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Abstract
In embryogenesis, epithelial cells acting as individual entities or as coordinated aggre-
gates in a tissue, exhibit strong coupling between mechanical responses to internally or
externally applied stresses and chemical signalling. One of the most important chemical
signals in this process is calcium. This mechanochemical coupling and intercellular com-
munication drive the coordination of morphogenetic movements which are characterised by
drastic changes in the concentration of calcium in the tissue. In this paper we extend the
recent mechanochemical model in Kaouri et al. (J. Math. Biol. 78, 2059–2092, 2019), for
an epithelial continuum in one dimension, to a more realistic multi-dimensional case. The
resulting parametrised governing equations consist of an advection-diffusion-reaction sys-
tem for calcium signalling coupled with active-stress linear viscoelasticity and equipped
with pure Neumann boundary conditions. We implement a finite element method in per-
turbed saddle-point form for the simulation of this complex multiphysics problem. Special
care is taken in the treatment of the stress-free boundary conditions for the viscoelasticity
in order to eliminate rigid motions from the space of admissible displacements. The stabil-
ity and solvability of the continuous weak formulation is shown using fixed-point theory.
Guided by the bifurcation analysis of the one-dimensional model, we analyse the behaviour
of the system as two bifurcation parameters vary: the level of IP3 concentration and the
strength of the mechanochemical coupling. We identify the parameter regions giving rise to
solitary waves and periodic wavetrains of calcium. Furthermore, we demonstrate the nucle-
ation of calcium sparks into synchronous calcium waves coupled with deformation. This
model can be employed to gain insights into recent experimental observations in the context
of embryogenesis, but also in other biological systems such as cancer cells, wound healing,
keratinocytes, or white blood cells.

Keywords Viscoelasticity · Advection-reaction-diffusion equations · Calcium signalling ·
Embryogenesis · Excitability · Finite element method

Mathematics Subject Classification (2010) 92C15 · 65M60 · 35K57 · 74L15

Dedicated to Alfio Quarteroni on the occasion of his 70th birthday.

Ricardo Ruiz-Baier
ricardo.ruizbaier@monash.edu

Extended author information available on the last page of the article.

Published online: 14 September 2022

Vietnam Journal of Mathematics (2022) 50:947–975

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s10013-022-00579-y&domain=pdf
http://orcid.org/0000-0003-3144-5822
mailto: ricardo.ruizbaier@monash.edu


1 Introduction

Embryogenesis is a remarkable example of a complex process where different sub-
mechanisms involving mechanical and chemical effects closely interact in a self-organised
manner, leading to complex spatio-temporal patterns. The coupling between rearrangement
of tissue, cell migration and active cell contraction to diffusion of morphogens or signalling
molecules has been proposed and studied in earlier works [46, 47] but many challenges
remain open. It is well known that a variety of responses in the cell are driven by the trans-
duction of mechanical stimulation into chemical signals such as calcium oscillations and
waves [60]. Moreover, localisation of stresses or strains within the cells can generate alter-
ation in patterns of calcium distribution in tissue by changing cell displacement magnitude,
direction and velocity [27, 39]. On the other hand, recent experimental evidence [16, 48, 61]
shows that tissue mechanics are actively affected by calcium signalling during development.

Hence, more modelling and analysis has recently appeared in order to elucidate the many
open questions that surround the healthy evolution of an embryo [14, 33, 48, 61]. A variety
of models have described general interactions between chemical species and mechanics;
these include descriptions where stress is triggered by chemical signalling [47], or mainly by
migration [44]. Here we are interested in the mechanochemical feedback due to the pressure
and velocity of the underlying embryonic tissue. Including the coupling with continuum
mechanics significantly affects the propagation of the chemical signals. Disrupting calcium
signals in apical constriction leads to embryo malformations such as Spina Bifida, which
affects millions of babies worldwide [16, 61].

We develop a multi-dimensional extension of the recent mechanochemical model pro-
posed in [33] which describes the interplay of calcium signalling with the mechanics of
embryonic epithelial tissue during apical constriction, an active deformation process. We are
inspired by the recent, interesting experimental observations in [16, 61] where increasing
tension in the contracting cells yields further calcium release and this, in turn, elicits con-
tractions in the cell which are sensed as mechanical stimuli by the neighbouring cells. The
model we propose here takes a step further in elucidating this important mechanochemical
coupling. Mechanical properties of different cell types indicate diverse behaviour, including
elastic [20, 21, 51], poroelastic [19, 43, 56, 57], or nonlinear and nonlocal characteristics
[42, 65] but more predominantly, viscoelastic effects [2, 8, 10, 24, 34, 53, 66]. The specific
constitutive rheological model to adopt in a tissue depends on the characteristics of each
constituent cell, on the properties inherent to distinct biological states, on the nature and
intensity of the stresses and strains that are to be applied, and on the spatio-temporal scales
involved. Here, we restrict the description to the regime of small strains and model the cell
and tissue as a modification of the simple Kelvin–Voigt viscoelastic solid (with one elas-
tic spring and two viscous dashpots), where only after the initial stress has vanished, the
material goes back to its original state. These linear viscoelastic materials are completely
defined by the stiffness and viscosity, which can be determined using diverse measuring
approaches such as pipette suction, optical laser tweezers, microrheology tools, particle
tracking, or even contact-free techniques [50]. In the present mechanochemical model, we
assume that the viscoelastic stress includes an active tension component which depends on
the concentration of calcium, following the formulation in [6, 33, 47].

We adopt the following fundamental assumptions: a) the equilibrium of forces in the sys-
tem is established by a quasi-static balance of linear momentum using displacements and
hydrostatic or solid pressure (the so-called Herrmann formulation [30] where the introduc-
tion of solid pressure contributes to achieve robustness in the nearly incompressible regime.
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This occurs when the first Lamé parameter defining the elastic properties of the material
is very large); b) the spatio-temporal dynamics of calcium concentration and the percent-
age of IP3 (inositol triphosphate) receptors (IPR) on the Endoplasmic Reticulum (ER) that
have not been inactivated are governed by an advection-reaction-diffusion system; and c)
mechanochemical coupling is modelled directly in the viscoelastic stress through an active
stress Hill function that depends on calcium and through the modification of the reaction
kinetics by volume change. The two-way coupling mechanism we adopt follows the model
structure used in [33, 45, 46, 49, 59].

Finding closed-form solutions to this inherently highly nonlinear and multidimensional
problem is only possible in very restricted scenarios and simplified settings. We, hence,
resort to solving the governing equations numerically. The numerical framework under-
taken here uses the method of lines, adopting a backward Euler scheme for the discretisation
in time and a primal-mixed formulation consisting of mixed approximations for the vis-
coelasticity in terms of displacement and rescaled hydrostatic pressure using the classical
Taylor–Hood and MINI-elements [4], and piecewise quadratic or piecewise linear approxi-
mations for the calcium concentration and the fraction of non-inactivated IPR. Methods of
this type are known to perform well in a variety of scenarios. As we assume that the cell or
tissue is not attached to any supporting structure, we consider pure traction boundary con-
ditions. In this case the viscoelasticity problem is not well-posed unless we incorporate a
constraint to eliminate the rigid motions from the set of admissible solutions. To achieve
this we employ additional vector Lagrange multipliers for the coupled problem following
[37] (see also [7]). The overall problem is treated as a monolithic system, so at each time
iteration we solve a set of nonlinear equations with the Newton–Raphson method and the
tangent system at each step is inverted with a direct solver.

We have organised the contents of the paper as follows. In Section 2 we lay out the details
of the mechanochemical 1D model in [33] and construct its multidimensional extension.
We also explain the coupling mechanisms and then perform an appropriate nondimension-
alisation. In the same section we also state the weak form of the governing equations and
introduce a suitable finite element discretisation. In Section 3 we address the continuous
dependence on data of the weak formulation, as well as the existence of weak solutions
using Brouwer’s fixed-point theory. A number of illustrative numerical computations are
then presented in Section 4, where we also perform a simple verification of convergence.
We specifically explore different regimes of wave propagation of practical interest, such as
solitary waves and periodic wavetrains of calcium and the nucleation of calcium sparks into
calcium waves. We conclude in Section 5 with a summary of our findings and a discussion
on the limitations of the model, addressing also possible extensions and future directions.

