

dλ +2µ

∫
Ω

(p− ph) tr(ξ̂ξξ )− α

dλ +2µ

∫
Ω

ph tr(ξ̂ξξ )

−
∫

Ω

C−1
σσσh : (ξ̂ξξ )−

∫
Ω

ρρρh : (ξ̂ξξ )−
∫

Ω

uuuh ·div(ξ̂ξξ ),

then, applying a local integration by parts to the last term above, using the identity
∫

E Πh(τττ)n · ξξξ =∫
E τττn · ξξξ , for all ξξξ ∈ Pk(E), for all edge E of Th, the fact that uuuD ∈ L2(ΓD), and the Cauchy-Schwarz

inequality, we obtain

R1(ξ̂ξξ ) = ∑
K∈Th

∫
K
(−C−1

σσσh−
α

dλ +2µ
phI+∇∇∇uuuh−ρρρh) : ξ̂ξξ

+ ∑
E∈Eh(ΓD)

〈ξ̂ξξ n,uuuD−uuuh〉E −
α

dλ +2µ

∫
Ω

(p− ph) tr(ξ̂ξξ )

≤ ∑
K∈Th

‖C−1
σσσh +

α

dλ +2µ
phI−∇∇∇uuuh +ρρρh‖0,K‖ξ̂ξξ‖0,K

+ ∑
E∈Eh(ΓD)

‖uuuD−uuuh‖0,E‖ξ̂ξξ‖0,E−c(ξ̂ξξ , p− ph).

Therefore, using the approximations properties of Πh (see, e.g., [3, Section 3]) and the Cauchy–Schwarz
inequality, we obtain the desired result. �

Lemma 6.4 Let χχχ ∈H1
ΓN
(Ω) := {www ∈H1(Ω) : www = 000 on ΓN}, denote χ̂χχ := χχχ− Ihχχχ , and assume that

uuuD ∈H1(ΓD). Then, there exists C4 > 0, independent of h, such that

|R1(curl(χ̂χχ))| ≤ −c(curl(χ̂χχ), p− ph)

+C4

(
∑

K∈Th

h2
K ||curl(C−1

σσσh +
α

dλ +2µ
phI+ρρρh)||20,K

+ ∑
E∈Eh(Ω)

hE ||[[(C−1
σσσh +

α

dλ +2µ
phI+ρρρh)sss]]||20,E

+ ∑
E∈Eh(ΓD)

hE ||(C−1
σσσh +

α

dλ +2µ
phI+ρρρh)sss−

duuuD

dsss
||20,E

)1/2

‖χχχ‖1,Ω.
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Proof Similarly to Lemma 6.3, adding ±c(curl(χ̂χχ), ph), we have

R1(curl(χ̂χχ)) = H(curl(χ̂χχ))− c(curl(χ̂χχ), p)−a(σσσh,curl(χ̂χχ))−b(curl(χ̂χχ),(uuuh,ρρρh))

= 〈(curl(χ̂χχ))n,uuuD〉ΓD −
α

dλ +2µ

∫
Ω

(p− ph) tr(curl(χ̂χχ))

−
∫

Ω

C−1
σσσh : curl(χ̂χχ)−

∫
Ω

ρρρh : curl(χ̂χχ)− α

dλ +2µ

∫
Ω

ph tr(curl(χ̂χχ)).

Then, applying a local integration by parts, using that uuuD ∈ H1(ΓD), the identity 〈curl(χ̂χχ)n,uuuD〉ΓD =

−〈χ̂χχ, duuuD
dsss 〉ΓD , and the Cauchy–Schwarz inequality, we obtain

R1(curl(χ̂χχ)) =− ∑
K∈Th

∫
K

curl(C−1
σσσh +

α

dλ +2µ
phI+ρρρh) : χ̂χχ

+ ∑
E∈Eh(Ω)

∫
E
[[(C−1

σσσh +
α

dλ +2µ
phI+ρρρh)sss]] · χ̂χχ−

α

dλ +2µ

∫
Ω

(p− ph) tr(curl(χ̂χχ))

+ ∑
E∈Eh(ΓD)

∫
E
(C−1

σσσh +
α

dλ +2µ
phI+ρρρh−∇∇∇uuuD)sss · χ̂χχ

≤ ∑
K∈Th

‖curl(C−1
σσσh +

α

dλ +2µ
phI+ρρρh)‖0,K‖χ̂χχ‖0,K−c(curl(χ̂χχ), p− ph)

+ ∑
E∈Eh(Ω)

‖[[(C−1
σσσh +

α

dλ +2µ
phI+ρρρh)sss]]‖0,E‖χ̂χχ‖0,E

+ ∑
E∈Eh(ΓD)

‖(C−1
σσσh +

α

dλ +2µ
phI+ρρρh)sss−

duuuD

dsss
‖0,E‖χ̂χχ‖0,E .

As in the previous result, the approximation properties of the Clément interpolation (see, e.g., [3,
Section 3]) in conjunction with the Cauchy–Schwarz inequality, produces the desired result. �

The following lemma establishes the desired estimate for R1.

Lemma 6.5 Assume that there exists a convex domain B such that Ω ⊆ B and ΓN ⊆ ∂B, and that
uuuD ∈H1(ΓD). Then, there exists a constant C5 > 0, independent of h, such that

‖σσσ −σσσh‖div;Ω +‖uuu−uuuh‖0,Ω +‖ρρρ−ρρρh‖0,Ω ≤ C5

{
∑

T∈Th

Ξ
2
s,K

}1/2

+ γ‖p− ph‖0,Ω.

