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Abstract The aim of this paper is to develop and analyze a family of stabilized discontinuous
finite volume element methods for the Stokes equations in two and three spatial dimensions.
The proposed scheme is constructed using a baseline finite element approximation of velocity
and pressure by discontinuous piecewise linear elements, where an interior penalty stabiliza-
tion is applied. A priori error estimates are derived for the velocity and pressure in the energy
norm, and convergence rates are predicted for velocity in the L2-norm under the assumption
that the source term is locally in H1. Several numerical experiments in two and three spatial
dimensions are presented to validate our theoretical findings.
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1 Introduction

1.1 Scope

Our interest is in the analysis of accurate and robust numerical methods for the discretization
of the Stokes equations, which are among the simplest prototypes exhibiting some key prop-
erties and difficulties associated to the analysis and numerics of more general flow problems
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(as for instance, a saddle-point structure) [22]. Here we focus on discontinuous finite vol-
ume element (DFVE) methods that, by construction, retain some properties of discontinuous
Galerkin (DG) and finite volume element (FVE) methods.

The typical inter-element continuity criterion, usually imposed on the finite dimensional
spaces for conforming and nonconforming finite elements, is no longer required for DG
methods. Other good features of DG methods include suitability for local mesh adapta-
tion, flexibility in the definition of numerical fluxes, easiness of implementation of high
order variants, natural handling of boundary conditions, improvement of mass conservation,
high localizabilty and parallelizability, and so on. These have impulsed the development of
an important body of bibliography concerning their numerical analysis and application for
many types of flow equations (see [3] and the references therein for a review). Well-known
drawbacks of DGmethods are the increased computational cost associated to a larger number
of degrees of freedom to achieve a fixed accuracy, and the lack of robustness with respect
to stabilization parameters [6]. For Stokes flow, discontinuous approximations of velocity
and pressure (usually with polynomial degrees of order k and k − 1, respectively) have been
extensively studied in the literature, including different types of interior penalty (IP) methods
[27], or imposing continuity of normal and tangential velocities in a weak sense [32]. Equal
order approximationswere introduced in the framework of local discontinuousGalerkin (LG)
and IP methods in [16,17], respectively. Related IP, LDG, and hp-methods for equal order
formulations include also [42–44], and the analysis of DG methods for Stokes equations
under minimal regularity, recently developed in [4].

On the other hand, FVEmethods can be considered as Petrov–Galerkin schemeswhere the
trial finite dimensional space is associated with a primal grid and the test space is constructed
on a so-called dual grid (see the early work [12] and the recent review [34]). The fundamental
properties of these hybrid methods, which consist in local conservativity of fluxes (as in
classical finite volumes) and suitability for rigorous error analysis (as in finite elements), have
turned FVE discretizations quite appealing in the numerical approximation of conservation
laws and fluid mechanics in a broad sense. Some advantages of FVE with respect to classical
FE methods consist in that approximate solutions are constructed with piecewise constant
elements on the dual grids, and so the computational burden is typically lower, but still
achieving the same convergence rates as the underlying FE discretization. The disadvantage
is that additional regularity is required on the exact solution or the given data in order to derive
optimal L2-estimates. For instance, for non-homogeneous elliptic problems, the analysis of
optimal L2-convergence requires either an exact solution belonging to H3, or a source term
globally in H1 (see e.g. [20]). A variety of FVE discretizations for Stokes problems are
available from the literature, including lumped approximations, covolumemethods, stabilized
formulations, hybrid discretizations, pressure projection methods, and many others [13,14,
18,19,21,33,37,39].

The main goal in DFVE methods is to keep desirable features of both FVE and DG
methods, as proposed in [46,47]. In this method, piecewise constants defined on a so-called
diamond dual grid are employed as test functions for the velocity. Then, the momentum
equation is tested against these dual-based functions, yielding a pure finite volume (FV)
formulation. Properties of a lump operator transforming piecewise linear functions defined
on the primal triangular (or tetrahedral) mesh into piecewise constant functions associated to
the diamond mesh, allow us to recast the resulting FV formulation almost entirely back on
the primal mesh. Only the right hand side of the discrete momentum equation will eventually
include terms defined on the diamond mesh, and so the dual mesh will be employed only
in the assembly of the datum. Further advantages of DFVE methods over classical FVE
discretizations reside mainly on local conservation properties at the control volume level,
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smaller control volumes (less than half the size of control volumes typically employed in
existing FVE and FV methods), and the liberty to choose tailored numerical fluxes as done
in FV methods. DFVE approximations of elliptic problems have been analyzed in [9,31,35,
36,45], whereas their application to flow problems has been analyzed in only a few recent
papers [19,48,49]. These studies deal with two-dimensional formulations of the Stokes (and,
respectively, generalized Stokes) equations using discontinuous P1 − P0 approximations of
velocity and pressure. We also mention the related vertex-centered DG scheme studied in
[8], and an equal-order staggered DG method recently introduced for Stokes problems in
[29] (see also [15]).

The present work differs from the contributionsmentioned above in that here we introduce
a fully discontinuous FVE formulation of the Stokes problem in its primal formulation and
constructed on the basis of an equal order approximation of velocity and pressure, where
our analysis and implementation are performed for two- and three-dimensional domains.
Classical tools of duality and energy methods are employed in the derivation of convergence
rates for the proposed formulation. We stress that our next goal is to study discontinuous
FVE approximations of coupled flow and transport problems modeling the sedimentation
of suspensions (see e.g. [11,30,41]) where the advantages of DFVE methods become more
apparent; and we believe the rigorous analysis of an equal order DFVE formulation for the
Stokes equations is a required intermediate step.

We have arranged the contents of this paper as follows. The remainder of this section
recalls some standard notation, contains a brief summary of the velocity–pressure formula-
tion for the Stokes equations in strong and variational form, and it states a solvability result.
Section 2 deals with the detailed derivation of our DFVE scheme, and collects some prelim-
inary results. The stability, solvability, and convergence analysis of the proposed method are
established in Sect. 3, and we show in Sect. 4 several numerical examples confirming the
derived convergence rates. We close with some conclusions and outlook in Sect. 5.

1.2 Preliminaries

LetΩ ⊂ R
d , d = 2, 3, be a bounded domain with polygonal boundaryΓ = ∂Ω and outward

unit normal vector n to Γ . Standard notation will be assumed for Lebesgue spaces L p(Ω),
1 ≤ p ≤ ∞, L2

0(Ω) = {q ∈ L2(Ω) : ∫
Ω
q dx = 0} and Sobolev functional spaces Hm(Ω).

