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Abstract. We develop a family of mixed finite element methods for a model of nonlinear poroelasticity where, thanks to a
rewriting of the constitutive equations, the permeability depends on the total poroelastic stress and on the fluid pressure and therefore
we can use the Hellinger–Reissner principle with weakly imposed stress symmetry for Biot’s equations. The problem is adequately
structured into a coupled system consisting of one saddle-point formulation, one linearised perturbed saddle-point formulation, and
two off-diagonal perturbations. This system’s unique solvability requires assumptions on regularity and Lipschitz continuity of the
inverse permeability, and the analysis follows fixed-point arguments and the Babuška–Brezzi theory. The discrete problem is shown
uniquely solvable by applying similar fixed-point and saddle-point techniques as for the continuous case. The method is based on the
classical PEERSk elements, it is exactly momentum and mass conservative, and it is robust with respect to the nearly incompressible
as well as vanishing storativity limits. We derive a priori error estimates, we also propose fully computable residual-based a posteriori
error indicators, and show that they are reliable and efficient with respect to the natural norms, and robust in the limit of near
incompressibility. These a posteriori error estimates are used to drive adaptive mesh refinement. The theoretical analysis is supported
and illustrated by several numerical examples in 2D and 3D.
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1. Introduction. Nonlinear interaction between flow and the mechanical response of saturated porous
media is of a great importance in many applications in biophysics, geomechanics, and tissue engineering, for
example. One of such models is the equations of nonlinear poroelasticity, whose mathematical properties were
studied in great detail, for example, in the references [11, 13, 12]. In these works, it becomes clear that a distinctive
property of nonlinear poroelasticity models targeted for, e.g., soft tissue (cartilage, trabecular meshwork, brain
matter, etc.), is that the nonlinear permeability (the hydraulic conductivity, defined as how easily pore fluid
escapes from the compacted pore spaces) that depends on the evolving total amount of fluid, does not entail a
monotone operator, and therefore one cannot readily apply typical tools from monotone saddle-point problems.

Our interest is in deriving mixed finite element (FE) formulations (solving also for other variables of interest),
and for this we can cite in particular [36, 38], where fully mixed formulations based on the Hu–Washizu principle
are studied. Writing the poroelasticity equations in terms of the strain tensor was motivated in particular in [38]
because the permeability – at least in the regime we focus here – depends nonlinearly on the total amount of
fluid, which is a function of strain.

The upshot here compared to [38] is that we are able to rewrite the constitutive equation for permeability to
depend on the total poroelastic stress and on the fluid pressure (similarly as in, e.g., [8]). This allows us to revert
to the more popular Hellinger–Reissner type of mixed formulations for poroelasticity [7, 39, 40, 14, 46] (without
solving explicitly for the strain). Consequently, another appealing advantage with respect to the formulation
in [38] is that, as in the Hellinger–Reissner formulation, the model becomes robust with respect to the Lamé
constants. Also in contrast to [38], in this work we use a mixed form for the fluid flow (adding the discharge flux
as additional unknown), which gives the additional advantage of mass conservativity.

Regarding the well-posedness analysis, the aforementioned non-monotonicity of the permeability suggest, for
example, to use a fixed-point argument. We opt for freezing the arguments of permeability, turning the double
saddle-point structure with three perturbations coming from the stress trace operator and from the L2 pressure
blocks, into two decoupled saddle-point problems whose separate solvability can be established from the classical
literature for weakly symmetric elasticity and mixed reaction-diffusion equations. Banach fixed-point theorem is
then used to show well-posedness of the overall problem. This analysis needs to verify conditions of ball-mapping
and contraction of the fixed-point map, and this imposes a small data assumption, which can be carried over
to the external load, mass source, boundary displacement, and boundary fluid pressure. Compared to [38],
these conditions are less restrictive and imply also a less restrictive discrete analysis (which follows closely the
continuous one), due to the analysis being performed using the inverse of the Hooke tensor, which allows us to
achieve robustness with respect to the first Lamé parameter λ.
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Note that at the discrete level we can simply use conforming FE spaces. Discrete inf-sup conditions are
already well-known for the chosen FE families of PEERSk and Raviart–Thomas elements used for the solid
and fluid sub-problems (but several other inf-sup stable spaces that satisfy a discrete kernel characterisation
are also possible). We emphasise that, similarly to [39, 40], all estimates hold uniformly in the limit of nearly
incompressibility (implying that the formulation is Poisson locking-free) as well as when the constrained storage
coefficient vanishes (poroelastic locking-free), and therefore they are free of non-physical pressure oscillations.

An additional goal of this work is to derive efficient and reliable residual a posteriori error estimators for
the nonlinear poroelasticity equations. The approach follows a similar treatment as that of [32] (which focuses
on mixed formulations of stress-assisted diffusion equations), with the difference that here we do not need to
include augmentation terms for the mixed form of the mixed diffusion problem. The main ingredients in the
analysis of these estimates are Helmholtz decompositions and a global inf-sup (together with boundedness and
Lipschitz continuity of coupling terms), local inverse and trace estimates, bubble-based localisation arguments,
and properties of Clément and Raviart–Thomas interpolators. See also [3, 28] for estimators in a similar multi-
physics context and, e.g., [19, 20, 41] for mixed linear elasticity. Note that for the reliability of the estimator the
aforementioned Helmholtz decompositions – for both tensor-vector and vector-scalar cases – should be valid for
mixed boundary conditions. For this we follow [3] and [25], from which we inherit an a convexity assumption on
the Neumann sub-boundary (where we impose traction and flux boundary conditions).

Outline. The rest of the paper is organised as follows. The remainder of this Section has a collection of
preliminary definitions and notational convention, as well as the statement of the governing partial differential
equations. The weak formulation and proofs of the uniform boundedness of the bilinear forms and suitable inf-sup
conditions are shown in Section 2. The fixed-point analysis of the coupled problem is carried out in Section 3.
Section 4 then focuses on the Galerkin discretisation, including its well-posedness analysis and definition of
specific FE subspaces that provide momentum and mass conservativity. In Section 5 we show a Céa estimate
and using appropriate approximation properties we derive optimal a priori error bounds including also the higher
order case. The definition of a residual a posteriori error estimator and the proofs of its reliability and efficiency
are presented in Section 6. We conclude in Section 7 with some numerical tests that both validate and underline
the theoretical properties of the proposed discretisations.

Notation and preliminaries. Let L2(Ω) be the set of all square-integrable functions in Ω ⊂ Rd where d ∈ {2, 3}
is the spatial dimension, and denote by L2(Ω) = L2(Ω)d its vector-valued counterpart and by L2(Ω) = L2(Ω)d×d

its tensor-valued counterpart. We also write

L2
skew(Ω) := {τ ∈ L2(Ω) : τ = −τ t},

to represent the skew-symmetric tensors in Ω with each component being square-integrable. Standard notation
will be employed for Sobolev spaces Hm(Ω) with m ≥ 0 (and we note that H0(Ω) = L2(Ω)). Their norms
and seminorms are denoted as ‖ · ‖m,Ω and | · |m,Ω, respectively (as well as for their vector and tensor-valued
counterparts Hm(Ω), Hm(Ω)) see, e.g., [15].

As usual I stands for the identity tensor in Rd×d, and |·| denotes the Euclidean norm in Rd. Also, for any vector

field v = (vi)i=1,d we set the gradient and divergence operators as ∇v :=
(
∂vi
∂xj

)
i,j=1,d

and div v :=
∑d
j=1

∂vj
∂xj

.

In addition, for any tensor fields τ = (τij)i,j=1,d and ζ = (ζij)i,j=1,d, we let div τ be the divergence operator
div acting along the rows of τ , and define the transpose, the trace, the tensor inner product, and the deviatoric
tensor as τ t := (τji)i,j=1,d, tr(τ ) :=

∑d
i=1 τii, τ : ζ :=

∑n
i,j=1 τijζij , and τ d := τ − 1

n tr(τ ) I, respectively. We
also recall the Hilbert space

H(div; Ω) :=
{
z ∈ L2(Ω) : div z ∈ L2(Ω)

}
,

with norm ‖z‖2div;Ω := ‖z‖20,Ω + ‖ div z‖20,Ω, and introduce its tensor-valued version

H(div; Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ L2(Ω)

}
.

Governing equations. Let us consider a fully-saturated poroelastic medium (consisting of a mechanically
isotropic and homogeneous fluid-solid mixture) occupying the open and bounded domain Ω in Rd, the Lipschitz
boundary ∂Ω is partitioned into disjoint sub-boundaries ∂Ω := ΓD ∪ ΓN, and it is assumed for the sake of
simplicity that both sub-boundaries are non-empty |ΓD| · |ΓN| > 0. The symbol n will stand for the unit outward
normal vector on the boundary. Let f ∈ L2(Ω) be a prescribed body force per unit of volume (acting on the
fluid-structure mixture) and let g ∈ L2(Ω) be a net volumetric fluid production rate.

The balance of linear momentum for the solid-fluid mixture is written as

− divσ = f in Ω, (1.1)

with σ being the total Cauchy stress tensor of the mixture (sum of the effective solid and fluid stresses), whose
dependence on strain and on fluid pressure is given by the constitutive assumption (or effective stress principle)

σ = Cε(u)− αpI in Ω. (1.2)
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Here the skeleton displacement vector u from the position x ∈ Ω is an unknown, the tensor ε(u) := 1
2 (∇u+[∇u]t)

is the infinitesimal strain, by C we denote the fourth-order elasticity tensor, also known as Hooke’s tensor
(symmetric and positive definite and characterised by Cτ := λ(tr τ )I+2µ τ ), I is the identity second-order tensor,
λ and µ are the Lamé parameters (assumed constant and positive), 0 ≤ α ≤ 1 is the Biot–Willis parameter, and
p denotes the Darcy fluid pressure (positive in compression), which is an unknown in the system.

We also consider the balance of angular momentum, which in this context states that the total poroelastic
stress is a symmetric tensor σ = σt. To weakly impose it, it is customary to use the rotation tensor

ρ =
1

2
(∇u− [∇u]t) = ∇u− ε(u). (1.3)

The fluid content (due to both fluid saturation and local volume dilation) is given by

ζ = c0p+ α divu, (1.4)

where c0 ≥ 0 is the constrained specific storage coefficient. Using Darcy’s law to describe the discharge velocity
in terms of the fluid pressure gradient, the balance of mass for the total amount of fluid is ∂tζ − div(κ∇p) = g in
Ω× (0, tend), where κ is the intrinsic permeability of the medium, a nonlinear function of the porosity. In turn,
in the small strains limit the porosity can be approximated by a linear function of the fluid content ζ (see for
example [45, Section 2.1]), and so, thanks to (1.4), we can simply write κ(ε(u), p). Furthermore, after a backward
Euler semi-discretisation in time with a constant time step and rescaling appropriately, we only consider the type
of equations needed to solve at each time step and therefore we will concentrate on the form

c0p+ α tr ε(u)− div(κ(ε(u), p)∇p) = g in Ω. (1.5)

Typical constitutive relations for permeability are, e.g., exponential or Kozeny–Carman type (cf. [6])

κ(ε(u), p) =
k0

µf
I +

k1

µf
exp(k2(c0p+ α tr ε(u)))I, κ(ε(u), p) =

k0

µf
I +

k1(c0p+ α tr ε(u))3

µf (1− (c0p+ α tr ε(u)))2
I, (1.6)

where µf denotes the viscosity of the interstitial fluid and k0, k1, k2 are model constants. We note that in the
case of incompressible constituents one has c0 = 0 and α = 1, indicating that permeability depends only on the
dilation tr ε(u) = divu (see, e.g., [11]). We also note that even in such a scenario (of incompressible phases)
the overall mixture is not necessarily incompressible itself. More precise assumptions on the behaviour of the
permeability are postponed to Section 2.2. Next we note that from (1.2) we can obtain

trσ = (dλ+ 2µ) divu− dαp and C−1σ +
α

dλ+ 2µ
pI = ε(u) in Ω. (1.7)

Then, from the first equation in (1.7) we get

tr ε(u) =
1

dλ+ 2µ
trσ +

dα

dλ+ 2µ
p,

and therefore the dependence of κ on ε(u) and p (cf. (1.6)) can be written in terms of σ and p as follows

κ(σ, p) =
k0

µf
I +

k1

µf
exp

( k2

dλ+ 2µ

(
(c0(dλ+ 2µ) + dα2) p+ α trσ

))
I,

κ(σ, p) =
k0

µf
I +

k1

(
(c0(dλ+ 2µ) + dα2) p+ α trσ

)3
(dλ+ 2µ)µf

(
dλ+ 2µ− ((c0(dλ+ 2µ) + dα2) p+ α trσ)

)2 I. (1.8)

In addition, putting together the second equation in (1.7) and (1.3) we obtain:

C−1σ +
α

dλ+ 2µ
pI = ∇u− ρ in Ω. (1.9)

Finally, we introduce the discharge flux ϕ as an unknown defined by the constitutive relation

κ(σ, p)−1ϕ = ∇p, (1.10)

and combining (1.7) and (1.5), we are able to rewrite the mass balance equation as

c0p+
α

dλ+ 2µ
trσ +

dα2

dλ+ 2µ
p− divϕ = g in Ω. (1.11)

To close the system, we consider mixed boundary conditions for a given uD ∈ H1/2(ΓD) and pD ∈ H1/2(ΓD):

u = uD and p = pD on ΓD, ϕ · n = 0 and σn = 0 on ΓN. (1.12)
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2. Weak formulation and preliminary properties.

2.1. Derivation of weak forms. Let us define the following spaces

HN(div; Ω) :=
{
τ ∈ H(div; Ω) : τn = 0 on ΓN

}
, HN(div; Ω) :=

{
ψ ∈ H(div; Ω) : ψ ·n = 0 on ΓN

}
.