Proof Let τττ ∈HN(div;Ω). From [3, Lemma 3.9], there exist ξξξ ∈H1(Ω) and χχχ ∈H1
ΓN
(Ω), such that

τττ = ξξξ + curl χχχ and ‖ξξξ‖1,Ω +‖χχχ‖1,Ω ≤CHelm‖τττ‖div;Ω, (6.4)

Using that R1(τττh) =−c(τττh, p− ph) for all τττh ∈Hσσσ
h , we have

R1(τττ) = R1(τττ− τττh)−c(τττh, p− ph) ∀τττh ∈Hσσσ
h .
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In particular, this holds for τττh defined as τττh = Πhξξξ + curl(Ihχχχ), whence

R1(τττ) = R1(ξξξ −Πhξξξ )+R1(curl(χχχ− Ihχχχ))−c(τττh, p− ph).

Hence, the proof follows from Lemmas 6.1, 6.3 and 6.4, and estimate (6.4). �

The following lemma establishes the estimate for R2.

Lemma 6.6 Assume that there exists a convex domain B such that Ω ⊆ B and ΓN ⊆ ∂B, and that
pD ∈ H1(ΓD). Then, there exists a constant C8 > 0, independent of h, such that

‖ϕϕϕ−ϕϕϕh‖div;Ω +‖p− ph‖0,Ω ≤ C8

{
∑

T∈Th

Ξ
2
f ,K

}1/2

+C8 (‖ϕϕϕh‖0,Ω‖p− ph‖0,Ω + γ‖σσσ −σσσh‖0,Ω).

Proof It follows the steps of Lemma 6.5. From [27, Lemma 4.4], we have that for all ψψψ ∈ HN(div;Ω)

there exist z ∈H1(Ω) and φ ∈H1
ΓN
(Ω), such that ψψψ = z+curlφ and ‖z‖1,Ω +‖φ‖1,Ω ≤ C̃Helm‖ψψψ‖div;Ω.

Thus, proceeding similarly to Lemmas 6.3 and 6.4, denoting ẑ := z−Πh(z) and φ̂ := φ − Ihφ , applying
local integration by parts and the approximation properties of Πh and Ih along with the Cauchy–Schwarz
inequality, and the second estimate in (2.2), we obtain the following estimates

|R2(z−Πh(z))| ≤ κ2‖p− ph‖0,Ω ‖ϕϕϕh‖0,Ω ‖ẑ‖1,Ω

+C6

(
∑

K∈Th

h2
K‖κκκ(σσσh, ph)

−1
ϕϕϕh−∇ph‖2

0,K + ∑
E∈Eh(ΓD)

hE‖pD− ph‖2
0,E

)1/2

‖z‖1,Ω,

|R2(curl(φ − Ihφ))| ≤ κ2‖ϕϕϕh‖0,Ω‖p− ph‖0,Ω‖φ̂‖1,Ω

+C7

(
∑

K∈Th

h2
K‖rot(κκκ(σσσh, ph)

−1
ϕϕϕh)‖2

0,K + ∑
E∈Eh(Ω)

hE‖[[(κκκ(σσσh, ph)
−1

ϕϕϕh) · sss]]‖2
0,E

+ ∑
E∈Eh(ΓD)

hE‖κκκ(σσσh, ph)
−1

ϕϕϕh · sss−
dpD

dsss
‖2

0,E

)1/2

‖φ‖1,Ω.

(6.5)

Then, noting that R2(ψψψh) = 0 for all ψψψh ∈Hϕϕϕ

h , and defining ψψψh as ψψψh = Πhz+ curl(Ihφ), we have

R2(ψψψ) = R2(ψψψ−ψψψh) = R2(z−Πhz)+R2(curl(φ − Ihφ)).

Hence, the proof follows from Lemma 6.2, estimates (6.5), and the Helmholtz decomposition of
HN(div;Ω), with C8 depending on C2, κ2, C̃Helm and the stability constants of Πh and Ih. �

Finally we state the main reliability bound for the proposed estimator.

Theorem 6.7 Assume the hypotheses stated in Theorem 5.3 and Lemmas 6.5-6.6. Let (σσσ ,uuu,ρρρ,ϕϕϕ, p)∈
HN(div;Ω)×L2(Ω)×L2

skew(Ω)×HN(div;Ω)×L2(Ω) and (σσσh,uuuh,ρρρh,ϕϕϕh, ph) ∈ Hσσσ
h ×Huuu

h ×Hρρρ

h ×
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Hϕϕϕ

h ×Hp
h be the unique solutions of (2.2) and (4.5), respectively. Assume further that

(1+C8)γ +C8C∗(‖g‖0,Ω +‖pD‖1/2,ΓD +‖uuuD‖1/2,ΓD +‖ fff‖0,Ω + γ r )≤ 1
2
. (6.6)

Then, there exists Crel > 0, independent of h, such that

‖eσσσ‖div;Ω +‖euuu‖0,Ω +‖eρρρ‖0,Ω +‖eϕϕϕ‖div;Ω +‖ep‖0,Ω ≤ Crel Ξ.