We also denote Hm(Ω) = Hm(Ω)d , H1
0(Ω) := {v ∈ H1(Ω) : v|Γ = 0}, and in general

H will stand for the corresponding vectorial counterpart of the scalar space H . For a subset
S ⊂ Ω , (·, ·)S denotes the L2(S)–inner product, and we will simply write (·, ·) when S = Ω

or when no confusion can arise. As usual, we call Pr (S) the space of polynomial functions
of degree s ≤ r defined on S.

1.3 Governing Equations

Let us consider the classical Stokes equations in their primal formulation describing the
steady motion of an incompressible fluid

−div
(
νε(u) − pI

) = f in Ω, (1.1)

div u = 0 in Ω, (1.2)

u = 0 on Γ, (1.3)

where the unknowns are the fluid velocity u and the pressure field p. Here νε(u) − pI is
the Cauchy stress tensor, ε(u) = 1

2 (∇u + ∇ut) = 1
2 (

∂ui
∂x j

+ ∂u j
∂xi

) = εi j (u), 1 ≤ i, j ≤
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d is the infinitesimal rate of strain, ν > 0 is a constant viscosity and f ∈ L2(Ω) is a
vector function specifying applied body force. Multiplication by adequate test functions
and integration by parts over Ω yields the following weak formulation to (1.1)–(1.3): Find
(u, p) ∈ H1

0(Ω) × L2
0(Ω) such that

a(u, v) − b(v, p) = F(v) ∀v ∈ H1
0(Ω),

b(u, q) = 0 ∀q ∈ L2(Ω), (1.4)

where the involved bilinear forms a(·, ·) : H1
0(Ω) × H1

0(Ω) → R and b(·, ·) : H1
0(Ω)

× L2
0(Ω) → R and the linear functional F(·) : H1

0(Ω) → R, are defined as usual:

a(u, v) :=
∫

Ω

νε(u) : ε(v) dx, b(v, q) :=
∫

Ω

q div v dx, F(v) := ( f , v),

for all u, v ∈ H1
0(Ω) and q ∈ L2

0(Ω).
Finally, let us also recall the definition of the usual norms:

‖u‖20,Ω :=
d∑

i=1

‖ui‖20,Ω =
d∑

i=1

∫

Ω

(ui )
2 dx, |u|21,Ω :=

d∑

i=1

|ui |21,Ω =
d∑

i=1

∫

Ω

|∇ui |2 dx,

‖u‖21,Ω := |u|21,Ω + ‖u‖20,Ω, ‖ε(u)‖20,Ω :=
d∑

i, j=1

‖εi j (u)‖20,Ω =
d∑

i, j=1

∫

Ω

(εi j (u))2 dx .

(1.5)

An application of Poincaré inequality together with Korn’s inequality confirms the coercivity
of the bilinear form a(·, ·) in H1

0(Ω). In addition, there exist a ζ > 0 such that

inf
q∈L2

0(Ω)

sup
v∈H1

0(Ω)\{0}

b(v, q)

‖v‖1,Ω ‖q‖0,Ω
≥ ζ,

and hence the unique solvability of problem (1.4) is ensured (see e.g. [10] for further details).

2 Finite Volume Element Discretization

Let Th be a regular family of meshes of Ω formed by closed triangular (tetrahedral if d = 3)
elements K with boundary ∂K and diameter hK , and by vertices s j , j = 1, . . . , Nh . Each
face σ between two neighboring elements K and L has diameter hσ . The set of all faces in
Th is denoted by Eh and EΓ

h is its restriction to boundary faces.
Associated to the mesh Th with meshsize h = maxK∈Th (hK ), we define the following

trial finite dimensional subspaces

Vh = {v ∈ L2(Ω) : v|K ∈ P1(K )d ,∀K ∈ Th},
Qh = {q ∈ L2

0(Ω) : q|K ∈ P1(K ),∀K ∈ Th},
for the classical DG approximation of velocity and pressure, respectively. Let nK ,σ denote the
outward vector of K ∈ Th normal to σ ⊂ ∂K . For a scalar function q ∈ L2(Ω) we let [[q]]σ
:= q|K −q|L denote a scalar jump acrossσ = K̄∩ L̄ and [[qnK ,σ ]]σ := q|∂K nK ,σ −q|∂LnL ,σ

denote a vector jump across σ . By {q}σ we denote its average value on σ . If σ ∈ EΓ
h ,

then we simply consider [[q]]σ = {q}σ = q|σ . For vh ∈ Vh , [[vh]]σ = vh |K − vh |L and
{vh}σ = 1

2 (vh |K + vh |L) denote, respectively, its jump and average across σ .
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As it is well known, the lowest equal order pair of finite elements does not fulfill the inf-
sup condition unless suitable stabilizer terms are added in the baseline discrete formulation.
We choose, in particular, a one parameter family interior penalty discretization (in terms of
θ ∈ {−1, 0, 1}) of the viscous term combined with a pressure jump stabilization, leading
to the following DG formulation of the Stokes equations (see closely related methods in
e.g. [5,16,23,25,28,43,44]):

Find (ũh, p̃h) ∈ Vh × Qh such that

ah (ũh, vh) − bh(vh, p̃h) = F(vh) ∀vh ∈ Vh, (2.1)

bh (ũh, qh) + dh ( p̃h, qh) = Gh(qh) ∀qh ∈ Qh, (2.2)

where the discrete bilinear forms ah(·, ·), bh(·, ·), dh(·, ·) and the linear functional Gh(·) are
defined as:

ah(wh, vh) := a(wh, vh) −
∑

σ∈Eh
ν

∫

σ

({ε(wh)n}σ · [[vh]]σ + θ{ε(vh)n}σ · [[wh]]σ
)
ds,

+
∑

σ∈Eh

∫

σ

αcν

hβ
σ

[[wh]]σ · [[vh]]σ ds,

bh(vh, qh) := b(vh, qh) +
∑

σ∈Eh

∫

σ

{qhn}σ · [[vh]]σ ds,

dh(rh, qh) :=
∑

K∈Th

αd

ν
h2K (∇rh,∇qh)K +

∑

σ∈Eh

∫

σ

αe

ν
hσ [[rh]]σ [[qh]]σ ds,

Gh(qh) :=
∑

K∈Th

αdh
2
K ( f ,∇qh)K ,

for all wh, vh ∈ Vh, qh, rh ∈ Qh , where θ ∈ {−1, 0, 1} is the penalty parameter and
αi > 0, β > 0, i ∈ {c, d, e} are stabilization parameters (independent of h), to be specified
later. Throughout the paper, wewill denote byC , with orwithout subscripts, a generic positive
constant that may depend on the domain Ω , but not on the mesh parameter h.