We test equation (1.1) against v ∈ L2(Ω), equation (1.9) against τ ∈ HN(div; Ω), impose the symmetry of σ
weakly, test equation (1.11) against q ∈ L2(Ω), equation (1.10) against ψ ∈ HN(div; Ω), integrate by parts and
using the boundary conditions (1.12) naturally, and then reorder the resulting equations. Then we arrive at∫

Ω

C−1σ : τ +
α

dλ+ 2µ

∫
Ω

p tr τ +

∫
Ω

u · divτ +

∫
Ω

ρ : τ = 〈τn,uD〉ΓD
∀ τ ∈ HN(div; Ω),∫

Ω

v · divσ = −
∫

Ω

f · v ∀v ∈ L2(Ω),∫
Ω

σ : η = 0 ∀η ∈ L2
skew(Ω),∫

Ω

κ(σ, p)−1ϕ ·ψ +

∫
Ω

p divψ = 〈ψ · n, pD〉ΓD ∀ψ ∈ HN(div; Ω),

(
c0 +

dα2

dλ+ 2µ

) ∫
Ω

p q +
α

dλ+ 2µ

∫
Ω

q trσ −
∫

Ω

q divϕ =

∫
Ω

g q ∀ q ∈ L2(Ω),

where 〈·, ·〉ΓD denotes the duality pairing between H−1/2(ΓD) and its dual H1/2(ΓD) with respect to the inner
product in L2(ΓD), and we use the same notation, 〈·, ·〉ΓD , in the vector-valued case.

Introducing bilinear forms a : HN(div; Ω) × HN(div; Ω) → R, b : HN(div; Ω) × L2(Ω) × L2
skew(Ω) → R,

c : HN(div; Ω) × L2(Ω) → R, the nonlinear form ãσ̂,p̂ : HN(div; Ω) ×HN(div; Ω) → R, and the bilinear weak

forms b̃ : HN(div; Ω)× L2(Ω)→ R and c̃ : L2(Ω)× L2(Ω)→ R, defined by

a(σ, τ ) :=

∫
Ω

C−1σ : τ , b(τ , (v,η)) :=

∫
Ω

v · div τ +

∫
Ω

τ : η, c(τ , q) :=
α

dλ+ 2µ

∫
Ω

q tr τ ,

ãσ̂,p̂(ϕ,ψ) :=

∫
Ω

κ(σ̂, p̂)−1ϕ ·ψ, b̃(ψ, q) :=

∫
Ω

q divψ, c̃(p, q) :=
(
c0 +

dα2

dλ+ 2µ

) ∫
Ω

p q,

(2.1)

respectively, and linear functionals H ∈ HN(div; Ω)′, F ∈ (L2(Ω)× L2
skew(Ω))′, H̃ ∈ HN(div; Ω)′, G ∈ L2(Ω)′

H(τ ) := 〈τn,uD〉ΓD
, F (v,η) := −

∫
Ω

f · v, H̃(ψ) := 〈ψ · n, pD〉ΓD
, G(q) := −

∫
Ω

g q,

we arrive at: find (σ,u,ρ,ϕ, p) ∈ HN(div; Ω)× L2(Ω)× L2
skew(Ω)×HN(div; Ω)× L2(Ω), such that:

a(σ, τ ) + b(τ , (u,ρ)) + c(τ , p) = H(τ ) ∀ τ ∈ HN(div; Ω), (2.2a)

b(σ, (v,η)) = F (v,η) ∀v ∈ L2(Ω), ∀η ∈ L2
skew(Ω), (2.2b)

ãσ,p(ϕ,ψ) + b̃(ψ, p) = H̃(ψ) ∀ψ ∈ HN(div; Ω), (2.2c)

b̃(ϕ, q)− c̃(p, q) − c(σ, q) = G(q) ∀ q ∈ L2(Ω). (2.2d)

2.2. Stability properties and suitable inf-sup conditions. For the sake of the analysis, we allow the
permeability κ(σ, p) to be anisotropic but still require κ(σ, p)−1 to be uniformly positive definite in L∞(Ω) and
Lipschitz continuous with respect to p ∈ L2(Ω). That is, there exist positive constants κ1, κ2 such that

κ1|v|2 ≤ vtκ(·, ·)−1v, ‖κ(·, p1)−1 − κ(·, p2)−1‖L∞(Ω) ≤ κ2‖p1 − p2‖0,Ω, (2.3)

for all v ∈ Rd \ {0}, and for all p1, p2 ∈ L2(Ω).

We start by establishing the boundedness of the bilinear forms a, b, c, b̃, c̃:∣∣a(σ, τ )
∣∣ ≤ 1

µ
‖σ‖div;Ω‖τ‖div;Ω,

∣∣b(τ , (v,η))
∣∣ ≤ ‖τ‖div;Ω(‖v‖0,Ω + ‖η‖0,Ω), (2.4a)∣∣c(τ , q)∣∣ ≤ γ‖τ‖div;Ω‖q‖0,Ω, (2.4b)∣∣̃b(ψ, q)∣∣ ≤ ‖ψ‖div;Ω‖q‖0,Ω,

∣∣c̃(p, q)∣∣ ≤ γ̃‖p‖0,Ω‖q‖0,Ω, (2.4c)

where

γ :=
α
√
d

dλ+ 2µ
and γ̃ := c0 +

dα2

dλ+ 2µ
. (2.5)
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On the other hand, using Hölder’s and trace inequalities we can readily observe that the right-hand side
functionals are all bounded∣∣H(τ )

∣∣ ≤ ‖uD‖1/2,ΓD
‖τ‖div;Ω,

∣∣F (v,η)
∣∣ ≤ ‖f‖0,Ω‖v‖0,Ω ≤ ‖f‖0,Ω(‖v‖0,Ω + ‖η‖0,Ω),∣∣H̃(ψ)

∣∣ ≤ ‖pD‖1/2,ΓD
‖ψ‖div;Ω,

∣∣G(q)
∣∣ ≤ ‖g‖0,Ω‖q‖0,Ω.

Let us now denote by V and V the kernels of b and b̃, respectively. They are characterised, respectively, as

V =
{
τ ∈ HN(div; Ω) : div τ = 0 and τ = τ t in Ω

}
, (2.6a)

V =
{
ψ ∈ HN(div; Ω) : div ψ = 0 in Ω

}
. (2.6b)

From [2, Lemmas 3.1 and 3.2] we easily deduce that there exists ca > 0 such that

a(τ , τ ) ≥ ca‖τ‖2div;Ω ∀ τ ∈ V. (2.7)

The following inf-sup conditions are well-known to hold (see, e.g., [18]):

sup
0 6=τ∈HN(div;Ω)

b(τ , (v,η))

‖τ‖div;Ω
≥ β(‖v‖0,Ω + ‖η‖0,Ω) ∀ (v,η) ∈ L2(Ω)× L2

skew(Ω), (2.8a)

sup
0 6=ψ∈HN(div;Ω)

b̃(ψ, q)

‖ψ‖div;Ω
≥ β̃‖q‖0,Ω ∀ q ∈ L2(Ω). (2.8b)

Finally, we observe that c̃ is elliptic over L2(Ω)

c̃(q, q) ≥ γ̃ ‖q‖20,Ω. (2.9)

3. Analysis of the coupled problem. We now use a combination of the classical Babuška–Brezzi and
Banach fixed-point theorems to establish the well-posedness of (2.2) under appropriate assumptions on the data.

3.1. A fixed-point operator. We adopt a similar approach to, e.g., [24]. Firs, we define a closed ball of
L2(Ω) centred at the origin and of given radius r > 0

W := {p̂ ∈ L2(Ω) : ‖p̂‖0,Ω ≤ r}. (3.1)

Then, for a given (σ̂, p̂) ∈ HN(div; Ω) ×W, thanks to the assumptions on the nonlinear permeability, we can
infer that the form ãσ̂,p̂ (cf. (2.1)) is continuous, as well as coercive over V∣∣ãσ̂,p̂(ϕ,ψ)

∣∣ ≤ Cã ‖ϕ‖div;Ω‖ψ‖div;Ω, (3.2a)

ãσ̂,p̂(ψ,ψ) ≥ κ1‖ψ‖2div;Ω ∀ϕ, ψ ∈ V. (3.2b)

Then, we define the auxiliary operators R : W ⊆ L2(Ω) → HN(div; Ω) × (L2(Ω) × L2
skew(Ω)) and S :

HN(div; Ω)×W→ HN(div; Ω)× L2(Ω), given by

R(p̂) :=
(
R1(p̂), (R2(p̂), R3(p̂))

)
= (σ, (u,ρ)) ∀ p̂ ∈W,

with (σ, (u,ρ)) ∈ HN(div; Ω)× (L2(Ω)× L2
skew(Ω)) satisfying

a(σ, τ ) + b(τ , (u,ρ)) = H(τ )− c(τ , p̂) ∀ τ ∈ HN(div; Ω),

b(σ, (v,η)) = F (v,η) ∀ (v,η) ∈ L2(Ω)× L2
skew(Ω),

(3.3)

and
S(σ̂, p̂) :=

(
S1(σ̂, p̂), S2(σ̂, p̂)

)
= (ϕ, p) ∀ (σ̂, p̂) ∈ HN(div; Ω)×W,

where (ϕ, p) is such that

ãσ̂,p̂(ϕ,ψ) + b̃(ψ, p) = H̃(ψ) ∀ψ ∈ HN(div; Ω),

b̃(ϕ, q) − c̃(p, q) = G(q) + c(σ̂, q) ∀ q ∈ L2(Ω).
(3.4)

By virtue of the above, by defining the operator T : W ⊆ L2(Ω)→ L2(Ω) as

T(p̂) := S2(R1(p̂), p̂), (3.5)

it is clear that (σ,u,ρ,ϕ, p) is a solution to (2.2) if and only if p ∈W solves the fixed-point problem

T(p) = p. (3.6)

Thus, in what follows, we focus on proving the unique solvability of (3.6).
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3.2. Well-definedness of T. From the definition of T in (3.5) it is evident that its well-definedness requires
the well-posedness of problems (3.3) and (3.4). We begin by analysing that of (3.3).

Lemma 3.1. Let p̂ ∈W (cf. (3.1)). Then, there exists a unique (σ, (u,ρ)) ∈ HN(div; Ω)×L2(Ω)×L2
skew(Ω)

solution to (3.3). In addition, there exist C1, C2 > 0, such that

‖σ‖div;Ω ≤ C1 (‖uD‖1/2,ΓD
+ ‖f‖0,Ω) +

1

ca
γ ‖p̂‖0,Ω,

‖u‖0,Ω + ‖ρ‖0,Ω ≤ C2 (‖uD‖1/2,ΓD
+ ‖f‖0,Ω) +

1

β

(
1 +

1

µca

)
γ ‖p̂‖0,Ω.

(3.7)

Proof. It is a direct consequence of the Babuška–Brezzi theory [29, Th. 2.34], using (2.7) and (2.8a) with

C1 :=
( 1

ca
+

1

β

)(
1 +

1

µca

)
and C2 :=

1

β

(
1 +

1

µca

)(
1 +

1

µβ

)
; (3.8)

we omit further details.

Next, we provide the well-definedness of S, or equivalently, the well-posedness of (3.4).

Lemma 3.2. Let (σ̂, p̂) ∈ HN(div; Ω)×W. Then, there exists a unique (ϕ, p) ∈ HN(div; Ω)× L2(Ω) solution

to (3.4). In addition, there exist C̃ > 0 such that

‖ϕ‖div;Ω + ‖p‖0,Ω ≤ C̃ (‖g‖0,Ω + ‖pD‖1/2,ΓD
+ γ‖σ̂‖div;Ω). (3.9)

Proof. The existence of a unique solution (ϕ, p) to (3.4) is straightforward given the properties of the forms

ã, b̃, and c̃. By examining (3.2b), (2.9), and (2.8b), we can confirm that the assumptions of [26, Th. 3.4] are
satisfied. In addition, ϕ and p satisfy the following bounds

‖ϕ‖div;Ω ≤
( 1

κ1
+ C̃1 + C̃1

√
γ̃
)(

2 max{C̃2, C̃3}
)1/2

(‖g‖0,Ω + ‖pD‖1/2,ΓD
+ γ ‖σ̂‖div;Ω),

‖p‖0,Ω ≤
1

β̃

(
1 + κ2r

( 1

κ1
+ C̃1 + C̃1

√
γ̃
)(

2 max{C̃2, C̃3}
)1/2)

(‖g‖0,Ω + ‖pD‖1/2,ΓD
+ γ ‖σ̂‖div;Ω),

where

C̃1 :=
1

β̃

(
1 +

Cã
κ1

)
, C̃2 :=

1

κ1
+ C̃1 + γ̃ C̃2

1 and C̃3 := C̃1

(
1 +

Cã

β̃
+ C̃1

C2
ã γ̃

β̃2

)
; (3.10)

and the above implies (3.9). We leave out additional minor details.

Lemma 3.3. Given r > 0, let us assume that

C̃
(
1 + γ C1

)(
‖g‖0,Ω + ‖pD‖1/2,ΓD

+ ‖uD‖1/2,ΓD
+ ‖f‖0,Ω

)
+
C̃

ca
γ2r ≤ r, (3.11)

where C1, C̃1 and γ are defined in (3.8), (3.10) and (2.5), respectively. Then, for a given p̂ ∈ W (cf. (3.1)),
there exists a unique p ∈W such that T(p̂) = p.

Proof. From Lemmas 3.1 and 3.2, we ascertain that the operators R and S, respectively, are well-defined,
thereby ensuring the well-definition of T. Furthermore, from (3.7) and (3.9), for each p̂ ∈W, we deduce that

‖T(p̂)‖0,Ω = ‖S2(R1(p̂), p̂)‖0,Ω
≤ C̃ (‖g‖0,Ω + ‖pD‖1/2,ΓD

) + C̃ γ ‖(R1(p̂)‖div;Ω

≤ C̃ (‖g‖0,Ω + ‖pD‖1/2,ΓD
) + C̃ γ C1 (‖uD‖1/2,ΓD

+ ‖f‖0,Ω) +
C̃

ca
γ2‖p̂‖0,Ω,

this, combined with assumption (3.11), implies T(W) ⊆W, which concludes the proof.

Remark 3.1. Another option for defining the operator S (see (3.4)) is to introduce the perturbation c̃ on the
right-hand side of the system, given by

ãσ̂,p̂(ϕ,ψ) + b̃(ψ, p) = H̃(ψ) ∀ψ ∈ HN(div; Ω),

b̃(ϕ, q) = G(q) + c(σ̂, q) + c̃(p̂, q) ∀ q ∈ L2(Ω).

But in this case, the assumption of small data in (3.11) (as well as in other instances, later on) would also involve
the storativity parameter c0, making the analysis slightly more restrictive.
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3.3. Existence and uniqueness of weak solution. We begin by establishing two lemmas deriving con-
ditions under which the operator T is a contraction.