Proof It follows directly from Lemmas 6.5 and 6.6, using the fact that ϕϕϕh satisfies the estimate (4.12),
and the assumption (6.6). �

Note that, using the same arguments as in Remark 3.3, the constant C2 appearing in Lemma 6.2
also remains bounded. Consequently, the constant C8, which depends on C2, κ2, C̃Helm and the stability
constants of Πh and Ih, also remains bounded. Therefore, for the first term on the left-hand side of
assumption (6.6), (1+C8)γ , the condition (1+C8)γ ≤ 1/2 is required. Since C8 remains bounded, by
using the same arguments as in Remark 3.5 we can ensure the feasibility of assumption (6.6).

6.2. Efficiency of the a posteriori error estimator

In this section we derive the efficiency estimate of the estimator defined in (6.2). The main result of this
section is stated as follows.

Theorem 6.8 There exists Ceff > 0, independent of h, such that

Ceff Ξ ≤ ‖σσσ −σσσh‖div;Ω +‖uuu−uuuh‖0,Ω +‖ρρρ−ρρρh‖0,Ω +‖ϕϕϕ−ϕϕϕh‖div;Ω +‖p− ph‖0,Ω +h.o.t, (6.7)

where h.o.t. stands for one or several terms of higher order.

We begin with the estimates for the zero order terms appearing in the definition of Ξs,K (cf. (6.1a)).

Lemma 6.9 For all K ∈Th there holds

‖ fff +divσσσh‖0,K . ‖σσσ −σσσh‖div;K and ‖σσσh−σσσ
t
h‖0,K . ‖σσσ −σσσh‖div;K .

Proof By employing the same arguments as in [18, Theorem 3.2], we can conclude that fff = −divσσσ ,
which, together with the symmetry of σσσ , implies the desired result. Further details are omitted. �

In order to derive the upper bounds for the remaining terms defining the error estimator Ξs,K , we
use results from [21], inverse inequalities, and the localisation technique based on element-bubble and
edge-bubble functions. The main properties that we will use can be found in [36, Lemmas 4.4-4.7].

Lemma 6.10 For all K ∈Th there holds

hK‖C−1σσσh +
α

dλ +2µ
phI−∇∇∇uuuh +ρρρh‖0,K

. hK
(
‖σσσ −σσσh‖div;K +‖ρρρ−ρρρh‖0,K +‖p− ph‖0,K

)
+‖uuu−uuuh‖0,K .
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Proof It follows from an application of [36, Lemma 4.4] with q = C−1σσσh +
α

dλ +2µ
phI−∇∇∇uuuh +ρρρh,

using that C−1σσσ +
α

dλ +2µ
pI = ∇∇∇uuu−ρρρ and [36, Lemma 4.5]. We refer to [21, Lemma 6.6] for further

details. �

Lemma 6.11 For all K ∈Th and E ∈ Eh(Ω), there holds

hK‖curl(C−1σσσh +
α

dλ +2µ
phI+ρρρh)‖0,K . ‖σσσ −σσσh‖div;K +‖ρρρ−ρρρh‖0,K +‖p− ph‖0,K ,

h1/2
E ‖[[(C−1σσσh +

α

dλ +2µ
phI+ρρρh)sss]]‖0,E . ‖σσσ −σσσh‖div;ωE +‖ρρρ−ρρρh‖0,ωE +‖p− ph‖0,ωE ,

where the patch of elements sharing the edge E is denoted as ωE := ∪{K′ ∈Th : E ∈ Eh(K′)}.

Proof It suffices to apply [36, Lemma 4.7] with ξξξ :=C−1σσσ +
α

dλ +2µ
pI+ρρρ =∇∇∇uuu and ξξξ h :=C−1σσσh+

α

dλ +2µ
phI+ρρρh. �

Lemma 6.12 Assume that uuuD is piecewise polynomial. Then, for all E ∈ Eh(ΓD), there holds

h1/2
E ‖(C−1σσσh +

α

dλ +2µ
phI+ρρρh)sss−

duuuD
dsss ‖0,E . ‖σσσ −σσσh‖div;KE +‖ρρρ−ρρρh‖0,KE +‖p− ph‖0,KE ,

h1/2
E ‖uuuD−uuuh‖0,E . hKE

(
‖σσσ −σσσh‖div;KE +‖ρρρ−ρρρh‖0,KE +‖p− ph‖0,KE

)
+‖uuu−uuuh‖0,KE ,

where KE is a triangle in Th that contains E on its boundary.

Proof The first estimate follows as in [36, Lemma 4.18], defining ξξξ and ξξξ h as in Lemma 6.11. On the
other hand, the second estimate follows from an application of the discrete trace inequality (see [36,
Lemma 4.6]), using that C−1σσσ +

α

dλ +2µ
pI = ∇∇∇uuu−ρρρ , and the fact that uuu = uuuD on ΓD. See also [38,

Lemma 4.14]. �

A direct application of Lemmas 6.9-6.12 yields

∑
K∈Th

Ξs,K . ‖eσσσ‖div;Ω +‖euuu‖0,Ω +‖eρρρ‖0,Ω +‖eϕϕϕ‖div;Ω +‖ep‖0,Ω. (6.8)

Similarly, using the same arguments as in Lemmas 6.9-6.12, along with algebraic manipulations as in
Section 5, assuming that pD is piecewise polynomial, together with the Lipschitz continuity of κκκ (cf.
(2.3)), we can bound each of the terms that appear in the estimator Ξ f ,K and obtain the following result