In addition, we define the more regular space for the discrete velocity V(h) := Vh +(
H2(Ω)

⋂
H1

0(Ω)
)
. Since the overall discretization is nonconforming, we also define the

following discrete norms onV(h) andQh to be utilized in the forthcoming analysis [5,23,30]:

|||vh |||2h :=
∑

K∈Th

|vh |21,K +
∑

σ∈Eh
h−β

σ ‖[[vh]]σ ‖20,σ , |||vh |||2 := |||vh |||2h +
∑

K∈Th

h2K |vh |22,K ,

‖qh‖2h :=
∑

K∈Th

‖qh‖20,K + h2K |qh |21,K +
∑

σ∈Eh
hσ ‖[[qh]]σ ‖20,σ .

The standard inverse inequality implies that there exists C > 0 such that

|||vh ||| ≤ C |||vh |||h ∀vh ∈ Vh .

We will also make use of the following well established trace inequalities (cf. [1, Th.3.10])

‖v‖20,σ ≤ C
(
h−1
K ‖v‖20,K + hK |v|21,K

) ∀v ∈ H1(K ), (2.3)
∥
∥(∇v)nK ,σ

∥
∥2
0,σ ≤ C

(
h−1
K |v|21,K + hK |v|22,K

) ∀v ∈ H2(K ), (2.4)

for σ ⊂ ∂K , where C > 0 depends also on the minimum angle of K ∈ Th .
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Fig. 1 Left: Triangular elements in Th (solid lines) and diamonds in T �
h (dashed-dotted lines). Right: Sketch

of tetrahedrons in Th and diamonds of T �
h (dashed lines)

We next introduce a so-called diamond mesh T �
h consisting of diamonds Dσ generated

by barycentric subdivision, i.e., each diamond Dσ ∈ T �
h is associated to the face σ ∈ Eh

and constructed by joining the barycenters bK and bL of the elements K and L sharing the
interior face σ , with the vertices of σ (see Fig. 1).

Linked to the diamond mesh T �
h , let

V �
h = {

v ∈ L2(Ω) : v|Dσ ∈ P0(Dσ )d , ∀Dσ ∈ T �
h , v|Dσ = 0 if σ ∈ EΓ

h

}
,

be a test space for the velocity field. For connecting trial and test spaces for the FVE approx-
imation of velocity, we define the transfer operator γ : V(h) −→ V �

h in the following
manner:

γ v|Dσ = 1

hσ

∫

σ

v|Dσ ds, Dσ ∈ T �
h .

Some of the relations satisfied by this map are collected in the following lemma.

Lemma 1 (See [30]) For vh ∈ Vh we have

∫

σ

(vh − γ vh) ds = 0, (2.5)
∫

σ

[[vh − γ vh]]σ ds = 0, (2.6)
∫

K
(vh − γ vh) dx = 0, (2.7)

‖vh − γ vh‖0,K ≤ ChK ‖vh‖1,K . (2.8)

Let us nowmultiply (1.1) and (1.2) by γ vh ∈ V �
h and qh ∈ Qh , respectively. Using Gauss

divergence theorem on the diamond element Dσ , and adding over all diamond elements, we
obtain
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Fig. 2 Left: Triangular element K ∈ Th (solid lines) and three diamonds Dσ j (dashed lines). Right: Three-
dimensional counterpart

−
∑

Dσ ∈T �
h

ν

∫

∂Dσ

ε(u)n · γ vh ds +
∑

Dσ ∈T �
h

∫

∂Dσ

pn · γ vh ds = ( f , γ vh) ∀vh ∈ Vh,

∑

K∈Th

∫

K
qh div u dx = 0 ∀qh ∈ Qh .

Let Dσ j ∈ T �
h ( j = 1, . . . , d +1) be the d +1 sub-elements (triangles if d = 2, or tetrahedra

if d = 3) formed by barycentric subdivision of a generic element K ∈ Th , see Fig. 2. Then,
for γ vh ∈ V �

h , we can write

∑

Dσ ∈T �
h

ν

∫

∂Dσ

ε(u)n · γ vh ds

=
∑

K∈Th

d+1∑

j=1

ν

∫

∂Dσ j

ε(u)n · γ vh ds

=
∑

K∈Th

d+1∑

j=1

ν

∫

s j+1bK s j
ε(u)n · γ vh ds +

∑

K∈Th

ν

∫

∂K
ε(u)n · γ vh ds, (2.9)

where sd+2 = s1.
On the other hand, notice that for any k, l,m, n ∈ R, one can write the following relation

km − ln = 1

2
(k + l)(m − n) + 1

2
(k − l)(m + n). (2.10)

Applying the identity (2.10) to a product of a jump and an average, and elementary compu-
tations, yields

∑

KTh

∫

∂K
qv · n ds =

∑

σ∈E int
h

∫

σ

[[qn]]σ · {v}σ ds +
∑

σ∈Eh

∫

σ

{qn}σ · [[v]]σ ds. (2.11)
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Now, owing to (2.9), (2.11), and the fact that the exact solutions (u, p) of (1.1)–(1.3) satisfy
[[ε(u)n]]σ = 0 and [[pn]]σ = 0 on every σ ∈ E inth , we can deduce that a stabilized DFVE
counterpart of (2.1)–(2.2) reads:

Find (uh, ph) ∈ Vh × Qh such that

Ah(uh, vh) + Ch(vh, ph) = F(γ vh) ∀vh ∈ Vh, (2.12)

Bh(uh, qh) + dh(ph, qh) = Gh(qh) ∀qh ∈ Qh, (2.13)

which can be rewritten in the form:
Find (uh, ph) ∈ Vh × Qh such that

A ((uh, ph); (vh, qh)) = F(γ vh) + Gh(qh) ∀(vh, qh) ∈ Vh × Qh, (2.14)

where the quadrilinear form is defined as: A ((uh, ph); (vh, qh)) := Ah(uh, vh) +
Ch(vh, ph) + Bh(uh, qh) + dh(ph, qh), and its components read

Ah(uh, vh) := −
∑

K∈Th

d+1∑

j=1

ν

∫

s j+1bK s j
ε(uh)n · γ vh ds −

∑

σ∈Eh
ν

∫

σ

{ε(uh)n}σ · [[γ vh]]σ ds

− θ
∑

σ∈Eh
ν

∫

σ

{ε(vh)n}σ · [[γ uh]]σ ds +
∑

σ∈Eh

∫

σ

αcν

hβ
σ

[[uh]]σ · [[vh]]σ ds,

Bh(vh, qh) := b(vh, qh) −
∑

σ∈Eh

∫

σ

{qhn}σ · [[γ vh]]σ ds,

Ch(vh, qh) :=
∑

K∈Th

d+1∑

j=1

∫

s j+1bK s j
qhγ vh · n ds +

∑

σ∈Eh

∫

σ

{qhn}σ · [[γ vh]]σ ds

−
∑

σ∈Eh

∫

σ

([[vh − γ vh]]σ · {qhn}σ + [[qh]]σ · {(vh − γ vh)n}σ
)
ds,

for all uh, vh ∈ Vh, qh ∈ Qh .