Lemma 3.4. Given p̂1, p̂2,∈W, the following estimate holds

‖R1(p̂1)−R1(p̂2)‖div;Ω ≤
1

ca
γ ‖p̂1 − p̂2‖0,Ω. (3.12)

Proof. Let (σ1, (u1,ρ1)), (σ2, (u2,ρ2)) ∈ HN(div; Ω)× (L2(Ω)×L2
skew(Ω)), such that R(p̂1) = (σ1, (u1,ρ1))

ad R(p̂2) = (σ2, (u2,ρ2)). Then, from the definition of R (cf. (3.3)), we have

a(σ1 − σ2, τ ) + b(τ , (u1 − u2,ρ1 − ρ2)) = −c(τ , p̂1 − p̂2) ∀ τ ∈ HN(div; Ω),

b(σ1 − σ2, (v,η)) = 0 ∀ (v,η) ∈ L2(Ω)× L2
skew(Ω).

(3.13)

Since σ1 − σ2 ∈ V (cf. (2.6a)), taking τ = σ1 − σ2 in (3.13), and utilising the ellipticity of a on V (cf. (2.7))
along with the bound of c (cf. (2.4b)), we obtain:

ca‖σ1 − σ2‖2div;Ω ≤ a(σ1 − σ2,σ1 − σ2) = −c(σ1 − σ2, p̂1 − p̂2) ≤ γ ‖σ1 − σ2‖div;Ω‖p̂1 − p̂2‖0,Ω,

which concludes the proof.

Lemma 3.5. Given (σ̂1, p̂1), (σ̂2, p̂2),∈ HN(div; Ω)×W, the following estimate holds

‖S2(σ̂1, p̂1)− S2(σ̂2, p̂2)‖0,Ω

≤ 2κ2 C̃

min{γ̃, κ1}
(
‖g‖0,Ω + ‖pD‖1/2,ΓD

+ γ‖σ̂2‖div;Ω

)
‖p̂1 − p̂2‖0,Ω +

2

min{γ̃, κ1}
γ ‖σ̂1 − σ̂2‖div;Ω.

(3.14)

Proof. Let (ϕ1, p1), (ϕ2, p2) ∈ HN(div; Ω) × L2(Ω), such that S(σ̂1, p̂1) = (ϕ1, p1) and S(σ̂2, p̂2) = (ϕ2, p2).
Then, from the definition of S (cf. (3.4)), and employing similar arguments to those in Lemma 3.4, we have

ãσ̂1,p̂1(ϕ1,ϕ1 −ϕ2)− ãσ̂2,p̂2(ϕ2,ϕ1 −ϕ2) + c̃(p1 − p2, p1 − p2) = −c(σ̂1 − σ̂2, p1 − p2),

by adding ±ãσ̂1,p̂1(ϕ2,ϕ1 −ϕ2) in the last equation, we obtain

ãσ̂1,p̂1(ϕ1−ϕ2,ϕ1−ϕ2) + c̃(p1−p2, p1−p2) = ãσ̂2,p̂2(ϕ2,ϕ1−ϕ2)− ãσ̂1,p̂1(ϕ2,ϕ1−ϕ2)− c(σ̂1− σ̂2, p1−p2).

Then, using the the first assumption for κ (cf. (2.3)), the ellipticity of c̃ (see (2.9)), the definition of ãσ̂,p̂ (cf.
(2.1)) and the continuity of the form c (see (2.4b)), we deduce

κ1‖ϕ1 −ϕ2‖20,Ω + γ̃‖p1 − p2‖20,Ω ≤ ãσ̂1,p̂1(ϕ1 −ϕ2,ϕ1 −ϕ2) + c̃(p1 − p2, p1 − p2)

=

∫
Ω

(κ(σ̂2, p̂2)−1 − κ(σ̂1, p̂1)−1)ϕ2 · (ϕ1 −ϕ2)− c(σ̂1 − σ̂2, p1 − p2)

≤ ‖κ(σ̂2, p̂2)−1 − κ(σ̂1, p̂1)−1‖L∞(Ω) ‖ϕ2‖0,Ω‖ϕ1 −ϕ2‖0,Ω + γ ‖σ̂1 − σ̂2‖div;Ω‖p1 − p2‖0,Ω.

From the last equation, by utilising the second assumption regarding κ (see (2.3)), we obtain

1
2 min{γ̃, κ1}(‖ϕ1 −ϕ2‖0,Ω + ‖p1 − p2‖0,Ω)2 ≤ κ1‖ϕ1 −ϕ2‖20,Ω + γ̃‖p1 − p2‖20,Ω
≤ κ2‖p̂2 − p̂1‖0,Ω‖ϕ2‖0,Ω‖ϕ1 −ϕ2‖0,Ω + γ ‖σ̂1 − σ̂2‖div;Ω‖p1 − p2‖0,Ω
≤
(
κ2‖p̂2 − p̂1‖0,Ω‖ϕ2‖0,Ω + γ ‖σ̂1 − σ̂2‖div;Ω

)(
‖ϕ1 −ϕ2‖0,Ω + ‖p1 − p2‖0,Ω

)
,

the last, together with the fact that ϕ2 satisfies (3.9), leads to the following bound

1
2 min{γ̃, κ1}(‖ϕ1 −ϕ2‖0,Ω + ‖p1 − p2‖0,Ω) ≤ κ2‖p̂2 − p̂1‖0,Ω‖ϕ2‖0,Ω + γ ‖σ̂1 − σ̂2‖div;Ω

≤ κ2‖p̂2 − p̂1‖0,ΩC̃ (‖g‖0,Ω + ‖pD‖1/2,ΓD
+ γ‖σ̂2‖div;Ω) + γ ‖σ̂1 − σ̂2‖div;Ω,

and this yields (3.14), concluding the proof.

The following theorem presents the main result of this section, establishing the existence and uniqueness of
the solution to the fixed-point problem (3.6), or equivalently, the well-posedness of problem (2.2).

Theorem 3.6. Given r > 0, assume that f ∈ L2(Ω), g ∈ L2(Ω), uD ∈ H1/2(ΓD), pD ∈ H1/2(ΓD) and γ
satisfies

2 max{1, κ2}
min{γ̃, κ1 , r}

{
C̃(1 + C1γ)(‖g‖0,Ω + ‖pD‖1/2,ΓD

+ ‖uD‖1/2,ΓD
+ ‖f‖0,Ω) +

γ2

ca
(

1

κ2
+ C̃ r)

}
< 1. (3.15)

Then, T (cf. (3.5)) has a unique fixed point p ∈ W. Equivalently, (2.2) has a unique solution (σ,u,ρ,ϕ, p) ∈
HN(div; Ω)× L2(Ω)× L2

skew(Ω)×HN(div; Ω)×W. In addition, there exists C > 0, such that

‖σ‖div;Ω + ‖u‖0,Ω + ‖ρ‖0,Ω + ‖ϕ‖div;Ω + ‖p‖0,Ω ≤ C(‖g‖0,Ω + ‖pD‖1/2,ΓD
+ ‖uD‖1/2,ΓD

+ ‖f‖0,Ω + γ r ).
(3.16)
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Proof. Recall that (3.15) ensures the well-definedness of T. Let p̂1, p̂2, p1, p2 ∈W, such that T(p̂1) = p1 and
T(p̂2) = p2. From the definition of T (see (3.5)), and the estimates (3.14) and (3.12), we deduce

‖p1 − p2‖0,Ω = ‖T(p̂1)−T(p̂2)‖0,Ω = ‖S2(R1(p̂1), p̂1)− S2(R1(p̂2), p̂2)‖0,Ω

≤ 2κ2 C̃

min{γ̃, κ1}
(
‖g‖0,Ω + ‖pD‖1/2,ΓD

+ γ‖R1(p̂2)‖div;Ω

)
‖p̂1 − p̂2‖0,Ω +

2

min{γ̃, κ1}
γ ‖R1(p̂1)−R1(p̂2)‖div;Ω

≤ 2κ2 C̃

min{γ̃, κ1}
(
‖g‖0,Ω + ‖pD‖1/2,ΓD

)
‖p̂1 − p̂2‖0,Ω +

2κ2 C̃

min{γ̃, κ1}
γ‖R1(p̂2)‖div;Ω‖p̂1 − p̂2‖0,Ω

+
2

ca min{γ̃, κ1}
γ2 ‖p̂1 − p̂2‖0,Ω,

the above, along with the fact that R1(p̂2) satisfies (3.7) and p̂2 ∈W, implies

‖p1 − p2‖0,Ω ≤
2κ2 C̃

min{γ̃, κ1}
(
‖g‖0,Ω + ‖pD‖1/2,ΓD

)
‖p̂1 − p̂2‖0,Ω +

2

ca min{γ̃, κ1}
γ2 ‖p̂1 − p̂2‖0,Ω

+
2κ2 C̃

min{γ̃, κ1}
γ
(
C1 (‖uD‖1/2,ΓD

+ ‖f‖0,Ω) +
1

ca
γ r
)
‖p̂1 − p̂2‖0,Ω

≤ 2

min{γ̃, κ1}

{
κ2 C̃(1 + C1γ)(‖g‖0,Ω + ‖pD‖1/2,ΓD

+ ‖uD‖1/2,ΓD
+ ‖f‖0,Ω) +

γ2

ca
(1 + κ2 C̃ r)

}
‖p̂1 − p̂2‖0,Ω,

which together with (3.15) and the Banach fixed-point theorem yields that T has a unique fixed point in W.
Finally, (3.16) is derived analogously to the estimates in (3.7) and (3.9), which completes the proof.

Remark 3.2. The operator T (see (3.5)) could be also defined, for example T : W → W, with W :={
(σ̂, p̂) ∈ HN(div; Ω) × L2(Ω) : ‖σ̂‖div;Ω + ‖p̂‖0,Ω ≤ r

}
and T(σ̂, p̂) := (R1(p̂), S2(σ̂, p̂)) = (σ, p), with R1

and S2 defined as in (3.3) and (3.4), respectively.

4. Finite element discretisation. In this section, we present and analyse the Galerkin scheme for problem
(2.2). It is worth mentioning upfront that the well-posedness analysis can be straightforwardly extended from
the continuous problem to the discrete case. Therefore, we omit many of the details.

4.1. Finite element spaces and Galerkin scheme. Let us consider a regular partition Th of Ω̄ made up of
triangles K (in R2) or tetrahedra K (in R3) of diameter hK , and denote the mesh size by h := max{hK : K ∈ Th}.
Given an integer ` ≥ 0 and K ∈ Th, we first let P`(K) be the space of polynomials of degree ≤ ` defined on K,
whose vector and tensor versions are denoted P`(K) := [P`(K)]d and P`(K) = [P`(K)]d×d, respectively. Also,
we let RT`(K) := P`(K)⊕P`(K)x be the local Raviart–Thomas space of order ` defined on K, where x stands
for a generic vector in Rd, and denote by RTk(K) the tensor-valued counterpart of this space.

For each K ∈ Th we consider the bubble space of order k, defined as

Bk(K) :=

{
curlt(bKPk(K)) in R2,

∇× (bKPk(K)) in R3,

where bK is a suitably normalised cubic polynomial on K, which vanishes on the boundary of K (see [29]).

We recall the classical PEERSk elements (cf. [5]) to define the discrete subspaces for the stress tensor σ, the
displacement u, and the rotation tensor ρ

Hσh :=
{
τh ∈ HN(div; Ω) : τh|K ∈ RTk(K)⊕ [Bk(K)]d ∀K ∈ Th

}
,

Hu
h :=

{
vh ∈ L2(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th

}
, (4.1)

Hρh :=
{
ηh ∈ L2

skew(Ω) ∩ C(Ω) and ηh|K ∈ Pk+1(K) ∀K ∈ Th
}
,

and the following estimates are proven for the PEERSk elements (cf. [41, Remark 3.3])

sup
06=τh∈Hσh

b(τh, (vh,ηh))

‖τh‖div;Ω
≥ β∗(‖vh‖0,Ω + ‖ηh‖0,Ω) ∀ (vh,ηh) ∈ Hu

h ×Hρh, (4.2a)

a(τh, τh) ≥ ca‖τh‖2div;Ω ∀ τh ∈ Vh, (4.2b)

where Vh denotes the discrete kernel of b, that is

Vh :=
{
τh ∈ Hσh : b(τh, (vh,ηh)) = 0 ∀ (vh,ηh) ∈ Hu

h ×Hρh
}
. (4.3)
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Additionally, for ϕ and the pressure p, we define the FE subspaces

Hϕ
h := {ψh ∈ HN(div; Ω) : ψh|K ∈ RTk(K) ∀K ∈ Th} ,

Hp
h :=

{
qh ∈ L2(Ω) : qh|K ∈ Pk(K) ∀K ∈ Th

}
, (4.4)

and it is well known that b̃ satisfies the inf-sup condition (see, e.g., [21, Lemma 4.6])

sup
0 6=ψh∈H

ϕ
h

b̃(ψh, qh)

‖ψh‖div;Ω
≥ β̃∗‖qh‖0,Ω ∀ qh ∈ Hp

h. (4.5)

Note that it is of course possible to consider other conforming and inf-sup stable spaces such as Arnold–Falk–
Winther and Brezzi–Douglas–Marini instead of (4.1) and (4.4), respectively. The Galerkin scheme for (2.2) reads:
find (σh,uh,ρh,ϕh, ph) ∈ Hσh ×Hu

h ×Hρh ×Hϕ
h ×Hp

h, such that:

a(σh, τh) + b(τh, (uh,ρh)) + c(τh, ph) = H(τh) ∀ τh ∈ Hσh ,
b(σh, (vh,ηh)) = F (vh,ηh) ∀(vh,ηh) ∈ Hu

h ×Hρh,

ãσh,ph(ϕh,ψh) + b̃(ψh, ph) = H̃(ψh) ∀ψh ∈ Hϕ
h ,

b̃(ϕh, qh) − c̃(ph, qh) − c(σh, qh) = G(qh) ∀ qh ∈ Hp
h.

(4.6)

4.2. Analysis of the discrete problem. In this section, we analyse the Galerkin scheme (4.6). It’s worth
noting that establishing well-posedness can be readily achieved by extending the results derived for the continuous
problem to the discrete setting. Firstly, and similarly to the continuous case, we define the following set

Wh :=
{
p̂h ∈ Hp

h : ‖p̂h‖0,Ω ≤ r
}
.