∑
K∈Th

Ξ f ,K . ‖eσσσ‖div;Ω +‖euuu‖0,Ω +‖eρρρ‖0,Ω +‖eϕϕϕ‖div;Ω +‖ep‖0,Ω. (6.9)

We remark that the efficiency of Ξ (cf. (6.2)) in Theorem 6.8 is now a straightforward consequence
of estimates (6.8) and (6.9). In turn, we emphasize that the resulting constant, denoted by Ceff > 0 is
independent of h.
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Remark 6.13 For simplicity, we have assumed that uuuD and pD are piecewise polynomial in the
derivation of (6.8) and (6.9). However, similar estimates can also be obtained by assuming uuuD and
pD are sufficiently smooth (taking, for example, uuuD ∈ H1(ΓD) and pD ∈ H1(ΓD), as in Lemmas 6.5-
6.6), and proceeding as in [25, Section 6.2]. In such cases, higher-order terms, stemming from errors
in the polynomial approximations, would appear in (6.8) and (6.9), accounting for the presence of h.o.t
in (6.7).

Remark 6.14 We conclude this section by noting that the a posteriori error estimation analysis
developed here can be adapted to the three-dimensional case. In particular, in [35, Theorem 3.2] and
[27, Lemma 4.4], one can find the suitable Helmholtz decompositions for the spaces HN(div;Ω) and
HN(div;Ω), respectively.

7. Numerical results

The computational examples in this section verify the theoretical properties (optimal convergence,
equilibrium and mass conservativity, and parameter robustness) of the proposed schemes. The
implementation has been carried out using the FE library FEniCS [1]. The nonlinear systems were
solved with Newton–Raphson’s method with a residual tolerance of 10−7, and the linear systems were
solved using the sparse LU factorisation of MUMPS [4].

Non-homogeneous essential conditions for flux and stress (for given ϕN ∈ H−1/2(ΓN) and σσσN ∈
H−1/2(ΓN)) can be incorporated in the continuous and discrete analysis by using a classical lifting
argument (see, for example, [31, Remark 32.5]). Regarding implementation, it suffices to assign tags
for the corresponding sub-boundary and define the test space without the corresponding degrees of
freedom, and then provide a boundary datum on the trial space. In FEniCS this is simply done by
passing the d components of the non-homogeneous given traction to each of the row spaces of stress
(and the given non-homogeneous flux vector to the flux space) through DirichletBC.

7.1. Optimal convergence to smooth solutions and conservativity in 2D

We first consider a simple planar problem setup with manufactured exact solution. We take the unit
square domain Ω = (0,1)2, the bottom and left segments represent ΓD and the top and right sides are
ΓN. We choose the body load fff , mass source g, boundary displacement uuuD, boundary pressure pD, as
well as (not necessarily homogeneous, but standard arguments can be used to extend the theory to the
inhomogeneous case) boundary data ϕϕϕ · n = ϕN and σσσn = σσσN, such that the exact displacement and
fluid pressure are

uuu(x,y) =
1
20

(
cos
[ 3π

2 (x+ y)
]

sin
[ 3π

2 (x− y)
]) , p(x,y) = sin(πx)sin(πy).

These exact primary variables are used to construct exact mixed variables of stress, rotation, and
discharge flux. We choose the second constitutive relation for the permeability in (1.8) and choose the
following arbitrary model parameters (all nondimensional) k0 = k1 = c0 = α = 0.1, λ = µ = µ f = 1.
These values indicate a mild permeability variation and it is expected that the nonlinear solver (in this
case, Newton–Raphson) converges in only a few iterations. We construct six levels of uniform mesh
refinement of the domain, on which we compute approximate solutions and the associated errors for
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k DoFs h e(σσσ) rate e(uuu) rate e(ρρρ) rate e(ϕϕϕ) rate e(p) rate

0

98 0.7071 3.5e+0 ? 4.5e-02 ? 3.7e-01 ? 4.9e-01 ? 2.4e-01 ?
354 0.3536 1.9e+0 0.86 2.0e-02 1.20 8.0e-02 2.19 2.6e-01 0.92 1.3e-01 0.92

1346 0.1768 9.9e-01 0.96 1.0e-02 0.98 3.3e-02 1.30 1.3e-01 0.98 6.5e-02 0.98
5250 0.0884 5.0e-01 0.99 5.0e-03 1.00 1.3e-02 1.37 6.6e-02 0.99 3.3e-02 1.00

20738 0.0442 2.5e-01 1.00 2.5e-03 1.00 4.7e-03 1.43 3.3e-02 1.00 1.6e-02 1.00
82434 0.0221 1.2e-01 1.00 1.3e-03 1.00 1.7e-03 1.47 1.6e-02 1.00 8.2e-03 1.00

1

290 0.7071 1.3e+0 ? 1.3e-02 ? 4.1e-02 ? 1.5e-01 ? 7.4e-02 ?
1090 0.3536 4.1e-01 1.61 4.2e-03 1.68 1.4e-02 1.50 3.9e-02 1.92 2.0e-02 1.93
4226 0.1768 1.1e-01 1.94 1.1e-03 1.95 5.8e-03 1.30 9.9e-03 1.98 5.0e-03 1.98

16642 0.0884 2.7e-02 1.98 2.7e-04 1.99 2.0e-03 1.55 2.5e-03 1.99 1.2e-03 2.00
66050 0.0442 6.8e-03 2.00 6.8e-05 2.00 5.8e-04 1.78 6.2e-04 2.00 3.1e-04 2.00