Remark 1 We stress that the cases θ = 1, θ = 0 and θ = −1 lead respectively to the
symmetric, incomplete, and non-symmetric interior penalty formulations (SIPG, IIPG and
NIPG, respectively) in the context of discontinuous Galerkin finite element methods. Some
advantages and disadvantages of these methods with respect to each other are discussed in
e.g. [26] (see also [3] and the references given there).

In order to show consistency of the DFVE scheme (2.14) with respect to the weak formu-
lation (1.4), we first state the following lemma (a proof can be found in [48]).

Lemma 2 For all (v, q) ∈ V(h) × L2
0(Ω), we have

∑

K∈Th

d+1∑

j=1

∫

s j+1bK s j
qγ v · n ds = −

∑

K∈Th

∫

K
q div v dx +

∑

K∈Th

∫

∂K
(v − γ v) · nq ds

+
∑

K∈Th

∫

K
(v − γ v) · ∇q dx .
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Now, according to (2.11) we can assert that

∑

K∈Th

∫

∂K
(v − γ v) · nq ds=

∑

σ∈Eh

∫

σ

[[v − γ v]]σ · {qn}σ ds+
∑

σ∈Eh

∫

σ

[[qn]]σ · {v − γ v}σ ds.

We conclude from (2.7) that

∑

K∈Th

∫

K
(v − γ v) · ∇qh dx = 0 ∀qh ∈ Qh,

and hence

∑

K∈Th

d+1∑

j=1

∫

s j+1bK s j
qv · n ds = −

∑

K∈Th

∫

K
q div v dx ≡ −b(v, q),

which yields the following relation between the bilinear forms Bh(·, ·) and Ch(·, ·)
Ch(v, qh) = −Bh(v, qh) ∀v ∈ V(h), qh ∈ Qh . (2.15)

Since dh(ph, qh) appears in the formulation, the stabilized scheme (2.14) may not be consis-
tent with the weak formulation in the usual sense. However, we can claim that the proposed
stabilized scheme is asymptotically consistent.

Lemma 3 (Asymptotic consistency) Let (u, p) ∈ H1
0(Ω) × H1(Ω) and (uh, ph) be the

solutions of (1.4) and (2.14), respectively. Then there exists a constant C > 0 depending on
the bounds for ‖p‖1,Ω , ‖ f ‖0,Ω , and on the stabilization constants, but not on h, such that

A ((u − uh, p − ph); (vh, qh)) ≤ Ch |||vh |||h ‖qh‖h .

Proof Applying (2.14) and the definitions of Ah(·, ·) and Ch(·, ·) along with the fact that
[[u]]σ = 0 and [[p]]σ = 0, we arrive at

A ((u − uh, p − ph); (vh, qh)) = dh(p, qh) − Gh(qh)

+
∑

σ∈Eh

∫

σ

[[vh − γ vh]]σ · {pn}σ ds ∀vh ∈Vh, qh ∈Qh .

(2.16)

In addition, the definitions of dh,Gh and ‖·‖h together with Cauchy–Schwarz inequality,
give the following bounds

|dh(p, qh)| ≤ Ch ‖p‖1,Ω ‖qh‖h , (2.17)

|Gh(qh)| ≤ Ch ‖ f ‖0,Ω ‖qh‖h . (2.18)

Note that the generic constant appearing in (2.17) and (2.18) may also depend on the bound
for the stabilization parameter αd . To estimate the last term in the RHS of (2.16), we use
once more Cauchy–Schwarz inequality to conclude that

∣
∣
∣
∣
∣
∣

∑

σ∈Eh

∫

σ

[[vh − γ vh]]σ · {pn}σ ds

∣
∣
∣
∣
∣
∣

≤
⎛

⎝
∑

σ∈Eh

∫

σ

h−β
σ [[vh − γ vh]]2σ ds

⎞

⎠

1/2 ⎛

⎝
∑

σ∈Eh

∫

σ

hβ
σ {pn}2σ ds

⎞

⎠

1/2

.
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Next, the trace inequality (2.3) and the definition of the norm |||·|||h with β = 3, yields
∣
∣
∣
∣
∣
∣

∑

σ∈Eh

∫

σ

[[vh − γ vh]]σ · {pn}σ ds

∣
∣
∣
∣
∣
∣
≤ Ch ‖p‖1,Ω |||vh |||h , (2.19)

and the proof is completed after inserting the estimates obtained in (2.17) to (2.19) into (2.16).

�

3 Stability, Solvability and Convergence Analysis

For any v,w ∈ V(h), an application of Gauss divergence theorem yields the following
relation (see [30] for further details)

A∗(v,w) =
∑

K∈Th

ν

∫

K
ε(v) : ε(w) dx +

∑

K∈Th

ν

∫

∂K
(γw − w)ε(v) : n ds

+
∑

K∈Th

ν

∫

K
( div ε(v)) · (w − γw) dx, (3.1)

where,

A∗(v,w) = −
∑

K∈Th

d+1∑

j=1

ν

∫

s j+1bK s j
ε(v)n · γw ds.