Next, for a fixed p̂h in Wh, we have that the bilinear form ãσh,ph satisfies

ãσ̂h,p̂h(ψh,ψh) ≥ κ1‖ψh‖2div;Ω ∀ψh ∈ Vh, (4.7)

where Vh is the discrete kernel of b̃

Vh :=
{
ψh ∈ Hϕ

h : b̃(ψh, qh) = 0 ∀ qh ∈ Hp
h

}
. (4.8)

Additionally, we define the discrete operators Rh : Wh ⊆ Hp
h → Hσh × (Hu

h ×Hρh) and Sh : Hσh ×Wh → Hϕ
h ×Hp

h,
respectively, by

Rh(p̂h) :=
(
R1,h(p̂h), (R2,h(p̂h), R3,h(p̂h))

)
= (σh, (uh,ρh)) ∀ p̂h ∈Wh,

where (σh, (uh,ρh)) ∈ Hσh × (Hu
h ×Hρh) is the unique solution of

a(σh, τh) + b(τh, (uh,ρh)) = H(τh)− c(τh, p̂h) ∀ τh ∈ Hσh ,
b(σh, (vh,ηh)) = F (vh,ηh) ∀ (vh,ηh) ∈ Hu

h ×Hρh,
(4.9)

and
Sh(σ̂h, p̂h) :=

(
S1,h(σ̂h, p̂h), S2,h(σ̂h, p̂h)

)
= (ϕh, ph) ∀ (σ̂h, p̂h) ∈ Hσh ×Wh,

where (ϕh, ph) is the unique tuple in Hϕ
h ××Hp

h such that

ãσ̂h,p̂h(ϕh,ψh) + b̃(ψh, ph) = H̃(ψh) ∀ψh ∈ Hϕ
h ,

b̃(ϕh, qh) − c̃(ph, qh) = G(qh) + c(σ̂h, qh) ∀ qh ∈ Hp
h.

Employing properties (4.2a), (4.2b), (4.5), (4.7) and (2.9) and proceeding exactly as for the continuous case
(Lemmas 3.1 and 3.2), it can be easily deduced that both operators are well-defined. Then, analogously to the
continuous case, we define the following fixed-point operator

Th : Wh ⊆ Hp
h → Hp

h, p̂h 7→ Th(p̂h) := S2,h(R1,h(p̂h), p̂h), (4.10)

which is clearly well-defined (since Rh and Sh are). Further, it can be easily deduced that Th(Wh) ⊆Wh if

C̃∗
(
1 + γ C∗1

)(
‖g‖0,Ω + ‖pD‖1/2,ΓD

+ ‖uD‖1/2,ΓD
+ ‖f‖0,Ω

)
+
C̃∗

ca
γ2r ≤ r, (4.11)

where C̃∗ and C∗1 (depending on ca, µ, κ1, κ2, Cã, β∗, β̃∗) are the discrete versions of the constants C̃ and C1

(cf. (3.7) and (3.9)). Finally, it is clear that (σh,uh,ρh,ϕh, ph) is a solution to (4.6) if and only if ph satisfies

Th(ph) = ph. (4.12)

The main outcome of this section is presented in the following theorem, establishing the existence and uniqueness
of a solution to the fixed-point problem (4.12), equivalently proving the well-posedness of problem (4.6).
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Theorem 4.1. Given r > 0, assume that the data and γ satisfy

2 max{1, κ2}
min{γ̃, κ1 , r}

{
C̃∗(1 + C∗1γ)(‖g‖0,Ω + ‖pD‖1/2,ΓD

+ ‖uD‖1/2,ΓD
+ ‖f‖0,Ω) +

γ2

ca

(
1

κ2
+ C̃∗ r

)}
< 1. (4.13)

Then, Th (cf. (4.10)) has a unique fixed point ph ∈ Wh. Equivalently, problem (4.6) has a unique solution
(σh,uh,ρh,ϕh, ph) ∈ Hσh ×Hu

h ×Hρh ×Hϕ
h ×Wh.In addition, there exists C∗ > 0, such that

‖σh‖div;Ω+‖uh‖0,Ω+‖ρh‖0,Ω+‖ϕh‖div;Ω+‖ph‖0,Ω ≤ C∗(‖g‖0,Ω+‖pD‖1/2,ΓD
+‖uD‖1/2,ΓD

+‖f‖0,Ω+γ r ). (4.14)

Proof. First, we observe that, similar to the continuous case (as seen in the proof of Theorem 3.6), assumption
(4.13) ensures the well-definedness of Th and that Th(Wh) ⊆ Wh. Now, by adapting the arguments used in
Section 3.3 (cf. Lemmas 3.4 and 3.5), one can derive the following estimates

‖R1,h(p̂1)−R1,h(p̂2)‖div;Ω ≤
1

ca
γ ‖p̂1 − p̂2‖0,Ω,

‖S2,h(σ̂1, p̂1)− S2,h(σ̂2, p̂2)‖0,Ω ≤
2κ2 C̃

∗

min{γ̃, κ1}
(
‖g‖0,Ω + ‖pD‖1/2,ΓD

+ γ‖σ̂2‖div;Ω

)
‖p̂1 − p̂2‖0,Ω

+
2

min{γ̃, κ1}
γ ‖σ̂1 − σ̂2‖div;Ω,

for all p̂1, p̂2 ∈Wh and σ̂1, σ̂2 ∈ Hσh , which together with the definition of Th (see (4.10)), yield

‖Th(p̂1)−Th(p̂2)‖0,Ω ≤
2

min{γ̃, κ1}

{
κ2 C̃

∗(1 + C∗1γ)(‖g‖0,Ω + ‖pD‖1/2,ΓD
+ ‖uD‖1/2,ΓD

+ ‖f‖0,Ω)

+
γ2

ca
(1 + κ2 C̃

∗ r)

}
‖p̂1 − p̂2‖0,Ω,

for all p̂1, p̂2 ∈Wh. In this way, using estimate (4.13) we obtain that Th is a contraction mapping on Wh, thus
problem (4.12), or equivalently (4.6) is well-posed. Finally, analogously to the proof of Theorem 3.6 (see also
Lemmas 3.4 and 3.5) we can obtain (4.14), which concludes the proof.

5. A priori error estimates. In this section, we aim to provide the convergence of the Galerkin scheme
(4.6) and derive the corresponding rate of convergence. From now on we assume that the hypotheses of Theo-
rem 3.6 and Theorem 4.1 hold.

5.1. Preliminaries. Let the tuples (σ,u,ρ,ϕ, p) ∈ HN(div; Ω)× L2(Ω)× L2
skew(Ω)×HN(div; Ω)× L2(Ω)

and (σh,uh,ρh,ϕh, ph) ∈ Hσh ×Hu
h ×Hρh ×Hϕ

h ×Hp
h be the unique solutions of (3.3) and (4.9), respectively.

Let us write eσ = σ − σh, eu = u− uh, eρ = ρ− ρh, eϕ = ϕ− ϕh and ep = p− ph. As usual, for a given

(τ̂h, (v̂h, η̂h)) ∈ Hσh × (Hu
h ×Hρh) and (ψ̂h, q̂h) ∈ Hϕ

h ×Hp
h, we shall then decompose these errors into

eσ = ξσ + χσ, eu = ξu + χu, eρ = ξρ + χρ, eϕ = ξϕ + χϕ, ep = ξp + χp, (5.1)

with ξσ := σ − τ̂h, χσ := τ̂h − σh, ξu := u− v̂h, χu := v̂h − uh, ξρ := ρ− η̂h, χρ := η̂h − ρh, ξϕ := ϕ− ψ̂h,

χϕ := ψ̂h −ϕh, ξp := p− q̂h, and χp := q̂h − ph.

Considering the first two equations of problems (2.2) and (4.6), the following identities hold

a(σ, τ ) + b(τ , (u,ρ)) = H(τ )− c(τ , p) ∀ τ ∈ HN(div; Ω),

b(σ, (v,η)) = F (v,η) ∀v ∈ L2(Ω), ∀η ∈ L2
skew(Ω),

and
a(σh, τh) + b(τh, (uh,ρh)) = H(τh)− c(τh, ph) ∀ τh ∈ Hσh ,

b(σh, (vh,ηh)) = F (vh,ηh) ∀(vh,ηh) ∈ Hu
h ×Hρh.

From these relations we can obtain that for all (τh, (vh,ρh)) ∈ Hσh × (Hu
h ×Hρh), there holds

a(eσ, τh) + b(τh, (eu, eρ)) = −c(τh, ep),
b(eσ, (vh,ηh)) = 0

which together with the definition of the errors in (5.1), implies that

a(χσ, τh) + b(τh, (χu,χρ)) + b(χσ, (vh,ηh))
= −a(ξσ, τh)− b(τh, (ξu, ξρ))− b(ξσ, (vh,ηh))− c(τh,χp)− c(τh, ξp)

(5.2)
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for all (τh, (vh,ρh)) ∈ Hσh × (Hu
h ×Hρh).

Next, considering the last two equations of both problems (2.2) and (4.6), we obtain

ãσ,p(ϕ,ψ) + b̃(ψ, p) = H̃(ψ) ∀ψ ∈ HN(div; Ω),

b̃(ϕ, q) − c̃(p, q) = G(q) + c(σ, q) ∀ q ∈ L2(Ω).

and
ãσh,ph(ϕh,ψh) + b̃(ψh, ph) = H̃(ψh) ∀ψh ∈ Hϕ

h ,

b̃(ϕh, qh) − c̃(ph, qh) = G(qh) + c(σh, qh) ∀ qh ∈ Hp
h.

Then, using arguments similar to those in Lemma 3.5, by adding ±ãσh,ph(ϕ,ψh), we have

ãσh,ph(eϕh
,ψh) + b̃(ψh, eph) + b̃(eϕh

, qh)− c̃(eph , qh) = −
∫

Ω

(
κ(σ, p)−1 − κ(σh, ph)−1

)
ϕ ·ψh + c(eσ, qh),

which together with (5.1), implies that

ãσh,ph(χϕ,ψh) + b̃(ψh, χph) + b̃(χϕ, qh)− c̃(χp, qh) + ãσh,ph(ξϕ,ψh)

= −b̃(ψh, ξp)− b̃(ξϕ, qh) + c̃(ξp, qh)−
∫

Ω

(
κ(σ, p)−1 − κ(σh, ph)−1

)
ϕ ·ψh + c(eσ, qh).

(5.3)

5.2. Derivation of Céa estimates.

Lemma 5.1. There exist C∗3 , C
∗
4 > 0, independent of h, such that

‖χσ‖div;Ω + ‖χu‖0,Ω + ‖χρ‖0,Ω ≤ C∗3 (‖ξσ‖div;Ω + ‖ξu‖0,Ω + ‖ξρ‖0,Ω + ‖ξp‖0,Ω) + C∗4γ‖χp‖0,Ω. (5.4)

Proof. From the properties of a and b (refer to (4.2b) and (4.2a)), and [29, Proposition 2.36], we derive the
following discrete global inf-sup condition

‖χσ‖div;Ω+‖χu‖0,Ω+‖χρ‖0,Ω ≤ (C∗1 +C∗2 ) sup
0 6=(τh,vh,ψh)∈Hσh×H

u
h×H

ρ
h

a(χσ, τh) + b(τh, (χu,χρ)) + b(χσ, (vh,ηh))

‖τh‖div;Ω + ‖vh‖0,Ω + ‖ηh‖0,Ω
,

with C∗1 , C
∗
2 > 0 independent of h, are the discrete version of the constants C1, C2 defined in (3.8). Then,

combining the last inequality with (5.2), and the continuity properties of a and b (see (2.4a)), we obtain

‖χσ‖div;Ω + ‖χu‖0,Ω + ‖χρ‖0,Ω
≤ (C∗1 + C∗2 )(

1

µ
‖ξσ‖div;Ω + ‖ξu‖0,Ω + ‖ξρ‖0,Ω + ‖ξσ‖div;Ω + γ‖χp‖0,Ω + γ‖ξp‖0,Ω),

which implies (5.4) with C∗3 := (C∗1 + C∗2 )( 1
µ + 1 + γ) and C∗4 := C∗1 + C∗2 , and concludes the proof.

Lemma 5.2. There exist C̃∗5 , C̃
∗
6 > 0, independent of h, such that

‖χϕ‖div;Ω + ‖χp‖0,Ω ≤ C̃∗5 (‖ξϕ‖div;Ω + ‖ξp‖0,Ω + ‖ξσ‖div;Ω)

+C̃∗6
(
(‖g‖0,Ω + ‖pD‖1/2,ΓD

+ ‖uD‖1/2,ΓD
+ ‖f‖0,Ω + γ r )‖χp‖0,Ω + γ‖χσ‖div;Ω

)
.

(5.5)

Proof. Similarly to Lemma 5.1, using the properties of ã, b̃ and c̃ (refer to (4.7), (4.5) and (2.9)), and [26,
Th. 3.4], we derive the following discrete global inf-sup condition

‖χϕ‖div;Ω + ‖χp‖0,Ω ≤ 2C̃∗ sup
06=(ψh,qh)∈Hϕh×Hp

h

ãσh,ph(χϕ,ψh) + b(ψh, χp) + b(χϕ, qh)− c̃(χp, qh)

‖ψh‖div;Ω + ‖qh‖0,Ω
,

with C̃∗ defined as in (4.11). Then, using the equation (5.3), the bound properties of ã, b̃ and c̃ (see (3.2a) and
(2.4c)), and the second assumption for κ (cf. (2.3)), we obtain

‖χϕ‖div;Ω + ‖χp‖0,Ω
≤ 2C̃∗(Cã‖ξϕ‖div;Ω + ‖ξp‖0,Ω + ‖ξϕ‖div;Ω + γ̃‖ξp‖0,Ω + ‖κ(σ, p)−1 − κ(σh, ph)−1‖L∞(Ω)‖ϕ‖div;Ω + γ‖eσ‖div;Ω)

≤ 2C̃∗(Cã‖ξϕ‖div;Ω + ‖ξp‖0,Ω + ‖ξϕ‖div;Ω + γ̃‖ξp‖0,Ω + κ2‖ep‖0,Ω‖ϕ‖div;Ω + γ‖eσ‖div;Ω),

hence, using the fact that ϕ satisfies (3.16) and the error decomposition (5.1), we have

‖χϕ‖div;Ω + ‖χp‖0,Ω ≤ 2C̃∗(Cã‖ξϕ‖div;Ω + ‖ξp‖0,Ω + ‖ξϕ‖div;Ω + γ̃‖ξp‖0,Ω + κ2‖ξp‖0,Ω‖ϕ‖div;Ω + γ‖ξσ‖div;Ω)
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+ 2C̃∗(κ2‖χp‖0,Ω‖ϕ‖div;Ω + γ‖χσ‖div;Ω)

≤ C̃∗5 (‖ξϕ‖div;Ω + ‖ξp‖0,Ω + ‖ξσ‖div;Ω)

+ 2C̃∗
(
κ2C(‖g‖0,Ω + ‖pD‖1/2,ΓD

+ ‖uD‖1/2,ΓD
+ ‖f‖0,Ω + γ r )‖χp‖0,Ω + γ‖χσ‖div;Ω

)
,

the last equation implies (5.5), with C̃∗5 := 2C̃∗
(
Cã+1+ γ̃+γ+κ2C(‖g‖0,Ω +‖pD‖1/2,ΓD

+‖uD‖1/2,ΓD
+‖f‖0,Ω +

γ r )
)

and C̃∗6 := 2C̃∗(κ2C + 1), and concludes the proof.