263170 0.0221 1.7e-03 2.00 1.7e-05 2.00 1.5e-04 1.92 1.6e-04 2.00 7.8e-05 2.00

TABLE 7.1 Example 1. Error history (degrees of freedom, mesh size, individual errors and
experimental rates of convergence) in 2D for the formulation using the two lowest-order FE families
with PEERSk elements.

each primal and mixed variable in their natural norms. Convergence rates are calculated as usual:

rate = log(e/ê)[log(h/ĥ)]−1 ,

where e and ê denote errors produced on two consecutive meshes of sizes h and ĥ, respectively. Table
7.1 reports on this error history focusing on the methods defined by the PEERSk family with k = 0
and k = 1, showing a O(hk+1) convergence for all unknowns as expected from the theoretical error
bound of Theorem 5.4 (except for the rotation approximation that shows a slight superconvergence for
the lowest-order case and only in 2D – a well-known phenomenon associated with PEERSk elements).
With the purpose of illustrating the character of the chosen manufactured solution and the parameter
regime, we show sample discrete solutions in Figure 7.1.

We also exemplify the equilibrium and mass conservativity of the formulation. To do so we represent
the loss of equilibrium and mass as

equh :=
∥∥Ph[div(σσσh)+ fff ]

∥∥
`∞ , massh :=

∥∥∥∥Ph

[(
c0+

dα2

dλ +2µ

)
ph+

α

dλ +2µ
trσσσh+div(ϕϕϕh)+g

]∥∥∥∥
`∞

,

where Ph : L2(Ω)→ Pk(Th) is the scalar version of Ph. They are computed at each refinement level
and tabulated in Table 7.2 together with the total error e := e(σσσ)+ e(uuu)+ e(ρρρ)+ e(ϕϕϕ)+ e(p), and its
experimental convergence rate. We report on the nonlinear iteration count as well. The expected optimal
convergence of the total error, and the announced local conservativity are confirmed. We also note that,
at least for this parameter regime, for all the refinements and polynomial degrees the nonlinear solver
takes three iterations to get a residual below the tolerance. In the last column of the same table we report
on the efficiency of the global a posteriori error estimator designed in Section 6 eff(Ξ) = e

Ξ
, which –

in this case of smooth solutions – is asymptotically constant (approximately 0.98 for k = 0 and 1.52 for
k = 1).
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FIG. 7.1. Example 1. Sample of approximate solutions (stress magnitude, displacement magnitude, non-zero entry of rotation,
flux magnitude, and fluid pressure) computed with the second-order scheme and plotted on the deformed domain (for reference
we also show the contour of the undeformed domain).

7.2. Convergence in 3D using physically relevant parameters

Next we investigate the behaviour of the proposed numerical methods in a 3D setting and taking model
parameters more closely related to applications in tissue poroelasticity. We still use manufactured
solutions to assess the accuracy of the formulation, but take an exact displacement that satisfies
divuuu→ 0 as λ → ∞. The domain is the 3D box Ω = (0,L)× (0,L)× (0,2L) with L = 0.01 m, and
mixed boundary conditions were taken analogously as before, separating the domain boundary between
ΓN defined by the planes x = 0, y = 0 and z = 0, and ΓD as the remainder of the boundary. The
manufactured displacement and pressure head are

uuu =
L
4

 sin(x/L)cos(y/L)sin(z/(2L))+ x2/λ

−2cos(x/L)sin(y/L)cos(z/(2L))+ y2/λ

2cos(x/L)cos(y/L)sin(z/(2L))−2z2/λ

 , p = sin(x/L)cos(y/L)sin(z/(2L)).
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DoFs h e rate equh massh iter eff(Ξ)
k = 0

97 0.707 4.83e+0 ? 9.30e-16 1.94e-16 3 0.93
353 0.354 2.45e+0 0.98 9.44e-16 2.98e-16 3 0.94

1345 0.177 1.25e+0 0.98 2.64e-15 8.26e-16 3 0.96
5249 0.088 6.22e-01 1.00 5.58e-15 2.49e-15 3 0.97

20737 0.044 3.10e-01 1.00 1.46e-14 7.03e-15 3 0.98
82433 0.022 1.55e-01 1.00 1.72e-13 1.09e-13 3 0.98

328705 0.011 7.63e-02 1.00 4.25e-13 3.46e-13 3 0.98
k = 1

289 0.707 1.57e+0 ? 2.88e-15 1.20e-15 3 1.45
1089 0.354 5.08e-01 1.63 6.77e-15 2.25e-15 3 1.50
4225 0.177 1.34e-01 1.92 2.21e-14 6.60e-15 3 1.53

16641 0.088 3.42e-02 1.97 8.00e-14 1.31e-14 3 1.52
66049 0.044 8.62e-03 1.99 3.91e-13 3.83e-14 3 1.51

263169 0.022 2.16e-03 2.00 8.20e-12 7.61e-14 3 1.51
1050625 0.011 5.04e-04 2.00 2.17e-11 4.90e-13 3 1.52

TABLE 7.2 Example 1. Total error, experimental rates of convergence,
`∞-norm of the projected residual of the equilibrium and mass balance
equations, Newton–Raphson iteration count, and efficiency index of the
global a posteriori error estimator. Tabulated results correspond to the two
lowest-order polynomial degrees.