Moreover, for any vh,wh ∈ Vh , relation (2.5) and the fact that vh is linear on each element,
gives

A∗(vh,wh) =
∑

K∈Th

ν

∫

K
ε(vh) : ε(wh) dx = a(vh,wh), (3.2)

and using Cauchy–Schwarz and trace inequality (2.3), we can infer that

∑

σ∈Eh
ν

∫

σ

{ε(uh)n}σ · [[γ vh]]σ ds

≤
⎛

⎝
∑

σ∈Eh
h−β

σ ν

∫

σ

[[γ vh]]2σ ds

⎞

⎠

1/2 ⎛

⎝
∑

σ∈Eh
hβ

σ

∫

σ

{ε(uh)n}2σ ds

⎞

⎠

1/2

≤ C

⎛

⎝
∑

σ∈Eh
h−β+1

σ [[γ vh]]2σ
⎞

⎠

1/2 ⎛

⎝
∑

K∈Th

‖ε(uh)‖20,K
⎞

⎠

1/2

. (3.3)

Taking the norm of the strain ε(u) (defined in (1.5)), we can write
⎛

⎝
∑

K∈Th

‖ε(uh)‖20,K
⎞

⎠

1/2

≤ |||uh ||| . (3.4)

We then proceed to employ the definition of γ and Cauchy–Schwarz inequality to arrive at

[[γ vh]]2σ = h−2
σ

(∫

σ

[[vh]]σ ds

)2

ds ≤ h−2
σ

(∫

σ

ds

) (∫

σ

[[vh]]2σ ds

)

= h−1
σ

∫

σ

[[vh]]2σ ds,
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and hence,
∑

σ∈Eh
h−β+1

σ [[γ vh]]2σ ≤
∑

σ∈Eh
h−β

σ

∫

σ

[[vh]]2σ ds. (3.5)

Finally, putting (3.4) and (3.5) in (3.3) yields

∑

σ∈Eh
ν

∫

σ

{ε(uh)n}σ · [[γ vh]]σ ds ≤ C

⎛

⎝
∑

σ∈Eh
h−β

σ

∫

σ

[[vh]]2σ ds

⎞

⎠

1/2

|||uh ||| . (3.6)

Next, we establish the coercivity and boundedness of the bilinear form Ah(·, ·).
Lemma 4 There exists C > 0 independent of the mesh size h, such that these properties
hold true:

Ah(vh,wh) ≤ C |||vh ||| |||wh ||| ∀vh,wh ∈ V(h), (3.7)

Ah(vh, vh) ≥ C |||vh |||2h ∀vh ∈ Vh . (3.8)

Proof Let vh ∈ Vh . Using (3.2), we can rewrite Ah(vh, vh) as

Ah(vh, vh) = a(vh, vh) −
∑

σ∈Eh
ν

∫

σ

{ε(vh)n}σ · [[γ vh]]σ ds

− θ
∑

σ∈Eh
ν

∫

σ

{ε(vh)n}σ · [[γ vh]]σ ds +
∑

σ∈Eh

∫

σ

αcν

hβ
σ

[[vh]]2σ ds.

Now, an application of (3.6) together with the discrete Korn’s inequality (with constant α0),
yields

Ah(vh, vh) ≥ α0

∑

K∈Th

|vh |21,K − C(1 + θ) |||vh |||h
⎛

⎝
∑

σ∈Eh
h−β

σ

∫

σ

[[vh]]2σ ds

⎞

⎠

1/2

+
∑

σ∈Eh

∫

σ

αcν

hβ
σ

[[vh]]2σ ds,

and employing Young’s inequality and the definition of the mesh-dependent norm |||·|||h , we
arrive at

Ah(vh, vh) ≥ α0

∑

K∈Th

|vh |21,K − α0

2
|||vh |||2h − C2(1 + θ)2

2α0

⎛

⎝
∑

σ∈Eh
h−β

σ

∫

σ

[[vh]]2σ ds

⎞

⎠

+
∑

σ∈Eh

∫

σ

αcν

hβ
σ

[[vh]]2σ ds

≥ α0

2

∑

K∈Th

|vh |21,K +
(

αcν − C2(1 + θ)2

2α0
− α0

2

) ∑

σ∈Eh
h−β

σ

∫

σ

[[vh]]2σ ds

≥ C(α) |||vh |||2h .

Next, to ensure coercivity of the bilinear form Ah(·, ·), it is sufficient to choose

C(α) = min

(
α0

2
, αcν − C2(1 + θ)2

2α0
− α0

2

)

,
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and αc such that

αcν − C2(1 + θ)2

2α0
− α0

2
> 0.

Finally, a direct application of (3.2) and (3.6) readily yields the boundedness of Ah(·, ·)
(details can be found in e.g. [31, Lemma2.4]). 
�

Similarly, it is possible to prove the boundedness of the bilinear form Bh(·, ·)
Bh(vh, qh) ≤ C |||vh ||| ‖qh‖h ∀vh ∈ V(h), qh ∈ L2

0(Ω). (3.9)

Next, we employ (2.15) and (3.8) to deduce that the quadrilinear form is V(h)-coercive with
respect to the norm |||·|||h , i.e., there exists a positive constant C independent of h such that

Ah((vh, qh); (vh, qh)) ≥ C
[|||vh |||2h + ‖qh‖2h

]
, ∀vh ∈ V(h), qh ∈ L2

0(Ω). (3.10)

Before turning to the derivation of error estimates, we introduce the following discontin-
uous linear polynomial interpolation operators Ih : C(Ω) −→ Vh andΠh : L2(Ω) −→ Qh

for velocity and pressure, respectively (notice that Πh is the discontinuous counterpart of
the well-known Clément operator). In the next result we provide some generalities regarding
such operators.

Lemma 5 (See [3,5]) For any v ∈ Hs(Ω), and q ∈ Hs−1(Ω), with s ∈ {1, 2}, there exists
a constant C > 0 independent of h, such that the following approximation properties hold:

|v − Ihv|m,K ≤ Chs−m |v|s,K ,

|q − Πhq|m,K ≤ Chs−1−m |q|s−1,K ,

where 0 ≤ m ≤ 1.

Two important consequences of Lemma 5 are

|||v − Ihv||| ≤ Ch‖v‖2,Ω, (3.11)

‖q − Πhq‖h ≤ Ch‖p‖1,Ω . (3.12)

Notice that assertion (3.10) implies the well-posedness of the discrete scheme (2.14). An
application of (3.10) and Lemma 5 enables us to derive the following error estimates for
velocity and pressure.

Theorem 1 (Error estimate in the mesh dependent norm) Let (uh, ph) ∈ Vh × Qh be the
unique solution of (2.14) and (u, p) the unique solution of (1.4). Then, there exists C > 0
such that

|||u − uh |||h + ‖p − ph‖h ≤ Ch
(‖u‖2,Ω + ‖p‖1,Ω

)
.