Theorem 5.3. Assume that

(C∗4 + C̃∗6 + C̃∗6r)γ + C̃∗6 (‖g‖0,Ω + ‖pD‖1/2,ΓD
+ ‖uD‖1/2,ΓD

+ ‖f‖0,Ω) ≤ 1

2
, (5.6)

with C∗4 and C̃∗6 being the constants in Lemmas 5.1 and 5.2. Furthermore, assume that the hypotheses of Theo-
rem 3.6 and Theorem 4.1 hold. Let (σ,u,ρ,ϕ, p) ∈ HN(div; Ω) × L2(Ω) × L2

skew(Ω) ×HN(div; Ω) × L2(Ω) and
(σh,uh,ρh,ϕh, ph) ∈ Hσh ×Hu

h ×Hρh ×Hϕ
h ×Hp

h be the unique solutions of (2.2) and (4.6), respectively. Then,
there exists CCéa > 0, independent of h, such that

‖eσ‖div;Ω + ‖eu‖0,Ω + ‖eρ‖0,Ω + ‖eϕ‖div;Ω + ‖ep‖0,Ω
≤ CCéa dist

(
(σ,u,ρ,ϕ, p), Hσh ×Hu

h ×Hρh ×Hϕ
h ×Hp

h

)
.

(5.7)

Proof. Combining (5.4) and (5.5), and using the assumption (5.6), we deduce

‖χσ‖div;Ω + ‖χu‖0,Ω + ‖χρ‖0,Ω + ‖χϕ‖div;Ω + ‖χp‖0,Ω ≤ C∗3 (‖ξσ‖div;Ω + ‖ξu‖0,Ω + ‖ξρ‖0,Ω + ‖ξp‖0,Ω)

+C̃∗5 (‖ξϕ‖div;Ω + ‖ξp‖0,Ω + ‖ξσ‖div;Ω) +
1

2
‖χp‖0,Ω +

1

2
‖χσ‖div;Ω.

And from the latter inequality we obtain

‖χσ‖div;Ω + ‖χu‖0,Ω + ‖χρ‖0,Ω + ‖χϕ‖div;Ω + ‖χp‖0,Ω
≤ 2(C∗3 + C̃∗5 )(‖ξσ‖div;Ω + ‖ξu‖0,Ω + ‖ξρ‖0,Ω + ‖ξϕ‖div;Ω + ‖ξp‖0,Ω).

(5.8)

In this way, from (5.1), (5.8) and the triangle inequality we obtain

‖eσ‖div;Ω + ‖eu‖0,Ω + ‖eρ‖0,Ω + ‖eϕ‖div;Ω + ‖ep‖0,Ω ≤ ‖χσ‖div;Ω + ‖ξσ‖div;Ω + ‖χu‖0,Ω + ‖ξu‖0,Ω
+‖χρ‖0,Ω + ‖ξρ‖0,Ω + ‖χϕ‖div;Ω + ‖ξϕ‖div;Ω + ‖χp‖0,Ω + ‖ξp‖0,Ω
≤ (2C∗3 + 2C̃∗5 + 1)(‖ξσ‖div;Ω + ‖ξu‖0,Ω + ‖ξρ‖0,Ω + ‖ξϕ‖div;Ω + ‖ξp‖0,Ω),

which combined with the fact that (τ̂h, (v̂h, η̂h)) ∈ Hσh × (Hu
h ×Hρh) and (ψ̂h, q̂h) ∈ Hϕ

h ×Hp
h are arbitrary (see

(5.1)), concludes the proof.

5.3. Rates of convergence. In order to establish the rate of convergence of the Galerkin scheme (4.6), we
first recall the following approximation properties associated with the FE spaces specified in Section 4.1.

For each 0 < m ≤ k + 1 and for each τ ∈ Hm(Ω) ∩ HN(div; Ω) with div τ ∈ Hm(Ω), v ∈ Hm(Ω),
η ∈ Hm(Ω) ∩ L2

skew(Ω), ψ ∈ Hm(Ω) ∩HN(div; Ω) with div v ∈ Hm(Ω), and q ∈ Hm(Ω), there holds

dist
(
τ ,Hσh

)
:= inf

τh∈Hσh
‖τ − τh‖div;Ω . hm

{
‖τ‖m,Ω + ‖div τ‖m,Ω

}
, (5.9a)

dist
(
v,Hu

h

)
:= inf

vh∈Huh
‖v − vh‖0,Ω . hm ‖v‖m,Ω, (5.9b)

dist
(
η,Hρh

)
:= inf

ηh∈H
ρ
h

‖η − ηh‖0,Ω . hm ‖η‖m,Ω, (5.9c)

dist
(
ψ,Hϕ

h

)
:= inf

ψh∈H
ϕ
h

‖ψ −ψh‖div;Ω . hm
{
‖ψ‖m,Ω + ‖ div ψ‖m,Ω

}
, (5.9d)

dist
(
q,Hp

h

)
:= inf

qh∈Hp
h

‖q − qh‖0,Ω . hm ‖q‖m,Ω. (5.9e)

For (5.9a), (5.9b) and (5.9c) we refer to [33, Th. 2.4], whereas (5.9d) and (5.9e) are provided in [30, Th. 3.6] and
[29, Proposition 1.134], respectively. With these steps we are now in position to state the rates of convergence
associated with the Galerkin scheme (4.6).

Theorem 5.4. Assume that the hypotheses of Theorem 5.3 hold and let (σ,u,ρ,ϕ, p) ∈ HN(div; Ω)×L2(Ω)×
L2

skew(Ω)×HN(div; Ω)×L2(Ω) and (σh,uh,ρh,ϕh, ph) ∈ Hσh ×Hu
h ×Hρh×Hϕ

h ×Hp
h be the unique solutions of the

continuous and discrete problems (2.2) and (4.6), respectively. Assume further that σ ∈ Hm(Ω), divσ ∈ Hm(Ω),
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u ∈ Hm(Ω), ρ ∈ Hm(Ω), ϕ ∈ Hm(Ω), div ϕ ∈ Hm(Ω) and p ∈ Hm(Ω), for 1 ≤ m ≤ k + 1. Then there exists
Crate > 0, independent of h, such that

‖eσ‖div;Ω + ‖eu‖0,Ω + ‖eρ‖0,Ω + ‖eϕ‖div;Ω + ‖ep‖0,Ω

≤ Crate h
m
{
‖σ‖m,Ω + ‖divσ‖m,Ω + ‖u‖m,Ω + ‖ρ‖m,Ω + ‖ϕ‖m,Ω + ‖div ϕ‖m,Ω + ‖p‖m,Ω

}
.

Proof. The result follows from Céa estimate (5.7) and the approximation properties (5.9).

Remark 5.1. Similarly to [38], the analysis developed in Sections 2-5 can be adapted to a formulation without
the variable ρ (ρh in the discrete problem), imposing symmetry of σ by taking σ ∈ Hsym(div; Ω) :=

{
τ ∈

L2
sym(Ω) : div τ ∈ L2(Ω)

}
and L2

sym(Ω) := {τ ∈ L2(Ω) : τ = τ t}, utilizing results from [38, Section 2.2] ([38,
Section 4.1] for the discrete problem), and adapting the strategy used in, e.g., [38, Sections 3 and 4].

6. A posteriori error estimates. In this section we derive residual-based a posteriori error estimates and
demonstrate the reliability and efficiency of the proposed estimators. Mainly due to notational convenience,
we confine our analysis to the two-dimensional case. The extension to three-dimensional case should be quite
straightforward (see, e.g., [22]). Similarly to [17, Section 4], we introduce additional notation. Let Eh be the set
of edges of Th, whose corresponding diameters are denoted hE , and define

Eh(Ω) :=
{
E ∈ Eh : E ⊆ Ω

}
, Eh(ΓD) :=

{
E ∈ Eh : E ⊆ ΓD

}
, and Eh(ΓN) :=

{
E ∈ Eh : E ⊆ ΓN

}
.

On each E ∈ Eh, we also define the unit normal vector nE := (n1, n2)t and the tangential vector sE := (−n2, n1)t.
However, when no confusion arises, we will simply write n and s instead of nE and sE , respectively. Also, by d

ds
we denote the tangential derivative. The usual jump operator [[·]] across internal edges are defined for piecewise
continuous matrix, vector, or scalar-valued functions. For sufficiently smooth scalar ψ, vector v := (v1, v2)t, and
tensor fields τ := (τij)1≤i,j≤2, we let

curl (ψ) :=
( ∂ψ
∂x2

, − ∂ψ

∂x1

)t
, rot (v) :=

∂v2

∂x1
− ∂v1

∂x2
, curl (v) =

(
curl (v1)t

curl (v2)t

)
and curl (τ ) =

(
rot (τ 1)
rot (τ 2)

)
.

In addition, we denote by Πh the Raviart–Thomas interpolator and by Ih the Clément operator (see, e.g., [3,
Section 3] for their properties). In what follows, we denote by Πh the tensor version of Πh, which is defined
row-wise by Πh and by Ih the corresponding vector version of Ih which is defined componentwise by Ih.

In what follows, we will assume that the hypotheses of Theorems 3.6 and 4.1 are satisfied. Let σh, uh, ρh,
ϕh, ph denote the FE solutions of (4.6). We define the residual-based and fully computable local contributions
to the error estimator Ξ2

K , defined as the sum of Ξ2
s,K and Ξ2

f,K , where Ξs,K and Ξf,K pertain to the solid (mixed
elasticity) and fluid (mixed Darcy) components, respectively:

Ξ2
s,K := ‖f + divσh‖20,K + ‖σh − σt

h‖20,K + h2
K‖C−1σh +

α

dλ+ 2µ
phI−∇uh + ρh‖20,K

+ h2
K‖curl(C−1σh +

α

dλ+ 2µ
phI + ρh)‖20,K +

∑
E∈∂K∩Eh(Ω)

hE‖[[(C−1σh +
α

dλ+ 2µ
phI + ρh)s]]‖20,E

+
∑

E∈∂K∩Eh(ΓD)

hE‖(C−1σh +
α

dλ+ 2µ
phI + ρh)s− duD

ds
‖20,E +

∑
E∈∂K∩Eh(ΓD)

hE‖uD − uh‖20,E , (6.1a)

Ξ2
f,K := ‖ − g + c0ph +

α

dλ+ 2µ
trσh +

dα2

dλ+ 2µ
ph − divϕh‖20,K + h2

K‖κ(σh, ph)−1ϕh −∇ph‖20,K

+ h2
K‖rot (κ(σh, ph)−1ϕh)‖20,K +

∑
E∈∂K∩Eh(Ω)

hE‖[[(κ(σh, ph)−1ϕh) · s]]‖20,E

+
∑

E∈∂K∩Eh(ΓD)

hE‖κ(σh, ph)−1ϕh · s−
dpD

ds
‖20,E +

∑
E∈∂K∩Eh(ΓD)

hE‖pD − ph‖20,E . (6.1b)

Then, we define the global estimator

Ξ2 :=
∑
K∈Th

Ξ2
s,K + Ξ2

f,K . (6.2)

6.1. Reliability of the a posteriori error estimator. First we prove preliminary results that will be
key in showing the reliability of the global estimator.

Lemma 6.1. There exists C1 > 0, such that

‖σ − σh‖div;Ω + ‖u− uh‖0,Ω + ‖ρ− ρh‖0,Ω ≤ C1

(
‖R1‖+ ‖f + div(σh)‖0,Ω + ‖σh − σth‖0,Ω

)
,
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where
R1(τ ) := a(σ − σh, τ ) + b(τ , (u− uh,ρ− ρh)), (6.3)

with R1(τh) = −c(τh, p− ph) for all τh ∈ Hσh , and ||R1|| = sup
0 6=τ∈HN(div;Ω)

R1(τ )

‖τ‖div;Ω
.

Proof. Using the properties of bilinear forms a and b, as outlined in equations (2.7) and (2.8a), along with
the insight from [29, Proposition 2.36], there exists C1 > 0 depending on µ, ca, β such that

‖eσ‖div;Ω + ‖eu‖0,Ω + ‖eρ‖0,Ω ≤ C1 sup
0 6=(τ ,v,η)

∈HN(div;Ω)×L2(Ω)×L2
skew(Ω)

a(eσ, τ ) + b(τ , (eu, eρ)) + b(eσ, (v,η))

‖τ‖div;Ω + ‖v‖0,Ω + ‖η‖0,Ω

≤ C1

(
sup

0 6=τ∈HN(div;Ω)

R1(τ )

‖τ‖div;Ω
+ sup

0 6=(v,η)∈L2(Ω)×L2
skew(Ω)

b(eσ, (v,η))

‖v‖0,Ω + ‖η‖0,Ω

)
.

Then, recalling the definitions of the bilinear form b (cf. (2.1)), using the equation (2.2b), along with the fact
that

∫
Ω
σh : η = 1

2

∫
Ω

(σh − σt
h) : η for η ∈ L2

skew(Ω), the following estimate holds

|b(eσ, (v,η))| ≤ (||f + divσh||0,Ω + ||σh − σt
h||0,Ω)(‖v‖0,Ω + ‖η‖0,Ω),

and this gives the asserted inequality.

Lemma 6.2. There exists C2 > 0 such that

‖ϕ−ϕh‖div;Ω +‖p−ph‖0,Ω ≤ C2

(
‖R2‖+‖g−c0ph−

α

dλ+ 2µ
trσh−

dα2

dλ+ 2µ
ph+divϕh‖0,Ω +γ‖σ−σh‖div;Ω

)
,

where
R2(ψ) := ãσ,p(ϕ−ϕh,ψ) + b̃(ψ, p− ph), (6.4)

satisfies R2(ψh) = 0 for all ψh ∈ Hϕ
h , and ||R2|| = sup

0 6=ψ∈HN(div;Ω)

R2(ψ)

‖ψ‖div;Ω
.