2 Model Description andWeak Formulations

2.1 Coupling Calcium Signalling with Solid Mechanics

We assume that the cell/tissue can be macroscopically regarded as a linear, viscoelastic
material of Kelvin–Voigt type, occupying the spatial domain ⊂ R

d with d = 2 or d = 3,
and having a smooth boundary ∂ with outward-pointing unit normal n. Boldface letters
will indicate either vector or tensor-valued fields and differential operators. For instance, ∇
denotes the gradient operator applied to scalar fields and ∇ the gradient operator applied

949Mechanochemical Models for Calcium Waves in Embryonic Epithelia



to vectors. Similarly, by div and div we will denote the divergence operator acting on vec-
tor and tensor-valued fields, respectively. The symbol I will be used for the second-order
identity tensor.

Following, e.g., [33, 44], and assuming that gravitational forces and inertial effects are negli-
gible, one seeks for each time t ∈ (0, tfinal], the displacements of the tissue, u(t) : → R

d ,
and the dilation θ(t) : → R

d , such that

θ = div u, (2.1a)

σ = E

1 + ν
ε(u) + ν

1 − 2ν
θI + α̃1∂tε(u) + α̃2∂t θI − T (c)I, (2.1b)

−div σ = 0, (2.1c)

in × (0, tfinal],
where σ is the Cauchy stress tensor, ε(u) = 1

2 (∇u + ∇uT ) is the tensor of infinitesimal
strains, and E, and ν are the Young modulus and Poisson ratio associated with the constitu-
tive law of the material, respectively. c is the concentration of calcium and here, θ = div u

represents the dilation/compression of the apical surface area of the cell. Equation (2.1c)
represents the force equilibrium for the system in the absence of inertia, whereas both (2.1a)
and (2.1b) are constitutive equations describing properties of the viscoelastic material. The
parameters α̃i in the constitutive relation (2.1b) are the shear viscosity and the bulk viscosity
related to the total Cauchy stress exerted in the cell/tissue, that characterises the viscoelas-
tic response to deformations. In addition, the last term in (2.1b), T (c) describes an active
stress which is dependent on c. As in [33] and [47] we assume a Hill function which satu-
rates to a constant value T0 for high values of c, in line with experimental observations [16].
Therefore,

T (c) = T0
κcn

1 + κcn
, (2.2)

where n is a positive integer and κ > 0. We, thus, assume that the calcium concentration
affects the material’s motion by regulating the active tension and therefore the generation of
stress. The effect is an activation and not an inhibition of active tension and so T0 is assumed
positive.

As in [44], we do not incorporate external body loads or restoring displacement-
dependent body forces on the right-hand side of (2.1c), since such terms are only relevant
to substrate-on-substrate or in tissue-on-substrate configurations.

Focusing on the spatiotemporal behaviour of calcium, the other variable of the system
is h, which represents the percentage of non-inactivated IPR on the ER. The model is a
generalisation of the recent model in [33], which employs the calcium dynamics of the
well-known model in [5]. In dimensional form, the model is written as follows

∂t c + ∂tu · ∇c − D∇2c = JER − Jpump + JSSCC in × (0, tfinal], (2.3a)

τj ∂th + ∂tu · ∇h = k2
2

k2
2 + c2

− h in × (0, tfinal], (2.3b)

where

JER = kf μ(p3)h
bk1 + c

k1 + c
, Jpump = γ c

kγ + c
, JSSCC = Sdiv u.

Here D is the calcium diffusion coefficient inherent to the tissue, which is positive and
assumed constant. The fluxes in (2.3a) are as follows: the term JER models the flux of cal-
cium from the ER into the cytosol through the IPR, μ(p3) = p3/(kμ + p3) is the fraction
of IPR that have bound IP3 and is an increasing function of p3, the IP3 concentration. The
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constant kf denotes the calcium flux when all IP3 receptors are open and activated, and b

represents a basal current through the IPR; Jpump represents the calcium flux pumped out
of the cytosol where γ is the maximum rate of pumping of calcium from the cytosol and
kγ is the calcium concentration at which the rate of pumping from the cytosol is at half-
maximum. We will explore the bifurcations of the system as the IP3 concentration, and
correspondingly, μ increases. Note that one could also include calcium fluxes leaking into
the cytosol from outside the cell, but we leave those terms out, as they can be assumed
small. The term JSSCC encodes the calcium flux due to the activated stretch-sensitive cal-
cium channels (SSCC). These channels have been identified experimentally in recent years
[28]—they are on the cell membrane. SSSC are activated when exposed to mechanical stim-
ulation and they close either by relaxation of the mechanical force or by adaptation to the
mechanical force [28]. The constant S represents the strength of stretch activation, and it
encodes mechanochemical coupling. Since S multiplies θ it is a measure of the strength
of the mechanochemical coupling we are studying here. We will be later treating S as our
second bifurcation parameter.1

The inactivation of the IPR by calcium acts on a slower timescale compared to activation
[5] and so the time constant for the dynamics of h, is taken as τj > 1 in the ODE (2.3b)
governing the dynamics of h. As in [33] and [5] we adopt the value τj = 2 s. The values of
all other calcium signalling parameters are also taken as in [5].

We nondimensionalise the set of governing equations (2.1a)–(2.1c) and (2.3a)–(2.3b) using

c = k1c̄, t = τj t̄ , u = Lū, θ = θ̄ , x = Lx̄, α1 = α̃1(1 + ν)

Eτj

,

α2 = (1 + ν)(1 − 2ν)α̃2

Eντj

, β1 = T0(1 + ν)

E
, β2 = 1

κkn
1
,

where L is the length of an embryonic epithelial tissue (or the maximal length of the cell if
considering the single-cell case, see [41]). In addition, instead of the dilation θ , we use the
rescaled Herrmann pressure p. (This does not coincide with the physical pressure, but will
be referred to as rescaled hydrostatic pressure from now on.) Doing this leads to the follow-
ing system, where we have dropped the bars in the dimensionless variables for notational
convenience,

p + ν(1 + ν)

E(1 − 2ν)
div u = 0, (2.4a)

−div σ = 0 with σ = ε(u) − pI + α1∂tε(u) − α2∂tpI − β1
cn

β2 + cn
I, (2.4b)

∂t c + ∂tu · ∇c − D ∇2c = μhK1
b + c

1 + c
− Gc

K + c
+ λdiv u, (2.4c)

∂th + ∂tu · ∇h = 1

1 + c2
− h, (2.4d)

where D = Dτj/L
2, K1 = kf τj /k1, G = γ τj /k1, K = kγ /k1, and λ = τjS/k1. For

the parameter values we have chosen from [1, 5] and also taking D = 20μm2/s and L =
100 μm we obtain the following values for the nondimensional parameters D = 4 × 10−3,
K1 = 46.28571428, G = 40/7, K = 1/7. Note that the relatively large value of K1
captures the fact that calcium is a fast messenger [9]. We have assumed here that mechanics

1In [33] S was derived as a function of the characteristics of SSCC, under suitable assumptions, simplifying
the model by [62].
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modify the behaviour of calcium only through the advection term and an additional calcium
flux which is linearly dependent on the local dilation/Herrmann pressure. The latter flux is
modulated by λ > 0, thus representing a source for c if the solid volume increases, and a
calcium sink otherwise (see e.g. [49]). This parameter will be treated as second bifurcation
parameter, as in [33]. In [33] it has been shown that as λ increases the system undergoes
bifurcations and calcium signals qualitatively change, e.g. going from an action potential to
a limit cycle (calcium oscillation). Moreover at a critical value of λ, oscillations were shown
to be suppressed in [33]—we expect a similar behaviour in the higher dimensional case
here. It is not clear what the maximum λ value should be in higher dimensions. Inspired
by the results in [33] we expect the oscillations/waves should still vanish for large enough
λ and so in the parametric study for the 2D numerical tests we vary λ from 0 to λ ≈ 2. In
Fig. 5 we indeed show that calcium oscillations have been suppressed for λ = 2.