Proof Since |||v|||h ≤ |||v||| for all v ∈ V(h), and bounds for |||u − Ihu||| and ‖p − Πh p‖h are
provided in (3.11) and (3.12), it is sufficient to estimate |||uh − Ihu|||h and ‖ph − Πh p‖h .
Combining (3.10) and Lemma 3, we deduce that

|||Ihu − uh |||2h + ‖Πh p − ph‖2h ≤ Ah((Ihu − uh,Πh p − ph); (Ihu − uh,Πh p − ph)),

≤ Ah((Ihu − u,Πh p − p); (Ihu − uh,Πh p − ph)

+ Ch |||Ihu − uh |||h ‖Πh p − ph‖h .
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To estimate the first term,we analyze all individual terms involved in the definition ofAh(·; ·).
Using (3.7), (3.9) and Cauchy–Schwarz inequality, we see that

|Ah(Ihu − u, Ihu − uh)| ≤ C |||Ihu − u||| |||Ihu − uh |||h ,

|Bh(Ihu − u,Πh p − ph)| ≤ C |||Ihu − u||| ‖Πh p − ph‖h ,

|dh(Πh p − ph,Πh p − ph | ≤ C ‖Πh p − p‖h ‖Πh p − ph‖h . (3.13)

Wecontinue in this fashion, using the definition of the bilinear formCh(·, ·), Cauchy–Schwarz
inequality, and Lemma 2 together with (2.8), to obtain

|Ch(Ihu − uh,Πh p − p)| ≤ C

[

‖Πh p − p‖h |||Ihu − uh |||h

+ h |||Ihu − uh |||h
(

∑

K

|Πh p − p|21,k
)1/2]

,

and an appeal to Lemma 5 yields

|Ch(Ihu − uh,Πh p − p)| ≤ C
[‖Πh p − p‖h |||Ihu − uh |||h + h |||Ihu − uh |||h ‖p‖1,Ω

]
.

(3.14)
Combining now (3.13) with (3.14), using the relation

ab ≤ θ

2
a2 + 1

2θ
b2,∀a, b ∈ R, θ > 0,

as well as (3.11), (3.12) and standard kick back arguments, we arrive at

|||Ihu − uh |||h + ‖Πh p − ph‖h ≤ Ch
[‖u‖2,Ω + ‖p‖1,Ω

]
,

and the rest of the proof follows straightforwardly after applying triangle inequality. 
�
Before proceeding to the derivation of an L2-estimate, we define the auxiliary bilinear

forms ash(·, ·), As
h(·, ·) : V(h) × V(h) −→ R as follows

ash(φ,ψ) := a(φ,ψ) − θ
∑

σ∈Eh
ν

∫

σ

({ε(φ)n}σ · [[ψ]]σ + {ε(ψ)n}σ · [[φ]]σ
)
ds,

+
∑

σ∈Eh

∫

σ

αcν

hβ
σ

[[φ]]σ · [[ψ]]σ ds,

As
h(φ,ψ) := −

∑

K∈Th

d+1∑

j=1

ν

∫

s j+1bK s j
ε(φ)n · γψ ds − θ

∑

σ∈Eh
ν

∫

σ

{ε(φ)n}σ · [[γψ]]σ ds

− θ
∑

σ∈Eh
ν

∫

σ

{ε(ψ)n}σ · [[γφ]]σ ds +
∑

σ∈Eh

∫

σ

αcν

hβ
σ

[[φ]]σ · [[ψ]]σ ds,

and we notice that the bilinear form ash(·, ·) is symmetric.

Theorem 2 (Error estimate in the L2-norm) Assume that (uh, ph) ∈ Vh ×Qh is the unique
solution of (2.14) and (u, p) the unique solution of (1.1)–(1.3). Then, there exists C > 0
such that

‖u − uh‖0,Ω ≤ Ch2
[

‖u‖2,Ω + ‖p‖1,Ω +
⎛

⎝
∑

K∈Th

‖ f ‖21,K
⎞

⎠

1/2 ]

.
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Proof First, let us consider the following adjoint problem associated to (1.1)–(1.3):
Find (φ, λ) ∈ H1

0(Ω) × L2
0(Ω) such that

−div
(
νε(φ) − λI

) = u − uh inΩ, (3.15)

divφ = 0 inΩ, (3.16)

φ = 0 onΓ,

whose solutions satisfy the well-known elliptic regularity criterion [1]

‖φ‖2,Ω + ‖λ‖1,Ω ≤ C‖u − uh‖0,Ω . (3.17)

In addition, let φ I ∈ Vh be the usual continuous interpolant of φ, for which the following
approximation property holds true

∣
∣
∣
∣
∣
∣φ − φ I

∣
∣
∣
∣
∣
∣ ≤ Ch‖φ‖2,Ω . (3.18)

Multiplying (3.15) by u − uh , integrating by parts, and using [[∇φ]]σ = 0, [[λ]]σ = 0, we
obtain

‖u−uh‖2 = ash(u−uh,φ)−bh(u−uh, λ) + (−1 + θ)
∑

σ∈Eh
ν

∫

σ

[[u−uh]]σ · {ε(φ)n}σ ds

= ash(u − uh,φ − φ I ) + ash(u − uh,φ I ) − As
h(u − uh,φ I ) + As

h(u−uh,φ I )

− bh(u − uh, λ − Πhλ) − bh (u − uh,Πhλ) + Bh (u − uh,Πhλ)

− Bh (u − uh,Πhλ) + (−1 + θ)ν
∑

σ∈Eh

∫

σ

[[u − uh]]σ · {ε(φ)n}σ ds. (3.19)

Since φ I ∈ Vh is a continuous interpolant of φ, we note that u, uh , p and ph will satisfy the
following problem

As
h

(
u,φ I

) + Ch
(
φ I , p

) = F
(
γφ I

)
,

As
h

(
uh,φ I

) + Ch
(
φ I , ph

) = F
(
γφ I

)
,

and hence
As
h(u − uh,φ I ) = −Ch(φh, p − ph).

Employing Lemma 2 together with the definition of Ch , we deduce that

Ch(φh, p − ph) = − (
p − ph,divφ I

) +
∑

K∈Th

∫

K
(φ − γφ I )∇ p dx, (3.20)

and combining (3.19) with (3.20) yields

‖u − uh‖2 = ash(u − uh,φ − φ I )

+
[

ash
(
u − uh,φ I

) − As
h

(
u − uh,φ I

) +
∑

K

∫

K

(
φ − φ I

) ∇ p dx

]

− (
p − ph,divφ I

) − Bh (u − uh,Πhλ)

+ (−1 + θ)
∑

σ∈Eh
ν

∫

σ

[[u − uh]]σ · {ε(φ)n}σ ds

+ [
Bh (u − uh,Πhλ) − bh (u − uh,Πhλ)

]
,

= T1 + T2 + T3 + T4 + T5 + T6.
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Now we devote ourselves to the estimation of each term Ti , i = 1, . . . , 6. By definition of
ah(·, ·), relation (3.18), and the fact that [[φ I ]]σ = 0, it immediately follows that

|T1| = |ash
(
u − uh,φ − φ I

) | ≤ Ch2 ‖u‖2,Ω ‖φ‖2,Ω ,

and using (3.1), (1.1) and proceeding analogously as in the proof of [31, Lemma3.1], it is
not difficult to see that

∣
∣
∣
∣
∣
∣
ash(u − uh,φ I ) − As

h(u − uh,φ I ) +
∑

K∈Th

∫

K
(φ − γφ I )∇ p dx

∣
∣
∣
∣
∣
∣

≤ Ch2

⎡

⎢
⎣‖u‖2,Ω +

⎛

⎝
∑

K∈Th

‖ f ‖21,K
⎞

⎠

1/2
⎤

⎥
⎦

∥
∥φ I

∥
∥
1,Ω .