Proof. Similarly to Lemma 5.1, using the properties of bilinear forms ãσ,p and b̃ (as outlined in equations
(3.2b), (2.8b) and (2.9)), along with the insight from [26, Th. 3.4], we establish that there exists C2 > 0 depending

on κ1, κ2, Cã, γ, γ̃, β̃ such that

‖eϕ‖div;Ω + ‖ep‖0,Ω ≤ C2 sup
06=(ψ,q)∈HN(div;Ω)×L2(Ω)

ãσ,p(eϕ,ψ) + b̃(ψ, ep) + b̃(eϕ, q)− c̃(ep, q)
‖ψ‖div;Ω + ‖q‖0,Ω

≤ C2

(
sup

0 6=ψ∈HN(div;Ω)

R2(ψ)

‖ψ‖div;Ω
+ sup

06=q∈L2(Ω)

b̃(eϕ, q)− c̃(ep, q)
‖q‖0,Ω

)
.

Hence, recalling the definitions of b̃, c̃, adding ± c (σh, p), and using (2.2d), we arrive at

|̃b(eϕ, q)− c̃(ep, q)| ≤ ‖g − c0ph −
α

dλ+ 2µ
trσh −

dα2

dλ+ 2µ
ph + divϕh‖0,Ω‖q‖0,Ω + γ‖σ − σh‖div;Ω‖q‖0,Ω,

and therefore, we obtain the desired result.

Throughout the rest of this section, we provide suitable upper bounds for R1 and R2. We begin by estab-
lishing the corresponding estimates for R1, which are based on a suitable Helmholtz decomposition of the space
HN(div; Ω) (see [3, Lemma 3.9] for details), along with the following two technical results.

Lemma 6.3. There exists a positive constant C3, independent of h, such that for each ξ ∈ H1(Ω) there holds

|R1(ξ −Πh(ξ))| ≤ C3 γ‖p− ph‖0,Ω‖ξ‖1,Ω

+C3

( ∑
K∈Th

h2
K ||C−1σh +

α

dλ+ 2µ
phI−∇uh + ρh||20,K +

∑
E∈Eh(ΓD)

hE ||uD − uh||20,E
)1/2

‖ξ‖1,Ω.

Proof. From the definition of R1 (cf. (6.3)), adding ± c (ξ −Πh(ξ), ph), and using equation (2.2a), we have

R1(ξ −Πh(ξ)) = H(ξ −Πh(ξ))− c(ξ −Πh(ξ), p)− a(σh, ξ −Πh(ξ))− b(ξ −Πh(ξ), (uh,ρh))

= 〈(ξ −Πh(ξ))n,uD〉ΓD −
α

dλ+ 2µ

∫
Ω

(p− ph) tr(ξ −Πh(ξ))− α

dλ+ 2µ

∫
Ω

ph tr(ξ −Πh(ξ))

−
∫

Ω

C−1σh : (ξ −Πh(ξ))−
∫

Ω

ρh : (ξ −Πh(ξ))−
∫

Ω

uh · div(ξ −Πh(ξ)),
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then, applying a local integration by parts to the last term above, using the identity
∫
E

Πh(τ )n · ξ =
∫
E
τn · ξ,

for all ξ ∈ Pk(E), for all edge E of Th, the fact that uD ∈ L2(ΓD), and the Cauchy-Schwarz inequality, we obtain

R1(ξ −Πh(ξ)) =
∑
K∈Th

∫
K

(−C−1σh −
α

dλ+ 2µ
phI + ∇uh − ρh) : (ξ −Πh(ξ))

+
∑

E∈Eh(ΓD)

〈(ξ −Πh(ξ))n,uD − uh〉E −
α

dλ+ 2µ

∫
Ω

(p− ph) tr(ξ −Πh(ξ))

≤
∑
K∈Th

‖C−1σh +
α

dλ+ 2µ
phI−∇uh + ρh‖0,K‖ξ −Πh(ξ)‖0,K

+
∑

E∈Eh(ΓD)

‖uD − uh‖0,E‖ξ −Πh(ξ)‖0,E + γ‖p− ph‖0,Ω‖ξ −Πh(ξ)‖0,Ω,

with γ defined as in (2.5). Therefore, using the approximations properties of Πh (see, e.g., [3, Section 3]) and
the Cauchy–Schwarz inequality, we obtain the desired result.

Lemma 6.4. Let χ ∈ H1
ΓN

(Ω) := {w ∈ H1(Ω) : w = 0 on ΓN} and assume that uD ∈ H1(ΓD). Then, there
exists C4 > 0, independent of h, such that

|R1(curl (χ− Ihχ))| ≤ C4γ‖p− ph||0,Ω‖χ‖1,Ω

+C4

( ∑
K∈Th

h2
K ||curl(C−1σh +

α

dλ+ 2µ
phI + ρh)||20,K +

∑
E∈Eh(Ω)

hE ||[[(C−1σh +
α

dλ+ 2µ
phI + ρh)s]]||20,E

+
∑

E∈Eh(ΓD)

hE ||(C−1σh +
α

dλ+ 2µ
phI + ρh)s− duD

ds
||20,E

)1/2

‖χ‖1,Ω.

Proof. Similarly to Lemma 6.3, adding ± c (curl (χ− Ihχ), ph), we have

R1(curl (χ− Ihχ))
= H(curl (χ− Ihχ))− c(curl (χ− Ihχ), p)− a(σh, curl (χ− Ihχ))− b(curl (χ− Ihχ), (uh,ρh))

= 〈(curl (χ− Ihχ))n,uD〉ΓD −
α

dλ+ 2µ

∫
Ω

(p− ph) tr(curl (χ− Ihχ))

−
∫

Ω

C−1σh : curl (χ− Ihχ)−
∫

Ω

ρh : curl (χ− Ihχ)− α

dλ+ 2µ

∫
Ω

ph tr(curl (χ− Ihχ)).

(6.5)

Then, applying a local integration by parts, using that uD ∈ H1(ΓD), the identity 〈curl (χ − Ihχ)n,uD〉ΓD
=

−〈χ− Ihχ,
duD

ds 〉ΓD
, and the Cauchy–Schwarz inequality, we obtain

R1(curl (χ− Ihχ)) = −
∑
K∈Th

∫
K

curl (C−1σh +
α

dλ+ 2µ
phI + ρh) : (χ− Ihχ)

+
∑

E∈Eh(Ω)

∫
E

[[(C−1σh +
α

dλ+ 2µ
phI + ρh)s]] · (χ− Ihχ)− α

dλ+ 2µ

∫
Ω

(p− ph) tr(curl (χ− Ihχ))

+
∑

E∈Eh(ΓD)

∫
E

(C−1σh +
α

dλ+ 2µ
phI + ρh −∇uD)s · (χ− Ihχ)

≤
∑
K∈Th

‖curl (C−1σh +
α

dλ+ 2µ
phI + ρh)‖0,K‖χ− Ihχ‖0,K

+
∑

E∈Eh(Ω)

‖[[(C−1σh +
α

dλ+ 2µ
phI + ρh)s]]‖0,E‖χ− Ihχ‖0,E + γ‖p− ph‖0,Ω ‖curl (χ− Ihχ)‖0,Ω

+
∑

E∈Eh(ΓD)

‖(C−1σh +
α

dλ+ 2µ
phI + ρh)s− duD

ds
‖0,E‖χ− Ihχ‖0,E .

(6.6)

As in the previous result, the approximation properties of the Clément interpolation (see, e.g., [3, Section 3]) in
conjunction with the Cauchy–Schwarz inequality, produces the desired result.

The following lemma establishes the desired estimate for R1.

Lemma 6.5. Assume that there exists a convex domain B such that Ω ⊆ B and ΓN ⊆ ∂B, and that uD ∈
H1(ΓD). Then, there exists a constant C5 > 0, independent of h, such that

‖σ − σh‖div;Ω + ‖u− uh‖0,Ω + ‖ρ− ρh‖0,Ω ≤ C5

{ ∑
T∈Th

Ξ2
s,K

}1/2

+ C5γ‖p− ph‖0,Ω.
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Proof. Let τ ∈ HN(div; Ω). From [3, Lemma 3.9], there exist ξ ∈ H1(Ω) and χ ∈ H1
ΓN

(Ω), such that

τ = ξ + curlχ and ‖ξ‖1,Ω + ‖χ‖1,Ω ≤ CHelm‖τ‖div;Ω, (6.7)

Using that R1(τh) = c(τh, ph − p) for all τh ∈ Hσh , we have

R1(τ ) = R1(τ − τh) + c(τh, p− ph) ∀ τh ∈ Hσh .

In particular, this holds for τh defined as τh = Πhξ + curl (Ihχ), whence

R1(τ ) = R1(ξ −Πhξ) +R1(curl (χ− Ihχ)) + c(τh, p− ph).

Hence, the proof follows from Lemmas 6.1, 6.3 and 6.4, and estimate (6.7).

The following lemma establishes the estimate for R2.

Lemma 6.6. Assume that there exists a convex domain B such that Ω ⊆ B and ΓN ⊆ ∂B, and that pD ∈
H1(ΓD). Then, there exists a constant C8 > 0, independent of h, such that

‖ϕ−ϕh‖div;Ω + ‖p− ph‖0,Ω ≤ C8

{ ∑
T∈Th

Ξ2
f,K

}1/2

+ C8

(
‖ϕh‖0,Ω‖p− ph‖0,Ω + γ‖σ − σh‖0,Ω

)
.

Proof. It follows the steps of Lemma 6.5. From [25, Lemma 4.4], we have that for all ψ ∈ HN(div; Ω)

there exist z ∈ H1(Ω) and φ ∈ H1
ΓN

(Ω), such that ψ = z + curlφ and ‖z‖1,Ω + ‖φ‖1,Ω ≤ C̃Helm‖ψ‖div;Ω. Thus,
proceeding similarly to Lemmas 6.3 and 6.4, applying local integration by parts and the approximation properties
of Πh and Ih along with the Cauchy–Schwarz inequality, we can obtain the following estimates

|R2(z −Πh(z))| ≤ C6 ‖ϕh‖0,Ω‖p− ph‖0,Ω‖z‖1,Ω

+C6

( ∑
K∈Th

h2
K‖κ(σh, ph)−1ϕh −∇ph‖20,K +

∑
E∈Eh(ΓD)

hE‖pD − ph‖20,E
)1/2

‖z‖1,Ω,

|R2(curl (φ− Ihφ))| ≤ C7‖ϕh‖0,Ω‖p− ph‖0,Ω‖φ‖1,Ω

+C7

( ∑
K∈Th

h2
K‖rot (κ(σh, ph)−1ϕh)‖20,K +

∑
E∈Eh(Ω)

hE‖[[(κ(σh, ph)−1ϕh) · s]]‖20,E

+
∑

E∈Eh(ΓD)

hE‖κ(σh, ph)−1ϕh · s−
dpD

ds
‖20,E

)1/2

‖φ‖1,Ω.

(6.8)

Then, noting that R2(ψh) = 0 for all ψh ∈ Hϕ
h , and defining ψh as ψh = Πhz + curl (Ihφ), we have

R2(ψ) = R2(ψ −ψh) = R2(z −Πhz) +R2(curl (φ− Ihφ)).

Hence, the proof follows from Lemma 6.2, estimates (6.8), and the Helmholtz decomposition of HN(div; Ω).

Finally we state the main reliability bound for the proposed estimator.

Theorem 6.7. Assume that the hypotheses stated in Theorem 5.3 and Lemmas 6.5-6.6 are satisfied. Let
(σ,u,ρ,ϕ, p) ∈ HN(div; Ω) × L2(Ω) × L2

skew(Ω) ×HN(div; Ω) × L2(Ω) and (σh,uh,ρh,ϕh, ph) ∈ Hσh ×Hu
h ×

Hρh ×Hϕ
h ×Hp

h be the unique solutions of (2.2) and (4.6), respectively. Assume further that

(C5 + C8)γ + C8C
∗(‖g‖0,Ω + ‖pD‖1/2,ΓD

+ ‖uD‖1/2,ΓD
+ ‖f‖0,Ω + γ r ) ≤ 1

2
. (6.9)

Then, there exists Crel > 0, independent of h, such that

‖eσ‖div;Ω + ‖eu‖0,Ω + ‖eρ‖0,Ω + ‖eϕ‖div;Ω + ‖ep‖0,Ω ≤ Crel Ξ.

Proof. It follows directly from Lemmas 6.5 and 6.6, using the fact that ϕh satisfies the estimate (4.14), and
the assumption (6.9).

6.2. Efficiency of the a posteriori error estimator. In this section we derive the efficiency estimate of
the estimator defined in (6.2). The main result of this section is stated as follows.

Theorem 6.8. There exists Ceff > 0, independent of h, such that

Ceff Ξ ≤ ‖σ − σh‖div;Ω + ‖u− uh‖0,Ω + ‖ρ− ρh‖0,Ω + ‖ϕ−ϕh‖div;Ω + ‖p− ph‖0,Ω + h.o.t, (6.10)

where h.o.t. stands for one or several terms of higher order.
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We begin with the estimates for the zero order terms appearing in the definition of Ξs,K (cf. (6.1a)).

Lemma 6.9. For all K ∈ Th there holds

‖f + divσh‖0,K . ‖σ − σh‖div;K and ‖σh − σt
h‖0,K . ‖σ − σh‖div;K .

Proof. By employing the same arguments as in [17, Theorem 3.2], we can conclude that f = −divσ, which,
together with the symmetry of σ, implies the desired result. Further details are omitted.

In order to derive the upper bounds for the remaining terms defining the error estimator Ξs,K , we use results
from [19], inverse inequalities, and the localisation technique based on element-bubble and edge-bubble functions.
The main properties that we will use can be found in [32, Lemmas 4.4-4.7].

Lemma 6.10. For all K ∈ Th there holds

hK‖C−1σh +
α

dλ+ 2µ
phI−∇uh + ρh‖0,K

. hK
(
‖σ − σh‖div;K + ‖ρ− ρh‖0,K + ‖p− ph‖0,K

)
+ ‖u− uh‖0,K .