Note that α1, α2 determine the magnitude of the viscous effects. Also, the smaller β2 is,
the faster T (c) in (2.2) (actually its nondimensional form) will tend to its saturation value
β1. In [33] the authors have explored this variation of the Hill function T (c); here we take
the values α1 = 1, α2 = 0.5, β2 = 0.1.

The system composed by (2.4a)–(2.4b) and (2.4c)–(2.4d) is complemented with appro-
priate initial data at rest

c(0) = c0, h(0) = h0, u(0) = 0, p(0) = 0, in × {0}. (2.5)

Homogeneous boundary conditions can be incorporated for normal displacements, calcium
fluxes, and traction, in the following manner

u · n = 0 and D ∇c · n = 0 on × (0, tfinal], (2.6a)

σn = 0 and D ∇c · n = 0 on × (0, tfinal], (2.6b)

where the boundary ∂ = ∪ is disjointly split into and where we prescribe slip
boundaries and zero traction, respectively. This case assumes that the tissue is allowed to
slip along the substrate on , while it is free to deform on . However, in most of our
numerical tests we will consider instead the pure traction boundary conditions

σn = 0 and D ∇c · n = 0 on ∂ × (0, tfinal]. (2.7)

In this case an additional condition is required to make the system well-defined. For
instance, we can impose orthogonality to the space of rigid motions defined as (see [13, Eq.
(11.1.7)])

RM( ) := v ∈ H1( ) : ε(v) = 0 , (2.8)

and unique solvability (for a given calcium concentration c) will follow since RM( ) is a
null space of the relevant functional space.

2.2 Mixed-primal Weak Formulation

Multiplying the nondimensional governing equations (2.4) by adequate test functions and integ-
rating by parts (in space) whenever appropriate, we end up with the following variational
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problem, here restricted to the case of pure traction boundary conditions: For a given t > 0,
find u(t) ∈ V, p(t) ∈ L2( ), c(t), n(t) ∈ H 1( ), such that

ε(u) : ε(v) − pdiv v + α1 ∂tε(u) : ε(v)

−α2 ∂tpdiv v − β(c)div v = 0 ∀v ∈ V, (2.9a)

− qdiv u − (1 − 2ν)

ν
pq = 0 ∀q ∈ L2( ), (2.9b)

∂t cφ + ∂tu · ∇c + 1

2
(cdiv ∂tu) φ + D ∇c · ∇φ

= [K(h, c) + λdiv u] φ ∀φ ∈ H 1( ), (2.9c)

∂th ψ + ∂tu · ∇h + 1

2
(hdiv ∂tu) ψ = [J (c) − h] ψ ∀ψ ∈ H 1( ). (2.9d)

Here we have defined the additional space

V := RM( )⊥ = v ∈ H1( ) : v = 0 and curl v = 0 ,

meaning that all rigid motions are discarded as feasible displacement solutions. Alterna-
tively, one can weakly enforce orthogonality to the space of rigid motions by a Lagrange
multiplier, which is what we will do at the discrete level.

Furthermore, we use an equivalent skew-symmetric form for advection terms and define

β(c) := β1c
n

β2 + cn
, K(h, c) := μhK1

b + c

1 + c
− Gc

K + c
, J (c) := 1

1 + c2
. (2.10)

These nonlinear terms are the non-dimensional counterparts of the Hill function (2.2), the
sum of the reactions JER, Jpump, JSSCC in (2.3a) and the reaction in (2.3b), respectively.

2.3 Fully Discrete Form

Let us consider a shape-regular partition Tj of ¯ into affine elements (triangles in 2D or
tetrahedra in 3D) E of diameter jE , where j = max{jE : E ∈ Tj } denotes the meshsize.
Finite-dimensional subspaces for the approximation of displacement, rescaled hydrostatic
pressure, and calcium are specified as

Vj := {vj ∈ H1( ) : vj |E ∈ [P2(E)]d ∀E ∈ Tj , and vj | = 0},
Vj := {vj ∈ H1( ) : vj |E ∈ [P1(E) ⊕ span{bE}]d ∀E ∈ Tj , and vj | = 0},

j := {qj ∈ C0( ) : qj |E ∈ P2(E) ∀E ∈ Tj }, j := j ,

Qj := {qj ∈ C0( ) : qj |E ∈ P1(E) ∀E ∈ Tj }, j := Qj, j := Qj, (2.11)

where Pk(E) denotes the space of polynomials of degree less than or equal than k defined
locally over the element E ∈ Tj , and bE := ϕ1ϕ2ϕ3 is a polynomial bubble function in E,
and ϕ1, ϕ2, ϕ3 are the barycentric coordinates of E. Depending on whether the displacement
is approximated with Vj or Vj , the pairs Vj × Qj are known as the MINI element and
Vj ×Qj are known as the Taylor–Hood elements. They are both Stokes inf-sup stable (see,
e.g., [11, 55]). On the other hand, an L2-orthonormal basis for the space of rigid motions
is constructed in terms of translations and rotations associated with the principal axes of
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the inertial tensor I encoding rotational kinetic energy [37]. Denoting x0 = | |−1 x the
centre of mass of the domain, such basis (having dimension 6 in 3D) assumes the form

j := | |−1/2νx, | |−1/2νy, | |−1/2νz,

λ
−1/2
x (x − x0) × νx, λ

−1/2
y (x − x0) × νy, λ

−1/2
y (x − x0) × νy ,

where the (λi, νi ) are the eigenpairs of I (see also [36]). As remarked in [37], we emphasise
that not all Stokes inf-sup stable pairs will lead to j -robust bounds when approximating
the singular Neumann problem of linear elasticity (for instance, using for displacement and
rescaled hydrostatic pressure the pair P2 − P0 does not allow for constructing a well-posed
mixed Poisson auxiliary problem needed in establishing orthogonality with respect to the
kernel).

Next we discretise the time interval (0, tfinal] into equi-spaced points tk = k t . Applying
a backward Euler method for the first-order time derivatives, we can write a semidiscrete
form of (2.9) (but now incorporating the orthogonality with respect to rigid motions with a
Lagrange multiplier). Now the fully discrete formulation is given by

α1

t
ε(uk+1

j ) − ε(uk
j ) : ε(v) + ε(uk+1

j ) : ε(v) − pk+1
j div v

− α2

t
(pk+1

j − pk
j )div v − β(ck+1

j )div v = 0, (2.12a)

− qdiv uk+1
j − 1 − 2ν

ν
pk+1

j q = 0, (2.12b)

1

t
(ck+1

j − ck
j )φ + 1

t
(uk+1

j − uk
j ) · ∇ck+1

j φ + 1

2 t
ck+1
j div uk+1

j φ

+ D ∇ck+1
j · ∇φ − K(hk+1

j , ck+1
j ) + λdiv uk+1

j φ = 0, (2.12c)

1

t
(hk+1

j − hk
j )ψ + 1

t
(uk+1

j − uk
j ) · ∇hk+1

j ψ

+ 1

2 t
hk+1

j div(uk+1
j − uk

j )ψ − J (ck+1
j ) − hk+1

j ψ = 0. (2.12d)

3 Well-posedness Analysis

We will consider that the initial data are nonnegative and regular enough, hence the numer-
ical scheme starts from discrete initial data u0

j , p0
j , c0

j , h0
j , which are the projections of the

exact initial conditions onto the finite element spaces.
Let us introduce the trilinear form d : H 1( )×H 1( )×H 1( ) → R and bilinear form

e : H 1( ) × H 1( ) → R defined as:

d(u; φ, ψ) = (u · ∇φ)ψ + 1

2
(φdiv u)ψ, e(c, φ) = (D∗∇c · ∇φ).