DoFs h e(σσσ) rate e(uuu) rate e(ρρρ) rate e(ϕϕϕ) rate e(p) rate
unity parameters

328 0.0173 2.9e-02 ? 1.1e-06 ? 4.8e-04 ? 3.1e+0 ? 1.3e-04 ?
2311 0.0087 1.5e-02 0.94 5.7e-07 0.96 1.3e-04 1.90 1.6e+0 1.00 6.3e-05 1.00

17443 0.0043 7.5e-03 0.99 2.8e-07 1.00 4.4e-05 1.54 7.8e-01 1.00 3.2e-05 1.00
135715 0.0022 3.8e-03 1.00 1.4e-07 1.00 1.8e-05 1.34 3.9e-01 1.00 1.6e-05 1.00

1071043 0.0011 1.9e-03 1.00 7.0e-08 1.00 7.7e-06 1.19 1.9e-01 1.00 7.9e-06 1.00
physically relevant parameters

328 0.0173 2.1e+02 ? 1.1e-06 ? 4.2e-04 ? 4.8e-07 ? 1.9e-04 ?
2311 0.0087 1.1e+02 0.91 5.6e-07 0.99 1.1e-04 1.93 3.9e-07 0.55 9.1e-05 1.05

17443 0.0043 5.6e+01 0.98 2.8e-07 1.00 3.3e-05 1.74 2.2e-07 0.89 4.4e-05 1.04
135715 0.0022 2.8e+01 1.00 1.4e-07 1.00 1.2e-05 1.42 1.2e-07 0.93 2.2e-05 0.99

1071043 0.0011 1.4e+01 1.00 7.0e-08 1.00 5.3e-06 1.23 6.0e-08 0.97 1.1e-05 0.98

TABLE 7.3 Example 2. Error history (degrees of freedom, mesh size, individual errors and
experimental rates of convergence) in 3D for the formulation using the lowest-order FE family with
PEERSk elements and changing from unity (top) to physically relevant (bottom) parameters.

First we set again the model parameters to mild values λ = µ = c0 = k0 =α = µ f = 1, k1 = k2 = 0.1,
we use the exponential permeability constitutive law, and we compare them against the following values
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FIG. 7.2. Example 2. Sample of approximate solutions (stress magnitude, displacement magnitude, rotation magnitude, flux
magnitude, and fluid pressure) computed with the first-order scheme and plotted on the deformed domain (for reference we also
show the outline of the undeformed domain).

(from, e.g., [9, 48])

k0 = 2.28×10−11 m3, k1 = 5×10−12 m3, λ = 1.44×106 Pa,

µ = 9.18×103 Pa, µ f = 7.5×10−4 Pa · s, c0 = 0, α = 0.99.

Table 7.3 reports on the convergence of the method. While the magnitude of the stress errors is
much higher for the second parameter regime, the discharge flux error magnitude is smaller than in
the first case and the displacement, rotation, and fluid pressure errors remain roughly of the same
magnitude. In any case, the table confirms that the optimal slope of the error decay is not affected by a
vanishing storativity nor large Lamé constants. The components of the numerical solution are displayed
in Figure 7.2.

We also test the convergence of the mixed finite element scheme for a wider parametric space. We
select the following ranges λ ∈ [1,1012],κi ∈ [10−12,1],c0 ∈ [10−12,1],α ∈ [10−12,1]. Samples (81
instances) of these computations are collected in Figure 7.3 and they provide a robustness analysis
in terms of error history (in rate of error decay, and not in absolute errors since we are not using
parameter-rescaled norms and for each re-parametrisation the forcing terms change accordingly) and
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Newton–Raphson iteration count. In all cases we observe an optimal first-order convergence, and we
also see that for some parameters the nonlinear solver takes less iterations to reach the desired tolerance.

7.3. Convergence in the case of adaptive mesh refinement

We continue with a test targeting the recovery of optimal convergence through adaptive mesh refinement
guided by the a posteriori error estimator proposed in Section 6. We employ the well-known adaptive
mesh refinement approach of solving, then computing the estimator, marking, and refining. Marking is
done as follows [29]: a given K ∈ Th is added to the marking set Mh ⊂ Th whenever the local error
indicator ΞK satisfies

∑
K∈Mh

Ξ
2
K ≥ ζ ∑

K∈Th

Ξ
2
K ,

where ζ is a user-defined bulk density. All elements in Mh are marked for refinement and also some
neighbours are marked for the sake of closure. For convergence rates we use the alternative form

rate =−2log(e/ê)[log(DoFs/ D̂oF)]−1.

Let us consider the non-convex rotated L-shaped domain Ω = (−1,1)2 \ (−1,0)2 and use
manufactured displacement and fluid pressure with sharp gradients near the domain re-entrant corner
(see, e.g., [22] for the displacement and [17] for the fluid pressure)

uuu(r,θ) =
rχ

2µ

(
−(χ +1)cos([χ +1]θ)+(M2−χ−1)M1 cos([χ−1]θ)
(χ +1)sin([χ +1]θ)+(M2 +χ−1)M1 sin([χ−1]θ)

)
,

p(r,θ) = r1/3 sin
(

1
3
(

π

2
+θ)

)
,

with polar coordinates r =
√

x2
1 + x2

2, θ = arctan(x2,x1), χ ≈ 0.54448373, M1 = −cos([χ +

1]ω)/cos([χ − 1]ω), and M2 = 2(λ + 2µ)/(µ + λ ). The boundary conditions (taking as ΓN the
segments at x =±1 and y =±1 and ΓD the remainder of the boundary) and forcing data are constructed
from these solutions and the model parameters are λ = 103, µ = 10, k0 = 1

2 , µ f = c0 = k1 = 0.1,
α = 1

4 , where for this test we consider a Kozeny–Carman permeability form. As in [22], a sub-optimal
rate of convergence is expected for the mixed elasticity sub-problem in its energy norm. Note that
since the exact pressure is in H4/3−ε(Ω) for any ε > 0 (cf. [41, Chapter 5]), it is still regular enough
to have optimal convergence. However its gradient (and therefore also the exact discharge flux ϕϕϕ)
has a singularity located at the reentrant corner and therefore we expect an order of convergence of
approximately O(h1/3).