Proof. It follows from an application of [32, Lemma 4.4] with q = C−1σh +
α

dλ+ 2µ
phI −∇uh + ρh, using

that C−1σ +
α

dλ+ 2µ
pI = ∇u− ρ and [32, Lemma 4.5]. We refer to [19, Lemma 6.6] for further details.

Lemma 6.11. For all K ∈ Th and E ∈ Eh(Ω), there holds

hK‖curl(C−1σh +
α

dλ+ 2µ
phI + ρh)‖0,K . ‖σ − σh‖div;K + ‖ρ− ρh‖0,K + ‖p− ph‖0,K ,

h
1/2
E ‖[[(C−1σh +

α

dλ+ 2µ
phI + ρh)s]]‖0,E . ‖σ − σh‖div;ωE

+ ‖ρ− ρh‖0,ωE
+ ‖p− ph‖0,ωE

,

where the patch of elements sharing the edge E is denoted as ωE := ∪{K ′ ∈ Th : E ∈ Eh(K ′)}.

Proof. It suffices to apply [32, Lemma 4.7] with ξ := C−1σ +
α

dλ+ 2µ
pI + ρ = ∇u and ξh := C−1σh +

α

dλ+ 2µ
phI + ρh.

Lemma 6.12. Assume that uD is piecewise polynomial. Then, for all E ∈ Eh(ΓD), there holds

h
1/2
E ‖(C−1σh +

α

dλ+ 2µ
phI + ρh)s− duD

ds ‖0,E . ‖σ − σh‖div;KE
+ ‖ρ− ρh‖0,KE

+ ‖p− ph‖0,KE
,

h
1/2
E ‖uD − uh‖0,E . hKE

(
‖σ − σh‖div;KE

+ ‖ρ− ρh‖0,KE
+ ‖p− ph‖0,KE

)
+ ‖u− uh‖0,KE

,

where KE is a triangle in Th that contains E on its boundary.

Proof. The first estimate follows as in [32, Lemma 4.18], defining ξ and ξh as in Lemma 6.11. On the other
hand, the second estimate follows from an application of the discrete trace inequality (see [32, Lemma 4.6]), using

that C−1σ +
α

dλ+ 2µ
pI = ∇u− ρ, and the fact that u = uD on ΓD. See also [34, Lemma 4.14].

A direct application of Lemmas 6.9-6.12 yields∑
K∈Th

Ξs,K . ‖eσ‖div;Ω + ‖eu‖0,Ω + ‖eρ‖0,Ω + ‖eϕ‖div;Ω + ‖ep‖0,Ω. (6.11)

Similarly, using the same arguments as in Lemmas 6.9-6.12, along with algebraic manipulations as in Section 5,
assuming that pD is piecewise polynomial, together with the Lipschitz continuity of κ (cf. (2.3)), we can bound
each of the terms that appear in the estimator Ξf,K and obtain the following result∑

K∈Th

Ξf,K . ‖eσ‖div;Ω + ‖eu‖0,Ω + ‖eρ‖0,Ω + ‖eϕ‖div;Ω + ‖ep‖0,Ω. (6.12)

We remark that the efficiency of Ξ (cf. (6.2)) in Theorem 6.8 is now a straightforward consequence of estimates
(6.11) and (6.12). In turn, we emphasize that the resulting constant, denoted by Ceff > 0 is independent of h.

Remark 6.1. For simplicity, we have assumed that uD and pD are piecewise polynomial in the derivation
of (6.11) and (6.12). However, similar estimates can also be obtained by assuming uD and pD are sufficiently
smooth (taking, for example, uD ∈ H1(ΓD) and pD ∈ H1(ΓD), as in Lemmas 6.5-6.6), and proceeding as in [23,
Section 6.2]. In such cases, higher-order terms, stemming from errors in the polynomial approximations, would
appear in (6.11) and (6.12), accounting for the presence of h.o.t in (6.10).

Remark 6.2. We conclude this section by noting that the a posteriori error estimation analysis developed
here can be adapted to the three-dimensional case. In particular, in [31, Th 3.2] and [25, Lemma 4.4], one can
find the suitable Helmholtz decompositions for the spaces HN(div; Ω) and HN(div; Ω), respectively.



18 KHAN, LAMICHHANE, RUIZ-BAIER & VILLA-FUENTES

k DoFs h e(σ) rate e(u) rate e(ρ) rate e(ϕ) rate e(p) rate

0

98 0.7071 3.5e+0 ? 4.5e-02 ? 3.7e-01 ? 4.9e-01 ? 2.4e-01 ?
354 0.3536 1.9e+0 0.86 2.0e-02 1.20 8.0e-02 2.19 2.6e-01 0.92 1.3e-01 0.92

1346 0.1768 9.9e-01 0.96 1.0e-02 0.98 3.3e-02 1.30 1.3e-01 0.98 6.5e-02 0.98
5250 0.0884 5.0e-01 0.99 5.0e-03 1.00 1.3e-02 1.37 6.6e-02 0.99 3.3e-02 1.00

20738 0.0442 2.5e-01 1.00 2.5e-03 1.00 4.7e-03 1.43 3.3e-02 1.00 1.6e-02 1.00
82434 0.0221 1.2e-01 1.00 1.3e-03 1.00 1.7e-03 1.47 1.6e-02 1.00 8.2e-03 1.00

1

290 0.7071 1.3e+0 ? 1.3e-02 ? 4.1e-02 ? 1.5e-01 ? 7.4e-02 ?
1090 0.3536 4.1e-01 1.61 4.2e-03 1.68 1.4e-02 1.50 3.9e-02 1.92 2.0e-02 1.93
4226 0.1768 1.1e-01 1.94 1.1e-03 1.95 5.8e-03 1.30 9.9e-03 1.98 5.0e-03 1.98

16642 0.0884 2.7e-02 1.98 2.7e-04 1.99 2.0e-03 1.55 2.5e-03 1.99 1.2e-03 2.00
66050 0.0442 6.8e-03 2.00 6.8e-05 2.00 5.8e-04 1.78 6.2e-04 2.00 3.1e-04 2.00

263170 0.0221 1.7e-03 2.00 1.7e-05 2.00 1.5e-04 1.92 1.6e-04 2.00 7.8e-05 2.00
Table 7.1

Example 1. Error history (degrees of freedom, mesh size, individual errors and experimental rates of convergence) in 2D for
the formulation using the two lowest-order FE families with PEERSk elements.

7. Numerical results. The computational examples in this section verify the theoretical properties (opti-
mal convergence, conservativity, and robustness) of the proposed schemes. The implementation has been carried
out using the FE library FEniCS [1]. The nonlinear systems were solved with Newton–Raphson’s method with a
residual tolerance of 10−7, and the linear systems were solved using the sparse LU factorisation of MUMPS [4].

7.1. Optimal convergence to smooth solutions and conservativity in 2D. We first consider a simple
planar problem setup with manufactured exact solution. We take the unit square domain Ω = (0, 1)2, the bottom
and left segments represent ΓD and the top and right sides are ΓN. We choose the body load f , mass source
g, boundary displacement uD, boundary pressure pD, as well as (not necessarily homogeneous, but standard
arguments can be used to extend the theory to the inhomogeneous case) boundary data ϕ ·n = ϕN and σn = σN,
such that the exact displacement and fluid pressure are

u(x, y) =
1

20

(
cos
[

3π
2 (x+ y)

]
sin
[

3π
2 (x− y)

]) , p(x, y) = sin(πx) sin(πy).

These exact primary variables are used to construct exact mixed variables of stress, rotation, and discharge
flux. We choose the second constitutive relation for the permeability in (1.8) and choose the following arbitrary
model parameters (all adimensional) k0 = k1 = c0 = α = 0.1, λ = µ = µf = 1. These values indicate a mild
permeability variation and it is expected that the nonlinear solver (in this case, Newton–Raphson) converges in
only a few iterations. We construct six levels of uniform mesh refinement of the domain, on which we compute
approximate solutions and the associated errors for each primal and mixed variable in their natural norms.
Convergence rates are calculated as usual:

rate = log(e/ê)[log(h/ĥ)]−1 ,

where e and ê denote errors produced on two consecutive meshes of sizes h and ĥ, respectively. Table 7.1 reports
on this error history focusing on the methods defined by the PEERSk family with k = 0 and k = 1, showing a
O(hk+1) convergence for all unknowns as expected from the theoretical error bound of Theorem 5.4 (except for
the rotation approximation that shows a slight superconvergence for the lowest-order case and only in 2D – a
well-known phenomenon associated with PEERSk elements). With the purpose of illustrating the character of
the chosen manufactured solution and the parameter regime, we show sample discrete solutions in Figure 7.1.

We also exemplify the momentum and mass conservativity of the formulation. To do so we represent the loss
of momentum and mass as

momh :=
∥∥Ph[div(σh) + f ]

∥∥
`∞
, massh :=

∥∥∥∥Ph[(c0 +
dα2

dλ+ 2µ

)
ph +

α

dλ+ 2µ
trσh + div(ϕh) + g

]∥∥∥∥
`∞
,

where Ph : L2(Ω) → Pk(Th) is the scalar version of Ph. They are computed at each refinement level and
tabulated in Table 7.2 together with the total error e := e(σ) + e(u) + e(ρ) + e(ϕ) + e(p), and its experimental
convergence rate. We report on the nonlinear iteration count as well. The expected optimal convergence of the
total error, and the announced local conservativity are confirmed. We also note that, at least for this parameter
regime, for all the refinements and polynomial degrees the nonlinear solver takes three iterations to get a residual
below the tolerance. In the last column of the same table we report on the efficiency of the global a posteriori
error estimator designed in Section 6 eff(Ξ) = e

Ξ , which – in this case of smooth solutions – is asymptotically
constant (approximately 0.98 for k = 0 and 1.52 for k = 1).
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Fig. 7.1. Example 1. Sample of approximate solutions (stress magnitude, displacement magnitude, non-zero entry of rotation,
flux magnitude, and fluid pressure) computed with the second-order scheme and plotted on the deformed domain (for reference we
also show the contour of the undeformed domain).

DoFs h e rate momh massh iter eff(Ξ)
k = 0

97 0.707 4.83e+0 ? 9.30e-16 1.94e-16 3 0.93
353 0.354 2.45e+0 0.98 9.44e-16 2.98e-16 3 0.94

1345 0.177 1.25e+0 0.98 2.64e-15 8.26e-16 3 0.96
5249 0.088 6.22e-01 1.00 5.58e-15 2.49e-15 3 0.97

20737 0.044 3.10e-01 1.00 1.46e-14 7.03e-15 3 0.98
82433 0.022 1.55e-01 1.00 1.72e-13 1.09e-13 3 0.98

328705 0.011 7.63e-02 1.00 4.25e-13 3.46e-13 3 0.98
k = 1

289 0.707 1.57e+0 ? 2.88e-15 1.20e-15 3 1.45
1089 0.354 5.08e-01 1.63 6.77e-15 2.25e-15 3 1.50
4225 0.177 1.34e-01 1.92 2.21e-14 6.60e-15 3 1.53

16641 0.088 3.42e-02 1.97 8.00e-14 1.31e-14 3 1.52
66049 0.044 8.62e-03 1.99 3.91e-13 3.83e-14 3 1.51

263169 0.022 2.16e-03 2.00 8.20e-12 7.61e-14 3 1.51
1050625 0.011 5.04e-04 2.00 2.17e-11 4.90e-13 3 1.52

Table 7.2
Example 1. Total error, experimental rates of convergence, `∞-norm of the projected residual of the momentum and mass

balance equations, Newton–Raphson iteration count, and efficiency index of the global a posteriori error estimator. Tabulated
results correspond to the two lowest-order polynomial degrees.

7.2. Convergence in 3D using physically relevant parameters. Next we investigate the behaviour of
the proposed numerical methods in a 3D setting and taking model parameters more closely related to applications
in tissue poroelasticity. We still use manufactured solutions to assess the accuracy of the formulation, but take an
exact displacement that satisfies divu→ 0 as λ→∞. The domain is the 3D box Ω = (0, L)×(0, L)×(0, 2L) with
L = 0.01 m, and mixed boundary conditions were taken analogously as before, separating the domain boundary
between ΓN defined as the planes x = 0, y = 0 and z = 0, and ΓD as the remainder of the boundary. The
manufactured displacement and pressure head are

u(x, y, z) =
L

4

 sin(x/L) cos(y/L) sin(z/(2L)) + x2/λ
−2 cos(x/L) sin(y/L) cos(z/(2L)) + y2/λ
2 cos(x/L) cos(y/L) sin(z/(2L))− 2z2/λ

 , p(x, y, z) = sin(x/L) cos(y/L) sin(z/(2L)).

First we set again the model parameters to mild values λ = µ = c0 = k0 = α = µf = 1, k1 = k2 = 0.1, and
we compare them against the following values (from, e.g., [9, 43])

k0 = 2.28× 10−11 m3, k1 = 5× 10−12 m3, λ = 1.44× 106 Pa, µ = 9.18× 103 Pa, µf = 7.5× 10−4 Pa · s,

and c0 = 0, α = 0.99. Table 7.3 reports on the convergence of the method. While the magnitude of the stress
errors is much higher for the second parameter regime, the discharge flux error magnitude is smaller than in the
first case and the displacement, rotation, and fluid pressure errors remain roughly of the same magnitude. In
any case, the table confirms that the optimal slope of the error decay is not affected by a vanishing storativity
nor large Lamé constants. The numerical solutions are displayed in Figure 7.2.