Here we rewrite the nonlinear term u · ∇φ in its equivalent skew-symmetric form u · ∇φ +
φ
2 div u [25, Chapter IV, Lemma 2.2]. Then, due to the skew-symmetric form of the operator
d(·; ·, ·), we can write

d(u;φ, φ) = 0 for all φ ∈ H 1( ). (3.1)
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And recalling the Poincaré–Friedrichs inequality [26, Chapter I, Lemma 3.1], we have the
coercivity for e(·, ·):

e(φ, φ) ≥ αe φ 2
1, for all φ ∈ H 1

0 ( ). (3.2)

We also assume the nonlinearities in (2.10) satisfy the following conditions:

(A1) J (c) is uniformly bounded, i.e. |J (c)| ≤ CJ .
(A2) K(c, h) is uniformly bounded with respect to c and Lipschitz with respect to h, in

particular we have: |K(h, c)| ≤ Ck|h|.
(A3) β(c) is uniformly bounded, i.e. |β|(c)| < Cβ .

Moreover, we will use the following algebraic relation: Let a and b be two real numbers,
then we have

2(a − b, a) = a2 − b2 + (a − b)2. (3.3)

3.1 Continuous Dependence on Data

Theorem 3.1 Let (uk+1
j , pk+1

j , ck+1
j , hk+1

j ) ∈ (V j ,Qj , j , j ) be a solution of problem

(2.12), with initial data (u0
j , c

0
j , h

0
j ). Then under the assumption that 1 −

√
d

2
1−4ν
4ν−3 > 0,

the following bounds are satisfied:

un+1
j

2

1,
+ t

n

k=0

uk+1
j

2

1,
+

n

k=0

uk+1
j

2

1,
≤ C1 u0

j

2

1,
+ tfinalC

2
β ,

cn+1
j

2

0,
+ t

n

k=0

ck+1
j

2

1,
≤ C2 c0

j

2

0,
+ h0

j

2

0,
+ u0

j

2

1,
+ tfinal(C

2
β + C2

J ) ,

hn+1
j

2

0,
+ t

n

k=0

hk+1
j

2

0,
≤ C3 h0

j

2

0,
+ tfinalC

2
J ,

where C1, C2 and C3 are positive constants independent of j and t .

Proof On the second equation of problem (2.12) we choose q = pk+1
j , to get

− 1 − 2ν

ν
pk+1

j

2

0,
= pk+1

j , div uk+1
j , (3.4)

which after applying Young’s inequality, implies

1 − 2ν

ν
pk+1

j

2

0,
≤ 1

2
pk+1

j

2

0,
+ 1

2
div uk+1

j

2

0,
,

hence,

pk+1
j

2

0,
≤ 2ν

√
d

4ν − 3
uk+1

j

2

1,

≤ Cp uk+1
j

2

1,
. (3.5)

Now, on the first equation in problem (2.12), we choose the test function v = uk+1, then
multiply by 2 t , and use the algebraic relation (3.3) in combination with equations (3.4), (3.5).
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We obtain:

2 t ε(uk+1
j )

2

0,
+ α1 ε(uk+1

j )
2

0,
+ ε(uk+1

j ) − ε(uk
j )

2

0,
− ε(uk

j )
2

0,

+2( t + α2)
1 − 2ν

ν
Cp uk+1

j

2

1,
≤ α2 pk

j

2

0,
+ α2

√
d uk+1

j

2

1,

+ t β(ck+1
j )

2

0,
+ t

√
d uk+1

j

2

1,
.

By Korn’s and Young’s inequalities, we get

t 1 −
√

d

2

1 − 4ν

4ν − 3
uk+1

j

2

1,
+ uk+1

j − uk
j

2

1,
+ α1

2
uk+1

j

2

1,
− uk

j

2

1,

+2α2Cp uk+1
j

2

1,
− uk

j

2

1,
≤ 2 t β(ck+1

j )
2

0,
.

Summing over k from 0 to n ≤ N − 1, applying the Poincaré–Friedrichs inequality and

assuming 1 −
√

d
2

1−4ν
4ν−3 > 0 and (A3), we get

un+1
j

2

1,
+ t

n

k=0

uk+1
j

2

1,
+

n

k=0

uk+1
j

2

1,
≤ C u0

j

2

1,
+ tfinalC

2
β . (3.6)

Now we take φ = ck+1
j , use properties (3.1), (3.2) and multiply by 2 t the third equation

in problem (2.12), to deduce:

ck+1
j

2

0,
+ ck+1

j − ck
j

2

0,
− ck

j

2

0,
+ 2αe t ck+1

j

2

1,

≤ t K(hk+1
j , ck+1

j )
0,

ck+1
j 0,

+ tλ
√

d uk+1
j 1,

ck+1
j 0,

.

As before, summing over k from 0 to n ≤ N−1, and applying Young’s inequality we deduce

cn+1
j

2

0,
+ αe t

n

k=0

ck+1
j

2

1,

≤ c0
j

2

0,
+ t

2αe

n

k=0

K(hk+1
j , ck+1

j )
2

0,
+ λ2d

2αe

n

k=0

|uk+1
j |21, .

By assumption (A2) we have,

cn+1
j

2

0,
+ αe t

n

k=0

ck+1
j

2

1,

≤ c0
j

2

0,
+ tC2

K

2αe

n

k=0

hk+1
j

2

0,
+ λ2d

2αe

n

k=0

|uk+1
j |21, . (3.7)

Similarly in the fourth equation of (2.12), we take ψ = hk+1
j , multiply by 2 t and use

property (3.1) to get

hk+1
j

2

0,
+ hk+1

j − hk
j

2

0,
− hk

j

2

0,
+ t hk+1

j

2

0,
≤ t J (ck+1

j )
0,

hk+1
j 0,

.
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Hence, applying Young’s inequality, assumption (A1) and summing over k, we get

hn+1
j

2

0,
+ t

2

n

k=0

hk+1
j

2

0,
≤ h0

j

2

0,
+ tfinal

2
CJ . (3.8)

While the first and third results follows directly from (3.6) and (3.8) respectively, we get the
second result by substituting the bounds for hk+1

j and uk+1
j into (3.7).

3.2 Existence Result: Fixed-point Approach

Next, we address the unique solvability of problem (2.12). To that end, we will make
use of Brouwer’s fixed-point theorem in the following form (given by [25, Corollary 1.1,
Chapter IV]):

Theorem 3.2 (Brouwer’s fixed-point theorem) Let H be a finite-dimensional Hilbert space
with scalar product (·, ·)H and corresponding norm · H . Let : H → H be a continuous
mapping for which there exists μ > 0 such that ( (u), u)H ≥ 0 for all u ∈ H with
u H = μ. Then there exists u ∈ H such that (u) = 0 and u H ≤ μ.

Theorem 3.3 (Existence of discrete solutions) Under the same assumptions as in Theo-
rem 3.1, problem (2.12) with initial data (u0

j , p
0
j , c

0
j , h

0
j ) admits at least one solution.

Proof To simplify the notation in the proof we introduce the constants:

Cu := C1 u0
j

2

1,
+ tfinalC

2
β , Ch := C3 h0

j

2

0,
+ tfinalC

2
J ,

Cc := C2 c0
j

2

0,
+ h0

j

2

0,
+ u0

j

2

1,
+ tfinal(C

2
β + C2

J ) .