The numerical results of this test are reported in Table 7.4. We observe the expected sub-optimal
convergence under an uniform mesh refinement while the optimal convergence in all variables is
attained as the mesh is locally refined (the first three rows are very similar as most of the elements are
refined in the first three steps. This can be controlled by the bulk density, here taken as ζ = 9.5 ·10−5).
We also note that the individual errors are approximately of the same magnitude in the last row of each
section of the table, but for the adaptive case this is achieved using approximately 5.5% of the number
of degrees of freedom needed in the uniformly refined case. The last column of the table again confirms
the reliability and efficiency of the a posteriori error estimator. Note that for this case we compute the
divergence part of the error norm in the stress and fluxes as projections of the equilibrium and mass
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FIG. 7.3. Example 2. Parameter robustness of the convergence for the mixed finite element method in the lowest-order case
across 81 parameter configurations. The colour-bar represents the variation in λ and the different line markers the variation in
the permeability parameter κi (here using κ0 = κ1 = κ2 for the exponential permeability function). The top panels indicate total
error, and the bottom panels the iteration count.
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DoFs h e(σσσ) rate e(uuu) rate e(ρρρ) rate e(ϕϕϕ) rate e(p) rate eff(Ξ)
uniform mesh refinement

77 1.4142 1.7e+3 ? 1.7e+1 ? 7.6e+1 ? 9.1e+0 ? 1.6e+0 ? 2.67
273 0.7071 1.5e+3 0.27 7.8e+0 1.10 2.5e+1 1.61 5.8e+0 0.65 7.8e-01 1.06 2.65

1025 0.3536 1.2e+3 0.31 5.0e+0 0.63 2.1e+1 0.27 4.3e+0 0.44 3.9e-01 1.00 3.12
3969 0.1768 8.9e+2 0.40 3.6e+0 0.50 1.7e+1 0.26 3.3e+0 0.38 2.0e-01 0.99 2.82

15617 0.0884 6.6e+2 0.43 2.6e+0 0.45 1.4e+1 0.32 2.6e+0 0.35 9.9e-02 0.99 2.60
61953 0.0442 4.8e+2 0.45 1.9e+0 0.45 1.1e+1 0.35 2.0e+0 0.34 5.0e-02 1.00 2.42

246785 0.0221 3.5e+2 0.46 1.4e+0 0.46 8.4e+0 0.38 1.6e+0 0.34 2.5e-02 1.00 2.27
985089 0.0011 2.9e+2 0.45 1.1e+0 0.45 6.7e+0 0.38 1.2e+0 0.34 1.3e-02 1.00 2.40

adaptive mesh refinement
77 1.4142 1.7e+3 ? 1.7e+1 ? 7.6e+1 ? 9.1e+0 ? 1.6e+0 ? 2.67

273 0.7071 1.5e+3 0.29 7.8e+0 1.20 2.5e+1 1.76 5.8e+0 0.72 7.8e-01 1.16 2.65
1025 0.3536 1.2e+3 0.33 5.0e+0 0.66 2.1e+1 0.28 4.3e+0 0.47 3.9e-01 1.04 3.12
3813 0.3536 8.9e+2 0.42 3.6e+0 0.52 1.7e+1 0.27 3.3e+0 0.40 2.0e-01 1.04 2.82
7113 0.2500 6.7e+2 0.89 2.6e+0 0.98 1.4e+1 0.68 2.6e+0 0.77 1.1e-01 1.91 2.55

11013 0.2500 5.2e+2 1.20 2.0e+0 1.31 1.1e+1 0.99 2.0e+0 1.07 6.0e-02 1.74 2.58
17449 0.2500 4.0e+2 1.10 1.5e+0 1.18 9.1e+0 0.95 1.6e+0 1.01 3.7e-02 1.79 2.52
27225 0.1768 3.1e+2 1.14 1.2e+0 1.18 7.2e+0 1.05 1.3e+0 1.05 2.1e-02 1.80 2.52
38081 0.1768 2.5e+2 1.37 9.0e-01 1.53 5.7e+0 1.38 1.0e+0 1.37 1.5e-02 1.57 2.55
54797 0.1250 2.0e+2 1.18 7.2e-01 1.21 4.6e+0 1.22 8.1e-01 1.26 1.2e-02 1.48 2.53

TABLE 7.4 Example 3. Convergence history (degrees of freedom, mesh size, individual errors,
experimental rates of convergence, and effectivity index) in a rotated L-shaped domain for the
formulation using the lowest-order FE family with PEERSk elements and changing from uniform (top)
to adaptive mesh refinement (bottom) guided by the a posteriori error indicator from (6.2).

residuals onto the displacement and pressure discrete spaces, respectively. We plot in Figure 7.4 the
approximate displacement and pressure as well as sample triangulations obtained after a few adaptive
refinement steps that confirm the expected agglomeration of vertices near the reentrant corner.