Therefore we can apply (3.18) to get
∥
∥φ I

∥
∥
1 ≤ C ‖φ‖2, and consequently we have the

following bound for T2

|T2| ≤ Ch2

⎡

⎢
⎣‖u‖2,Ω +

⎛

⎝
∑

K∈Th

‖ f ‖21,K
⎞

⎠

1/2
⎤

⎥
⎦ ‖φ‖2,Ω .

To deal with T3, it is enough to apply (3.16), (3.18) and Theorem 1 to have

|T3| = | (p − ph,divφ I
) | = |(p − ph,div

(
φ − φ I

) | ≤ Ch2 ‖p‖1,Ω ‖φ‖2,Ω .

In order to bound T4, we first we note that

B (u,Πhλ) − Bh (uh,Πhλ) = Gh (Πhλ) + dh (p,Πhλ) − dh (p − ph,Πhλ) , (3.21)

and then observe that Cauchy–Schwarz inequality together with Theorem 1 and the assump-
tion that the operator Πh is H1-stable and all stabilization parameters αi are bounded, gives

|Gh(Πhλ)| ≤ Ch2 ‖ f ‖0,Ω ‖λ‖1,Ω ,

|dh (p − ph,Πhλ) | ≤ [dh(p − ph, p − ph)]
1/2 [dh (Πhλ,Πhλ)]1/2 ,

≤ C‖p − ph‖h h ‖λ‖1,Ω ,

≤ Ch2 ‖p‖1,Ω ‖λ‖1,Ω ,

and in the same manner we obtain

|dh(p,Πhλ)| ≤ Ch2 ‖p‖1,Ω ‖λ‖1,Ω .

Substituting these estimates in (3.21), we can assert that

|T4| = |Bh (u − uh,Πhλ) | ≤ Ch2(‖ f ‖0,Ω + ‖p‖1,Ω) ‖λ‖1,Ω .
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To bound T5,we employ againCauchy–Schwarz inequality, trace inequality (2.4), Theorem1,
and the definition of |||·|||h with β = 3 to obtain

|T5| =
∣
∣
∣
∣
∣
∣
(−1 + θ)

∑

σ∈Eh
ν

∫

σ

[[u − uh]]σ · {ε(φ)n}σ ds

∣
∣
∣
∣
∣
∣
,

≤
⎛

⎝
∑

σ∈Eh

∫

σ

h−β
σ [[u − uh]]2σ ds

⎞

⎠

1/2

×
⎛

⎝
∑

σ∈Eh

∫

σ

hβ
σ {ε(φ)n}2σ ds

⎞

⎠ ,

≤ Ch ‖u − uh‖h ‖φ‖2,Ω ,

≤ Ch2 ‖u‖2,Ω ‖φ‖2,Ω .

Proceeding in a similar way and using the H1-stability of Πh , we find that
∣
∣
∣
∣
∣
∣

∑

σ∈Eh

∫

σ

[[u − uh]]σ {Πhλ}σ ds

∣
∣
∣
∣
∣
∣
≤ Ch2 ‖u‖2,Ω ‖λ‖1,Ω ,

and ∣
∣
∣
∣
∣
∣

∑

σ∈Eh

∫

σ

[[γ (u − uh)]]σ {Πhλ}σ ds

∣
∣
∣
∣
∣
∣
≤ Ch2 ‖u‖2,Ω ‖λ‖1,Ω .

Therefore, using the definitions of bh(·, ·) and Bh(·, ·), the following bound for T6 readily
follows

|T6| = |Bh (u − uh,Πhλ) − bh (u − uh,Πhλ) | ≤ Ch2 ‖u‖2,Ω ‖λ‖1,Ω .

Collecting the derived estimates for Ti , i = 1, . . . , 6 all together in (2.16), using the regularity
result (3.17), and dividing by ‖u − uh‖0,Ω , we complete the proof. 
�
Remark 2 We stress that the analysis presented here can be extended straightforwardly to
the case of Stokes formulations with non-homogeneous boundary conditions.

4 Numerical Examples

We now present some numerical examples using the proposed DFVE method described in
Sect. 2, which confirm the theoretical results of Sect. 3. A conjugate gradient method with
lumped pressure mass preconditioning (see e.g. [40]) is employed to solve the linear system
arising from the discrete formulation.

4.1 Example 1: Experimental Convergence on the Unit Square

First we assess the accuracy of the method by comparing the approximate and the exact
solutions of (1.1)–(1.2) given by the smooth functions

u(x, y) =
(−256x2(x − 1)2y(y − 1)(2y − 1)

256y2(y − 1)2x(x − 1)(2x − 1)

)

, p(x, y) = (x − 1/2)(y − 1/2),

defined on the unit square Ω = (0, 1)2 and with ν = 1 (see [7]). We construct a family of
uniform triangular meshes for Ω with Nhi = (5 · 2i + 1)2 vertices, i = 0, . . . , 7, where
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Table 1 Experimental convergence histories for the stabilized DFVE approximation of the Stokes problem
(1.1)–(1.3)

Nh h e0(u) r0(u) eh(u) rh(u) eh(p) rh(p)