We proceed by induction on k ≥ 1. We define the mapping

: V j × Qj × j × j → V j × Qj × j × j ,

using the relation

(uk+1
j , pk+1

j , ck+1
j , hk+1

j ), (v, q, φ, ψ)

= α1

t
ε(uk+1

j ) − ε(uk
j ) : ε(v) + ε(uk+1

j ) : ε(v) − pk+1
j div v

− α2

t
(pk+1

j − pk
j )div v − β(ck+1

j )div v + qdiv uk+1
j + 1 − 2ν

ν
pk+1

j q

+ 1

t
(ck+1

j − ck
j )φ + 1

t
(uk+1

j − uk
j ) · ∇ck+1

j φ + 1

2 t
ck+1
j div uk+1

j φ

+ (D ∇ck+1
j · ∇φ) − K(hk+1

j , ck+1
j ) + λdiv uk+1

j φ + 1

t
(hk+1

j − hk
j )ψ

+ 1

t
(uk+1

j − uk
j ) · ∇hk+1

j ψ + 1

2 t
hk+1

j div(uk+1
j − uk

j )ψ

− J (ck+1
j ) − hk+1

j ψ .
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Note that this map is well-defined and continuous on V j × Qj × j × j . On the other
hand, if we take

(v, q, φ, ψ) = (uk+1
j , pk+1

j , ck+1
j , hk+1

j ),

and employ (3.1), (3.2), (3.4), together with assumptions (A1)–(A3), we obtain

(uk+1
j , pk+1

j , ck+1
j , hk+1

j ), (uk+1
j , pk+1

j , ck+1
j , hk+1

j )

≥ α1

t
ε(uk+1

j ) 2
0, − ε(uk

j ) 0, ε(uk+1
j ) 0, + ε(uk+1

j ) 2
0,

+ α2

t

1 − 2ν

ν
pk+1

j
2
0, − α2

t
pk

j 0, div uk+1
j 0, − Cβ div uk+1

j 0,

+ 1

t
ck+1
j

2
0, − ck+1

j 0, ck
j 0, + αe ck+1

j
2
1, − CK hk+1

j 0, ck+1
j 0,

−λ div uk+1
j 0, ck+1

j 0, + 1

t
hk+1

j
2
0, − hk+1

j 0, hk
j 0,

−CJ hk+1
j 0, + hk+1

j
2
0, .

Next, using Korn’s inequality (with constant Ĉk) and (3.5), we deduce that

(uk+1
j , pk+1

j , ck+1
j , hk+1

j ), (uk+1
j , pk+1

j , ck+1
j , hk+1

j )

≥ 1

Ĉk

uk+1
j

2

1,
+ α2

√
d(2 − 4ν)

t (4ν − 3)
uk+1

j

2

1,
− λ

√
dCc uk+1

j 1,

−α2CpCu

√
d

t
uk+1

j 1,
− Cβ

√
d uk+1

j 1,
+ αe ck+1

j

2

1,
− Cc ck+1

j 1,

−CKCh ck+1
j 1,

+ hk+1
2

1,
− 2Ch hk+1

1,
− CJ hk+1

1,
.

Then, setting

CR = min
1

Ĉk

,
α2

√
d(2 − 4ν)

4ν − 3
, αe, 1 ,

Cr = max
α2CpCu

√
d

t
, Cβ

√
d, Cc, CKCh, λ

√
dCc, 2Ch, CJ ,

we may apply the inequality a + b ≤ √
2(a2 + b2)1/2, valid for all a, b ∈ R, to obtain

(uk+1
j , pk+1

j , ck+1
j , hk+1

j ), (uk+1
j , pk+1

j , ck+1
j , hk+1

j )

≥ CR uk+1
j

2

1,
+ ck+1

j

2

1,
+ hk+1

j

2

1,

−Cr uk+1
j 1,

+ ck+1
j 1,

+ hk+1
j 1,

.

Hence, the right-hand side is nonnegative on a sphere of radius r := Cr/CR .
Consequently, by Theorem 3.2, there exists a solution to the fixed-point problem

(uk+1
j , pk+1

j , ck+1
j , hk+1

j ) = 0.
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3.3 Linearisation

At each time iteration we are left with a nonlinear system, and proceeding with a Newton
linearisation we finally obtain the following scheme: Starting from discrete initial data u0

j ,

p0
j , c0

j , h0
j (projections of the exact initial conditions onto the finite element spaces), and

for = 1, . . ., we find u +1
j ∈ Vj , p +1

j ∈ Qj and c +1
j , h +1

j ∈ j , as the converged
solutions of the iteration for k = 0, . . .

uk+1
j ← uk

j + δuk+1
j , pk+1

j ← pk
j + δpk+1

j ,

ck+1
j ← ck

j + δck+1
j , hk+1

j ← hk
j + δhk+1

j ,

where the discrete Newton increments δ(·)j (the iteration superscript is discarded) solve the
non-symmetric Jacobian linear problem

a1(δuj , vj ) + b1(vj , δpj ) + g(vj , δωj ) + d1
ck
j

(δcj , vj ) = Fk(vj ) ∀vj ∈ Vj , (3.9a)

b2(δuj , qj ) − a2(δpj , qj ) = Gk(qj ) ∀qj ∈ Qj , (3.9b)

g(δuj , θ j ) = Hk(θ j ) ∀θ j ∈ j , (3.9c)

d3
ck
j

(δuj , φj ) + a3
uk

j ,ck
j ,hk

j

(δcj , φj ) + e3
ck
j

(δhj , φj ) = Ik(φj ) ∀φj ∈ j , (3.9d)

d4
hk

j

(δuj , ψj ) + e4
ck
j

(δcj , ψj ) + a4(hj , ψj ) = Jk(ψj ) ∀ψj ∈ j . (3.9e)

We have used the bilinear forms a1 : H1( ) ×H1( ) → R, a2 : L2( ) × L2( ) → R,
a3, a4, e3, e4 : H 1( ) × H 1( ) → R, b : H1( ) × L2( ) → R, g : H1( ) × RM → R,
d1 : H 1( ) × V → R, d3 : H1( ) × H 1( ) → R, d4 : H1( ) × H 1( ) → R, where
the subscripts explicitly indicate fixed quantities; and linear functionals Fk : H1( ) → R,
Gk,Hk, Ik : H 1( ) → R where the subscript k denotes that they depend on quantities
associated with the state around which one performs linearisation. The forms satisfy the
following specifications

a1(u, v) := 1 + α1

t
ε(u) : ε(v), b1(v, p) := − 1 + α1

t
pdiv v,

b2(u, q) := − qdiv u, a4(h, ψ) := 1

t
+ 1 hψ,

d1
ĉ
(c, v) := − c

β1β2ĉ
n−1

(ĉn + β2)2
div v, a2(p, q) := 1 − 2ν

ν
pq,

d3
ĉ
(u, φ) := 1

t
(u · ∇ ĉ)φ − λdiv uφ, d4

ĥ
(u, ψ) := 1

t
(u · ∇ĥ)ψ,

a3
û,ĉ,ĥ

(c, φ) := 1

t
+ μK1ĥ

(b − 1 − ĉ − ĉ2)

(1 + ĉ)2
+ G

K + ĉ
− GK

(K + ĉ)2
cφ

+ (û · ∇c)φ + D ∇c · ∇φ,
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e3
ĉ
(h, φ) := − μK1

b + ĉ

1 + ĉ
hφ, e4

ĉ
(c, ψ) := 2ĉcψ

(1 + ĉ2)2
,

g(v, θ) := v · θ , Fk(v) := β1(c
k
j )

n

β2 + (ck
j )

n
div v − a1(u

k
j , v) − b1(v, pk

j ),

Gk(q) := −b2(uk
j , q) + a2(p

k
j , q), Hk(θ) := uk

j · θ ,

Jk(ψ) := 1

1 + (ck
j )

2
− hk

j + hj + u +1
j · ∇hj

t
ψ,

Ik(φ) := cj + u +1
j · ∇cj

t
− μK1h

k
j

b + ck
j

1 + ck
j

+ Gck
j

K + ck
j

− λdiv uk
j φ

− 1

t
ck
jφ − (uk

j · ∇ck
j )φ − D ∇ck

j · ∇φ.

If one uses (2.6a)–(2.6b) then the third column and the third row (3.9c) in the tangent matrix
are not needed.

4 Numerical Results

In this section we solve the system (2.4) and study its behaviour as the two bifurcation
parameters, λ and μ vary. All tests here have been implemented with the open-source finite
element library FEniCS [3]. After matrix assembly, the resulting linear systems at each
linearisation step are solved with the direct solver MUMPS. The stopping criterion on the
nonlinear iterations of the Newton–Raphson algorithm is based on a weighted residual norm
dropping below the fixed tolerance of 1 · 10−7.