7.4. Adaptive computation of cross-sectional flow and deformation in a soft tissue specimen

Finally, we apply the proposed methods to simulate the localisation of stress, deformation, and flow
patterns in a multi-layer cross-section of cervical spinal cord. We follow the setup in [47, 50]. The
geometry and unstructured mesh have been generated using GMSH [39] from the images in [50]. The
heterogeneous porous material consists of white and grey matter surrounded by the pia mater (a thin
layer, also considered poroelastic. See Figure 7.5, top two left panels). All components are assumed
fully saturated with cerebrospinal fluid. The transversal cross-section has 1.3 cm in maximal diameter
and the indentation region is a curved subset of the anterior part of the pia mater (a sub-boundary of
length 0.4 cm). Boundary conditions are of mixed load-traction type, but slightly different than the ones
analysed in the previous section. We conduct an indentation test applying a traction σσσn= (0,−P)t, with
P a constant solid pressure of 950 dyne/cm2. The posterior part of the pia mater acts as a rigid posterior
support where we prescribe zero displacement. The remainder of the boundary of the pia mater is stress-
free. For the fluid phase we impose a constant inflow pressure of cerebrospinal fluid of 1.1 dyne/cm2
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FIG. 7.4. Example 3. Approximate primal variable solutions (solid displacement and fluid pressure) computed with the first-order
scheme, and meshes generated after two, three, and four adaptive refinement steps.

and zero outflow pressure at the stress-free sub-boundary, as well as zero normal discharge flux at the
posterior support. For the three different layers of the domain we use the following values for Young
modulus, Poisson ratio, and lower bound for permeability (some values from [10, 47, 50]) Epia =
23′000dyne/cm2, νpia = 0.3, Ewhite = 8′400dyne/cm2, νwhite = 0.479, Egrey = 16′000dyne/cm2,
νgrey = 0.49, kgrey

0 = 1.4 · 10−9 dyne/cm2, kwhite
0 = 1.4 · 10−6 dyne/cm2, kpia

0 = 3.9 · 10−10 dyne/cm2.
Further, we take fff = 000, g = 0, µ f = 70dyne/cm2· s (for cerebrospinal fluid at 37◦), k1 =

1
2 k0, α = 1

4 ,
and c0 = 10−3.

The initial and the final adapted mesh, together with samples of solutions are shown in Figure 7.5,
where we have used the mesh density parameter ζ = 5.5 ·10−4. After each adaptation iteration guided
by the a posteriori error indicator (6.2), a mesh smoothing step was included. The figure indicates that
most of the refinement occurs near the interface between the heterogeneous components of the porous
media, and the plots also confirm a flow pattern moving slowly from top to bottom, consistently with a
typical indentation test.

8. Concluding remarks

In this work, we developed a family of mixed finite element methods for a nonlinear poroelasticity
model with stress-dependent permeability. By reformulating the constitutive equations, we enabled
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FIG. 7.5. Example 4. Cross sectional area of cervical spinal cord segmented from sheep imaging data in [50], initial coarse
mesh indicating subdomains with distinct material properties (outer pia mater in red, mid white matter in grey, inner grey matter
in green), final adapted mesh after six refinement steps, and sample of stress, displacement, fluid flux and fluid pressure at the
indentation test (bottom row figures are obtained with the lowest-order scheme and rendered on the deformed configuration).

the use of a Hellinger–Reissner-type mixed formulation, ensuring robustness with respect to near-
incompressibility and vanishing storativity limits. The problem structure was analysed using fixed-point
theory and saddle-point formulations, leading to well-posedness results for both the continuous and
discrete settings. The chosen finite element spaces (PEERSk elements for elasticity and Raviart–Thomas
elements for fluid flow) provided exact equilibrium and mass conservation.

We derived a priori error estimates, demonstrating optimal convergence properties. Furthermore, a
residual-based a posteriori error estimator was introduced and shown to be both reliable and efficient.
This estimator guided adaptive mesh refinement strategies, which were validated through numerical
experiments in both two and three dimensions.

The proposed nonlinear dependence of permeability on stress in poroelasticity is particularly
relevant for soft tissues, where permeability changes due to deformation, and for subsurface reservoirs,
where stress variations influence fluid transport. The current formulation can be adapted to different
material systems by choosing appropriate functional forms for the permeability-stress relationship
including also anisotropic permeability variations.

We are keen to follow other extensions, for instance exploring different abstract results that would
impose a less restrictive assumption on smallness of data, and extend the formulation to accommodate
a nonlinear stress-strain constitutive law, transient effects and splitting algorithms following, e.g. [42],
as well as fully coupled multiphysics systems, such as thermo-poroelasticity. Note however that these
generalisations (useful to broaden the applicability of the proposed methods to more complex real-world
scenarios) will require a substantially different theoretical framework.
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38. G. N. GATICA, A. MÁRQUEZ, AND M. SÁNCHEZ, Analysis of a velocity-pressure-pseudostress formulation
for the stationary Stokes equations, Comput. Methods Appl. Mech. Engrg., 199 (2010), pp. 1064–1079.

39. C. GEUZAINE AND J.-F. REMACLE, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-
processing facilities, International Journal for Numerical Methods in Engineering, 79 (2009), pp. 1309–1331.
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