7.3. Convergence in the case of adaptive mesh refinement. We continue with a test targeting the
recovery of optimal convergence through adaptive mesh refinement guided by the a posteriori error estimator
proposed in Section 6. We employ the well-known adaptive mesh refinement approach of solving, then computing
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DoFs h e(σ) rate e(u) rate e(ρ) rate e(ϕ) rate e(p) rate
unity parameters

328 0.0173 2.9e-02 ? 1.1e-06 ? 4.8e-04 ? 3.1e+0 ? 1.3e-04 ?
2311 0.0087 1.5e-02 0.94 5.7e-07 0.96 1.3e-04 1.90 1.6e+0 1.00 6.3e-05 1.00

17443 0.0043 7.5e-03 0.99 2.8e-07 1.00 4.4e-05 1.54 7.8e-01 1.00 3.2e-05 1.00
135715 0.0022 3.8e-03 1.00 1.4e-07 1.00 1.8e-05 1.34 3.9e-01 1.00 1.6e-05 1.00

1071043 0.0011 1.9e-03 1.00 7.0e-08 1.00 7.7e-06 1.19 1.9e-01 1.00 7.9e-06 1.00
physically relevant parameters

328 0.0173 2.1e+02 ? 1.1e-06 ? 4.2e-04 ? 4.8e-07 ? 1.9e-04 ?
2311 0.0087 1.1e+02 0.91 5.6e-07 0.99 1.1e-04 1.93 3.9e-07 0.55 9.1e-05 1.05

17443 0.0043 5.6e+01 0.98 2.8e-07 1.00 3.3e-05 1.74 2.2e-07 0.89 4.4e-05 1.04
135715 0.0022 2.8e+01 1.00 1.4e-07 1.00 1.2e-05 1.42 1.2e-07 0.93 2.2e-05 0.99

1071043 0.0011 1.4e+01 1.00 7.0e-08 1.00 5.3e-06 1.23 6.0e-08 0.97 1.1e-05 0.98
Table 7.3

Example 2. Error history (degrees of freedom, mesh size, individual errors and experimental rates of convergence) in 3D for the
formulation using the lowest-order FE family with PEERSk elements and changing from unity (top) to physically relevant (bottom)
parameters.

Fig. 7.2. Example 2. Sample of approximate solutions (stress magnitude, displacement magnitude, rotation magnitude, flux
magnitude, and fluid pressure) computed with the first-order scheme and plotted on the deformed domain (for reference we also
show the outline of the undeformed domain).

the estimator, marking, and refining. Marking is done as follows [27]: a given K ∈ Th is added to the marking
set Mh ⊂ Th whenever the local error indicator ΞK satisfies∑

K∈Mh

Ξ2
K ≥ ζ

∑
K∈Th

Ξ2
K ,

where ζ is a user-defined bulk density. All elements in Mh are marked for refinement and also some neighbours
are marked for the sake of closure. For convergence rates we use the alternative form

rate = −2 log(e/ê)[log(DoFs/ D̂oF)]−1.

Let us consider the non-convex rotated L-shaped domain Ω = (−1, 1)2 \ (−1, 0)2 and use manufactured
displacement and fluid pressure with sharp gradients near the domain re-entrant corner (see, e.g., [20] for the
displacement and [16] for the fluid pressure)

u(r, θ) =
rχ

2µ

(
−(χ+ 1) cos([χ+ 1]θ) + (M2 − χ− 1)M1 cos([χ− 1]θ)
(χ+ 1) sin([χ+ 1]θ) + (M2 + χ− 1)M1 sin([χ− 1]θ)

)
, p(r, θ) = r1/3 sin

(
1

3
(
π

2
+ θ)

)
,

with polar coordinates r =
√
x2

1 + x2
2, θ = arctan(x2, x1), χ ≈ 0.54448373, M1 = − cos([χ+ 1]ω)/ cos([χ− 1]ω),

and M2 = 2(λ+2µ)/(µ+λ). The boundary conditions (taking as ΓN the segments at x = ±1 and y = ±1 and ΓD

the remainder of the boundary) and forcing data are constructed from these solutions and the model parameters
are λ = 103, µ = 10, k0 = 1

2 , µf = c0 = k1 = 0.1, α = 1
4 , where for this test we consider a Kozeny–Carman

permeability form. As in [20], a sub-optimal rate of convergence is expected for the mixed elasticity sub-problem
in its energy norm. Note that since the exact pressure is in H4/3−ε(Ω) for any ε > 0 (cf. [37, Chapter 5]), it is
still regular enough to have optimal convergence. However its gradient (and therefore also the exact discharge
flux ϕ) has a singularity located at the reentrant corner and therefore we expect an order of convergence of
approximately O(h1/3).

The numerical results of this test are reported in Table 7.4. We observe the expected sub-optimal convergence
under an uniform mesh refinement while the optimal convergence in all variables is attained as the mesh is locally
refined (the first three rows are very similar as most of the elements are refined in the first three steps. This
can be controlled by the bulk density, here taken as ζ = 9.5 · 10−5). We also note that the individual errors
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DoFs h e(σ) rate e(u) rate e(ρ) rate e(ϕ) rate e(p) rate eff(Ξ)
uniform mesh refinement

77 1.4142 1.7e+3 ? 1.7e+1 ? 7.6e+1 ? 9.1e+0 ? 1.6e+0 ? 2.67
273 0.7071 1.5e+3 0.27 7.8e+0 1.10 2.5e+1 1.61 5.8e+0 0.65 7.8e-01 1.06 2.65

1025 0.3536 1.2e+3 0.31 5.0e+0 0.63 2.1e+1 0.27 4.3e+0 0.44 3.9e-01 1.00 3.12
3969 0.1768 8.9e+2 0.40 3.6e+0 0.50 1.7e+1 0.26 3.3e+0 0.38 2.0e-01 0.99 2.82

15617 0.0884 6.6e+2 0.43 2.6e+0 0.45 1.4e+1 0.32 2.6e+0 0.35 9.9e-02 0.99 2.60
61953 0.0442 4.8e+2 0.45 1.9e+0 0.45 1.1e+1 0.35 2.0e+0 0.34 5.0e-02 1.00 2.42

246785 0.0221 3.5e+2 0.46 1.4e+0 0.46 8.4e+0 0.38 1.6e+0 0.34 2.5e-02 1.00 2.27
985089 0.0011 2.9e+2 0.45 1.1e+0 0.45 6.7e+0 0.38 1.2e+0 0.34 1.3e-02 1.00 2.40

adaptive mesh refinement
77 1.4142 1.7e+3 ? 1.7e+1 ? 7.6e+1 ? 9.1e+0 ? 1.6e+0 ? 2.67

273 0.7071 1.5e+3 0.29 7.8e+0 1.20 2.5e+1 1.76 5.8e+0 0.72 7.8e-01 1.16 2.65
1025 0.3536 1.2e+3 0.33 5.0e+0 0.66 2.1e+1 0.28 4.3e+0 0.47 3.9e-01 1.04 3.12
3813 0.3536 8.9e+2 0.42 3.6e+0 0.52 1.7e+1 0.27 3.3e+0 0.40 2.0e-01 1.04 2.82
7113 0.2500 6.7e+2 0.89 2.6e+0 0.98 1.4e+1 0.68 2.6e+0 0.77 1.1e-01 1.91 2.55

11013 0.2500 5.2e+2 1.20 2.0e+0 1.31 1.1e+1 0.99 2.0e+0 1.07 6.0e-02 1.74 2.58
17449 0.2500 4.0e+2 1.10 1.5e+0 1.18 9.1e+0 0.95 1.6e+0 1.01 3.7e-02 1.79 2.52
27225 0.1768 3.1e+2 1.14 1.2e+0 1.18 7.2e+0 1.05 1.3e+0 1.05 2.1e-02 1.80 2.52
38081 0.1768 2.5e+2 1.37 9.0e-01 1.53 5.7e+0 1.38 1.0e+0 1.37 1.5e-02 1.57 2.55
54797 0.1250 2.0e+2 1.18 7.2e-01 1.21 4.6e+0 1.22 8.1e-01 1.26 1.2e-02 1.48 2.53

Table 7.4
Example 3. Convergence history (degrees of freedom, mesh size, individual errors, experimental rates of convergence, and

effectivity index) in a rotated L-shaped domain for the formulation using the lowest-order FE family with PEERSk elements and
changing from uniform (top) to adaptive mesh refinement (bottom) guided by the a posteriori error indicator from (6.2).

Fig. 7.3. Example 3. Approximate primal variable solutions (solid displacement and fluid pressure) computed with the first-
order scheme, and meshes generated after two, three, and four adaptive refinement steps.

are approximately of the same magnitude in the last row of each section of the table, but for the adaptive case
this is achieved using approximately 5.5% of the number of degrees of freedom needed in the uniformly refined
case. The last column of the table again confirms the reliability and efficiency of the a posteriori error estimator.
Note that for this case we compute the divergence part of the error norm in the stress and fluxes as projections
of the momentum and mass residuals onto the displacement and pressure discrete spaces, respectively. We plot
in Figure 7.3 the approximate displacement and pressure as well as sample triangulations obtained after a few
adaptive refinement steps that confirm the expected agglomeration of vertices near the reentrant corner.

7.4. Adaptive computation of cross-sectional flow and deformation in a soft tissue specimen.
Finally, we apply the proposed methods to simulate the localisation of stress, deformation, and flow patterns in a
multi-layer cross-section of cervical spinal cord. We follow the setup in [42, 44]. The geometry and unstructured
mesh have been generated using GMSH [35] from the images in [44]. The heterogeneous porous material consists
of white and grey matter surrounded by the pia mater (a thin layer, also considered poroelastic. See Figure 7.4,
top two left panels). All components are assumed fully saturated with cerebospinal fluid. The transversal cross-
section has 1.3 cm in maximal diameter and the indentation region is a curved subset of the anterior part of the
pia mater (a sub-boundary of length 0.4 cm). Boundary conditions are of mixed load-traction type, but slightly
different than the ones analysed in the previous section. We conduct an indentation test applying a traction
σn = (0,−P )−t, with P a constant solid pressure of 950 dyne/cm2. The posterior part of the pia mater acts as
a rigid posterior support where we prescribe zero displacement. The remainder of the boundary of the pia mater
is stress-free. For the fluid phase we impose a constant inflow pressure of cerebrospinal fluid of 1.1 dyne/cm2

and zero outflow pressure at the stress-free sub-boundary, as well as zero normal discharge flux at the posterior
support. For the three different layers of the domain we use the following values for Young modulus, Poisson
ratio, and lower bound for permeability (some values from [10, 42, 44]) Epia = 23′000 dyne/cm

2
, νpia = 0.3,

Ewhite = 8′400 dyne/cm
2
, νwhite = 0.479, Egrey = 16′000 dyne/cm

2
, νgrey = 0.49, kgrey

0 = 1.4 · 10−9 dyne/cm
2
,
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Fig. 7.4. Example 4. Cross sectional area of cervical spinal cord segmented from sheep imaging data in [44], initial coarse
mesh indicating subdomains with distinct material properties (outer pia mater in red, mid white matter in grey, inner grey matter
in green), final adapted mesh after six refinement steps, and sample of stress, displacement, fluid flux and fluid pressure at the
indentation test (bottom row figures are obtained with the lowest-order scheme and rendered on the deformed configuration).

kwhite
0 = 1.4 · 10−6 dyne/cm

2
, kpia

0 = 3.9 · 10−10 dyne/cm
2
. Further, we take f = 0, g = 0, µf = 70 dyne/cm

2· s
(for cerebrospinal fluid at 37◦), k1 = 1

2k0, α = 1
4 , and c0 = 10−3.

The initial and the final adapted mesh, together with samples of solutions are shown in Figure 7.4, where we
have used the mesh density parameter ζ = 5.5 · 10−4. After each adaptation iteration guided by the a posteriori
error indicator (6.2), a mesh smoothing step was included. The figure indicates that most of the refinement
occurs near the interface between the heterogeneous components of the porous media, and the plots also confirm
a flow pattern moving slowly from top to bottom, consistently with a typical indentation test.
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[2] M. Álvarez, G. N. Gatica, and R. Ruiz-Baier, An augmented mixed-primal finite element method for a coupled flow-transport
problem, ESAIM: Math. Model. Numer. Anal., 49, 5 (2015), pp. 1399–1427.

[3] , A posteriori error analysis for a viscous flow–transport problem, ESAIM: Math. Model. Numer. Anal., 50 (2016),
pp. 1789–1816.

[4] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent, Multifrontal parallel distributed symmetric and unsymmetric solvers,
Comput. Methods Appl. Mech. Engrg., 184 (2000), pp. 501–520.

[5] D. N. Arnold, F. Brezzi, and J. Douglas, PEERS: A new mixed finite element method for plane elasticity, Japan J. Appl.
Math., 1 (1984), pp. 347–367.

[6] G. A. Ateshian and J. A. Weiss, Anisotropic hydraulic permeability under finite deformation, J. Biomech. Engrg., 132 (2010),
p. 111004(7).

[7] T. Bærland, J. J. Lee, K.-A. Mardal, and R. Winther, Weakly imposed symmetry and robust preconditioners for Biot’s
consolidation model, Comput. Methods Appl. Math., 17 (2017), pp. 377–396.

[8] S. Barbeiro and M. F. Wheeler, A priori error estimates for the numerical solution of a coupled geomechanics and reservoir
flow model with stress-dependent permeability, Comput. Geosci., 14 (2010), pp. 755–768.

[9] N. Barnafi, B. Gomez-Vargas, W. d. J. Lourenco, R. F. Reis, B. M. Rocha, M. Lobosco, R. Ruiz-Baier, and R. We-
ber dos Santos, Finite element methods for large-strain poroelasticity/chemotaxis models simulating the formation of
myocardial oedema, J. Sci. Comput., 92 (2022), pp. e92(1–40).

[10] I. Bloomfield, I. Johnston, and L. Bilston, Effects of proteins, blood cells and glucose on the viscosity of cerebrospinal
fluid, Pediatr. Neurosurg., 28 (1998), pp. 246–251.

[11] L. Bociu, G. Guidoboni, R. Sacco, and J. T. Webster, Analysis of nonlinear poro-elastic and poro-visco-elastic models,
Arch. Rational Mech. Anal., 222 (2016), pp. 1445–1519.

[12] L. Bociu, B. Muha, and J. T. Webster, Weak solutions in nonlinear poroelasticity with incompressible constituents, Nonl.
Anal.: Real World Appl., 67 (2022), p. 103563.

[13] L. Bociu and J. T. Webster, Nonlinear quasi-static poroelasticity, J. Diff. Eqns., 296 (2021), pp. 242–278.
[14] M. A. Borregales Reverón, K. Kumar, J. M. Nordbotten, and F. A. Radu, Iterative solvers for Biot model under small

and large deformations, Comput. Geosci., 25 (2021), pp. 687–699.
[15] S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods, Springer–Verlag, New York, 1994.
[16] R. Bulle, J. S. Hale, A. Lozinski, S. P. Bordas, and F. Chouly, Hierarchical a posteriori error estimation of Bank–Weiser

type in the FEniCS project, Comput. Math. Appl., 131 (2023), pp. 103–123.
[17] J. Camaño, S. Caucao, R. Oyarzúa, and S. Villa-Fuentes, A posteriori error analysis of a momentum conservative

banach-spaces based mixed-FEM for the navier–stokes problem, Applied Numerical Mathematics, 176 (2022), pp. 134–158.
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