From now on, and unless otherwise specified, we take values for all model constants as
follows: D = 0.004, ν = 0.4, α1 = 1, α2 = 0.5, β1 = 1.5, β2 = 0.1, K1 = 46.29, K =
0.1429, G = 5.7143, b = 0.111. These parameter values are appropriate for the 2D and 3D
models extending the 1D model in [5, 33]. The approximation of displacement – rescaled
hydrostatic pressure will be restricted only to the MINI element and to continuous and
piecewise linear elements for the calcium concentration and IPR (that is, Vj ×Qj × j × j

in (2.11)).
We will first conduct three tests, Test 1, 2, 3. Tests 1A, 1B, 2A, 2B, 3A, 3B, 3C are over

a 2D domain and Test 3D is over a cylindrical domain. The boundary conditions for the 2D
domains are taken as (2.7), whereas for the 3D domain we will use either (2.6a)–(2.6b) or
(2.7). In all cases we use fixed timesteps dictated by the reaction kinetics.

For the 2D cases, we consider as domain a disk centred at (0, 0) with radius 2.5. This
domain approximates the apical surface area of an epithelial cell, which typically has a
diameter of 50μm. In the initial conditions (2.5), we take h to be at its steady state value
and for the calcium concentration we take a thin Gaussian pulse at the domain centre and
the steady state value elsewhere, as follows:

c0(x) = cs + 6cs exp(−200(x2 + y2)), h0(x) = 1

1 + c2
s

.
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Note that cs changes with μ: cs = 0.18572 for μ = 0.288, cs = 0.55633 for μ = 0.3, and
cs = 0.9658 for μ = 0.75. The initial disturbance is sufficient to induce a calcium wave, in
an appropriate parameter regime. We let the system evolve in time until tfinal = 10.

4.1 Test 1. CalciumWaves on a Fixed Domain

In Test 1, λ is taken to be zero. Then concentration of IP3 in the system (parameter μ) solely
dictates the bifurcations in the spatio-temporal patterns of calcium.

The calcium concentration and h are plotted at three different times in Fig. 1, using
μ = 0.288, 0.3 and 0.75. For μ = 0.288 (panels (a–d)) the Gaussian pulse evolves into a
solitary wave (which eventually reaches the boundary of the domain). Panels (e–h) indicates
that a wavetrain is emerging. (Compare the effect of a larger domain, in the Appendix,
where Fig. 11, shows a fully-fledged periodic wavetrain). For μ = 0.75, panels (i–l) the
initial disturbance decays when moving away from the disc centre. While the plots in Fig. 1
highlight the spatial distribution of the calcium concentration, its dynamic behaviour at a
fixed point is more clearly exhibited Fig. 2, where we plot the transients of both c and h at

Fig. 1 Test 1A. Snapshots of calcium starting from an initial, thin Gaussian pulse at the domain centre, using
μ = 0.288 (a,b,c,d), μ = 0.3 (e,f,g,h), and μ = 0.75 (i,j,k,l). Snapshots at t = 2, 10, 20 (three columns from
left to right). The panels (d,h,l) show solution profiles at time t = 20
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(a)

(b)

(c)

Fig. 2 Test 1B. Calcium concentration and the percentage of non-inactivated IPR versus time, at a fixed
location, for λ = 0 and different values of μ: (a) μ = 0.288, (b) μ = 0.3, (c) μ = 0.75

the point P : (0, 1), for the three values of μ considered above. We see, as expected from
[5] that for μ = 0.288 there is an action potential, for μ = 0.3 there are limit cycles and for
μ = 075 the transients decay to the steady state in an oscillatory manner.

4.2 Test 2. Effects of theMechanochemical Coupling

Test 2A: Increasing λ to 0.35, and leaving all other parameters the same, causes pro-
nounced changes to the calcium pattern, as illustrated in Fig. 3. Going from (a) to (b) we
see that the solitary wave becomes a periodic wavetrain. In panel (c), waves also seem to
be initiated from the boundary (which is the part of the domain where most pronounced
deformation and dilation occurs). These waves are sustained over a longer time, suggest-
ing a long-range stretch response. In panels (d), (e), (f) we plot the rescaled hydrostatic
pressure to study the cell’s deformation associated with the observed calcium patterns.
We see that there is a pronounced positive dilation of the cell as we go from (d) to (f).
Hence, we see that it is important to take the mechanochemical coupling into account.
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Fig. 3 Test 2A. Snapshots of calcium concentration on the undeformed domain (t = 2, 5, 10) and the
rescaled hydrostatic pressure plotted on the deformed configuration, for μ = 0.288 and λ = 0.35. The
reference configuration is highlighted with a black bold line (more clearly visible in the colour, online
version)

Note that waves from the boundary arise in the application of macroscopic wound heal-
ing modelling. Experimental observations and models from, e.g., [31, 38, 63, 64] indicate
that active stress in visco-elastic layers onsets more pronounced deformations near the
regions adjacent to the wound, that is, near the boundary of the epithelial layer.

Test 2B: We also select some other parameter regimes that, according to the 1D model
[33], we expect that they will produce qualitatively interesting behaviour. In Test 1
(λ = 0), we choose μ = 0.288 and μ = 0.3 which leads to a solitary wave and a peri-
odic wavetrain, respectively. Now, fixing μ = 0.288 we increase λ and we distinguish
between the following cases: Case I: λ = 0.1 and cs = 0.4850 leads to a periodic wave-
train. Case II: Setting λ = 0.5 and cs = 0.6824 gives also a periodic wavetrain with a
higher frequency. Case III: With λ = 1.3 and cs = 0.9577 we also find a periodic wave-
train that gradually decays, but where also the resting value elsewhere on the domain
increases with time. Case IV: With λ = 2 and cs = 1.19817 we see that the periodic
wavetrain has a similar period as before but it decays much faster.

For these simulations it suffices to take a timestep of t = 0.2. If we set now a larger
μ = 0.3, the values λ = 0.1(cs = 0.6034 (Case V) also lead to a periodic wavetrain.
Increasing λ further still leads to wavetrains but these decay faster and faster (Cases VI, VII,
VIII). For λ = 2, cs = 1.2506 (case VIII), we can also use a larger timestep t = 0.2. We
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select some of the results to show in Fig. 4, where we can see the viscoelastic response of
the domain interacting with the calcium dynamics.

Similarly to Fig. 2, in Fig. 5 we also show transients of all field variables, at the fixed
point P:(0,1) for some of the parameter values mentioned above. Comparing Fig. 2a with
Fig. 5a we see that for μ = 0.288 as λ increases the action potential of calcium is trans-
formed to limit cycles. Then comparing Fig. 5a with Fig. 5b we see that as λ increases

Fig. 4 Test 2B. Transients of calcium concentration on the deformed domain. Case I (a, b, c, d), Case IV (e,
f, g, h), Case VI (i, j, k, l), Case VIII (m, n, o, p). The black circle depicts the boundary of the undeformed
domain
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Test 2C. Transients of concentrations, displacement magnitude, and rescaled hydrostatic pressure
sampled at the point P :(0, 1), for different values of μ and λ

further the amplitude and frequency of the calcium limit cycles both increase. When λ = 2
Fig. 5c shows that the limit cycles have been suppressed and oscillations decay. A very
similar transition in the qualitative behaviour is observed in Fig. 5b, d, f for μ = 0.3 as λ

increases. Of course when μ = 0.3 limit cycles already exist when λ = 0 and their ampli-
tude and frequency increases as we can see by comparing Fig. 2b with Fig. 5b. We see
that the dilation undergoes the same transitions as λ increases from λ = 0.1 to λ = 2, for
μ = 0.288 and for μ = 0.3. One important feature to note here is that the cytosolic stretches
occur a little after the calcium spike - this has been observed experimentally in [16] and [61].