Example 1

36 0.2828430 0.4476130 – 3.824174 − 0.591913 –

121 0.1414215 0.1223365 1.87141 2.008662 0.928916 0.197659 1.58237

441 0.0707107 0.0286545 2.09402 1.015231 0.984427 0.082143 1.26681

1,681 0.0353553 0.0068536 2.06384 0.508904 0.996337 0.040325 1.03077

6,561 0.0176777 0.0015946 1.99323 0.254637 0.998954 0.020103 1.00654

25,921 0.0088388 0.0003965 1.99937 0.127375 0.999361 0.010022 1.00098

103,041 0.0044194 0.0000986 2.00012 0.061792 1.002480 0.006419 1.00107

410,881 0.0022981 0.0000242 1.99981 0.031048 1.000172 0.003574 1.03420

795,684 0.0011653 0.0000123 1.99992 0.015039 1.000025 0.001738 1.00152

Example 2

8 0.6667e-01 4.3908e-01 – 4.193831 − 1.897451 –

512 4.8621e-04 3.6750e-04 1.439959 0.143281 0.896297 0.019056 1.006706

1,331 1.6732e-04 7.4219e-05 1.499691 0.071263 0.964722 0.007378 0.966579

2,744 7.5861e-05 2.0427e-05 1.631009 0.042446 0.969506 0.003783 0.974878

4,913 4.0690e-05 7.2351e-06 1.662721 0.028118 0.936125 0.002274 0.987362

8,000 2.4299e-05 2.7017e-06 1.910762 0.019980 0.967367 0.001412 0.984081

12,167 1.5652e-05 1.1388e-06 1.963423 0.013781 0.985478 0.000973 0.986609

17,576 6.8721e-06 6.1141e-07 1.982419 0.007632 0.989601 0.000621 0.990167

24,678 2.9874e-06 2.5177e-07 1.993540 0.003782 0.993177 0.000419 0.995237

32,972 1.7598e-06 1.3278e-07 1.995862 0.002105 0.997420 0.000287 0.995899

Here we have considered the parameters θ = −1, β = 1, αc = 100, αd = 0.05, αe = 0.1 for Example 1,
whereas we set αc = 5,000 and αd = 0.001 for Example 2

the convergence of the approximate solutions is measured by errors in different norms and
corresponding observed rates defined as

eh(u) := |||u − uh |||h , e0(u) := ‖u − uh‖0,Ω, eh(p) := ‖p − ph‖h ,

rh(u) := log
(
eh(u)/êh(u)

)

log(h/ĥ)
, r0(u) := log

(
e0(u)/ê0(u)

)

log(h/ĥ)
, rh(p) := log

(
eh(p)/êh(p)

)

log
(
h/ĥ

) .

Here e and ê denote errors computed on two consecutive meshes of sizes h and ĥ. These
quantities are depicted in Table 1 (top rows). Here the stabilization parameters assume the
values β = 1, αc = 100, αd = 0.05, αe = 0.1. An experimental quadratic convergence rate
is observed for the velocity in the L2-norm, whereas pressure and velocity in the energy norm
exhibit a convergence rate of order h. These results agree with the theoretical error estimates
from Sect. 3. Approximate discontinuous solutions are presented in Fig. 3.

Remark 3 In addition, we have tested the accuracy of themethod depending on the symmetry
of the formulation (encoded in the parameter θ ) and on the stabilization parameters αc, β.
We consider eight scenarios where we choose αc ∈ {0.1, 1,000}, θ ∈ {1,−1} and β ∈ {1, 3}.
The error histories are presented in Fig. 4, where we observe that the expected orders of
convergence are attained for all cases except for (αc = 0.1, θ = −1, β = 1) and (αc =
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Fig. 4 Example 1: observed convergence rates for velocity in the L2- andmesh-dependent norms and pressure,
for different parameter values αc ∈ {0.1, 1,000}, θ ∈ {1, −1} and β ∈ {1, 3}
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Fig. 5 Example 2: approximate DFVE velocity components and pressure contours for the accuracy test on a
cube

0.1, θ = 1, β = 1). These results, along with those presented in the precedent paragraph,
suggest that for β = 1 the stabilization parameter αc needs to be large, whereas either small
or large values of αc are sufficient to achieve the expected convergence for β = 3. We can
conclude that the theoretical requirements on the stabilization parameters (αc, αd , αe and β)
are consistently met in the performed numerical results.

4.2 Example 2: Experimental Convergence on a Cube

We also test the 3D implementation by analyzing the convergence of the DFVE approxima-
tions to the following exact solutions of (1.1)–(1.2)

u(x, y, z) =
⎛

⎝
cos(πx) sin(πy) sin(π z)
sin(πx) cos(πy) sin(π z)

−2 sin(πx) sin(πy) cos(π z)

⎞

⎠, p(x, y, z) = sin(πx) sin(πy) sin(π z),

defined on the unit cube Ω = (0, 1)3. We set ν = 1 and forcing and boundary terms are
chosen according to these solutions. The approximate fields are presented in Fig. 5. As in
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Fig. 6 Example 3: approximate velocity streamlines (left), pressure distribution (center) and velocity profiles
(right) for the lid-driven cavity test employing the DFVE method

the previous example, we take θ = −1, β = 1, αe = 0.1, but modify αc = 5,000 and
αd = 0.001. A family of tetrahedral meshes for Ω is constructed having Nhi = (2 + 3i)3

vertices, with i = 0, . . . , 7. The expected rates of convergence are observed for both velocity
and pressure in all norms (see the bottom rows in Table 1).

4.3 Example 3: The Lid-Driven Cavity

Finally we perform the lid-driven cavity benchmark, where the flow in a closed box is driven
by the uniform motion of the top lid. The domain is again the unit cube Ω = (0, 1)3 and
the primal unstructured mesh consists of 29,791 nodes and 172,800 tetrahedral elements.
The viscosity is set to ν = 0.01, the body force is f = 0 and we impose no-slip boundary
conditions on the walls and bottom lids of the cube, whereas on the top lid we fix the smooth
velocity profile u = (16x(1 − x)y(1 − y), 0, 0)t (which ensures regularity of the discrete
solution, see e.g. [38]). Approximate solutions are presented in Fig. 6, where we observe
well resolved velocity patterns and mid-line profiles, along with stable pressure near the top
lid. These results agree with those reported in e.g. [38].

5 Concluding Remarks

In this paper we proposed an analyzed the convergence of novel equal-order discontinuous
finite volume element methods for the Stokes equations. Several numerical tests in two-
and three spatial dimensions exhibit either linear, or near linear convergence for velocity and
pressure in the mesh-dependent norms, which also match the theoretical rates of convergence
predicted by our analysis.

Further directions for development include the statement and analysis of fully DFVE
methods for coupled flow and transport problems with applications in porous media [30] and
sedimentation-consolidation processes [11], and generalization of DFVE methods for fully
mixed formulations in flow problems and elasticity. We are also interested in the derivation
of a posteriori error estimates [13], the superconvergence of approximate solutions via local
postprocessing [29,39] and on vorticity-based formulations [2,24]. Some of these topics will
be covered in a forthcoming contribution.

Acknowledgments We thank Dr. Thirupathi Gudi (IISc, Bangalore) for his valuable suggestions during the
early stage of this work, and we gratefully acknowledge the support by the University of Lausanne.
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