4.3 Test 3. Including Calcium Sparks

Assuming that calcium sparks appear on the cell in a random manner, as experiments show
[16, 61], we can study the influence of these sparks on the calcium propagation through the
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modification of (2.4c) as follows

∂t c + ∂tu · ∇c − div{D ∇c} = F(c, n, u) + If (x, t), (4.1)

where F(·, ·, ·) is a generic reaction term specified by the sought model (e.g. [5]), and If

encodes a collection of flashes of different amplitudes, having a uniform random distribu-
tion. From a phenomenological perspective, if the impulses are applied sufficiently close
to each other, a simple superposition phenomenon explains why the intensity of individual
local pulses contributes to form a synchronous wave propagating front. These impulses are
implemented as point sources (Dirac delta functions on a linear variational form) localised
at randomly distributed points in , with amplitude equal to the constant calcium equilib-
rium found for each parameter configuration, and switched on at a given frequency. They
are projected onto the appropriate finite element space (the one used for calcium approxi-
mation) and applied after assembling of the residual that constitutes the right-hand side of
the tangent system (3.9), at each Newton iteration.

In the case of λ = 0, although the advection effect is still turned on, the calcium tran-
sients do not exhibit substantial differences with respect to their counterparts on a fixed
domain (that is, when also the calcium-dependent deformation is turned off, with β2 = 0).
Also, the structure of the waves (when regarded locally) does not change with respect to
the observed behaviour in the case of a single calcium stimulus (meaning that the nature of
solitary waves and periodic wavetrains also occurs in the case of spark phenomena). How-
ever, the nucleation does plays a role, as anticipated above. We show in Fig. 6 snapshots of
the calcium concentration at four time instants and compare the effect of increasing the fre-
quency of the applied stimuli, and see that isolated point sources initiate a propagating wave
but eventually decay when the frequency is low enough (this is the expected trend observed
also in the one-dimensional model from [33]), while as soon as the frequency is increased
from one each 20 time steps to one each 5 time steps, the solitary waves form synchronous
wavefronts that are sustained in time.

Fig. 6 Test 3A. Transients of calcium concentration when sparks are initiated randomly in space and time
with low (a, b, c) and high (d, e, f) frequency, and shown at t = 0.2 (a, d), t = 0.4 (b,e), t = 0.6 (c,f)
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Then we simulate for larger values of λ and examine the differences in body defor-
mation and calcium distribution. Samples of these computations are presented in Fig. 7.
We see that even with lower frequencies of calcium sparks (here taking one each 10 time
steps) one is able to generate propagating fronts that in turn induce a periodic (but not uni-
form) dilation of the cell. In addition, if we regard the domain as a multi-cell aggregate
instead as of a single cell, the short-time deformations and sparks could represent single-cell
stretch whereas longer-term stretch and propagating fronts would account for synchronous
cell movement and rearrangement and collective, larger inter-cellular calcium wavetrains.
It is also clear that the deformations are no longer radial, which shows the benefit of
incorporating multidimensional models.

Finally, we replicate the behaviour of Test 3B in different geometries. A microscope
image of a Xenopus embryonic tissue from [34] is segmented and an unstructured triangular
mesh is generated. The sparks are applied now with a lower intensity (75% of cs). In Fig. 8
we show a sample of coarse mesh and a few snapshots of the calcium distribution over the
deformed domain. The tissue stretches and contracts back with an initial period of approx-
imately 5 nondimensional units, and then the contraction increases in frequency. We also
plot the displacement and rescaled hydrostatic pressure distribution, as well as the magni-
tude of the strain tensor, at t = 10. We also consider a thin cylinder of radius 2.5 and height
0.4. The boundary is split into the bottom disk where we impose the slip condition (2.6a)
and on the remainder of the boundary we prescribe zero traction (2.6b). Orthogonality with
respect to the space (2.8) is therefore not required in this case. These mechanical boundary
conditions represent a tissue that slips on a substrate, and in order to prevent it from slip-
ping away we also prescribe zero displacement on the origin. Apart from a larger diffusion
D = 0.02 and a higher Poisson ratio ν = 0.45, all other mechanochemical parameters
are maintained as before. We compare qualitatively the deformation patterns with respect to
imposing pure traction boundary conditions as before and show the outcome in Fig. 9. The

Fig. 7 Test 3B. Transients of calcium concentration when sparks are initiated randomly in space and time,
and being plotted on the deformed spatial domain, where the inner circle represents the boundary of the
undeformed domain. Simulations obtained with μ = 0.288, λ = 0.1, cs = 0.485044, and shown at t =
0.2, 0.7, 1, 1.3, 1.5, 2, 2.3, 2.5 (a, b, c, d, e, f, g, h)
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Fig. 8 Test 3C. Sample of finite element mesh (a), and simulation of calcium sparks on a deforming sample
of Xenopus embryonic tissue, shown at t = 0.1, 3, 5 (b, c, d). Panels (e, f, g) show displacement, rescaled
hydrostatic pressure, and post-processed strain for t = 10. Results were generated using μ = 0.3, λ = 0.1,
cs = 0.60386

former boundary treatment leads to mechanochemical patterns similar to those encountered
in some of the 2D cases reported in Test 3B, whereas for the latter boundary conditions the
deformations show a slightly more pronounced displacement in the z-direction.
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Fig. 9 Test 3D. Computation of the mechanochemical coupling in a cylinder geometry using: mixed
displacement-traction boundary conditions and representing a tissue on a substrate (a, b, c, d), and pure trac-
tion boundary conditions (e, f, g, h). Results were generated using ν = 0.45, μ = 0.3, λ = 0.1, cs = 0.60386,
and the snapshots are taken at times t = 0.1, 1, 2, 4

4.4 Accuracy Verification

To close this section, we briefly address the verification of convergence for the space-time
discretisation. For this we simply consider a unit square domain, partitioned uniformly
into triangles of successive refinement. On each resolution level we compute approximate
solutions and compare (using errors for displacement, rescaled hydrostatic pressure, cal-
cium concentration and non-activated IPR in their natural norms), against the following
manufactured exact solutions

u(x, y, t) = f (t)

⎛
⎝ 5 cos(2πx) sin(2πy) + x2(1−x)2y2(1−y)2(1−2ν)

ν

−5 sin(2πx) cos(2πy) + x3(1−x)3y3(1−y)3(1−2ν)
ν

⎞
⎠ ,

c(x, y, t) = f (t)
1

2
+ 1

2
cos

π

4
xy , h(x, y, t) = f (t)

1

2
+ 1

2
sin

π

2
xy ,

with p = − ν
1−2ν

div u. For the convergence tests we use the Taylor–Hood element for
displacement and rescaled hydrostatic pressure, and continuous and piecewise quadratic
elements for h and c. The parameters are ν = 0.49, α1 = α2 = 0.001, β1 = β2 = μ =
λ = b = G = K1 = 1, K = 2, D = 0.1. The exact displacement in the viscoelastic
case does not satisfy a homogeneous traction condition, but still a pure-traction boundary
condition is imposed by prescribing a synthetic traction computed from the exact stress. In
addition, the exact calcium concentration is imposed as a Dirichlet datum everywhere on the
boundary. Other combinations of boundary conditions (such as mixed loading) were also
tested, and they do not alter the convergence properties. A time step t = 0.01 is chosen
and we simulate a short time horizon tfinal = 3 t . Errors es between the approximate
and exact solutions are tabulated against the number of degrees of freedom in Table 1. For
the spatial convergence verification we have used f (t) = t . The expected convergence
behaviour (quadratic rates for all fields) is observed. The Newton–Raphson algorithm takes,
in average, four iterations to reach the prescribed residual tolerance. The convergence in
time is verified with f (t) = sin(t) and by partitioning the time interval into successively
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Table 1 Convergence test. Experimental errors associated with the spatial discretisation (using Taylor–Hood
and piecewise quadratic elements Vj ×Qj × j × j ) and convergence rates for the approximate solutions
computed at the final time step

DoF j eu rate ep rate ec rate eh rate

215 0.471 6.50e-02 – 1.22e-04 – 1.78e-04 – 5.47e-04 –

523 0.283 1.76e-02 2.554 3.38e-05 2.508 7.43e-05 1.710 2.06e-04 1.907

1547 0.157 5.52e-03 1.976 7.57e-06 2.548 2.14e-05 2.117 6.56e-05 1.951

5227 0.083 1.57e-03 1.981 1.69e-06 2.359 5.16e-06 2.237 1.88e-05 1.963

19115 0.043 4.18e-04 1.986 4.06e-07 2.147 1.26e-06 2.131 5.24e-06 1.929

73003 0.022 1.09e-04 1.991 1.02e-07 2.044 3.14e-07 2.043 1.36e-06 1.990

refined uniform steps and computing accumulated errors ês . Here

es = s(N t) − sN+1
j , ês =

N

n=1

t s(tn+1) − sn+1
j

2

1/2

,

where · denotes the appropriate space norm for the generic vector or scalar field s (that is,
the L2-norm for rescaled hydrostatic pressure and the H 1-norm for the remaining variables).
The results are shown in Table 2, confirming the expected first-order convergence. Samples
of approximate solutions are depicted in Fig. 10.

5 Concluding Remarks

In this work we have extended to higher spatial dimensions the 1D mechanochemical model
in [33] which captures a two-way coupling between calcium signalling and mechanics. We
have taken special care of traction boundary conditions for the motion of the cell. The gov-
erning equations consist of an advection-reaction-diffusion system for calcium signalling
coupled to the mechanical equation for a linear viscoelastic material. We implement the
two-way coupling through volume-dependent terms and an active contraction stress which
is dependent on calcium dynamics, as in [33, 47]. We have also established the existence of
weak solutions, and we have developed and implemented a multidimensional mixed-primal
finite element discretisation for coupled chemo-viscoelasticity with pure traction bound-
ary conditions, which is robust with respect to the Lamé parameters, and that captures the
salient features of the model solutions in an accurate and efficient manner.

Table 2 Convergence test. Experimental cumulative errors associated with the temporal discretisation and
convergence rates for the approximate solutions using a backward Euler scheme

t êu rate êp rate êc rate êh rate

0.5 1.13e-01 – 1.36e-02 – 2.97e-01 – 8.60e-02 –

0.25 6.89e-02 0.927 5.66e-03 0.932 1.66e-01 0.783 4.14e-02 1.112

0.125 3.36e-02 1.071 2.90e-03 0.945 8.20e-02 1.081 2.52e-02 0.844

0.0625 1.71e-02 0.976 1.49e-03 0.976 4.08e-02 1.075 1.70e-02 0.891

0.03125 8.59e-03 1.105 7.87e-04 1.065 2.14e-02 0.970 8.56e-03 0.968

0.015625 4.28e-03 1.177 4.02e-04 0.982 1.06e-02 1.025 4.83e-03 0.962
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Fig. 10 Convergence test. Approximate solutions on the deformed configuration, plotted on a coarse mesh
and at t = 3 t

Our model generates detailed insights into the mechanochemical processes, which are
very important during embryogenesis. Approximating a single epithelial cell with a circu-
lar disc, we have explored the parameter space by varying the level of IP3 in the system (μ
parameter), the usual bifurcation parameter in calcium signalling models, and the strength
of the mechanochemical coupling (captured here through the parameter λ.) We have shown
that the system exhibits a rich and interesting behaviour, which includes solitary waves
and periodic wavetrains. We observe that coupling calcium signalling to mechanics gen-
erates significant differences in the calcium signals; hence a key takeaway of our work
is that including the mechanochemical coupling when studying calcium signals is impor-
tant. Moreover, a quantitative evaluation of the effects of viscoelasticity and local dilation
involved in these mechanochemical processes underlying cytosolic calcium waves has been
undertaken.

Additionally, we have explored the presence of randomised calcium sparks in the domain
and have shown that these can organise into calcium waves under appropriate conditions.
This is a question of interest since different calcium signals have been observed in exper-
iments, ranging from sparks to waves - see for example, [16]. Taking a step closer to
experiments we have run simulations over a sample of a deforming Xenopus tissue in 2D
and then also considered a cylindrical surface in 3D.

A direct extension of our work here would be to employ the model in order to study cal-
cium signalling and mechanics over a a multicellular domain, comprising hundreds of cells.
In this connection, we are in contact with experimentalists working on apical constriction
[16]. Elucidating the precise interplay between calcium signalling and mechanics during
apical constriction would shed light into embryo malformations, such as Spina Bifida.

As it stands, the present model has a number of limitations. For example, we note that
in [34] the authors suggest that cells detect stress rather than stretch or strain because one
does not observe transient stretch spreading from cells exposed to ATP. This indicates that
probably an appropriate formalism for further elucidating calcium signalling coupled to
mechanics of cells and tissues is the framework of stress-assisted diffusion models, recently
proposed in [15, 40, 54]. This relates also to the observation that in other types of cells
that proliferate at a rate dependent on the substrate stiffness [24]. Furthermore, at certain
stages of morphogenesis, the assumption of small strains is no longer adequate and one
needs to describe the motion through nonlinear elasticity. One could explore growth mod-
els using multiplicative decompositions of deformation gradients [32, 52, 64], which will
strongly depend on the type of phenomenon under consideration. For instance, the adapta-
tion of growth and remodelling theory to the present context could follow the formalism of
constrained mixtures developed in, e.g., [12, 17, 18]. The theoretical analysis of stability
extended to that case presents a major challenge.
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Finally, it would be of interest to study the contraction and elongation of cell-cell gap
junctions on the apical end of the tissue, since these regions contain a clustering of epithelia,
and an important part of the overall morphogenesis occurs therein. Modifications to the
theoretical and computational tools presented here could be used to study these and other
processes as well.

Evidently, the two-way coupling between mechanical forces and calcium signalling at
both individual and collective cell levels is of course not unique to embryogenesis–it is a
phenomenon shared by many other biological systems such as cancer cells, keratinocytes,
or white blood cells [23, 35, 67].

Further work is underway to extend the present model and method formulation in order to
simulate the contact of the cell with a surrounding fluid (using an immersed boundary finite
element method with distributed Lagrange multipliers) as well as the cell-to-cell interactions
using a virtual element discretisation which would capture more effectively the single cell
geometries and the boundary contraction and elongation that together with junctional ten-
sion comprise the tissue-level deformation [29]. Moreover, since calcium signalling evolves
rapidly it would be natural to explore time-adaptive schemes based on local error estimators
such as those advanced in [20] for an application on morphoelasticity.

Appendix: Effect of Number of Cells

Figure 11 illustrates periodic wavetrains appearing on a larger domain (disk of radius 25).
This domain approximates the region of 20 neighbouring cells, and representing a cell
compound of 1000μm in diameter.

(a) (b) (c) (d)

Fig. 11 Test 1A on a larger domain. Snapshots at t = 10, 20, 30 (a, b, c) of calcium starting from an initial,
thin Gaussian pulse at the domain centre, using μ = 0.288 Panel (d) shows solution profiles at time t = 40
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Quito, Ecuador
3 School of Mathematics, Monash University, 9 Rainforest Walk, Melbourne, 3800 VIC, Australia
4 Research Core on Natural and Exact Sciences, Universidad Adventista de Chile, Casilla 7-D,

Chillán, Chile
5 World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow

State University, Moscow, Russia

975Mechanochemical Models for Calcium Waves in Embryonic Epithelia

http://orcid.org/0000-0003-3144-5822
mailto: kaourik@cardiff.ac.uk
mailto: paul.mendez01@epn.edu.ec

	Mechanochemical Models for Calcium Waves in Embryonic Epithelia
	Abstract
	Introduction
	Model Description and Weak Formulations
	Coupling Calcium Signalling with Solid Mechanics
	Mixed-primal Weak Formulation
	Fully Discrete Form

	Well-posedness Analysis
	Continuous Dependence on Data
	Existence Result: Fixed-point Approach
	Linearisation

	Numerical Results
	Test 1. Calcium Waves on a Fixed Domain
	Test 2. Effects of the Mechanochemical Coupling
	Test 3. Including Calcium Sparks
	Accuracy Verification

	Concluding Remarks
	Appendix I Effect of Number of Cells
	References
	Affiliations




